Science.gov

Sample records for drosophila p38b gene

  1. Interaction of Omega, Sigma, and Theta Glutathione Transferases with p38b Mitogen-Activated Protein Kinase from the Fruit Fly, Drosophila melanogaster

    PubMed Central

    Wongtrakul, J.; Janphen, K.; Saisawang, C.; Ketterman, A.J.

    2014-01-01

    Glutathione S-transferases (GSTs) are a diverse family of phase II detoxification enzymes found in almost all organisms. Besides playing a major role in the detoxification of xenobiotic and toxic compounds, GSTs are also involved in the regulation of mitogen activated protein (MAP) kinase signal transduction by interaction with proteins in the pathway. An in vitro study was performed for Theta, Omega, Sigma GSTs and their interaction with MAP kinase p38b protein from the fruit fly Drosophila melanogaster Meigen (Diptera: Drosophilidae). The study included the effects of all five Omega class GSTs (DmGSTO1, DmGSTO2a, DmGSTO2b, DmGSTO3, DmGSTO4), all five Theta class GSTs (DmGSTT1, DmGSTT2, DmGSTT3a, DmGSTT3b, DmGSTT4), and one Sigma class glutathione transferase on the activity of Drosophila p38b, including the reciprocal effect of this kinase protein on glutathione transferase activity. It was found that DmGSTT2, DmGSTT3b, DmGSTO1, and DmGSTO3 activated p38b significantly. Substrate specificities of GSTs were also altered after co-incubation with p38b. Although p38b activated DmGSTO1, DmGSTO2a, and DmGSTT2, it inhibited DmGSTT3b and DmGSTO3 activity toward xenobiotic and physiological substrates tested. These results suggest a novel link between Omega and Theta GSTs with the p38b MAP kinase pathway. PMID:25373207

  2. The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila.

    PubMed

    Park, Joung-Sun; Kim, Young-Shin; Yoo, Mi-Ae

    2009-05-21

    It is important to understand how age-related changes in intestinal stem cells (ISCs) may contribute to age-associated intestinal diseases, including cancer. Drosophila midgut is an excellent model system for the study of ISC proliferation and differentiation. Recently, age-related changes in the Drosophila midgut have been shown to include an increase in ISC proliferation and accumulation of mis-differentiated ISC daughter cells. Here, we show that the p38b MAPK pathway contributes to the age-related changes in ISC and progenitor cells in Drosophila. D-p38b MAPK is required for an age-related increase of ISC proliferation. In addition, this pathway is involved in age and oxidative stress-associated mis-differentiation of enterocytes and upregulation of Delta, a Notch receptor ligand. Furthermore, we also show that D-p38b acts downstream of PVF2/PVR signaling in these age-related changes. Taken together, our findings suggest that p38 MAPK plays a crucial role in the balance between ISC proliferation and proper differentiation in the adult Drosophila midgut.

  3. The organization of Drosophila genes.

    PubMed

    Maroni, G

    1994-01-01

    This study was designed to examine the range of size variations in the major functional elements of Drosophila genes and to test whether those size variations occur independently of each other. In a sample of 111 genes the following median values occur: leaders, 123 base pairs (bp); coding regions, 1242 bp; 3' untranslated regions (3'UTR), 246 bp; mRNAs, 1803 bp; 3' terminal exons 843 bp; and exons upstream of the last one 233 bp. Introns show a bimodal distribution with medians of 62 and 595 bp. Unexpected size correlations are evident for several of these elements. The size of the leader, for example, is correlated with the sizes of the coding region and the 3'UTR with very high levels of significance, and the size of the first intron is similarly correlated with the sizes of each of the individual components of the mature mRNA.

  4. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  5. Evolution of heterochromatic genes of Drosophila

    PubMed Central

    Yasuhara, Jiro C.; DeCrease, Christine H.; Wakimoto, Barbara T.

    2005-01-01

    Heterochromatin is generally associated with gene silencing, yet in Drosophila melanogaster, heterochromatin harbors hundreds of functional protein-encoding genes, some of which depend on heterochromatin for expression. Here we document a recent evolutionary transition of a gene cluster from euchromatin to heterochromatin, which occurred <20 million years ago in the drosophilid lineage. This finding reveals evolutionary fluidity between these two genomic compartments and provides a powerful approach to identifying differences between euchromatic and heterochromatic genes. Promoter mapping of orthologous gene pairs led to the discovery of the “slippery promoter,” characterized by multiple transcriptional start sites predominately at adenines, as a common promoter type found in both heterochromatic and euchromatic genes of Drosophila. Promoter type is diverse within the gene cluster but largely conserved between heterochromatic and euchromatic genes, eliminating the hypothesis that adaptation to heterochromatin required major alterations in promoter structure. Transition to heterochromatin is consistently associated with gene expansion due to the accumulation of transposable elements and increased A-T content. We conclude that heterochromatin-dependent regulation requires specialized enhancers or higher-order interactions and propose a facilitating role for transposable elements. PMID:16033869

  6. Hox genes and brain development in Drosophila.

    PubMed

    Reichert, Heinrich; Bello, Bruno

    2010-01-01

    Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.

  7. Circadian clock genes in Drosophila: recent developments.

    PubMed

    Subramanian, P; Balamurugan, E; Suthakar, G

    2003-08-01

    Circadian rhythms provide a temporal framework to living organisms and are established in a majority of eukaryotes and in a few prokaryotes. The molecular mechanisms of circadian clock is constantly being investigated in Drosophila melanogaster. The core of the clock mechanism was described by a transcription-translation feedback loop model involving period (per), timeless (tim), dclock and cycle genes. However, recent research has identified multiple feedback loops controlling rhythm generation and expression. Novel mutations of timeless throw more light on the functions of per and tim products. Analysis of pdf neuropeptide gene (expressed in circadian pacemaker cells in Drosophila), indicate that PDF acts as the principal circadian transmitter and is involved in output pathways. The product of cryptochrome is known to function as a circadian photoreceptor as well as component of the circadian clock. This review focuses on the recent progress in the field of molecular rhythm research in the fruit fly. The gene(s) and the gene product(s) that are involved in the transmission of environmental information to the clock, as well as the timing signals from the clock outward to cellular functions are remain to be determined.

  8. Gene Networks Underlying Chronic Sleep Deprivation in Drosophila

    DTIC Science & Technology

    2014-06-15

    SECURITY CLASSIFICATION OF: Studies of the gene network affected by sleep deprivation and stress in the fruit fly Drosophila have revealed the...Chronic Sleep Deprivation in Drosophila Report Title Studies of the gene network affected by sleep deprivation and stress in the fruit fly Drosophila have...stressed flies , the involvement of axonogenesis as a process regulated by these stressors. This goes beyond the current hypothesis of sleep as functioning

  9. [Regulatory functions of Pax gene family in Drosophila development].

    PubMed

    Li, Li; Yang, Yang; Xue, Lei

    2010-02-01

    The Pax gene family encodes a group of important transcription factors that have been evolutionary conserved from Drosophila to human. Pax genes play pivotal roles in regulating diverse signal transduction pathways and organogenesis during embryonic development through modulating cell proliferation and self-renewal, embryonic precursor cell migration, and the coordination of specific differentiation programs. Ten members of the Pax gene family, which perform crucial regulatory functions during embryonic and postembryonic development, have been identified in Drosophila. In this report, we described the protein structures, expression patterns, and main functions of Drosophila Pax genes.

  10. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed Central

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-01-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen. Images PMID:2901348

  11. Functional requirements driving the gene duplication in 12 Drosophila species

    PubMed Central

    2013-01-01

    Background Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. Results In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. Conclusions This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila. PMID:23945147

  12. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.

    PubMed Central

    Spradling, A C; Stern, D; Beaton, A; Rhem, E J; Laverty, T; Mozden, N; Misra, S; Rubin, G M

    1999-01-01

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control. PMID:10471706

  13. The life cycle of Drosophila orphan genes.

    PubMed

    Palmieri, Nicola; Kosiol, Carolin; Schlötterer, Christian

    2014-02-19

    Orphans are genes restricted to a single phylogenetic lineage and emerge at high rates. While this predicts an accumulation of genes, the gene number has remained remarkably constant through evolution. This paradox has not yet been resolved. Because orphan genes have been mainly analyzed over long evolutionary time scales, orphan loss has remained unexplored. Here we study the patterns of orphan turnover among close relatives in the Drosophila obscura group. We show that orphans are not only emerging at a high rate, but that they are also rapidly lost. Interestingly, recently emerged orphans are more likely to be lost than older ones. Furthermore, highly expressed orphans with a strong male-bias are more likely to be retained. Since both lost and retained orphans show similar evolutionary signatures of functional conservation, we propose that orphan loss is not driven by high rates of sequence evolution, but reflects lineage-specific functional requirements. DOI: http://dx.doi.org/10.7554/eLife.01311.001.

  14. Metallothionein genes in Drosophila melanogaster constitute a dual system.

    PubMed Central

    Mokdad, R; Debec, A; Wegnez, M

    1987-01-01

    We have selected a metallothionein (MT) cDNA clone from a cadmium-resistant Drosophila melanogaster cell line. This clone includes an open reading frame coding for a 43-amino acid protein whose characteristics are a high cysteine content (12 cysteines, 28% of all residues) and a lack of aromatic amino acids. This protein differs markedly from the Drosophila MT (Mtn gene) previously reported [Lastowski-Perry, D., Otto, E. & Maroni, G. (1985) J. Biol. Chem. 260, 1527-1530). The MT system of Drosophila thus consists of at least two distantly related genes, in sharp contrast with vertebrate MT systems, in which the different members of MT gene families display high similarity. The gene corresponding to our MT cDNA (Mto) is inducible in Drosophila cell lines and in both larval and adult flies. Images PMID:3106973

  15. Gene expression during the life cycle of Drosophila melanogaster.

    PubMed

    Arbeitman, Michelle N; Furlong, Eileen E M; Imam, Farhad; Johnson, Eric; Null, Brian H; Baker, Bruce S; Krasnow, Mark A; Scott, Matthew P; Davis, Ronald W; White, Kevin P

    2002-09-27

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  16. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  17. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  18. Graded Dorsal and Differential Gene Regulation in the Drosophila Embryo

    PubMed Central

    Reeves, Gregory T.; Stathopoulos, Angelike

    2009-01-01

    A gradient of Dorsal activity patterns the dorsoventral (DV) axis of the early Drosophila melanogaster embryo by controlling the expression of genes that delineate presumptive mesoderm, neuroectoderm, and dorsal ectoderm. The availability of the Drosophila melanogaster genome sequence has accelerated the study of embryonic DV patterning, enabling the use of systems-level approaches. As a result, our understanding of Dorsal-dependent gene regulation has expanded to encompass a collection of more than 50 genes and 30 cis-regulatory sequences. This information, which has been integrated into a spatiotemporal atlas of gene regulatory interactions, comprises one of the best-understood networks controlling any developmental process to date. In this article, we focus on how Dorsal controls differential gene expression and how recent studies have expanded our understanding of Drosophila embryonic development from the cis-regulatory level to that controlling morphogenesis of the embryo. PMID:20066095

  19. FlyTED: the Drosophila Testis Gene Expression Database.

    PubMed

    Zhao, Jun; Klyne, Graham; Benson, Elizabeth; Gudmannsdottir, Elin; White-Cooper, Helen; Shotton, David

    2010-01-01

    FlyTED, the Drosophila Testis Gene Expression Database, is a biological research database for gene expression images from the testis of the fruit fly Drosophila melanogaster. It currently contains 2762 mRNA in situ hybridization images and ancillary metadata revealing the patterns of gene expression of 817 Drosophila genes in testes of wild type flies and of seven meiotic arrest mutant strains in which spermatogenesis is defective. This database has been built by adapting a widely used digital library repository software system, EPrints (http://eprints.org/software/), and provides both web-based search and browse interfaces, and programmatic access via an SQL dump, OAI-PMH and SPARQL. FlyTED is available at http://www.fly-ted.org/.

  20. Evolution of Drosophila ribosomal protein gene core promoters

    PubMed Central

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2011-01-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module. PMID:19059316

  1. Evolution of Drosophila ribosomal protein gene core promoters.

    PubMed

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  2. Evolution of genes and genomes on the Drosophila phylogeny.

    PubMed

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R; Bergman, Casey M; Oliver, Brian; Markow, Therese A; Kaufman, Thomas C; Kellis, Manolis; Gelbart, William; Iyer, Venky N; Pollard, Daniel A; Sackton, Timothy B; Larracuente, Amanda M; Singh, Nadia D; Abad, Jose P; Abt, Dawn N; Adryan, Boris; Aguade, Montserrat; Akashi, Hiroshi; Anderson, Wyatt W; Aquadro, Charles F; Ardell, David H; Arguello, Roman; Artieri, Carlo G; Barbash, Daniel A; Barker, Daniel; Barsanti, Paolo; Batterham, Phil; Batzoglou, Serafim; Begun, Dave; Bhutkar, Arjun; Blanco, Enrico; Bosak, Stephanie A; Bradley, Robert K; Brand, Adrianne D; Brent, Michael R; Brooks, Angela N; Brown, Randall H; Butlin, Roger K; Caggese, Corrado; Calvi, Brian R; Bernardo de Carvalho, A; Caspi, Anat; Castrezana, Sergio; Celniker, Susan E; Chang, Jean L; Chapple, Charles; Chatterji, Sourav; Chinwalla, Asif; Civetta, Alberto; Clifton, Sandra W; Comeron, Josep M; Costello, James C; Coyne, Jerry A; Daub, Jennifer; David, Robert G; Delcher, Arthur L; Delehaunty, Kim; Do, Chuong B; Ebling, Heather; Edwards, Kevin; Eickbush, Thomas; Evans, Jay D; Filipski, Alan; Findeiss, Sven; Freyhult, Eva; Fulton, Lucinda; Fulton, Robert; Garcia, Ana C L; Gardiner, Anastasia; Garfield, David A; Garvin, Barry E; Gibson, Greg; Gilbert, Don; Gnerre, Sante; Godfrey, Jennifer; Good, Robert; Gotea, Valer; Gravely, Brenton; Greenberg, Anthony J; Griffiths-Jones, Sam; Gross, Samuel; Guigo, Roderic; Gustafson, Erik A; Haerty, Wilfried; Hahn, Matthew W; Halligan, Daniel L; Halpern, Aaron L; Halter, Gillian M; Han, Mira V; Heger, Andreas; Hillier, LaDeana; Hinrichs, Angie S; Holmes, Ian; Hoskins, Roger A; Hubisz, Melissa J; Hultmark, Dan; Huntley, Melanie A; Jaffe, David B; Jagadeeshan, Santosh; Jeck, William R; Johnson, Justin; Jones, Corbin D; Jordan, William C; Karpen, Gary H; Kataoka, Eiko; Keightley, Peter D; Kheradpour, Pouya; Kirkness, Ewen F; Koerich, Leonardo B; Kristiansen, Karsten; Kudrna, Dave; Kulathinal, Rob J; Kumar, Sudhir; Kwok, Roberta; Lander, Eric; Langley, Charles H; Lapoint, Richard; Lazzaro, Brian P; Lee, So-Jeong; Levesque, Lisa; Li, Ruiqiang; Lin, Chiao-Feng; Lin, Michael F; Lindblad-Toh, Kerstin; Llopart, Ana; Long, Manyuan; Low, Lloyd; Lozovsky, Elena; Lu, Jian; Luo, Meizhong; Machado, Carlos A; Makalowski, Wojciech; Marzo, Mar; Matsuda, Muneo; Matzkin, Luciano; McAllister, Bryant; McBride, Carolyn S; McKernan, Brendan; McKernan, Kevin; Mendez-Lago, Maria; Minx, Patrick; Mollenhauer, Michael U; Montooth, Kristi; Mount, Stephen M; Mu, Xu; Myers, Eugene; Negre, Barbara; Newfeld, Stuart; Nielsen, Rasmus; Noor, Mohamed A F; O'Grady, Patrick; Pachter, Lior; Papaceit, Montserrat; Parisi, Matthew J; Parisi, Michael; Parts, Leopold; Pedersen, Jakob S; Pesole, Graziano; Phillippy, Adam M; Ponting, Chris P; Pop, Mihai; Porcelli, Damiano; Powell, Jeffrey R; Prohaska, Sonja; Pruitt, Kim; Puig, Marta; Quesneville, Hadi; Ram, Kristipati Ravi; Rand, David; Rasmussen, Matthew D; Reed, Laura K; Reenan, Robert; Reily, Amy; Remington, Karin A; Rieger, Tania T; Ritchie, Michael G; Robin, Charles; Rogers, Yu-Hui; Rohde, Claudia; Rozas, Julio; Rubenfield, Marc J; Ruiz, Alfredo; Russo, Susan; Salzberg, Steven L; Sanchez-Gracia, Alejandro; Saranga, David J; Sato, Hajime; Schaeffer, Stephen W; Schatz, Michael C; Schlenke, Todd; Schwartz, Russell; Segarra, Carmen; Singh, Rama S; Sirot, Laura; Sirota, Marina; Sisneros, Nicholas B; Smith, Chris D; Smith, Temple F; Spieth, John; Stage, Deborah E; Stark, Alexander; Stephan, Wolfgang; Strausberg, Robert L; Strempel, Sebastian; Sturgill, David; Sutton, Granger; Sutton, Granger G; Tao, Wei; Teichmann, Sarah; Tobari, Yoshiko N; Tomimura, Yoshihiko; Tsolas, Jason M; Valente, Vera L S; Venter, Eli; Venter, J Craig; Vicario, Saverio; Vieira, Filipe G; Vilella, Albert J; Villasante, Alfredo; Walenz, Brian; Wang, Jun; Wasserman, Marvin; Watts, Thomas; Wilson, Derek; Wilson, Richard K; Wing, Rod A; Wolfner, Mariana F; Wong, Alex; Wong, Gane Ka-Shu; Wu, Chung-I; Wu, Gabriel; Yamamoto, Daisuke; Yang, Hsiao-Pei; Yang, Shiaw-Pyng; Yorke, James A; Yoshida, Kiyohito; Zdobnov, Evgeny; Zhang, Peili; Zhang, Yu; Zimin, Aleksey V; Baldwin, Jennifer; Abdouelleil, Amr; Abdulkadir, Jamal; Abebe, Adal; Abera, Brikti; Abreu, Justin; Acer, St Christophe; Aftuck, Lynne; Alexander, Allen; An, Peter; Anderson, Erica; Anderson, Scott; Arachi, Harindra; Azer, Marc; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Berlin, Aaron; Bessette, Daniel; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Bourzgui, Imane; Brown, Adam; Cahill, Patrick; Channer, Sheridon; Cheshatsang, Yama; Chuda, Lisa; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Costello, Maura; D'Aco, Katie; Daza, Riza; De Haan, Georgius; DeGray, Stuart; DeMaso, Christina; Dhargay, Norbu; Dooley, Kimberly; Dooley, Erin; Doricent, Missole; Dorje, Passang; Dorjee, Kunsang; Dupes, Alan; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Fisher, Sheila; Foley, Chelsea D; Franke, Alicia; Friedrich, Dennis; Gadbois, Loryn; Gearin, Gary; Gearin, Christina R; Giannoukos, Georgia; Goode, Tina; Graham, Joseph; Grandbois, Edward; Grewal, Sharleen; Gyaltsen, Kunsang; Hafez, Nabil; Hagos, Birhane; Hall, Jennifer; Henson, Charlotte; Hollinger, Andrew; Honan, Tracey; Huard, Monika D; Hughes, Leanne; Hurhula, Brian; Husby, M Erii; Kamat, Asha; Kanga, Ben; Kashin, Seva; Khazanovich, Dmitry; Kisner, Peter; Lance, Krista; Lara, Marcia; Lee, William; Lennon, Niall; Letendre, Frances; LeVine, Rosie; Lipovsky, Alex; Liu, Xiaohong; Liu, Jinlei; Liu, Shangtao; Lokyitsang, Tashi; Lokyitsang, Yeshi; Lubonja, Rakela; Lui, Annie; MacDonald, Pen; Magnisalis, Vasilia; Maru, Kebede; Matthews, Charles; McCusker, William; McDonough, Susan; Mehta, Teena; Meldrim, James; Meneus, Louis; Mihai, Oana; Mihalev, Atanas; Mihova, Tanya; Mittelman, Rachel; Mlenga, Valentine; Montmayeur, Anna; Mulrain, Leonidas; Navidi, Adam; Naylor, Jerome; Negash, Tamrat; Nguyen, Thu; Nguyen, Nga; Nicol, Robert; Norbu, Choe; Norbu, Nyima; Novod, Nathaniel; O'Neill, Barry; Osman, Sahal; Markiewicz, Eva; Oyono, Otero L; Patti, Christopher; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Raghuraman, Sujaa; Rege, Filip; Reyes, Rebecca; Rise, Cecil; Rogov, Peter; Ross, Keenan; Ryan, Elizabeth; Settipalli, Sampath; Shea, Terry; Sherpa, Ngawang; Shi, Lu; Shih, Diana; Sparrow, Todd; Spaulding, Jessica; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Strader, Christopher; Tesfaye, Senait; Thomson, Talene; Thoulutsang, Yama; Thoulutsang, Dawa; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Young, Geneva; Yu, Qing; Zembek, Lisa; Zhong, Danni; Zimmer, Andrew; Zwirko, Zac; Jaffe, David B; Alvarez, Pablo; Brockman, Will; Butler, Jonathan; Chin, CheeWhye; Gnerre, Sante; Grabherr, Manfred; Kleber, Michael; Mauceli, Evan; MacCallum, Iain

    2007-11-08

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

  3. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes.

    PubMed

    Sekelsky, Jeff

    2017-02-01

    The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations. Copyright © 2017 by the Genetics Society of America.

  4. Structure and expression of ubiquitin genes of Drosophila melanogaster.

    PubMed Central

    Lee, H S; Simon, J A; Lis, J T

    1988-01-01

    We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock. Images PMID:2463465

  5. In vivo chromatin accessibility correlates with gene silencing in Drosophila.

    PubMed Central

    Boivin, A; Dura, J M

    1998-01-01

    Gene silencing by heterochromatin is a well-known phenomenon that, in Drosophila, is called position effect variegation (PEV). The long-held hypothesis that this gene silencing is associated with an altered chromatin structure received direct support only recently. Another gene-silencing phenomenon in Drosophila, although similar in its phenotype of variegation, has been shown to be associated with euchromatic sequences and is dependent on developmental regulators of the Polycomb group (Pc-G) of gene products. One model proposes that the Pc-G products may cause a local heterochromatinization that maintains a repressed state of transcription of their target genes. Here, we test these models by measuring the accessibility of white or miniwhite sequences, in different contexts, to the Escherichia coli dam DNA methyltransferase in vivo. We present evidence that PEV and Pc-G-mediated repression mechanisms, although based on different protein factors, may indeed involve similar higher-order chromatin structure. PMID:9832530

  6. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila

    PubMed Central

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R.

    2016-01-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  7. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila.

    PubMed

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R

    2016-09-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa.

  8. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.

  9. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  10. Faster-X Evolution of Gene Expression in Drosophila

    PubMed Central

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459

  11. Drosophila GRAIL: An intelligent system for gene recognition in Drosophila DNA sequences

    SciTech Connect

    Xu, Ying; Einstein, J.R.; Uberbacher, E.C.; Helt, G.; Rubin, G.

    1995-06-01

    An AI-based system for gene recognition in Drosophila DNA sequences was designed and implemented. The system consists of two main modules, one for coding exon recognition and one for single gene model construction. The exon recognition module finds a coding exon by recognition of its splice junctions (or translation start) and coding potential. The core of this module is a set of neural networks which evaluate an exon candidate for the possibility of being a true coding exon using the ``recognized`` splice junction (or translation start) and coding signals. The recognition process consists of four steps: generation of an exon candidate pool, elimination of improbable candidates using heuristic rules, candidate evaluation by trained neural networks, and candidate cluster resolution and final exon prediction. The gene model construction module takes as input the clustered exon candidates and builds a ``best`` possible single gene model using an efficient dynamic programming algorithm. 129 Drosophila sequences consisting of 441 coding exons including 216358 coding bases were extructed from GenBank and used to build statistical matrices and to train the neural networks. On this training set the system recognized 97% of the coding messages and predicted only 5% false messages. Among the ``correctly`` predicted exons, 68% match the actual exon exactly and 96% have at least one edge predicted correctly. On an independent test set consisting of 30 Drosophila sequences, the system recognized 96% of the coding messages and predicted 7% false messages.

  12. Sleep and wakefulness modulate gene expression in Drosophila.

    PubMed

    Cirelli, Chiara; LaVaute, Timothy M; Tononi, Giulio

    2005-09-01

    In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. Sleep in fruit flies shares many features with mammalian sleep, but it is currently unknown to what extent behavioral states affect gene expression in Drosophila. To find out, we performed a comprehensive microarray analysis of gene expression in spontaneously awake, sleep-deprived and sleeping flies. Fly heads were collected at 4 am, after 8 h of spontaneous sleep or sleep deprivation, and at 4 pm, after 8 h of spontaneous wakefulness. As in rats, we found that behavioral state and time of day affect Drosophila gene expression to a comparable extent. As in rats, transcripts with higher expression in wakefulness and in sleep belong to different functional categories, and in several cases these groups overlap with those previously identified in rats. Wakefulness-related genes code for transcription factors and for proteins involved in the stress response, immune response, glutamatergic transmission, and carbohydrate metabolism. Sleep-related transcripts include the glial gene anachronism and several genes involved in lipid metabolism. Finally, the expression of many wakefulness-related and sleep-related Drosophila transcripts is also modulated by the time of day, suggesting an interaction at the molecular level between circadian and homeostatic mechanism of sleep regulation.

  13. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  14. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion

    PubMed Central

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S.; Sharma, Yashoda; Eberl, Daniel F.; Göpfert, Martin C.; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-01-01

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC’s roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  15. Drosophila Myc is required for normal DREF gene expression.

    PubMed

    Thao, Dang Thi Phuong; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm(4)/Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm(2)/dm(2) homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression.

  16. Drosophila Myc is required for normal DREF gene expression

    SciTech Connect

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm{sup 4}/Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm{sup 2}/dm{sup 2} homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression.

  17. Microevolutionary divergence pattern of the segmentation gene hunchback in Drosophila.

    PubMed

    Tautz, D; Nigro, L

    1998-11-01

    To study the microevolutionary processes shaping the evolution of the segmentation gene hunchback (hb) from Drosophila melanogaster, we cloned and sequenced the gene from 12 isofemale lines representing wild-type populations of D. melanogaster, as well as from the closely related species Drosophila sechellia, Drosophila orena, and Drosophila yakuba. We find a relatively low degree of sequence variation in D. melanogaster (theta = 0.0017), which is, however, consistent with its chromosomal location in a region of low recombination. Tests of neutrality do not reject a neutral-evolution model for the whole region. However, pairwise tests with different subregions indicate that there is a relative excess of polymorphic sites in the leader and the intron. Codon usage pattern analysis shows a particularly biased codon usage in the highly conserved regions, which is in line with the hypothesis that selection on translational accuracy is the driving force behind such a bias. A comparison of the expression pattern of hb in different sibling species of D. melanogaster reveals some regulatory changes in D. yakuba, which could be interpreted as changes in the timing of secondary expression domains.

  18. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene.

    PubMed Central

    Goldberg, D A

    1980-01-01

    The alcohol dehydrogenase (ADH; alcohol: NAD+ oxidoreductase, EC 1.1.1.1) gene (Adh) of Drosophila melanogaster was isolated by utilizing a mutant strain in which the Adh locus is deleted. Adult RNA from wild-type flies was enriched in ADH sequences by gel electrophoresis and then used to prepare labeled cDNA for screening a bacteriophage lambda library of genomic Drosophila DNA. Of the clones that hybridized in the initial screen, one clone was identified that hybridized with labeled cDNA prepared from a wild-type Drosophila strain but did not hybridize with cDNA prepared from an Adh deletion strain. This clone was shown to contain ADH structural gene sequences by three criteria: in situ hybridization, in vitro translation of mRNA selected by hybridization to the cloned DNA, and comparison of the ADH protein sequence with a nucleotide sequence derived from the cloned DNA. Comparison of the restriction site maps from clones of three different wild-type Drosophila strains revealed the presence of a 200-nucleotide sequence in one strain that was absent from the other two strains. The ADH mRNA sequences were located within the cloned DNA by hybridization mapping experiments. Two intervening sequences were identified within Adh by S1 nuclease mapping experiments. Images PMID:6777776

  19. T-Box Genes in Drosophila Limb Development.

    PubMed

    Pflugfelder, G O; Eichinger, F; Shen, J

    2017-01-01

    T-box genes are essential for limb development in vertebrates and arthropods. The Drosophila genome encodes eight T-box genes, six of which are expressed in limb ontogenesis. The Tbx20-related gene pair midline and H15 is essential for dorso-ventral patterning of the Drosophila legs. The three Tbx6-related Dorsocross genes are required for epithelial remodeling during wing development. The Drosophila gene optomotor-blind (omb) is the only member of the Tbx2 subfamily in the fly and is predominantly involved in wing development. Omb is essential for wing development and is sufficient to promote the development of a second wing pair. Targeted manipulations of omb expression have shown that the bulk omb requirement for wing development can be deconstructed into a number of individual functions. Even though omb expression in the wing disc is symmetrical with regard to the anterior/posterior (A/P) compartment boundary, anterior and posterior knockdowns have distinct consequences: Anterior Omb is required for the maintenance of a straight A/P lineage restriction boundary. Posterior Omb suppresses formation of an apical epithelial fold along the A/P boundary. Drosophila T-box gene expression is not confined to the ectoderm-derived epithelia of the imaginal discs. Both Doc and Omb are prominently expressed in leg disc muscle precursor cells. Omb is also strongly expressed in a tracheal branch that invades the extracellular matrix of the wing disc. The function of Doc and Omb in the latter tissues is not known, indicative of the many questions still open in the field. © 2017 Elsevier Inc. All rights reserved.

  20. The BDGP gene disruption project: Single transposon insertions associated with 40 percent of Drosophila genes

    SciTech Connect

    Bellen, Hugo J.; Levis, Robert W.; Liao, Guochun; He, Yuchun; Carlson, Joseph W.; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P. Robin; Schulze, Karen L.; Rubin, Gerald M.; Hoskins, Roger A.; Spradling, Allan C.

    2004-01-13

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in more than 30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6,300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7,140 lines. It now includes individual lines predicted to disrupt 5,362 of the 13,666 currently annotated Drosophila genes (39 percent). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene mis-expression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.

  1. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes.

    PubMed Central

    Bellen, Hugo J; Levis, Robert W; Liao, Guochun; He, Yuchun; Carlson, Joseph W; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P Robin; Schulze, Karen L; Rubin, Gerald M; Hoskins, Roger A; Spradling, Allan C

    2004-01-01

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in >30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7140 lines. It now includes individual lines predicted to disrupt 5362 of the 13,666 currently annotated Drosophila genes (39%). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene misexpression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool. PMID:15238527

  2. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  3. Prediction of Gene Expression in Embryonic Structures of Drosophila melanogaster

    PubMed Central

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-01-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms. PMID:17658945

  4. Conserved Arrangement of Nested Genes at the Drosophila Gart Locus

    PubMed Central

    Henikoff, Steven; Eghtedarzadeh, Mohammad K.

    1987-01-01

    The Drosophila melanogaster Gart gene encodes three enzymatic activities in the pathway for purine de novo synthesis. Alternative processing of the primary transcript leads to the synthesis of two overlapping polypeptides. The coding sequence for both polypeptides is interrupted by an intron that contains a functional cuticle protein gene encoded on the opposite DNA strand. Here we show that this nested organization also exists at the homologous locus of a distantly related species, Drosophila pseudoobscura. In both species, the intronic cuticle gene is expressed in wandering larvae and in prepupae. Remarkably, there are 24 different highly conserved noncoding segments within the intron containing the cuticle gene. These are found upstream of the transcriptional start, at the 3' end, and even within the single intronic gene intron. Other introns in the purine gene, including the intron at which alternative processing occurs, show no such homologies. It seems likely that at least some of the conserved noncoding regions are involved in specifying the high level developmental expression of the cuticle gene. We discuss the possibility that shared cis-acting regulatory sites might enhance transcription of both genes and help explain their nested arrangement. PMID:3123310

  5. Pigmentation and behavior: potential association through pleiotropic genes in Drosophila.

    PubMed

    Takahashi, Aya

    2013-01-01

    The molecular basis of pigmentation variation within and among Drosophila species is largely attributed to genes in melanin biosynthesis pathway, which involves dopamine metabolism. Most of the genetic changes underlying pigmentation variations reported to date are changes at the expression levels of the structural genes in the pathway. Within D. melanogaster, changes in cis-regulatory regions of a gene, ebony, are responsible for the naturally occurring variation of the body pigmentation intensity. This gene is also known to be expressed in glia, and many visual and behavioral abnormalities of its mutants have been reported. This implies that the gene has pleiotropic functions in the nervous systems. In this review, current knowledge on pigmentation variation and melanin biosynthesis pathway are summarized, with some focus on pleiotropic features of ebony and other genes in the pathway. A potential association between pigmentation and behavior through such pleiotropic genes is discussed in light of cis-regulatory structure and pleiotropic mutations.

  6. A role for the Drosophila neurogenic genes in mesoderm differentiation.

    PubMed

    Corbin, V; Michelson, A M; Abmayr, S M; Neel, V; Alcamo, E; Maniatis, T; Young, M W

    1991-10-18

    The neurogenic genes of Drosophila have long been known to regulate cell fate decisions in the developing ectoderm. In this paper we show that these genes also control mesoderm development. Embryonic cells that express the muscle-specific gene nautilus are overproduced in each of seven neurogenic mutants (Notch, Delta, Enhancer of split, big brain, mastermind, neuralized, and almondex), at the apparent expense of neighboring, nonexpressing mesodermal cells. The mesodermal defect does not appear to be a simple consequence of associated neural hypertrophy, suggesting that the neurogenic genes may function similarly and independently in establishing cell fates in both ectoderm and mesoderm. Altered patterns of beta 3-tubulin and myosin heavy chain gene expression in the mutants indicate a role for the neurogenic genes in development of most visceral and somatic muscles. We propose that the signal produced by the neurogenic genes is a general one, effective in both ectoderm and mesoderm.

  7. NELF Potentiates Gene Transcription in the Drosophila Embryo

    PubMed Central

    Wang, Xiaoling; Hang, Saiyu; Prazak, Lisa; Gergen, J. Peter

    2010-01-01

    A hallmark of genes that are subject to developmental regulation of transcriptional elongation is association of the negative elongation factor NELF with the paused RNA polymerase complex. Here we use a combination of biochemical and genetic experiments to investigate the in vivo function of NELF in the Drosophila embryo. NELF associates with different gene promoter regions in correlation with the association of RNA polymerase II (Pol II) and the initial activation of gene expression during the early stages of embryogenesis. Genetic experiments reveal that maternally provided NELF is required for the activation, rather than the repression of reporter genes that emulate the expression of key developmental control genes. Furthermore, the relative requirement for NELF is dictated by attributes of the flanking cis-regulatory information. We propose that NELF-associated paused Pol II complexes provide a platform for high fidelity integration of the combinatorial spatial and temporal information that is central to the regulation of gene expression during animal development. PMID:20634899

  8. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    PubMed Central

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  9. Using FlyBase, a Database of Drosophila Genes & Genomes

    PubMed Central

    Marygold, Steven J.; Crosby, Madeline A.; Goodman, Joshua L.

    2016-01-01

    SUMMARY For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic and high-throughput technologies add to the quantity and diversity of available data and resources. FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback. This chapter provides an overview of the data content, organization and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries. PMID:27730573

  10. Uncoupling neurogenic gene networks in the Drosophila embryo.

    PubMed

    Rogers, William A; Goyal, Yogesh; Yamaya, Kei; Shvartsman, Stanislav Y; Levine, Michael S

    2017-04-01

    The EGF signaling pathway specifies neuronal identities in the Drosophila embryo by regulating developmental patterning genes such as intermediate neuroblasts defective (ind). EGFR is activated in the ventral midline and neurogenic ectoderm by the Spitz ligand, which is processed by the Rhomboid protease. CRISPR/Cas9 was used to delete defined rhomboid enhancers mediating expression at each site of Spitz processing. Surprisingly, the neurogenic ectoderm, not the ventral midline, was found to be the dominant source of EGF patterning activity. We suggest that Drosophila is undergoing an evolutionary transition in central nervous system (CNS)-organizing activity from the ventral midline to the neurogenic ectoderm. © 2017 Rogers et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila.

    PubMed

    Chan, Carolus; Jayasekera, Suvini; Kao, Bryant; Páramo, Moisés; von Grotthuss, Marcin; Ranz, José M

    2015-03-05

    Genome clustering of homeobox genes is often thought to reflect arrangements of tandem gene duplicates maintained by advantageous coordinated gene regulation. Here we analyse the chromosomal organization of the NK homeobox genes, presumed to be part of a single cluster in the Bilaterian ancestor, across 20 arthropods. We find that the ProtoNK cluster was extensively fragmented in some lineages, showing that NK clustering in Drosophila species does not reflect selectively maintained gene arrangements. More importantly, the arrangement of NK and neighbouring genes across the phylogeny supports that, in two instances within the Drosophila genus, some cluster remnants became reunited via large-scale chromosomal rearrangements. Simulated scenarios of chromosome evolution indicate that these reunion events are unlikely unless the genome neighbourhoods harbouring the participating genes tend to colocalize in the nucleus. Our results underscore how mechanisms other than tandem gene duplication can result in paralogous gene clustering during genome evolution.

  12. The NSL Complex Regulates Housekeeping Genes in Drosophila

    PubMed Central

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  13. Recurrent Gene Duplication Diversifies Genome Defense Repertoire in Drosophila.

    PubMed

    Levine, Mia T; Vander Wende, Helen M; Hsieh, Emily; Baker, EmilyClare P; Malik, Harmit S

    2016-07-01

    Transposable elements (TEs) comprise large fractions of many eukaryotic genomes and imperil host genome integrity. The host genome combats these challenges by encoding proteins that silence TE activity. Both the introduction of new TEs via horizontal transfer and TE sequence evolution requires constant innovation of host-encoded TE silencing machinery to keep pace with TEs. One form of host innovation is the adaptation of existing, single-copy host genes. Indeed, host suppressors of TE replication often harbor signatures of positive selection. Such signatures are especially evident in genes encoding the piwi-interacting-RNA pathway of gene silencing, for example, the female germline-restricted TE silencer, HP1D/Rhino Host genomes can also innovate via gene duplication and divergence. However, the importance of gene family expansions, contractions, and gene turnover to host genome defense has been largely unexplored. Here, we functionally characterize Oxpecker, a young, tandem duplicate gene of HP1D/rhino We demonstrate that Oxpecker supports female fertility in Drosophila melanogaster and silences several TE families that are incompletely silenced by HP1D/Rhino in the female germline. We further show that, like Oxpecker, at least ten additional, structurally diverse, HP1D/rhino-derived daughter and "granddaughter" genes emerged during a short 15-million year period of Drosophila evolution. These young paralogs are transcribed primarily in germline tissues, where the genetic conflict between host genomes and TEs plays out. Our findings suggest that gene family expansion is an underappreciated yet potent evolutionary mechanism of genome defense diversification. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Flamenco, a gene controlling the gypsy retrovirus of drosophila melanogaster

    SciTech Connect

    Prud`homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A.

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is table and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo{sup D1} female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo{sup D1} reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. 40 refs., 10 figs., 6 tabs.

  15. BMP-dependent gene repression cascade in Drosophila eggshell patterning

    PubMed Central

    Charbonnier, Enrica; Fuchs, Alisa; Cheung, Lily S.; Chayengia, Mrinal; Veikkolainen, Ville; Seyfferth, Janine; Shvartsman, Stanislav Y.; Pyrowolakis, George

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) signal by activating Smad transcription factors to control a number of decisions during animal development. In Drosophila, signaling by the BMP ligand Decapentaplegic (Dpp) involves the activity of brinker (brk) which, in most contexts, is repressed by Dpp. Brk encodes a transcription factor which represses BMP signaling output by antagonizing Smad-dependent target gene activation. Here, we study BMP-dependent gene regulation during Drosophila oogenesis by following the signal transmission from Dpp to its target broad (br), a gene with a crucial function in eggshell patterning. We identify regulatory sequences that account for expression of both brk and br, and connect these to the transcription factors of the pathway. We show that Dpp directly regulates brk transcription through Smad- and Schnurri (Shn)-dependent repression. Brk is epistatic to Dpp in br expression and activates br indirectly, through removal of a repressor, which is yet to be identified. Our work provides first cis-regulatory insights into transcriptional interpretation of BMP signaling in eggshell morphogenesis and defines a transcriptional cascade that connects Dpp to target gene regulation. PMID:25704512

  16. Flamenco, a Gene Controlling the Gypsy Retrovirus of Drosophila Melanogaster

    PubMed Central

    Prud'homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A.

    1995-01-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo(D1) female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo(D1) reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. PMID:7713426

  17. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster.

    PubMed

    Prud'homme, N; Gans, M; Masson, M; Terzian, C; Bucheton, A

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovoD1 female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovoD1 reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy.

  18. Modeling of Gap Gene Expression in Drosophila Kruppel Mutants

    PubMed Central

    Kozlov, Konstantin; Surkova, Svetlana; Myasnikova, Ekaterina; Reinitz, John; Samsonova, Maria

    2012-01-01

    The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments. The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level approach to investigate the regulatory effect of gap gene Kruppel (Kr) on segmentation gene expression. We acquired a large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations. PMID:22927803

  19. Modeling of gap gene expression in Drosophila Kruppel mutants.

    PubMed

    Kozlov, Konstantin; Surkova, Svetlana; Myasnikova, Ekaterina; Reinitz, John; Samsonova, Maria

    2012-01-01

    The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments. The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level approach to investigate the regulatory effect of gap gene Kruppel (Kr) on segmentation gene expression. We acquired a large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations.

  20. Misexpression screen for genes altering the olfactory map in Drosophila.

    PubMed

    Zhang, Dongsheng; Zhou, Weiguang; Yin, Chong; Chen, Weitao; Ozawa, Rie; Ang, Lay-Hong; Anandan, Lavanya; Aigaki, Toshiro; Hing, Huey

    2006-04-01

    Despite the identification of a number of guidance molecules, a comprehensive picture has yet to emerge to explain the precise anatomy of the olfactory map. From a misexpression screen of 1,515 P{GS} lines, we identified 23 genes that, when forcibly expressed in the olfactory receptor neurons, disrupted the stereotyped anatomy of the Drosophila antennal lobes. These genes, which have not been shown previously to control olfactory map development, encode novel proteins as well as proteins with known roles in axonal outgrowth and cytoskeletal remodeling. We analyzed Akap200, which encodes a Protein Kinase A-binding protein. Overexpression of Akap200 resulted in fusion of the glomeruli, while its loss resulted in misshapen and ectopic glomeruli. The requirement of Akap200 validates our screen as an effective approach for recovering genes controlling glomerular map patterning. Our finding of diverse classes of genes reveals the complexity of the mechanisms that underlie olfactory map development. Published 2006 Wiley-Liss, Inc.

  1. Genes for host-plant selection in Drosophila.

    PubMed

    Matsuo, Takashi

    2008-01-01

    Interactions between herbivorous insects and their host plants are rich in diversity. How such interactions evolved has been a central issue in ecology. A series of analyses on an example of host-plant adaptation in a Drosophila species suggest that neurogenetics can be a powerful tool for understanding how insects' ability to select a specific host plant has evolved. Drosophila sechellia is a specialist species that exclusively reproduces on the ripe fruit of Morinda citrifolia, which is toxic to other Drosophila species, including D. melanogaster and D. simulans, which are phylogenetically close to D. sechellia. Genetic analyses have revealed that multiple loci are involved in the physiological and behavioral adaptations of D. sechellia to the Morinda fruit. The behavioral adaptation includes the loss of avoidance of the host toxin and the enhanced sensitivity to the host odor. Two odorant-binding protein genes, Obp57d and Obp57e, are involved in the perception of the host toxin. D. sechellia has lost several putative bitter-taste receptor genes, which might also be involved in the loss of avoidance of the host toxin. The available genetic data support an evolutionary scenario, in which the shift in the host-plant selection was not achieved by the acquisition of novel abilities, but by the loss of already existing abilities. It is also suggested that the size of chemosensory gene families has a potential to be an index of complexity in insect-environment interaction, providing an opportunity to reexamine the longstanding "specialization as an evolutionary dead end" hypothesis.

  2. An unconventional myosin heavy chain gene from Drosophila melanogaster.

    PubMed

    Kellerman, K A; Miller, K G

    1992-11-01

    As part of a study of cytoskeletal proteins involved in Drosophila embryonic development, we have undertaken the molecular analysis of a 140-kD ATP-sensitive actin-binding protein (Miller, K. G., C. M. Field, and B. M. Alberts. 1989. J. Cell Biol. 109:2963-2975). Analysis of cDNA clones encoding this protein revealed that it represents a new class of unconventional myosin heavy chains. The amino-terminal two thirds of the protein comprises a head domain that is 29-33% identical (60-65% similar) to other myosin heads, and contains ATP-binding, actin-binding and calmodulin/myosin light chain-binding motifs. The carboxy-terminal tail has no significant similarity to other known myosin tails, but does contain a approximately 100-amino acid region that is predicted to form an alpha-helical coiled-coil. Since the unique gene that encodes this protein maps to the polytene map position 95F, we have named the new gene Drosophila 95F myosin heavy chain (95F MHC). The expression profile of the 95F MHC gene is complex. Examination of multiple cDNAs reveals that transcripts are alternatively spliced and encode at least three protein isoforms; in addition, a fourth isoform is detected on Western blots. Developmental Northern and Western blots show that transcripts and protein are present throughout the life cycle, with peak expression occurring during mid-embryogenesis and adulthood. Immunolocalization in early embryos demonstrates that the protein is primarily located in a punctate pattern throughout the peripheral cytoplasm. Most cells maintain a low level of protein expression throughout embryogenesis, but specific tissues appear to contain more protein. We speculate that the 95F MHC protein isoforms are involved in multiple dynamic processes during Drosophila development.

  3. Two rapidly evolving genes contribute to male fitness in Drosophila

    PubMed Central

    Reinhardt, Josephine A; Jones, Corbin D

    2013-01-01

    Purifying selection often results in conservation of gene sequence and function. The most functionally conserved genes are also thought to be among the most biologically essential. These observations have led to the use of sequence conservation as a proxy for functional conservation. Here we describe two genes that are exceptions to this pattern. We show that lack of sequence conservation among orthologs of CG15460 and CG15323 – herein named jean-baptiste (jb) and karr respectively – does not necessarily predict lack of functional conservation. These two Drosophila melanogaster genes are among the most rapidly evolving protein-coding genes in this species, being nearly as diverged from their D. yakuba orthologs as random sequences are. jb and karr are both expressed at an elevated level in larval males and adult testes, but they are not accessory gland proteins and their loss does not affect male fertility. Instead, knockdown of these genes in D. melanogaster via RNA interference caused male-biased viability defects. These viability effects occur prior to the third instar for jb and during late pupation for karr. We show that putative orthologs to jb and karr are also expressed strongly in the testes of other Drosophila species and have similar gene structure across species despite low levels of sequence conservation. While standard molecular evolution tests could not reject neutrality, other data hint at a role for natural selection. Together these data provide a clear case where a lack of sequence conservation does not imply a lack of conservation of expression or function. PMID:24221639

  4. Variable Rates of Evolution among Drosophila Opsin Genes

    PubMed Central

    Carulli, J. P.; Hartl, D. L.

    1992-01-01

    DNA sequences and chromosomal locations of four Drosophila pseudoobscura opsin genes were compared with those from Drosophila melanogaster, to determine factors that influence the evolution of multigene families. Although the opsin proteins perform the same primary functions, the comparisons reveal a wide range of evolutionary rates. Amino acid identities for the opsins range from 90% for Rh2 to more than 95% for Rh1 and Rh4. Variation in the rate of synonymous site substitution is especially striking: the major opsin, encoded by the Rh1 locus, differs at only 26.1% of synonymous sites between D. pseudoobscura and D. melanogaster, while the other opsin loci differ by as much as 39.2% at synonymous sites. Rh3 and Rh4 have similar levels of synonymous nucleotide substitution but significantly different amounts of amino acid replacement. This decoupling of nucleotide substitution and amino acid replacement suggests that different selective pressures are acting on these similar genes. There is significant heterogeneity in base composition and codon usage bias among the opsin genes in both species, but there are no consistent relationships between these factors and the rate of evolution of the opsins. In addition to exhibiting variation in evolutionary rates, the opsin loci in these species reveal rearrangements of chromosome elements. PMID:1398053

  5. Functional conservation of the Drosophila hybrid incompatibility gene Lhr

    PubMed Central

    2011-01-01

    Background Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene. Results Here we have examined the functional properties of Lhr orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in D. melanogaster/D. simulans hybrids. We find that these properties are conserved among most Lhr orthologs, including Lhr from D. melanogaster, D. simulans and the outgroup species D. yakuba. Conclusions We conclude that evolution of the hybrid lethality properties of Lhr between D. melanogaster and D. simulans did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin. PMID:21366928

  6. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  7. An autoregulatory enhancer element of the Drosophila homeotic gene Deformed.

    PubMed

    Bergson, C; McGinnis, W

    1990-12-01

    The stable determination of different anterior-posterior regions of the Drosophila embryo is controlled by the persistent expression of homeotic selector genes. One mechanism that has been proposed to explain the persistent expression of the homeotic gene Deformed is an autoactivation circuit that would be used once Deformed expression had been established by earlier acting patterning genes. Here we show that a large cis-regulatory element mapping approximately 5 kb upstream of the Deformed transcription start has the properties predicted for a Deformed autoregulatory enhancer. This element provides late, spatially localized expression in the epidermal cells of the maxillary and mandibular segments which is wholly dependent upon endogenous Deformed function. In addition, the autoregulatory enhancer can be activated ectopically in embryos and in imaginal disc cells by ectopic expression of Deformed protein. Deletion analysis of the autoregulatory element indicates that it contains compartment specific sub-elements similar to those of other homeotic loci.

  8. TALEN-induced gene knock out in Drosophila.

    PubMed

    Kondo, Takefumi; Sakuma, Tetsushi; Wada, Housei; Akimoto-Kato, Ai; Yamamoto, Takashi; Hayashi, Shigeo

    2014-01-01

    We report here a case study of TALEN-induced gene knock out of the trachealess gene of Drosophila. Two pairs of TALEN constructs caused targeted mutation in the germ line of 39% and 17% of injected animals, respectively. In the extreme case 100% of the progeny of TALEN-injected fly was mutated, suggesting that highly efficient biallelic germ line mutagenesis was achieved. The mutagenic efficiency of the TALEN pairs paralleled their activity of single strand annealing (SSA) assay in cultured cells. All mutations were deletion of 1 to 20 base pairs. Merit and demerit of TALEN-based gene knockout approach compared to other genome editing technologies is discussed. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  9. The Question of the Total Gene Number in DROSOPHILA MELANOGASTER

    PubMed Central

    Lefevre, George; Watkins, William

    1986-01-01

    A statistical analysis has been carried out on the distribution and allelism of nearly 500 sex-linked, X-ray-induced, cytologically normal and rearranged lethal mutations in Drosophila melanogaster that were obtained by G. Lefevre. The mutations were induced in four different regions of the X chromosome: (1) 1A1-3E8, (2) 6D1-8A5, (3) 9E1-11A7 and (4) 19A1-20F4, which together comprise more than one-third of the entire chromosome.—The analysis shows that the number of alleles found at different loci does not fit a Poisson distribution, even when the proper procedures are taken to accomodate the truncated nature of the data. However, the allele distribution fits a truncated negative binomial distribution quite well, with cytologically normal mutations fitting better than rearrangement mutations. This indicates that genes are not equimutable, as required for the data to fit a Poisson distribution.—Using the negative binomial parameters to estimate the number of genes that did not produce a detectable lethal mutation in our experiment (n0) gave a larger number than that derived from the use of the Poisson parameter. Unfortunately, we cannot estimate the total numbers of nonvital loci, loci with undetectable phenotypes and loci having extremely low mutabilities. In any event, our estimate of the total vital gene number was far short of the total number of bands in the analyzed regions; yet, in several short intervals, we have found more vital genes than bands; in other intervals, fewer. We conclude that the one-band, one-gene hypothesis, in its literal sense, is not true; furthermore, it is difficult to support, even approximately.—The question of the total gene number in Drosophila will, not doubt, eventually be solved by molecular analyses, not by statistical analysis of mutation data or saturation studies. PMID:3091446

  10. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  11. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor.

    PubMed Central

    Rosen, D R; Martin-Morris, L; Luo, L Q; White, K

    1989-01-01

    We have isolated genomic and cDNA clones for a Drosophila gene resembling the human beta-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human beta-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development. Images PMID:2494667

  12. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  13. The ribosomal protein genes and Minute loci of Drosophila melanogaster

    PubMed Central

    Marygold, Steven J; Roote, John; Reuter, Gunter; Lambertsson, Andrew; Ashburner, Michael; Millburn, Gillian H; Harrison, Paul M; Yu, Zhan; Kenmochi, Naoya; Kaufman, Thomas C; Leevers, Sally J; Cook, Kevin R

    2007-01-01

    Background Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. Results We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. Conclusion This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome. PMID:17927810

  14. Population and sex differences in Drosophila melanogaster brain gene expression.

    PubMed

    Catalán, Ana; Hutter, Stephan; Parsch, John

    2012-11-21

    Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues.

  15. Population and sex differences in Drosophila melanogaster brain gene expression

    PubMed Central

    2012-01-01

    Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues. PMID:23170910

  16. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii.

    PubMed

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M; Revadi, Santosh; Kaur, Rupinder; Horner, David S; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-08-16

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors-Or85a and Or22a-are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Drosophila X-Linked Genes Have Lower Translation Rates than Autosomal Genes.

    PubMed

    Zhang, Zhenguo; Presgraves, Daven C

    2016-02-01

    In Drosophila, X-linked and autosomal genes achieve comparable expression at the mRNA level. Whether comparable X-autosome gene expression is realized at the translational and, ultimately, the protein levels is, however, unknown. Previous studies suggest the possibility of higher translation rates for X-linked genes owing to stronger usage of preferred codons. In this study, we use public ribosome profiling data from Drosophila melanogaster to infer translation rates on the X chromosome versus the autosomes. We find that X-linked genes have consistently lower ribosome densities than autosomal genes in S2 cells, early embryos, eggs, and mature oocytes. Surprisingly, the lower ribosome densities of X-linked genes are not consistent with faster translation elongation but instead imply slower translation initiation. In particular, X-linked genes have sequence features known to slow translation initiation such as stronger mRNA structure near start codons and longer 5'-UTRs. Comparison to outgroup species suggests that stronger mRNA structure is an evolved feature of Drosophila X chromosomes. Finally, we find that the magnitude of the X-autosome difference in ribosome densities is smaller for genes encoding members of protein complexes, suggesting that stoichiometry constrains the evolution of translation rates. In sum, our analyses suggest that Drosophila X-linked genes have evolved lower translation rates than autosomal genes despite stronger usage of preferred codons. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

    PubMed Central

    Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356

  19. Refinement of Tools for Targeted Gene Expression in Drosophila

    PubMed Central

    Pfeiffer, Barret D.; Ngo, Teri-T B.; Hibbard, Karen L.; Murphy, Christine; Jenett, Arnim; Truman, James W.; Rubin, Gerald M.

    2010-01-01

    A wide variety of biological experiments rely on the ability to express an exogenous gene in a transgenic animal at a defined level and in a spatially and temporally controlled pattern. We describe major improvements of the methods available for achieving this objective in Drosophila melanogaster. We have systematically varied core promoters, UTRs, operator sequences, and transcriptional activating domains used to direct gene expression with the GAL4, LexA, and Split GAL4 transcription factors and the GAL80 transcriptional repressor. The use of site-specific integration allowed us to make quantitative comparisons between different constructs inserted at the same genomic location. We also characterized a set of PhiC31 integration sites for their ability to support transgene expression of both drivers and responders in the nervous system. The increased strength and reliability of these optimized reagents overcome many of the previous limitations of these methods and will facilitate genetic manipulations of greater complexity and sophistication. PMID:20697123

  20. Genes and circuits of courtship behaviour in Drosophila males.

    PubMed

    Yamamoto, Daisuke; Koganezawa, Masayuki

    2013-10-01

    In Drosophila melanogaster, the causal links among a complex behaviour, single neurons and single genes can be demonstrated through experimental manipulations. A key player in establishing the male courtship circuitry is the fruitless (fru) gene, the expression of which yields the FruM proteins in a subset of male but not female neurons. FruM probably regulates chromatin states, leading to single-neuron sex differences and, consequently, a sexually dimorphic circuitry. The mutual connections among fru-expressing neurons--including primary sensory afferents, central interneurons such as the P1 neuron cluster that triggers courtship, and courtship motor pattern generators--probably form the core portion of the male courtship circuitry.

  1. Genes regulating dendritic outgrowth, branching, and routing in Drosophila

    PubMed Central

    Gao, Fen-Biao; Brenman, Jay E.; Jan, Lily Yeh; Jan, Yuh Nung

    1999-01-01

    Signaling between neurons requires highly specialized subcellular structures, including dendrites and axons. Dendrites exhibit diverse morphologies yet little is known about the mechanisms controlling dendrite formation in vivo. We have developed methods to visualize the stereotyped dendritic morphogenesis in living Drosophila embryos. Dendrite development is altered in prospero mutants and in transgenic embryos expressing a constitutively active form of the small GTPase cdc42. From a genetic screen, we have identified several genes that control different aspects of dendrite development including dendritic outgrowth, branching, and routing. These genes include kakapo, a large cytoskeletal protein related to plectin and dystrophin; flamingo, a seven-transmembrane protein containing cadherin-like repeats; enabled, a substrate of the tyrosine kinase Abl; and nine potentially novel loci. These findings begin to reveal the molecular mechanisms controlling dendritic morphogenesis. PMID:10521399

  2. Genes regulating dendritic outgrowth, branching, and routing in Drosophila.

    PubMed

    Gao, F B; Brenman, J E; Jan, L Y; Jan, Y N

    1999-10-01

    Signaling between neurons requires highly specialized subcellular structures, including dendrites and axons. Dendrites exhibit diverse morphologies yet little is known about the mechanisms controlling dendrite formation in vivo. We have developed methods to visualize the stereotyped dendritic morphogenesis in living Drosophila embryos. Dendrite development is altered in prospero mutants and in transgenic embryos expressing a constitutively active form of the small GTPase cdc42. From a genetic screen, we have identified several genes that control different aspects of dendrite development including dendritic outgrowth, branching, and routing. These genes include kakapo, a large cytoskeletal protein related to plectin and dystrophin; flamingo, a seven-transmembrane protein containing cadherin-like repeats; enabled, a substrate of the tyrosine kinase Abl; and nine potentially novel loci. These findings begin to reveal the molecular mechanisms controlling dendritic morphogenesis.

  3. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  4. Microenvironmental Gene Expression Plasticity Among Individual Drosophila melanogaster

    PubMed Central

    Lin, Yanzhu; Chen, Zhen-Xia; Oliver, Brian; Harbison, Susan T.

    2016-01-01

    Differences in phenotype among genetically identical individuals exposed to the same environmental condition are often noted in genetic studies. Despite this commonplace observation, little is known about the causes of this variability, which has been termed microenvironmental plasticity. One possibility is that stochastic or technical sources of variance produce these differences. A second possibility is that this variation has a genetic component. We have explored gene expression robustness in the transcriptomes of 730 individual Drosophila melanogaster of 16 fixed genotypes, nine of which are infected with Wolbachia. Three replicates of flies were grown, controlling for food, day/night cycles, humidity, temperature, sex, mating status, social exposure, and circadian timing of RNA extraction. Despite the use of inbred genotypes, and carefully controlled experimental conditions, thousands of genes were differentially expressed, revealing a unique and dynamic transcriptional signature for each individual fly. We found that 23% of the transcriptome was differentially expressed among individuals, and that the variability in gene expression among individuals is influenced by genotype. This transcriptional variation originated from specific gene pathways, suggesting a plastic response to the microenvironment; but there was also evidence of gene expression differences due to stochastic fluctuations. These observations reveal previously unappreciated genetic sources of variability in gene expression among individuals, which has implications for complex trait genetics and precision medicine. PMID:27770026

  5. Functional dissection of Odorant binding protein genes in Drosophila melanogaster

    PubMed Central

    Swarup, S; Williams, T I; Anholt, R R H

    2011-01-01

    Most organisms rely on olfaction for survival and reproduction. The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems and serves as a prototype for understanding insect olfaction. Olfaction in Drosophila is mediated by multigene families of odorant receptors and odorant binding proteins (OBPs). Although molecular response profiles of odorant receptors have been well documented, the contributions of OBPs to olfactory behavior remain largely unknown. Here, we used RNAi-mediated suppression of Obp gene expression and measurements of behavioral responses to 16 ecologically relevant odorants to systematically dissect the functions of 17 OBPs. We quantified the effectiveness of RNAi-mediated suppression by quantitative real-time polymerase chain reaction and used a proteomic liquid chromatography and tandem mass spectrometry procedure to show target-specific suppression of OBPs expressed in the antennae. Flies in which expression of a specific OBP is suppressed often show altered behavioral responses to more than one, but not all, odorants, in a sex-dependent manner. Similarly, responses to a specific odorant are frequently affected by suppression of expression of multiple, but not all, OBPs. These results show that OBPs are essential for mediating olfactory behavioral responses and suggest that OBP-dependent odorant recognition is combinatorial. PMID:21605338

  6. Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila.

    PubMed

    Lee, Yuh Chwen G; Leek, Courtney; Levine, Mia T

    2017-02-01

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Identification of differentially expressed genes in female Drosophila antonietae and Drosophila meridionalis in response to host cactus odor.

    PubMed

    Borgonove, Camila M; Cavallari, Carla B; Santos, Mateus H; Rossetti, Rafaela; Hartfelder, Klaus; Manfrin, Maura H

    2014-09-02

    Studies of insect-plant interactions have provided critical insights into the ecology and evolution of adaptive processes within and among species. Cactophilic Drosophila species have received much attention because larval development occurs in the necrotic tissues of cacti, and both larvae and adults feed on these tissues. Such Drosophila-cactus interactions include effects of the host plant on the physiology and behavior of the flies, especially so their nutritional status, mating condition and reproduction. The aim of this work was to compare the transcriptional responses of two species, Drosophila antonietae and Drosophila meridionalis, and identify genes potentially related to responses to odors released by their host cactus, Cereus hildmannianus. The two fly species are sympatric in most of their populations and use this same host cactus in nature. We obtained 47 unique sequences (USs) for D. antonietae in a suppression subtractive hybridization screen, 30 of these USs had matches with genes predicted for other Drosophila species. For D. meridionalis we obtained 81 USs, 46 of which were orthologous with genes from other Drosophila species. Functional information (Gene Ontology) revealed that these differentially expressed genes are related to metabolic processes, detoxification mechanisms, signaling, response to stimuli, and reproduction. The expression of 13 genes from D. meridionalis and 12 from D. antonietae were further analyzed by quantitative real time-PCR, showing that four genes were significantly overexpressed in D. antonietae and six in D. meridionalis. Our results revealed the differential expression of genes related to responses to odor stimuli by a cactus, in two associated fly species. Although the majority of activated genes were similar between the two species, we also observed that certain metabolic pathways were specifically activated, especially those related to signaling pathways and detoxification mechanisms. The activation of these genes

  8. 2010: A century of Drosophila genetics through the prism of the white gene.

    PubMed

    Green, M M

    2010-01-01

    In January 1910, a century ago, Thomas Hunt Morgan discovered his first Drosophila mutant, a white-eyed male (Morgan 1910). Morgan named the mutant gene white and soon demonstrated that it resided on the X chromosome. This was the first localization of a specific gene to a particular chromosome. Thus began Drosophila experimental genetics. The story of the initial work on white is well known but what is less well appreciated is the multiplicity of ways in which this gene has been used to explore fundamental questions in genetics. Here, I review some of the highlights of a century's productive use of white in Drosophila genetics.

  9. Molecular population genetics of the Polycomb genes in Drosophila subobscura

    PubMed Central

    Calvo-Martín, Juan M.; Papaceit, Montserrat

    2017-01-01

    Polycomb group (PcG) proteins are important regulatory factors that modulate the chromatin state. They form protein complexes that repress gene expression by the introduction of posttranslational histone modifications. The study of PcG proteins divergence in Drosophila revealed signals of coevolution among them and an acceleration of the nonsynonymous evolutionary rate in the lineage ancestral to the obscura group species, mainly in subunits of the Pcl-PRC2 complex. Herein, we have studied the nucleotide polymorphism of PcG genes in a natural population of D. subobscura to detect whether natural selection has also modulated the evolution of these important regulatory genes in a more recent time scale. Results show that most genes are under the action of purifying selection and present a level and pattern of polymorphism consistent with predictions of the neutral model, the exceptions being Su(z)12 and Pho. MK tests indicate an accumulation of adaptive changes in the SU(Z)12 protein during the divergence of D. subobscura and D. guanche. In contrast, the HKA test shows a deficit of polymorphism at Pho. The most likely explanation for this reduced variation is the location of this gene in the dot-like chromosome and would indicate that this chromosome also has null or very low recombination in D. subobscura, as reported in D. melanogaster. PMID:28910411

  10. Molecular population genetics of the Polycomb genes in Drosophila subobscura.

    PubMed

    Calvo-Martín, Juan M; Papaceit, Montserrat; Segarra, Carmen

    2017-01-01

    Polycomb group (PcG) proteins are important regulatory factors that modulate the chromatin state. They form protein complexes that repress gene expression by the introduction of posttranslational histone modifications. The study of PcG proteins divergence in Drosophila revealed signals of coevolution among them and an acceleration of the nonsynonymous evolutionary rate in the lineage ancestral to the obscura group species, mainly in subunits of the Pcl-PRC2 complex. Herein, we have studied the nucleotide polymorphism of PcG genes in a natural population of D. subobscura to detect whether natural selection has also modulated the evolution of these important regulatory genes in a more recent time scale. Results show that most genes are under the action of purifying selection and present a level and pattern of polymorphism consistent with predictions of the neutral model, the exceptions being Su(z)12 and Pho. MK tests indicate an accumulation of adaptive changes in the SU(Z)12 protein during the divergence of D. subobscura and D. guanche. In contrast, the HKA test shows a deficit of polymorphism at Pho. The most likely explanation for this reduced variation is the location of this gene in the dot-like chromosome and would indicate that this chromosome also has null or very low recombination in D. subobscura, as reported in D. melanogaster.

  11. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Bedford, Trevor; Lyons, Ana M.; Hartl, Daniel L.

    2010-01-01

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3′ segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5′ and 3′ regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution. PMID:20534482

  12. A database for the analysis of immunity genes in Drosophila

    PubMed Central

    Lee, Mark J; Mondal, Ariful; Small, Chiyedza; Paddibhatla, Indira; Kawaguchi, Akira

    2011-01-01

    While microarray experiments generate voluminous data, discerning trends that support an existing or alternative paradigm is challenging. To synergize hypothesis building and testing, we designed the Pathogen Associated Drosophila MicroArray (PADMA) Database for easy retrieval and comparison of microarray results from immunity-related experiments (www.padmadatabase.org). PADMA also allows biologists to upload their microarray-results and compare it with datasets housed within the database. We tested PADMA using a preliminary dataset from Ganaspis xanthopoda-infected fly larvae, and uncovered unexpected trends in gene expression, reshaping our hypothesis. Thus, the PADMA database will be a useful resource to fly researchers to evaluate, revise and refine hypotheses. PMID:21273816

  13. Regulation of Drosophila yolk protein genes by an ovary-specific GATA factor

    SciTech Connect

    Lossky, M.; Wensink, P.C.

    1995-12-01

    This report investigates the expression of the genes for yolk protein of Drosophila melanogaster and the tissue specific function of the regulatory element which activates transcription in vivo. 70 refs., 8 figs.

  14. Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila.

    PubMed

    Ruiz, María-Fernanda; Sánchez, Lucas

    2010-01-01

    The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.

  15. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila.

    PubMed

    Zhu, Jun-Yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-20

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors.

  16. Hsp27 gene in Drosophila ananassae subgroup was split by a recently acquired intron.

    PubMed

    Zhang, Li; Kang, Han; Jin, Shan; Zeng, Qing Tao; Yang, Yong

    2016-06-01

    In Drosophila, heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense response against fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologous Hsp27 nucleotide sequences from different Drosophila species were amplified by PCR and reverse transcription PCR, and the phylogenetic relationships were analysed using neighbour-joining, maximum-likelihood and Bayesian methods. The phylogenetic topologies from analysis with different algorithms were similar, suggesting that the Hsp27 gene was split by a recently acquired intron during the evolution of the Drosophila ananassae subgroup.

  17. Gene Expression in a Drosophila Model of Mitochondrial Disease

    PubMed Central

    Fernández-Ayala, Daniel J. M.; Chen, Shanjun; Kemppainen, Esko; O'Dell, Kevin M. C.; Jacobs, Howard T.

    2010-01-01

    Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed. PMID:20066047

  18. Molecular cloning of an olfactory gene from Drosophila melanogaster.

    PubMed Central

    Hasan, G

    1990-01-01

    An olfactory gene olfE, which affects response to benzaldehyde in larvae and adults of Drosophila melanogaster, has been mapped between two breakpoints on the X chromosome. The breakpoints have been shown to lie at a distance no greater than 25 kilobases (kb). A 14-kb genomic fragment from this region has been used for germ-line transformation of olfE mutant flies, and in one of three transformant lines obtained, rescue of the olfE phenotype is observed by two separate behavioral assays. Transcript analysis of the region that rescues the olfE phenotype has shown one major transcript at 5.4 kb and a minor one at 1.7 kb. Both of these transcripts are probably alternatively spliced products of the olfE gene. A developmental and tissue-specific profile of the 5.4-kb olfE message has shown that it is present at all developmental stages, suggesting that the gene may be multifunctional. Images PMID:2123349

  19. Two Gr genes underlie sugar reception in Drosophila

    PubMed Central

    Dahanukar, Anupama; Lei, Ya-Ting; Kwon, Jae Young; Carlson, John R.

    2007-01-01

    SUMMARY We have analyzed the molecular basis of sugar reception in Drosophila. We define the response spectrum, concentration dependence, and temporal dynamics of sugar-sensing neurons. Using in situ hybridization and reporter gene expression we identify members of the Gr5a-related taste receptor subfamily that are co-expressed in sugar neurons. Neurons expressing different Gr5a-related genes send overlapping but distinct projections to the brain and thoracic ganglia. Genetic analysis of receptor genes shows that Gr5a is required for response to one subset of sugars and Gr64a for response to a complementary subset. A Gr5a;Gr64a double mutant shows no physiological or behavioral responses to any tested sugar. The simplest interpretation of our results is that Gr5a and Gr64a are each capable of functioning independently of each other within individual sugar neurons and that they are the primary receptors used in the labellum to detect sugars. PMID:17988633

  20. Opposing roles of p38 and JNK in a Drosophila model of TDP-43 proteinopathy reveal oxidative stress and innate immunity as pathogenic components of neurodegeneration

    PubMed Central

    Zhan, Lihong; Xie, Qijing; Tibbetts, Randal S.

    2015-01-01

    Pathological aggregation and mutation of the 43-kDa TAR DNA-binding protein (TDP-43) are strongly implicated in the pathogenesis amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 neurotoxicity has been extensively modeled in mice, zebrafish, Caenorhabditis elegans and Drosophila, where selective expression of TDP-43 in motoneurons led to paralysis and premature lethality. Through a genetic screen aimed to identify genetic modifiers of TDP-43, we found that the Drosophila dual leucine kinase Wallenda (Wnd) and its downstream kinases JNK and p38 influenced TDP-43 neurotoxicity. Reducing Wnd gene dosage or overexpressing its antagonist highwire partially rescued TDP-43-associated premature lethality. Downstream of Wnd, the JNK and p38 kinases played opposing roles in TDP-43-associated neurodegeneration. LOF alleles of the p38b gene as well as p38 inhibitors diminished TDP-43-associated premature lethality, whereas p38b GOF caused phenotypic worsening. In stark contrast, disruptive alleles of Basket (Bsk), the Drosophila homologue of JNK, exacerbated longevity shortening, whereas overexpression of Bsk extended lifespan. Among possible mechanisms, we found motoneuron-directed expression of TDP-43 elicited oxidative stress and innate immune gene activation that were exacerbated by p38 GOF and Bsk LOF, respectively. A key pathologic role for innate immunity in TDP-43-associated neurodegeneration was further supported by the finding that genetic suppression of the Toll/Dif and Imd/Relish inflammatory pathways dramatically extended lifespan of TDP-43 transgenic flies. We propose that oxidative stress and neuroinflammation are intrinsic components of TDP-43-associated neurodegeneration and that the balance between cytoprotective JNK and cytotoxic p38 signaling dictates phenotypic outcome to TDP-43 expression in Drosophila. PMID:25281658

  1. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes.

    PubMed

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-04-25

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.

  2. Comparison of homeobox-containing genes of the honeybee and Drosophila.

    PubMed Central

    Walldorf, U; Fleig, R; Gehring, W J

    1989-01-01

    We report the isolation of seven homeobox-containing genes from the honeybee (Apis mellifera). Sequence analysis of all homeoboxes and some flanking sequences showed that six of seven genes are more than 90% identical to their corresponding Drosophila homologues within the homeobox and, with one exception, also in the flanking sequences. The homologues that were identified include three homeotic selector genes [Sex combs reduced (Scr), Antennapedia (Antp), and abdominal-A (abd-A); the two engrailed (en) genes; and the muscle segment homeobox (msh)]. Surprisingly, no homologue of the segmentation gene fushi tarazu was found in the honeybee. For the remaining bee gene, a Drosophila homologue is not known. This indicates that, with some exceptions, structurally homologous genes are involved in the control of bee and Drosophila development, although Hymenoptera differ significantly in their embryogenesis from Diptera and have evolved separately for some 250 million years. Images PMID:2574865

  3. Identification of Methylmercury Tolerance Gene Candidates in Drosophila

    PubMed Central

    Mahapatra, Cecon T.; Bond, Jeffrey; Rand, David M.; Rand, Matthew D.

    2010-01-01

    Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/−selection and +/−MeHg) identified a “down-down-up” expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway–regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms. PMID:20375079

  4. Identification of methylmercury tolerance gene candidates in Drosophila.

    PubMed

    Mahapatra, Cecon T; Bond, Jeffrey; Rand, David M; Rand, Matthew D

    2010-07-01

    Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/-selection and +/-MeHg) identified a "down-down-up" expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway-regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms.

  5. Cloning and Characterization of the Scarlet Gene of Drosophila Melanogaster

    PubMed Central

    Tearle, R. G.; Belote, J. M.; McKeown, M.; Baker, B. S.; Howells, A. J.

    1989-01-01

    DNA from the scarlet (st) region of Drosophila melanogaster has been cloned by chromosome walking, using the breakpoints of a new X-ray-induced third chromosome inversion (In(3LR)st-a27) which breaks in the scarlet (73A3.4) and rosy (87D13-14) regions. Two spontaneous mutants of st(st(1) and st(sp)) contain insertions of non-st DNA located within 3.0 kb of the site of the inversion breakpoint used to isolate the gene, and a second scarlet inversion breaks within 6.5 kb of this site. However no changes detectable by Southern blotting were found in 5 X-ray-induced st mutants with cytologically normal third chromosomes. A 2.3-kb transcript arising from the st gene region (as defined by mutant analysis and DNA transformation) has been detected. This transcript is present throughout development at low levels, with a peak level during the early to mid-pupal stage. The size and amount of this transcript is altered in st(1), and its amount is drastically reduced in st(sp). Flies carrying the white(1) mutation show normal levels of expression of the st transcript, suggesting that the w(+) gene does not regulate transcription of the st(+) gene. Nucleotide homology between sequences from the st transcription unit and a fragment carrying coding information from the white gene has been detected. This suggests that the st and w proteins are related; they appear to belong to a family of membrane-spanning, ATP-binding proteins involved in the transport of pigment precursors into cells. PMID:2503416

  6. Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms

    PubMed Central

    Yamamoto, Shinya; Seto, Elaine S.

    2014-01-01

    Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans. PMID:24770636

  7. Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila.

    PubMed

    Haerty, Wilfried; Jagadeeshan, Santosh; Kulathinal, Rob J; Wong, Alex; Ravi Ram, Kristipati; Sirot, Laura K; Levesque, Lisa; Artieri, Carlo G; Wolfner, Mariana F; Civetta, Alberto; Singh, Rama S

    2007-11-01

    A large portion of the annotated genes in Drosophila melanogaster show sex-biased expression, indicating that sex and reproduction-related genes (SRR genes) represent an appreciable component of the genome. Previous studies, in which subsets of genes were compared among few Drosophila species, have found that SRR genes exhibit unusual evolutionary patterns. Here, we have used the newly released genome sequences from 12 Drosophila species, coupled to a larger set of SRR genes, to comprehensively test the generality of these patterns. Among 2505 SRR genes examined, including ESTs with biased expression in reproductive tissues and genes characterized as involved in gametogenesis, we find that a relatively high proportion of SRR genes have experienced accelerated divergence throughout the genus Drosophila. Several testis-specific genes, male seminal fluid proteins (SFPs), and spermatogenesis genes show lineage-specific bursts of accelerated evolution and positive selection. SFP genes also show evidence of lineage-specific gene loss and/or gain. These results bring us closer to understanding the details of the evolutionary dynamics of SRR genes with respect to species divergence.

  8. Evolution in the Fast Lane: Rapidly Evolving Sex-Related Genes in Drosophila

    PubMed Central

    Haerty, Wilfried; Jagadeeshan, Santosh; Kulathinal, Rob J.; Wong, Alex; Ravi Ram, Kristipati; Sirot, Laura K.; Levesque, Lisa; Artieri, Carlo G.; Wolfner, Mariana F.; Civetta, Alberto; Singh, Rama S.

    2007-01-01

    A large portion of the annotated genes in Drosophila melanogaster show sex-biased expression, indicating that sex and reproduction-related genes (SRR genes) represent an appreciable component of the genome. Previous studies, in which subsets of genes were compared among few Drosophila species, have found that SRR genes exhibit unusual evolutionary patterns. Here, we have used the newly released genome sequences from 12 Drosophila species, coupled to a larger set of SRR genes, to comprehensively test the generality of these patterns. Among 2505 SRR genes examined, including ESTs with biased expression in reproductive tissues and genes characterized as involved in gametogenesis, we find that a relatively high proportion of SRR genes have experienced accelerated divergence throughout the genus Drosophila. Several testis-specific genes, male seminal fluid proteins (SFPs), and spermatogenesis genes show lineage-specific bursts of accelerated evolution and positive selection. SFP genes also show evidence of lineage-specific gene loss and/or gain. These results bring us closer to understanding the details of the evolutionary dynamics of SRR genes with respect to species divergence. PMID:18039869

  9. The pebble gene is required for cytokinesis in Drosophila.

    PubMed

    Lehner, C F

    1992-12-01

    Cytokinesis is developmentally controlled during Drosophila embryogenesis. It is omitted during the initial nuclear division cycles. The nuclei of the resulting syncytium are then cellularized at a defined stage, and cytokinesis starts in somatic cells with mitosis 14. However, cytokinesis never occurs in somatic cells of embryos homozygous or transheterozygous for mutations in the pebble gene. Interestingly, the process of cellularization, which involves steps mechanistically similar to cytokinesis, is not affected. Moreover, all the nuclear aspects of mitosis (nuclear envelope breakdown, chromosome condensation, spindle assembly and function) proceed normally in pebble mutant embryos, indicating that pebble is specifically required for the coordination of mitotic spindle and contractile ring functions. The pebble phenotype is also observed, but only with very low penetrance, during the early divisions of the germ line progenitors (the pole cells). alpha-Amanitin injection experiments indicate that these early pole cell divisions, the first cell divisions during embryogenesis, do not require zygotic gene expression. These divisions might therefore rely on maternally contributed pebble function. The maternal contribution from heterozygous mothers might be insufficient in rare cases for all the pole cell divisions.

  10. Characterization of the mus308 gene in Drosophila melanogaster

    SciTech Connect

    Leonhardt, E.A.; Henderson, D.S.; Rinehart, J.E.; Boyd, J.B. )

    1993-01-01

    Among the available mutagen-sensitive mutations in Drosophila, those at the mus3O8 locus are unique in conferring hypersensitivity to DNA cross-linking agents but not to monofunctional agents. Those mutations are also associated with an elevated frequency of chromosomal aberrations, altered DNA metabolism and the modification of a deoxyribonuclease. This spectrum of phenotypes is shared with selected mammalian mutations including Fanconi anemia in humans. In anticipation of the molecular characterization of the mus3O8 gene, it has been localized cytogenetically to 87C9-87D1,2 on the right arm of chromosome three. Nine new mutant alleles of the gene have been generated by X-ray mutagenesis and one was recovered following hybrid dysgenesis. Characterization of these new alleles has uncovered additional phenotypes of mutations at this locus. Homozygous mus3O8 flies that have survived moderate mutagen treatment exhibit an altered wing position that is correlated with reduced flight ability and an altered mitochondrial morphology. In addition, observations of elevated embryo mortality are potentially explained by an aberrant distribution of nuclear material in early embryos which is similar to that seen in the mutant giant nuclei.

  11. Genetic analysis of the Drosophila Gs(alpha) gene.

    PubMed

    Wolfgang, W J; Hoskote, A; Roberts, I J; Jackson, S; Forte, M

    2001-07-01

    One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells.

  12. Genetic analysis of the Drosophila Gs(alpha) gene.

    PubMed Central

    Wolfgang, W J; Hoskote, A; Roberts, I J; Jackson, S; Forte, M

    2001-01-01

    One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells. PMID:11454767

  13. Putative synaptic genes defined from a Drosophila whole body developmental transcriptome by a machine learning approach.

    PubMed

    Pazos Obregón, Flavio; Papalardo, Cecilia; Castro, Sebastián; Guerberoff, Gustavo; Cantera, Rafael

    2015-09-15

    Assembly and function of neuronal synapses require the coordinated expression of a yet undetermined set of genes. Although roughly a thousand genes are expected to be important for this function in Drosophila melanogaster, just a few hundreds of them are known so far. In this work we trained three learning algorithms to predict a "synaptic function" for genes of Drosophila using data from a whole-body developmental transcriptome published by others. Using statistical and biological criteria to analyze and combine the predictions, we obtained a gene catalogue that is highly enriched in genes of relevance for Drosophila synapse assembly and function but still not recognized as such. The utility of our approach is that it reduces the number of genes to be tested through hypothesis-driven experimentation.

  14. Rapid evolution and gene-specific patterns of selection for three genes of spermatogenesis in Drosophila.

    PubMed

    Civetta, Alberto; Rajakumar, Sujeetha A; Brouwers, Barb; Bacik, John P

    2006-03-01

    Hybrid males resulting from crosses between closely related species of Drosophila are sterile. The F1 hybrid sterility phenotype is mainly due to defects occurring during late stages of development that relate to sperm individualization, and so genes controlling sperm development may have been subjected to selective diversification between species. It is also possible that genes of spermatogenesis experience selective constraints given their role in a developmental pathway. We analyzed the molecular evolution of three genes playing a role during the sperm developmental pathway in Drosophila at an early (bam), a mid (aly), and a late (dj) stage. The complete coding region of these genes was sequenced in different strains of Drosophila melanogaster and Drosophila simulans. All three genes showed rapid divergence between species, with larger numbers of nonsynonymous to synonymous differences between species than polymorphisms. Although this could be interpreted as evidence for positive selection at all three genes, formal tests of selection do not support such a conclusion. Departures from neutrality were detected only for dj and bam but not aly. The role played by selection is unique and determined by gene-specific characteristics rather than site of expression. In dj, the departure was due to a high proportion of neutral synonymous polymorphisms in D. simulans, and there was evidence of purifying selection maintaining a high lysine amino acid protein content that is characteristic of other DNA-binding proteins. The earliest spermatogenesis gene surveyed, which plays a role in both male and female gametogenesis, was bam, and its significant departure from neutrality was due to an excess of nonsynonymous substitutions between species. Bam is degraded at the end of mitosis, and rapid evolutionary changes among species might be a characteristic shared with other degradable transient proteins. However, the large number of nonsynonymous changes between D. melanogaster and

  15. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer.

    PubMed

    Drewell, Robert A; Nevarez, Michael J; Kurata, Jessica S; Winkler, Lauren N; Li, Lily; Dresch, Jacqueline M

    2014-02-01

    In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterior–posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function.

  16. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer

    PubMed Central

    Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.

    2013-01-01

    Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265

  17. The Selfish Segregation Distorter Gene Complex of Drosophila melanogaster

    PubMed Central

    Larracuente, Amanda M.; Presgraves, Daven C.

    2012-01-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD+ spermatids so that SD/SD+ males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily “selfish,” enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci—the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)—and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd–RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd–RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection. PMID:22964836

  18. Functional conservation of the human EXT1 tumor suppressor gene and its Drosophila homolog tout velu.

    PubMed

    Dasgupta, Ujjaini; Dixit, Bharat L; Rusch, Melissa; Selleck, Scott; The, Inge

    2007-08-01

    Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.

  19. A family of Turandot-related genes in the humoral stress response of Drosophila.

    PubMed

    Ekengren, S; Hultmark, D

    2001-06-22

    The Drosophila Turandot A (TotA) gene was recently shown to encode a stress-induced humoral factor which gives increased resistance to the lethal effects of high temperature. Here we show that TotA belongs to a family of eight Tot genes distributed at three different sites in the Drosophila genome. All Tot genes are induced under stressful conditions such as bacterial infection, heat shock, paraquat feeding or exposure to ultraviolet light, suggesting that all members of this family play a role in Drosophila stress tolerance. The induction of the Tot genes differs in important respects from the heat shock response, such as the strong but delayed response to bacterial infection seen for several of the genes.

  20. Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila.

    PubMed Central

    Harding, K; Levine, M

    1988-01-01

    The maintenance of selective patterns of homeotic gene expression within the Drosophila CNS involves cross-regulatory interactions among the genes of the antennapedia and bithorax complexes (ANT-C and BX-C). Such a mechanism does not appear to be responsible for the establishment of these selective expression patterns during early development. Here we show that mutations in several of the gap genes strongly alter the early patterns of Antp and Abd-B expression. The altered patterns that are observed do not always correlate with simple expectations based on cuticular pattern defects observed in advanced-stage mutants. It appears that the initial patterns of Antp and Abd-B expression involve their differential regulation by a common set of gap genes. We propose that the gap genes are largely responsible for integrating the processes of segmentation and homeosis. Images PMID:2896123

  1. Van Gogh: a new Drosophila tissue polarity gene.

    PubMed

    Taylor, J; Abramova, N; Charlton, J; Adler, P N

    1998-09-01

    Mutations in the Van Gogh gene result in the altered polarity of adult Drosophila cuticular structures. On the wing, Van Gogh mutations cause an altered polarity pattern that is typical of mutations that inactivate the frizzled signaling/signal transduction pathway. The phenotype however, differs from those seen previously, as the number of wing cells forming more than one hair is intermediate between that seen previously for typical frizzled-like or inturned-like mutations. Consistent with Van Gogh being involved in the function of the frizzled signaling/signal transduction pathway, Van Gogh mutations show strong interactions with mutations in frizzled and prickle. Mitotic clones of Van Gogh display domineering cell nonautonomy. In contrast to frizzled clones, Van Gogh clones alter the polarity of cells proximal (and in part anterior and posterior) but not distal to the clone. In further contrast to frizzled clones, Van Gogh clones cause neighboring wild-type hairs to point away from rather than toward the clone. This anti-frizzled type of domineering nonautonomy and the strong genetic interactions seen between frizzled and Van Gogh suggested the possibility that Van Gogh was required for the noncell autonomous function of frizzled. As a test of this possibility we induced frizzled clones in a Van Gogh mutant background and Van Gogh clones in a frizzled mutant background. In both cases the domineering nonautonomy was suppressed consistent with Van Gogh being essential for frizzled signaling.

  2. Van Gogh: a new Drosophila tissue polarity gene.

    PubMed Central

    Taylor, J; Abramova, N; Charlton, J; Adler, P N

    1998-01-01

    Mutations in the Van Gogh gene result in the altered polarity of adult Drosophila cuticular structures. On the wing, Van Gogh mutations cause an altered polarity pattern that is typical of mutations that inactivate the frizzled signaling/signal transduction pathway. The phenotype however, differs from those seen previously, as the number of wing cells forming more than one hair is intermediate between that seen previously for typical frizzled-like or inturned-like mutations. Consistent with Van Gogh being involved in the function of the frizzled signaling/signal transduction pathway, Van Gogh mutations show strong interactions with mutations in frizzled and prickle. Mitotic clones of Van Gogh display domineering cell nonautonomy. In contrast to frizzled clones, Van Gogh clones alter the polarity of cells proximal (and in part anterior and posterior) but not distal to the clone. In further contrast to frizzled clones, Van Gogh clones cause neighboring wild-type hairs to point away from rather than toward the clone. This anti-frizzled type of domineering nonautonomy and the strong genetic interactions seen between frizzled and Van Gogh suggested the possibility that Van Gogh was required for the noncell autonomous function of frizzled. As a test of this possibility we induced frizzled clones in a Van Gogh mutant background and Van Gogh clones in a frizzled mutant background. In both cases the domineering nonautonomy was suppressed consistent with Van Gogh being essential for frizzled signaling. PMID:9725839

  3. Transcriptional regulation of the Drosophila glial gene repo.

    PubMed

    Lee, Bruce P; Jones, Bradley W

    2005-06-01

    reversed polarity (repo) is a putative target gene of glial cells missing (gcm), the primary regulator of glial cell fate in Drosophila. Transient expression of Gcm is followed by maintained expression of repo. Multiple Gcm binding sites are found in repo upstream DNA. However, while repo is expressed in Gcm positive glia, it is not expressed in Gcm positive hemocytes. These observations suggest factors in addition to Gcm are required for repo expression. Here we have undertaken an analysis of the cis-regulatory DNA elements of repo using lacZ reporter activity in transgenic embryos. We have found that a 4.2 kb DNA region upstream of the repo start site drives the wild-type repo expression pattern. We show that expression is dependent on multiple Gcm binding sites. By ectopically expressing Repo, we show that Repo can regulate its own enhancer. Finally, by systematically analyzing fragments of repo upstream DNA, we show that expression is dependent on multiple elements that are responsible for activity in subsets of glia, as well as repressing inappropriate expression in the epidermis. Our results suggest that Gcm acts synergistically with other factors to control repo transcription in glial cells.

  4. Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila

    PubMed Central

    Hauck, Bernd; Gehring, Walter J.; Walldorf, Uwe

    1999-01-01

    The development of the Drosophila compound eye requires the function of a set of evolutionarily conserved genes. Among these, the Drosophila Pax-6 gene eyeless (ey) plays a major role. ey has been considered a master control gene of eye development in the animal kingdom because targeted expression of ey and vertebrate as well as invertebrate homologs lead to the formation of ectopic eyes in Drosophila. We demonstrate that an intron of the ey gene contains an enhancer that regulates the eye specific expression of the gene in the eye disc primordia of embryos and in the eye imaginal discs of third instar larvae. Moreover, a 212-bp enhancer element is necessary and sufficient for the enhancer function. It is partially conserved in Drosophila hydei and contains putative Pax-6 Paired domain binding sites. We show that several binding sites are required for the eye specific expression, and, therefore, we propose a Pax-6-like molecule to be a positive transactivator for the eye specific ey expression. This transactivator recently has been identified as twin of eyeless, the second Pax-6 gene in Drosophila. PMID:9892673

  5. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    PubMed

    Behura, Susanta K; Haugen, Morgan; Flannery, Ellen; Sarro, Joseph; Tessier, Charles R; Severson, David W; Duman-Scheel, Molly

    2011-01-01

    Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  6. Inferring the History of Interchromosomal Gene Transposition in Drosophila Using n-Dimensional Parsimony

    PubMed Central

    Han, Mira V.; Hahn, Matthew W.

    2012-01-01

    Gene transposition puts a new gene copy in a novel genomic environment. Moreover, genes moving between the autosomes and the X chromosome experience change in several evolutionary parameters. Previous studies of gene transposition have not utilized the phylogenetic framework that becomes possible with the availability of whole genomes from multiple species. Here we used parsimonious reconstruction on the genomic distribution of gene families to analyze interchromosomal gene transposition in Drosophila. We identified 782 genes that have moved chromosomes within the phylogeny of 10 Drosophila species, including 87 gene families with multiple independent movements on different branches of the phylogeny. Using this large catalog of transposed genes, we detected accelerated sequence evolution in duplicated genes that transposed when compared to the parental copy at the original locus. We also observed a more refined picture of the biased movement of genes from the X chromosome to the autosomes. The bias of X-to-autosome movement was significantly stronger for RNA-based movements than for DNA-based movements, and among DNA-based movements there was an excess of genes moving onto the X chromosome as well. Genes involved in female-specific functions moved onto the X chromosome while genes with male-specific functions moved off the X. There was a significant overrepresentation of proteins involving chromosomal function among transposed genes, suggesting that genetic conflict between sexes and among chromosomes may be a driving force behind gene transposition in Drosophila. PMID:22095076

  7. Recurrent tandem gene duplication gave rise to functionally divergent genes in Drosophila.

    PubMed

    Fan, Chuanzhu; Chen, Ying; Long, Manyuan

    2008-07-01

    Tandem gene duplication is one of the major gene duplication mechanisms in eukaryotes, as illustrated by the prevalence of gene family clusters. Tandem duplicated paralogs usually share the same regulatory element, and as a consequence, they are likely to perform similar biological functions. Here, we provide an example of a newly evolved tandem duplicate acquiring novel functions, which were driven by positive selection. CG32708, CG32706, and CG6999 are 3 clustered genes residing in the X chromosome of Drosophila melanogaster. CG6999 and CG32708 have been examined for their molecular population genetic properties (Thornton and Long 2005). We further investigated the evolutionary forces acting on these genes with greater sample sizes and a broader approach that incorporate between-species divergence, using more variety of statistical methods. We explored the possible functional implications by characterizing the tissue-specific and developmental expression patterns of these genes. Sequence comparison of species within D. melanogaster subgroup reveals that this 3-gene cluster was created by 2 rounds of tandem gene duplication in the last 5 Myr. Based on phylogenetic analysis, CG32708 is clearly the parental copy that is shared by all species. CG32706 appears to have originated in the ancestor of Drosophila simulans and D. melanogaster about 5 Mya, and CG6999 is the newest duplicate that is unique to D. melanogaster. All 3 genes have different expression profiles, and CG6999 has in addition acquired a novel transcript. Biased polymorphism frequency spectrum, linkage disequilibrium, nucleotide substitution, and McDonald-Kreitman analyses suggested that the evolution of CG6999 and CG32706 were driven by positive Darwinian selection.

  8. Immune genes and divergent antimicrobial peptides in flies of the subgenus Drosophila.

    PubMed

    Hanson, Mark A; Hamilton, Phineas T; Perlman, Steve J

    2016-10-24

    Drosophila is an important model for studying the evolution of animal immunity, due to the powerful genetic tools developed for D. melanogaster. However, Drosophila is an incredibly speciose lineage with a wide range of ecologies, natural histories, and diverse natural enemies. Surprisingly little functional work has been done on immune systems of species other than D. melanogaster. In this study, we examine the evolution of immune genes in the speciose subgenus Drosophila, which diverged from the subgenus Sophophora (that includes D. melanogaster) approximately 25-40 Mya. We focus on D. neotestacea, a woodland species used to study interactions between insects and parasitic nematodes, and combine recent transcriptomic data with infection experiments to elucidate aspects of host immunity. We found that the vast majority of genes involved in the D. melanogaster immune response are conserved in D. neotestacea, with a few interesting exceptions, particularly in antimicrobial peptides (AMPs); until recently, AMPs were not thought to evolve rapidly in Drosophila. Unexpectedly, we found a distinct diptericin in subgenus Drosophila flies that appears to have evolved under diversifying (positive) selection. We also describe the presence of the AMP drosocin, which was previously thought to be restricted to the subgenus Sophophora, in the subgenus Drosophila. We challenged two subgenus Drosophila species, D. neotestacea and D. virilis with bacterial and fungal pathogens and quantified AMP expression. While diptericin in D. virilis was induced by exposure to gram-negative bacteria, it was not induced in D. neotestacea, showing that conservation of immune genes does not necessarily imply conservation of the realized immune response. Our study lends support to the idea that invertebrate AMPs evolve rapidly, and that Drosophila harbor a diverse repertoire of AMPs with potentially important functional consequences.

  9. Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate.

    PubMed Central

    Gómez-Skarmeta, J L; Glavic, A; de la Calle-Mustienes, E; Modolell, J; Mayor, R

    1998-01-01

    The Drosophila homeoproteins Ara and Caup are members of a combination of factors (prepattern) that control the highly localized expression of the proneural genes achaete and scute. We have identified two Xenopus homologs of ara and caup, Xiro1 and Xiro2. Similarly to their Drosophila counterparts, they control the expression of proneural genes and, probably as a consequence, the size of the neural plate. Moreover, Xiro1 and Xiro2 are themselves controlled by noggin and retinoic acid and, similarly to ara and caup, they are overexpressed by expression in Xenopus embryos of the Drosophila cubitus interruptus gene. These and other findings suggest the conservation of at least part of the genetic cascade that regulates proneural genes, and the existence in vertebrates of a prepattern of factors important to control the differentiation of the neural plate. PMID:9427752

  10. Do the genes of the innate immune response contribute to neuroprotection in Drosophila?

    PubMed

    Cantera, Rafael; Barrio, Rosa

    2015-01-01

    A profound debate exists on the relationship between neurodegeneration and the innate immune response in humans. Although it is clear that such a relation exists, the causes and consequences of this complex association remain to be determined in detail. Drosophila is being used to investigate the mechanisms involved in neurodegeneration, and all genomic studies on this issue have generated gene catalogues enriched in genes of the innate immune response. We review the data reported in these publications and propose that the abundance of immune genes in studies of neurodegeneration reflects at least two phenomena: (i) some proteins have functions in both immune and nervous systems, and (ii) immune genes might also be of neuroprotective value in Drosophila. This review opens this debate in Drosophila, which could thus be used as an instrumental model to elucidate this question.

  11. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila

    PubMed Central

    Nagoshi, Emi; Sugino, Ken; Kula, Ela; Okazaki, Etsuko; Tachibana, Taro; Nelson, Sacha; Rosbash, Michael

    2013-01-01

    Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits. PMID:19966839

  12. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus.

    PubMed

    Ting, Chau-Ti; Tsaur, Shun-Chern; Sun, Sha; Browne, William E; Chen, Yung-Chia; Patel, Nipam H; Wu, Chung-I

    2004-08-17

    The importance of gene duplication in evolution has long been recognized. Because duplicated genes are prone to diverge in function, gene duplication could plausibly play a role in species differentiation. However, experimental evidence linking gene duplication with speciation is scarce. Here, we show that a hybrid-male sterility gene, Odysseus (OdsH), arose by gene duplication in the Drosophila genome. OdsH has evolved at a very high rate, whereas its most immediate paralog, unc-4, is nearly identical among species in the Drosophila melanogaster subgroup. The disparity in their sequence evolution is echoed by the divergence in their expression patterns in both soma and reproductive tissues. We suggest that duplicated genes that have yet to evolve a stable function at the time of speciation may be candidates for "speciation genes," which is broadly defined as genes that contribute to differential adaptation between species.

  13. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle

    PubMed Central

    Gutzwiller, Florence; Carmo, Catarina R.; Miller, Danny E.; Rice, Danny W.; Newton, Irene L. G.; Hawley, R. Scott; Teixeira, Luis; Bergman, Casey M.

    2015-01-01

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. PMID:26497146

  14. Birth of a new gene on the Y chromosome of Drosophila melanogaster

    PubMed Central

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A. M.; Swenor, Bonnielin; Clark, Andrew G.

    2015-01-01

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. PMID:26385968

  15. Birth of a new gene on the Y chromosome of Drosophila melanogaster.

    PubMed

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A M; Swenor, Bonnielin; Clark, Andrew G

    2015-10-06

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.

  16. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle.

    PubMed

    Gutzwiller, Florence; Carmo, Catarina R; Miller, Danny E; Rice, Danny W; Newton, Irene L G; Hawley, R Scott; Teixeira, Luis; Bergman, Casey M

    2015-10-23

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. Copyright © 2015 Gutzwiller et al.

  17. Molecular Characterization of Neurally Expressing Genes in the Para Sodium Channel Gene Cluster of Drosophila

    PubMed Central

    Hong, C. S.; Ganetzky, B.

    1996-01-01

    To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. PMID:8849894

  18. Mental Retardation Genes in Drosophila: New Approaches to Understanding and Treating Developmental Brain Disorders

    ERIC Educational Resources Information Center

    Restifo, Linda L.

    2005-01-01

    "Drosophila melanogaster" is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron…

  19. Mental Retardation Genes in Drosophila: New Approaches to Understanding and Treating Developmental Brain Disorders

    ERIC Educational Resources Information Center

    Restifo, Linda L.

    2005-01-01

    "Drosophila melanogaster" is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron…

  20. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans.

    PubMed

    Rand, D M; Kann, L M

    1996-07-01

    Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.

  1. Genomic signatures of domestication on neurogenetic genes in Drosophila melanogaster.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-01-05

    Domesticated animals quickly evolve docile and submissive behaviors after isolation from their wild conspecifics. Model organisms reared for prolonged periods in the laboratory also exhibit similar shifts towards these domesticated behaviors. Yet whether this divergence is due to inadvertent selection in the lab or the fixation of deleterious mutations remains unknown. Here, we compare the genomes of lab-reared and wild-caught Drosophila melanogaster to understand the genetic basis of these recently endowed behaviors common to laboratory models. From reassembled genomes of common lab strains, we identify unique, derived variants not present in global populations (lab-specific SNPs). Decreased selective constraints across low frequency SNPs (unique to one or two lab strains) are different from patterns found in the wild and more similar to neutral expectations, suggesting an overall accumulation of deleterious mutations. However, high-frequency lab SNPs found in most or all lab strains reveal an enrichment of X-linked loci and neuro-sensory genes across large extended haplotypes. Among shared polymorphisms, we also find highly differentiated SNPs, in which the derived allele is higher in frequency in the wild (Fst*wild>lab), enriched for similar neurogenetic ontologies, indicative of relaxed selection on more active wild alleles in the lab. Among random mutations that continuously accumulate in the laboratory, we detect common adaptive signatures in domesticated lab strains of fruit flies. Our results demonstrate that lab animals can quickly evolve domesticated behaviors via unconscious selection by humans early on a broad pool of disproportionately large neurogenetic targets followed by the fixation of accumulated deleterious mutations on functionally similar targets.

  2. Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis.

    PubMed

    Pavlopoulos, Anastasios; Akam, Michael

    2011-02-15

    Hox genes encode highly conserved transcription factors that regionalize the animal body axis by controlling complex developmental processes. Although they are known to operate in multiple cell types and at different stages, we are still missing the batteries of genes targeted by any one Hox gene over the course of a single developmental process to achieve a particular cell and organ morphology. The transformation of wings into halteres by the Hox gene Ultrabithorax (Ubx) in Drosophila melanogaster presents an excellent model system to study the Hox control of transcriptional networks during successive stages of appendage morphogenesis and cell differentiation. We have used an inducible misexpression system to switch on Ubx in the wing epithelium at successive stages during metamorphosis--in the larva, prepupa, and pupa. We have then used extensive microarray expression profiling and quantitative RT-PCR to identify the primary transcriptional responses to Ubx. We find that Ubx targets range from regulatory genes like transcription factors and signaling components to terminal differentiation genes affecting a broad repertoire of cell behaviors and metabolic reactions. Ubx up- and down-regulates hundreds of downstream genes at each stage, mostly in a subtle manner. Strikingly, our analysis reveals that Ubx target genes are largely distinct at different stages of appendage morphogenesis, suggesting extensive interactions between Hox genes and hormone-controlled regulatory networks to orchestrate complex genetic programs during metamorphosis.

  3. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline.

    PubMed

    Meiklejohn, Colin D; Presgraves, Daven C

    2012-01-01

    Male-biased genes-those expressed at higher levels in males than in females-are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First, using genome-wide gene expression data from 20 tissues, we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues, we recover a statistical underrepresentation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally "demasculinizing" the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes.

  4. Drosophila fushi tarazu. a gene on the border of homeotic function.

    PubMed

    Löhr, U; Yussa, M; Pick, L

    2001-09-18

    Hox genes specify cell fate and regional identity during animal development. These genes are present in evolutionarily conserved clusters thought to have arisen by gene duplication and divergence. Most members of the Drosophila Hox complex (HOM-C) have homeotic functions. However, a small number of HOM-C genes, such as the segmentation gene fushi tarazu (ftz), have nonhomeotic functions. If these genes arose from a homeotic ancestor, their functional properties must have changed significantly during the evolution of modern Drosophila. Here, we have asked how Drosophila ftz evolved from an ancestral homeotic gene to obtain a novel function in segmentation. We expressed Ftz proteins at various developmental stages to assess their potential to regulate segmentation and to generate homeotic transformations. Drosophila Ftz protein has lost the inherent ability to mediate homeosis and functions exclusively in segmentation pathways. In contrast, Ftz from the primitive insect Tribolium (Tc-Ftz) has retained homeotic potential, generating homeotic transformations in larvae and adults and retaining the ability to repress homothorax, a hallmark of homeotic genes. Similarly, Schistocerca Ftz (Sg-Ftz) caused homeotic transformations of antenna toward leg. Primitive Ftz orthologs have moderate segmentation potential, reflected by weak interactions with the segmentation-specific cofactor Ftz-F1. Thus, Ftz orthologs represent evolutionary intermediates that have weak segmentation potential but retain the ability to act as homeotic genes. ftz evolved from an ancestral homeotic gene as a result of changes in both regulation of expression and specific alterations in the protein-coding region. Studies of ftz orthologs from primitive insects have provided a "snap-shot" view of the progressive evolution of a Hox protein as it took on segmentation function and lost homeotic potential. We propose that the specialization of Drosophila Ftz for segmentation resulted from loss and gain of

  5. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    PubMed Central

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-01-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening. PMID:28621308

  6. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    NASA Astrophysics Data System (ADS)

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-06-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.

  7. Hybrid Lethal Systems in the Drosophila Melanogaster Species Complex. I. the Maternal Hybrid Rescue (Mhr) Gene of Drosophila Simulans

    PubMed Central

    Sawamura, K.; Taira, T.; Watanabe, T. K.

    1993-01-01

    Hybrid females from Drosophila simulans females X Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as late larvae. The other two classes are sterile adults. Letting C, X, and Y designate egg cytoplasm, X, and Y chromosomes, respectively, and subscripts m and s stand for melanogaster and simulans, C(m)X(m)Y(s) males are lethal in the larval stage and are rescued by the previously reported genes, Lhr (Lethal hybrid rescue) in simulans or Hmr (Hybrid male rescue) in melanogaster. We report here another rescue gene located on the second chromosome of simulans, mhr (maternal hybrid rescue) that, when present in the mother, rescues C(s)X(m)X(s) females from embryonic lethality. It has been postulated that the hybrids not carrying the X(s) like C(m)X(m)Y(s) males are larval lethal and that the hybrids carrying both the C(s) and the X(m) like C(s)X(m)X(s) females are embryonic lethal. According to these postulates C(s)X(m)Y(s) males (obtained by mating attached-X simulans females to melanogaster males) should be doubly lethal, at both embryo and larval stages. When both rescuing genes are present, Hmr in the father and mhr in the mother, males of this genotype are fully viable, as predicted. PMID:8436276

  8. The gene structure of the Drosophila melanogaster proto-oncogene, kayak, and its nested gene, fos-intronic gene.

    PubMed

    Hudson, Stephanie Gidget; Goldstein, Elliott S

    2008-08-15

    We present herein a new model for the structure of the Drosophila kayak gene as well as preliminary data on the functional differences of its various isoforms. kayak is a homolog of the human proto-oncogene, c-fos. kayak has three different starts of transcription, and therefore promoters (P)kay-alpha, (P)kay-beta and (P)kay-gamma. These three promoters lead to four different transcripts: kay-alpha, kay(sro), kay-beta and kay-gamma. (P)kay-alpha produces two different transcripts: kay-alpha and kay(sro) where the other two promoters, (P)kay-beta and (P)kay-gamma, produce a single transcript each. The transcripts kay-alpha, beta and gamma all splice into the mainbody of the kay gene, which codes for the DNA binding domain and leucine zipper; kay(sro) is not spliced. Also, within this region is a nested gene, fos-intronic gene (fig) which is transcribed in the opposite direction. fig codes for a predicted PP2C phosphatase. fig has two different promoters which produce two different transcripts, both in the same reading frame, fig-alpha and beta. This is an unusual gene structure for Drosophila. Only 13% of Drosophila genes have multiple promoters and only 7% have a nested gene. RT-PCR was performed on each transcript to determine the relative amounts of each RNA produced. All spliced kay transcripts appear to have equal abundance. The unspliced kay(sro) transcript has a lower abundance than kay-alpha. Both fig transcripts are also detected in all stages tested. Lethal phase analysis and complementation testing suggest that the three isoforms of kayak may have different functions.

  9. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion.

    PubMed

    Park, Sangbin; Alfa, Ronald W; Topper, Sydni M; Kim, Grace E S; Kockel, Lutz; Kim, Seung K

    2014-08-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.

  10. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  11. Little Evidence for Demasculinization of the Drosophila X Chromosome among Genes Expressed in the Male Germline

    PubMed Central

    Meiklejohn, Colin D.; Presgraves, Daven C.

    2012-01-01

    Male-biased genes—those expressed at higher levels in males than in females—are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First, using genome-wide gene expression data from 20 tissues, we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues, we recover a statistical underrepresentation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally “demasculinizing” the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes. PMID:22975718

  12. Divergence of the gene aly in experimentally evolved cytoraces, the members of the nasuta-albomicans complex of Drosophila.

    PubMed

    Radhika, P N; Ramachandra, N B

    2014-08-01

    We generated cytoraces by crossing the chromosomal races (Drosophila nasuta nasuta and Drosophila nasuta albomicans) of the nasuta subgroup of Drosophila and maintained the offspring over many generations through sibling mating. These cytoraces, along with their parents, are members of the nasuta-albomicans complex of Drosophila. The gene always early (aly) is one of the rapidly evolving genes in the genus Drosophila and plays a central role in regulating meiosis. Here we examined the rate of molecular evolution of aly in cytoraces of Drosophila and demonstrated that the rate of substitutions amongst cytoraces is around eight times greater than their parents and even amongst species of subgenera. Thus, the presence of positive selection in the laboratory-derived cytoraces based on the analysis of the synonymous and nonsynonymous substitution rates of aly suggests the rapid evolution in cytoraces.

  13. Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster.

    PubMed

    Guan, Delong; Mo, Fei; Han, Yan; Gu, Wei; Zhang, Min

    2015-01-01

    Cadmium is highly toxic and can cause oxidative damage, metabolic disorders, and reduced lifespan and fertility in animals. In this study, we investigated the effects of cadmium in Drosophila melanogaster, performing transcriptome analysis by using tag-based digital gene expression (DGE) profiling. Among 1970 candidate genes, 1443 were up-regulated and 527 were down-regulated following cadmium exposure. Using Gene Ontology analysis, we found that cadmium stress affects three processes: transferase activity, stress response, and the cell cycle. Furthermore, we identified five differentially expressed genes (confirmed by real-time PCR) involved in all three processes: Ald, Cdc2, skpA, tefu, and Pvr. Pathway analysis revealed that these genes were involved in the cell cycle pathway and fat digestion and absorption pathway. This study reveals the gene expression response to cadmium stress in Drosophila, it provides insights into the mechanisms of this response, and it could contribute to our understanding of cadmium toxicity in humans.

  14. Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough.

    PubMed

    Perez, D E; Wu, C I

    1995-05-01

    Previously we mapped by genetical and molecular means a gene that contributes to hybrid-male sterility between Drosophila mauritiana and D. simulans to the cytological interval of 16D. In this report, we refine the mapping of this gene, Odysseus (Ods) and show that it can be delineated to a region the size of an average gene. We further demonstrate that, while Ods appears to be a discrete element, it requires other nearby gene(s) to be cointrogressed to confer full hybrid sterility effect. This observation is in agreement with the view that reproductive isolation between closely related species of Drosophila is usually caused by several genes of weak effect from the same species that interact strongly among themselves as well as with the foreign genetic background.

  15. Evolution of Three Parent Genes and Their Retrogene Copies in Drosophila Species

    PubMed Central

    O'Neill, Ryan S.; Clark, Denise V.

    2013-01-01

    Retrogenes form a class of gene duplicate lacking the regulatory sequences found outside of the mRNA-coding regions of the parent gene. It is not clear how a retrogene's lack of parental regulatory sequences affects the evolution of the gene pair. To explore the evolution of parent genes and retrogenes, we investigated three such gene pairs in the family Drosophilidae; in Drosophila melanogaster, these gene pairs are CG8331 and CG4960, CG17734 and CG11825, and Sep2 and Sep5. We investigated the embryonic expression patterns of these gene pairs across multiple Drosophila species. Expression patterns of the parent genes and their single copy orthologs are relatively conserved across species, whether or not a species has a retrogene copy, although there is some variation in CG8331 and CG17734. In contrast, expression patterns of the retrogene orthologs have diversified. We used the genome sequences of 20 Drosophila species to investigate coding sequence evolution. The coding sequences of the three gene pairs appear to be evolving predominantly under negative selection; however, the parent genes and retrogenes show some distinct differences in amino acid sequence. Therefore, in general, retrogene expression patterns and coding sequences are distinct compared to their parents and, in some cases, retrogene expression patterns diversify. PMID:23841016

  16. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila.

    PubMed

    Beumer, Kelly J; Trautman, Jonathan K; Christian, Michelle; Dahlem, Timothy J; Lake, Cathleen M; Hawley, R Scott; Grunwald, David J; Voytas, Daniel F; Carroll, Dana

    2013-10-03

    Zinc-finger nucleases have proven to be successful as reagents for targeted genome manipulation in Drosophila melanogaster and many other organisms. Their utility has been limited, however, by the significant failure rate of new designs, reflecting the complexity of DNA recognition by zinc fingers. Transcription activator-like effector (TALE) DNA-binding domains depend on a simple, one-module-to-one-base-pair recognition code, and they have been very productively incorporated into nucleases (TALENs) for genome engineering. In this report we describe the design of TALENs for a number of different genes in Drosophila, and we explore several parameters of TALEN design. The rate of success with TALENs was substantially greater than for zinc-finger nucleases , and the frequency of mutagenesis was comparable. Knockout mutations were isolated in several genes in which such alleles were not previously available. TALENs are an effective tool for targeted genome manipulation in Drosophila.

  17. Structure and expression of the Drosophila ubiquitin-52-amino-acid fusion-protein gene.

    PubMed Central

    Cabrera, H L; Barrio, R; Arribas, C

    1992-01-01

    Ubiquitin belongs to a multigene family. In Drosophila two members of this family have been previously described. We report here the organization and expression of a third member, the DUb52 gene, isolated by screening a Drosophila melanogaster genomic library. This gene encodes an ubiquitin monomer fused to a 52-amino acid extension protein. There are no introns interrupting the coding sequence. Recently, it has been described that this extension encodes a ribosomal protein in Saccharomyces, Dictyostelium, and Arabidopsis. The present results show that the 5' regulatory region of DUb52 shares common features with the ribosomal protein genes of Drosophila, Xenopus and mouse, including GC- and pyrimidine-rich regions. Moreover, sequences similar to the consensus Ribo-box in Neurospora crassa have been identified. Furthermore, a sequence has been found that is similar to the binding site for the TFIIIA distal element factor from Xenopus laevis. The DUb52 gene is transcribed to a 0.9 kb mRNA that is expressed constitutively throughout development and is particularly abundant in ovaries. In addition, the DUb52 gene has been found to be preferentially transcribed in exponentially growing Drosophila cells. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1381584

  18. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation.

    PubMed

    Manu; Surkova, Svetlana; Spirov, Alexander V; Gursky, Vitaly V; Janssens, Hilde; Kim, Ah-Ram; Radulescu, Ovidiu; Vanario-Alonso, Carlos E; Sharp, David H; Samsonova, Maria; Reinitz, John

    2009-03-01

    Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Krüppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic

  19. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster.

    PubMed

    Robinson, Scott W; Herzyk, Pawel; Dow, Julian A T; Leader, David P

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25-17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13,250 Drosophila genes, detecting 12,533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax 'autosuggest' facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues.

  20. A Role of Polycomb Group Genes in the Regulation of Gap Gene Expression in Drosophila

    PubMed Central

    Pelegri, F.; Lehmann, R.

    1994-01-01

    Anteroposterior polarity of the Drosophila embryo is initiated by the localized activities of the maternal genes, bicoid and nanos, which establish a gradient of the hunchback (hb) morphogen. nanos determines the distribution of the maternal Hb protein by regulating its translation. To identify further components of this pathway we isolated suppressors of nanos. In the absence of nanos high levels of Hb protein repress the abdomen-specific genes knirps and giant. In suppressor-of-nanos mutants, knirps and giant are expressed in spite of high Hb levels. The suppressors are alleles of Enhancer of zeste (E(z)) a member of the Polycomb group (Pc-G) of genes. We show that E(z), and likely other Pc-G genes, are required for maintaining the expression domains of knirps and giant initiated by the maternal Hb protein gradient. We have identified a small region of the knirps promoter that mediates the regulation by E(z) and hb. Because Pc-G genes are thought to control gene expression by regulating chromatin, we propose that imprinting at the chromatin level underlies the determination of anteroposterior polarity in the early embryo. PMID:8013911

  1. Gene flow and gene flux shape evolutionary patterns of variation in Drosophila subobscura

    PubMed Central

    Pegueroles, C; Aquadro, C F; Mestres, F; Pascual, M

    2013-01-01

    Gene flow (defined as allele exchange between populations) and gene flux (defined as allele exchange during meiosis in heterokaryotypic females) are important factors decreasing genetic differentiation between populations and inversions. Many chromosomal inversions are under strong selection and their role in recombination reduction enhances the maintenance of their genetic distinctness. Here we analyze levels and patterns of nucleotide diversity, selection and demographic history, using 37 individuals of Drosophila subobscura from Mount Parnes (Greece) and Barcelona (Spain). Our sampling focused on two frequent O-chromosome arrangements that differ by two overlapping inversions (OST and O3+4), which are differentially adapted to the environment as observed by their opposing latitudinal clines in inversion frequencies. The six analyzed genes (Pif1A, Abi, Sqd, Yrt, Atpα and Fmr1) were selected for their location across the O-chromosome and their implication in thermal adaptation. Despite the extensive gene flux detected outside the inverted region, significant genetic differentiation between both arrangements was found inside it. However, high levels of gene flow were detected for all six genes when comparing the same arrangement among populations. These results suggest that the adaptive value of inversions is maintained, regardless of the lack of genetic differentiation within arrangements from different populations, and thus favors the Local Adaptation hypothesis over the Coadapted Genome hypothesis as the basis of the selection acting on inversions in these populations. PMID:23321709

  2. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans.

    PubMed

    Quiring, R; Walldorf, U; Kloter, U; Gehring, W J

    1994-08-05

    A Drosophila gene that contains both a paired box and a homeobox and has extensive sequence homology to the mouse Pax-6 (Small eye) gene was isolated and mapped to chromosome IV in a region close to the eyeless locus. Two spontaneous mutations, ey2 and eyR, contain transposable element insertions into the cloned gene and affect gene expression, particularly in the eye primordia. This indicates that the cloned gene encodes ey. The finding that ey of Drosophila, Small eye of the mouse, and human Aniridia are encoded by homologous genes suggests that eye morphogenesis is under similar genetic control in both vertebrates and insects, in spite of the large differences in eye morphology and mode of development.

  3. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila.

    PubMed

    Gallach, Miguel; Chandrasekaran, Chitra; Betrán, Esther

    2010-01-01

    Gene duplication is probably the most important mechanism for generating new gene functions. However, gene duplication has been overlooked as a potentially effective way to resolve genetic conflicts. Here, we analyze the entire set of Drosophila melanogaster nuclearly encoded mitochondrial duplicate genes and show that both RNA- and DNA-mediated mitochondrial gene duplications exhibit an unexpectedly high rate of relocation (change in location between parental and duplicated gene) as well as an extreme tendency to avoid the X chromosome. These trends are likely related to our observation that relocated genes tend to have testis-specific expression. We also infer that these trends hold across the entire Drosophila genus. Importantly, analyses of gene ontology and functional interaction networks show that there is an overrepresentation of energy production-related functions in these mitochondrial duplicates. We discuss different hypotheses to explain our results and conclude that our findings substantiate the hypothesis that gene duplication for male germline function is likely a mechanism to resolve intralocus sexually antagonistic conflicts that we propose are common in testis. In the case of nuclearly encoded mitochondrial duplicates, our hypothesis is that past sexually antagonistic conflict related to mitochondrial energy function in Drosophila was resolved by gene duplication.

  4. Strong purifying selection on the Odysseus gene in two clades of sibling species of the Drosophila montium species subgroup.

    PubMed

    Wen, Shuo-Yang; Shimada, Kimio; Kawai, Kuniko; Toda, Masanori J

    2006-05-01

    The Odysseus (OdsH) gene was duplicated from its ancestral neuron-expressed gene, unc-4, and then evolved very rapidly under strong positive Darwinian selection as a speciation gene causing hybrid-male sterility between closely related species of the Drosophila simulans clade. Has OdsH also experienced similar positive selection between Drosophila sibling species other than those of the simulans clade? We cloned and sequenced OdsH and unc-4 from two clades of the Drosophila montium species subgroup, the Drosophila lini and the Drosophila kikkawai clades. The ratios of Ka/Ks for OdsH were remarkably low between sibling species of these two clades, suggesting that OdsH has been subjected to strong purifying selection in these two clades.

  5. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes.

    PubMed

    Choi, Jae Young; Aquadro, Charles F

    2015-10-27

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system.

  6. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila

    PubMed Central

    Zhu, Jun-yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-01

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors. DOI: http://dx.doi.org/10.7554/eLife.22617.001 PMID:28084990

  7. Interspecific Comparisons of the Structure and Regulation of the Drosophila Ecdysone-Inducible Gene E74

    PubMed Central

    Jones, C. W.; Dalton, M. W.; Townley, L. H.

    1991-01-01

    The Drosophila melanogaster E74 gene is induced directly by the steroid hormone ecdysone and is a member of a small set of ``early'' genes that appear to trigger the onset of metamorphosis. The gene consists of three overlapping transcription units encoding two proteins, E74A and E74B, which possess a common C terminus. According to the Ashburner model for ecdysone's action, an E74 protein product potentially functions as a transcriptional activator of ``late'' genes as well as a repressor of early genes. We have taken an evolutionary approach to understand the function and regulation of E74 by isolating the homologous genes from Drosophila pseudoobscura and Drosophila virilis and comparing them to D. melanogaster E74 sequences. Conserved characteristics of the E74 genes include ecdysone inducibility, localization to ecdysone-induced polytene chromosome puffs, and gene size. Amino acid sequence comparisons of the E74A protein reveal a highly conserved C-terminal region that is rich in basic amino acid residues and which has been proposed to possess sequence-specific DNA binding activity. The moderately conserved N-terminal region has maintained its overall acidic character and is a potential transcriptional activator domain. The central region contains conserved glutamine and alanine homopolymeric repeats of variable lengths. Nucleotide sequence comparisons of the E74A promoter region fail to reveal ecdysone-response elements but do identify conserved sequences that may function in E74A regulation. PMID:2016053

  8. Mapping Linked Genes in "Drosophila Melanogaster" Using Data from the F2 Generation of a Dihybrid Cross

    ERIC Educational Resources Information Center

    Marshall, Pamela A.

    2008-01-01

    "Drosophila melanogaster" is a commonly utilized organism for testing hypotheses about inheritance of traits. Students in both high school and university labs study the genetics of inheritance by analyzing offspring of appropriate "Drosophila" crosses to determine inheritance patterns, including gene linkage. However, most genetics investigations…

  9. Mapping Linked Genes in "Drosophila Melanogaster" Using Data from the F2 Generation of a Dihybrid Cross

    ERIC Educational Resources Information Center

    Marshall, Pamela A.

    2008-01-01

    "Drosophila melanogaster" is a commonly utilized organism for testing hypotheses about inheritance of traits. Students in both high school and university labs study the genetics of inheritance by analyzing offspring of appropriate "Drosophila" crosses to determine inheritance patterns, including gene linkage. However, most genetics investigations…

  10. Developmental expression and gene/enzyme identifications in the alpha esterase gene cluster of Drosophila melanogaster.

    PubMed

    Campbell, P M; de Q Robin, G C; Court, L N; Dorrian, S J; Russell, R J; Oakeshott, J G

    2003-10-01

    Here we show how the 10 genes of the alpha esterase cluster of Drosophila melanogaster have diverged substantially in their expression profiles. Together with previously described sequence divergence this suggests substantial functional diversification. By peptide mass fingerprinting and in vitro gene expression we have also shown that two of the genes encode the isozymes EST9 (formerly ESTC) and EST23. EST9 is the major 'alpha staining' esterase in zymograms of gut tissues in feeding stages while orthologues of EST23 confer resistance to organophosphorus insecticides in other higher Diptera. The results for EST9 and EST23 concur with previous suggestions that the products of the alpha esterase cluster function in digestion and detoxification of xenobiotic esters. However, many of the other genes in the cluster show developmental or tissue-specific expression that seems inconsistent with such roles. Furthermore, there is generally poor correspondence between the mRNA expression patterns of the remaining eight genes and isozymes previously characterized by standard techniques of electrophoresis and staining, suggesting that the alpha cluster might only account for a small minority of the esterase isozyme profile.

  11. Tenm, a Drosophila gene related to tenascin, is a new pair-rule gene.

    PubMed Central

    Baumgartner, S; Martin, D; Hagios, C; Chiquet-Ehrismann, R

    1994-01-01

    We describe the molecular characterization of the Drosophila gene tenm, a large transcription unit spanning > 110 kb of DNA. tenm encodes a large extracellular protein of 2515 amino acids related to the extracellular matrix molecule tenascin. The Tenm protein is found in seven stripes during the blastoderm stage, and each stripe overlaps with the even-skipped stripes. tenm mutants show a phenotype resembling that of odd-paired (opa), a member of the pair-rule class of segmentation genes. Thus, Tenm is the first example of a pair-rule gene product acting from outside the cell. While the Tenm protein is under the control of fushi tarazu and even-skipped, but not of opa, at least two pair-rule genes, paired (prd) and sloppy paired (slp), and all segment-polarity genes analysed to date are under the control of tenm. Our data suggest that Tenm initiates a signal transduction cascade which acts, via or in concert with opa, on downstream targets such as prd, slp, gooseberry, engrailed and wingless, leading to an opa-like phenotype. Images PMID:8070401

  12. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development

    PubMed Central

    2011-01-01

    Background The gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera. Results The transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation. Conclusions The transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex

  13. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development.

    PubMed

    Martín, Iker; Ruiz, María F; Sánchez, Lucas

    2011-03-15

    The gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera. The transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation. The transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex with the endogenous Drosophila

  14. Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth.

    PubMed Central

    Stewart, M J; Denell, R

    1993-01-01

    We have characterized two P-element-induced, lethal mutations in Drosophila melanogaster which affect the larval hemocytes, mediators of the insect immune response. Each mutant displays larval melanotic tumors characteristic of mutations affecting the insect cellular immune system, and the moribund animals develop grossly hypertrophied hematopoietic organs because of increased cell proliferation and extra rounds of endoreduplication in some hematopoietic cells. Surprisingly, these mutations are due to P element insertions in the 5' regulatory region of the Drosophila gene encoding ribosomal protein S6 and cause a reduction of S6 transcript abundance in mutant larvae. Images PMID:8384310

  15. Vitellogenin family gene expression does not increase Drosophila lifespan or fecundity

    PubMed Central

    Ren, Yingxue; Hughes, Kimberly A.

    2014-01-01

    One of the most striking patterns in comparative biology is the negative correlation between lifespan and fecundity observed in comparisons among species. This pattern is consistent with the idea that organisms need to allocate a fixed energy budget among competing demands of growth, development, reproduction and somatic maintenance. However, exceptions to this pattern have been observed in many social insects, including ants, bees, and termites.  In honey bees ( Apis mellifera), Vitellogenin ( Vg), a yolk protein precursor, has been implicated in mediating the long lifespan and high fecundity of queen bees. To determine if Vg-like proteins can regulate lifespan in insects generally, we examined the effects of expression of Apis Vg and Drosophila CG31150 (a Vg-like gene recently identified as cv-d) on Drosophila melanogaster lifespan and fecundity using the RU486-inducible GeneSwitch system. For all genotypes tested, overexpression of Vg and CG31150 decreased Drosophila lifespan and did not affect total or age-specific fecundity. We also detected an apparent effect of the GeneSwitch system itself, wherein RU486 exposure (or the GAL4 expression it induces) led to a significant increase in longevity and decrease in fecundity in our fly strains. This result is consistent with the pattern reported in a recent meta-analysis of Drosophila aging studies, where transgenic constructs of the UAS/GAL4 expression system that should have no effect (e.g. an uninduced GeneSwitch) significantly extended lifespan in some genetic backgrounds. Our results suggest that Vg-family genes are not major regulators of Drosophila life history traits, and highlight the importance of using appropriate controls in aging studies. PMID:25110583

  16. Functional Evolution of cis-Regulatory Modules at a Homeotic Gene in Drosophila

    PubMed Central

    Schiller, Benjamin J.; Bae, Esther; Tran, Diana A.; Shur, Andrey S.; Allen, John M.; Rau, Christoph; Bender, Welcome; Fisher, William W.; Celniker, Susan E.; Drewell, Robert A.

    2009-01-01

    It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs). How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab) mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules. PMID:19893611

  17. Patterns of Nucleotide Diversity at the Regions Encompassing the Drosophila Insulin-Like Peptide (dilp) Genes: Demography vs. Positive Selection in Drosophila melanogaster

    PubMed Central

    Guirao-Rico, Sara; Aguadé, Montserrat

    2013-01-01

    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events. PMID:23308258

  18. Gene expression variations during Drosophila metamorphosis in space: The GENE experiment in the Spanish cervantes missions to the ISS

    NASA Astrophysics Data System (ADS)

    Herranz, Raul; Benguria, Alberto; Medina, Javier; Gasset, Gilbert; van Loon, Jack J.; Zaballos, Angel; Marco, Roberto

    2005-08-01

    The ISS expedition 8, a Soyuz Mission, flew to the International Space Station (ISS) to replace the two- member ISS crew during October 2003. During this crew exchanging flight, the Spanish Cervantes Scientific Mission took place. In it some biological experiments were performed among them three proposed by our Team. The third member of the expedition, the Spanish born ESA astronaut Pedro Duque, returned within the Soyuz 7 capsule carrying the experiment containing transport box after almost 11 days in microgravity. In one of the three experiments, the GENE experiment, we intended to determine how microgravity affects the gene expression pattern of Drosophila with one of the current more powerful technologies , a complete Drosophila melanogaster genome microarray (AffymetrixTM, version 1.0). Due to the constrains in the current ISS experiments, we decided to limit our experiment to the organism rebuilding processes that occurs during Drosophila metamorphosis. In addition to the ISS samples, several control experiments have been performed including a 1g Ground control parallel to the ISS flight samples, a Random Position Machine microgravity simulated control and a parallel Hypergravity (10g) experiment. Extracted RNA from the samples was used to test the differences in gene expression during Drosophila development. A preliminary analysis of the results indicates that around five hundred genes change their expression profiles, many of them belonging to particular ontology classification groups.

  19. Role of DREF in transcriptional regulation of the Drosophila p53 gene.

    PubMed

    Trong-Tue, N; Thao, D T P; Yamaguchi, M

    2010-04-08

    The tumor suppressor protein p53 has a critical role in safeguarding the integrity of the genome. Its functions are well understood but factors responsible for the transcriptional regulation of the p53 gene are almost entirely unknown. The DNA replication-related element (DRE)/DNA replication-related element-binding factor (DREF) transcriptional regulatory system is established as a master key to cell proliferation in Drosophila. DREF binds specifically to DRE sequences in the Drosophila p53 (dmp53) gene promoter as shown using anti-DREF antibodies in chromatin immunoprecipitation assays. Furthermore, a rough eye phenotype because of overexpression of DREF in Drosophila eye imaginal disks could be suppressed by half dose reduction of the dmp53 gene. In addition, the level of mRNA of dmp53 was decreased in DREF-knockdown cells and transient expression of the luciferase gene under control of the wild-type dmp53 gene promoter showed strong promoter activity in S2 cells, but this was almost completely abrogated with a DRE-mutated promoter. Requirement of DREs for dmp53 promoter activity was further confirmed by anti-beta-galactosidase antibody-staining of various tissues from transgenic flies carrying dmp53 promoter-lacZ fusion genes. These results indicate that DREF is necessary for dmp53 gene promoter activity.

  20. Characterization of two Drosophila melanogaster cytochrome c genes and their transcripts.

    PubMed

    Limbach, K J; Wu, R

    1985-01-25

    Analysis of total Drosophila melanogaster DNA by genomic blot hybridization indicates that two cytochrome c-like sequences exist in the Drosophila genome. These two sequences, DC3 and DC4, have been isolated from a Charon 4A-D. melanogaster genomic library. DC3 and DC4 are located within a 4 kb region of DNA, at position 36A 10-11, on the left arm of chromosome 2. The nucleotide sequence of these two clones has been determined. Both DC3 and DC4 can encode functional cytochrome c proteins. The polypeptide sequences predicted by these two genes, however, differ at 32 amino acid residues. DC4 is expressed at varying, but relatively high levels throughout Drosophila development. In contrast, DC3 is expressed at constant, but relatively low levels throughout development.

  1. The pink gene encodes the Drosophila orthologue of the human Hermansky-Pudlak syndrome 5 (HPS5) gene.

    PubMed

    Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M

    2007-06-01

    Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.

  2. Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes.

    PubMed

    Proshkina, Ekaterina N; Shaposhnikov, Mikhail V; Sadritdinova, Asiya F; Kudryavtseva, Anna V; Moskalev, Alexey A

    2015-11-01

    Drosophila is one of the most convenient model organisms in the genetics of aging and longevity. Unlike the nematodes, which allow for the detection of new pro-aging genes by knockout and RNAi-mediated knock-down, Drosophila also provides an opportunity to find new pro-longevity genes by driver-induced overexpression. Similar studies on other models are extremely rare. In this review, we focused on genes whose overexpression prolongs the life of fruit flies. The majority of longevity-associated genes regulates metabolism and stress resistance, and belongs to the IGF-1R, PI3K, PKB, AMPK and TOR metabolic regulation cluster and the FOXO, HDAC, p53 stress response cluster.

  3. The Molecular Evolution of Cytochrome P450 Genes within and between Drosophila Species

    PubMed Central

    Good, Robert T.; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-01-01

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes—with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. PMID:24751979

  4. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    SciTech Connect

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-12-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation.

  5. Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt

    PubMed Central

    Tootle, Tina L.; Williams, Dianne; Hubb, Alexander; Frederick, Rebecca; Spradling, Allan

    2011-01-01

    Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals. PMID:21637834

  6. The warts gene as a novel target of the Drosophila DRE/DREF transcription pathway.

    PubMed

    Fujiwara, Shunsuke; Ida, Hiroyuki; Yoshioka, Yasuhide; Yoshida, Hideki; Yamaguchi, Masamitsu

    2012-01-01

    The Hippo tumor suppressor pathway in Drosophila represses expression of DIAP1 and Cyclin E via inactivation of the transcription co-activator Yorkie, resulting in cell cycle arrest and induction of apoptosis. The warts (wts) gene is well known as a core kinase in this pathway, but its transcriptional regulation has yet to be clarified. In Drosophila, DREF binds to a target sequence named DRE (5'-TATCGATA) and regulates transcription of cell proliferation-related genes containing the DRE sequence in their promoter regions. Here we found half reduction of the wts gene dose to enhance the DREF-induced rough eye phenotype, suggesting a DREF genetic interaction with the Hippo pathway in vivo. Three DREs indentified in the wts gene promoter region exhibited strong promoter activity with a luciferase transient expression assay in Drosophila S2 cells, this decreasing under DREF-RNAi conditions. In addition, knockdown of DREF in S2 cells reduced the level of endogenous wts mRNA. Chromatin immunoprecipitation assays with anti-DREF antibody revealed that DREF binds specifically to the wts gene promoter region containing DREs in vivo. These results indicate that the DRE/DREF pathway is required for transcriptional regulation of the wts gene, indicating a novel link between the DRE/DREF and the Hippo pathways.

  7. The twisted Gene Encodes Drosophila Protein O-Mannosyltransferase 2 and Genetically Interacts With the rotated abdomen Gene Encoding Drosophila Protein O-Mannosyltransferase 1

    PubMed Central

    Lyalin, Dmitry; Koles, Kate; Roosendaal, Sigrid D.; Repnikova, Elena; Van Wechel, Laura; Panin, Vladislav M.

    2006-01-01

    The family of mammalian O-mannosyltransferases includes two enzymes, POMT1 and POMT2, which are thought to be essential for muscle and neural development. Similar to mammalian organisms, Drosophila has two O-mannosyltransferase genes, rotated abdomen (rt) and DmPOMT2, encoding proteins with high homology to their mammalian counterparts. The previously reported mutant phenotype of the rt gene includes a clockwise rotation of the abdomen and defects in embryonic muscle development. No mutants have been described so far for the DmPOMT2 locus. In this study, we determined that the mutation in the twisted (tw) locus, tw1, corresponds to a DmPOMT2 mutant. The twisted alleles represent a complementation group of recessive mutations that, similar to the rt mutants, exhibit a clockwise abdomen rotation phenotype. Several tw alleles were isolated in the past; however, none of them was molecularly characterized. We used an expression rescue approach to confirm that tw locus represents DmPOMT2 gene. We found that the tw1 allele represents an amino acid substitution within the conserved PMT domain of DmPOMT2 (TW) protein. Immunostaining experiments revealed that the protein products of both rt and tw genes colocalize within Drosophila cells where they reside in the ER subcellular compartment. In situ hybridization analysis showed that both genes have essentially overlapping patterns of expression throughout most of embryogenesis (stages 8–17), while only the rt transcript is present at early embryonic stages (5 and 6), suggesting its maternal origin. Finally, we analyzed the genetic interactions between rt and tw using several mutant alleles, RNAi, and ectopic expression approaches. Our data suggest that the two Drosophila O-mannosyltransferase genes, rt and tw, have nonredundant functions within the same developmental cascade and that their activities are required simultaneously for possibly the same biochemical process. Our results establish the possibility of using

  8. Extensive microheterogeneity of serine tRNA genes from Drosophila melanogaster.

    PubMed

    Cribbs, D L; Leung, J; Newton, C H; Hayashi, S; Miller, R C; Tener, G M

    1987-10-05

    The nucleotide sequences of nine genes corresponding to tRNA(Ser)4 or tRNA(Ser)7 of Drosophila melanogaster were determined. Eight of the genes compose the major tRNA(Ser)4,7 cluster at 12DE on the X chromosome, while the other is from 23E on the left arm of chromosome 2. Among the eight X-linked genes, five different, interrelated, classes of sequence were found. Four of the eight genes correspond to tRNA(Ser)4 and tRNA(Ser)7 (which are 96% homologous), two appear to result from single crossovers between tRNA(Ser)4 and tRNA(Ser)7 genes, one is an apparent double crossover product, and the last differs from a tRNA(Ser)4 gene by a single C to T transition at position 50. The single autosomal gene corresponds to tRNA(Ser)7. Comparison of a pair of genes corresponding to tRNA(Ser)4 from D. melanogaster and Drosophila simulans showed that, while gene flanking sequences may diverge considerably by accumulation of point changes, gene sequences are maintained intact. Our data indicate that recombination occurs between non-allelic tRNA(Ser) genes, and suggest that at least some recombinational events may be intergenic conversions.

  9. Evidence for the fixation of gene duplications by positive selection in Drosophila

    PubMed Central

    Cardoso-Moreira, Margarida; Arguello, J. Roman; Gottipati, Srikanth; Harshman, L.G.; Grenier, Jennifer K.; Clark, Andrew G.

    2016-01-01

    Gene duplications play a key role in the emergence of novel traits and in adaptation. But despite their centrality to evolutionary processes, it is still largely unknown how new gene duplicates are initially fixed within populations and later maintained in genomes. Long-standing debates on the evolution of gene duplications could be settled by determining the relative importance of genetic drift vs. positive selection in the fixation of new gene duplicates. Using the Drosophila Global Diversity Lines (GDL), we have combined genome-wide SNP polymorphism data with a novel set of copy number variant calls and gene expression profiles to characterize the polymorphic phase of new genes. We found that approximately half of the roughly 500 new complete gene duplications segregating in the GDL lead to significant increases in the expression levels of the duplicated genes and that these duplications are more likely to be found at lower frequencies, suggesting a negative impact on fitness. However, we also found that six of the nine gene duplications that are fixed or close to fixation in at least one of the five populations in our study show signs of being under positive selection, and that these duplications are likely beneficial because of dosage effects, with a possible role for additional mutations in two duplications. Our work suggests that in Drosophila, theoretical models that posit that gene duplications are immediately beneficial and fixed by positive selection are most relevant to explain the long-term evolution of gene duplications in this species. PMID:27197209

  10. Position-Effect Variegation, Heterochromatin Formation, and Gene Silencing in Drosophila

    PubMed Central

    Elgin, Sarah C.R.; Reuter, Gunter

    2013-01-01

    Position-effect variegation (PEV) results when a gene normally in euchromatin is juxtaposed with heterochromatin by rearrangement or transposition. When heterochromatin packaging spreads across the heterochromatin/euchromatin border, it causes transcriptional silencing in a stochastic pattern. PEV is intensely studied in Drosophila using the white gene. Screens for dominant mutations that suppress or enhance white variegation have identified many conserved epigenetic factors, including the histone H3 lysine 9 methyltransferase SU(VAR)3-9. Heterochromatin protein HP1a binds H3K9me2/3 and interacts with SU(VAR)3-9, creating a core memory system. Genetic, molecular, and biochemical analysis of PEV in Drosophila has contributed many key findings concerning establishment and maintenance of heterochromatin with concomitant gene silencing. PMID:23906716

  11. From vestigial to vestigial-like: the Drosophila gene that has taken wing.

    PubMed

    Simon, Emilie; Faucheux, Corinne; Zider, Alain; Thézé, Nadine; Thiébaud, Pierre

    2016-07-01

    The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.

  12. Regulation of chromatin organization and inducible gene expression by a Drosophila insulator

    PubMed Central

    Wood, Ashley M.; Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Rohrbaugh, Margaret; Jones, Brian C.; Jones, Keith C.; Corces, Victor G.

    2011-01-01

    SUMMARY Insulators are multi-protein-DNA complexes thought to affect gene expression by mediating inter- and intra-chromosomal interactions. Drosophila insulators contain specific DNA binding proteins plus common components, such as CP190, that facilitate these interactions. Here we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to the DNA in order to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli. PMID:21981916

  13. Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene

    PubMed Central

    Hess, Norbert K.; Singer, Phillip A.; Trinh, Kien; Nikkhoy, Massoud; Bernstein, Sanford I.

    2007-01-01

    We show that a 2.6 kb fragment of the muscle myosin heavy-chain gene (Mhc) of Drosophila melanogaster (containing 458 base pairs of upstream sequence, the first exon, the first intron and the beginning of the second exon) drives expression in all muscles. Comparison of the minimal promoter to Mhc genes of ten Drosophila species identified putative regulatory elements in the upstream region and in the first intron. The first intron is required for expression in four small cells of the tergal depressor of the trochanter (jump) muscle and in the indirect flight muscle. The 3′ end of this intron is important for Mhc transcription in embryonic body wall muscle and contains AT–rich elements that are protected from DNase I digestion by nuclear proteins of Drosophila embryos. Sequences responsible for expression in embryonic, adult body wall and adult head muscles are present both within and outside the intron. Elements important for expression in leg muscles and in the large cells of the jump muscle flank the intron. We conclude that multiple transcriptional regulatory elements are responsible for Mhc expression in specific sets of Drosophila muscles. PMID:17194628

  14. The Tolkin Gene Is a Tolloid/Bmp-1 Homologue That Is Essential for Drosophila Development

    PubMed Central

    Finelli, A. L.; Xie, T.; Bossie, C. A.; Blackman, R. K.; Padgett, R. W.

    1995-01-01

    The Drosophila decapentaplegic (dpp) gene, a member of the tranforming growth factor β superfamily of growth factors, is critical for specification of the embryonic dorsal-ventral axis, for proper formation of the midgut, and for formation of Drosophila adult structures. The Drosophila tolloid gene has been shown to genetically interact with dpp. The genetic interaction between tolloid and dpp suggests a model in which the tolloid protein participates in a complex containing the DPP ligand, its protease serving to activate DPP, either directly or indirectly. We report here the identification and cloning of another Drosophila member of the tolloid/bone morphogenic protein (BMP) 1 family, tolkin, which is located 700 bp 5' to tolloid. Its overall structure is like tolloid, with an N-terminal metalloprotease domain, five complement subcomponents C1r/C1s, Uegf, and Bmp1 (CUB) repeats and two epidermal growth factor (EGF) repeats. Its expression pattern overlaps that of tolloid and dpp in early embryos and diverges in later stages. In larval tissues, both tolloid and tolkin are expressed uniformly in the imaginal disks. In the brain, both tolloid and tolkin are expressed in the outer proliferation center, whereas tolkin has another stripe of expression near the outer proliferation center. Analysis of lethal mutations in tolkin indicate it is vital during larval and pupal stages. Analysis of its mutant phenotypes and expression patterns suggests that its functions may be mostly independent of tolloid and dpp. PMID:8536976

  15. Limited gene misregulation is exacerbated by allele-specific upregulation in lethal hybrids between Drosophila melanogaster and Drosophila simulans.

    PubMed

    Wei, Kevin H-C; Clark, Andrew G; Barbash, Daniel A

    2014-07-01

    Misregulation of gene expression is often observed in interspecific hybrids and is generally attributed to regulatory incompatibilities caused by divergence between the two genomes. However, it has been challenging to distinguish effects of regulatory divergence from secondary effects including developmental and physiological defects common to hybrids. Here, we use RNA-Seq to profile gene expression in F1 hybrid male larvae from crosses of Drosophila melanogaster to its sibling species D. simulans. We analyze lethal and viable hybrid males, the latter produced using a mutation in the X-linked D. melanogaster Hybrid male rescue (Hmr) gene and compare them with their parental species and to public data sets of gene expression across development. We find that Hmr has drastically different effects on the parental and hybrid genomes, demonstrating that hybrid incompatibility genes can exhibit novel properties in the hybrid genetic background. Additionally, we find that D. melanogaster alleles are preferentially affected between lethal and viable hybrids. We further determine that many of the differences between the hybrids result from developmental delay in the Hmr(+) hybrids. Finally, we find surprisingly modest expression differences in hybrids when compared with the parents, with only 9% and 4% of genes deviating from additivity or expressed outside of the parental range, respectively. Most of these differences can be attributed to developmental delay and differences in tissue types. Overall, our study suggests that hybrid gene misexpression is prone to overestimation and that even between species separated by approximately 2.5 Ma, regulatory incompatibilities are not widespread in hybrids. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Relationship between organization and function of ribosomal genes in Drosophila melanogaster

    SciTech Connect

    Karpen, G.H.

    1987-01-01

    In most eukaryotic organisms, the genes that encode the 18S and 28S ribosomal RNAs (rDNA genes) are tandemly repeated, and are located in constitutive heterochromatin and/or centromeric or telomeric regions. P-element mediated transformation was used to investigate the relationship between rDNA organization and function in Drosophila melanogaster. Tritiated-uridine incorporation under heat shock conditions and in situ hybridization to rRNA were used to demonstrate that a single rDNA gene inserted into euchromatin can be transcribed at a high rate, in polytene nuclei. P-element-mediated transformation of a single Drosophila rDNA gene was also utilized to investigate the ability of ribosomal DNA to organize a nucleolus. Cytological approaches demonstrated that structures resembling the endogenous nucleoli were preferentially associated with four different sites of rDNA insertion, in polytene nuclei. These mini-nucleoli also contained components specific to the nucleolus, as shown by in situ hybridization to rRNA and indirect immunofluorescence with an antibody that binds to Drosophila nucleoli. The transformed genes were able to partially rescue mutant phenotypes due to a deficiency of rDNA, indicating that the mini-nucleoli were functional.

  17. sry h-1, a new Drosophila melanogaster multifingered protein gene showing maternal and zygotic expression.

    PubMed Central

    Vincent, A; Kejzlarovà-Lepesant, J; Segalat, L; Yanicostas, C; Lepesant, J A

    1988-01-01

    Low-stringency hybridization of the Drosophila serendipity (sry) finger-coding sequences revealed copies of homologous DNA sequences in the genomes of members of the family Drosophilidae and higher vertebrates. sry h-1, a new Drosophila finger protein-coding gene isolated on the basis of this homology, encodes a 3.2-kilobase (kb) mRNA accumulating in eggs and abundant in early embryos. The predicted sry h-1 protein product, starting at an internal initiation site of translation, is a 868-amino-acid basic polypeptide containing eight TFIIIA-like fingers encoded by three separate exons. Links separating individual fingers in the sry h-1 protein are variable in length and sequence, in contrast with the invariant H/C link found in most multi-fingered proteins. The similarity of the developmental pattern of transcription of sry h-1 with that of several other Drosophila finger protein genes suggests the existence of a complex set of such genes encoding an information which is, at least partly, maternally provided to the embryo and required for activation of gene transcription in early embryos or maintenance of gene activity during subsequent development. Images PMID:3141791

  18. Combinatorial control of temporal gene expression in the Drosophila wing by enhancers and core promoters

    PubMed Central

    2012-01-01

    Background The transformation of a developing epithelium into an adult structure is a complex process, which often involves coordinated changes in cell proliferation, metabolism, adhesion, and shape. To identify genetic mechanisms that control epithelial differentiation, we analyzed the temporal patterns of gene expression during metamorphosis of the Drosophila wing. Results We found that a striking number of genes, approximately 50% of the Drosophila transcriptome, exhibited changes in expression during a time course of wing development. While cis-acting enhancer sequences clearly correlated with these changes, a stronger correlation was discovered between core-promoter types and the dynamic patterns of gene expression within this differentiating tissue. In support of the hypothesis that core-promoter type influences the dynamics of expression, expression levels of several TATA-box binding protein associated factors (TAFs) and other core promoter-associated components changed during this developmental time course, and a testes-specific TAF (tTAF) played a critical role in timing cellular differentiation within the wing. Conclusions Our results suggest that the combinatorial control of gene expression via cis-acting enhancer sequences and core-promoter types, determine the complex changes in gene expression that drive morphogenesis and terminal differentiation of the Drosophila wing epithelium. PMID:22992320

  19. Neutral evolution of the sex-determining gene transformer in Drosophila.

    PubMed Central

    McAllister, B F; McVean, G A

    2000-01-01

    The amino acid sequence of the transformer (tra) gene exhibits an extremely rapid rate of evolution among Drosophila species, although the gene performs a critical step in sex determination. These changes in amino acid sequence are the result of either natural selection or neutral evolution. To differentiate between selective and neutral causes of this evolutionary change, analyses of both intraspecific and interspecific patterns of molecular evolution of tra gene sequences are presented. Sequences of 31 tra alleles were obtained from Drosophila americana. Many replacement and silent nucleotide variants are present among the alleles; however, the distribution of this sequence variation is consistent with neutral evolution. Sequence evolution was also examined among six species representative of the genus Drosophila. For most lineages and most regions of the gene, both silent and replacement substitutions have accumulated in a constant, clock-like manner. In exon 3 of D. virilis and D. americana we find evidence for an elevated rate of nonsynonymous substitution, but no statistical support for a greater rate of nonsynonymous relative to synonymous substitutions. Both levels of analysis of the tra sequence suggest that, although the gene is evolving at a rapid pace, these changes are neutral in function. PMID:10747064

  20. Regulation of the segmentation gene fushi tarazu has been functionally conserved in Drosophila.

    PubMed Central

    Maier, D; Preiss, A; Powell, J R

    1990-01-01

    An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila. Images Fig. 2. Fig. 6. PMID:2174353

  1. Higher frequency of intron loss from the promoter proximally paused genes of Drosophila melanogaster.

    PubMed

    Jiang, Li; Li, Xue-Nan; Niu, Deng-Ke

    2014-01-01

    Although intron losses have been widely reported, it is not clear whether they are neutral and therefore random or driven by positive selection. Intron transcription and splicing are time-consuming and can delay the expression of its host gene. For genes that must be activated quickly to respond to physiological or stress signals, intron delay may be deleterious. Promoter proximally paused (PPP) genes are a group of rapidly expressed genes. To respond quickly to activation signals, they generally initiate transcription competently but stall after synthesizing a short RNA. In this study, performed in Drosophila melanogaster, the PPP genes were found to have a significantly higher rate of intron loss than control genes. However, further analysis did not find more significant shrinkage of intron size in PPP genes. Referring to previous studies on the rates of transcription and splicing and to the time saved by deletion of the introns from mouse gene Hes7, it is here suggested that transcription delay is comparable to splicing delay only when the intron is 28.5 kb or larger, which is greater in size than 95% of vertebrate introns, 99.5% of Drosophila introns, and all the annotated introns of Saccharomyces cerevisiae and Arabidopsis thaliana. Delays in intron splicing are probably a selective force, promoting intron loss from quickly expressed genes. In other genes, it may have been an exaptation during the emergency of developmental clocks.

  2. Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone

    SciTech Connect

    Amin, J.; Voellmy, R. ); Mestril, R. )

    1991-12-01

    Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been stimulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. The authors report here that the shp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reported constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.

  3. PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes.

    PubMed

    Casola, Claudio; Lawing, A Michelle; Betrán, Esther; Feschotte, Cédric

    2007-08-01

    The P instability factor or PIF superfamily of DNA transposons constitutes an important group of transposable elements (TEs) in plants, but it is still poorly characterized in metazoans. Taking advantage of the availability of draft genome sequences for twelve Drosophila species, we discovered 4 different lineages of Drosophila PIF-like transposons, named DPLT1-4. These lineages have experienced a complex evolutionary history during the Drosophila radiation, involving differential amplification and retention among species and probable events of horizontal transmission. Like previously described plant and animal PIF transposons, full-length DPLTs encode a putative transposase as well as a second predicted protein containing a Myb/SANT domain. In DPLTs, this domain is most closely related to the MADF DNA-binding domain found in several Drosophila transcription factors. In addition, we identified 7 distinct genes distributed across the Drosophila genus that encode proteins related to PIF transposases, but lack the hallmarks of transposons. Instead, these sequences show features of functional genes, such as an intact coding region evolving under purifying selection, the presence of orthologs in at least 2 Drosophila species, and the conservation of intron/exon structure across orthologs. We also provide evidence that most of these genes are transcribed and that some are developmentally regulated. Together the data indicate that these genes derived from PIF-transposons that have been "domesticated" to serve cellular functions. In one instance the recruitment of the transposase gene was accompanied by the co-recruitment of the adjacent second PIF gene, which raises the hypothesis that both proteins now function in the same pathway. The second PIF gene has retained the capacity to encode a protein with an intact MADF domain, suggesting that it may function as a transcription factor. We conclude that PIF transposons are common in the Drosophila lineage and have been a

  4. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii

    USDA-ARS?s Scientific Manuscript database

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2) using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/ CRISPR-associated) hom...

  5. Gene expression variation in Drosophila melanogaster due to rare transposable element insertion alleles of large effect.

    PubMed

    Cridland, Julie M; Thornton, Kevin R; Long, Anthony D

    2015-01-01

    Transposable elements are a common source of genetic variation that may play a substantial role in contributing to gene expression variation. However, the contribution of transposable elements to expression variation thus far consists of a handful of examples. We used previously published gene expression data from 37 inbred Drosophila melanogaster lines from the Drosophila Genetic Reference Panel to perform a genome-wide assessment of the effects of transposable elements on gene expression. We found thousands of transcripts with transposable element insertions in or near the transcript and that the presence of a transposable element in or near a transcript is significantly associated with reductions in expression. We estimate that within this example population, ∼2.2% of transcripts have a transposable element insertion, which significantly reduces expression in the line containing the transposable element. We also find that transcripts with insertions within 500 bp of the transcript show on average a 0.67 standard deviation decrease in expression level. These large decreases in expression level are most pronounced for transposable element insertions close to transcripts and the effect diminishes for more distant insertions. This work represents the first genome-wide analysis of gene expression variation due to transposable elements and suggests that transposable elements are an important class of mutation underlying expression variation in Drosophila and likely in other systems, given the ubiquity of these mobile elements in eukaryotic genomes. Copyright © 2015 by the Genetics Society of America.

  6. TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila.

    PubMed

    Hochheimer, Andreas; Zhou, Sharleen; Zheng, Shuang; Holmes, Michael C; Tjian, Robert

    2002-11-28

    Drosophila TATA-box-binding protein (TBP)-related factor 2 (TRF2) is a member of a family of TBP-related factors present in metazoan organisms. Recent evidence suggests that TRF2s are required for proper embryonic development and differentiation. However, true target promoters and the mechanisms by which TRF2 operates to control transcription remain elusive. Here we report the antibody affinity purification of a Drosophila TRF2-containing complex that contains components of the nucleosome remodelling factor (NURF) chromatin remodelling complex as well as the DNA replication-related element (DRE)-binding factor DREF. This latter finding led us to potential target genes containing TRF2-responsive promoters. We have used a combination of in vitro and in vivo assays to show that the DREF-containing TRF2 complex directs core promoter recognition of the proliferating cell nuclear antigen (PCNA) gene. We also identified additional TRF2-responsive target genes involved in DNA replication and cell proliferation. These data suggest that TRF2 functions as a core promoter-selectivity factor responsible for coordinating transcription of a subset of genes in Drosophila.

  7. New candidate genes for heat resistance in Drosophila melanogaster are regulated by HSF.

    PubMed

    Jensen, Louise Toft; Nielsen, Morten Muhlig; Loeschcke, Volker

    2008-01-01

    The cellular heat stress response is well studied in Drosophila in respect to the role of heat shock proteins (Hsp). Hsps are molecular chaperones, highly expressed during and after exposure to numerous stress types. Hsps are all regulated by a common transcription factor, the heat shock factor (HSF), and it is known that HSF is controlling other, so far uncharacterised, heat-responsive genes. In this study, we investigate whether novel candidate genes for heat resistance, identified by microarray experiments, are regulated by HSF. The microarray experiments recently identified several strongly upregulated genes in response to a short, non-lethal heat treatment in Drosophila melanogaster. To test whether or not a subset of these genes are HSF-induced, we studied 11 currently unannotated genes using quantitative polymerase chain reaction on HSF mutant flies with a non-functional HSF at elevated temperatures. We found indication of HSF regulation in most of the studied genes, suggesting a role of these unknown genes in heat tolerance. Surprisingly, some of the genes seemed to be upregulated independent of HSF function. The high induction in response to heat, which mimics the expression profile of Hsps, implies a role in the cellular heat response of these genes as well.

  8. Ethanol-Regulated Genes That Contribute to Ethanol Sensitivity and Rapid Tolerance in Drosophila

    PubMed Central

    Kong, Eric C.; Allouche, Lorien; Chapot, Paul A.; Vranizan, Karen; Moore, Monica S.; Heberlein, Ulrike; Wolf, Fred W.

    2010-01-01

    Background Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood. Methods To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes. Results Enrichment for genes in metabolism, nucleic acid binding, olfaction, regulation of signal transduction, and stress suggests that these biological processes are coordinately affected by ethanol exposure. We also detected a coordinate up-regulation of genes in the Toll and Imd innate immunity signal transduction pathways. A multi-study comparison revealed a small set of genes showing similar regulation, including increased expression of 3 genes for serine biosynthesis. A survey of Drosophila strains harboring mutations in ethanol-regulated genes for ethanol sensitivity and tolerance phenotypes revealed roles for serine biosynthesis, olfaction, transcriptional regulation, immunity, and metabolism. Flies harboring deletions of the genes encoding the olfactory co-receptor Or83b or the sirtuin Sir2 showed marked changes in the development of ethanol tolerance. Conclusions Our findings implicate novel roles for these genes in regulating ethanol behavioral responses. PMID:19951294

  9. Comprehensive identification of Drosophila dorsal–ventral patterning genes using a whole-genome tiling array

    PubMed Central

    Biemar, Frédéric; Nix, David A.; Piel, Jessica; Peterson, Brant; Ronshaugen, Matthew; Sementchenko, Victor; Bell, Ian; Manak, J. Robert; Levine, Michael S.

    2006-01-01

    Dorsal–ventral (DV) patterning of the Drosophila embryo is initiated by Dorsal, a sequence-specific transcription factor distributed in a broad nuclear gradient in the precellular embryo. Previous studies have identified as many as 70 protein-coding genes and one microRNA (miRNA) gene that are directly or indirectly regulated by this gradient. A gene regulation network, or circuit diagram, including the functional interconnections among 40 Dorsal target genes and 20 associated tissue-specific enhancers, has been determined for the initial stages of gastrulation. Here, we attempt to extend this analysis by identifying additional DV patterning genes using a recently developed whole-genome tiling array. This analysis led to the identification of another 30 protein-coding genes, including the Drosophila homolog of Idax, an inhibitor of Wnt signaling. In addition, remote 5′ exons were identified for at least 10 of the ≈100 protein-coding genes that were missed in earlier annotations. As many as nine intergenic uncharacterized transcription units were identified, including two that contain known microRNAs, miR-1 and -9a. We discuss the potential functions of these recently identified genes and suggest that intronic enhancers are a common feature of the DV gene network. PMID:16908844

  10. [Drosophila melanogaster gene Merlin interacts with the clathrin adaptor protein gene lap].

    PubMed

    Kopyl, S A; Dorogova, N V; Akhmamet'eva, E M; Omel'ianchuk, L V; Chang, L -S

    2010-03-01

    The protein Merlin is involved in the regulation of cell proliferation and differentiation in the eyes and wings of Drosophila and is a homolog of the human protein encoded by the Neurofibromatosis 2 (NF2) gene whose mutations cause auricular nerve tumors. Recent studies show that Merlin and Expanded cooperatively regulate the recycling of membrane receptors, such as the epidermal growth factor receptor (EGFR). By performing a search for potential genetic interactions between Merlin (Mer) and the genes important for vesicular trafficking, we found that ectopic expression in the wing pouch of the clathrin adapter protein Lap involved in clathrin-mediated receptor endocytosis resulted in the formation of extra vein materials. On the one hand, coexpression of wild-type Merlin and lap in the wing pouch restored normal venation, while overexpression of a dominant-negative mutant Mer(DBB) together with lap enhanced ectopic vein formation. Using various constructs with Merlin truncated copies, we showed the C-terminal portion of the Merlin protein to be responsible for the Merlin-lap genetic interaction. Furthermore, we showed that the Merlin and Lap proteins colocalized at the cortex of the wing imaginal disc cells.

  11. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.

    PubMed

    Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi

    2016-12-01

    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.

  12. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation.

    PubMed

    Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François

    2017-01-09

    The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues.

  13. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation

    PubMed Central

    Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François

    2017-01-01

    The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues. PMID:28067325

  14. An enhancer trap screen for ecdysone-inducible genes required for Drosophila adult leg morphogenesis.

    PubMed Central

    Gates, J; Thummel, C S

    2000-01-01

    Although extensive studies of Drosophila imaginal disc development have focused on proliferation and patterning, relatively little is known about how the patterned imaginal discs are transformed into adult structures during metamorphosis. Studies focused primarily on leg development have shown that this remarkable transformation is coordinated by pulses of the steroid hormone ecdysone and requires the function of ecdysone-inducible transcription factors as well as proteases and components of the contractile cytoskeleton and adherens junctions. Here, we describe a genetic screen aimed at expanding our understanding of the hormonal regulation of Drosophila adult leg morphogenesis. We screened 1300 lethal P-element enhancer trap insertions on the second chromosome for a series of sequential parameters including pupal lethality, defects in leg morphogenesis, and ecdysone-induced lacZ reporter gene expression. From this screen we identified four mutations, one of which corresponds to bancal, which encodes the Drosophila homolog of hnRNP K. We also identified vulcan, which encodes a protein that shares sequence similarity with a family of rat SAPAP proteins. Both bancal and vulcan are inducible by ecdysone, thus linking the hormone signal with leg morphogenesis. This screen provides new directions for understanding the hormonal regulation of leg development during Drosophila metamorphosis. PMID:11102372

  15. Mutations in the circadian gene period alter behavioral and biochemical responses to ethanol in Drosophila.

    PubMed

    Liao, Jennifer; Seggio, Joseph A; Ahmad, S Tariq

    2016-04-01

    Clock genes, such as period, which maintain an organism's circadian rhythm, can have profound effects on metabolic activity, including ethanol metabolism. In turn, ethanol exposure has been shown in Drosophila and mammals to cause disruptions of the circadian rhythm. Previous studies from our labs have shown that larval ethanol exposure disrupted the free-running period and period expression of Drosophila. In addition, a recent study has shown that arrhythmic flies show no tolerance to ethanol exposure. As such, Drosophila period mutants, which have either a shorter than wild-type free-running period (perS) or a longer one (perL), may also exhibit altered responses to ethanol due to their intrinsic circadian differences. In this study, we tested the initial sensitivity and tolerance of ethanol exposure on Canton-S, perS, and perL, and then measured their Alcohol Dehydrogenase (ADH) and body ethanol levels. We showed that perL flies had slower sedation rate, longer recovery from ethanol sedation, and generated higher tolerance for sedation upon repeated ethanol exposure compared to Canton-S wild-type flies. Furthermore, perL flies had lower ADH activity and had a slower ethanol clearance compared to wild-type flies. The findings of this study suggest that period mutations influence ethanol induced behavior and ethanol metabolism in Drosophila and that flies with longer circadian periods are more sensitive to ethanol exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Expression of the Drosophila homeobox gene, Distal-less supports an ancestral role in neural development

    PubMed Central

    Plavicki, Jessica S.; Squirrell, Jayne M.; Eliceiri, Kevin W.; Boekhoff-Falk, Grace

    2015-01-01

    Background Distal-less (Dll) encodes a homeodomain transcription factor expressed in developing appendages of organisms throughout metazoan phylogeny. Based on earlier observations in the limbless nematode Caenorhabditis elegans and the primitive chordate amphioxus, it was proposed that Dll had an ancestral function in nervous system development. Consistent with this hypothesis, Dll is necessary for the development of both peripheral and central components of the Drosophila olfactory system. Furthermore, vertebrate homologs of Dll, the Dlx genes, play critical roles in mammalian brain development. Results Using fluorescent immunohistochemistry of fixed samples and multiphoton microscopy of living Drosophila embryos we show that Dll is expressed in the embryonic, larval and adult CNS and PNS in embryonic and larval neurons, brain and ventral nerve cord (VNC) glia, as well as in PNS structures associated with chemosensation. In adult flies, Dll expression is expressed in the optic lobes, central brain regions and the antennal lobes. Conclusions Characterization of Dll expression in the developing nervous system supports a role of Dll in neural development and function and establishes an important basis for determining the specific functional roles of Dll in Drosophila development and for comparative studies of Drosophila Dll functions with those of its vertebrate counterparts. PMID:26472170

  17. Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system.

    PubMed

    Park, So Young; Kim, Young-Shin; Yang, Dong-Jin; Yoo, Mi-Ae

    2004-01-01

    Reactive oxygen species (ROS) cause oxidative stress and aging. The catalase gene is a key component of the cellular antioxidant defense network. However, the molecular mechanisms that regulate catalase gene expression are poorly understood. In this study, we have identified a DNA replication-related element (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila catalase gene. Gel mobility shift assays revealed that a previously identified factor called DREF (DRE- binding factor) binds to the DRE sequence in the Drosophila catalase gene. We used site-directed mutagenesis and in vitro transient transfection assays to establish that expression of the catalase gene is regulated by DREF through the DRE site. To explore the role of DRE/DREF in vivo, we established transgenic flies carrying a catalase-lacZ fusion gene with or without mutation in the DRE. The beta-galactosidase expression patterns of these reporter transgenic lines demonstrated that the catalase gene is upregulated by DREF through the DRE sequence. In addition, we observed suppression of the ectopic DREF-induced rough eye phenotype by a catalase amorphic Cat(n1) allele, indicating that DREF activity is modulated by the intracellular redox state. These results indicate that the DRE/DREF system is a key regulator of catalase gene expression and provide evidence of cross-talk between the DRE/DREF system and the antioxidant defense system.

  18. Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes

    PubMed Central

    Lin, Michael F.; Carlson, Joseph W.; Crosby, Madeline A.; Matthews, Beverley B.; Yu, Charles; Park, Soo; Wan, Kenneth H.; Schroeder, Andrew J.; Gramates, L. Sian; St. Pierre, Susan E.; Roark, Margaret; Wiley, Kenneth L.; Kulathinal, Rob J.; Zhang, Peili; Myrick, Kyl V.; Antone, Jerry V.; Celniker, Susan E.; Gelbart, William M.; Kellis, Manolis

    2007-01-01

    The availability of sequenced genomes from 12 Drosophila species has enabled the use of comparative genomics for the systematic discovery of functional elements conserved within this genus. We have developed quantitative metrics for the evolutionary signatures specific to protein-coding regions and applied them genome-wide, resulting in 1193 candidate new protein-coding exons in the D. melanogaster genome. We have reviewed these predictions by manual curation and validated a subset by directed cDNA screening and sequencing, revealing both new genes and new alternative splice forms of known genes. We also used these evolutionary signatures to evaluate existing gene annotations, resulting in the validation of 87% of genes lacking descriptive names and identifying 414 poorly conserved genes that are likely to be spurious predictions, noncoding, or species-specific genes. Furthermore, our methods suggest a variety of refinements to hundreds of existing gene models, such as modifications to translation start codons and exon splice boundaries. Finally, we performed directed genome-wide searches for unusual protein-coding structures, discovering 149 possible examples of stop codon readthrough, 125 new candidate ORFs of polycistronic mRNAs, and several candidate translational frameshifts. These results affect >10% of annotated fly genes and demonstrate the power of comparative genomics to enhance our understanding of genome organization, even in a model organism as intensively studied as Drosophila melanogaster. PMID:17989253

  19. Genome-Wide Gene Expression Effects of Sex Chromosome Imprinting in Drosophila

    PubMed Central

    Lemos, Bernardo; Branco, Alan T.; Jiang, Pan-Pan; Hartl, Daniel L.; Meiklejohn, Colin D.

    2013-01-01

    Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromosome is differently modified when transmitted through the male and female germlines. Here, we report genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromosomes. We found that hundreds of genes are differentially expressed between adult male Drosophila melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differentially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromosome imprinting might globally impact gene expression in these tissues. In contrast, we observed much fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromosome, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin. Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression (overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption of Y-chromosome function through passage in the female germline likely arises because the chromosome is not adapted to the female germline environment. PMID:24318925

  20. Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles.

    PubMed

    Huang, Yanmei; Ng, Fanny S; Jackson, F Rob

    2015-02-04

    The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation. We have utilized the Drosophila model and Translating Ribosome Affinity Purification (TRAP)-RNA-seq methods to derive the genome-wide expression profile of Drosophila larval astrocyte-like cells (hereafter referred to as astrocytes) for the first time. These studies identified hundreds of larval astrocyte-enriched genes that encode proteins important for metabolism, energy production, and protein synthesis, consistent with the known role of astrocytes in the metabolic support of neurons. Comparison of the larval profile with that observed for adults has identified genes with astrocyte-enriched expression specific to adulthood. These include genes important for metabolism and energy production, translation, chromatin modification, protein glycosylation, neuropeptide signaling, immune responses, vesicle-mediated trafficking or secretion, and the regulation of behavior. Among these functional classes, the expression of genes important for chromatin modification and vesicle-mediated trafficking or secretion is overrepresented in adult astrocytes based on Gene Ontology analysis. Certain genes with selective adult enrichment may mediate functions specific to this stage or may be important for the differentiation or maintenance of adult astrocytes, with the latter perhaps contributing to population heterogeneity.

  1. Not4 enhances JAK/STAT pathway-dependent gene expression in Drosophila and in human cells.

    PubMed

    Grönholm, Juha; Kaustio, Meri; Myllymäki, Henna; Kallio, Jenni; Saarikettu, Juha; Kronhamn, Jesper; Valanne, Susanna; Silvennoinen, Olli; Rämet, Mika

    2012-03-01

    The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.

  2. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster

    PubMed Central

    Sørensen, Jesper G.; Nielsen, Morten M.; Kruhøffer, Mogens; Justesen, Just; Loeschcke, Volker

    2005-01-01

    The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (36°C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early–upregulated, early– downregulated, and late–upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock

  3. Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome.

    PubMed

    Meisel, Richard P; Hilldorfer, Benedict B; Koch, Jessica L; Lockton, Steven; Schaeffer, Stephen W

    2010-08-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to "escape" X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined--one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are fixed

  4. A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes

    PubMed Central

    Yang, Shuang; Jiang, Yu; Chen, Yuan; Zhao, Ruoping; Zhang, Yue; Zhang, Guojie; Dong, Yang; Yu, Haijing; Zhou, Qi; Wang, Wen

    2010-01-01

    Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes. PMID:21203494

  5. Head and tail development of the Drosophila embryo involves spalt, a novel homeotic gene

    PubMed Central

    Jürgens, Gerd

    1988-01-01

    Mutations in spalt (sal), a novel homeotic gene on the second chromosome of Drosophila, cause opposite transformations in two subterminal regions of the embryo: posterior head segments are transformed into anterior thoracic structures and anterior tail segments are transformed into posterior abdominal structures. The embryonic phenotypes of double mutants for sal and various Antennapedia (ANT-C) or bithorax (BX-C) genes indicate that sal acts independently of the hierarchical order of the latter gene complexes. Trans-regulatory gene mutations causing ectopic expression of ANT-C and BX-C genes do not change the realms of sal action. It is proposed that the region-specific action of the sal gene primarily promotes head as opposed to trunk development, while the BX-C gene AbdB distinguishes tail from head. Images PMID:16453820

  6. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila.

    PubMed

    Saito, Kuniaki; Inagaki, Sachi; Mituyama, Toutai; Kawamura, Yoshinori; Ono, Yukiteru; Sakota, Eri; Kotani, Hazuki; Asai, Kiyoshi; Siomi, Haruhiko; Siomi, Mikiko C

    2009-10-29

    PIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, primary piRNA processing remains elusive. Here we analysed piRNA processing in a Drosophila ovarian somatic cell line where Piwi, but not Aub or AGO3, is expressed; thus, only the primary piRNAs exist. In addition to flamenco, a Piwi-specific piRNA cluster, traffic jam (tj), a large Maf gene, was determined as a new piRNA cluster. piRNAs arising from tj correspond to the untranslated regions of tj messenger RNA and are sense-oriented. piRNA loading on to Piwi may occur in the cytoplasm. zucchini, a gene encoding a putative cytoplasmic nuclease, is required for tj-derived piRNA production. In tj and piwi mutant ovaries, somatic cells fail to intermingle with germ cells and Fasciclin III is overexpressed. Loss of tj abolishes Piwi expression in gonadal somatic cells. Thus, in gonadal somatic cells, tj gives rise simultaneously to two different molecules: the TJ protein, which activates Piwi expression, and piRNAs, which define the Piwi targets for silencing.

  7. Positive Selection of Iris, a Retroviral Envelope–Derived Host Gene in Drosophila melanogaster

    PubMed Central

    Malik, Harmit S; Henikoff, Steven

    2005-01-01

    Eukaryotic genomes can usurp enzymatic functions encoded by mobile elements for their own use. A particularly interesting kind of acquisition involves the domestication of retroviral envelope genes, which confer infectious membrane-fusion ability to retroviruses. So far, these examples have been limited to vertebrate genomes, including primates where the domesticated envelope is under purifying selection to assist placental function. Here, we show that in Drosophila genomes, a previously unannotated gene (CG4715, renamed Iris) was domesticated from a novel, active Kanga lineage of insect retroviruses at least 25 million years ago, and has since been maintained as a host gene that is expressed in all adult tissues. Iris and the envelope genes from Kanga retroviruses are homologous to those found in insect baculoviruses and gypsy and roo insect retroviruses. Two separate envelope domestications from the Kanga and roo retroviruses have taken place, in fruit fly and mosquito genomes, respectively. Whereas retroviral envelopes are proteolytically cleaved into the ligand-interaction and membrane-fusion domains, Iris appears to lack this cleavage site. In the takahashii/suzukii species groups of Drosophila, we find that Iris has tandemly duplicated to give rise to two genes (Iris-A and Iris-B). Iris-B has significantly diverged from the Iris-A lineage, primarily because of the “invention” of an intron de novo in what was previously exonic sequence. Unlike domesticated retroviral envelope genes in mammals, we find that Iris has been subject to strong positive selection between Drosophila species. The rapid, adaptive evolution of Iris is sufficient to unambiguously distinguish the phylogenies of three closely related sibling species of Drosophila (D. simulans, D. sechellia, and D. mauritiana), a discriminative power previously described only for a putative “speciation gene.” Iris represents the first instance of a retroviral envelope–derived host gene outside

  8. Transcriptional regulation of the Drosophila orc2 gene by the DREF pathway.

    PubMed

    Okudaira, Koji; Ohno, Katsuhito; Yoshida, Hideki; Asano, Maki; Hirose, Fumiko; Yamaguchi, Masamitsu

    2005-12-30

    DNA replication-related element (DRE) and the DRE-binding factor (DREF) play an important role in regulating DNA replication-related genes such as PCNA and DNA polymerase alpha in Drosophila. We have previously reported that overexpression of DREF in developing eye imaginal discs induced ectopic DNA synthesis and apoptosis, which results in rough eyes. To identify genetic interactants with the DREF gene, we have carried out a screen for modifiers of the rough eye phenotype. One of the suppressor genes identified was the Drosophila orc2 gene. A search for known transcription factor recognition sites revealed that the orc2 gene contains three DREs, named DRE1 (+14 to +21), DRE2 (-205 to -198), and DRE3 (-709 to -702). Band mobility shift analysis using Kc cell nuclear extracts detected the specific complex formed between DREF and the DRE1 or DRE2. Specific binding of DREF to genomic region containing the DRE1 or DRE2 was further demonstrated by chromatin immunoprecipitation assays, suggesting that these are the genuine complexes formed in vivo. The luciferase assay in Kc cells indicated that the DRE sites in the orc2 promoter are involved in a transcriptional regulation of the orc2 gene. The results, taken together, demonstrate that the orc2 gene is under the control of DREF pathway.

  9. A new family of adenylyl cyclase genes in the male germline of Drosophila melanogaster.

    PubMed

    Cann, M J; Chung, E; Levin, L R

    2000-04-01

    We describe the cloning and characterization of a new gene family of adenylyl cyclase related genes in Drosophila. The five adenylyl cyclase-like genes that define this family are clearly distinct from previously known adenylyl cyclases. One member forms a unique locus on chromosome 3 whereas the other four members form a tightly clustered, tandemly repeated array on chromosome 2. The genes on chromosome 2 are transcribed in the male germline in a doublesex dependent manner and are expressed in postmitotic, meiotic, and early differentiating sperm. These genes therefore provide the first evidence for a role for the cAMP signaling pathway in Drosophila spermatogenesis. Expression from this locus is under the control of the always early, cannonball, meiosis arrest, and spermatocyte arrest genes that are required for the G2/M transition of meiosis I during spermatogenesis, implying a mechanism for the coordination of differentiation and proliferation. Evidence is also provided for positive selection at the locus on chromosome 2 which suggests this gene family is actively evolving and may play a novel role in spermatogenesis.

  10. Structure and expression of the Drosophila ubiquitin-80-amino-acid fusion-protein gene.

    PubMed Central

    Barrio, R; del Arco, A; Cabrera, H L; Arribas, C

    1994-01-01

    In the fruitfly Drosophila, as in all eukaryotes examined so far, some ubiquitin-coding sequences appear fused to unrelated open reading frames. Two of these fusion genes have been previously described (the homologues of UBI1-UBI2 and UBI4 in yeast), and we report here the organization and expression of a third one, the DUb80 gene (the homologue of UBI3 in yeast). This gene encodes a ubiquitin monomer fused to an 80-amino-acid extension which is homologous with the ribosomal protein encoded by the UB13 gene. The 5' regulatory region of DUb80 shares common features with another ubiquitin fusion gene, DUb52, and with the ribosomal protein genes of Drosophila, Xenopus and mouse. We also find helix-loop-helix protein-binding sequences (E-boxes). The DUb80 gene is transcribed to a 0.9 kb mRNA which is particularly abundant under conditions of high protein synthesis, such as in ovaries and exponentially growing cells. Images Figure 3 Figure 4 PMID:8068011

  11. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    PubMed

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  12. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities

    PubMed Central

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L.; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-01-01

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1–4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Polpo) and aldehyde oxidase-1 (Aldox-1n1) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Polpo-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Polpo allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1n1 phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays. PMID:24737760

  13. Drosophila melanogaster genes for U1 snRNA variants and their expression during development.

    PubMed Central

    Lo, P C; Mount, S M

    1990-01-01

    We have cloned and characterized a complete set of seven U1-related sequences from Drosophila melanogaster. These sequences are located at the three cytogenetic loci 21D, 82E, and 95C. Three of these sequences have been previously studied: one U1 gene at 21D which encodes the prototype U1 sequence (U1a), one U1 gene at 82E which encodes a U1 variant with a single nucleotide substitution (U1b), and a pseudogene at 82E. The four previously uncharacterized genes are another U1b gene at 82E, two additional U1a genes at 95C, and a U1 gene at 95C which encodes a new variant (U1c) with a distinct single nucleotide change relative to U1a. Three blocks of 5' flanking sequence similarity are common to all six full length genes. Using specific primer extension assays, we have observed that the U1b RNA is expressed in Drosophila Kc cells and is associated with snRNP proteins, suggesting that the U1b-containing snRNP particles are able to participate in the process of pre-mRNA splicing. We have also examined the expression throughout Drosophila development of the two U1 variants relative to the prototype sequence. The U1c variant is undetectable by our methods, while the U1b variant exhibits a primarily embryonic pattern reminiscent of the expression of certain U1 variants in sea urchin, Xenopus, and mouse. Images PMID:2124674

  14. Identification of Genes Underlying Hypoxia Tolerance in Drosophila by a P-element Screen

    PubMed Central

    Azad, Priti; Zhou, Dan; Zarndt, Rachel; Haddad, Gabriel G.

    2012-01-01

    Hypoxia occurs in physiologic conditions (e.g. high altitude) or during pathologic states (e.g. ischemia). Our research is focused on understanding the molecular mechanisms that lead to adaptation and survival or injury to hypoxic stress using Drosophila as a model system. To identify genes involved in hypoxia tolerance, we screened the P-SUP P-element insertion lines available for all the chromosomes of Drosophila. We screened for the eclosion rates of embryos developing under 5% O2 condition and the number of adult flies surviving one week after eclosion in the same hypoxic environment. Out of 2187 lines (covering ∼1870 genes) screened, 44 P-element lines representing 44 individual genes had significantly higher eclosion rates (i.e. >70%) than those of the controls (i.e. ∼7–8%) under hypoxia. The molecular function of these candidate genes ranged from cell cycle regulation, DNA or protein binding, GTP binding activity, and transcriptional regulators. In addition, based on pathway analysis, we found these genes are involved in multiple pathways, such as Notch, Wnt, Jnk, and Hedgehog. Particularly, we found that 20 out of the 44 candidate genes are linked to Notch signaling pathway, strongly suggesting that this pathway is essential for hypoxia tolerance in flies. By employing the UAS/RNAi-Gal4 system, we discovered that genes such as osa (linked to Wnt and Notch pathways) and lqf (Notch regulator) play an important role in survival and development under hypoxia in Drosophila. Based on these results and our previous studies, we conclude that hypoxia tolerance is a polygenic trait including the Notch pathway. PMID:23050227

  15. Optimising Homing Endonuclease Gene Drive Performance in a Semi-Refractory Species: The Drosophila melanogaster Experience

    PubMed Central

    Glauert, Ruth; Whiteway, Eleanor; Russell, Steven

    2013-01-01

    Homing endonuclease gene (HEG) drive is a promising insect population control technique that employs meganucleases to impair the fitness of pest populations. Our previous studies showed that HEG drive was more difficult to achieve in Drosophila melanogaster than Anopheles gambiae and we therefore investigated ways of improving homing performance in Drosophila. We show that homing in Drosophila responds to increased expression of HEGs specifically during the spermatogonia stage and this could be achieved through improved construct design. We found that 3′-UTR choice was important to maximise expression levels, with HEG activity increasing as we employed Hsp70, SV40, vasa and βTub56D derived UTRs. We also searched for spermatogonium-specific promoters and found that the Rcd-1r promoter was able to drive specific expression at this stage. Since Rcd-1 is a regulator of differentiation in other species, it suggests that Rcd-1r may serve a similar role during spermatogonial differentiation in Drosophila. Contrary to expectations, a fragment containing the entire region between the TBPH gene and the bgcn translational start drove strong HEG expression only during late spermatogenesis rather than in the germline stem cells and spermatogonia as expected. We also observed that the fraction of targets undergoing homing was temperature-sensitive, falling nearly four-fold when the temperature was lowered to 18°C. Taken together, this study demonstrates how a few simple measures can lead to substantial improvements in the HEG-based gene drive strategy and reinforce the idea that the HEG approach may be widely applicable to a variety of insect control programs. PMID:23349805

  16. Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference

    PubMed Central

    Somma, Maria Patrizia; Ceprani, Francesca; Bucciarelli, Elisabetta; Naim, Valeria; De Arcangelis, Valeria; Piergentili, Roberto; Palena, Antonella; Ciapponi, Laura; Giansanti, Maria Grazia; Pellacani, Claudia; Petrucci, Romano; Cenci, Giovanni; Vernì, Fiammetta; Fasulo, Barbara; Goldberg, Michael L.; Di Cunto, Ferdinando; Gatti, Maurizio

    2008-01-01

    RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally co-expressed. We thus constructed a co-expression–based list of 1,000 genes that are highly enriched in mitotic functions, and we performed RNAi for each of these genes. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. We examined dsRNA-treated cells for possible abnormalities in both chromosome structure and spindle organization. This analysis allowed the identification of 142 mitotic genes, which were subdivided into 18 phenoclusters. Seventy of these genes have not previously been associated with mitotic defects; 30 of them are required for spindle assembly and/or chromosome segregation, and 40 are required to prevent spontaneous chromosome breakage. We note that the latter type of genes has never been detected in previous RNAi screens in any system. Finally, we found that RNAi against genes encoding kinetochore components or highly conserved splicing factors results in identical defects in chromosome segregation, highlighting an unanticipated role of splicing factors in centromere function. These findings indicate that our co-expression–based method for the detection of mitotic functions works remarkably well. We can foresee that elaboration of co-expression lists using genes in the same phenocluster will provide many candidate genes for small-scale RNAi screens aimed at completing the inventory of mitotic proteins. PMID:18797514

  17. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response

    PubMed Central

    Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.

    2002-01-01

    We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388

  18. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm.

    PubMed

    Fowlkes, Charless C; Hendriks, Cris L Luengo; Keränen, Soile V E; Weber, Gunther H; Rübel, Oliver; Huang, Min-Yu; Chatoor, Sohail; DePace, Angela H; Simirenko, Lisa; Henriquez, Clara; Beaton, Amy; Weiszmann, Richard; Celniker, Susan; Hamann, Bernd; Knowles, David W; Biggin, Mark D; Eisen, Michael B; Malik, Jitendra

    2008-04-18

    To fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each costained for a reference gene and one of a set of genes of interest, and builds a model VirtualEmbryo. This model captures in a common framework the average expression patterns for many genes in spite of significant variation in morphology and expression between individual embryos. We establish the method's accuracy by showing that relationships between a pair of genes' expression inferred from the model are nearly identical to those measured in embryos costained for the pair. We present a VirtualEmbryo containing data for 95 genes at six time cohorts. We show that known gene-regulatory interactions can be automatically recovered from this data set and predict hundreds of new interactions.

  19. Origin and Evolution of a Chimeric Fusion Gene in Drosophila subobscura, D. madeirensis and D. guanche

    PubMed Central

    Jones, Corbin D.; Custer, Andrew W.; Begun, David J.

    2005-01-01

    An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5′ promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions. PMID:15781692

  20. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family.

    PubMed

    Levine, Mia T; McCoy, Connor; Vermaak, Danielle; Lee, Yuh Chwen G; Hiatt, Mary Alice; Matsen, Frederick A; Malik, Harmit S

    2012-01-01

    Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.

  1. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    SciTech Connect

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  2. Differential activity of Drosophila Hox genes induces myosin expression and can maintain compartment boundaries.

    PubMed

    Curt, Jesús R; de Navas, Luis F; Sánchez-Herrero, Ernesto

    2013-01-01

    Compartments are units of cell lineage that subdivide territories with different developmental potential. In Drosophila, the wing and haltere discs are subdivided into anterior and posterior (A/P) compartments, which require the activity of Hedgehog, and into dorsal and ventral (D/V) compartments, needing Notch signaling. There is enrichment in actomyosin proteins at the compartment boundaries, suggesting a role for these proteins in their maintenance. Compartments also develop in the mouse hindbrain rhombomeres, which are characterized by the expression of different Hox genes, a group of genes specifying different structures along their main axis of bilaterians. We show here that the Drosophila Hox gene Ultrabithorax can maintain the A/P and D/V compartment boundaries when Hedgehog or Notch signaling is compromised, and that the interaction of cells with and without Ultrabithorax expression induces high levels of non-muscle myosin II. In the absence of Ultrabithorax there is occasional mixing of cells from different segments. We also show a similar role in cell segregation for the Abdominal-B Hox gene. Our results suggest that the juxtaposition of cells with different Hox gene expression leads to their sorting out, probably through the accumulation of non-muscle myosin II at the boundary of the different cell territories. The increase in myosin expression seems to be a general mechanism used by Hox genes or signaling pathways to maintain the segregation of different groups of cells.

  3. Automated annotation of Drosophila gene expression patterns using a controlled vocabulary.

    PubMed

    Ji, Shuiwang; Sun, Liang; Jin, Rong; Kumar, Sudhir; Ye, Jieping

    2008-09-01

    Regulation of gene expression in space and time directs its localization to a specific subset of cells during development. Systematic determination of the spatiotemporal dynamics of gene expression plays an important role in understanding the regulatory networks driving development. An atlas for the gene expression patterns of fruit fly Drosophila melanogaster has been created by whole-mount in situ hybridization, and it documents the dynamic changes of gene expression pattern during Drosophila embryogenesis. The spatial and temporal patterns of gene expression are integrated by anatomical terms from a controlled vocabulary linking together intermediate tissues developed from one another. Currently, the terms are assigned to patterns manually. However, the number of patterns generated by high-throughput in situ hybridization is rapidly increasing. It is, therefore, tempting to approach this problem by employing computational methods. In this article, we present a novel computational framework for annotating gene expression patterns using a controlled vocabulary. In the currently available high-throughput data, annotation terms are assigned to groups of patterns rather than to individual images. We propose to extract invariant features from images, and construct pyramid match kernels to measure the similarity between sets of patterns. To exploit the complementary information conveyed by different features and incorporate the correlation among patterns sharing common structures, we propose efficient convex formulations to integrate the kernels derived from various features. The proposed framework is evaluated by comparing its annotation with that of human curators, and promising performance in terms of F1 score has been reported.

  4. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio )

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  5. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  6. Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth.

    PubMed

    Migeon, J C; Garfinkel, M S; Edgar, B A

    1999-06-01

    We identified a new Drosophila gene, peter pan (ppan), in a screen for larval growth-defective mutants. ppan mutant larvae do not grow and show minimal DNA replication but can survive until well after their heterozygotic siblings have pupariated. We cloned the ppan gene by P-element plasmid rescue. ppan belongs to a highly conserved gene family that includes Saccharomyces cerevisiae SSF1 and SSF2, as well as Schizosaccharomyces pombe, Arabidopsis, Caenorhabditis elegans, mouse, and human homologues. Deletion of both SSF1 and SSF2 in yeast is lethal, and depletion of the gene products causes cell division arrest. Mosaic analysis of ppan mutant clones in Drosophila imaginal disks and ovaries demonstrates that ppan is cell autonomous and required for normal mitotic growth but is not absolutely required for general biosynthesis or DNA replication. Overexpression of the wild-type gene causes cell death and disrupts the normal development of adult structures. The ppan gene family appears to have an essential and evolutionarily conserved role in cell growth.

  7. Balancing selection on immunity genes: review of the current literature and new analysis in Drosophila melanogaster.

    PubMed

    Croze, Myriam; Živković, Daniel; Stephan, Wolfgang; Hutter, Stephan

    2016-08-01

    Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Regulatory Autonomy and Molecular Characterization of the Drosophila Out at First Gene

    PubMed Central

    Bergstrom, D. E.; Merli, C. A.; Cygan, J. A.; Shelby, R.; Blackman, R. K.

    1995-01-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3' of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frames separated by a single UGA stop codon. Suppression of the UGA codon during translation, as seen previously in Drosophila, could lead to the production of different proteins from the same RNA. During oogenesis, oaf RNA is expressed in nurse cells of all ages and maternally contributed to the egg. During embryonic development, zygotic transcription of the gene occurs in small clusters of cells in most or all segments at the time of germband extension and subsequently in a segmentally repeated pattern in the developing central nervous system. The gene is also expressed in the embryonic, larval and adult gonads of both sexes. We also characterize an enhancer trap line with its transposon inserted within the oaf gene and use it to generate six recessive oaf mutations. All six cause death near the beginning of the first larval instar, with two characterized lines showing nervous system defects. Last, we discuss our data in light of the observation that the enhancers controlling dpp expression in the imaginal disks have no effect on the relatively nearby oaf gene. PMID:7768442

  9. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  10. A new paramutation-like example at the Delta gene of Drosophila

    PubMed Central

    Capovilla, Maria; Robichon, Alain; Rassoulzadegan, Minoo

    2017-01-01

    The hereditary transmission of a phenotype independent from DNA sequence implies epigenetic effects. Paramutation is a heritable epigenetic phenomenon observed in plants and animals. To investigate paramutation in Drosophila, we used the P{ry+t7.2 = PZ}Dl05151 P-element insertion in the Drosophila melanogaster genome that causes a dominant visible phenotype: the presence of characteristic extra-veins in the fly wings. This extra-vein phenotype presents variable expressivity and incomplete penetrance. The insert is a PZ element located 680 bp upstream from the ATG of the Delta (Dl) gene, encoding the Notch ligand involved in wing vein development, and acts as a null allele. In the G2 offspring from a cross between the heterozygous transgenic stock and wild-type flies, we observed the transmission of the extra-vein phenotype to wild-type flies without the transgene, independently of gender and across many generations. This is a “paramutation-like” example in the fly: the heritable transmission of a phenotypic change not linked to a classical genetic mutation. A “paramutagenic” allele in heterozygotes transmits the phenotype of the heterozygotes to the wild-type allele (“paramutant”) in a stable manner through generations. Distinct from paramutation events so far described in Drosophila, here we deal with a dominant effect on a single gene involving variable hereditary signals. PMID:28355214

  11. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  12. A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis.

    PubMed

    Reuter, John E; Nardine, Timothy M; Penton, Andrea; Billuart, Pierre; Scott, Ethan K; Usui, Tadao; Uemura, Tadashi; Luo, Liqun

    2003-03-01

    Neurons undergo extensive morphogenesis during development. To systematically identify genes important for different aspects of neuronal morphogenesis, we performed a genetic screen using the MARCM system in the mushroom body (MB) neurons of the Drosophila brain. Mutations on the right arm of chromosome 2 (which contains approximately 20% of the Drosophila genome) were made homozygous in a small subset of uniquely labeled MB neurons. Independently mutagenized chromosomes (4600) were screened, yielding defects in neuroblast proliferation, cell size, membrane trafficking, and axon and dendrite morphogenesis. We report mutations that affect these different aspects of morphogenesis and phenotypically characterize a subset. We found that roadblock, which encodes a dynein light chain, exhibits reduced cell number in neuroblast clones, reduced dendritic complexity and defective axonal transport. These phenotypes are nearly identical to mutations in dynein heavy chain Dhc64 and in Lis1, the Drosophila homolog of human lissencephaly 1, reinforcing the role of the dynein complex in cell proliferation, dendritic morphogenesis and axonal transport. Phenotypic analysis of short stop/kakapo, which encodes a large cytoskeletal linker protein, reveals a novel function in regulating microtubule polarity in neurons. MB neurons mutant for flamingo, which encodes a seven transmembrane cadherin, extend processes beyond their wild-type dendritic territories. Overexpression of Flamingo results in axon retraction. Our results suggest that most genes involved in neuronal morphogenesis play multiple roles in different aspects of neural development, rather than performing a dedicated function limited to a specific process.

  13. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster.

    PubMed Central

    Toba, G; Ohsako, T; Miyata, N; Ohtsuka, T; Seong, K H; Aigaki, T

    1999-01-01

    We have constructed a P-element-based gene search vector for efficient detection of genes in Drosophila melanogaster. The vector contains two copies of the upstream activating sequence (UAS) enhancer adjacent to a core promoter, one copy near the terminal inverted repeats at each end of the vector, and oriented to direct transcription outward. Genes were detected on the basis of phenotypic changes caused by GAL4-dependent forced expression of vector-flanking DNA, and the transcripts were identified with reverse transcriptase PCR (RT-PCR) using the vector-specific primer and followed by direct sequencing. The system had a greater sensitivity than those already in use for gain-of-function screening: 64% of the vector insertion lines (394/613) showed phenotypes with forced expression of vector-flanking DNA, such as lethality or defects in adult structure. Molecular analysis of 170 randomly selected insertions with forced expression phenotypes revealed that 21% matched the sequences of cloned genes, and 18% matched reported expressed sequence tags (ESTs). Of the insertions in cloned genes, 83% were upstream of the protein-coding region. We discovered two new genes that showed sequence similarity to human genes, Ras-related protein 2 and microsomal glutathione S-transferase. The system can be useful as a tool for the functional mapping of the Drosophila genome. PMID:9927464

  14. Short 5'-flanking regions of the Amy gene of Drosophila kikkawai affect amylase gene expression and respond to food environments.

    PubMed

    Inomata, Nobuyuki; Nakashima, Shuichi

    2008-04-15

    Evolution of the duplicated genes and regulation in gene expression is of great interest, especially in terms of adaptation. Molecular population genetic and evolutionary studies on the duplicated amylase genes of Drosophila species have suggested that their 5'-flanking (cis-regulatory) regions play an important role in evolution of these genes. For better understanding of evolution of the duplicated amylase genes and gene expression, we studied functional significance of the Amy1 gene of Drosophila kikkawai using in vitro deletion mutagenesis followed by P-element-mediated germline transformation. We found that a 1.6-kb of the 5'-flanking region can produce strikingly higher level of larval amylase activity on starch food compared with that on glucose food. We found two cis-regulatory elements, which increase larval amylase activity on starch food. We also found a larval cis-regulatory element, which responds to the food difference. This food-response element is necessary for the function of the element increasing larval activity on starch food. A 5-bp deletion in a putative GRE caused high amylase activity, indicating a cis-regulatory element decreasing amylase activity. These cis-regulatory elements identified in the 5'-flanking region could be the targets of natural selection.

  15. A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila.

    PubMed Central

    Bonin, Christopher P; Mann, Richard S

    2004-01-01

    P-element-based gene and enhancer trap strategies have provided a wealth of information on the expression and function of genes in Drosophila melanogaster. Here we present a new vector that utilizes the simple insertion requirements of the piggyBac transposon, coupled to a splice acceptor (SA) site fused to the sequence encoding enhanced green fluorescent protein (EGFP) and a transcriptional terminator. Mobilization of the piggyBac splice site gene trap vector (PBss) was accomplished by heat-shock-induced expression of piggyBac transposase (PBase). We show that insertion of PBss into genes leads to fusions between the gene's mRNA and the PBss-encoded EGFP transcripts. As heterozygotes, these fusions report the normal pattern of expression of the trapped gene. As homozygotes, these fusions can inactivate the gene and lead to lethality. Molecular characterization of PBss insertion events shows that they are single copy, that they always occur at TTAA sequences, and that splicing utilizes the engineered splice site in PBss. In those instances where protein-EGFP fusions are predicted to occur, the subcellular localization of the wild-type protein can be inferred from the localization of the EGFP fusion protein. These experiments highlight the utility of the PBss system for expanding the functional genomics tools that are available in Drosophila. PMID:15342518

  16. [Analysis of Phenotypic Manifestation of peanut Gene Expression Suppression by RNAi in Drosophila Oogenesis].

    PubMed

    Akhmetova, K A; Dorogova, C N; Chesnokov, I N; Fedorova, S A

    2015-09-01

    The peanut gene functions in Drosophila melanogaster oogenesis were studied. It was demonstrated that the suppression of peanut expression by RNA interference in the ovary follicular cells results in the violation of oocyte polarization, anomalous cytokinesis in the chorion cells, and violation of the chromatin condensation in follicular cells. No oogenesis violations were observed in females with decreased peanut gene expression or an absence of the Pnut protein in the ovary generative cells. However, embryos produced by such females had a decreased survival rate caused by two death peaks.

  17. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.

    PubMed

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun

    2014-03-21

    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor.

  18. Misexpression of the white (w) gene triggers male-male courtship in Drosophila.

    PubMed Central

    Zhang, S D; Odenwald, W F

    1995-01-01

    We report here that the general ectopic expression of a tryptophan/guanine transmembrane transporter gene, white (w), induces male-male courtship in Drosophila. Activation of a hsp-70/miniwhite (mini-w) transgene in mature males results in a marked change in their sexual behavior such that they begin to vigorously court other mature males. In transformant populations containing equal numbers of both sexes, most males participate, thus forming male-male courtship chains, circles, and lariats. Mutations that ablate the w transgene function also abolish this inducible behavior. Female sexual behavior does not appear to be altered by ectopic w expression. By contrast, when exposed to an active homosexual courtship environment, non-transformant males alter their behavior and actively participate in the male-male chaining. These findings demonstrate that, in Drosophila, both genetic and environmental factors play a role in male sexual behavior. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7777542

  19. Drosophila Orb2 targets genes involved in neuronal growth, synapse formation, and protein turnover

    PubMed Central

    Mastushita-Sakai, Tomoko; White-Grindley, Erica; Samuelson, Jessica; Seidel, Chris; Si, Kausik

    2010-01-01

    In the study of long-term memory, how memory persists is a fundamental and unresolved question. What are the molecular components of the long-lasting memory trace? Previous studies in Aplysia and Drosophila have found that a neuronal variant of a RNA-binding protein with a self-perpetuating prion-like property, cytoplasmic polyadenylation element binding protein, is required for the persistence of long-term synaptic facilitation in the snail and long-term memory in the fly. In this study, we have identified the mRNA targets of the Drosophila neuronal cytoplasmic polyadenylation element binding protein, Orb2. These Orb2 targets include genes involved in neuronal growth, synapse formation, and intriguingly, protein turnover. These targets suggest that the persistent form of the memory trace might be comprised of molecules that maintain a sustained, permissive environment for synaptic growth in an activated synapse. PMID:20547833

  20. Drosophila polytene chromosome bands formed by gene introns.

    PubMed

    Zhimulev, I F; Boldyreva, L V; Demakova, O V; Poholkova, G V; Khoroshko, V A; Zykova, T Yu; Lavrov, S A; Belyaeva, E S

    2016-01-01

    Genetic organization of bands and interbands in polytene chromosomes has long remained a puzzle for geneticists. It has been recently demonstrated that interbands typically correspond to the 5'-ends of house-keeping genes, whereas adjacent loose bands tend to be composed of coding sequences of the genes. In the present work, we made one important step further and mapped two large introns of ubiquitously active genes on the polytene chromosome map. We show that alternative promoter regions of these genes map to interbands, whereas introns and coding sequences found between those promoters correspond to loose grey bands. Thus, a gene having its long intron "sandwiched" between to alternative promoters and a common coding sequence may occupy two interbands and one band in the context of polytene chromosomes. Loose, partially decompacted bands appear to host large introns.

  1. Chimeric Genes as a Source of Rapid Evolution in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Hartl, Daniel L.

    2012-01-01

    Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (dS < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster. PMID:21771717

  2. Spatial regulation of the Antennapedia and Ultrabithorax homeotic genes during Drosophila early development.

    PubMed Central

    Irish, V F; Martinez-Arias, A; Akam, M

    1989-01-01

    Both maternally supplied products and zygotically acting segmentation genes are required to establish the segment pattern of the Drosophila embryo. These genes are thought to act in part by regulating the expression of the homeotic genes. Products of the maternal and zygotic gap genes are present in the egg prior to blastoderm formation, when the homeotic genes are initially expressed within precisely bounded domains. In order to assess the first regulatory interactions between some of these gap gene products and the homeotic genes, we have examined the spatial distribution of transcripts arising from the homeotic Antp and Ubx genes during early embryogenesis in various mutant backgrounds. Here we show that mutations in both maternally and zygotically acting gap genes differentially affect the initial spatial domains of transcripts arising from each of these homeotic gene promoters. Later in embryogenesis, the patterns of homeotic gene expression change in both the wild-type and mutant cases, suggesting that other regulatory activities come into play. We propose a model in which the initial activation of each homeotic gene promoter depends on a unique combination of gap and pair-rule gene activities. Images PMID:2569971

  3. Interaction between genes Mos and mwh expressed in somatic cells of Drosophila melanogaster

    SciTech Connect

    Vaisman, N.Ya.; Zakharov, I.K.

    1995-07-01

    Gene Mosaic (Mos) of chromosome 3 of Drosophila melanogaster was located by means of dominant markers Ly, Sb, and Dr. This gene was shown to be located between Ly and Sb in the centromeric region (45-50 map units). An analysis of interaction between Mos and mwh genes in cis- and trans-heterozygotes showed a significant effect of the Mos gene on mutability (recombinogenesis) of chromosome mwh in somatic cells. In the cis heterozygote mwh Mos/++, the frequency of small mutant clones on wings of flies increased. In mwh/Mos heterozygotes, the Mos gene caused a significant reduction of dorsocentral and scutellar bristles (78% in mwh/Mos, 85% in mwh +/+ Mos, and 98% in mwh Mos/mwh +). 20 refs., 3 tabs.

  4. DNA regions that regulate the ovarian transcriptional specificity of Drosophila yolk protein genes.

    PubMed

    Logan, S K; Garabedian, M J; Wensink, P C

    1989-09-01

    Yolk protein genes 1 and 2 (yp1 and yp2) of Drosophila melanogaster are divergently transcribed neighboring genes. Both are transcribed in only two tissues, the ovarian follicle cells and the fat bodies of adult females. Previous work has identified a yolk protein enhancer between the genes that is sufficient to direct transcription in one of the tissues, female fat bodies. Using germ-line transformation methods, we identify two cis-acting regions with positive effects on transcription in ovaries. One, a 301-bp region located between the genes, influences both genes and is an enhancer determining the stage and cell type specificity of ovarian transcription. The other, a 105-bp region located in the first exon of yp2, acts across the yp2 promoter region to stimulate yp1 transcription in ovaries. Additional observations suggest how a single enhancer influences both promoters.

  5. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    SciTech Connect

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter; Hong, Ling; Carninci, Piero; Shiraki, Toshiyuki; Hayashizaki, Yoshihide; Champe, Mark; Pacleb, Joanne; Wan, Ken; Yu, Charles; Carlson, Joe; George, Reed; Celniker, Susan; Rubin, Gerald M.

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remaining genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.

  6. 20-Hydroxyecdysone stimulates the accumulation of translatable yolk polypeptide gene transcript in adult male Drosophila melanogaster.

    PubMed

    Shirk, P D; Minoo, P; Postlethwait, J H

    1983-01-01

    Yolk polypeptide (YP) synthesis is hormonally stimulated during maturation of adult female Drosophila melanogaster. Synthesis of the three YPs is sex specific and occurs in fat body cells and follicle cells of adult females. However, males have been shown to produce YPs when treated with the steroid hormone 20-hydroxyecdysone (20-HE). By using a cell-free translation system as an assay for YP mRNA, we found that 20-HE also causes the accumulation of translatable YP message in males. In addition, hybridization of cloned copies of genes for both YP1 and YP3 to total RNA from males showed that 20-HE caused the appearance of YP gene transcripts in males. Eight hours after treatment of males with 20-HE, YP gene transcript levels had increased at least 25-fold to approximately 2.7 x 10(6) copies of YP1 gene transcript per adult male fly. In normal adult females, there were 42 x 10(6) copies per fly by 24 hr. There was neither detectable YP synthesis nor translatable YP gene transcript in either normal 1- to 3-day-old males or 24-hr-old males treated with a juvenile hormone analogue. This evidence shows that 20-HE acts to regulate the levels of translatable YP mRNA in male Drosophila.

  7. The conditional inhibition of gene expression in cultured Drosophila cells by antisense RNA.

    PubMed Central

    Bunch, T A; Goldstein, L S

    1989-01-01

    Genes producing antisense RNA are becoming important tools for the selective inhibition of gene expression. Experiments in different biological systems, targeting different mRNAs have yielded diverse results with respect to the success of the technique and its mechanism of action. We have examined the potential of three antisense genes, whose transcription is driven by a Drosophila metallothionein promoter, to inhibit the expression of alcohol dehydrogenase (ADH) or a microtubule associated protein (205K MAP) in cultured Drosophila cells. Expression of ADH was significantly reduced upon induction of the anti-ADH genes. The ADH mRNA does not appear to be destabilized by the presence of antisense RNA but rather exists at similar levels in hybrid form. Hybrids are detected with both spliced and unspliced ADH RNA. In contrast to these results, antisense genes producing antisense RNA in great excess to 205K MAP mRNA, which is itself far less abundant than the ADH mRNA, failed to show any inhibition of 205K MAP expression. Images PMID:2481266

  8. Identification and Functional Analysis of Antifungal Immune Response Genes in Drosophila

    PubMed Central

    Jin, Li Hua; Shim, Jaewon; Yoon, Joon Sun; Kim, Byungil; Kim, Jihyun; Kim-Ha, Jeongsil; Kim, Young-Joon

    2008-01-01

    Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-κB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila. PMID:18833296

  9. Divergent Functions Through Alternative Splicing: The Drosophila CRMP Gene in Pyrimidine Metabolism, Brain, and Behavior

    PubMed Central

    Morris, Deanna H.; Dubnau, Josh; Park, Jae H.; Rawls, John M.

    2012-01-01

    DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals. PMID:22649077

  10. Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development.

    PubMed Central

    Walldorf, U; Gehring, W J

    1992-01-01

    The empty spiracles (ems) gene of Drosophila melanogaster is necessary for proper head formation and the development of the posterior spiracles. We have isolated a homeobox-containing gene, W13, by cross-homology using the Drosophila muscle segment homeobox gene (msh) as a probe. The W13 gene maps at 88A, where the ems locus has been previously localized genetically. The sequence alterations found in the W13 coding region from two mutant ems alleles show that W13 is the ems gene. A 2.4 kb RNA corresponding to the ems transcript is expressed from cellular blastoderm throughout all embryonic and larval stages. In situ hybridization to whole mount embryos reveals two domains of expression. During the cellular blastoderm stage ems is expressed in the developing head in a single anterior band. This is correlated with its possible function as an anterior gap gene that is expressed in the preantennal, antennal and intercalary segments and is required for the development of the antennal sense organ, the optic lobe and parts of the head skeleton. The early expression of the ems gene is controlled by the anterior morphogen bicoid (bcd). Using a gene fusion we identified a cis-acting element which is a target for the bcd gene product. Later during embryogenesis ems is expressed in lateral regions of each segment, where the tracheal pits form and lateral neuroblasts originate, as well as in the posterior spiracles. This late expression partially correlates with defects seen in the tracheal tree of ems embryos. In addition to a homeodomain, the N-terminal portion of the predicted protein sequence is very proline-rich, whereas the C-terminus has an acidic profile consistent with the role of the ems gene product as a transcription factor. Images PMID:1376248

  11. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    PubMed Central

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential

  12. Gene Expression in Adult Metafemales of Drosophila Melanogaster

    PubMed Central

    Birchler, J. A.; Hiebert, J. C.; Krietzman, M.

    1989-01-01

    The expression of selected X-linked and autosomal genes was examined in metafemales (3X:2A) compared to diploid sisters. Three enzyme activities (glucose-6-phosphate dehydrogenase, 6-phospho-gluconate dehydrogenase, β-hydroxyacid dehydrogenase) encoded by X-linked genes are not significantly different in the two classes of flies. In contrast, three autosomally encoded enzyme activities (alcohol dehydrogenase, α-glycerophosphate dehydrogenase, isocitrate dehydrogenase) are reduced in metafemales. Protein and DNA comparisons between metafemales and diploid sisters show a lowered level of total protein whereas the total DNA measurements are similar. Thus, the total cell number in metafemales is basically unchanged but gene expression is reduced. Phenotypic analysis of three autosomal loci, glass (gl), purple (pr) and pink-peach (p(p)), show that all three have lowered expression in metafemales while the X-linked loci, white-apricot (w(a)) and Bar (B), are dosage compensated. Quantitative dot blot analysis of messenger RNA levels of the second chromosomal locus, alcohol dehydrogenase (Adh), and the X chromosomal locus, rudimentary (r), show that Adh has reduced expression and r is partially compensated per total RNA in metafemales. It is proposed that the increased dosage of the X chromosome inversely affects both the X and autosomal gene expression but the simultaneous increased dosage of the structural genes on the X results in dosage compensation. The reduced levels of expression of autosomal genes could contribute to the great inviability of metafemales. PMID:2503426

  13. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  14. Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster.

    PubMed Central

    Jaeger, Johannes; Blagov, Maxim; Kosman, David; Kozlov, Konstantin N; Manu; Myasnikova, Ekaterina; Surkova, Svetlana; Vanario-Alonso, Carlos E; Samsonova, Maria; Sharp, David H; Reinitz, John

    2004-01-01

    Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system. PMID:15342511

  15. On the origins of tandemly repeated genes: does histone gene copy number in Drosophila reflect chromosomal location?

    PubMed

    Fitch, D H; Strausbaugh, L D; Barrett, V

    1990-04-01

    Widely regarded beliefs about Drosophila histone gene copy numbers and developmental requirements have been generalized from fairly limited data since studies on histone gene arrangements and copy numbers have been largely confined to a single species, D. melanogaster. Histone gene copy numbers and chromosomal locations were examined in three species: D. melangaster, D. hydei and D. hawaiiensis. Quantitative whole genome blot analysis of DNA from diploid tissues revealed a tenfold variability in histone gene copy numbers for these three species. In situ hybridization to polytene chromosomes showed that the histone DNA (hDNA) chromosomal location is different in all three species. These observations lead us to propose a relationship between histone gene reiteration and chromosomal position.

  16. A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    PubMed Central

    Ghabrial, Amin S.; Levi, Boaz P.; Krasnow, Mark A.

    2011-01-01

    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system. PMID:21750678

  17. Genes expressed in the ring gland, the major endocrine organ of Drosophila melanogaster.

    PubMed Central

    Harvie, P D; Filippova, M; Bryant, P J

    1998-01-01

    We have used an enhancer-trap approach to begin characterizing the function of the Drosophila endocrine system during larval development. Five hundred and ten different lethal PZ element insertions were screened to identify those in which a reporter gene within the P element showed strong expression in part or all of the ring gland, the major site of production and release of developmental hormones, and which had a mutant phenotype consistent with an endocrine defect. Nine strong candidate genes were identified in this screen, and eight of these are expressed in the lateral cells of the ring gland that produce ecdysteroid molting hormone (EC). We have confirmed that the genes detected by these enhancer traps are expressed in patterns similar to those detected by the reporter gene. Two of the genes encode proteins, protein kinase A and calmodulin, that have previously been implicated in the signaling pathway leading to EC synthesis and release in other insects. A third gene product, the translational elongation factor EF-1alpha F1, could play a role in the translational regulation of EC production. The screen also identified the genes couch potato and tramtrack, previously known from their roles in peripheral nervous system development, as being expressed in the ring gland. One enhancer trap revealed expression of the gene encoding the C subunit of vacuolar ATPase (V-ATPase) in the medial cells of the ring gland, which produce the juvenile hormone that controls progression through developmental stages. This could reveal a function of V-ATPase in the response of this part of the ring gland to adenotropic neuropeptides. However, the gene identified by this enhancer trap is ubiquitously expressed, suggesting that the enhancer trap is detecting only a subset of its control elements. The results show that the enhancer trap approach can be a productive way of exploring tissue-specific genetic functions in Drosophila. PMID:9584098

  18. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene

    PubMed Central

    Schneider, Mary D.; Bains, Anupinder K.; Rajendra, T.K.; Dominski, Zbigniew; Matera, A. Gregory; Simmonds, Andrew J.

    2010-01-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing. PMID:20855541

  19. A novel muscle LIM-only protein is generated from the paxillin gene locus in Drosophila

    PubMed Central

    Yagi, Ryohei; Ishimaru, Satoshi; Yano, Hajime; Gaul, Ulrike; Hanafusa, Hidesaburo; Sabe, Hisataka

    2001-01-01

    Paxillin is a protein containing four LIM domains, and functions in integrin signaling. We report here that two transcripts are generated from the paxillin gene locus in Drosophila; one encodes a protein homolog of the vertebrate Paxillin (DPxn37), and the other a protein with only three LIM domains, partly encoded by its own specific exon (PDLP). At the myotendinous junctions of Drosophila embryos where integrins play important roles, both DPxn37 and PDLP are highly expressed with different patterns; DPxn37 is predominantly concentrated at the center of the junctions, whereas PDLP is highly enriched at neighboring sides of the junction centers, primarily expressed in the mesodermal myotubes. Northern blot analysis revealed that DPxn37 is ubiquitously expressed throughout the life cycle, whereas PDLP expression exhibits a biphasic pattern during development, largely concomitant with muscle generation and remodeling. Our results collectively reveal that a unique system exists in Drosophila for the generation of a novel type of LIM-only protein, highly expressed in the embryonic musclature, largely utilizing the Paxillin LIM domains. PMID:11520860

  20. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    PubMed

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  1. Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity

    PubMed Central

    McDonald, Jocelyn A.; Holbrook, Scott; Isshiki, Takako; Weiss, Joseph; Doe, Chris Q.; Mellerick, Dervla M.

    1998-01-01

    The Drosophila CNS develops from three columns of neuroectodermal cells along the dorsoventral (DV) axis: ventral, intermediate, and dorsal. In this and the accompanying paper, we investigate the role of two homeobox genes, vnd and ind, in establishing ventral and intermediate cell fates within the Drosophila CNS. During early neurogenesis, Vnd protein is restricted to ventral column neuroectoderm and neuroblasts; later it is detected in a complex pattern of neurons. We use molecular markers that distinguish ventral, intermediate, and dorsal column neuroectoderm and neuroblasts, and a cell lineage marker for selected neuroblasts, to show that loss of vnd transforms ventral into intermediate column identity and that specific ventral neuroblasts fail to form. Conversely, ectopic vnd produces an intermediate to ventral column transformation. Thus, vnd is necessary and sufficient to induce ventral fates and repress intermediate fates within the Drosophila CNS. Vertebrate homologs of vnd (Nkx2.1 and 2.2) are similarly expressed in the ventral CNS, raising the possibility that DV patterning within the CNS is evolutionarily conserved. PMID:9832511

  2. Behavioral responses to odorants in drosophila require nervous system expression of the beta integrin gene myospheroid.

    PubMed

    Bhandari, Poonam; Gargano, Julia Warner; Goddeeris, Matthew M; Grotewiel, Michael S

    2006-09-01

    Integrins are cell adhesion molecules that mediate numerous developmental processes in addition to a variety of acute physiological events. Two reports implicate a Drosophila beta integrin, betaPS, in olfactory behavior. To further investigate the role of integrins in Drosophila olfaction, we used Gal4-driven expression of RNA interference (RNAi) transgenes to knock down expression of myospheroid (mys), the gene that encodes betaPS. Expression of mys-RNAi transgenes in the wing reduced betaPS immunostaining and produced morphological defects associated with loss-of-function mutations in mys, demonstrating that this strategy knocked down mys function. Expression of mys-RNAi transgenes in the antennae, antennal lobes, and mushroom bodies via two Gal4 lines, H24 and MT14, disrupted olfactory behavior but did not alter locomotor abilities or central nervous system structure. Olfactory behavior was normal in flies that expressed mys-RNAi transgenes via other Gal4 lines that specifically targeted the antennae, the projection neurons, the mushroom bodies, bitter and sweet gustatory neurons, or Pox neuro neurons. Our studies confirm that mys is important for the development or function of the Drosophila olfactory system. Additionally, our studies demonstrate that mys is required for normal behavioral responses to both aversive and attractive odorants. Our results are consistent with a model in which betaPS mediates events within the antennal lobes that influence odorant sensitivity.

  3. Gene regulation and species-specific evolution of free-flight odor-tracking in Drosophila.

    PubMed

    Houot, Benjamin; Cazalé-Debat, Laurie; Fraichard, Stéphane; Everaerts, Claude; Saxena, Nitesh; Sane, Sanjay P; Ferveur, Jean-François

    2017-09-12

    The flight ability of insects has coevolved with the development of organs necessary for takeoff from the ground, and to generate and modulate lift while flying in complex environments. Flight orientation to the appropriate food source and mating partner depends on the perception and integration of multiple chemical signals. We used a wind tunnel-based assay to investigate the natural and molecular evolution of free-flight odor-tracking behavior in Drosophila. First, the comparison of female and male flies of several populations and species revealed substantial sex-related, inter- and intra-specific variations for distinct flight features. In these flies, we compared the molecular structure of desat1, a fast-evolving gene involved in multiple aspects of pheromonal communication in Drosophila. We manipulated desat1 regulation and found that both neural and non-neural tissues influence distinct flight features. Together, our data suggest that desat1 is involved in the evolution of free-flight odor-tracking behaviors in Drosophila. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Shaped singular spectrum analysis for quantifying gene expression, with application to the early Drosophila embryo.

    PubMed

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns.

  5. Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster.

    PubMed Central

    Robin, Stéphanie; Chambeyron, Séverine; Bucheton, Alain; Busseau, Isabelle

    2003-01-01

    Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing. PMID:12807773

  6. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    PubMed Central

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  7. Shaped Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Drosophila Embryo

    PubMed Central

    Holloway, David

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns. PMID:25945341

  8. Bithorax complex genes control alary muscle patterning along the cardiac tube of Drosophila.

    PubMed

    LaBeau, Elisa M; Trujillo, Damian L; Cripps, Richard M

    2009-01-01

    Cardiac specification models are widely utilized to provide insight into the expression and function of homologous genes and structures in humans. In Drosophila, contractions of the alary muscles control hemolymph inflow and support the cardiac tube, however embryonic development of these muscles remain largely understudied. We found that alary muscles in Drosophila embryos appear as segmental pairs, attaching dorsally at the seven-up (svp) expressing pericardial cells along the cardiac dorsal vessel, and laterally to the body wall. Normal patterning of alary muscles along the dorsal vessel was found to be a function of the Bithorax Complex genes abdominal-A (abd-A) and Ultrabithorax (Ubx) but not of the orphan nuclear receptor gene svp. Ectopic expression of either abd-A or Ubx resulted in an increase in the number of alary muscle pairs from seven to 10, and also produced a general elongation of the dorsal vessel. A single knockout of Ubx resulted in a reduced number of alary muscles. Double knockouts of both Ubx and abd-A prevented alary muscles from developing normally and from attaching to the dorsal vessel. These studies demonstrate an additional facet of muscle development that depends upon the Hox genes, and define for the first time mechanisms that impact development of this important subset of muscles.

  9. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    PubMed

    Ma, Lingling; Ma, Jun; Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  10. Age-dependent chromosomal distribution of male-biased genes in Drosophila

    PubMed Central

    Zhang, Yong E.; Vibranovski, Maria D.; Krinsky, Benjamin H.; Long, Manyuan

    2010-01-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales. PMID:20798392

  11. Age-dependent chromosomal distribution of male-biased genes in Drosophila.

    PubMed

    Zhang, Yong E; Vibranovski, Maria D; Krinsky, Benjamin H; Long, Manyuan

    2010-11-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales.

  12. Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons.

    PubMed

    Thorne, Natasha; Amrein, Hubert

    2008-02-01

    Members of the Drosophila gustatory receptor (Gr) gene family are generally expressed in chemosensory neurons and are known to mediate the perception of sugars, bitter substrates, CO(2), and pheromones. The Gr gene family consists of 68 members, many of which are organized in gene clusters of up to six genes, yet only expression of about 15 Gr genes has been characterized in detail prior to this study. Here we describe the first comprehensive expression analysis of six highly conserved Gr genes, Gr28a and Gr28b.a to Gr28b.e. Four of these Gr genes are not only expressed in the characteristic pattern associated with previously analyzed Gr genes-chemosensory neurons of the gustatory and olfactory system-but several other types of sensory neurons and neurons in the brain. Specifically, we show that several of the Gr28 genes are expressed in abdominal multidendritic neurons, putative hygroreceptive neurons of the arista, neurons associated with the Johnston's organ, peripheral proprioceptive neurons in the legs, neurons in the larval and adult brain, and oenocytes. Thus, our findings suggest that some Gr genes are utilized in nongustatory roles in the nervous system and tissues involved in proprioception, hygroreception, and other sensory modalities. It is also possible that the Gr28 genes have chemosensory roles in the detection of internal ligands. (c) 2007 Wiley-Liss, Inc.

  13. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    PubMed

    Ferguson, Jennifer; Gomes, Suzanne; Civetta, Alberto

    2013-01-01

    In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  14. Rapid Male-Specific Regulatory Divergence and Down Regulation of Spermatogenesis Genes in Drosophila Species Hybrids

    PubMed Central

    Ferguson, Jennifer; Gomes, Suzanne; Civetta, Alberto

    2013-01-01

    In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids. PMID:23593487

  15. An essential cell cycle regulation gene causes hybrid inviability in Drosophila.

    PubMed

    Phadnis, Nitin; Baker, EmilyClare P; Cooper, Jacob C; Frizzell, Kimberly A; Hsieh, Emily; de la Cruz, Aida Flor A; Shendure, Jay; Kitzman, Jacob O; Malik, Harmit S

    2015-12-18

    Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.

  16. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  17. Synonymous Substitutions in the Xdh Gene of Drosophila: Heterogeneous Distribution along the Coding Region

    PubMed Central

    Comeron, J. M.; Aguade, M.

    1996-01-01

    The Xdh (rosy) region of Drosophila subobscura has been sequenced and compared to the homologous region of D. pseudoobscura and D. melanogaster. Estimates of the numbers of synonymous substitutions per site (Ks) confirm that Xdh has a high synonymous substitution rate. The distributions of both nonsynonymous and synonymous substitutions along the coding region were found to be heterogeneous. Also, no relationship has been detected between Ks estimates and codon usage bias along the gene, in contrast with the generally observed relationship among genes. This heterogeneous distribution of synonymous substitutions along the Xdh gene, which is expression-level independent, could be explained by a differential selection pressure on synonymous sites along the coding region acting on mRNA secondary structure. The synonymous rate in the Xdh coding region is lower in the D. subobscura than in the D. pseudoobscura lineage, whereas the reverse is true for the Adh gene. PMID:8913749

  18. Multiple roles of the gene zinc finger homeodomain-2 in the development of the Drosophila wing.

    PubMed

    Perea, Daniel; Molohon, Katie; Edwards, Kevin; Díaz-Benjumea, Fernando J

    2013-01-01

    The gene zfh2 and its human homolog Atbf1 encode huge molecules with several homeo- and zinc finger domains. It has been reported that they play important roles in neural differentiation and promotion of apoptosis in several tissues of both humans and flies. In the Drosophila wing imaginal disc, Zfh2 is expressed in a dynamic pattern and previous results suggest that it is involved is proximal-distal patterning. In this report we go further in the analysis of the function of this gene in wing development, performing ectopic expression experiments and studying its effects in genes involved in wing development. Our results suggest that Zfh2 plays an important role controlling the expression of several wing genes and in the specification of those cellular properties that define the differences in cell proliferation between proximal and distal domains of the wing disc. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. A single gene causes both male sterility and segregation distortion in Drosophila hybrids*

    PubMed Central

    Phadnis, Nitin; Orr, H. Allen

    2008-01-01

    A central goal of evolutionary biology is to identify the genes and evolutionary forces that cause speciation, the emergence of reproductive isolation between populations. Despite the identification of several genes that cause hybrid sterility or inviability— many of which have evolved rapidly under positive Darwinian selection— little is known about the ecological or genomic forces that drive the evolution of postzygotic isolation. Here we show that the same gene, Overdrive, causes both male sterility and segregation distortion in F1 hybrids between the Bogota and USA subspecies of Drosophila pseudoobscura. This segregation distorter gene is essential for hybrid sterility, a strong reproductive barrier between these young taxa. Our results suggest that genetic conflict may be an important evolutionary force in speciation. PMID:19074311

  20. Expression of the apoptosis gene reaper in homeotic, segmentation and other mutants in Drosophila.

    PubMed

    Zhai, Zongzhao; Stein, M A Sokrates; Lohmann, Ingrid

    2009-06-01

    Apoptosis is an essential process required for development and morphogenesis in metazoan organisms. The apoptosis pathway and cell death machinery have been extensively studied, but little is known how apoptosis genes are regulated in the course of development . In this study, we analyzed the transcriptional regulation of the pro-apoptotic gene reaper (rpr) by performing whole-mount in situ hybridization in embryos mutant for a number of transcription factor genes in Drosophila melanogaster. In sum, our data show that all factors studied have very specific temporal and spatial effects on rpr transcription . Thus, our results reinforce the concept that apoptosis is an essential process for morphogenesis and that apoptosis related genes very tight developmental factors identified in sculpting the morphology of various embryonic structures by modulating the apoptosis pathway.

  1. The Embryonically Active Gene, Unkempt, of Drosophila Encodes a Cys(3)his Finger Protein

    PubMed Central

    Mohler, J.; Weiss, N.; Murli, S.; Mohammadi, S.; Vani, K.; Vasilakis, G.; Song, C. H.; Epstein, A.; Kuang, T.; English, J.; Cherdak, D.

    1992-01-01

    The unkempt gene of Drosophila encodes a set of embryonic RNAs, which are abundant during early stages of embryogenesis and are present ubiquitously in most somatic tissues from the syncytial embryo through stage 15 of embryogenesis. Expression of unkempt RNAs becomes restricted predominantly to the central nervous system in stages 16 and early 17. Analysis of cDNAs from this locus reveals the presence of five Cys(3)His fingers in the protein product. Isolation and analysis of mutations affecting the unkempt gene, including complete deletions of this gene, indicate that there is no zygotic requirement for unkempt during embryogenesis, presumably due to the contribution of maternally supplied RNA, although the gene is essential during post-embryonic development. PMID:1339381

  2. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum.

    PubMed

    Jensen, Helen R; Scott, Ian M; Sims, Steve; Trudeau, Vance L; Arnason, John Thor

    2006-02-22

    Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.

  3. Identification of Genes Associated with Resilience/Vulnerability to Sleep Deprivation and Starvation in Drosophila

    PubMed Central

    Thimgan, Matthew S.; Seugnet, Laurent; Turk, John; Shaw, Paul J.

    2015-01-01

    Background and Study Objectives: Flies mutant for the canonical clock protein cycle (cyc01) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc01 mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. Design: We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc01 mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Setting: Laboratory. Patients or Participants: Drosophila melanogaster. Interventions: Sleep deprivation and starvation. Measurements and Results: We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc01 mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. Conclusions: We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. Citation: Thimgan MS

  4. Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles.

    PubMed

    Ikmi, Aissam; Netter, Sophie; Coen, Dario

    2008-05-15

    The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.

  5. A systematic phenotypic screen of F-box genes through a tissue-specific RNAi-based approach in Drosophila.

    PubMed

    Dui, Wen; Lu, Wei; Ma, Jun; Jiao, Renjie

    2012-08-20

    F-box proteins are components of the SCF (SkpA-Cullin 1-F-box) E3 ligase complexes, acting as the specificity-determinants in targeting substrate proteins for ubiquitination and degradation. In humans, at least 22 out of 75 F-box proteins have experimentally documented substrates, whereas in Drosophila 12 F-box proteins have been characterized with known substrates. To systematically investigate the genetic and molecular functions of F-box proteins in Drosophila, we performed a survey of the literature and databases. We identified 45 Drosophila genes that encode proteins containing at least one F-box domain. We collected publically available RNAi lines against these genes and used them in a tissue-specific RNAi-based phenotypic screen. Here, we present our systematic phenotypic dataset from the eye, the wing and the notum. This dataset is the first of its kind and represents a useful resource for future studies of the molecular and genetic functions of F-box genes in Drosophila. Our results show that, as expected, F-box genes in Drosophila have regulatory roles in a diverse array of processes including cell proliferation, cell growth, signal transduction, and cellular and animal survival.

  6. Identification of candidate downstream genes for the homeodomain transcription factor Labial in Drosophila through oligonucleotide-array transcript imaging

    PubMed Central

    Leemans, Ronny; Loop, Thomas; Egger, Boris; He, Haiqiong; Kammermeier, Lars; Hartmann, Beate; Certa, Ullrich; Reichert, Heinrich; Hirth, Frank

    2001-01-01

    Background: Homeotic genes are key developmental regulators that are highly conserved throughout evolution. Their encoded homeoproteins function as transcription factors to control a wide range of developmental processes. Although much is known about homeodomain-DNA interactions, only a small number of genes acting downstream of homeoproteins have been identified. Here we use a functional genomic approach to identify candidate target genes of the Drosophila homeodomain transcription factor Labial. Results: High-density oligonucleotide arrays with probe sets representing 1,513 identified and sequenced genes were used to analyze differential gene expression following labial overexpression in Drosophila embryos. We find significant expression level changes for 96 genes belonging to all functional classes represented on the array. In accordance with our experimental procedure, we expect that these genes are either direct or indirect targets of labial gene action. Among these genes, 48 were upregulated and 48 were downregulated following labial overexpression. This corresponds to 6.3% of the genes represented on the array. For a selection of these genes, we show that the data obtained with the oligonucleotide arrays are consistent with data obtained using quantitative RT-PCR. Conclusions: Our results identify a number of novel candidate downstream target genes for Labial, suggesting that this homeoprotein differentially regulates a limited and distinct set of embryonically expressed Drosophila genes. PMID:11387036

  7. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  8. Drosophila Dynein intermediate chain gene, Dic61B, is required for spermatogenesis.

    PubMed

    Fatima, Roshan

    2011-01-01

    This study reports the identification and characterization of a novel gene, Dic61B, required for male fertility in Drosophila. Complementation mapping of a novel male sterile mutation, ms21, isolated in our lab revealed it to be allelic to CG7051 at 61B1 cytogenetic region, since two piggyBac insertion alleles, CG7051(c05439) and CG7051(f07138) failed to complement. CG7051 putatively encodes a Dynein intermediate chain. All three mutants, ms21, CG7051(c05439) and CG7051(f07138), exhibited absolute recessive male sterility with abnormally coiled sperm axonemes causing faulty sperm individualization as revealed by Phalloidin staining in Don Juan-GFP background. Sequencing of PCR amplicons uncovered two point mutations in ms21 allele and confirmed the piggyBac insertions in CG7051(c05439) and CG7051(f07138) alleles to be in 5'UTR and 4(th) exon of CG7051 respectively, excision of which reverted the male sterility. In situ hybridization to polytene chromosomes demonstrated CG7051 to be a single copy gene. RT-PCR of testis RNA revealed defective splicing of the CG7051 transcripts in mutants. Interestingly, expression of cytoplasmic dynein intermediate chain, α, β, γ tubulins and α-spectrin was normal in mutants while ultra structural studies revealed defects in the assembly of sperm axonemes. Bioinformatics further highlighted the homology of CG7051 to axonemal dynein intermediate chain of various organisms, including DNAI1 of humans, mutations in which lead to male sterility due to immotile sperms. Based on these observations we conclude that CG7051 encodes a novel axonemal dynein intermediate chain essential for male fertility in Drosophila and rename it as Dic61B. This is the first axonemal Dic gene of Drosophila to be characterized at molecular level and shown to be required for spermatogenesis.

  9. FlyBase: establishing a Gene Group resource for Drosophila melanogaster.

    PubMed

    Attrill, Helen; Falls, Kathleen; Goodman, Joshua L; Millburn, Gillian H; Antonazzo, Giulia; Rey, Alix J; Marygold, Steven J

    2016-01-04

    Many publications describe sets of genes or gene products that share a common biology. For example, genome-wide studies and phylogenetic analyses identify genes related in sequence; high-throughput genetic and molecular screens reveal functionally related gene products; and advanced proteomic methods can determine the subunit composition of multi-protein complexes. It is useful for such gene collections to be presented as discrete lists within the appropriate Model Organism Database (MOD) so that researchers can readily access these data alongside other relevant information. To this end, FlyBase (flybase.org), the MOD for Drosophila melanogaster, has established a 'Gene Group' resource: high-quality sets of genes derived from the published literature and organized into individual report pages. To facilitate further analyses, Gene Group Reports also include convenient download and analysis options, together with links to equivalent gene groups at other databases. This new resource will enable researchers with diverse backgrounds and interests to easily view and analyse acknowledged D. melanogaster gene sets and compare them with those of other species.

  10. Structure and transcription of the Drosophila mulleri alcohol dehydrogenase genes.

    PubMed

    Fischer, J A; Maniatis, T

    1985-10-11

    The D. melanogaster Adh gene is transcribed from two different promoters; a proximal (larval) promoter is active during late embryonic and larval stages, and a distal (adult) promoter is active primarily in third instar larvae and in adult flies (1). Genetic analyses suggest that several species of the mulleri subgroup (distant relatives of D. melanogaster) have two closely-linked Adh genes, Adh-1 and Adh-2, each of which expresses a different ADH protein (2). The temporal pattern of expression of Adh-1 and Adh-2 is similar to the expression of D. melanogaster Adh from the proximal and distal promoters (2,3,4). We are interested in the molecular basis for the pattern of Adh expression in the mulleri subgroup species and in the mechanism of the switch in Adh promoter utilization. For these reasons, we have studied the structure and transcription of the Adh locus of D. mulleri, a species of the mulleri subgroup. We show that the ADH-1 and ADH-2 proteins are expressed from two distinct genes separated by 2 kilobase pairs, and that Adh-1 and Adh-2 are transcribed in the expected temporal pattern. In addition, we find a pseudogene 1.2 kb upstream from Adh-2, which is transcribed in a temporal pattern similar to Adh-2.

  11. Identifying sleep regulatory genes using a Drosophila model of insomnia

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Thimgan, Matthew; Donlea, Jeff; Gimbel, Sarah I.; Gottschalk, Laura; Duntley, Steve P.; Shaw, Paul J.

    2009-01-01

    Although it is widely accepted that sleep must serve an essential biological function, little is known about molecules that underlie sleep regulation. Given that insomnia is a common sleep disorder that disrupts the ability to initiate and maintain restorative sleep, a better understanding of its molecular underpinning may provide crucial insights into sleep regulatory processes. Thus, we created a line of flies using laboratory selection that share traits with human insomnia. After 60 generations insomnia-like (ins-l) flies sleep 60 min a day, exhibit difficulty initiating sleep, difficulty maintaining sleep, and show evidence of daytime cognitive impairment. ins-l flies are also hyperactive and hyper responsive to environmental perturbations. In addition they have difficulty maintaining their balance, have elevated levels of dopamine, are short-lived and show increased levels of triglycerides, cholesterol, and free fatty acids. While their core molecular clock remains intact, ins-l flies lose their ability to sleep when placed into constant darkness. Whole genome profiling identified genes that are modified in ins-l flies. Among those differentially expressed transcripts genes involved in metabolism, neuronal activity, and sensory perception constituted over-represented categories. We demonstrate that two of these genes are upregulated in human subjects following acute sleep deprivation. Together these data indicate that the ins-l flies are a useful tool that can be used to identify molecules important for sleep regulation and may provide insights into both the causes and long-term consequences of insomnia. PMID:19494137

  12. A database for the analysis of immunity genes in Drosophila: PADMA database.

    PubMed

    Lee, Mark J; Mondal, Ariful; Small, Chiyedza; Paddibhatla, Indira; Kawaguchi, Akira; Govind, Shubha

    2011-01-01

    While microarray experiments generate voluminous data, discerning trends that support an existing or alternative paradigm is challenging. To synergize hypothesis building and testing, we designed the Pathogen Associated Drosophila MicroArray (PADMA) database for easy retrieval and comparison of microarray results from immunity-related experiments (www.padmadatabase.org). PADMA also allows biologists to upload their microarray-results and compare it with datasets housed within PADMA. We tested PADMA using a preliminary dataset from Ganaspis xanthopoda-infected fly larvae, and uncovered unexpected trends in gene expression, reshaping our hypothesis. Thus, the PADMA database will be a useful resource to fly researchers to evaluate, revise, and refine hypotheses.

  13. Identification and Genetic Analysis of Wunen, a Gene Guiding Drosophila Melanogaster Germ Cell Migration

    PubMed Central

    Zhang, N.; Zhang, J.; Cheng, Y.; Howard, K.

    1996-01-01

    We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA. PMID:8807296

  14. Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene.

    PubMed

    Wallingford, John B; Goto, Toshiyasu; Keller, Ray; Harland, Richard M

    2002-08-01

    We have cloned Xenopus orthologues of the Drosophila planar cell polarity (PCP) gene Prickle. Xenopus Prickle (XPk) is expressed in tissues at the dorsal midline during gastrulation and early neurulation. XPk is later expressed in a segmental pattern in the presomitic mesoderm and then in recently formed somites. XPk is also expressed in the tailbud, pronephric duct, retina, and the otic vesicle. The complex expression pattern of XPk suggests that PCP signaling is used in a diverse array of developmental processes in vertebrate embryos.

  15. Singular Spectrum Analysis of Gene Expression Profiles of Early Drosophila embryo: Exponential-in-Distance Patterns

    PubMed Central

    Alexandrov, T.; Golyandina, N.; Spirov, A.

    2010-01-01

    We present investigation of gene expression profiles by means of singular spectrum analysis (SSA). The biological problem under investigation is the decomposition of bicoid protein profiles of Drosophila melanogaster into the sum of a signal and noise, where the former consists of an exponential-in-distance pattern and is close to constant nonspecific component, or “background.” The signal processing problems addressed are (i) trend extraction from a noisy signal, (ii) batch processing of similar data, and (iii) analytical approximation of the signal components by the sum of exponential and constant-like functions. The proposed methods are evaluated on the given 17 series. PMID:21152265

  16. The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus.

    PubMed

    Bucheton, A

    1995-09-01

    For a long time, retroviruses have been considered to be restricted to vertebrates. However, the genome of insects contains elements like gypsy in Drosophila melanogaster that are strikingly similar to vertebrate proviruses of retroviruses, which were considered to be transposable elements. Recent results indicate that gypsy has infective properties and is therefore a retrovirus, the first to be identified in invertebrates. It is normally repressed by a host gene called flamenco, which apparently controls the transposition and infective properties of gypsy. This provides an exceptional experimental model to investigate the genetic relationships between retroviruses and their hosts.

  17. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    PubMed Central

    2009-01-01

    Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4%) have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate of adaptive evolution is

  18. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with a Drosophila omb gene

    SciTech Connect

    Campbell, C.; Goodrich, K.; Casey, G.; Beatty, B.

    1995-07-20

    We have identified and cloned a human gene (TBX2) that exhibits strong sequence homology within a putative DNA binding domain to the drosophila optomotor-blind (omb) gene and lesser homology to the DNA binding domain of the murine brachyury or T gene. Unlike omb, which is expressed in neural tissue, or T, which is not expressed in adult animals, TBX2 is expressed primarily in adult in kidney, lung, and placenta as multiple transcripts of between {approximately} 2 and 4 kb. At least part of this transcript heterogenity appears to be due to alternative polyadenylation. This is the first reported human member of a new family of highly evolutionarily conserved DNA binding proteins, the Tbx or T-box proteins. The human gene has been mapped by somatic cell hybrid mapping and chromosomal in situ hybridization to chromosome 17q23, a region frequently altered in ovarian carcinomas. 19 refs., 6 figs.

  19. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder

    PubMed Central

    Grotewiel, Mike; Bettinger, Jill C.

    2015-01-01

    Background Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral–genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. Methods In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. Results Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. Conclusions Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD. PMID:26173477

  20. Sex Bias and Maternal Contribution to Gene Expression Divergence in Drosophila Blastoderm Embryos

    PubMed Central

    Paris, Mathilde; Villalta, Jacqueline E.; Eisen, Michael B.; Lott, Susan E.

    2015-01-01

    Early embryogenesis is a unique developmental stage where genetic control of development is handed off from mother to zygote. Yet the contribution of this transition to the evolution of gene expression is poorly understood. Here we study two aspects of gene expression specific to early embryogenesis in Drosophila: sex-biased gene expression prior to the onset of canonical X chromosomal dosage compensation, and the contribution of maternally supplied mRNAs. We sequenced mRNAs from individual unfertilized eggs and precisely staged and sexed blastoderm embryos, and compared levels between D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. First, we find that mRNA content is highly conserved for a given stage and that studies relying on pooled embryos likely systematically overstate the degree of gene expression divergence. Unlike studies done on larvae and adults where most species show a larger proportion of genes with male-biased expression, we find that transcripts in Drosophila embryos are largely female-biased in all species, likely due to incomplete dosage compensation prior to the activation of the canonical dosage compensation mechanism. The divergence of sex-biased gene expression across species is observed to be often due to lineage-specific decrease of expression; the most drastic example of which is the overall reduction of male expression from the neo-X chromosome in D. pseudoobscura, leading to a pervasive female-bias on this chromosome. We see no evidence for a faster evolution of expression on the X chromosome in embryos (no “faster-X” effect), unlike in adults, and contrary to a previous study on pooled non-sexed embryos. Finally, we find that most genes are conserved in regard to their maternal or zygotic origin of transcription, and present evidence that differences in maternal contribution to the blastoderm transcript pool may be due to species-specific divergence of transcript degradation rates. PMID:26485701

  1. A single gene causes an interspecific difference in pigmentation in Drosophila.

    PubMed

    Ahmed-Braimah, Yasir H; Sweigart, Andrea L

    2015-05-01

    The genetic basis of species differences remains understudied. Studies in insects have contributed significantly to our understanding of morphological evolution. Pigmentation traits in particular have received a great deal of attention and several genes in the insect pigmentation pathway have been implicated in inter- and intraspecific differences. Nonetheless, much remains unknown about many of the genes in this pathway and their potential role in understudied taxa. Here we genetically analyze the puparium color difference between members of the virilis group of Drosophila. The puparium of Drosophila virilis is black, while those of D. americana, D. novamexicana, and D. lummei are brown. We used a series of backcross hybrid populations between D. americana and D. virilis to map the genomic interval responsible for the difference between this species pair. First, we show that the pupal case color difference is caused by a single Mendelizing factor, which we ultimately map to an ∼11-kb region on chromosome 5. The mapped interval includes only the first exon and regulatory region(s) of the dopamine N-acetyltransferase gene (Dat). This gene encodes an enzyme that is known to play a part in the insect pigmentation pathway. Second, we show that this gene is highly expressed at the onset of pupation in light brown taxa (D. americana and D. novamexicana) relative to D. virilis, but not in the dark brown D. lummei. Finally, we examine the role of Dat in adult pigmentation between D. americana (heavily melanized) and D. novamexicana (lightly melanized) and find no discernible effect of this gene in adults. Our results demonstrate that a single gene is entirely or almost entirely responsible for a morphological difference between species.

  2. A Maternal Screen for Genes Regulating Drosophila Oocyte Polarity Uncovers New Steps in Meiotic Progression

    PubMed Central

    Barbosa, Vitor; Kimm, Naomi; Lehmann, Ruth

    2007-01-01

    Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been linked to decreased levels of the TGFα-like molecule Gurken, which controls normal eggshell patterning. We used this easy-to-score eggshell phenotype in a germ-line mosaic screen in Drosophila to identify new genes affecting meiotic progression, DNA condensation, and Gurken signaling. One hundred eighteen new ventralizing mutants on the second chromosome fell into 17 complementation groups. Here we describe the analysis of 8 complementation groups, including Kinesin heavy chain, the SR protein kinase cuaba, the cohesin-related gene dPds5/cohiba, and the Tudor-domain gene montecristo. Our findings challenge the hypothesis that checkpoint activation upon persistent DSBs is exclusively mediated by ATR/Mei-41 kinase and instead reveal a more complex network of interactions that link DSB formation, checkpoint activation, meiotic delay, DNA condensation, and Gurken protein synthesis. PMID:17507684

  3. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia

    PubMed Central

    McBride, Carolyn S.

    2007-01-01

    Our understanding of the genetic basis of host specialization in insects is limited to basic information on the number and location of genetic factors underlying changes in conspicuous phenotypes. We know nothing about general patterns of molecular evolution that may accompany host specialization but are not traceable to a single prominent phenotypic change. Here, I describe changes in the entire repertoire of 136 olfactory receptor (Or) and gustatory receptor (Gr) genes of the recently specialized vinegar fly Drosophila sechellia. I find that D. sechellia is losing Or and Gr genes nearly 10 times faster than its generalist sibling Drosophila simulans. Moreover, those D. sechellia receptors that remain intact have fixed amino acid replacement mutations at a higher rate relative to silent mutations than have their D. simulans orthologs. Comparison of these patterns with those observed in a random sample of genes indicates that the changes at Or and Gr loci are likely to reflect positive selection and/or relaxed constraint associated with the altered ecological niche of this fly. PMID:17360391

  4. Map position and expression of the genes in the 38 region of Drosophila.

    PubMed Central

    Butler, H; Levine, S; Wang, X; Bonyadi, S; Fu, G; Lasko, P; Suter, B; Doerig, R

    2001-01-01

    With the completion of the Drosophila genome sequence, an important next step is to extract its biological information by systematic functional analysis of genes. We have produced a high-resolution genetic map of cytological region 38 of Drosophila using 41 deficiency stocks that provide a total of 54 breakpoints within the region. Of a total of 45 independent P-element lines that mapped by in situ hybridization to the region, 14 targeted 7 complementation groups within the 38 region. Additional EMS, X-ray, and spontaneous mutations define a total of 17 complementation groups. Because these two pools partially overlap, the completed analysis revealed 21 distinct complementation groups defined by point mutations. Seven additional functions were defined by trans-heterozygous combinations of deficiencies, resulting in a total of 28 distinct functions. We further produced a developmental expression profile for the 760 kb from 38B to 38E. Of 135 transcription units predicted by GENSCAN, 22 have at least partial homology to mobile genetic elements such as transposons and retroviruses and 17 correspond to previously characterized genes. We analyzed the developmental expression pattern of the remaining genes using poly(A)(+) RNA from ovaries, early and late embryos, larvae, males, and females. We discuss the correlation between GENSCAN predictions and experimentally confirmed transcription units, the high number of male-specific transcripts, and the alignment of the genetic and physical maps in cytological region 38. PMID:11514449

  5. Ectopic mitotic recombination in Drosophila probed with bacterial beta-galactosidase gene-based reporter transgenes.

    PubMed Central

    Bärtsch, S; Dücker, K; Würgler, F E; Sengstag, C

    1997-01-01

    Plasmids were constructed to investigate homologous mitotic recombination in Drosophila cells. Heteroalleles containing truncated but overlapping segments of the bacterial beta-galactosidase gene (lacZ) were positioned either on separate plasmids or as direct repeats on the same chromosome. Recombination reconstituted a functional lacZgene leading to expression of LacZ+activity detectable by histochemical staining. High extrachromosomal recombination (ECR) frequencies between unlinked heteroalleles were observed upon transient co-transfection into Drosophila melanogaster Schneider line 2 (S2) cells. Stably transfected cells containing the lacZ heteroalleles linked on a chromosome exhibited intrachromosomal recombination (ICR) frequencies two orders of magnitude lower than ECR frequencies. Recombination was inducible by exposing the cells to ethyl methanesulphonate or mitomycin C. Recombination products were characterized by multiplex PCR analysis and unequal sister chromatid recombination was found as the predominant mechanism reconstituting the lacZ gene. To investigate recombination in vivo imaginal disc cells from transgenic larvae carrying the reporter gene on the X chromosome were isolated and stained for LacZ+ activity. The presence of a few LacZ+ clones indicated that mitotic recombination events occurred at frequencies two orders of magnitude lower than the corresponding event in cultured cells and late during larval development. PMID:9380517

  6. Activity, Expression and Function of a Second Drosophila Protein Kinase a Catalytic Subunit Gene

    PubMed Central

    Melendez, A.; Li, W.; Kalderon, D.

    1995-01-01

    The DC2 gene was isolated previously on the basis of sequence similarity to DCO, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. PMID:8601490

  7. Effect of anthranilic acid on the catabolite repression of a Drosophila amylase gene in E. coli

    SciTech Connect

    Stevens, S.M.; Moehring, J.M.; Chernin, M.I.

    1987-05-01

    A Drosophila pseudoobscura amylase pseudogene cloned in Escherichia coli is expressed at high levels. The expression of this pseudogene is repressed when glucose (0.5% final conc) is added to a starch minimal medium culture of E. coli cells that contain the amylase plasmid pAMY17F. Addition of anthranilic acid (7 mM final conc.) to catabolite repressed cells acts like adenosine 3',5' cyclic monophosphate (cAMP) by derepressing the amylase pseudogene at the promoter. This is consistent with the Metabolite Gene Regulation (MGR) model proposed by Kline et al. which suggests that small molecules can circumvent the necessity for cAMP. Catabolite repression of the amylase structural gene of D. pseudoobscura has been previously shown. This would suggest that the amylase pseudogene expression in E. coli is either from a Drosophila structural gene promoter co-cloned with the pseudogene or a catabolite repressible E. coli promoter placed in the proper orientation and reading frame during the rearrangement of pAMY17F.

  8. [Male reproductive behavior in Drosophila melanogaster strains with different alleles of the flamenco gene].

    PubMed

    Subocheva, E A; Romanova, N I; Karpova, N N; Iuneva, A O; Kim, A I

    2003-05-01

    The allelic state of gene flamenco has been determined in a number of Drosophila melanogaster strains using the ovoD test. The presence of an active copy of gypsy in these strains was detected by restriction analysis. Then male reproduction behavior was studied in the strains carrying a mutation in gene flamenco. In these experiments mating success has been experimentally estimated in groups of flies. It has been demonstrated that the presence of mutant allele flamMS decreases male mating activity irrespective of the presence or absence of mutation white. The active copy of gypsy does not affect mating activity in the absence of the mutation in gene flamenco. Individual analysis has demonstrated that that mutation flamMS results in characteristic changes in courtship: flamMS males exhibit a delay in the transition from the orientation stage to the vibration stage (the so-called vibration delay). The role of locus flamenco in the formation of male mating behavior in Drosophila is discussed.

  9. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster

    PubMed Central

    Lee, Hangnoh; Cho, Dong-Yeon; Roote, John; Kaufman, Thomas; Cook, Kevin; Przytycka, Teresa; Oliver, Brian

    2016-01-01

    Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds. PMID:27599372

  10. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila.

    PubMed

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-10-13

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H(+) ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes.

  11. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila

    PubMed Central

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-01-01

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665

  12. Functional Interactions between Unlinked Muscle Genes within Haploinsufficient Regions of the Drosophila Genome

    PubMed Central

    Homyk-Jr., T.; Emerson-Jr., C. P.

    1988-01-01

    Mutations in 13 genes affecting muscle development in Drosophila have been examined in pairwise combinations for evidence of genetic interactions. Heterozygous combinations of mutations in five genes, including the gene coding for myosin heavy chain, result in more severe phenotypes than respective single heterozygous mutant controls. The various mutant interactions include examples showing allele-specific intergenic interactions, gene specific interactions, and allele-specific intragenic complementations, suggesting that some interactions result from the manner in which mutant gene products associate. Interactions that result from alterations in ``+'' gene copy number were also uncovered, suggesting that normal myofibril development requires that the relative amounts of respective gene products produced be tightly regulated. The importance of the latter parameter is substantiated by the finding that all five interacting loci map to disperse haploinsufficient or haplolethal regions of the genome. The implications of the present findings are discussed in relation to pursuing the phenomena involving genetic interactions to identify new genes encoding interacting myofibrillar proteins, to examine the nature of intermolecular interactions in mutant and normal development and to decipher the quantitative and temporal regulation of a large family of functionally related gene products. PMID:3135237

  13. Widespread transcriptional autosomal dosage compensation in Drosophila correlates with gene expression level.

    PubMed

    McAnally, Ashley A; Yampolsky, Lev Y

    2009-12-23

    Little is known about dosage compensation in autosomal genes. Transcription-level compensation of deletions and other loss-of-function mutations may be a mechanism of dominance of wild-type alleles, a ubiquitous phenomenon whose nature has been a subject of a long debate. We measured gene expression in two isogenic Drosophila lines heterozygous for long deletions and compared our results with previously published gene expression data in a line heterozygous for a long duplication. We find that a majority of genes are at least partially compensated at transcription, both for (1/2)-fold dosage (in heterozygotes for deletions) and for 1.5-fold dosage (in heterozygotes for a duplication). The degree of compensation does not vary among functional classes of genes. Compensation for deletions is stronger for highly expressed genes. In contrast, the degree of compensation for duplications is stronger for weakly expressed genes. Thus, partial transcriptional compensation appears to be based on regulatory mechanisms that insure high transcription levels of some genes and low transcription levels of other genes, instead of precise maintenance of a particular homeostatic expression level. Given the ubiquity of transcriptional compensation, dominance of wild-type alleles may be at least partially caused by of the regulation at transcription level.

  14. Tramtrack Is Genetically Upstream of Genes Controlling Tracheal Tube Size in Drosophila

    PubMed Central

    Rotstein, Barbara; Molnar, David; Adryan, Boris; Llimargas, Marta

    2011-01-01

    The Drosophila transcription factor Tramtrack (Ttk) is involved in a wide range of developmental decisions, ranging from early embryonic patterning to differentiation processes in organogenesis. Given the wide spectrum of functions and pleiotropic effects that hinder a comprehensive characterisation, many of the tissue specific functions of this transcription factor are only poorly understood. We recently discovered multiple roles of Ttk in the development of the tracheal system on the morphogenetic level. Here, we sought to identify some of the underlying genetic components that are responsible for the tracheal phenotypes of Ttk mutants. We therefore profiled gene expression changes after Ttk loss- and gain-of-function in whole embryos and cell populations enriched for tracheal cells. The analysis of the transcriptomes revealed widespread changes in gene expression. Interestingly, one of the most prominent gene classes that showed significant opposing responses to loss- and gain-of-function was annotated with functions in chitin metabolism, along with additional genes that are linked to cellular responses, which are impaired in ttk mutants. The expression changes of these genes were validated by quantitative real-time PCR and further functional analysis of these candidate genes and other genes also expected to control tracheal tube size revealed at least a partial explanation of Ttk's role in tube size regulation. The computational analysis of our tissue-specific gene expression data highlighted the sensitivity of the approach and revealed an interesting set of novel putatively tracheal genes. PMID:22216153

  15. Tramtrack is genetically upstream of genes controlling tracheal tube size in Drosophila.

    PubMed

    Rotstein, Barbara; Molnar, David; Adryan, Boris; Llimargas, Marta

    2011-01-01

    The Drosophila transcription factor Tramtrack (Ttk) is involved in a wide range of developmental decisions, ranging from early embryonic patterning to differentiation processes in organogenesis. Given the wide spectrum of functions and pleiotropic effects that hinder a comprehensive characterisation, many of the tissue specific functions of this transcription factor are only poorly understood. We recently discovered multiple roles of Ttk in the development of the tracheal system on the morphogenetic level. Here, we sought to identify some of the underlying genetic components that are responsible for the tracheal phenotypes of Ttk mutants. We therefore profiled gene expression changes after Ttk loss- and gain-of-function in whole embryos and cell populations enriched for tracheal cells. The analysis of the transcriptomes revealed widespread changes in gene expression. Interestingly, one of the most prominent gene classes that showed significant opposing responses to loss- and gain-of-function was annotated with functions in chitin metabolism, along with additional genes that are linked to cellular responses, which are impaired in ttk mutants. The expression changes of these genes were validated by quantitative real-time PCR and further functional analysis of these candidate genes and other genes also expected to control tracheal tube size revealed at least a partial explanation of Ttk's role in tube size regulation. The computational analysis of our tissue-specific gene expression data highlighted the sensitivity of the approach and revealed an interesting set of novel putatively tracheal genes. © 2011 Rotstein et al.

  16. Three hormone receptor-like Drosophila genes encode an identical DNA-binding finger.

    PubMed

    Rothe, M; Nauber, U; Jäckle, H

    1989-10-01

    The putative finger domain of knirps (kni), a member of the gap class of segmentation genes, was used to isolate two sequence-related genes of Drosophila melanogaster under reduced stringency hybridization conditions. The two kni homologous genes map close to kni in the proximal portion of the third chromosome. One of them is the previously identified gene knirps-related (knrl), kni and knrl are spatially co-regulated in both early and late stages of embryogenesis. Their posterior domains of expression at blastoderm stage are under the control of the maternal pattern organizer gene nanos. In contrast, the expression of the second kni homologous gene is restricted to the late embryonic gonads. Due to its site of expression, we termed this gene 'embryonic gonad' (egon). In addition to the conserved DNA-binding domain, these three genes share an additional sequence of 19 amino acids, the kni-box, adjacent to the finger region. The identical N-terminal Cys/Cys finger encoded by each of the three genes suggests that they code for DNA-binding proteins which might bind to similar (or even identical) target sequences.

  17. Three hormone receptor-like Drosophila genes encode an identical DNA-binding finger.

    PubMed Central

    Rothe, M; Nauber, U; Jäckle, H

    1989-01-01

    The putative finger domain of knirps (kni), a member of the gap class of segmentation genes, was used to isolate two sequence-related genes of Drosophila melanogaster under reduced stringency hybridization conditions. The two kni homologous genes map close to kni in the proximal portion of the third chromosome. One of them is the previously identified gene knirps-related (knrl), kni and knrl are spatially co-regulated in both early and late stages of embryogenesis. Their posterior domains of expression at blastoderm stage are under the control of the maternal pattern organizer gene nanos. In contrast, the expression of the second kni homologous gene is restricted to the late embryonic gonads. Due to its site of expression, we termed this gene 'embryonic gonad' (egon). In addition to the conserved DNA-binding domain, these three genes share an additional sequence of 19 amino acids, the kni-box, adjacent to the finger region. The identical N-terminal Cys/Cys finger encoded by each of the three genes suggests that they code for DNA-binding proteins which might bind to similar (or even identical) target sequences. Images PMID:2555153

  18. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    PubMed Central

    2010-01-01

    Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors. PMID:20925960

  19. Stochastic model for gene transcription on Drosophila melanogaster embryos

    NASA Astrophysics Data System (ADS)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  20. EGF receptor signaling triggers recruitment of Drosophila sense organ precursors by stimulating proneural gene autoregulation.

    PubMed

    zur Lage, Petra I; Powell, Lynn M; Prentice, David R A; McLaughlin, Paul; Jarman, Andrew P

    2004-11-01

    In Drosophila, commitment of a cell to a sense organ precursor (SOP) fate requires bHLH proneural transcription factor upregulation, a process that depends in most cases on the interplay of proneural gene autoregulation and inhibitory Notch signaling. A subset of SOPs are selected by a recruitment pathway involving EGFR signaling to ectodermal cells expressing the proneural gene atonal. We show that EGFR signaling drives recruitment by directly facilitating atonal autoregulation. Pointed, the transcription factor that mediates EGFR signaling, and Atonal protein itself bind cooperatively to adjacent conserved binding sites in an atonal enhancer. Recruitment is therefore contingent on the combined presence of Atonal protein (providing competence) and EGFR signaling (triggering recruitment). Thus, autoregulation is the nodal control point targeted by signaling. This exemplifies a simple and general mechanism for regulating the transition from competence to cell fate commitment whereby a cell signal directly targets the autoregulation of a selector gene.

  1. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  2. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  3. Identification of FGF-dependent genes in the Drosophila tracheal system.

    PubMed

    Stahl, Markus; Schuh, Reinhard; Adryan, Boris

    2007-01-01

    The embryonic development of the tracheal system of the fruit fly Drosophila provides a paradigm for genetic studies of branching morphogenesis. Efforts of many laboratories have identified Branchless (Bnl, a fibroblast growth factor homologue) and Breathless (Btl, the receptor homologue) as crucial factors at many stages of tracheal system development. The downstream targets of the Bnl/Btl signalling cascade, however, remain mostly unknown. Misexpression of the bnl gene results in specific tracheal phenotypes that lead to larval death. We characterised the transcriptional profiles of targeted over-expression of bnl in the embryonic trachea and of loss-of-function bnl(P1) mutant embryos. Gene expression data was mapped to high-throughput in situ hybridisation based ImaGO-annotation. Thus, we identified and confirmed by quantitative PCR 13 Bnl-dependent genes that are expressed in cells within and outside of the tracheal system.

  4. The function of the Drosophila argos gene product in the development of embryonic chordotonal organs.

    PubMed

    Okabe, M; Sawamoto, K; Okano, H

    1996-04-10

    We characterized the embryonic expression pattern and mutant phenotypes of the Drosophila gene argos, which encodes a secreted protein with an epidermal growth factor motif. The argos null mutation caused an increase in chordotonal (Ch) organs in both the thoracic and the abdominal segments, whereas overexpression of the argos gene resulted in a decrease in these organs. We showed that the argos transcripts are expressed transiently in the cells surrounding the Ch organ precursor and that the gene rhomboid (rho), which is involved in the regulation of the number of Ch organs, acts epistatically to argos in this event. Our findings suggest that argos plays a role in Ch organ precursor formation and regulates the final number of Ch organs.

  5. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  6. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker.

  7. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    PubMed Central

    2011-01-01

    Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes. PMID:21542906

  8. Regulatory autonomy and molecular characterization of the Drosophila out at first gene

    SciTech Connect

    Bergstrom, D.E.; Merli, C.A.; Cygan, J.A.; Shelby, R.; Blackman, R.K.

    1995-03-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3{prime} of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frames separated by a single UGA stop codon. Suppression of the UGA codon during translation, as seen previously in Drosophila, could lead to the production of different proteins from the same RNA. During oogenesis, oaf RNA is expressed in nurse cells of all ages and maternally contributed to the egg. During embryonic development, zygotic transcription of the gene occurs in small clusters of cells in most or all segments at the time of germband extension and subsequently in a segmentally repeated pattern in the developing central nervous system. The gene is also expressed in the embryonic, larval and adult gonads of both sexes. We also characterize an enhancer trap line with its transposon inserted within the oaf gene and use it to generate six recessive oaf mutations. All six cause death near the beginning of the first larval instar, with two characterized lines showing nervous system defects. Last, we discuss our data in light of the observation that the enhancers controlling dpp expression in the imaginal disks have no effect on the relatively nearby oaf gene. 67 refs., 10 figs., 1 tab.

  9. Automated annotation of Drosophila gene expression patterns using a controlled vocabulary

    PubMed Central

    Ji, Shuiwang; Sun, Liang; Jin, Rong; Kumar, Sudhir; Ye, Jieping

    2008-01-01

    Motivation: Regulation of gene expression in space and time directs its localization to a specific subset of cells during development. Systematic determination of the spatiotemporal dynamics of gene expression plays an important role in understanding the regulatory networks driving development. An atlas for the gene expression patterns of fruit fly Drosophila melanogaster has been created by whole-mount in situ hybridization, and it documents the dynamic changes of gene expression pattern during Drosophila embryogenesis. The spatial and temporal patterns of gene expression are integrated by anatomical terms from a controlled vocabulary linking together intermediate tissues developed from one another. Currently, the terms are assigned to patterns manually. However, the number of patterns generated by high-throughput in situ hybridization is rapidly increasing. It is, therefore, tempting to approach this problem by employing computational methods. Results: In this article, we present a novel computational framework for annotating gene expression patterns using a controlled vocabulary. In the currently available high-throughput data, annotation terms are assigned to groups of patterns rather than to individual images. We propose to extract invariant features from images, and construct pyramid match kernels to measure the similarity between sets of patterns. To exploit the complementary information conveyed by different features and incorporate the correlation among patterns sharing common structures, we propose efficient convex formulations to integrate the kernels derived from various features. The proposed framework is evaluated by comparing its annotation with that of human curators, and promising performance in terms of F1 score has been reported. Contact: jieping.ye@asu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18632750

  10. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    PubMed Central

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  11. DNA polymorphism in the beta-Esterase gene cluster of Drosophila melanogaster.

    PubMed Central

    Balakirev, Evgeniy S; Chechetkin, V R; Lobzin, V V; Ayala, Francisco J

    2003-01-01

    We have analyzed nucleotide polymorphism within a 5.3-kb region encompassing the functional Est-6 gene and the psiEst-6 putative pseudogene in 28 strains of Drosophila melanogaster and one of D. simulans. Two divergent sequence types were detected, which are not perfectly associated with Est-6 allozyme variation. The level of variation (pi) is very close in the 5'-flanking region (0.0059) and Est-6 gene (0.0057), but significantly higher in the intergenic region (0.0141) and putative pseudogene (0.0122). The variation in the 3'-flanking region is intermediate (0.0083). These observations may reflect different levels of purifying selection in the different regions. Strong linkage disequilibrium occurs within the region studied, with the largest values revealed in the putative pseudogene and 3'-flanking region. Moreover, recombination is restricted within psiEst-6. Gene conversion is detected both within and (to a lesser extent) between Est-6 and psiEst-6. The data indicate that psiEst-6 exhibits some characteristics that are typical of nonfunctional genes, while other characteristics are typically attributed to functional genes; the same situation has been observed in other pseudogenes (including Drosophila). The results of structural entropy analysis demonstrate higher structural ordering in Est-6 than in psiEst-6, in accordance with expectations if psiEst-6 is indeed a pseudogene. Taking into account that the function of psiEst-6 is not known (but could exist) and following the terminology of J. Brosius and S. J. Gould, we suggest that the term "potogene" may be appropriate for psiEst-6, indicating that it is a potential gene that may have acquired some distinctive but unknown function. PMID:12807774

  12. dyschronic, a Drosophila Homolog of a Deaf-Blindness Gene, Regulates Circadian Output and Slowpoke Channels

    PubMed Central

    Jepson, James E. C.; Peterson, Drew; Pan, Huihui; Koh, Kyunghee

    2012-01-01

    Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc). dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO), an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein–protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system. PMID:22532808

  13. Identification of Genes That Promote or Inhibit Olfactory Memory Formation in Drosophila

    PubMed Central

    Walkinshaw, Erica; Gai, Yunchao; Farkas, Caitlin; Richter, Daniel; Nicholas, Eric; Keleman, Krystyna; Davis, Ronald L.

    2015-01-01

    Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources. PMID:25644700

  14. Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster.

    PubMed Central

    Terracol, R; Prud'homme, N

    1986-01-01

    In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus. Images PMID:3023865

  15. The Drosophila MAPK p38c Regulates Oxidative Stress and Lipid Homeostasis in the Intestine

    PubMed Central

    Chakrabarti, Sveta; Poidevin, Mickaël; Lemaitre, Bruno

    2014-01-01

    The p38 mitogen-activated protein (MAP) kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c. PMID:25254641

  16. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  17. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5.

    PubMed

    Telford, M J

    2000-03-23

    The DNA-binding homeobox motif was first identified in several Drosophila homeotic genes but also in fushi tarazu, a gene found in the Hox cluster yet involved in segmentation, not anteroposterior patterning [1]. Homeotic transformations are not seen in insect ftz mutants, and insect ftz genes do not have Hox-like expression except within the nervous system [2] [3]. Insect ftz homeobox sequences link them to the Antp-class genes and Tribolium and Schistocerca orthologs have Antp-class YPWM motifs amino-terminal to the homeobox [2] [3]. Orthologs of ftz cloned from a centipede and an onychophoran [4] show that it predates the emergence of the arthropods, but the inability to pinpoint non-arthropodan orthologs suggested that ftz is the product of a Hox gene duplication in the arthropod ancestor [4] [5]. I have cloned ftz orthologs from a mite and a tardigrade, arthropod outgroups of the insects [6]. Mite ftz is expressed in a Hox-like pattern, confirming its ancestral role in anteroposterior patterning. Phylogenetic analyses indicate that arthropod ftz genes are orthologous to the Lox5 genes of lophotrochozoans (a group that includes molluscs) [7] and, possibly, with the Mab-5 genes of nematodes and Hox6 genes of deuterostomes and would therefore have been present in the triploblast ancestor.

  18. Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster

    PubMed Central

    Wu, Xianwen; Li, Rongni; Li, Qianqian; Bao, Haigang; Wu, Changxin

    2016-01-01

    We observed heteroses for body weight in Drosophila melanogaster after generating hybrids from three inbred lines. To better understand the mechanism for this phenomenon at the mRNA level, we compared the mRNA profiles of the parental and hybrid lines using high-throughput RNA-seq. A total of 5877 differentially expressed genes (DEGs) were found and about 92% of these exhibited parental expression level dominance. Genes in the dominance category were functionally characterized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the gene classifications offered by the Gene Ontology (GO) Consortium. The analysis identified genes associated with crucial processes such as development and growth in all three crosses. Functional assignments involving aminoglycan metabolism, starch and sucrose metabolism, and galactose metabolism are significantly overrepresented amongst the 215 common dominance DEGs. We conclude that dominance DEGs are important in heteroses in Drosophila melanogaster and contribute specifically to body weight heterosis. PMID:26928435

  19. Protease Gene Duplication and Proteolytic Activity in Drosophila Female Reproductive Tracts

    PubMed Central

    Kelleher, Erin S.; Pennington, James E.

    2009-01-01

    Secreted proteases play integral roles in sexual reproduction in a broad range of taxa. In the genetic model Drosophila melanogaster, these molecules are thought to process peptides and activate enzymes inside female reproductive tracts, mediating critical postmating responses. A recent study of female reproductive tract proteins in the cactophilic fruit fly Drosophila arizonae, identified pervasive, lineage-specific gene duplication amongst secreted proteases. Here, we compare the evolutionary dynamics, biochemical nature, and physiological significance of secreted female reproductive serine endoproteases between D. arizonae and its congener D. melanogaster. We show that D. arizonae lower female reproductive tract (LFRT) proteins are significantly enriched for recently duplicated secreted proteases, particularly serine endoproteases, relative to D. melanogaster. Isolated lumen from D. arizonae LFRTs, furthermore, exhibits significant trypsin-like and elastase-like serine endoprotease acitivity, whereas no such activity is seen in D. melanogaster. Finally, trypsin- and elastase-like activity in D. arizonae female reproductive tracts is negatively regulated by mating. We propose that the intense proteolytic environment of the D. arizonae female reproductive tract relates to the extraordinary reproductive physiology of this species and that ongoing gene duplication amongst these proteases is an evolutionary consequence of sexual conflict. PMID:19546158

  20. Activity, expression and function of a second Drosophila protein kinase a catalytic subunit gene

    SciTech Connect

    Melendez, A.; Li, W.; Kalderon, D.

    1995-12-01

    The DC2 was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. 62 refs., 10 figs., 2 tabs.

  1. The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP.

    PubMed

    Cabrero, Pablo; Radford, Jonathan C; Broderick, Kate E; Costes, Laurence; Veenstra, Jan A; Spana, Eric P; Davies, Shireen A; Dow, Julian A T

    2002-12-01

    Dh, the gene that encodes a CRF-like peptide in Drosophila melanogaster, is described. The product of this gene is a 44-amino-acid peptide (Drome-DH(44)) with a sequence almost identical to the Musca domestica and Stomoxys calcitrans diuretic hormones. There are no other similar peptides encoded within the known Drosophila genomic sequence. Functional studies showed that the deduced peptide stimulated fluid production, and that this effect was mediated by cyclic AMP in principal cells only: there was no effect on the levels of either cyclic GMP or intracellular calcium. Stimulation also elevated levels of cyclic AMP (but not cyclic GMP) phosphodiesterase, a new mode of action for this class of hormone. The transcript was localised by in situ hybridisation, and the peptide by immunocytochemistry, to two groups of three neurones in the pars intercerebralis within the brain. These cells also express receptors for leucokinin, another major diuretic peptide, implying that the cells may be important in homeostatic regulation.

  2. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster

    SciTech Connect

    Kirby, D.A.; Stephan, W.

    1995-12-01

    Restriction map studies previously revealed extensive linkage disequilibria in the transcriptional unit of the white locus in natural Drosophila melanogaster populations. To understand the causes of these disequilibria, we sequenced a 4722-bp region of the white gene from 15 lines of D. melanogaster and 1 line of Drosophila simulans. Statistical tests applied to the entire 4722-bp region do not reject neutrality. In contrast, a test for high-frequency haplotypes ({open_quotes}Haplotype test{close_quotes}) revealed an 834-bp segment, encompassing the 3{prime} end of intron 1 to the 3{prime} end of intron 2, in which the structure of variation deviates significantly from the predictions of a neutral equilibrium model. The variants in this 834-bp segment segregate as single haplotype blocks. We propose that these unusually large haplotype blocks are due to positive selection on polymorphisms within the white gene, including a replacement polymorphism, Arg{yields}Leu, within this segment. 45 refs., 4 figs., 1 tab.

  3. Mutations of the Calcium Channel Gene cacophony Suppress Seizures in Drosophila

    PubMed Central

    Saras, Arunesh; Tanouye, Mark A.

    2016-01-01

    Bang sensitive (BS) Drosophila mutants display characteristic seizure-like phenotypes resembling, in some aspects, those of human seizure disorders such as epilepsy. The BS mutant parabss1, caused by a gain-of-function mutation of the voltage-gated Na+ channel gene, is extremely seizure-sensitive with phenotypes that have proven difficult to ameliorate by anti-epileptic drug feeding or by seizure-suppressor mutation. It has been presented as a model for intractable human epilepsy. Here we show that cacophony (cacTS2), a mutation of the Drosophila presynaptic Ca++ channel α1 subunit gene, is a particularly potent seizure-suppressor mutation, reverting seizure-like phenotypes for parabss1 and other BS mutants. Seizure-like phenotypes for parabss1 may be suppressed by as much as 90% in double mutant combinations with cacTS2. Unexpectedly, we find that parabss1 also reciprocally suppresses cacTS2 seizure-like phenotypes. The cacTS2 mutant displays these seizure-like behaviors and spontaneous high-frequency action potential firing transiently after exposure to high temperature. We find that this seizure-like behavior in cacTS2 is ameliorated by 85% in double mutant combinations with parabss1. PMID:26771829

  4. Argos and Spitz group genes function to regulate midline glial cell number in Drosophila embryos.

    PubMed

    Stemerdink, C; Jacobs, J R

    1997-10-01

    The midline glia of the Drosophila embryonic nerve cord undergo a reduction in cell number after facilitating commissural tract morphogenesis. The numbers of midline glia entering apoptosis at this stage can be increased by a loss or reduction of function in genes of the spitz group or Drosophila EGF receptor (DER) pathway. Argos, a secreted molecule with an atypical EGF motif, is postulated to function as a DER antagonist. In this work, we assess the role of argos in the determination of midline glia cell number. Although all midline glia express DER, argos expression is restricted to the midline glia which do not enter apoptosis. Fewer midline glia enter apoptosis in embryos lacking argos function. Ectopic expression of argos is sufficient to remove all DER-expressing midline glia from the nerve cord, even those that already express argos. DER expression is not terminated in the midline glia after spitz group signaling triggers changes in gene expression. It is therefore likely that an attenuation of DER signaling by Argos is integrated with the augmentation of DER signaling by Spitz throughout the period of reduction of midline glia number. We suggest that signaling by Spitz but not Argos is restricted to adhesive junctions. In this manner, midline glia not forming signaling junctions remain sensitive to juxtacrine Argos signaling, while an autocrine Argos signal is excluded by the adhesive junction.

  5. Chromatin Remodeling Mediated by Drosophila GAGA Factor and ISWI Activates fushi tarazu Gene Transcription In Vitro

    PubMed Central

    Okada, Masahiro; Hirose, Susumu

    1998-01-01

    GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template. PMID:9566866

  6. Drosophila lilliputian is required for proneural gene expression in retinal development

    PubMed Central

    DiStefano, Ginnene M.; Gangemi, Andrew J.; Khandelwal, Preeti J.; Saunders, Aleister J.; Marenda, Daniel R.

    2012-01-01

    Background Proper neurogenesis in the developing Drosophila retina requires the regulated expression of the basic helix-loop-helix (bHLH) proneural transcription factors Atonal (Ato) and Daughterless (Da). Factors that control the timing and spatial expression of these bHLH proneural genes in the retina are required for the proper formation and function of the adult eye and nervous system. Results Here, we report that lilliputian (lilli), the Drosophila homolog of the FMR2/AF4 family of proteins regulates the transcription of ato and da in the developing fly retina. We find that lilli controls ato expression at multiple enhancer elements. We also find that lilli contributes to ato auto-regulation in the morphogenetic furrow by first regulating the expression of da prior to ato. We show that FMR2 regulates the ato and da homologs MATH5 and TCF12 in human cells, suggesting a conservation of this regulation from flies to humans. Conclusions We conclude that lilliputian is part of the genetic program that regulates the expression of proneural genes in the developing retina. PMID:22275119

  7. Multiple transcription factor codes activate epidermal wound-response genes in Drosophila.

    PubMed

    Pearson, Joseph C; Juarez, Michelle T; Kim, Myungjin; Drivenes, Øyvind; McGinnis, William

    2009-02-17

    Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes-Ddc, ple, msn, and kkv-that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound-response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view.

  8. Functional and evolutionary correlates of gene constellations in the Drosophila melanogaster genome that deviate from the stereotypical gene architecture

    PubMed Central

    2010-01-01

    Background The biological dimensions of genes are manifold. These include genomic properties, (e.g., X/autosomal linkage, recombination) and functional properties (e.g., expression level, tissue specificity). Multiple properties, each generally of subtle influence individually, may affect the evolution of genes or merely be (auto-)correlates. Results of multidimensional analyses may reveal the relative importance of these properties on the evolution of genes, and therefore help evaluate whether these properties should be considered during analyses. While numerous properties are now considered during studies, most work still assumes the stereotypical solitary gene as commonly depicted in textbooks. Here, we investigate the Drosophila melanogaster genome to determine whether deviations from the stereotypical gene architecture correlate with other properties of genes. Results Deviations from the stereotypical gene architecture were classified as the following gene constellations: Overlapping genes were defined as those that overlap in the 5-prime, exonic, or intronic regions. Chromatin co-clustering genes were defined as genes that co-clustered within 20 kb of transcriptional territories. If this scheme is applied the stereotypical gene emerges as a rare occurrence (7.5%), slightly varied schemes yielded between ~1%-50%. Moreover, when following our scheme, paired-overlapping genes and chromatin co-clustering genes accounted for 50.1 and 42.4% of the genes analyzed, respectively. Gene constellation was a correlate of a number of functional and evolutionary properties of genes, but its statistical effect was ~1-2 orders of magnitude lower than the effects of recombination, chromosome linkage and protein function. Analysis of datasets on male reproductive proteins showed these were biased in their representation of gene constellations and evolutionary rate Ka/Ks estimates, but these biases did not overwhelm the biologically meaningful observation of high evolutionary

  9. Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF.

    PubMed

    Phuong Thao, Dang Thi; Ida, Hiroyuki; Yoshida, Hideki; Yamaguchi, Masamitsu

    2006-11-01

    SKPa is component of a Drosophila SCF complex that functions in combination with the ubiquitin-conjugating enzyme UbcD1. skpA null mutation results in centrosome overduplication, unusual chromatin condensation, defective endoreduplication and cell-cycle progression. While the molecular mechanisms that regulate expression of the skpA gene are poorly understood, the DNA replication-related element (DRE) and the DRE-binding factor (DREF) play important roles in regulating proliferation-related genes in Drosophila and DRE (5'-TATCGATA) and DRE-like (5'-CATCGATT) sequences were here found to be involved in skpA promoter activity. Thus both luciferase transient expression assays in cultured Drosophila S2 cells using skpA promoter-luciferase fusion plasmids and anti-lacZ immunostaining of various tissues from transgenic third instar larvae carrying the skpA promoter-lacZ fusion genes provided supportive evidence. Furthermore, anti-SKPa immunostaining of eye imaginal discs from flies overexpressing DREF showed ectopic expression of protein in the region posterior to the morphogenetic furrow where DREF is overexpressed. Knockdown of DREF in some tissues where SKPa distribution is well known almost completely abrogated the skpA gene expression. These findings, taken together, indicate that the Drosophila skpA gene is a novel target of the transcription factor DREF.

  10. Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF

    SciTech Connect

    Dang Thi Phuong Thao; Ida, Hiroyuki; Yoshida, Hideki; Yamaguchi, Masamitsu . E-mail: myamaguc@kit.ac.jp

    2006-11-01

    SKPa is component of a Drosophila SCF complex that functions in combination with the ubiquitin-conjugating enzyme UbcD1. skpA null mutation results in centrosome overduplication, unusual chromatin condensation, defective endoreduplication and cell-cycle progression. While the molecular mechanisms that regulate expression of the skpA gene are poorly understood, the DNA replication-related element (DRE) and the DRE-binding factor (DREF) play important roles in regulating proliferation-related genes in Drosophila and DRE (5'-TATCGATA) and DRE-like (5'-CATCGATT) sequences were here found to be involved in skpA promoter activity. Thus both luciferase transient expression assays in cultured Drosophila S2 cells using skpA promoter-luciferase fusion plasmids and anti-lacZ immunostaining of various tissues from transgenic third instar larvae carrying the skpA promoter-lacZ fusion genes provided supportive evidence. Furthermore, anti-SKPa immunostaining of eye imaginal discs from flies overexpressing DREF showed ectopic expression of protein in the region posterior to the morphogenetic furrow where DREF is overexpressed. Knockdown of DREF in some tissues where SKPa distribution is well known almost completely abrogated the skpA gene expression. These findings, taken together, indicate that the Drosophila skpA gene is a novel target of the transcription factor DREF.

  11. About the origin of retroviruses and the co-evolution of the gypsy retrovirus with the Drosophila flamenco host gene.

    PubMed

    Pélisson, A; Teysset, L; Chalvet, F; Kim, A; Prud'homme, N; Terzian, C; Bucheton, A

    1997-01-01

    The gypsy element of Drosophila melanogaster is the first retrovirus identified so far in invertebrates. According to phylogenetic data, gypsy belongs to the same group as the Ty3 class of LTR-retrotransposons, which suggests that retroviruses evolved from this kind of retroelements before the radiation of vertebrates. There are other invertebrate retroelements that are also likely to be endogenous retroviruses because they share with gypsy some structural and functional retroviral-like characteristics. Gypsy is controlled by a Drosophila gene called flamenco, the restrictive alleles of which maintain the retrovirus in a repressed state. In permissive strains, functional gypsy elements transpose at high frequency and produce infective particles. Defective gypsy proviruses located in pericentromeric heterochromatin of all strains seem to be very old components of the genome of Drosophila melanogaster, which indicates that gypsy invaded this species, or an ancestor, a long time ago. At that time, Drosophila melanogaster presumably contained permissive alleles of the flamenco gene. One can imagine that the species survived to the increase of genetic load caused by the retroviral invasion because restrictive alleles of flamenco were selected. The characterization of a retrovirus in Drosophila, one of the most advanced model organisms for molecular genetics, provides us with an exceptional clue to study how a species can resist a retroviral invasion.

  12. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.

    PubMed

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L; Chechenova, Maria B; Guerin, Paul; Cripps, Richard M

    2016-05-06

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016.

  13. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate Drosophila genes

    PubMed Central

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2017-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Due to the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a two-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. PMID:27009801

  14. The Drosophila wings apart Gene Anchors a Novel, Evolutionarily Conserved Pathway of Neuromuscular Development

    PubMed Central

    Morriss, Ginny R.; Jaramillo, Carmelita T.; Mikolajczak, Crystal M.; Duong, Sandy; Jaramillo, MaryAnn S.; Cripps, Richard M.

    2013-01-01

    wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes. PMID:24026097

  15. Gene length may contribute to graded transcriptional responses in the Drosophila embryo

    PubMed Central

    McHale, Peter; Mizutani, Claudia M.; Kosman, David; MacKay, Danielle L.; Belu, Mirela; Hermann, Anita; McGinnis, William; Bier, Ethan; Hwa, Terence

    2011-01-01

    An important question in developmental biology is how relatively shallow gradients of morphogens can reliably establish a series of distinct transcriptional readouts. Current models emphasize interactions between transcription factors binding in distinct modes to cis-acting sequences of target genes. Another recent idea is that the cis-acting interactions may amplify preexisting biases or prepatterns to establish robust transcriptional responses. In this study, we examine the possible contribution of one such source of prepattern, namely gene length. We developed quantitative imaging tools to measure gene expression levels for several loci at a time on a single-cell basis and applied these quantitative imaging tools to dissect the establishment of a gene expression border separating the mesoderm and neuroectoderm in the early Drosophila embryo. We first characterized the formation of a transient ventral-to-dorsal gradient of the Snail (Sna) repressor and then examined the relationship between this gradient and repression of neural target genes in the mesoderm. We found that neural genes are repressed in a nested pattern within a zone of the mesoderm abutting the neuroectoderm, where Sna levels are graded. While several factors may contribute to the transient graded response to the Sna gradient, our analysis suggests that gene length may play an important, albeit transient, role in establishing these distinct transcriptional responses. One prediction of the gene-length-dependent transcriptional patterning model is that the co-regulated genes knirps (a short gene) and knirps-related (a long gene) should be transiently expressed in domains of differing widths, which we confirmed experimentally. These findings suggest that gene length may contribute to establishing graded responses to morphogen gradients by providing transient prepatterns that are subsequently amplified and stabilized by traditional cis-regulatory interactions. PMID:21920356

  16. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  17. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data.

    PubMed

    Matthews, Beverley B; Dos Santos, Gilberto; Crosby, Madeline A; Emmert, David B; St Pierre, Susan E; Gramates, L Sian; Zhou, Pinglei; Schroeder, Andrew J; Falls, Kathleen; Strelets, Victor; Russo, Susan M; Gelbart, William M

    2015-06-24

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.

  18. Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein

    PubMed Central

    Gontijo, Alisson M.; Miguela, Veronica; Whiting, Michael F.; Woodruff, R.C.; Dominguez, Maria

    2011-01-01

    Genomes can encode a variety of proteins with unrelated architectures and activities. It is known that protein-coding genes of de novo origin have significantly contributed to this diversity. However, the molecular mechanisms and evolutionary processes behind these originations are still poorly understood. Here we show that the last 102 codons of a novel gene, Noble, assembled directly from non-coding DNA following an intronic deletion that induced alternative intron retention at the Drosophila melanogaster Rieske Iron Sulphur Protein (RFeSP) locus. A systematic analysis of the evolutionary processes behind the origin of Noble showed that its emergence was strongly biased by natural selection on and around the RFeSP locus. Noble mRNA is shown to encode a bona fide protein that lacks an iron sulphur domain and localizes to mitochondria. Together, these results demonstrate the generation of a novel protein at a naturally selected site. PMID:21610726

  19. A screen for identifying genes interacting with armadillo, the Drosophila homolog of beta-catenin.

    PubMed Central

    Greaves, S; Sanson, B; White, P; Vincent, J P

    1999-01-01

    Drosophila Armadillo is a multifunctional protein implicated in both cell adhesion, as a catenin, and cell signaling, as part of the Wingless signal transduction pathway. We have generated viable fly stocks with alterations in the level of Armadillo available for signaling. Flies from one stock overexpress Armadillo and, as a result, have increased vein material and bristles in the wings. Flies from the other stock have reduced cytoplasmic Armadillo following overexpression of the intracellular domain of DE-cadherin. These flies display a wing-notching phenotype typical of wingless mutations. Both misexpression phenotypes can be dominantly modified by removing one copy of genes known to encode members of the wingless pathway. Here we describe the identification of further mutations that dominantly modify the Armadillo misexpression phenotypes. These mutations are in genes encoding three different functions: establishment and maintenance of adherens junctions, cell cycle control, and Egfr signaling. PMID:10581282

  20. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain

    NASA Technical Reports Server (NTRS)

    Hassan, B. A.; Bermingham, N. A.; He, Y.; Sun, Y.; Jan, Y. N.; Zoghbi, H. Y.; Bellen, H. J.

    2000-01-01

    Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.

  1. Extended life-span conferred by cotransporter gene mutations in Drosophila.

    PubMed

    Rogina, B; Reenan, R A; Nilsen, S P; Helfand, S L

    2000-12-15

    Aging is genetically determined and environmentally modulated. In a study of longevity in the adult fruit fly, Drosophila melanogaster, we found that five independent P-element insertional mutations in a single gene resulted in a near doubling of the average adult life-span without a decline in fertility or physical activity. Sequence analysis revealed that the product of this gene, named Indy (for I'm not dead yet), is most closely related to a mammalian sodium dicarboxylate cotransporter-a membrane protein that transports Krebs cycle intermediates. Indy was most abundantly expressed in the fat body, midgut, and oenocytes: the principal sites of intermediary metabolism in the fly. Excision of the P element resulted in a reversion to normal life-span. These mutations may create a metabolic state that mimics caloric restriction, which has been shown to extend life-span.

  2. Adaptive response due to changes in gene regulation: a study with Drosophila.

    PubMed Central

    McDonald, J F; Chambers, G K; David, J; Ayala, F J

    1977-01-01

    In spite of the critical role of the process of adaptation in evolution, there are few detailed studies of the genotypic and molecular basis of the process. Drosophila melanogaster flies selected for increased tolerance to ethanol exhibited higher levels of alcohol dehydrogenase (alcohol:NAD+ oxidoreductase; EC 1.1.1.1) activity than unselected controls. A series of tests (electrophoresis, product inhibition, temperature stability, pH optima, substrate specificity, and Michaelis constants) gave no evidence of structural differences in the enzyme of the selected and the control flies. However, quantitative immunological assays showed that the selected flies contained significantly higher amounts of alcohol dehydrogenase. Adaptation of the selected flies to higher alcohol tolerance has most likely taken place by changes not in the structural gene locus coding for the enzyme, but by regulatory changes affecting the amount of gene product. Images PMID:412190

  3. dumpy interacts with a large number of genes in the developing wing of Drosophila melanogaster.

    PubMed

    Carmon, Amber; Topbas, Fitnat; Baron, Martin; MacIntyre, Ross J

    2010-01-01

    The complex Drosophila dumpy gene encodes a gigantic protein located in the apical extracellular matrix of epithelial cells. It has been shown to interact with several proteins notably during embryonic tracheal development. Here we examine Dumpy's interactions in vivo with mutations in 20 genes previously recovered in a screen for recessive lethals that generate blisters when somatic clones are produced by mitotic crossing over during wing development. Primarily using double mutants, we looked for both dominant effects of the wing blister mutants and the effects of blister mutant clones on dumpy expression. Sixteen of the mutants either suppressed or enhanced dumpy mutant phenotypes indicating the large Dumpy protein is a very important component of the epithelial extracellular matrix in the wing. Dumpy also interacts strongly with held out wings, which is involved in RNA localization and possibly alternative splicing.

  4. Position effect variegation of an acid phosphatase gene in Drosophila melanogaster.

    PubMed

    Frisardi, M C; MacIntyre, R J

    1984-01-01

    X-ray mutagenesis has produced a series of deficiencies in a duplication of part of the third chromosome containing the acid phosphatase gene (Acph-1) in Drosophila melanogaster. In one of these deficiencies, Acph-1 is shown to be undergoing position effect variegation. Naturally occurring electrophoretic variants of the enzyme were used to visualize and determine quantitatively the extent of variegation of the allele which is cis to the heterochromatic breakpoint. Alteration of genotypic background and temperature provided further evidence for position effect. Rocket immunoelectrophoresis was used to correlate the levels of acid phosphatase activity and protein in flies containing the deficiency. A novel result indicates that the variegation is not the consequence of an averaging of active and inactive cells, but rather due to a quantitative alteration of gene activity within at least some individual cells.

  5. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain

    NASA Technical Reports Server (NTRS)

    Hassan, B. A.; Bermingham, N. A.; He, Y.; Sun, Y.; Jan, Y. N.; Zoghbi, H. Y.; Bellen, H. J.

    2000-01-01

    Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.

  6. [Some behavioral features in Drosophila melanogaster lines carrying a flamenco gene mutation].

    PubMed

    Subocheva, E A; Romanova, L G; Romanova, N I; Kim, A I

    2001-11-01

    Olfactory sensitivity and locomotor activity was assayed in Drosophila melanogaster strains carrying a mutation of the flamenco gene, which controls transposition of the mobile genetic element 4 (MGE4) retrotransposon the gypsy mobile element. A change in olfactory sensitivity was detected. The reaction to the odor of acetic acid was inverted in flies of the mutator strain (MS), which carried the flam mutation and active MGE4 copies and were characterized by genetic instability. Flies of the genetically unstable strains displayed a lower locomotor activity. The behavioral changes in MS flies can be explained by the pleiotropic effect of the flam mutation or by insertion mutations which arise in behavior genes as a result of genome destabilization by MGE4.

  7. Using Database Matches with HMMGene for Automated Gene Detection in Drosophila

    PubMed Central

    Krogh, Anders

    2000-01-01

    The application of the gene finder HMMGene to the Adh region of the Drosophila melanogaster is described, and the prediction results are analyzed. HMMGene is based on a probabilistic model called a hidden Markov model, and the probabilistic framework facilitates the inclusion of database matches of varying degrees of certainty. It is shown that database matches clearly improve the performance of the gene finder. For instance, the sensitivity for coding exons predicted with both ends correct grows from 62% to 70% on a high-quality test set, when matches to proteins, cDNAs, repeats, and transposons are included. The specificity drops more than the sensitivity increases when ESTs are used. This is due to the high noise level in EST matches, and it is discussed in more detail why this is and how it might be improved. PMID:10779492

  8. Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene.

    PubMed

    Xu, S Y; Cang, C L; Liu, X F; Peng, Y Q; Ye, Y Z; Zhao, Z Q; Guo, A K

    2006-11-01

    Nociception, warning of injury that should be avoided, serves an important protective function in animals. In this study, we show that adult Drosophila avoids noxious heat by a jump response. To quantitatively analyze this nociceptive behavior, we developed two assays. In the CO2 laser beam assay, flies exhibit this behavior when a laser beam heats their abdomens. The consistency of the jump latency in this assay meets an important criterion for a good nociceptive assay. In the hot plate assay, flies jump quickly to escape from a hot copper plate (>45 degrees C). Our results demonstrate that, as in mammals, the latency of the jump response is inversely related to stimulus intensity, and innoxious thermosensation does not elicit this nociceptive behavior. To explore the genetic mechanisms of nociception, we examined several mutants in both assays. Abnormal nociceptive behavior of a mutant, painless, indicates that painless, a gene essential for nociception in Drosophila larvae, is also required for thermal nociception in adult flies. painless is expressed in certain neurons of the peripheral nervous system and thoracic ganglia, as well as in the definite brain structures, the mushroom bodies. However, chemical or genetic insults to the mushroom bodies do not influence the nociceptive behavior, suggesting that different painless-expressing neurons play diverse roles in thermal nociception. Additionally, no-bridge(KS49), a mutant that has a structural defect in the protocerebral bridge, shows defective response to noxious heat. Thus, our results validate adult Drosophila as a useful model to study the genetic mechanisms of thermal nociception.

  9. Integrating Circadian Activity and Gene Expression Profiles to Predict Chronotoxicity of Drosophila suzukii Response to Insecticides

    PubMed Central

    Hamby, Kelly A.; Kwok, Rosanna S.; Zalom, Frank G.; Chiu, Joanna C.

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between ‘summer’ and ‘winter’ conditions due to differences in photoperiod and temperature. In the ‘summer’, D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the ‘winter’, activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as

  10. Tissue-specific transcription of the neuronal gene Lim3 affects Drosophila melanogaster lifespan and locomotion.

    PubMed

    Rybina, Olga Y; Sarantseva, Svetlana V; Veselkina, Ekaterina R; Bolschakova, Olga I; Symonenko, Alexander V; Krementsova, Anna V; Ryabova, Elena V; Roshina, Natalia V; Pasyukova, Elena G

    2017-05-02

    The identity of neuronal cell types is established and maintained by the expression of neuronal genes coding for ion channels, neurotransmitters, and neuropeptides, among others. Some of these genes have been shown to affect lifespan; however, their role in lifespan control remains largely unclear. The Drosophila melanogaster gene Lim3 encodes a transcription factor involved in complicated motor neuron specification networks. We previously identified Lim3 as a candidate gene affecting lifespan. To obtain direct evidence of the involvement of Lim3 in lifespan control, Lim3 overexpression and RNAi knockdown were induced in the nervous system and muscles of Drosophila using the GAL4-UAS binary system. We demonstrated that Lim3 knockdown in the nervous system increased survival at an early age and that Lim3 knockdown in muscles both increased survival at an early age and extended median lifespan, directly establishing the involvement of Lim3 in lifespan control. Lim3 overexpression in nerves and muscles was deleterious and led to lethality and decreased lifespan, respectively. Lim3 misexpression in both nerves and muscles increased locomotion regardless of changes in lifespan, which indicated that the effects of Lim3 on lifespan and locomotion can be uncoupled. Decreased synaptic activity was observed in the neuromuscular junctions of individuals with Lim3 overexpression in muscles, in association with decreased lifespan. However, no changes in NMJ activity were associated with the positive shift in locomotion observed in all misexpression genotypes. Our data suggested that modifications in the microtubule network may be induced by Lim3 misexpression in muscles and cause an increase in locomotion.

  11. CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development.

    PubMed

    Yu, Zhongsheng; Wu, Honggang; Chen, Hanqing; Wang, Ruoqi; Liang, Xuehong; Liu, Jiyong; Li, Changqing; Deng, Wu-Min; Jiao, Renjie

    2013-09-01

    The histone chaperone CAF-1 is known for its role in DNA replication-coupled histone deposition. However, loss of function causes lethality only in higher multicellular organisms such as mice and flies, but not in unicellular organisms such as yeasts, suggesting that CAF-1 has other important functions than histone deposition during animal development. Emerging evidence indicates that CAF-1 also has a role in higher order chromatin organization and heterochromatin-mediated gene expression; it remains unclear whether CAF-1 has a role in specific signaling cascades to promote gene expression during development. Here, we report that knockdown of one of the subunits of Drosophila CAF-1, dCAF-1-p105 (Caf1-105), results in phenotypes that resemble those of, and are augmented synergistically by, mutations of Notch positive regulatory pathway components. Depletion of dCAF-1-p105 leads to abrogation of cut expression and to downregulation of other Notch target genes in wing imaginal discs. dCAF-1-p105 is associated with Suppressor of Hairless [Su(H)] and regulates its binding to the enhancer region of E(spl)mβ. The association of dCAF-1-p105 with Su(H) on chromatin establishes an active local chromatin status for transcription by maintaining a high level of histone H4 acetylation. In response to induced Notch activation, dCAF-1 associates with the Notch intracellular domain to activate the expression of Notch target genes in cultured S2 cells, manifesting the role of dCAF-1 in Notch signaling. Together, our results reveal a novel epigenetic function of dCAF-1 in promoting Notch pathway activity that regulates normal Drosophila development.

  12. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    PubMed

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  13. Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: A potential case of cytonuclear cointrogression

    PubMed Central

    Beck, Emily A.; Thompson, Aaron C.; Sharbrough, Joel; Brud, Evgeny; Llopart, Ana

    2015-01-01

    Introgression is the effective exchange of genetic information between species through natural hybridization. Previous genetic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear‐encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS cointrogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear‐ and mitochondrial‐encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum‐likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial‐encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression. PMID:26155926

  14. The Drosophila Hrb87F gene encodes a new member of the A and B hnRNP protein group.

    PubMed Central

    Haynes, S R; Johnson, D; Raychaudhuri, G; Beyer, A L

    1991-01-01

    Nascent premessenger RNA transcripts are packaged into heterogeneous nuclear ribonucleoprotein (hnRNP) complexes containing specific nuclear proteins, the hnRNP proteins. The A and B group proteins constitute a major class of small basic proteins found in mammalian hnRNP complexes. We have previously characterized the Drosophila melanogaster Hrb98DE gene, which is alternatively spliced to encode four protein isoforms closely related to the A and B proteins. We report here that the Drosophila genome contains a family of genes related to the Hrb98DE gene. One member of the family, Hrb87F, is very homologous to Hrb98DE in both sequence and structure. The Hrb87F transcripts (1.7 and 2.2 kb) utilize two alternative polyadenylation sites, are abundant in ovaries and early embryos, and are present in lesser amounts throughout development. In one wildtype strain of Drosophila there is a naturally-occurring polymorphism in this gene due to the insertion of a 412 transposable element in the 3' untranslated region. The larger transcript is not produced in these files and thus is not required for viability. Sequence identities among the Drosophila Hrb proteins and the vertebrate A and B hnRNP proteins suggest that these proteins may form a distinct subfamily within the larger family of related RNA binding proteins. Images PMID:1849257

  15. A gene expression map for the euchromatic genome of Drosophila melanogaster.

    PubMed

    Stolc, Viktor; Gauhar, Zareen; Mason, Christopher; Halasz, Gabor; van Batenburg, Marinus F; Rifkin, Scott A; Hua, Sujun; Herreman, Tine; Tongprasit, Waraporn; Barbano, Paolo Emilio; Bussemaker, Harmen J; White, Kevin P

    2004-10-22

    We used a maskless photolithography method to produce DNA oligonucleotide microarrays with unique probe sequences tiled throughout the genome of Drosophila melanogaster and across predicted splice junctions. RNA expression of protein coding and nonprotein coding sequences was determined for each major stage of the life cycle, including adult males and females. We detected transcriptional activity for 93% of annotated genes and RNA expression for 41% of the probes in intronic and intergenic sequences. Comparison to genome-wide RNA interference data and to gene annotations revealed distinguishable levels of expression for different classes of genes and higher levels of expression for genes with essential cellular functions. Differential splicing was observed in about 40% of predicted genes, and 5440 previously unknown splice forms were detected. Genes within conserved regions of synteny with D. pseudoobscura had highly correlated expression; these regions ranged in length from 10 to 900 kilobase pairs. The expressed intergenic and intronic sequences are more likely to be evolutionarily conserved than nonexpressed ones, and about 15% of them appear to be developmentally regulated. Our results provide a draft expression map for the entire nonrepetitive genome, which reveals a much more extensive and diverse set of expressed sequences than was previously predicted.

  16. A Genetic Analysis of the Drosophila Closely Linked Interacting Genes Bulge, Argos and Soba

    PubMed Central

    Wemmer, T.; Klambt, C.

    1995-01-01

    The Drosophila gene argos encodes a diffusible protein that acts as a negative regulator of cell fate decisions. To define interacting gene products, we performed a genetic analysis of argos, which suggests the presence of several partially redundant gene functions in its immediate vicinity at the chromosomal position 73A. Dose titration experiments have identified two of these loci. One of them corresponds to the gene bulge. Loss of function bulge alleles suppress the rough eye phenotype associated with overexpression of argos; conversely, amorphic argos mutations suppress the eye phenotype seen in flies bearing a single dominant bulge allele. Recombination mapping localized bulge 0.15 cM distal to argos. A second gene, suppressor of bulge and argos (soba), corresponds to the recently described lethal complementation group 73Aj. soba alleles suppress the eye phenotypes seen in flies expressing either the dominant bulge allele or the hs-argos construct. soba resides 120 kb proximal to argos. In addition, we have identified one allele of a new gene, clown, which like soba suppresses the eye phenotypes associated with hs-argos and bulge(Dominant). clown maps on chromosome 3 at the cytological position 68CD. PMID:7498742

  17. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  18. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster.

    PubMed Central

    Abraham, I; Doane, W W

    1978-01-01

    Laboratory strains of Drosophila melanogaster were screened for spatial variations in adult midgut alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) expression. No strain-specific differences were found anteriorly, but three patterns of activity were discerned in the posterior midgut: A, activity throughout most of the region; B, activity in the anterior part of the region; and C, little or no activity. Alleles of a control gene, map, are responsible for this tissue-specific regulation of activity; e.g., mapA homozygotes produce the A pattern and mapC homozygotes the C pattern. The map locus was placed at 2--80 +/- on the genetic map of chromosome 2R, about two crossover units distal to the Amy structural gene region for alpha-amylase. Electrophoretic studies showed that mapA is trans acting in mapA/mapC flies, allowing expression of amylase isozymes coded for by genes on the opposite chromosome. The map gene behaves as a temporal gene that is clearly separable from the tightly linked, duplicated Amy structural genes. Images PMID:100784

  19. A genetic analysis of the Drosophila closely linked interacting genes bulge, argos and soba.

    PubMed

    Wemmer, T; Klämbt, C

    1995-06-01

    The Drosophila gene argos encodes a diffusible protein that acts as a negative regulator of cell fate decisions. To define interacting gene products, we performed a genetic analysis of argos, which suggests the presence of several partially redundant gene functions in its immediate vicinity at the chromosomal position 73A. Dose titration experiments have identified two of these loci. One of them corresponds to the gene bulge. Loss of function bulge alleles suppress the rough eye phenotype associated with overexpression of argos; conversely, amorphic argos mutations suppress the eye phenotype seen in flies bearing a single dominant bulge allele. Recombination mapping localized bulge 0.15 cM distal to argos. A second gene, suppressor of bulge and argos (soba), corresponds to the recently described lethal complementation group 73Aj. soba alleles suppress the eye phenotypes seen in flies expressing either the dominant bulge allele or the hs-argos construct. soba resides 120 kb proximal to argos. In addition, we have identified one allele of a new gene, clown, which like soba suppresses the eye phenotypes associated with hs-argos and bulgeDominant. clown maps on chromosome 3 at the cytological position 68CD.

  20. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    SciTech Connect

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  1. A Direct Role for Cohesin in Gene Regulation and Ecdysone Response in Drosophila Salivary Glands

    PubMed Central

    Pauli, Andrea; van Bemmel, Joke G.; Oliveira, Raquel A.; Itoh, Takehiko; Shirahige, Katsuhiko; van Steensel, Bas; Nasmyth, Kim

    2015-01-01

    Summary Background Developmental abnormalities observed in Cornelia de Lange syndrome have been genetically linked to mutations in the cohesin machinery. These and other recent experimental findings have led to the suggestion that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression. Results We report that cleavage of cohesin’s kleisin subunit in postmitotic Drosophila salivary glands induces major changes in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Among these genes are several that are regulated by the steroid hormone ecdysone. Cytological visualization of transcription at selected ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in ecdysone receptor could be detected at this locus. Conclusion We conclude that cohesin regulates expression of a distinct set of genes, including those mediating the ecdysone response. PMID:20933422

  2. Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster

    PubMed Central

    Appel, Mirjam; Scholz, Claus-Jürgen; Müller, Tobias; Dittrich, Marcus; König, Christian; Bockstaller, Marie; Oguz, Tuba; Khalili, Afshin; Antwi-Adjei, Emmanuel; Schauer, Tamas; Margulies, Carla; Tanimoto, Hiromu; Yarali, Ayse

    2015-01-01

    Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly’s body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms. PMID:25992709

  3. FlpStop, a tool for conditional gene control in Drosophila

    PubMed Central

    Fisher, Yvette E; Yang, Helen H; Isaacman-Beck, Jesse; Xie, Marjorie; Gohl, Daryl M; Clandinin, Thomas R

    2017-01-01

    Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation. DOI: http://dx.doi.org/10.7554/eLife.22279.001 PMID:28211790

  4. On the Long-term Stability of Clines in Some Metabolic Genes in Drosophila melanogaster

    PubMed Central

    Cogni, Rodrigo; Kuczynski, Kate; Koury, Spencer; Lavington, Erik; Behrman, Emily L.; O’Brien, Katherine R.; Schmidt, Paul S.; Eanes, Walter F.

    2017-01-01

    Very little information exists for long-term changes in genetic variation in natural populations. Here we take the unique opportunity to compare a set of data for SNPs in 15 metabolic genes from eastern US collections of Drosophila melanogaster that span a large latitudinal range and represent two collections separated by 12 to 13 years. We also expand this to a 22-year interval for the Adh gene and approximately 30 years for the G6pd and Pgd genes. During these intervals, five genes showed a statistically significant change in average SNP allele frequency corrected for latitude. While much remains unchanged, we see five genes where latitudinal clines have been lost or gained and two where the slope significantly changes. The long-term frequency shift towards a southern favored Adh S allele reported in Australia populations is not observed in the eastern US over a period of 21 years. There is no general pattern of southern-favored or northern-favored alleles increasing in frequency across the genes. This observation points to the fluid nature of some allelic variation over this time period and the action of selective responses or migration that may be more regional than uniformly imposed across the cline. PMID:28220806

  5. Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development

    PubMed Central

    Eggert, Tanja; Hauck, Bernd; Hildebrandt, Nicole; Gehring, Walter J.; Walldorf, Uwe

    1998-01-01

    Vertebrate and invertebrate eye development require the activity of several evolutionarily conserved genes. Among these the Pax-6 genes play a major role in the genetic control of eye development. Mutations in Pax-6 genes affect eye development in humans, mice, and Drosophila, and misexpression of Pax-6 genes in Drosophila can induce ectopic eyes. Here we report the identification of a paired-like homeobox gene, DRx, which is also conserved from flies to vertebrates. Highly conserved domains in the Drosophila protein are the octapeptide, the identical homeodomain, the carboxyl-terminal OAR domain, and a newly identified Rx domain. DRx is expressed in the embryo in the procephalic region and in the clypeolabrum from stage 8 on and later in the brain and the central nervous system. Compared with eyeless, the DRx expression in the embryo starts earlier, similar to the pattern in vertebrates, where Rx expression precedes Pax-6 expression. Because the vertebrate Rx genes have a function during brain and eye development, it was proposed that DRx has a similar function. The DRx expression pattern argues for a conserved function at least during brain development, but we could not detect any expression in the embryonic eye primordia or in the larval eye imaginal discs. Therefore DRx could be considered as a homolog of vertebrate Rx genes. The Rx genes might be involved in brain patterning processes and specify eye fields in different phyla. PMID:9482887

  6. Developmental analysis of a hybrid gene composed of parts of the Ubx and abd-A genes of Drosophila

    PubMed Central

    Casanova, Jordi; Sánchez-Herrero, Ernesto; Morata, Ginés

    1988-01-01

    C1 is a mutation in the bithorax complex (BX-C) of Drosophila resulting from the deletion of parts of the Ubx and abd-A genes. We show that the `hybrid' gene formed by the fusion of the remaining parts of Ubx and abd-A (5'abd-A/Ubx3') is functional and developmentally active. It specifies parasegment patterns with a mixture of thoracic and abdominal identities. The hybrid gene also has other properties typical of conventional bithorax genes: it can be spatially derepressed in the absence of trans-acting genes like extra Sex combs or Polycomb and in turn represses other homeotics like Sex combs reduced. The comparison of embryos containing exclusively hybrid gene activity with others having no BX-C function indicates that the hybrid gene is active in the body region defined by PS5 to PS14. The expression in PS5 and PS6 suggests that one control region (abx) of Ubx can regulate the transcription of the abd-A promoter. Images PMID:16453832

  7. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    PubMed Central

    Landeen, Emily L.; Muirhead, Christina A.; Meiklejohn, Colin D.; Presgraves, Daven C.

    2016-01-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  8. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    PubMed

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  9. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites

    PubMed Central

    Parrish, Jay Z.; Emoto, Kazuo; Jan, Lily Yeh; Jan, Yuh Nung

    2007-01-01

    Dendritic fields are important determinants of neuronal function. However, how neurons establish and then maintain their dendritic fields is not well understood. Here we show that Polycomb group (PcG) genes are required for maintenance of complete and nonoverlapping dendritic coverage of the larval body wall by Drosophila class IV dendrite arborization (da) neurons. In esc, Su(z)12, or Pc mutants, dendritic fields are established normally, but class IV neurons display a gradual loss of dendritic coverage, while axons remain normal in appearance, demonstrating that PcG genes are specifically required for dendrite maintenance. Both multiprotein Polycomb repressor complexes (PRCs) involved in transcriptional silencing are implicated in regulation of dendrite arborization in class IV da neurons, likely through regulation of homeobox (Hox) transcription factors. We further show genetic interactions and association between PcG proteins and the tumor suppressor kinase Warts (Wts), providing evidence for their cooperation in multiple developmental processes including dendrite maintenance. PMID:17437999

  10. Mutation in a structural gene for a beta-tubulin specific to testis in Drosophila melanogaster.

    PubMed Central

    Kemphues, K J; Raff, R A; Kaufman, T C; Raff, E C

    1979-01-01

    By two-dimensional gel electrophoresis of tubulins prepared from tissues of Drosophila melanogaster we have identified a beta-tubulin subunit that is present only in the testis. Furthermore, we have isolated, as a male sterile, a third chromosome dominant mutation [ms(3)KKD] in the structural gene for this beta-tubulin. Males heterozygous for this mutation produce no motile spermatozoa. Beginning with meiosis, all processes in spermatogenesis are abnormal to some extent. Many microtubules (including both cytoplasmic microtubules and doublet tubules of the axoneme) show aberrant structure in cross section, and the overall morphology of the developing spermatids is disorganized. Testes from these males were shown, by two-dimensional gel electrophoresis, to contain both the normal testis-specific beta-tubulin and an electrophoretic variant of this tubulin in equal amounts. Both wild-type and mutant testis-specific beta-tubulins were characterized by vinblastine sulfate precipitation, coassembly with purified Drosophila embryo tubulin, and peptide mapping. Images PMID:115008

  11. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size

    PubMed Central

    Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  12. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  13. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity.

    PubMed

    Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q

    2017-04-10

    An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors.

  14. The Effects of Royal Jelly on Fitness Traits and Gene Expression in Drosophila melanogaster.

    PubMed

    Shorter, John R; Geisz, Matthew; Özsoy, Ergi; Magwire, Michael M; Carbone, Mary Anna; Mackay, Trudy F C

    2015-01-01

    Royal Jelly (RJ) is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D. melanogaster reared on standard culture medium supplemented with increasing concentrations of RJ. We found that lower concentrations of RJ do induce significant differences in body size in both sexes; higher concentrations reduce size, increase mortality, shorten lifespan and reduce productivity. Increased concentrations of RJ also consistently lengthened development time in both sexes. RJ is associated with changes in expression of 1,581 probe sets assessed using Affymetrix Drosophila 2.0 microarrays, which were enriched for genes associated with metabolism and amino acid degradation. The transcriptional changes are consistent with alterations in cellular processes to cope with excess nutrients provided by RJ, including biosynthesis and detoxification, which might contribute to accelerated senescence and reduced lifespan.

  15. Prenatal hyperbaric normoxia treatment improves healthspan and regulates chitin metabolic genes in Drosophila melanogaster

    PubMed Central

    Yu, Suyeun; Lee, Eunil; Tsogbadrakh, Bodokhsuren; Son, Gwang-Ic; Kim, Mari

    2016-01-01

    Aging is a universal, irreversible process accompanied by physiological declines that culminate in death. Rapid progress in gerontology research has revealed that aging can be slowed through mild stress-induced hormesis. We previously reported that hyperbaric normoxia (HN, 2 atm absolute pressure with 10% O2) induces a cytoprotective response in vitro by regulating fibronectin. In the present study, we investigated the hormetic effects of prenatal HN exposure on Drosophila healthspan related to molecular defense mechanisms. HN exposure had no disruptive effect on developmental rate or adult body weight. However, lifespan was clearly enhanced, as was resistance to oxidative and heat stress. In addition, levels of reactive oxygen species were significantly decreased and motor performance was increased. HN stress has been shown to trigger molecular changes in the heat shock response and ROS scavenging system, including hsp70, catalase, glutathione synthase, and MnSOD. Furthermore, to determine the hormetic mechanism underlying these phenotypic and molecular changes, we performed a genome-wide profiling in HN-exposed and control flies. Genes encoding chitin metabolism were highly up-regulated, which could possibly serve to scavenge free radicals. These results identify prenatal HN exposure as a potential hormetic factor that may improve longevity and healthspan by enhancing defense mechanisms in Drosophila. PMID:27777382

  16. Drosophila Microbiota Modulates Host Metabolic Gene Expression via IMD/NF-κB Signaling

    PubMed Central

    Bozonnet, Noémie; Puthier, Denis; Royet, Julien; Leulier, François

    2014-01-01

    Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome. Our results demonstrate that Drosophila microbiota has a marked impact on the midgut transcriptome and promotes the expression of genes involved in host digestive functions and primary metabolism. We identify the IMD/Relish signaling pathway as a central regulator of this microbiota-mediated transcriptional response and we reveal a marked transcriptional trade-off between the midgut response to its beneficial microbiota and to bacterial pathogens. Taken together our results indicate that microbiota association potentiates host nutrition and host metabolic state, two key physiological parameters influencing host fitness. Our work paves the way to subsequent mechanistic studies to reveal how these microbiota-dependent transcriptional signatures translate into host physiological benefits. PMID:24733183

  17. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior.

    PubMed

    Evans, Daniel S; Cline, Thomas W

    2013-11-19

    The switch gene Sex-lethal (Sxl) was thought to elicit all aspects of Drosophila female somatic differentiation other than size dimorphism by controlling only the switch gene transformer (tra). Here we show instead that Sxl controls an aspect of female sexual behavior by acting on a target other than or in addition to tra. We inferred the existence of this unknown Sxl target from the observation that a constitutively feminizing tra transgene that restores fertility to tra(-) females failed to restore fertility to Sxl-mutant females that were adult viable but functionally tra(-). The sterility of these mutant females was caused by an ovulation failure. Because tra expression is not sufficient to render these Sxl-mutant females fertile, we refer to this pathway as the tra-insufficient feminization (TIF) branch of the sex-determination regulatory pathway. Using a transgene that conditionally expresses two Sxl feminizing isoforms, we find that the TIF branch is required developmentally for neurons that also sex-specifically express fruitless, a tra gene target controlling sexual behavior. Thus, in a subset of fruitless neurons, targets of the TIF and tra pathways appear to collaborate to control ovulation. In most insects, Sxl has no sex-specific functions, and tra, rather than Sxl, is both the target of the primary sex signal and the gene that maintains the female developmental commitment via positive autoregulation. The TIF pathway may represent an ancestral female-specific function acquired by Sxl in an early evolutionary step toward its becoming the regulator of tra in Drosophila.

  18. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior

    PubMed Central

    Evans, Daniel S.; Cline, Thomas W.

    2013-01-01

    The switch gene Sex-lethal (Sxl) was thought to elicit all aspects of Drosophila female somatic differentiation other than size dimorphism by controlling only the switch gene transformer (tra). Here we show instead that Sxl controls an aspect of female sexual behavior by acting on a target other than or in addition to tra. We inferred the existence of this unknown Sxl target from the observation that a constitutively feminizing tra transgene that restores fertility to tra− females failed to restore fertility to Sxl-mutant females that were adult viable but functionally tra−. The sterility of these mutant females was caused by an ovulation failure. Because tra expression is not sufficient to render these Sxl-mutant females fertile, we refer to this pathway as the tra-insufficient feminization (TIF) branch of the sex-determination regulatory pathway. Using a transgene that conditionally expresses two Sxl feminizing isoforms, we find that the TIF branch is required developmentally for neurons that also sex-specifically express fruitless, a tra gene target controlling sexual behavior. Thus, in a subset of fruitless neurons, targets of the TIF and tra pathways appear to collaborate to control ovulation. In most insects, Sxl has no sex-specific functions, and tra, rather than Sxl, is both the target of the primary sex signal and the gene that maintains the female developmental commitment via positive autoregulation. The TIF pathway may represent an ancestral female-specific function acquired by Sxl in an early evolutionary step toward its becoming the regulator of tra in Drosophila. PMID:24191002

  19. Synergistic Interactions between Drosophila Orthologues of Genes Spanned by De Novo Human CNVs Support Multiple-Hit Models of Autism

    PubMed Central

    Grice, Stuart J.; Liu, Ji-Long; Webber, Caleb

    2015-01-01

    Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates

  20. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids

    PubMed Central

    Liénard, Marjorie A.; Araripe, Luciana O.; Hartl, Daniel L.

    2016-01-01

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1. Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1. Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation. PMID:27357670

  1. Cytogenetic mapping of the Muller F element genes in Drosophila willistoni group.

    PubMed

    Pita, Sebastián; Panzera, Yanina; Lúcia da Silva Valente, Vera; de Melo, Zilpa das Graças Silva; Garcia, Carolina; Garcia, Ana Cristina Lauer; Montes, Martín Alejandro; Rohde, Claudia

    2014-10-01

    Comparative genomics in Drosophila began in 1940, when Muller stated that the ancestral haploid karyotype of this genus is constituted by five acrocentric chromosomes and one dot chromosome, named A to F elements. In some species of the willistoni group such as Drosophila willistoni and D. insularis, the F element, instead of a dot chromosome, has been incorporated into the E element, forming chromosome III (E + F fusion). The aim of this study was to investigate the scope of the E + F fusion in the willistoni group, evaluating six other species. Fluorescent in situ hybridization was used to locate two genes of the F element previously studied-cubitus interruptus (ci) and eyeless (ey)-in species of the willistoni and bocainensis subgroups. Moreover, polytene chromosome photomaps corresponding to the F element (basal portion of chromosome III) were constructed for each species studied. In D. willistoni, D. paulistorum and D. equinoxialis, the ci gene was located in subSectction 78B and the ey gene in 78C. In D. tropicalis, ci was located in subSection 76B and ey in 76C. In species of the bocainensis subgroup, ci and ey were localized, respectively, at subsections 76B and 76C in D. nebulosa and D. capricorni, and 76A and 76C in D. fumipennis. Despite the differences in the subsection numbers, all species showed the same position for ci and ey. The results confirm the synteny of E + F fusion in willistoni and bocainensis subgroups, and allow estimating the occurrence of this event at 15 Mya, at least.

  2. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster

    PubMed Central

    Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-01-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  3. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor.

    PubMed

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (-40 to -47), DRE2 (-48 to -55), and DRE3 (-267 to -274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.

  4. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    SciTech Connect

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.

  5. The Drosophila pigmentation gene pink (p) encodes a homologue of human Hermansky-Pudlak syndrome 5 (HPS5).

    PubMed

    Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C

    2007-02-01

    Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.

  6. [Analysis of the structure and expression of the DIP1 gene in Drosophila melanogaster strains mutant for the flamenco gene].

    PubMed

    Nefedova, L N; Potanova, M V; Romanova, N I; Kim, A I

    2009-02-01

    DIP1 gene transcription was analyzed with the use of RT-PCR in three Drosophila melanogaster strains with the flamenco- phenotype (flam(SS), flam(MS), and flam(Ore)) and in one flamenco+ strain at the stages of embryos (0-24 h), third-instar larvae, and adult flies. The mutant strains flam(SS) and flam(Ore) lack an active copy of transposon gypsy. Theflam(MS) strain was obtained by introducing an active copy of gypsy in flies of theflam(SS) strain and is characterized by a high rate of gypsy transpositions. The experiments showed that at least five forms of DIP1 gene transcripts are produced. The form of cDNA corresponding to CDS DIP1-d was discovered only in embryos. It was found that DIP1 gene transcription depends on the age of flies: at the larval stage the level of transcription is significantly reduced. However, no reduction of gene transcription is observed in theflam(Ore) strain. These results suggest that the flamenco- phenotype may be associated with an alteration of DIP1 gene transcription, as in differentflamenco- strains the DIP1 gene expression is changed differently.

  7. Identification of novel Drosophila meiotic genes recovered in a P-element screen.

    PubMed

    Sekelsky, J J; McKim, K S; Messina, L; French, R L; Hurley, W D; Arbel, T; Chin, G M; Deneen, B; Force, S J; Hari, K L; Jang, J K; Laurençon, A C; Madden, L D; Matthies, H J; Milliken, D B; Page, S L; Ring, A D; Wayson, S M; Zimmerman, C C; Hawley, R S

    1999-06-01

    The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes.

  8. Chromatin remodeling protein INO80 has a role in regulation of homeotic gene expression in Drosophila.

    PubMed

    Bhatia, Shipra; Pawar, Hema; Dasari, Vasanthi; Mishra, Rakesh K; Chandrashekaran, Shanti; Brahmachari, Vani

    2010-06-01

    The homologues of yeast INO80 are identified across phyla from Caenorhabditis elegans to human. In Drosophila it has been shown that dINO80 forms a complex with Pleiohomeotic but does not interact with Hox PRE (polycomb responsive element). As some proteins of the INO80 complex are implicated in homeotic gene regulation, we examined if dINO80 is involved in regulation of homeotic genes. We find that dINO80 null mutants generated by imprecise excision of P-element are late embryonic lethals and show homeotic transformation. We detect misexpression of homeotic genes like Sex-comb reduced, Antennapedia, Ultrabithorax and Abdominal-B in dIno80 mutant embryos by immunostaining which is further substantiated by quantitative PCR. Polycomb phenotype in dIno80-Pc is enhanced in double mutants. Concurrently, the localization of dINO80 to sequences upstream of misexpressed genes in vivo shows that dINO80 is involved in homeotic gene regulation and probably through its interactions with PcG-trxG complexes.

  9. Transcriptional regulation of the Drosophila moira and osa genes by the DREF pathway.

    PubMed

    Nakamura, Kumi; Ida, Hiroyuki; Yamaguchi, Masamitsu

    2008-07-01

    The DNA replication-related element binding factor (DREF) plays an important role in regulation of cell proliferation in Drosophila, binding to DRE and activating transcription of genes carrying this element in their promoter regions. Overexpression of DREF in eye imaginal discs induces a rough eye phenotype in adults, which can be suppressed by half dose reduction of the osa or moira (mor) genes encoding subunits of the BRM complex. This ATP-dependent chromatin remodeling complex is known to control gene expression and the cell cycle. In the 5' flanking regions of the osa and mor genes, DRE and DRE-like sequences exist which contribute to their promoter activities. Expression levels and promoter activities of osa and mor are decreased in DREF knockdown cells and our results in vitro and in cultured cells indicate that transcription of osa and mor is regulated by the DRE/DREF regulatory pathway. In addition, mRNA levels of other BRM complex subunits and a target gene, string/cdc25, were found to be decreased by knockdown of DREF. These results indicate that DREF is involved in regulation of the BRM complex and thereby the cell cycle.

  10. Transcriptional regulation of the Drosophila ANT gene by the DRE/DREF system.

    PubMed

    Kim, Young Shin; Shin, Meong Joo; Yang, Dong Jin; Yamaguchi, Masamitsu; Park, So Young; Yoo, Mi Ae

    2007-05-01

    Adenine nucleotide translocase (ANT) is a crucial component in the maintenance of cellular energy homeostasis, as well as in the formation of the mitochondrial permeability transition pores. However, the molecular mechanisms regulating the expression of the ANT gene are poorly understood. In this study, we have identified three DNA replication-related elements (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila ANT (dANT) gene. Gel-mobility shift analyses revealed that all three of the DREs were recognized by the DRE-binding factor (DREF). The site-directed mutagenesis of these DRE sites induces a considerable reduction in the activity of the dANT gene promoter in vitro. Analyses with transgenic flies harboring a dANT-lacZ fusion gene bearing the wild-type or mutant DRE sites showed that the DRE sites were required for the expression of dANT in vivo. We determined that the over-expression or knockdown of DREF exerts a regulatory effect on the activity of the dANT promoter. In addition, we observed the collapse of mitochondrial membrane potential in the eye imaginal discs in which DREF was over-expressed. These results show that DRE/DREF is a crucial regulator of dANT gene expression, and also suggest the possibility that cross-talk may occur between the DRE/DREF system and mitochondrial functioning.

  11. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster.

    PubMed

    Remnant, Emily J; Good, Robert T; Schmidt, Joshua M; Lumb, Christopher; Robin, Charles; Daborn, Phillip J; Batterham, Philip

    2013-09-03

    The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala(301) to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala(301) to Ser resistance mutation and Met(360) to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser(301) homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser(301) change into an Ala(301) background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene.

  12. Achilles is a circadian clock-controlled gene that regulates immune function in Drosophila.

    PubMed

    Li, Jiajia; Terry, Erin E; Fejer, Edith; Gamba, Diana; Hartmann, Natalie; Logsdon, Joseph; Michalski, Daniel; Rois, Lisa E; Scuderi, Maria J; Kunst, Michael; Hughes, Michael E

    2017-03-01

    The circadian clock is a transcriptional/translational feedback loop that drives the rhythmic expression of downstream mRNAs. Termed "clock-controlled genes," these molecular outputs of the circadian clock orchestrate cellular, metabolic, and behavioral rhythms. As part of our on-going work to characterize key upstream regulators of circadian mRNA expression, we have identified a novel clock-controlled gene in Drosophila melanogaster, Achilles (Achl), which is rhythmic at the mRNA level in the brain and which represses expression of antimicrobial peptides in the immune system. Achilles knock-down in neurons dramatically elevates expression of crucial immune response genes, including IM1 (Immune induced molecule 1), Mtk (Metchnikowin), and Drs (Drosomysin). As a result, flies with knocked-down Achilles expression are resistant to bacterial challenges. Meanwhile, no significant change in core clock gene expression and locomotor activity is observed, suggesting that Achilles influences rhythmic mRNA outputs rather than directly regulating the core timekeeping mechanism. Notably, Achilles knock-down in the absence of immune challenge significantly diminishes the fly's overall lifespan, indicating a behavioral or metabolic cost of constitutively activating this pathway. Together, our data demonstrate that (1) Achilles is a novel clock-controlled gene that (2) regulates the immune system, and (3) participates in signaling from neurons to immunological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    PubMed

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  14. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans

    PubMed Central

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J.

    2015-01-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3’ UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes. PMID:25950438

  15. Autoregulation of the Drosophila disconnected gene in the developing visual system.

    PubMed

    Lee, K J; Mukhopadhyay, M; Pelka, P; Campos, A R; Steller, H

    1999-10-15

    The Drosophila disconnected (disco) gene is required for the formation of appropriate connections between the larval optic nerve and its target cells in the brain. The disco gene encodes a nuclear protein with two zinc fingers, which suggests that the gene product is a transcription factor. Here, we present data supporting this notion. We find that disco expression in the optic lobe primordium, a group of cells contacted by the developing optic nerve, depends on an autoregulatory feedback loop. We show that wild-type disco function is required for maintenance of disco mRNA and protein expression in the developing optic lobe. In addition, we demonstrate that ubiquitous Disco activity supplied by a heat-inducible gene construct activates expression from the endogenous disco gene specifically in the optic lobe primordium. Consistent with a role of Disco as a transcriptional regulatory protein, we show that portions of the Disco protein are capable of activating the transcription of reporter constructs in a heterologous system. Moreover, we find that the zinc finger portion of Disco binds in vitro to sequences located near the disco transcription unit, suggesting that Disco autoregulates its transcription in the optic lobe primordium by direct binding to a regulatory element in its own promoter.

  16. The Early Developmental Gene Semaphorin 5c Contributes to Olfactory Behavior in Adult Drosophila

    PubMed Central

    Rollmann, Stephanie M.; Yamamoto, Akihiko; Goossens, Tim; Zwarts, Liesbeth; Callaerts-Végh, Zsuzsanna; Callaerts, Patrick; Norga, Koenraad; Mackay, Trudy F. C.; Anholt, Robert R. H.

    2007-01-01

    Behaviors are complex traits influenced by multiple pleiotropic genes. Understanding the mechanisms that give rise to complex behaviors requires an understanding of how variation in transcriptional regulation shapes nervous system development and how variation in brain structure influences an organism's ability to respond to its environment. To begin to address this problem, we used olfactory behavior in Drosophila melanogaster as a model and showed that a hypomorphic transposon-mediated mutation of the early developmental gene Semaphorin-5c (Sema-5c) results in aberrant behavioral responses to the repellant odorant benzaldehyde. We fine mapped this effect to the Sema-5c locus using deficiency mapping, phenotypic reversion through P-element excision, and transgenic rescue. Morphometric analysis of this Sema-5c allele reveals subtle neuroanatomical changes in the brain with a reduction in the size of the ellipsoid body. High-density oligonucleotide expression microarrays identified 50 probe sets with altered transcriptional regulation in the Sema-5c background and quantitative complementation tests identified epistatic interactions between nine of these coregulated genes and the transposon-disrupted Sema-5c gene. Our results demonstrate how hypomorphic mutation of an early developmental gene results in genomewide transcriptional consequences and alterations in brain structure accompanied by profound impairment of adult behavior. PMID:17435226

  17. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster.

    PubMed

    Lyckegaard, E M; Clark, A G

    1989-03-01

    Multigene families on the Y chromosome face an unusual array of evolutionary forces. Both ribosomal DNA and Stellate, the two families examined here, have multiple copies of similar sequences on the X and Y chromosomes. Although the rate of sequence divergence on the Y chromosome depends on rates of mutation, gene conversion and exchange with the X chromosome, as well as purifying selection, the regulation of gene copy number may also depend on other pleiotropic functions, such as maintenance of chromosome pairing. Gene copy numbers were estimated for a series of 34 Y chromosome replacement lines using densitometric measurements of slot blots of genomic DNA from adult Drosophila melanogaster. Scans of autoradiographs of the same blots probed with the cloned alcohol dehydrogenase gene, a single copy gene, served as internal standards. Copy numbers span a 6-fold range for ribosomal DNA and a 3-fold range for Stellate DNA. Despite this magnitude of variation, there was no association between copy number and segregation variation of the sex chromosomes.

  18. The Drosophila over compensating males gene genetically inhibits dosage compensation in males.

    PubMed

    Lim, Chiat Koo; Kelley, Richard L

    2013-01-01

    Male Drosophila are monosomic for the X chromosome, but survive due to dosage compensation. They use the Male Specific Lethal (MSL) complex composed of noncoding roX RNA and histone modifying enzymes to hypertranscribe most genes along the X ∼1.6-1.8 fold relative to each female allele. It is not known how the MSL complex achieves this precise adjustment to a large and diverse set of target genes. We carried out a genetic screen searching for novel factors that regulate dosage compensation in flies. This strategy generated thirty alleles in a previously uncharacterized gene, over compensating males (ocm) that antagonizes some aspect of MSL activity. The mutations were initially recovered because they derepressed an MSL-dependent eye color reporter. Null ocm mutations are lethal to both sexes early in development revealing an essential function. Combinations of hypomorphic ocm alleles display a male specific lethality similar to mutations in the classic msl genes, but ocm males die due to excessive, rather than lack of dosage compensation. Males that die due to very low MSL activity can be partially rescued by ocm mutations. Likewise, males that would die from ocm mutations can be rescued by reducing the dose of various msl and roX genes. ocm encodes a large nuclear protein that shares a novel cysteine rich motif with known transcription factors.

  19. Identification of novel Drosophila meiotic genes recovered in a P-element screen.

    PubMed Central

    Sekelsky, J J; McKim, K S; Messina, L; French, R L; Hurley, W D; Arbel, T; Chin, G M; Deneen, B; Force, S J; Hari, K L; Jang, J K; Laurençon, A C; Madden, L D; Matthies, H J; Milliken, D B; Page, S L; Ring, A D; Wayson, S M; Zimmerman, C C; Hawley, R S

    1999-01-01

    The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes. PMID:10353897

  20. A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster.

    PubMed Central

    Huang, A M; Rubin, G M

    2000-01-01

    Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell differentiation, and causes a rough eye phenotype. To identify genes that modulate RAS signaling, we screened for genes that alter RAS1/KSR signaling efficiency when misexpressed. In this screen, we recovered three known genes, Lk6, misshapen, and Akap200. We also identified seven previously undescribed genes; one encodes a novel rel domain member of the NFAT family, and six encode novel proteins. These genes may represent new components of the RAS pathway or components of other signaling pathways that can modulate signaling by RAS. We discuss the utility of gain-of-function screens in identifying new components of signaling pathways in Drosophila. PMID:11063696

  1. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila.

    PubMed

    Brun, Sylvain; Vidal, Sheila; Spellman, Paul; Takahashi, Kuniaki; Tricoire, Hervé; Lemaitre, Bruno

    2006-04-01

    Septic injury triggers a rapid and widespread response in Drosophila adults that involves the up-regulation of many genes required to combat infection and for wound healing. Genome-wide expression profiling has already demonstrated that this response is controlled by signaling through the Toll, Imd, JAK-STAT and JNK pathways. Using oligonucleotide microarrays, we now demonstrate that the MAPKKK Mekk1 regulates a small subset of genes induced by septic injury including Turandot (Tot) stress genes. Our analysis indicates that Tot genes show a complex regulation pattern including signals from both the JAK-STAT and Imd pathways and Mekk1. Interestingly, Mekk1 flies are resistant to microbial infection but susceptible to paraquat, an inducer of oxidative stress. These results point to a role of Mekk1 in the protection against tissue damage and/or protein degradation and indicate complex interactions between stress and immune pathways in Drosophila.

  2. Drosophila Med6 Is Required for Elevated Expression of a Large but Distinct Set of Developmentally Regulated Genes

    PubMed Central

    Gim, Byung Soo; Park, Jin Mo; Yoon, Jeong Ho; Kang, Changwon; Kim, Young-Joon

    2001-01-01

    Mediator is the evolutionarily conserved coactivator required for the integration and recruitment of diverse regulatory signals to basal transcription machinery. To elucidate the functions of metazoan Mediator, we isolated Drosophila melanogaster Med6 mutants. dMed6 is essential for viability and/or proliferation of most cells. dMed6 mutants failed to pupate and died in the third larval instar with severe proliferation defects in imaginal discs and other larval mitotic cells. cDNA microarray, quantitative reverse transcription-PCR, and in situ expression analyses of developmentally regulated genes in dMed6 mutants showed that transcriptional activation of many, but not all, genes was affected. Among the genes found to be affected were some that play a role in cell proliferation and metabolism. Therefore, dMed6 is required in most cells for transcriptional regulation of many genes important for diverse aspects of Drosophila development. PMID:11438678

  3. Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression

    PubMed Central

    Verd, Berta; Crombach, Anton

    2017-01-01

    Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory

  4. A mesh generation and machine learning framework for Drosophila gene expression pattern image analysis.

    PubMed

    Zhang, Wenlu; Feng, Daming; Li, Rongjian; Chernikov, Andrey; Chrisochoides, Nikos; Osgood, Christopher; Konikoff, Charlotte; Newfeld, Stuart; Kumar, Sudhir; Ji, Shuiwang

    2013-12-28

    Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions. We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/. Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.

  5. Evolutionary history of the third chromosome gene arrangements of Drosophila pseudoobscura inferred from inversion breakpoints.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2011-08-01

    The third chromosome of Drosophila pseudoobscura is polymorphic for numerous gene arrangements that form classical clines in North America. The polytene salivary chromosomes isolated from natural populations revealed changes in gene order that allowed the different gene arrangements to be linked together by paracentric inversions representing one of the first cases where genetic data were used to construct a phylogeny. Although the inversion phylogeny can be used to determine the relationships among the gene arrangements, the cytogenetic data are unable to infer the ancestral arrangement or the age of the different chromosome types. These are both important properties if one is to infer the evolutionary forces responsible for the spread and maintenance of the chromosomes. Here, we employ the nucleotide sequences of 18 regions distributed across the third chromosome in 80-100 D. pseudoobscura strains to test whether five gene arrangements are of unique or multiple origin, what the ancestral arrangement was, and what are the ages of the different arrangements. Each strain carried one of six commonly found gene arrangements and the sequences were used to infer their evolutionary relationships. Breakpoint regions in the center of the chromosome supported monophyly of the gene arrangements, whereas regions at the ends of the chromosome gave phylogenies that provided less support for monophyly of the chromosomes either because the individual markers did not have enough phylogenetically informative sites or genetic exchange scrambled information among the gene arrangements. A data set where the genetic markers were concatenated strongly supported a unique origin of the different gene arrangements. The inversion polymorphism of D. pseudoobscura is estimated to be about a million years old. We have also shown that the generated phylogeny is consistent with the cytological phylogeny of this species. In addition, the data presented here support hypothetical as the ancestral

  6. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].