Science.gov

Sample records for drosophila p38b gene

  1. Interaction of Omega, Sigma, and Theta Glutathione Transferases with p38b Mitogen-Activated Protein Kinase from the Fruit Fly, Drosophila melanogaster

    PubMed Central

    Wongtrakul, J.; Janphen, K.; Saisawang, C.; Ketterman, A.J.

    2014-01-01

    Glutathione S-transferases (GSTs) are a diverse family of phase II detoxification enzymes found in almost all organisms. Besides playing a major role in the detoxification of xenobiotic and toxic compounds, GSTs are also involved in the regulation of mitogen activated protein (MAP) kinase signal transduction by interaction with proteins in the pathway. An in vitro study was performed for Theta, Omega, Sigma GSTs and their interaction with MAP kinase p38b protein from the fruit fly Drosophila melanogaster Meigen (Diptera: Drosophilidae). The study included the effects of all five Omega class GSTs (DmGSTO1, DmGSTO2a, DmGSTO2b, DmGSTO3, DmGSTO4), all five Theta class GSTs (DmGSTT1, DmGSTT2, DmGSTT3a, DmGSTT3b, DmGSTT4), and one Sigma class glutathione transferase on the activity of Drosophila p38b, including the reciprocal effect of this kinase protein on glutathione transferase activity. It was found that DmGSTT2, DmGSTT3b, DmGSTO1, and DmGSTO3 activated p38b significantly. Substrate specificities of GSTs were also altered after co-incubation with p38b. Although p38b activated DmGSTO1, DmGSTO2a, and DmGSTT2, it inhibited DmGSTT3b and DmGSTO3 activity toward xenobiotic and physiological substrates tested. These results suggest a novel link between Omega and Theta GSTs with the p38b MAP kinase pathway. PMID:25373207

  2. The organization of Drosophila genes.

    PubMed

    Maroni, G

    1994-01-01

    This study was designed to examine the range of size variations in the major functional elements of Drosophila genes and to test whether those size variations occur independently of each other. In a sample of 111 genes the following median values occur: leaders, 123 base pairs (bp); coding regions, 1242 bp; 3' untranslated regions (3'UTR), 246 bp; mRNAs, 1803 bp; 3' terminal exons 843 bp; and exons upstream of the last one 233 bp. Introns show a bimodal distribution with medians of 62 and 595 bp. Unexpected size correlations are evident for several of these elements. The size of the leader, for example, is correlated with the sizes of the coding region and the 3'UTR with very high levels of significance, and the size of the first intron is similarly correlated with the sizes of each of the individual components of the mature mRNA.

  3. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  4. Hox genes and brain development in Drosophila.

    PubMed

    Reichert, Heinrich; Bello, Bruno

    2010-01-01

    Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.

  5. Gene Networks Underlying Chronic Sleep Deprivation in Drosophila

    DTIC Science & Technology

    2014-06-15

    SECURITY CLASSIFICATION OF: Studies of the gene network affected by sleep deprivation and stress in the fruit fly Drosophila have revealed the...transduction pathways are affected. Subseuqent tests of mutants in these pathways demonstrated a strong effect on sleep maintenance. Further...15-Apr-2009 14-Apr-2013 Approved for Public Release; Distribution Unlimited Gene Networks Underlying Chronic Sleep Deprivation in Drosophila The

  6. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed Central

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-01-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen. Images PMID:2901348

  7. [Regulatory functions of Pax gene family in Drosophila development].

    PubMed

    Li, Li; Yang, Yang; Xue, Lei

    2010-02-01

    The Pax gene family encodes a group of important transcription factors that have been evolutionary conserved from Drosophila to human. Pax genes play pivotal roles in regulating diverse signal transduction pathways and organogenesis during embryonic development through modulating cell proliferation and self-renewal, embryonic precursor cell migration, and the coordination of specific differentiation programs. Ten members of the Pax gene family, which perform crucial regulatory functions during embryonic and postembryonic development, have been identified in Drosophila. In this report, we described the protein structures, expression patterns, and main functions of Drosophila Pax genes.

  8. Functional requirements driving the gene duplication in 12 Drosophila species

    PubMed Central

    2013-01-01

    Background Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. Results In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. Conclusions This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila. PMID:23945147

  9. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.

    PubMed Central

    Spradling, A C; Stern, D; Beaton, A; Rhem, E J; Laverty, T; Mozden, N; Misra, S; Rubin, G M

    1999-01-01

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control. PMID:10471706

  10. The life cycle of Drosophila orphan genes.

    PubMed

    Palmieri, Nicola; Kosiol, Carolin; Schlötterer, Christian

    2014-02-19

    Orphans are genes restricted to a single phylogenetic lineage and emerge at high rates. While this predicts an accumulation of genes, the gene number has remained remarkably constant through evolution. This paradox has not yet been resolved. Because orphan genes have been mainly analyzed over long evolutionary time scales, orphan loss has remained unexplored. Here we study the patterns of orphan turnover among close relatives in the Drosophila obscura group. We show that orphans are not only emerging at a high rate, but that they are also rapidly lost. Interestingly, recently emerged orphans are more likely to be lost than older ones. Furthermore, highly expressed orphans with a strong male-bias are more likely to be retained. Since both lost and retained orphans show similar evolutionary signatures of functional conservation, we propose that orphan loss is not driven by high rates of sequence evolution, but reflects lineage-specific functional requirements. DOI: http://dx.doi.org/10.7554/eLife.01311.001.

  11. Metallothionein genes in Drosophila melanogaster constitute a dual system.

    PubMed Central

    Mokdad, R; Debec, A; Wegnez, M

    1987-01-01

    We have selected a metallothionein (MT) cDNA clone from a cadmium-resistant Drosophila melanogaster cell line. This clone includes an open reading frame coding for a 43-amino acid protein whose characteristics are a high cysteine content (12 cysteines, 28% of all residues) and a lack of aromatic amino acids. This protein differs markedly from the Drosophila MT (Mtn gene) previously reported [Lastowski-Perry, D., Otto, E. & Maroni, G. (1985) J. Biol. Chem. 260, 1527-1530). The MT system of Drosophila thus consists of at least two distantly related genes, in sharp contrast with vertebrate MT systems, in which the different members of MT gene families display high similarity. The gene corresponding to our MT cDNA (Mto) is inducible in Drosophila cell lines and in both larval and adult flies. Images PMID:3106973

  12. Gene expression during the life cycle of Drosophila melanogaster.

    PubMed

    Arbeitman, Michelle N; Furlong, Eileen E M; Imam, Farhad; Johnson, Eric; Null, Brian H; Baker, Bruce S; Krasnow, Mark A; Scott, Matthew P; Davis, Ronald W; White, Kevin P

    2002-09-27

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  13. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  14. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  15. FlyTED: the Drosophila Testis Gene Expression Database.

    PubMed

    Zhao, Jun; Klyne, Graham; Benson, Elizabeth; Gudmannsdottir, Elin; White-Cooper, Helen; Shotton, David

    2010-01-01

    FlyTED, the Drosophila Testis Gene Expression Database, is a biological research database for gene expression images from the testis of the fruit fly Drosophila melanogaster. It currently contains 2762 mRNA in situ hybridization images and ancillary metadata revealing the patterns of gene expression of 817 Drosophila genes in testes of wild type flies and of seven meiotic arrest mutant strains in which spermatogenesis is defective. This database has been built by adapting a widely used digital library repository software system, EPrints (http://eprints.org/software/), and provides both web-based search and browse interfaces, and programmatic access via an SQL dump, OAI-PMH and SPARQL. FlyTED is available at http://www.fly-ted.org/.

  16. Structure and expression of ubiquitin genes of Drosophila melanogaster.

    PubMed Central

    Lee, H S; Simon, J A; Lis, J T

    1988-01-01

    We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock. Images PMID:2463465

  17. In vivo chromatin accessibility correlates with gene silencing in Drosophila.

    PubMed Central

    Boivin, A; Dura, J M

    1998-01-01

    Gene silencing by heterochromatin is a well-known phenomenon that, in Drosophila, is called position effect variegation (PEV). The long-held hypothesis that this gene silencing is associated with an altered chromatin structure received direct support only recently. Another gene-silencing phenomenon in Drosophila, although similar in its phenotype of variegation, has been shown to be associated with euchromatic sequences and is dependent on developmental regulators of the Polycomb group (Pc-G) of gene products. One model proposes that the Pc-G products may cause a local heterochromatinization that maintains a repressed state of transcription of their target genes. Here, we test these models by measuring the accessibility of white or miniwhite sequences, in different contexts, to the Escherichia coli dam DNA methyltransferase in vivo. We present evidence that PEV and Pc-G-mediated repression mechanisms, although based on different protein factors, may indeed involve similar higher-order chromatin structure. PMID:9832530

  18. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila.

    PubMed

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R

    2016-09-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa.

  19. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila

    PubMed Central

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R.

    2016-01-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  20. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development.

  1. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  2. Drosophila GRAIL: An intelligent system for gene recognition in Drosophila DNA sequences

    SciTech Connect

    Xu, Ying; Einstein, J.R.; Uberbacher, E.C.; Helt, G.; Rubin, G.

    1995-06-01

    An AI-based system for gene recognition in Drosophila DNA sequences was designed and implemented. The system consists of two main modules, one for coding exon recognition and one for single gene model construction. The exon recognition module finds a coding exon by recognition of its splice junctions (or translation start) and coding potential. The core of this module is a set of neural networks which evaluate an exon candidate for the possibility of being a true coding exon using the ``recognized`` splice junction (or translation start) and coding signals. The recognition process consists of four steps: generation of an exon candidate pool, elimination of improbable candidates using heuristic rules, candidate evaluation by trained neural networks, and candidate cluster resolution and final exon prediction. The gene model construction module takes as input the clustered exon candidates and builds a ``best`` possible single gene model using an efficient dynamic programming algorithm. 129 Drosophila sequences consisting of 441 coding exons including 216358 coding bases were extructed from GenBank and used to build statistical matrices and to train the neural networks. On this training set the system recognized 97% of the coding messages and predicted only 5% false messages. Among the ``correctly`` predicted exons, 68% match the actual exon exactly and 96% have at least one edge predicted correctly. On an independent test set consisting of 30 Drosophila sequences, the system recognized 96% of the coding messages and predicted 7% false messages.

  3. Sleep and wakefulness modulate gene expression in Drosophila.

    PubMed

    Cirelli, Chiara; LaVaute, Timothy M; Tononi, Giulio

    2005-09-01

    In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. Sleep in fruit flies shares many features with mammalian sleep, but it is currently unknown to what extent behavioral states affect gene expression in Drosophila. To find out, we performed a comprehensive microarray analysis of gene expression in spontaneously awake, sleep-deprived and sleeping flies. Fly heads were collected at 4 am, after 8 h of spontaneous sleep or sleep deprivation, and at 4 pm, after 8 h of spontaneous wakefulness. As in rats, we found that behavioral state and time of day affect Drosophila gene expression to a comparable extent. As in rats, transcripts with higher expression in wakefulness and in sleep belong to different functional categories, and in several cases these groups overlap with those previously identified in rats. Wakefulness-related genes code for transcription factors and for proteins involved in the stress response, immune response, glutamatergic transmission, and carbohydrate metabolism. Sleep-related transcripts include the glial gene anachronism and several genes involved in lipid metabolism. Finally, the expression of many wakefulness-related and sleep-related Drosophila transcripts is also modulated by the time of day, suggesting an interaction at the molecular level between circadian and homeostatic mechanism of sleep regulation.

  4. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  5. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion

    PubMed Central

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S.; Sharma, Yashoda; Eberl, Daniel F.; Göpfert, Martin C.; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-01-01

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC’s roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  6. Drosophila Myc is required for normal DREF gene expression

    SciTech Connect

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm{sup 4}/Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm{sup 2}/dm{sup 2} homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression.

  7. Drosophila Myc is required for normal DREF gene expression.

    PubMed

    Thao, Dang Thi Phuong; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm(4)/Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm(2)/dm(2) homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression.

  8. Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors.

    PubMed Central

    Sauer, F; Jäckle, H

    1995-01-01

    The Drosophila gap gene Krüppel (Kr) encodes a transcriptional regulator. It acts both as an integral part of the Drosophila segmentation gene in the early blastoderm and in a variety of tissues and organs at later stages of embryogenesis. In transfected tissue culture cells, the Kr protein (Kr) was shown to both activate and repress gene expression in a concentration-dependent manner when acting from a single binding site close to the promoter. Here we show that KR can associate with the transcription factors encoded by the gap genes knirps (kni) and hunchback (hb) which affect KR-dependent gene expression in Drosophila tissue culture cells. The association of DNA-bound hb protein or free kni protein with distinct but different regions of KR results in the formation of DNA-bound transcriptional repressor complexes. Our results suggest that individual transcription factors can associate to form protein complexes which act as direct repressors of transcription. The interactions shown here add an unexpected level of complexity to the control of gene expression. Images PMID:7588607

  9. Microevolutionary divergence pattern of the segmentation gene hunchback in Drosophila.

    PubMed

    Tautz, D; Nigro, L

    1998-11-01

    To study the microevolutionary processes shaping the evolution of the segmentation gene hunchback (hb) from Drosophila melanogaster, we cloned and sequenced the gene from 12 isofemale lines representing wild-type populations of D. melanogaster, as well as from the closely related species Drosophila sechellia, Drosophila orena, and Drosophila yakuba. We find a relatively low degree of sequence variation in D. melanogaster (theta = 0.0017), which is, however, consistent with its chromosomal location in a region of low recombination. Tests of neutrality do not reject a neutral-evolution model for the whole region. However, pairwise tests with different subregions indicate that there is a relative excess of polymorphic sites in the leader and the intron. Codon usage pattern analysis shows a particularly biased codon usage in the highly conserved regions, which is in line with the hypothesis that selection on translational accuracy is the driving force behind such a bias. A comparison of the expression pattern of hb in different sibling species of D. melanogaster reveals some regulatory changes in D. yakuba, which could be interpreted as changes in the timing of secondary expression domains.

  10. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene.

    PubMed Central

    Goldberg, D A

    1980-01-01

    The alcohol dehydrogenase (ADH; alcohol: NAD+ oxidoreductase, EC 1.1.1.1) gene (Adh) of Drosophila melanogaster was isolated by utilizing a mutant strain in which the Adh locus is deleted. Adult RNA from wild-type flies was enriched in ADH sequences by gel electrophoresis and then used to prepare labeled cDNA for screening a bacteriophage lambda library of genomic Drosophila DNA. Of the clones that hybridized in the initial screen, one clone was identified that hybridized with labeled cDNA prepared from a wild-type Drosophila strain but did not hybridize with cDNA prepared from an Adh deletion strain. This clone was shown to contain ADH structural gene sequences by three criteria: in situ hybridization, in vitro translation of mRNA selected by hybridization to the cloned DNA, and comparison of the ADH protein sequence with a nucleotide sequence derived from the cloned DNA. Comparison of the restriction site maps from clones of three different wild-type Drosophila strains revealed the presence of a 200-nucleotide sequence in one strain that was absent from the other two strains. The ADH mRNA sequences were located within the cloned DNA by hybridization mapping experiments. Two intervening sequences were identified within Adh by S1 nuclease mapping experiments. Images PMID:6777776

  11. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes.

    PubMed Central

    Bellen, Hugo J; Levis, Robert W; Liao, Guochun; He, Yuchun; Carlson, Joseph W; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P Robin; Schulze, Karen L; Rubin, Gerald M; Hoskins, Roger A; Spradling, Allan C

    2004-01-01

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in >30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7140 lines. It now includes individual lines predicted to disrupt 5362 of the 13,666 currently annotated Drosophila genes (39%). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene misexpression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool. PMID:15238527

  12. The BDGP gene disruption project: Single transposon insertions associated with 40 percent of Drosophila genes

    SciTech Connect

    Bellen, Hugo J.; Levis, Robert W.; Liao, Guochun; He, Yuchun; Carlson, Joseph W.; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P. Robin; Schulze, Karen L.; Rubin, Gerald M.; Hoskins, Roger A.; Spradling, Allan C.

    2004-01-13

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in more than 30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6,300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7,140 lines. It now includes individual lines predicted to disrupt 5,362 of the 13,666 currently annotated Drosophila genes (39 percent). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene mis-expression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.

  13. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  14. Conserved Arrangement of Nested Genes at the Drosophila Gart Locus

    PubMed Central

    Henikoff, Steven; Eghtedarzadeh, Mohammad K.

    1987-01-01

    The Drosophila melanogaster Gart gene encodes three enzymatic activities in the pathway for purine de novo synthesis. Alternative processing of the primary transcript leads to the synthesis of two overlapping polypeptides. The coding sequence for both polypeptides is interrupted by an intron that contains a functional cuticle protein gene encoded on the opposite DNA strand. Here we show that this nested organization also exists at the homologous locus of a distantly related species, Drosophila pseudoobscura. In both species, the intronic cuticle gene is expressed in wandering larvae and in prepupae. Remarkably, there are 24 different highly conserved noncoding segments within the intron containing the cuticle gene. These are found upstream of the transcriptional start, at the 3' end, and even within the single intronic gene intron. Other introns in the purine gene, including the intron at which alternative processing occurs, show no such homologies. It seems likely that at least some of the conserved noncoding regions are involved in specifying the high level developmental expression of the cuticle gene. We discuss the possibility that shared cis-acting regulatory sites might enhance transcription of both genes and help explain their nested arrangement. PMID:3123310

  15. A role for the Drosophila neurogenic genes in mesoderm differentiation.

    PubMed

    Corbin, V; Michelson, A M; Abmayr, S M; Neel, V; Alcamo, E; Maniatis, T; Young, M W

    1991-10-18

    The neurogenic genes of Drosophila have long been known to regulate cell fate decisions in the developing ectoderm. In this paper we show that these genes also control mesoderm development. Embryonic cells that express the muscle-specific gene nautilus are overproduced in each of seven neurogenic mutants (Notch, Delta, Enhancer of split, big brain, mastermind, neuralized, and almondex), at the apparent expense of neighboring, nonexpressing mesodermal cells. The mesodermal defect does not appear to be a simple consequence of associated neural hypertrophy, suggesting that the neurogenic genes may function similarly and independently in establishing cell fates in both ectoderm and mesoderm. Altered patterns of beta 3-tubulin and myosin heavy chain gene expression in the mutants indicate a role for the neurogenic genes in development of most visceral and somatic muscles. We propose that the signal produced by the neurogenic genes is a general one, effective in both ectoderm and mesoderm.

  16. NELF Potentiates Gene Transcription in the Drosophila Embryo

    PubMed Central

    Wang, Xiaoling; Hang, Saiyu; Prazak, Lisa; Gergen, J. Peter

    2010-01-01

    A hallmark of genes that are subject to developmental regulation of transcriptional elongation is association of the negative elongation factor NELF with the paused RNA polymerase complex. Here we use a combination of biochemical and genetic experiments to investigate the in vivo function of NELF in the Drosophila embryo. NELF associates with different gene promoter regions in correlation with the association of RNA polymerase II (Pol II) and the initial activation of gene expression during the early stages of embryogenesis. Genetic experiments reveal that maternally provided NELF is required for the activation, rather than the repression of reporter genes that emulate the expression of key developmental control genes. Furthermore, the relative requirement for NELF is dictated by attributes of the flanking cis-regulatory information. We propose that NELF-associated paused Pol II complexes provide a platform for high fidelity integration of the combinatorial spatial and temporal information that is central to the regulation of gene expression during animal development. PMID:20634899

  17. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    PubMed Central

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  18. Drosophila X-Linked Genes Have Lower Translation Rates than Autosomal Genes.

    PubMed

    Zhang, Zhenguo; Presgraves, Daven C

    2016-02-01

    In Drosophila, X-linked and autosomal genes achieve comparable expression at the mRNA level. Whether comparable X-autosome gene expression is realized at the translational and, ultimately, the protein levels is, however, unknown. Previous studies suggest the possibility of higher translation rates for X-linked genes owing to stronger usage of preferred codons. In this study, we use public ribosome profiling data from Drosophila melanogaster to infer translation rates on the X chromosome versus the autosomes. We find that X-linked genes have consistently lower ribosome densities than autosomal genes in S2 cells, early embryos, eggs, and mature oocytes. Surprisingly, the lower ribosome densities of X-linked genes are not consistent with faster translation elongation but instead imply slower translation initiation. In particular, X-linked genes have sequence features known to slow translation initiation such as stronger mRNA structure near start codons and longer 5'-UTRs. Comparison to outgroup species suggests that stronger mRNA structure is an evolved feature of Drosophila X chromosomes. Finally, we find that the magnitude of the X-autosome difference in ribosome densities is smaller for genes encoding members of protein complexes, suggesting that stoichiometry constrains the evolution of translation rates. In sum, our analyses suggest that Drosophila X-linked genes have evolved lower translation rates than autosomal genes despite stronger usage of preferred codons.

  19. Using FlyBase, a Database of Drosophila Genes & Genomes

    PubMed Central

    Marygold, Steven J.; Crosby, Madeline A.; Goodman, Joshua L.

    2016-01-01

    SUMMARY For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic and high-throughput technologies add to the quantity and diversity of available data and resources. FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback. This chapter provides an overview of the data content, organization and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries. PMID:27730573

  20. BMP-dependent gene repression cascade in Drosophila eggshell patterning

    PubMed Central

    Charbonnier, Enrica; Fuchs, Alisa; Cheung, Lily S.; Chayengia, Mrinal; Veikkolainen, Ville; Seyfferth, Janine; Shvartsman, Stanislav Y.; Pyrowolakis, George

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) signal by activating Smad transcription factors to control a number of decisions during animal development. In Drosophila, signaling by the BMP ligand Decapentaplegic (Dpp) involves the activity of brinker (brk) which, in most contexts, is repressed by Dpp. Brk encodes a transcription factor which represses BMP signaling output by antagonizing Smad-dependent target gene activation. Here, we study BMP-dependent gene regulation during Drosophila oogenesis by following the signal transmission from Dpp to its target broad (br), a gene with a crucial function in eggshell patterning. We identify regulatory sequences that account for expression of both brk and br, and connect these to the transcription factors of the pathway. We show that Dpp directly regulates brk transcription through Smad- and Schnurri (Shn)-dependent repression. Brk is epistatic to Dpp in br expression and activates br indirectly, through removal of a repressor, which is yet to be identified. Our work provides first cis-regulatory insights into transcriptional interpretation of BMP signaling in eggshell morphogenesis and defines a transcriptional cascade that connects Dpp to target gene regulation. PMID:25704512

  1. Flamenco, a gene controlling the gypsy retrovirus of drosophila melanogaster

    SciTech Connect

    Prud`homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A.

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is table and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo{sup D1} female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo{sup D1} reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. 40 refs., 10 figs., 6 tabs.

  2. Genes for host-plant selection in Drosophila.

    PubMed

    Matsuo, Takashi

    2008-01-01

    Interactions between herbivorous insects and their host plants are rich in diversity. How such interactions evolved has been a central issue in ecology. A series of analyses on an example of host-plant adaptation in a Drosophila species suggest that neurogenetics can be a powerful tool for understanding how insects' ability to select a specific host plant has evolved. Drosophila sechellia is a specialist species that exclusively reproduces on the ripe fruit of Morinda citrifolia, which is toxic to other Drosophila species, including D. melanogaster and D. simulans, which are phylogenetically close to D. sechellia. Genetic analyses have revealed that multiple loci are involved in the physiological and behavioral adaptations of D. sechellia to the Morinda fruit. The behavioral adaptation includes the loss of avoidance of the host toxin and the enhanced sensitivity to the host odor. Two odorant-binding protein genes, Obp57d and Obp57e, are involved in the perception of the host toxin. D. sechellia has lost several putative bitter-taste receptor genes, which might also be involved in the loss of avoidance of the host toxin. The available genetic data support an evolutionary scenario, in which the shift in the host-plant selection was not achieved by the acquisition of novel abilities, but by the loss of already existing abilities. It is also suggested that the size of chemosensory gene families has a potential to be an index of complexity in insect-environment interaction, providing an opportunity to reexamine the longstanding "specialization as an evolutionary dead end" hypothesis.

  3. Two rapidly evolving genes contribute to male fitness in Drosophila

    PubMed Central

    Reinhardt, Josephine A; Jones, Corbin D

    2013-01-01

    Purifying selection often results in conservation of gene sequence and function. The most functionally conserved genes are also thought to be among the most biologically essential. These observations have led to the use of sequence conservation as a proxy for functional conservation. Here we describe two genes that are exceptions to this pattern. We show that lack of sequence conservation among orthologs of CG15460 and CG15323 – herein named jean-baptiste (jb) and karr respectively – does not necessarily predict lack of functional conservation. These two Drosophila melanogaster genes are among the most rapidly evolving protein-coding genes in this species, being nearly as diverged from their D. yakuba orthologs as random sequences are. jb and karr are both expressed at an elevated level in larval males and adult testes, but they are not accessory gland proteins and their loss does not affect male fertility. Instead, knockdown of these genes in D. melanogaster via RNA interference caused male-biased viability defects. These viability effects occur prior to the third instar for jb and during late pupation for karr. We show that putative orthologs to jb and karr are also expressed strongly in the testes of other Drosophila species and have similar gene structure across species despite low levels of sequence conservation. While standard molecular evolution tests could not reject neutrality, other data hint at a role for natural selection. Together these data provide a clear case where a lack of sequence conservation does not imply a lack of conservation of expression or function. PMID:24221639

  4. Functional conservation of the Drosophila hybrid incompatibility gene Lhr

    PubMed Central

    2011-01-01

    Background Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene. Results Here we have examined the functional properties of Lhr orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in D. melanogaster/D. simulans hybrids. We find that these properties are conserved among most Lhr orthologs, including Lhr from D. melanogaster, D. simulans and the outgroup species D. yakuba. Conclusions We conclude that evolution of the hybrid lethality properties of Lhr between D. melanogaster and D. simulans did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin. PMID:21366928

  5. Variable Rates of Evolution among Drosophila Opsin Genes

    PubMed Central

    Carulli, J. P.; Hartl, D. L.

    1992-01-01

    DNA sequences and chromosomal locations of four Drosophila pseudoobscura opsin genes were compared with those from Drosophila melanogaster, to determine factors that influence the evolution of multigene families. Although the opsin proteins perform the same primary functions, the comparisons reveal a wide range of evolutionary rates. Amino acid identities for the opsins range from 90% for Rh2 to more than 95% for Rh1 and Rh4. Variation in the rate of synonymous site substitution is especially striking: the major opsin, encoded by the Rh1 locus, differs at only 26.1% of synonymous sites between D. pseudoobscura and D. melanogaster, while the other opsin loci differ by as much as 39.2% at synonymous sites. Rh3 and Rh4 have similar levels of synonymous nucleotide substitution but significantly different amounts of amino acid replacement. This decoupling of nucleotide substitution and amino acid replacement suggests that different selective pressures are acting on these similar genes. There is significant heterogeneity in base composition and codon usage bias among the opsin genes in both species, but there are no consistent relationships between these factors and the rate of evolution of the opsins. In addition to exhibiting variation in evolutionary rates, the opsin loci in these species reveal rearrangements of chromosome elements. PMID:1398053

  6. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  7. An autoregulatory enhancer element of the Drosophila homeotic gene Deformed.

    PubMed

    Bergson, C; McGinnis, W

    1990-12-01

    The stable determination of different anterior-posterior regions of the Drosophila embryo is controlled by the persistent expression of homeotic selector genes. One mechanism that has been proposed to explain the persistent expression of the homeotic gene Deformed is an autoactivation circuit that would be used once Deformed expression had been established by earlier acting patterning genes. Here we show that a large cis-regulatory element mapping approximately 5 kb upstream of the Deformed transcription start has the properties predicted for a Deformed autoregulatory enhancer. This element provides late, spatially localized expression in the epidermal cells of the maxillary and mandibular segments which is wholly dependent upon endogenous Deformed function. In addition, the autoregulatory enhancer can be activated ectopically in embryos and in imaginal disc cells by ectopic expression of Deformed protein. Deletion analysis of the autoregulatory element indicates that it contains compartment specific sub-elements similar to those of other homeotic loci.

  8. The Question of the Total Gene Number in DROSOPHILA MELANOGASTER

    PubMed Central

    Lefevre, George; Watkins, William

    1986-01-01

    A statistical analysis has been carried out on the distribution and allelism of nearly 500 sex-linked, X-ray-induced, cytologically normal and rearranged lethal mutations in Drosophila melanogaster that were obtained by G. Lefevre. The mutations were induced in four different regions of the X chromosome: (1) 1A1-3E8, (2) 6D1-8A5, (3) 9E1-11A7 and (4) 19A1-20F4, which together comprise more than one-third of the entire chromosome.—The analysis shows that the number of alleles found at different loci does not fit a Poisson distribution, even when the proper procedures are taken to accomodate the truncated nature of the data. However, the allele distribution fits a truncated negative binomial distribution quite well, with cytologically normal mutations fitting better than rearrangement mutations. This indicates that genes are not equimutable, as required for the data to fit a Poisson distribution.—Using the negative binomial parameters to estimate the number of genes that did not produce a detectable lethal mutation in our experiment (n0) gave a larger number than that derived from the use of the Poisson parameter. Unfortunately, we cannot estimate the total numbers of nonvital loci, loci with undetectable phenotypes and loci having extremely low mutabilities. In any event, our estimate of the total vital gene number was far short of the total number of bands in the analyzed regions; yet, in several short intervals, we have found more vital genes than bands; in other intervals, fewer. We conclude that the one-band, one-gene hypothesis, in its literal sense, is not true; furthermore, it is difficult to support, even approximately.—The question of the total gene number in Drosophila will, not doubt, eventually be solved by molecular analyses, not by statistical analysis of mutation data or saturation studies. PMID:3091446

  9. Question of the total gene number in Drosophila melanogaster

    SciTech Connect

    Lefevre, G.; Watkins, W.

    1986-08-01

    A statistical analysis has been carried out on the distribution and allelism of nearly 500 sex-linked, X-ray-induced, cytologically normal and rearranged lethal mutations in Drosophila melanogaster that were obtained by G. Lefevre. The mutations were induced in four different regions of the X chromosome: (1) 1A1-3E8, (2) 6D1-8A5, (3) 9E1-11A7 and (4) 19A1-20F4, which together comprise more than one-third of the entire chromosome.--The analysis shows that the number of alleles found at different loci does not fit a Poisson distribution, even when the proper procedures are taken to accommodate the truncated nature of the data. However, the allele distribution fits a truncated negative binomial distribution quite well, with cytologically normal mutations fitting better than rearrangement mutations. This indicates that genes are not equimutable, as required for the data to fit a Poisson distribution.--Using the negative binomial parameters to estimate the number of genes that did not produce a detectable lethal mutation in our experiment (n0) gave a larger number than that derived from the use of the Poisson parameter. Unfortunately, we cannot estimate the total numbers of nonvital loci, loci with undetectable phenotypes and loci having extremely low mutabilities. In any event, our estimate of the total vital gene number was far short of the total number of bands in the analyzed regions; yet, in several short intervals, we have found more vital genes than bands; in other intervals, fewer. We conclude that the one-band, one-gene hypothesis, in its literal sense, is not true; furthermore, it is difficult to support, even approximately.--The question of the total gene number in Drosophila will, not doubt, eventually be solved by molecular analyses, not by statistical analysis of mutation data or saturation studies.

  10. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  11. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  12. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor.

    PubMed Central

    Rosen, D R; Martin-Morris, L; Luo, L Q; White, K

    1989-01-01

    We have isolated genomic and cDNA clones for a Drosophila gene resembling the human beta-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human beta-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development. Images PMID:2494667

  13. Population and sex differences in Drosophila melanogaster brain gene expression

    PubMed Central

    2012-01-01

    Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues. PMID:23170910

  14. The ribosomal protein genes and Minute loci of Drosophila melanogaster

    PubMed Central

    Marygold, Steven J; Roote, John; Reuter, Gunter; Lambertsson, Andrew; Ashburner, Michael; Millburn, Gillian H; Harrison, Paul M; Yu, Zhan; Kenmochi, Naoya; Kaufman, Thomas C; Leevers, Sally J; Cook, Kevin R

    2007-01-01

    Background Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. Results We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. Conclusion This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome. PMID:17927810

  15. Genes and circuits of courtship behaviour in Drosophila males.

    PubMed

    Yamamoto, Daisuke; Koganezawa, Masayuki

    2013-10-01

    In Drosophila melanogaster, the causal links among a complex behaviour, single neurons and single genes can be demonstrated through experimental manipulations. A key player in establishing the male courtship circuitry is the fruitless (fru) gene, the expression of which yields the FruM proteins in a subset of male but not female neurons. FruM probably regulates chromatin states, leading to single-neuron sex differences and, consequently, a sexually dimorphic circuitry. The mutual connections among fru-expressing neurons--including primary sensory afferents, central interneurons such as the P1 neuron cluster that triggers courtship, and courtship motor pattern generators--probably form the core portion of the male courtship circuitry.

  16. Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

    PubMed Central

    Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356

  17. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  18. Using Drosophila melanogaster to identify chemotherapy toxicity genes.

    PubMed

    King, Elizabeth G; Kislukhin, Galina; Walters, Kelli N; Long, Anthony D

    2014-09-01

    The severity of the toxic side effects of chemotherapy shows a great deal of interindividual variability, and much of this variation is likely genetically based. Simple DNA tests predictive of toxic side effects could revolutionize the way chemotherapy is carried out. Due to the challenges in identifying polymorphisms that affect toxicity in humans, we use Drosophila fecundity following oral exposure to carboplatin, gemcitabine and mitomycin C as a model system to identify naturally occurring DNA variants predictive of toxicity. We use the Drosophila Synthetic Population Resource (DSPR), a panel of recombinant inbred lines derived from a multiparent advanced intercross, to map quantitative trait loci affecting chemotoxicity. We identify two QTL each for carboplatin and gemcitabine toxicity and none for mitomycin. One QTL is associated with fly orthologs of a priori human carboplatin candidate genes ABCC2 and MSH2, and a second QTL is associated with fly orthologs of human gemcitabine candidate genes RRM2 and RRM2B. The third, a carboplatin QTL, is associated with a posteriori human orthologs from solute carrier family 7A, INPP4A&B, and NALCN. The fourth, a gemcitabine QTL that also affects methotrexate toxicity, is associated with human ortholog GPx4. Mapped QTL each explain a significant fraction of variation in toxicity, yet individual SNPs and transposable elements in the candidate gene regions fail to singly explain QTL peaks. Furthermore, estimates of founder haplotype effects are consistent with genes harboring several segregating functional alleles. We find little evidence for nonsynonymous SNPs explaining mapped QTL; thus it seems likely that standing variation in toxicity is due to regulatory alleles.

  19. Microenvironmental Gene Expression Plasticity Among Individual Drosophila melanogaster

    PubMed Central

    Lin, Yanzhu; Chen, Zhen-Xia; Oliver, Brian; Harbison, Susan T.

    2016-01-01

    Differences in phenotype among genetically identical individuals exposed to the same environmental condition are often noted in genetic studies. Despite this commonplace observation, little is known about the causes of this variability, which has been termed microenvironmental plasticity. One possibility is that stochastic or technical sources of variance produce these differences. A second possibility is that this variation has a genetic component. We have explored gene expression robustness in the transcriptomes of 730 individual Drosophila melanogaster of 16 fixed genotypes, nine of which are infected with Wolbachia. Three replicates of flies were grown, controlling for food, day/night cycles, humidity, temperature, sex, mating status, social exposure, and circadian timing of RNA extraction. Despite the use of inbred genotypes, and carefully controlled experimental conditions, thousands of genes were differentially expressed, revealing a unique and dynamic transcriptional signature for each individual fly. We found that 23% of the transcriptome was differentially expressed among individuals, and that the variability in gene expression among individuals is influenced by genotype. This transcriptional variation originated from specific gene pathways, suggesting a plastic response to the microenvironment; but there was also evidence of gene expression differences due to stochastic fluctuations. These observations reveal previously unappreciated genetic sources of variability in gene expression among individuals, which has implications for complex trait genetics and precision medicine. PMID:27770026

  20. Evolution of the Drosophila Feminizing Switch Gene Sex-lethal

    PubMed Central

    Cline, Thomas W.; Dorsett, Maia; Sun, Sha; Harrison, Melissa M.; Dines, Jessica; Sefton, Louise; Megna, Lisa

    2010-01-01

    In Drosophila melanogaster, the gene Sex-lethal (Sxl) controls all aspects of female development. Since melanogaster males lacking Sxl appear wild type, Sxl would seem to be functionally female specific. Nevertheless, in insects as diverse as honeybees and houseflies, Sxl seems not to determine sex or to be functionally female specific. Here we describe three lines of work that address the questions of how, when, and even whether the ancestor of melanogaster Sxl ever shed its non-female-specific functions. First, to test the hypothesis that the birth of Sxl's closest paralog allowed Sxl to lose essential ancestral non-female-specific functions, we determined the CG3056 null phenotype. That phenotype failed to support this hypothesis. Second, to define when Sxl might have lost ancestral non-female-specific functions, we isolated and characterized Sxl mutations in D. virilis, a species distant from melanogaster and notable for the large amount of Sxl protein expression in males. We found no change in Sxl regulation or functioning in the 40+ MY since these two species diverged. Finally, we discovered conserved non-sex-specific Sxl mRNAs containing a previously unknown, potentially translation-initiating exon, and we identified a conserved open reading frame starting in Sxl male-specific exon 3. We conclude that Drosophila Sxl may appear functionally female specific not because it lost non-female-specific functions, but because those functions are nonessential in the laboratory. The potential evolutionary relevance of these nonessential functions is discussed. PMID:20837995

  1. Functional dissection of Odorant binding protein genes in Drosophila melanogaster

    PubMed Central

    Swarup, S; Williams, T I; Anholt, R R H

    2011-01-01

    Most organisms rely on olfaction for survival and reproduction. The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems and serves as a prototype for understanding insect olfaction. Olfaction in Drosophila is mediated by multigene families of odorant receptors and odorant binding proteins (OBPs). Although molecular response profiles of odorant receptors have been well documented, the contributions of OBPs to olfactory behavior remain largely unknown. Here, we used RNAi-mediated suppression of Obp gene expression and measurements of behavioral responses to 16 ecologically relevant odorants to systematically dissect the functions of 17 OBPs. We quantified the effectiveness of RNAi-mediated suppression by quantitative real-time polymerase chain reaction and used a proteomic liquid chromatography and tandem mass spectrometry procedure to show target-specific suppression of OBPs expressed in the antennae. Flies in which expression of a specific OBP is suppressed often show altered behavioral responses to more than one, but not all, odorants, in a sex-dependent manner. Similarly, responses to a specific odorant are frequently affected by suppression of expression of multiple, but not all, OBPs. These results show that OBPs are essential for mediating olfactory behavioral responses and suggest that OBP-dependent odorant recognition is combinatorial. PMID:21605338

  2. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Bedford, Trevor; Lyons, Ana M.; Hartl, Daniel L.

    2010-01-01

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3′ segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5′ and 3′ regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution. PMID:20534482

  3. Regulation of Drosophila yolk protein genes by an ovary-specific GATA factor

    SciTech Connect

    Lossky, M.; Wensink, P.C.

    1995-12-01

    This report investigates the expression of the genes for yolk protein of Drosophila melanogaster and the tissue specific function of the regulatory element which activates transcription in vivo. 70 refs., 8 figs.

  4. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila.

    PubMed

    Zhu, Jun-Yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-20

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors.

  5. Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila.

    PubMed

    Ruiz, María-Fernanda; Sánchez, Lucas

    2010-01-01

    The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.

  6. Hsp27 gene in Drosophila ananassae subgroup was split by a recently acquired intron.

    PubMed

    Zhang, Li; Kang, Han; Jin, Shan; Zeng, Qing Tao; Yang, Yong

    2016-06-01

    In Drosophila, heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense response against fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologous Hsp27 nucleotide sequences from different Drosophila species were amplified by PCR and reverse transcription PCR, and the phylogenetic relationships were analysed using neighbour-joining, maximum-likelihood and Bayesian methods. The phylogenetic topologies from analysis with different algorithms were similar, suggesting that the Hsp27 gene was split by a recently acquired intron during the evolution of the Drosophila ananassae subgroup.

  7. Gene Expression in a Drosophila Model of Mitochondrial Disease

    PubMed Central

    Fernández-Ayala, Daniel J. M.; Chen, Shanjun; Kemppainen, Esko; O'Dell, Kevin M. C.; Jacobs, Howard T.

    2010-01-01

    Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed. PMID:20066047

  8. Molecular and developmental characterization of the heat shock cognate 4 gene of Drosophila melanogaster.

    PubMed Central

    Perkins, L A; Doctor, J S; Zhang, K; Stinson, L; Perrimon, N; Craig, E A

    1990-01-01

    The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape. Images PMID:2111451

  9. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes.

    PubMed

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-04-25

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.

  10. Comparison of homeobox-containing genes of the honeybee and Drosophila.

    PubMed Central

    Walldorf, U; Fleig, R; Gehring, W J

    1989-01-01

    We report the isolation of seven homeobox-containing genes from the honeybee (Apis mellifera). Sequence analysis of all homeoboxes and some flanking sequences showed that six of seven genes are more than 90% identical to their corresponding Drosophila homologues within the homeobox and, with one exception, also in the flanking sequences. The homologues that were identified include three homeotic selector genes [Sex combs reduced (Scr), Antennapedia (Antp), and abdominal-A (abd-A); the two engrailed (en) genes; and the muscle segment homeobox (msh)]. Surprisingly, no homologue of the segmentation gene fushi tarazu was found in the honeybee. For the remaining bee gene, a Drosophila homologue is not known. This indicates that, with some exceptions, structurally homologous genes are involved in the control of bee and Drosophila development, although Hymenoptera differ significantly in their embryogenesis from Diptera and have evolved separately for some 250 million years. Images PMID:2574865

  11. Identification of methylmercury tolerance gene candidates in Drosophila.

    PubMed

    Mahapatra, Cecon T; Bond, Jeffrey; Rand, David M; Rand, Matthew D

    2010-07-01

    Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/-selection and +/-MeHg) identified a "down-down-up" expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway-regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms.

  12. Cloning and Characterization of the Scarlet Gene of Drosophila Melanogaster

    PubMed Central

    Tearle, R. G.; Belote, J. M.; McKeown, M.; Baker, B. S.; Howells, A. J.

    1989-01-01

    DNA from the scarlet (st) region of Drosophila melanogaster has been cloned by chromosome walking, using the breakpoints of a new X-ray-induced third chromosome inversion (In(3LR)st-a27) which breaks in the scarlet (73A3.4) and rosy (87D13-14) regions. Two spontaneous mutants of st(st(1) and st(sp)) contain insertions of non-st DNA located within 3.0 kb of the site of the inversion breakpoint used to isolate the gene, and a second scarlet inversion breaks within 6.5 kb of this site. However no changes detectable by Southern blotting were found in 5 X-ray-induced st mutants with cytologically normal third chromosomes. A 2.3-kb transcript arising from the st gene region (as defined by mutant analysis and DNA transformation) has been detected. This transcript is present throughout development at low levels, with a peak level during the early to mid-pupal stage. The size and amount of this transcript is altered in st(1), and its amount is drastically reduced in st(sp). Flies carrying the white(1) mutation show normal levels of expression of the st transcript, suggesting that the w(+) gene does not regulate transcription of the st(+) gene. Nucleotide homology between sequences from the st transcription unit and a fragment carrying coding information from the white gene has been detected. This suggests that the st and w proteins are related; they appear to belong to a family of membrane-spanning, ATP-binding proteins involved in the transport of pigment precursors into cells. PMID:2503416

  13. Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms

    PubMed Central

    Yamamoto, Shinya; Seto, Elaine S.

    2014-01-01

    Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans. PMID:24770636

  14. Characterization of the mus308 gene in Drosophila melanogaster

    SciTech Connect

    Leonhardt, E.A.; Henderson, D.S.; Rinehart, J.E.; Boyd, J.B. )

    1993-01-01

    Among the available mutagen-sensitive mutations in Drosophila, those at the mus3O8 locus are unique in conferring hypersensitivity to DNA cross-linking agents but not to monofunctional agents. Those mutations are also associated with an elevated frequency of chromosomal aberrations, altered DNA metabolism and the modification of a deoxyribonuclease. This spectrum of phenotypes is shared with selected mammalian mutations including Fanconi anemia in humans. In anticipation of the molecular characterization of the mus3O8 gene, it has been localized cytogenetically to 87C9-87D1,2 on the right arm of chromosome three. Nine new mutant alleles of the gene have been generated by X-ray mutagenesis and one was recovered following hybrid dysgenesis. Characterization of these new alleles has uncovered additional phenotypes of mutations at this locus. Homozygous mus3O8 flies that have survived moderate mutagen treatment exhibit an altered wing position that is correlated with reduced flight ability and an altered mitochondrial morphology. In addition, observations of elevated embryo mortality are potentially explained by an aberrant distribution of nuclear material in early embryos which is similar to that seen in the mutant giant nuclei.

  15. Genetic analysis of the Drosophila Gs(alpha) gene.

    PubMed

    Wolfgang, W J; Hoskote, A; Roberts, I J; Jackson, S; Forte, M

    2001-07-01

    One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells.

  16. The pebble gene is required for cytokinesis in Drosophila.

    PubMed

    Lehner, C F

    1992-12-01

    Cytokinesis is developmentally controlled during Drosophila embryogenesis. It is omitted during the initial nuclear division cycles. The nuclei of the resulting syncytium are then cellularized at a defined stage, and cytokinesis starts in somatic cells with mitosis 14. However, cytokinesis never occurs in somatic cells of embryos homozygous or transheterozygous for mutations in the pebble gene. Interestingly, the process of cellularization, which involves steps mechanistically similar to cytokinesis, is not affected. Moreover, all the nuclear aspects of mitosis (nuclear envelope breakdown, chromosome condensation, spindle assembly and function) proceed normally in pebble mutant embryos, indicating that pebble is specifically required for the coordination of mitotic spindle and contractile ring functions. The pebble phenotype is also observed, but only with very low penetrance, during the early divisions of the germ line progenitors (the pole cells). alpha-Amanitin injection experiments indicate that these early pole cell divisions, the first cell divisions during embryogenesis, do not require zygotic gene expression. These divisions might therefore rely on maternally contributed pebble function. The maternal contribution from heterozygous mothers might be insufficient in rare cases for all the pole cell divisions.

  17. Genetic analysis of the Drosophila Gs(alpha) gene.

    PubMed Central

    Wolfgang, W J; Hoskote, A; Roberts, I J; Jackson, S; Forte, M

    2001-01-01

    One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells. PMID:11454767

  18. Rapid evolution and gene-specific patterns of selection for three genes of spermatogenesis in Drosophila.

    PubMed

    Civetta, Alberto; Rajakumar, Sujeetha A; Brouwers, Barb; Bacik, John P

    2006-03-01

    Hybrid males resulting from crosses between closely related species of Drosophila are sterile. The F1 hybrid sterility phenotype is mainly due to defects occurring during late stages of development that relate to sperm individualization, and so genes controlling sperm development may have been subjected to selective diversification between species. It is also possible that genes of spermatogenesis experience selective constraints given their role in a developmental pathway. We analyzed the molecular evolution of three genes playing a role during the sperm developmental pathway in Drosophila at an early (bam), a mid (aly), and a late (dj) stage. The complete coding region of these genes was sequenced in different strains of Drosophila melanogaster and Drosophila simulans. All three genes showed rapid divergence between species, with larger numbers of nonsynonymous to synonymous differences between species than polymorphisms. Although this could be interpreted as evidence for positive selection at all three genes, formal tests of selection do not support such a conclusion. Departures from neutrality were detected only for dj and bam but not aly. The role played by selection is unique and determined by gene-specific characteristics rather than site of expression. In dj, the departure was due to a high proportion of neutral synonymous polymorphisms in D. simulans, and there was evidence of purifying selection maintaining a high lysine amino acid protein content that is characteristic of other DNA-binding proteins. The earliest spermatogenesis gene surveyed, which plays a role in both male and female gametogenesis, was bam, and its significant departure from neutrality was due to an excess of nonsynonymous substitutions between species. Bam is degraded at the end of mitosis, and rapid evolutionary changes among species might be a characteristic shared with other degradable transient proteins. However, the large number of nonsynonymous changes between D. melanogaster and

  19. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer

    PubMed Central

    Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.

    2013-01-01

    Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265

  20. The selfish Segregation Distorter gene complex of Drosophila melanogaster.

    PubMed

    Larracuente, Amanda M; Presgraves, Daven C

    2012-09-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.

  1. Functional conservation of the human EXT1 tumor suppressor gene and its Drosophila homolog tout velu.

    PubMed

    Dasgupta, Ujjaini; Dixit, Bharat L; Rusch, Melissa; Selleck, Scott; The, Inge

    2007-08-01

    Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.

  2. A family of Turandot-related genes in the humoral stress response of Drosophila.

    PubMed

    Ekengren, S; Hultmark, D

    2001-06-22

    The Drosophila Turandot A (TotA) gene was recently shown to encode a stress-induced humoral factor which gives increased resistance to the lethal effects of high temperature. Here we show that TotA belongs to a family of eight Tot genes distributed at three different sites in the Drosophila genome. All Tot genes are induced under stressful conditions such as bacterial infection, heat shock, paraquat feeding or exposure to ultraviolet light, suggesting that all members of this family play a role in Drosophila stress tolerance. The induction of the Tot genes differs in important respects from the heat shock response, such as the strong but delayed response to bacterial infection seen for several of the genes.

  3. Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila.

    PubMed Central

    Harding, K; Levine, M

    1988-01-01

    The maintenance of selective patterns of homeotic gene expression within the Drosophila CNS involves cross-regulatory interactions among the genes of the antennapedia and bithorax complexes (ANT-C and BX-C). Such a mechanism does not appear to be responsible for the establishment of these selective expression patterns during early development. Here we show that mutations in several of the gap genes strongly alter the early patterns of Antp and Abd-B expression. The altered patterns that are observed do not always correlate with simple expectations based on cuticular pattern defects observed in advanced-stage mutants. It appears that the initial patterns of Antp and Abd-B expression involve their differential regulation by a common set of gap genes. We propose that the gap genes are largely responsible for integrating the processes of segmentation and homeosis. Images PMID:2896123

  4. Transcriptional regulation of the Drosophila glial gene repo.

    PubMed

    Lee, Bruce P; Jones, Bradley W

    2005-06-01

    reversed polarity (repo) is a putative target gene of glial cells missing (gcm), the primary regulator of glial cell fate in Drosophila. Transient expression of Gcm is followed by maintained expression of repo. Multiple Gcm binding sites are found in repo upstream DNA. However, while repo is expressed in Gcm positive glia, it is not expressed in Gcm positive hemocytes. These observations suggest factors in addition to Gcm are required for repo expression. Here we have undertaken an analysis of the cis-regulatory DNA elements of repo using lacZ reporter activity in transgenic embryos. We have found that a 4.2 kb DNA region upstream of the repo start site drives the wild-type repo expression pattern. We show that expression is dependent on multiple Gcm binding sites. By ectopically expressing Repo, we show that Repo can regulate its own enhancer. Finally, by systematically analyzing fragments of repo upstream DNA, we show that expression is dependent on multiple elements that are responsible for activity in subsets of glia, as well as repressing inappropriate expression in the epidermis. Our results suggest that Gcm acts synergistically with other factors to control repo transcription in glial cells.

  5. Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila

    PubMed Central

    Hauck, Bernd; Gehring, Walter J.; Walldorf, Uwe

    1999-01-01

    The development of the Drosophila compound eye requires the function of a set of evolutionarily conserved genes. Among these, the Drosophila Pax-6 gene eyeless (ey) plays a major role. ey has been considered a master control gene of eye development in the animal kingdom because targeted expression of ey and vertebrate as well as invertebrate homologs lead to the formation of ectopic eyes in Drosophila. We demonstrate that an intron of the ey gene contains an enhancer that regulates the eye specific expression of the gene in the eye disc primordia of embryos and in the eye imaginal discs of third instar larvae. Moreover, a 212-bp enhancer element is necessary and sufficient for the enhancer function. It is partially conserved in Drosophila hydei and contains putative Pax-6 Paired domain binding sites. We show that several binding sites are required for the eye specific expression, and, therefore, we propose a Pax-6-like molecule to be a positive transactivator for the eye specific ey expression. This transactivator recently has been identified as twin of eyeless, the second Pax-6 gene in Drosophila. PMID:9892673

  6. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    PubMed

    Behura, Susanta K; Haugen, Morgan; Flannery, Ellen; Sarro, Joseph; Tessier, Charles R; Severson, David W; Duman-Scheel, Molly

    2011-01-01

    Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  7. Inferring the History of Interchromosomal Gene Transposition in Drosophila Using n-Dimensional Parsimony

    PubMed Central

    Han, Mira V.; Hahn, Matthew W.

    2012-01-01

    Gene transposition puts a new gene copy in a novel genomic environment. Moreover, genes moving between the autosomes and the X chromosome experience change in several evolutionary parameters. Previous studies of gene transposition have not utilized the phylogenetic framework that becomes possible with the availability of whole genomes from multiple species. Here we used parsimonious reconstruction on the genomic distribution of gene families to analyze interchromosomal gene transposition in Drosophila. We identified 782 genes that have moved chromosomes within the phylogeny of 10 Drosophila species, including 87 gene families with multiple independent movements on different branches of the phylogeny. Using this large catalog of transposed genes, we detected accelerated sequence evolution in duplicated genes that transposed when compared to the parental copy at the original locus. We also observed a more refined picture of the biased movement of genes from the X chromosome to the autosomes. The bias of X-to-autosome movement was significantly stronger for RNA-based movements than for DNA-based movements, and among DNA-based movements there was an excess of genes moving onto the X chromosome as well. Genes involved in female-specific functions moved onto the X chromosome while genes with male-specific functions moved off the X. There was a significant overrepresentation of proteins involving chromosomal function among transposed genes, suggesting that genetic conflict between sexes and among chromosomes may be a driving force behind gene transposition in Drosophila. PMID:22095076

  8. Recurrent tandem gene duplication gave rise to functionally divergent genes in Drosophila.

    PubMed

    Fan, Chuanzhu; Chen, Ying; Long, Manyuan

    2008-07-01

    Tandem gene duplication is one of the major gene duplication mechanisms in eukaryotes, as illustrated by the prevalence of gene family clusters. Tandem duplicated paralogs usually share the same regulatory element, and as a consequence, they are likely to perform similar biological functions. Here, we provide an example of a newly evolved tandem duplicate acquiring novel functions, which were driven by positive selection. CG32708, CG32706, and CG6999 are 3 clustered genes residing in the X chromosome of Drosophila melanogaster. CG6999 and CG32708 have been examined for their molecular population genetic properties (Thornton and Long 2005). We further investigated the evolutionary forces acting on these genes with greater sample sizes and a broader approach that incorporate between-species divergence, using more variety of statistical methods. We explored the possible functional implications by characterizing the tissue-specific and developmental expression patterns of these genes. Sequence comparison of species within D. melanogaster subgroup reveals that this 3-gene cluster was created by 2 rounds of tandem gene duplication in the last 5 Myr. Based on phylogenetic analysis, CG32708 is clearly the parental copy that is shared by all species. CG32706 appears to have originated in the ancestor of Drosophila simulans and D. melanogaster about 5 Mya, and CG6999 is the newest duplicate that is unique to D. melanogaster. All 3 genes have different expression profiles, and CG6999 has in addition acquired a novel transcript. Biased polymorphism frequency spectrum, linkage disequilibrium, nucleotide substitution, and McDonald-Kreitman analyses suggested that the evolution of CG6999 and CG32706 were driven by positive Darwinian selection.

  9. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila

    PubMed Central

    Nagoshi, Emi; Sugino, Ken; Kula, Ela; Okazaki, Etsuko; Tachibana, Taro; Nelson, Sacha; Rosbash, Michael

    2013-01-01

    Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits. PMID:19966839

  10. Do the genes of the innate immune response contribute to neuroprotection in Drosophila?

    PubMed

    Cantera, Rafael; Barrio, Rosa

    2015-01-01

    A profound debate exists on the relationship between neurodegeneration and the innate immune response in humans. Although it is clear that such a relation exists, the causes and consequences of this complex association remain to be determined in detail. Drosophila is being used to investigate the mechanisms involved in neurodegeneration, and all genomic studies on this issue have generated gene catalogues enriched in genes of the innate immune response. We review the data reported in these publications and propose that the abundance of immune genes in studies of neurodegeneration reflects at least two phenomena: (i) some proteins have functions in both immune and nervous systems, and (ii) immune genes might also be of neuroprotective value in Drosophila. This review opens this debate in Drosophila, which could thus be used as an instrumental model to elucidate this question.

  11. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus.

    PubMed

    Ting, Chau-Ti; Tsaur, Shun-Chern; Sun, Sha; Browne, William E; Chen, Yung-Chia; Patel, Nipam H; Wu, Chung-I

    2004-08-17

    The importance of gene duplication in evolution has long been recognized. Because duplicated genes are prone to diverge in function, gene duplication could plausibly play a role in species differentiation. However, experimental evidence linking gene duplication with speciation is scarce. Here, we show that a hybrid-male sterility gene, Odysseus (OdsH), arose by gene duplication in the Drosophila genome. OdsH has evolved at a very high rate, whereas its most immediate paralog, unc-4, is nearly identical among species in the Drosophila melanogaster subgroup. The disparity in their sequence evolution is echoed by the divergence in their expression patterns in both soma and reproductive tissues. We suggest that duplicated genes that have yet to evolve a stable function at the time of speciation may be candidates for "speciation genes," which is broadly defined as genes that contribute to differential adaptation between species.

  12. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle

    PubMed Central

    Gutzwiller, Florence; Carmo, Catarina R.; Miller, Danny E.; Rice, Danny W.; Newton, Irene L. G.; Hawley, R. Scott; Teixeira, Luis; Bergman, Casey M.

    2015-01-01

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. PMID:26497146

  13. Birth of a new gene on the Y chromosome of Drosophila melanogaster.

    PubMed

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A M; Swenor, Bonnielin; Clark, Andrew G

    2015-10-06

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.

  14. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle.

    PubMed

    Gutzwiller, Florence; Carmo, Catarina R; Miller, Danny E; Rice, Danny W; Newton, Irene L G; Hawley, R Scott; Teixeira, Luis; Bergman, Casey M

    2015-10-23

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome.

  15. Molecular Characterization of Neurally Expressing Genes in the Para Sodium Channel Gene Cluster of Drosophila

    PubMed Central

    Hong, C. S.; Ganetzky, B.

    1996-01-01

    To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. PMID:8849894

  16. Mental Retardation Genes in Drosophila: New Approaches to Understanding and Treating Developmental Brain Disorders

    ERIC Educational Resources Information Center

    Restifo, Linda L.

    2005-01-01

    "Drosophila melanogaster" is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron…

  17. Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis.

    PubMed

    Pavlopoulos, Anastasios; Akam, Michael

    2011-02-15

    Hox genes encode highly conserved transcription factors that regionalize the animal body axis by controlling complex developmental processes. Although they are known to operate in multiple cell types and at different stages, we are still missing the batteries of genes targeted by any one Hox gene over the course of a single developmental process to achieve a particular cell and organ morphology. The transformation of wings into halteres by the Hox gene Ultrabithorax (Ubx) in Drosophila melanogaster presents an excellent model system to study the Hox control of transcriptional networks during successive stages of appendage morphogenesis and cell differentiation. We have used an inducible misexpression system to switch on Ubx in the wing epithelium at successive stages during metamorphosis--in the larva, prepupa, and pupa. We have then used extensive microarray expression profiling and quantitative RT-PCR to identify the primary transcriptional responses to Ubx. We find that Ubx targets range from regulatory genes like transcription factors and signaling components to terminal differentiation genes affecting a broad repertoire of cell behaviors and metabolic reactions. Ubx up- and down-regulates hundreds of downstream genes at each stage, mostly in a subtle manner. Strikingly, our analysis reveals that Ubx target genes are largely distinct at different stages of appendage morphogenesis, suggesting extensive interactions between Hox genes and hormone-controlled regulatory networks to orchestrate complex genetic programs during metamorphosis.

  18. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline.

    PubMed

    Meiklejohn, Colin D; Presgraves, Daven C

    2012-01-01

    Male-biased genes-those expressed at higher levels in males than in females-are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First, using genome-wide gene expression data from 20 tissues, we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues, we recover a statistical underrepresentation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally "demasculinizing" the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes.

  19. The gene structure of the Drosophila melanogaster proto-oncogene, kayak, and its nested gene, fos-intronic gene.

    PubMed

    Hudson, Stephanie Gidget; Goldstein, Elliott S

    2008-08-15

    We present herein a new model for the structure of the Drosophila kayak gene as well as preliminary data on the functional differences of its various isoforms. kayak is a homolog of the human proto-oncogene, c-fos. kayak has three different starts of transcription, and therefore promoters (P)kay-alpha, (P)kay-beta and (P)kay-gamma. These three promoters lead to four different transcripts: kay-alpha, kay(sro), kay-beta and kay-gamma. (P)kay-alpha produces two different transcripts: kay-alpha and kay(sro) where the other two promoters, (P)kay-beta and (P)kay-gamma, produce a single transcript each. The transcripts kay-alpha, beta and gamma all splice into the mainbody of the kay gene, which codes for the DNA binding domain and leucine zipper; kay(sro) is not spliced. Also, within this region is a nested gene, fos-intronic gene (fig) which is transcribed in the opposite direction. fig codes for a predicted PP2C phosphatase. fig has two different promoters which produce two different transcripts, both in the same reading frame, fig-alpha and beta. This is an unusual gene structure for Drosophila. Only 13% of Drosophila genes have multiple promoters and only 7% have a nested gene. RT-PCR was performed on each transcript to determine the relative amounts of each RNA produced. All spliced kay transcripts appear to have equal abundance. The unspliced kay(sro) transcript has a lower abundance than kay-alpha. Both fig transcripts are also detected in all stages tested. Lethal phase analysis and complementation testing suggest that the three isoforms of kayak may have different functions.

  20. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion.

    PubMed

    Park, Sangbin; Alfa, Ronald W; Topper, Sydni M; Kim, Grace E S; Kockel, Lutz; Kim, Seung K

    2014-08-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.

  1. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  2. Divergence of the gene aly in experimentally evolved cytoraces, the members of the nasuta-albomicans complex of Drosophila.

    PubMed

    Radhika, P N; Ramachandra, N B

    2014-08-01

    We generated cytoraces by crossing the chromosomal races (Drosophila nasuta nasuta and Drosophila nasuta albomicans) of the nasuta subgroup of Drosophila and maintained the offspring over many generations through sibling mating. These cytoraces, along with their parents, are members of the nasuta-albomicans complex of Drosophila. The gene always early (aly) is one of the rapidly evolving genes in the genus Drosophila and plays a central role in regulating meiosis. Here we examined the rate of molecular evolution of aly in cytoraces of Drosophila and demonstrated that the rate of substitutions amongst cytoraces is around eight times greater than their parents and even amongst species of subgenera. Thus, the presence of positive selection in the laboratory-derived cytoraces based on the analysis of the synonymous and nonsynonymous substitution rates of aly suggests the rapid evolution in cytoraces.

  3. Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster.

    PubMed

    Guan, Delong; Mo, Fei; Han, Yan; Gu, Wei; Zhang, Min

    2015-01-01

    Cadmium is highly toxic and can cause oxidative damage, metabolic disorders, and reduced lifespan and fertility in animals. In this study, we investigated the effects of cadmium in Drosophila melanogaster, performing transcriptome analysis by using tag-based digital gene expression (DGE) profiling. Among 1970 candidate genes, 1443 were up-regulated and 527 were down-regulated following cadmium exposure. Using Gene Ontology analysis, we found that cadmium stress affects three processes: transferase activity, stress response, and the cell cycle. Furthermore, we identified five differentially expressed genes (confirmed by real-time PCR) involved in all three processes: Ald, Cdc2, skpA, tefu, and Pvr. Pathway analysis revealed that these genes were involved in the cell cycle pathway and fat digestion and absorption pathway. This study reveals the gene expression response to cadmium stress in Drosophila, it provides insights into the mechanisms of this response, and it could contribute to our understanding of cadmium toxicity in humans.

  4. Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough.

    PubMed

    Perez, D E; Wu, C I

    1995-05-01

    Previously we mapped by genetical and molecular means a gene that contributes to hybrid-male sterility between Drosophila mauritiana and D. simulans to the cytological interval of 16D. In this report, we refine the mapping of this gene, Odysseus (Ods) and show that it can be delineated to a region the size of an average gene. We further demonstrate that, while Ods appears to be a discrete element, it requires other nearby gene(s) to be cointrogressed to confer full hybrid sterility effect. This observation is in agreement with the view that reproductive isolation between closely related species of Drosophila is usually caused by several genes of weak effect from the same species that interact strongly among themselves as well as with the foreign genetic background.

  5. Evolution of Three Parent Genes and Their Retrogene Copies in Drosophila Species

    PubMed Central

    O'Neill, Ryan S.; Clark, Denise V.

    2013-01-01

    Retrogenes form a class of gene duplicate lacking the regulatory sequences found outside of the mRNA-coding regions of the parent gene. It is not clear how a retrogene's lack of parental regulatory sequences affects the evolution of the gene pair. To explore the evolution of parent genes and retrogenes, we investigated three such gene pairs in the family Drosophilidae; in Drosophila melanogaster, these gene pairs are CG8331 and CG4960, CG17734 and CG11825, and Sep2 and Sep5. We investigated the embryonic expression patterns of these gene pairs across multiple Drosophila species. Expression patterns of the parent genes and their single copy orthologs are relatively conserved across species, whether or not a species has a retrogene copy, although there is some variation in CG8331 and CG17734. In contrast, expression patterns of the retrogene orthologs have diversified. We used the genome sequences of 20 Drosophila species to investigate coding sequence evolution. The coding sequences of the three gene pairs appear to be evolving predominantly under negative selection; however, the parent genes and retrogenes show some distinct differences in amino acid sequence. Therefore, in general, retrogene expression patterns and coding sequences are distinct compared to their parents and, in some cases, retrogene expression patterns diversify. PMID:23841016

  6. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila.

    PubMed

    Beumer, Kelly J; Trautman, Jonathan K; Christian, Michelle; Dahlem, Timothy J; Lake, Cathleen M; Hawley, R Scott; Grunwald, David J; Voytas, Daniel F; Carroll, Dana

    2013-10-03

    Zinc-finger nucleases have proven to be successful as reagents for targeted genome manipulation in Drosophila melanogaster and many other organisms. Their utility has been limited, however, by the significant failure rate of new designs, reflecting the complexity of DNA recognition by zinc fingers. Transcription activator-like effector (TALE) DNA-binding domains depend on a simple, one-module-to-one-base-pair recognition code, and they have been very productively incorporated into nucleases (TALENs) for genome engineering. In this report we describe the design of TALENs for a number of different genes in Drosophila, and we explore several parameters of TALEN design. The rate of success with TALENs was substantially greater than for zinc-finger nucleases , and the frequency of mutagenesis was comparable. Knockout mutations were isolated in several genes in which such alleles were not previously available. TALENs are an effective tool for targeted genome manipulation in Drosophila.

  7. Structure and expression of the Drosophila ubiquitin-52-amino-acid fusion-protein gene.

    PubMed Central

    Cabrera, H L; Barrio, R; Arribas, C

    1992-01-01

    Ubiquitin belongs to a multigene family. In Drosophila two members of this family have been previously described. We report here the organization and expression of a third member, the DUb52 gene, isolated by screening a Drosophila melanogaster genomic library. This gene encodes an ubiquitin monomer fused to a 52-amino acid extension protein. There are no introns interrupting the coding sequence. Recently, it has been described that this extension encodes a ribosomal protein in Saccharomyces, Dictyostelium, and Arabidopsis. The present results show that the 5' regulatory region of DUb52 shares common features with the ribosomal protein genes of Drosophila, Xenopus and mouse, including GC- and pyrimidine-rich regions. Moreover, sequences similar to the consensus Ribo-box in Neurospora crassa have been identified. Furthermore, a sequence has been found that is similar to the binding site for the TFIIIA distal element factor from Xenopus laevis. The DUb52 gene is transcribed to a 0.9 kb mRNA that is expressed constitutively throughout development and is particularly abundant in ovaries. In addition, the DUb52 gene has been found to be preferentially transcribed in exponentially growing Drosophila cells. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1381584

  8. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation.

    PubMed

    Manu; Surkova, Svetlana; Spirov, Alexander V; Gursky, Vitaly V; Janssens, Hilde; Kim, Ah-Ram; Radulescu, Ovidiu; Vanario-Alonso, Carlos E; Sharp, David H; Samsonova, Maria; Reinitz, John

    2009-03-01

    Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Krüppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic

  9. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster.

    PubMed

    Robinson, Scott W; Herzyk, Pawel; Dow, Julian A T; Leader, David P

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25-17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13,250 Drosophila genes, detecting 12,533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax 'autosuggest' facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues.

  10. A Role of Polycomb Group Genes in the Regulation of Gap Gene Expression in Drosophila

    PubMed Central

    Pelegri, F.; Lehmann, R.

    1994-01-01

    Anteroposterior polarity of the Drosophila embryo is initiated by the localized activities of the maternal genes, bicoid and nanos, which establish a gradient of the hunchback (hb) morphogen. nanos determines the distribution of the maternal Hb protein by regulating its translation. To identify further components of this pathway we isolated suppressors of nanos. In the absence of nanos high levels of Hb protein repress the abdomen-specific genes knirps and giant. In suppressor-of-nanos mutants, knirps and giant are expressed in spite of high Hb levels. The suppressors are alleles of Enhancer of zeste (E(z)) a member of the Polycomb group (Pc-G) of genes. We show that E(z), and likely other Pc-G genes, are required for maintaining the expression domains of knirps and giant initiated by the maternal Hb protein gradient. We have identified a small region of the knirps promoter that mediates the regulation by E(z) and hb. Because Pc-G genes are thought to control gene expression by regulating chromatin, we propose that imprinting at the chromatin level underlies the determination of anteroposterior polarity in the early embryo. PMID:8013911

  11. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans.

    PubMed

    Quiring, R; Walldorf, U; Kloter, U; Gehring, W J

    1994-08-05

    A Drosophila gene that contains both a paired box and a homeobox and has extensive sequence homology to the mouse Pax-6 (Small eye) gene was isolated and mapped to chromosome IV in a region close to the eyeless locus. Two spontaneous mutations, ey2 and eyR, contain transposable element insertions into the cloned gene and affect gene expression, particularly in the eye primordia. This indicates that the cloned gene encodes ey. The finding that ey of Drosophila, Small eye of the mouse, and human Aniridia are encoded by homologous genes suggests that eye morphogenesis is under similar genetic control in both vertebrates and insects, in spite of the large differences in eye morphology and mode of development.

  12. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila.

    PubMed

    Gallach, Miguel; Chandrasekaran, Chitra; Betrán, Esther

    2010-01-01

    Gene duplication is probably the most important mechanism for generating new gene functions. However, gene duplication has been overlooked as a potentially effective way to resolve genetic conflicts. Here, we analyze the entire set of Drosophila melanogaster nuclearly encoded mitochondrial duplicate genes and show that both RNA- and DNA-mediated mitochondrial gene duplications exhibit an unexpectedly high rate of relocation (change in location between parental and duplicated gene) as well as an extreme tendency to avoid the X chromosome. These trends are likely related to our observation that relocated genes tend to have testis-specific expression. We also infer that these trends hold across the entire Drosophila genus. Importantly, analyses of gene ontology and functional interaction networks show that there is an overrepresentation of energy production-related functions in these mitochondrial duplicates. We discuss different hypotheses to explain our results and conclude that our findings substantiate the hypothesis that gene duplication for male germline function is likely a mechanism to resolve intralocus sexually antagonistic conflicts that we propose are common in testis. In the case of nuclearly encoded mitochondrial duplicates, our hypothesis is that past sexually antagonistic conflict related to mitochondrial energy function in Drosophila was resolved by gene duplication.

  13. Limited gene misregulation is exacerbated by allele-specific upregulation in lethal hybrids between Drosophila melanogaster and Drosophila simulans.

    PubMed

    Wei, Kevin H-C; Clark, Andrew G; Barbash, Daniel A

    2014-07-01

    Misregulation of gene expression is often observed in interspecific hybrids and is generally attributed to regulatory incompatibilities caused by divergence between the two genomes. However, it has been challenging to distinguish effects of regulatory divergence from secondary effects including developmental and physiological defects common to hybrids. Here, we use RNA-Seq to profile gene expression in F1 hybrid male larvae from crosses of Drosophila melanogaster to its sibling species D. simulans. We analyze lethal and viable hybrid males, the latter produced using a mutation in the X-linked D. melanogaster Hybrid male rescue (Hmr) gene and compare them with their parental species and to public data sets of gene expression across development. We find that Hmr has drastically different effects on the parental and hybrid genomes, demonstrating that hybrid incompatibility genes can exhibit novel properties in the hybrid genetic background. Additionally, we find that D. melanogaster alleles are preferentially affected between lethal and viable hybrids. We further determine that many of the differences between the hybrids result from developmental delay in the Hmr(+) hybrids. Finally, we find surprisingly modest expression differences in hybrids when compared with the parents, with only 9% and 4% of genes deviating from additivity or expressed outside of the parental range, respectively. Most of these differences can be attributed to developmental delay and differences in tissue types. Overall, our study suggests that hybrid gene misexpression is prone to overestimation and that even between species separated by approximately 2.5 Ma, regulatory incompatibilities are not widespread in hybrids.

  14. Strong purifying selection on the Odysseus gene in two clades of sibling species of the Drosophila montium species subgroup.

    PubMed

    Wen, Shuo-Yang; Shimada, Kimio; Kawai, Kuniko; Toda, Masanori J

    2006-05-01

    The Odysseus (OdsH) gene was duplicated from its ancestral neuron-expressed gene, unc-4, and then evolved very rapidly under strong positive Darwinian selection as a speciation gene causing hybrid-male sterility between closely related species of the Drosophila simulans clade. Has OdsH also experienced similar positive selection between Drosophila sibling species other than those of the simulans clade? We cloned and sequenced OdsH and unc-4 from two clades of the Drosophila montium species subgroup, the Drosophila lini and the Drosophila kikkawai clades. The ratios of Ka/Ks for OdsH were remarkably low between sibling species of these two clades, suggesting that OdsH has been subjected to strong purifying selection in these two clades.

  15. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes.

    PubMed

    Choi, Jae Young; Aquadro, Charles F

    2015-10-27

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system.

  16. Interspecific Comparisons of the Structure and Regulation of the Drosophila Ecdysone-Inducible Gene E74

    PubMed Central

    Jones, C. W.; Dalton, M. W.; Townley, L. H.

    1991-01-01

    The Drosophila melanogaster E74 gene is induced directly by the steroid hormone ecdysone and is a member of a small set of ``early'' genes that appear to trigger the onset of metamorphosis. The gene consists of three overlapping transcription units encoding two proteins, E74A and E74B, which possess a common C terminus. According to the Ashburner model for ecdysone's action, an E74 protein product potentially functions as a transcriptional activator of ``late'' genes as well as a repressor of early genes. We have taken an evolutionary approach to understand the function and regulation of E74 by isolating the homologous genes from Drosophila pseudoobscura and Drosophila virilis and comparing them to D. melanogaster E74 sequences. Conserved characteristics of the E74 genes include ecdysone inducibility, localization to ecdysone-induced polytene chromosome puffs, and gene size. Amino acid sequence comparisons of the E74A protein reveal a highly conserved C-terminal region that is rich in basic amino acid residues and which has been proposed to possess sequence-specific DNA binding activity. The moderately conserved N-terminal region has maintained its overall acidic character and is a potential transcriptional activator domain. The central region contains conserved glutamine and alanine homopolymeric repeats of variable lengths. Nucleotide sequence comparisons of the E74A promoter region fail to reveal ecdysone-response elements but do identify conserved sequences that may function in E74A regulation. PMID:2016053

  17. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila

    PubMed Central

    Zhu, Jun-yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-01

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors. DOI: http://dx.doi.org/10.7554/eLife.22617.001 PMID:28084990

  18. Mapping Linked Genes in "Drosophila Melanogaster" Using Data from the F2 Generation of a Dihybrid Cross

    ERIC Educational Resources Information Center

    Marshall, Pamela A.

    2008-01-01

    "Drosophila melanogaster" is a commonly utilized organism for testing hypotheses about inheritance of traits. Students in both high school and university labs study the genetics of inheritance by analyzing offspring of appropriate "Drosophila" crosses to determine inheritance patterns, including gene linkage. However, most genetics investigations…

  19. Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth.

    PubMed Central

    Stewart, M J; Denell, R

    1993-01-01

    We have characterized two P-element-induced, lethal mutations in Drosophila melanogaster which affect the larval hemocytes, mediators of the insect immune response. Each mutant displays larval melanotic tumors characteristic of mutations affecting the insect cellular immune system, and the moribund animals develop grossly hypertrophied hematopoietic organs because of increased cell proliferation and extra rounds of endoreduplication in some hematopoietic cells. Surprisingly, these mutations are due to P element insertions in the 5' regulatory region of the Drosophila gene encoding ribosomal protein S6 and cause a reduction of S6 transcript abundance in mutant larvae. Images PMID:8384310

  20. Role of DREF in transcriptional regulation of the Drosophila p53 gene.

    PubMed

    Trong-Tue, N; Thao, D T P; Yamaguchi, M

    2010-04-08

    The tumor suppressor protein p53 has a critical role in safeguarding the integrity of the genome. Its functions are well understood but factors responsible for the transcriptional regulation of the p53 gene are almost entirely unknown. The DNA replication-related element (DRE)/DNA replication-related element-binding factor (DREF) transcriptional regulatory system is established as a master key to cell proliferation in Drosophila. DREF binds specifically to DRE sequences in the Drosophila p53 (dmp53) gene promoter as shown using anti-DREF antibodies in chromatin immunoprecipitation assays. Furthermore, a rough eye phenotype because of overexpression of DREF in Drosophila eye imaginal disks could be suppressed by half dose reduction of the dmp53 gene. In addition, the level of mRNA of dmp53 was decreased in DREF-knockdown cells and transient expression of the luciferase gene under control of the wild-type dmp53 gene promoter showed strong promoter activity in S2 cells, but this was almost completely abrogated with a DRE-mutated promoter. Requirement of DREs for dmp53 promoter activity was further confirmed by anti-beta-galactosidase antibody-staining of various tissues from transgenic flies carrying dmp53 promoter-lacZ fusion genes. These results indicate that DREF is necessary for dmp53 gene promoter activity.

  1. The pink gene encodes the Drosophila orthologue of the human Hermansky-Pudlak syndrome 5 (HPS5) gene.

    PubMed

    Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M

    2007-06-01

    Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.

  2. Characterization of two Drosophila melanogaster cytochrome c genes and their transcripts.

    PubMed

    Limbach, K J; Wu, R

    1985-01-25

    Analysis of total Drosophila melanogaster DNA by genomic blot hybridization indicates that two cytochrome c-like sequences exist in the Drosophila genome. These two sequences, DC3 and DC4, have been isolated from a Charon 4A-D. melanogaster genomic library. DC3 and DC4 are located within a 4 kb region of DNA, at position 36A 10-11, on the left arm of chromosome 2. The nucleotide sequence of these two clones has been determined. Both DC3 and DC4 can encode functional cytochrome c proteins. The polypeptide sequences predicted by these two genes, however, differ at 32 amino acid residues. DC4 is expressed at varying, but relatively high levels throughout Drosophila development. In contrast, DC3 is expressed at constant, but relatively low levels throughout development.

  3. Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes.

    PubMed

    Proshkina, Ekaterina N; Shaposhnikov, Mikhail V; Sadritdinova, Asiya F; Kudryavtseva, Anna V; Moskalev, Alexey A

    2015-11-01

    Drosophila is one of the most convenient model organisms in the genetics of aging and longevity. Unlike the nematodes, which allow for the detection of new pro-aging genes by knockout and RNAi-mediated knock-down, Drosophila also provides an opportunity to find new pro-longevity genes by driver-induced overexpression. Similar studies on other models are extremely rare. In this review, we focused on genes whose overexpression prolongs the life of fruit flies. The majority of longevity-associated genes regulates metabolism and stress resistance, and belongs to the IGF-1R, PI3K, PKB, AMPK and TOR metabolic regulation cluster and the FOXO, HDAC, p53 stress response cluster.

  4. The Molecular Evolution of Cytochrome P450 Genes within and between Drosophila Species

    PubMed Central

    Good, Robert T.; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-01-01

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes—with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. PMID:24751979

  5. Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt

    PubMed Central

    Tootle, Tina L.; Williams, Dianne; Hubb, Alexander; Frederick, Rebecca; Spradling, Allan

    2011-01-01

    Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals. PMID:21637834

  6. The warts gene as a novel target of the Drosophila DRE/DREF transcription pathway.

    PubMed

    Fujiwara, Shunsuke; Ida, Hiroyuki; Yoshioka, Yasuhide; Yoshida, Hideki; Yamaguchi, Masamitsu

    2012-01-01

    The Hippo tumor suppressor pathway in Drosophila represses expression of DIAP1 and Cyclin E via inactivation of the transcription co-activator Yorkie, resulting in cell cycle arrest and induction of apoptosis. The warts (wts) gene is well known as a core kinase in this pathway, but its transcriptional regulation has yet to be clarified. In Drosophila, DREF binds to a target sequence named DRE (5'-TATCGATA) and regulates transcription of cell proliferation-related genes containing the DRE sequence in their promoter regions. Here we found half reduction of the wts gene dose to enhance the DREF-induced rough eye phenotype, suggesting a DREF genetic interaction with the Hippo pathway in vivo. Three DREs indentified in the wts gene promoter region exhibited strong promoter activity with a luciferase transient expression assay in Drosophila S2 cells, this decreasing under DREF-RNAi conditions. In addition, knockdown of DREF in S2 cells reduced the level of endogenous wts mRNA. Chromatin immunoprecipitation assays with anti-DREF antibody revealed that DREF binds specifically to the wts gene promoter region containing DREs in vivo. These results indicate that the DRE/DREF pathway is required for transcriptional regulation of the wts gene, indicating a novel link between the DRE/DREF and the Hippo pathways.

  7. The twisted Gene Encodes Drosophila Protein O-Mannosyltransferase 2 and Genetically Interacts With the rotated abdomen Gene Encoding Drosophila Protein O-Mannosyltransferase 1

    PubMed Central

    Lyalin, Dmitry; Koles, Kate; Roosendaal, Sigrid D.; Repnikova, Elena; Van Wechel, Laura; Panin, Vladislav M.

    2006-01-01

    The family of mammalian O-mannosyltransferases includes two enzymes, POMT1 and POMT2, which are thought to be essential for muscle and neural development. Similar to mammalian organisms, Drosophila has two O-mannosyltransferase genes, rotated abdomen (rt) and DmPOMT2, encoding proteins with high homology to their mammalian counterparts. The previously reported mutant phenotype of the rt gene includes a clockwise rotation of the abdomen and defects in embryonic muscle development. No mutants have been described so far for the DmPOMT2 locus. In this study, we determined that the mutation in the twisted (tw) locus, tw1, corresponds to a DmPOMT2 mutant. The twisted alleles represent a complementation group of recessive mutations that, similar to the rt mutants, exhibit a clockwise abdomen rotation phenotype. Several tw alleles were isolated in the past; however, none of them was molecularly characterized. We used an expression rescue approach to confirm that tw locus represents DmPOMT2 gene. We found that the tw1 allele represents an amino acid substitution within the conserved PMT domain of DmPOMT2 (TW) protein. Immunostaining experiments revealed that the protein products of both rt and tw genes colocalize within Drosophila cells where they reside in the ER subcellular compartment. In situ hybridization analysis showed that both genes have essentially overlapping patterns of expression throughout most of embryogenesis (stages 8–17), while only the rt transcript is present at early embryonic stages (5 and 6), suggesting its maternal origin. Finally, we analyzed the genetic interactions between rt and tw using several mutant alleles, RNAi, and ectopic expression approaches. Our data suggest that the two Drosophila O-mannosyltransferase genes, rt and tw, have nonredundant functions within the same developmental cascade and that their activities are required simultaneously for possibly the same biochemical process. Our results establish the possibility of using

  8. Evidence for the fixation of gene duplications by positive selection in Drosophila

    PubMed Central

    Cardoso-Moreira, Margarida; Arguello, J. Roman; Gottipati, Srikanth; Harshman, L.G.; Grenier, Jennifer K.; Clark, Andrew G.

    2016-01-01

    Gene duplications play a key role in the emergence of novel traits and in adaptation. But despite their centrality to evolutionary processes, it is still largely unknown how new gene duplicates are initially fixed within populations and later maintained in genomes. Long-standing debates on the evolution of gene duplications could be settled by determining the relative importance of genetic drift vs. positive selection in the fixation of new gene duplicates. Using the Drosophila Global Diversity Lines (GDL), we have combined genome-wide SNP polymorphism data with a novel set of copy number variant calls and gene expression profiles to characterize the polymorphic phase of new genes. We found that approximately half of the roughly 500 new complete gene duplications segregating in the GDL lead to significant increases in the expression levels of the duplicated genes and that these duplications are more likely to be found at lower frequencies, suggesting a negative impact on fitness. However, we also found that six of the nine gene duplications that are fixed or close to fixation in at least one of the five populations in our study show signs of being under positive selection, and that these duplications are likely beneficial because of dosage effects, with a possible role for additional mutations in two duplications. Our work suggests that in Drosophila, theoretical models that posit that gene duplications are immediately beneficial and fixed by positive selection are most relevant to explain the long-term evolution of gene duplications in this species. PMID:27197209

  9. From vestigial to vestigial-like: the Drosophila gene that has taken wing.

    PubMed

    Simon, Emilie; Faucheux, Corinne; Zider, Alain; Thézé, Nadine; Thiébaud, Pierre

    2016-07-01

    The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.

  10. The Tolkin Gene Is a Tolloid/Bmp-1 Homologue That Is Essential for Drosophila Development

    PubMed Central

    Finelli, A. L.; Xie, T.; Bossie, C. A.; Blackman, R. K.; Padgett, R. W.

    1995-01-01

    The Drosophila decapentaplegic (dpp) gene, a member of the tranforming growth factor β superfamily of growth factors, is critical for specification of the embryonic dorsal-ventral axis, for proper formation of the midgut, and for formation of Drosophila adult structures. The Drosophila tolloid gene has been shown to genetically interact with dpp. The genetic interaction between tolloid and dpp suggests a model in which the tolloid protein participates in a complex containing the DPP ligand, its protease serving to activate DPP, either directly or indirectly. We report here the identification and cloning of another Drosophila member of the tolloid/bone morphogenic protein (BMP) 1 family, tolkin, which is located 700 bp 5' to tolloid. Its overall structure is like tolloid, with an N-terminal metalloprotease domain, five complement subcomponents C1r/C1s, Uegf, and Bmp1 (CUB) repeats and two epidermal growth factor (EGF) repeats. Its expression pattern overlaps that of tolloid and dpp in early embryos and diverges in later stages. In larval tissues, both tolloid and tolkin are expressed uniformly in the imaginal disks. In the brain, both tolloid and tolkin are expressed in the outer proliferation center, whereas tolkin has another stripe of expression near the outer proliferation center. Analysis of lethal mutations in tolkin indicate it is vital during larval and pupal stages. Analysis of its mutant phenotypes and expression patterns suggests that its functions may be mostly independent of tolloid and dpp. PMID:8536976

  11. Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene

    PubMed Central

    Hess, Norbert K.; Singer, Phillip A.; Trinh, Kien; Nikkhoy, Massoud; Bernstein, Sanford I.

    2007-01-01

    We show that a 2.6 kb fragment of the muscle myosin heavy-chain gene (Mhc) of Drosophila melanogaster (containing 458 base pairs of upstream sequence, the first exon, the first intron and the beginning of the second exon) drives expression in all muscles. Comparison of the minimal promoter to Mhc genes of ten Drosophila species identified putative regulatory elements in the upstream region and in the first intron. The first intron is required for expression in four small cells of the tergal depressor of the trochanter (jump) muscle and in the indirect flight muscle. The 3′ end of this intron is important for Mhc transcription in embryonic body wall muscle and contains AT–rich elements that are protected from DNase I digestion by nuclear proteins of Drosophila embryos. Sequences responsible for expression in embryonic, adult body wall and adult head muscles are present both within and outside the intron. Elements important for expression in leg muscles and in the large cells of the jump muscle flank the intron. We conclude that multiple transcriptional regulatory elements are responsible for Mhc expression in specific sets of Drosophila muscles. PMID:17194628

  12. Regulation of the segmentation gene fushi tarazu has been functionally conserved in Drosophila.

    PubMed Central

    Maier, D; Preiss, A; Powell, J R

    1990-01-01

    An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila. Images Fig. 2. Fig. 6. PMID:2174353

  13. sry h-1, a new Drosophila melanogaster multifingered protein gene showing maternal and zygotic expression.

    PubMed Central

    Vincent, A; Kejzlarovà-Lepesant, J; Segalat, L; Yanicostas, C; Lepesant, J A

    1988-01-01

    Low-stringency hybridization of the Drosophila serendipity (sry) finger-coding sequences revealed copies of homologous DNA sequences in the genomes of members of the family Drosophilidae and higher vertebrates. sry h-1, a new Drosophila finger protein-coding gene isolated on the basis of this homology, encodes a 3.2-kilobase (kb) mRNA accumulating in eggs and abundant in early embryos. The predicted sry h-1 protein product, starting at an internal initiation site of translation, is a 868-amino-acid basic polypeptide containing eight TFIIIA-like fingers encoded by three separate exons. Links separating individual fingers in the sry h-1 protein are variable in length and sequence, in contrast with the invariant H/C link found in most multi-fingered proteins. The similarity of the developmental pattern of transcription of sry h-1 with that of several other Drosophila finger protein genes suggests the existence of a complex set of such genes encoding an information which is, at least partly, maternally provided to the embryo and required for activation of gene transcription in early embryos or maintenance of gene activity during subsequent development. Images PMID:3141791

  14. Neutral evolution of the sex-determining gene transformer in Drosophila.

    PubMed Central

    McAllister, B F; McVean, G A

    2000-01-01

    The amino acid sequence of the transformer (tra) gene exhibits an extremely rapid rate of evolution among Drosophila species, although the gene performs a critical step in sex determination. These changes in amino acid sequence are the result of either natural selection or neutral evolution. To differentiate between selective and neutral causes of this evolutionary change, analyses of both intraspecific and interspecific patterns of molecular evolution of tra gene sequences are presented. Sequences of 31 tra alleles were obtained from Drosophila americana. Many replacement and silent nucleotide variants are present among the alleles; however, the distribution of this sequence variation is consistent with neutral evolution. Sequence evolution was also examined among six species representative of the genus Drosophila. For most lineages and most regions of the gene, both silent and replacement substitutions have accumulated in a constant, clock-like manner. In exon 3 of D. virilis and D. americana we find evidence for an elevated rate of nonsynonymous substitution, but no statistical support for a greater rate of nonsynonymous relative to synonymous substitutions. Both levels of analysis of the tra sequence suggest that, although the gene is evolving at a rapid pace, these changes are neutral in function. PMID:10747064

  15. Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone

    SciTech Connect

    Amin, J.; Voellmy, R. ); Mestril, R. )

    1991-12-01

    Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been stimulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. The authors report here that the shp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reported constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.

  16. Higher frequency of intron loss from the promoter proximally paused genes of Drosophila melanogaster.

    PubMed

    Jiang, Li; Li, Xue-Nan; Niu, Deng-Ke

    2014-01-01

    Although intron losses have been widely reported, it is not clear whether they are neutral and therefore random or driven by positive selection. Intron transcription and splicing are time-consuming and can delay the expression of its host gene. For genes that must be activated quickly to respond to physiological or stress signals, intron delay may be deleterious. Promoter proximally paused (PPP) genes are a group of rapidly expressed genes. To respond quickly to activation signals, they generally initiate transcription competently but stall after synthesizing a short RNA. In this study, performed in Drosophila melanogaster, the PPP genes were found to have a significantly higher rate of intron loss than control genes. However, further analysis did not find more significant shrinkage of intron size in PPP genes. Referring to previous studies on the rates of transcription and splicing and to the time saved by deletion of the introns from mouse gene Hes7, it is here suggested that transcription delay is comparable to splicing delay only when the intron is 28.5 kb or larger, which is greater in size than 95% of vertebrate introns, 99.5% of Drosophila introns, and all the annotated introns of Saccharomyces cerevisiae and Arabidopsis thaliana. Delays in intron splicing are probably a selective force, promoting intron loss from quickly expressed genes. In other genes, it may have been an exaptation during the emergency of developmental clocks.

  17. PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes.

    PubMed

    Casola, Claudio; Lawing, A Michelle; Betrán, Esther; Feschotte, Cédric

    2007-08-01

    The P instability factor or PIF superfamily of DNA transposons constitutes an important group of transposable elements (TEs) in plants, but it is still poorly characterized in metazoans. Taking advantage of the availability of draft genome sequences for twelve Drosophila species, we discovered 4 different lineages of Drosophila PIF-like transposons, named DPLT1-4. These lineages have experienced a complex evolutionary history during the Drosophila radiation, involving differential amplification and retention among species and probable events of horizontal transmission. Like previously described plant and animal PIF transposons, full-length DPLTs encode a putative transposase as well as a second predicted protein containing a Myb/SANT domain. In DPLTs, this domain is most closely related to the MADF DNA-binding domain found in several Drosophila transcription factors. In addition, we identified 7 distinct genes distributed across the Drosophila genus that encode proteins related to PIF transposases, but lack the hallmarks of transposons. Instead, these sequences show features of functional genes, such as an intact coding region evolving under purifying selection, the presence of orthologs in at least 2 Drosophila species, and the conservation of intron/exon structure across orthologs. We also provide evidence that most of these genes are transcribed and that some are developmentally regulated. Together the data indicate that these genes derived from PIF-transposons that have been "domesticated" to serve cellular functions. In one instance the recruitment of the transposase gene was accompanied by the co-recruitment of the adjacent second PIF gene, which raises the hypothesis that both proteins now function in the same pathway. The second PIF gene has retained the capacity to encode a protein with an intact MADF domain, suggesting that it may function as a transcription factor. We conclude that PIF transposons are common in the Drosophila lineage and have been a

  18. TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila.

    PubMed

    Hochheimer, Andreas; Zhou, Sharleen; Zheng, Shuang; Holmes, Michael C; Tjian, Robert

    2002-11-28

    Drosophila TATA-box-binding protein (TBP)-related factor 2 (TRF2) is a member of a family of TBP-related factors present in metazoan organisms. Recent evidence suggests that TRF2s are required for proper embryonic development and differentiation. However, true target promoters and the mechanisms by which TRF2 operates to control transcription remain elusive. Here we report the antibody affinity purification of a Drosophila TRF2-containing complex that contains components of the nucleosome remodelling factor (NURF) chromatin remodelling complex as well as the DNA replication-related element (DRE)-binding factor DREF. This latter finding led us to potential target genes containing TRF2-responsive promoters. We have used a combination of in vitro and in vivo assays to show that the DREF-containing TRF2 complex directs core promoter recognition of the proliferating cell nuclear antigen (PCNA) gene. We also identified additional TRF2-responsive target genes involved in DNA replication and cell proliferation. These data suggest that TRF2 functions as a core promoter-selectivity factor responsible for coordinating transcription of a subset of genes in Drosophila.

  19. New candidate genes for heat resistance in Drosophila melanogaster are regulated by HSF.

    PubMed

    Jensen, Louise Toft; Nielsen, Morten Muhlig; Loeschcke, Volker

    2008-01-01

    The cellular heat stress response is well studied in Drosophila in respect to the role of heat shock proteins (Hsp). Hsps are molecular chaperones, highly expressed during and after exposure to numerous stress types. Hsps are all regulated by a common transcription factor, the heat shock factor (HSF), and it is known that HSF is controlling other, so far uncharacterised, heat-responsive genes. In this study, we investigate whether novel candidate genes for heat resistance, identified by microarray experiments, are regulated by HSF. The microarray experiments recently identified several strongly upregulated genes in response to a short, non-lethal heat treatment in Drosophila melanogaster. To test whether or not a subset of these genes are HSF-induced, we studied 11 currently unannotated genes using quantitative polymerase chain reaction on HSF mutant flies with a non-functional HSF at elevated temperatures. We found indication of HSF regulation in most of the studied genes, suggesting a role of these unknown genes in heat tolerance. Surprisingly, some of the genes seemed to be upregulated independent of HSF function. The high induction in response to heat, which mimics the expression profile of Hsps, implies a role in the cellular heat response of these genes as well.

  20. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.

    PubMed

    Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi

    2016-12-01

    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.

  1. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation

    PubMed Central

    Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François

    2017-01-01

    The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues. PMID:28067325

  2. Evolutionary Techniques for Image Processing a Large Dataset of Early Drosophila Gene Expression

    NASA Astrophysics Data System (ADS)

    Spirov, Alexander; Holloway, David M.

    2003-12-01

    Understanding how genetic networks act in embryonic development requires a detailed and statistically significant dataset integrating diverse observational results. The fruit fly ( Drosophila melanogaster) is used as a model organism for studying developmental genetics. In recent years, several laboratories have systematically gathered confocal microscopy images of patterns of activity (expression) for genes governing early Drosophila development. Due to both the high variability between fruit fly embryos and diverse sources of observational errors, some new nontrivial procedures for processing and integrating the raw observations are required. Here we describe processing techniques based on genetic algorithms and discuss their efficacy in decreasing observational errors and illuminating the natural variability in gene expression patterns. The specific developmental problem studied is anteroposterior specification of the body plan.

  3. Testing for asymmetrical gene flow in a Drosophila melanogaster body-size cline.

    PubMed Central

    Kennington, W Jason; Gockel, Julia; Partridge, Linda

    2003-01-01

    Asymmetrical gene flow is an important, but rarely examined genetic parameter. Here, we develop a new method for detecting departures from symmetrical migration between two populations using microsatellite data that are based on the difference in the proportion of private alleles. Application of this approach to data collected from wild-caught Drosophila melanogaster along a latitudinal body-size cline in eastern Australia revealed that asymmetrical gene flow could be detected, but was uncommon, nonlocalized, and occurred in both directions. We also show that, in contrast to the findings of a previous study, there is good evidence to suggest that the cline experiences significant levels of gene flow between populations. PMID:14573478

  4. Mutations in the circadian gene period alter behavioral and biochemical responses to ethanol in Drosophila.

    PubMed

    Liao, Jennifer; Seggio, Joseph A; Ahmad, S Tariq

    2016-04-01

    Clock genes, such as period, which maintain an organism's circadian rhythm, can have profound effects on metabolic activity, including ethanol metabolism. In turn, ethanol exposure has been shown in Drosophila and mammals to cause disruptions of the circadian rhythm. Previous studies from our labs have shown that larval ethanol exposure disrupted the free-running period and period expression of Drosophila. In addition, a recent study has shown that arrhythmic flies show no tolerance to ethanol exposure. As such, Drosophila period mutants, which have either a shorter than wild-type free-running period (perS) or a longer one (perL), may also exhibit altered responses to ethanol due to their intrinsic circadian differences. In this study, we tested the initial sensitivity and tolerance of ethanol exposure on Canton-S, perS, and perL, and then measured their Alcohol Dehydrogenase (ADH) and body ethanol levels. We showed that perL flies had slower sedation rate, longer recovery from ethanol sedation, and generated higher tolerance for sedation upon repeated ethanol exposure compared to Canton-S wild-type flies. Furthermore, perL flies had lower ADH activity and had a slower ethanol clearance compared to wild-type flies. The findings of this study suggest that period mutations influence ethanol induced behavior and ethanol metabolism in Drosophila and that flies with longer circadian periods are more sensitive to ethanol exposure.

  5. An enhancer trap screen for ecdysone-inducible genes required for Drosophila adult leg morphogenesis.

    PubMed Central

    Gates, J; Thummel, C S

    2000-01-01

    Although extensive studies of Drosophila imaginal disc development have focused on proliferation and patterning, relatively little is known about how the patterned imaginal discs are transformed into adult structures during metamorphosis. Studies focused primarily on leg development have shown that this remarkable transformation is coordinated by pulses of the steroid hormone ecdysone and requires the function of ecdysone-inducible transcription factors as well as proteases and components of the contractile cytoskeleton and adherens junctions. Here, we describe a genetic screen aimed at expanding our understanding of the hormonal regulation of Drosophila adult leg morphogenesis. We screened 1300 lethal P-element enhancer trap insertions on the second chromosome for a series of sequential parameters including pupal lethality, defects in leg morphogenesis, and ecdysone-induced lacZ reporter gene expression. From this screen we identified four mutations, one of which corresponds to bancal, which encodes the Drosophila homolog of hnRNP K. We also identified vulcan, which encodes a protein that shares sequence similarity with a family of rat SAPAP proteins. Both bancal and vulcan are inducible by ecdysone, thus linking the hormone signal with leg morphogenesis. This screen provides new directions for understanding the hormonal regulation of leg development during Drosophila metamorphosis. PMID:11102372

  6. Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles.

    PubMed

    Huang, Yanmei; Ng, Fanny S; Jackson, F Rob

    2015-02-04

    The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation. We have utilized the Drosophila model and Translating Ribosome Affinity Purification (TRAP)-RNA-seq methods to derive the genome-wide expression profile of Drosophila larval astrocyte-like cells (hereafter referred to as astrocytes) for the first time. These studies identified hundreds of larval astrocyte-enriched genes that encode proteins important for metabolism, energy production, and protein synthesis, consistent with the known role of astrocytes in the metabolic support of neurons. Comparison of the larval profile with that observed for adults has identified genes with astrocyte-enriched expression specific to adulthood. These include genes important for metabolism and energy production, translation, chromatin modification, protein glycosylation, neuropeptide signaling, immune responses, vesicle-mediated trafficking or secretion, and the regulation of behavior. Among these functional classes, the expression of genes important for chromatin modification and vesicle-mediated trafficking or secretion is overrepresented in adult astrocytes based on Gene Ontology analysis. Certain genes with selective adult enrichment may mediate functions specific to this stage or may be important for the differentiation or maintenance of adult astrocytes, with the latter perhaps contributing to population heterogeneity.

  7. Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes

    PubMed Central

    Lin, Michael F.; Carlson, Joseph W.; Crosby, Madeline A.; Matthews, Beverley B.; Yu, Charles; Park, Soo; Wan, Kenneth H.; Schroeder, Andrew J.; Gramates, L. Sian; St. Pierre, Susan E.; Roark, Margaret; Wiley, Kenneth L.; Kulathinal, Rob J.; Zhang, Peili; Myrick, Kyl V.; Antone, Jerry V.; Celniker, Susan E.; Gelbart, William M.; Kellis, Manolis

    2007-01-01

    The availability of sequenced genomes from 12 Drosophila species has enabled the use of comparative genomics for the systematic discovery of functional elements conserved within this genus. We have developed quantitative metrics for the evolutionary signatures specific to protein-coding regions and applied them genome-wide, resulting in 1193 candidate new protein-coding exons in the D. melanogaster genome. We have reviewed these predictions by manual curation and validated a subset by directed cDNA screening and sequencing, revealing both new genes and new alternative splice forms of known genes. We also used these evolutionary signatures to evaluate existing gene annotations, resulting in the validation of 87% of genes lacking descriptive names and identifying 414 poorly conserved genes that are likely to be spurious predictions, noncoding, or species-specific genes. Furthermore, our methods suggest a variety of refinements to hundreds of existing gene models, such as modifications to translation start codons and exon splice boundaries. Finally, we performed directed genome-wide searches for unusual protein-coding structures, discovering 149 possible examples of stop codon readthrough, 125 new candidate ORFs of polycistronic mRNAs, and several candidate translational frameshifts. These results affect >10% of annotated fly genes and demonstrate the power of comparative genomics to enhance our understanding of genome organization, even in a model organism as intensively studied as Drosophila melanogaster. PMID:17989253

  8. Cytogenetic and Molecular Characterization of Heterochromatin Gene Models in Drosophila melanogaster

    PubMed Central

    Rossi, Fabrizio; Moschetti, Roberta; Caizzi, Ruggiero; Corradini, Nicoletta; Dimitri, Patrizio

    2007-01-01

    In the past decade, genome-sequencing projects have yielded a great amount of information on DNA sequences in several organisms. The release of the Drosophila melanogaster heterochromatin sequence by the Drosophila Heterochromatin Genome Project (DHGP) has greatly facilitated studies of mapping, molecular organization, and function of genes located in pericentromeric heterochromatin. Surprisingly, genome annotation has predicted at least 450 heterochromatic gene models, a figure 10-fold above that defined by genetic analysis. To gain further insight into the locations and functions of D. melanogaster heterochromatic genes and genome organization, we have FISH mapped 41 gene models relative to the stained bands of mitotic chromosomes and the proximal divisions of polytene chromosomes. These genes are contained in eight large scaffolds, which together account for ∼1.4 Mb of heterochromatic DNA sequence. Moreover, developmental Northern analysis showed that the expression of 15 heterochromatic gene models tested is similar to that of the vital heterochromatic gene Nipped-A, in that it is not limited to specific stages, but is present throughout all development, despite its location in a supposedly “silent” region of the genome. This result is consistent with the idea that genes resident in heterochromatin can encode essential functions. PMID:17110485

  9. Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system.

    PubMed

    Park, So Young; Kim, Young-Shin; Yang, Dong-Jin; Yoo, Mi-Ae

    2004-01-01

    Reactive oxygen species (ROS) cause oxidative stress and aging. The catalase gene is a key component of the cellular antioxidant defense network. However, the molecular mechanisms that regulate catalase gene expression are poorly understood. In this study, we have identified a DNA replication-related element (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila catalase gene. Gel mobility shift assays revealed that a previously identified factor called DREF (DRE- binding factor) binds to the DRE sequence in the Drosophila catalase gene. We used site-directed mutagenesis and in vitro transient transfection assays to establish that expression of the catalase gene is regulated by DREF through the DRE site. To explore the role of DRE/DREF in vivo, we established transgenic flies carrying a catalase-lacZ fusion gene with or without mutation in the DRE. The beta-galactosidase expression patterns of these reporter transgenic lines demonstrated that the catalase gene is upregulated by DREF through the DRE sequence. In addition, we observed suppression of the ectopic DREF-induced rough eye phenotype by a catalase amorphic Cat(n1) allele, indicating that DREF activity is modulated by the intracellular redox state. These results indicate that the DRE/DREF system is a key regulator of catalase gene expression and provide evidence of cross-talk between the DRE/DREF system and the antioxidant defense system.

  10. Not4 enhances JAK/STAT pathway-dependent gene expression in Drosophila and in human cells.

    PubMed

    Grönholm, Juha; Kaustio, Meri; Myllymäki, Henna; Kallio, Jenni; Saarikettu, Juha; Kronhamn, Jesper; Valanne, Susanna; Silvennoinen, Olli; Rämet, Mika

    2012-03-01

    The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.

  11. A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes

    PubMed Central

    Yang, Shuang; Jiang, Yu; Chen, Yuan; Zhao, Ruoping; Zhang, Yue; Zhang, Guojie; Dong, Yang; Yu, Haijing; Zhou, Qi; Wang, Wen

    2010-01-01

    Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes. PMID:21203494

  12. Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome.

    PubMed

    Meisel, Richard P; Hilldorfer, Benedict B; Koch, Jessica L; Lockton, Steven; Schaeffer, Stephen W

    2010-08-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to "escape" X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined--one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are fixed

  13. Head and tail development of the Drosophila embryo involves spalt, a novel homeotic gene

    PubMed Central

    Jürgens, Gerd

    1988-01-01

    Mutations in spalt (sal), a novel homeotic gene on the second chromosome of Drosophila, cause opposite transformations in two subterminal regions of the embryo: posterior head segments are transformed into anterior thoracic structures and anterior tail segments are transformed into posterior abdominal structures. The embryonic phenotypes of double mutants for sal and various Antennapedia (ANT-C) or bithorax (BX-C) genes indicate that sal acts independently of the hierarchical order of the latter gene complexes. Trans-regulatory gene mutations causing ectopic expression of ANT-C and BX-C genes do not change the realms of sal action. It is proposed that the region-specific action of the sal gene primarily promotes head as opposed to trunk development, while the BX-C gene AbdB distinguishes tail from head. Images PMID:16453820

  14. Structure and expression of the Drosophila ubiquitin-80-amino-acid fusion-protein gene.

    PubMed Central

    Barrio, R; del Arco, A; Cabrera, H L; Arribas, C

    1994-01-01

    In the fruitfly Drosophila, as in all eukaryotes examined so far, some ubiquitin-coding sequences appear fused to unrelated open reading frames. Two of these fusion genes have been previously described (the homologues of UBI1-UBI2 and UBI4 in yeast), and we report here the organization and expression of a third one, the DUb80 gene (the homologue of UBI3 in yeast). This gene encodes a ubiquitin monomer fused to an 80-amino-acid extension which is homologous with the ribosomal protein encoded by the UB13 gene. The 5' regulatory region of DUb80 shares common features with another ubiquitin fusion gene, DUb52, and with the ribosomal protein genes of Drosophila, Xenopus and mouse. We also find helix-loop-helix protein-binding sequences (E-boxes). The DUb80 gene is transcribed to a 0.9 kb mRNA which is particularly abundant under conditions of high protein synthesis, such as in ovaries and exponentially growing cells. Images Figure 3 Figure 4 PMID:8068011

  15. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    PubMed

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  16. Transcriptional regulation of the Drosophila orc2 gene by the DREF pathway.

    PubMed

    Okudaira, Koji; Ohno, Katsuhito; Yoshida, Hideki; Asano, Maki; Hirose, Fumiko; Yamaguchi, Masamitsu

    2005-12-30

    DNA replication-related element (DRE) and the DRE-binding factor (DREF) play an important role in regulating DNA replication-related genes such as PCNA and DNA polymerase alpha in Drosophila. We have previously reported that overexpression of DREF in developing eye imaginal discs induced ectopic DNA synthesis and apoptosis, which results in rough eyes. To identify genetic interactants with the DREF gene, we have carried out a screen for modifiers of the rough eye phenotype. One of the suppressor genes identified was the Drosophila orc2 gene. A search for known transcription factor recognition sites revealed that the orc2 gene contains three DREs, named DRE1 (+14 to +21), DRE2 (-205 to -198), and DRE3 (-709 to -702). Band mobility shift analysis using Kc cell nuclear extracts detected the specific complex formed between DREF and the DRE1 or DRE2. Specific binding of DREF to genomic region containing the DRE1 or DRE2 was further demonstrated by chromatin immunoprecipitation assays, suggesting that these are the genuine complexes formed in vivo. The luciferase assay in Kc cells indicated that the DRE sites in the orc2 promoter are involved in a transcriptional regulation of the orc2 gene. The results, taken together, demonstrate that the orc2 gene is under the control of DREF pathway.

  17. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities

    PubMed Central

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L.; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-01-01

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1–4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Polpo) and aldehyde oxidase-1 (Aldox-1n1) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Polpo-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Polpo allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1n1 phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays. PMID:24737760

  18. Identification of Genes Underlying Hypoxia Tolerance in Drosophila by a P-element Screen

    PubMed Central

    Azad, Priti; Zhou, Dan; Zarndt, Rachel; Haddad, Gabriel G.

    2012-01-01

    Hypoxia occurs in physiologic conditions (e.g. high altitude) or during pathologic states (e.g. ischemia). Our research is focused on understanding the molecular mechanisms that lead to adaptation and survival or injury to hypoxic stress using Drosophila as a model system. To identify genes involved in hypoxia tolerance, we screened the P-SUP P-element insertion lines available for all the chromosomes of Drosophila. We screened for the eclosion rates of embryos developing under 5% O2 condition and the number of adult flies surviving one week after eclosion in the same hypoxic environment. Out of 2187 lines (covering ∼1870 genes) screened, 44 P-element lines representing 44 individual genes had significantly higher eclosion rates (i.e. >70%) than those of the controls (i.e. ∼7–8%) under hypoxia. The molecular function of these candidate genes ranged from cell cycle regulation, DNA or protein binding, GTP binding activity, and transcriptional regulators. In addition, based on pathway analysis, we found these genes are involved in multiple pathways, such as Notch, Wnt, Jnk, and Hedgehog. Particularly, we found that 20 out of the 44 candidate genes are linked to Notch signaling pathway, strongly suggesting that this pathway is essential for hypoxia tolerance in flies. By employing the UAS/RNAi-Gal4 system, we discovered that genes such as osa (linked to Wnt and Notch pathways) and lqf (Notch regulator) play an important role in survival and development under hypoxia in Drosophila. Based on these results and our previous studies, we conclude that hypoxia tolerance is a polygenic trait including the Notch pathway. PMID:23050227

  19. Drosophila melanogaster genes for U1 snRNA variants and their expression during development.

    PubMed Central

    Lo, P C; Mount, S M

    1990-01-01

    We have cloned and characterized a complete set of seven U1-related sequences from Drosophila melanogaster. These sequences are located at the three cytogenetic loci 21D, 82E, and 95C. Three of these sequences have been previously studied: one U1 gene at 21D which encodes the prototype U1 sequence (U1a), one U1 gene at 82E which encodes a U1 variant with a single nucleotide substitution (U1b), and a pseudogene at 82E. The four previously uncharacterized genes are another U1b gene at 82E, two additional U1a genes at 95C, and a U1 gene at 95C which encodes a new variant (U1c) with a distinct single nucleotide change relative to U1a. Three blocks of 5' flanking sequence similarity are common to all six full length genes. Using specific primer extension assays, we have observed that the U1b RNA is expressed in Drosophila Kc cells and is associated with snRNP proteins, suggesting that the U1b-containing snRNP particles are able to participate in the process of pre-mRNA splicing. We have also examined the expression throughout Drosophila development of the two U1 variants relative to the prototype sequence. The U1c variant is undetectable by our methods, while the U1b variant exhibits a primarily embryonic pattern reminiscent of the expression of certain U1 variants in sea urchin, Xenopus, and mouse. Images PMID:2124674

  20. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm.

    PubMed

    Fowlkes, Charless C; Hendriks, Cris L Luengo; Keränen, Soile V E; Weber, Gunther H; Rübel, Oliver; Huang, Min-Yu; Chatoor, Sohail; DePace, Angela H; Simirenko, Lisa; Henriquez, Clara; Beaton, Amy; Weiszmann, Richard; Celniker, Susan; Hamann, Bernd; Knowles, David W; Biggin, Mark D; Eisen, Michael B; Malik, Jitendra

    2008-04-18

    To fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each costained for a reference gene and one of a set of genes of interest, and builds a model VirtualEmbryo. This model captures in a common framework the average expression patterns for many genes in spite of significant variation in morphology and expression between individual embryos. We establish the method's accuracy by showing that relationships between a pair of genes' expression inferred from the model are nearly identical to those measured in embryos costained for the pair. We present a VirtualEmbryo containing data for 95 genes at six time cohorts. We show that known gene-regulatory interactions can be automatically recovered from this data set and predict hundreds of new interactions.

  1. Origin and Evolution of a Chimeric Fusion Gene in Drosophila subobscura, D. madeirensis and D. guanche

    PubMed Central

    Jones, Corbin D.; Custer, Andrew W.; Begun, David J.

    2005-01-01

    An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5′ promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions. PMID:15781692

  2. Regulatory Autonomy and Molecular Characterization of the Drosophila Out at First Gene

    PubMed Central

    Bergstrom, D. E.; Merli, C. A.; Cygan, J. A.; Shelby, R.; Blackman, R. K.

    1995-01-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3' of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frames separated by a single UGA stop codon. Suppression of the UGA codon during translation, as seen previously in Drosophila, could lead to the production of different proteins from the same RNA. During oogenesis, oaf RNA is expressed in nurse cells of all ages and maternally contributed to the egg. During embryonic development, zygotic transcription of the gene occurs in small clusters of cells in most or all segments at the time of germband extension and subsequently in a segmentally repeated pattern in the developing central nervous system. The gene is also expressed in the embryonic, larval and adult gonads of both sexes. We also characterize an enhancer trap line with its transposon inserted within the oaf gene and use it to generate six recessive oaf mutations. All six cause death near the beginning of the first larval instar, with two characterized lines showing nervous system defects. Last, we discuss our data in light of the observation that the enhancers controlling dpp expression in the imaginal disks have no effect on the relatively nearby oaf gene. PMID:7768442

  3. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio )

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  4. Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth.

    PubMed

    Migeon, J C; Garfinkel, M S; Edgar, B A

    1999-06-01

    We identified a new Drosophila gene, peter pan (ppan), in a screen for larval growth-defective mutants. ppan mutant larvae do not grow and show minimal DNA replication but can survive until well after their heterozygotic siblings have pupariated. We cloned the ppan gene by P-element plasmid rescue. ppan belongs to a highly conserved gene family that includes Saccharomyces cerevisiae SSF1 and SSF2, as well as Schizosaccharomyces pombe, Arabidopsis, Caenorhabditis elegans, mouse, and human homologues. Deletion of both SSF1 and SSF2 in yeast is lethal, and depletion of the gene products causes cell division arrest. Mosaic analysis of ppan mutant clones in Drosophila imaginal disks and ovaries demonstrates that ppan is cell autonomous and required for normal mitotic growth but is not absolutely required for general biosynthesis or DNA replication. Overexpression of the wild-type gene causes cell death and disrupts the normal development of adult structures. The ppan gene family appears to have an essential and evolutionarily conserved role in cell growth.

  5. Differential activity of Drosophila Hox genes induces myosin expression and can maintain compartment boundaries.

    PubMed

    Curt, Jesús R; de Navas, Luis F; Sánchez-Herrero, Ernesto

    2013-01-01

    Compartments are units of cell lineage that subdivide territories with different developmental potential. In Drosophila, the wing and haltere discs are subdivided into anterior and posterior (A/P) compartments, which require the activity of Hedgehog, and into dorsal and ventral (D/V) compartments, needing Notch signaling. There is enrichment in actomyosin proteins at the compartment boundaries, suggesting a role for these proteins in their maintenance. Compartments also develop in the mouse hindbrain rhombomeres, which are characterized by the expression of different Hox genes, a group of genes specifying different structures along their main axis of bilaterians. We show here that the Drosophila Hox gene Ultrabithorax can maintain the A/P and D/V compartment boundaries when Hedgehog or Notch signaling is compromised, and that the interaction of cells with and without Ultrabithorax expression induces high levels of non-muscle myosin II. In the absence of Ultrabithorax there is occasional mixing of cells from different segments. We also show a similar role in cell segregation for the Abdominal-B Hox gene. Our results suggest that the juxtaposition of cells with different Hox gene expression leads to their sorting out, probably through the accumulation of non-muscle myosin II at the boundary of the different cell territories. The increase in myosin expression seems to be a general mechanism used by Hox genes or signaling pathways to maintain the segregation of different groups of cells.

  6. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    SciTech Connect

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  7. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  8. A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila.

    PubMed Central

    Bonin, Christopher P; Mann, Richard S

    2004-01-01

    P-element-based gene and enhancer trap strategies have provided a wealth of information on the expression and function of genes in Drosophila melanogaster. Here we present a new vector that utilizes the simple insertion requirements of the piggyBac transposon, coupled to a splice acceptor (SA) site fused to the sequence encoding enhanced green fluorescent protein (EGFP) and a transcriptional terminator. Mobilization of the piggyBac splice site gene trap vector (PBss) was accomplished by heat-shock-induced expression of piggyBac transposase (PBase). We show that insertion of PBss into genes leads to fusions between the gene's mRNA and the PBss-encoded EGFP transcripts. As heterozygotes, these fusions report the normal pattern of expression of the trapped gene. As homozygotes, these fusions can inactivate the gene and lead to lethality. Molecular characterization of PBss insertion events shows that they are single copy, that they always occur at TTAA sequences, and that splicing utilizes the engineered splice site in PBss. In those instances where protein-EGFP fusions are predicted to occur, the subcellular localization of the wild-type protein can be inferred from the localization of the EGFP fusion protein. These experiments highlight the utility of the PBss system for expanding the functional genomics tools that are available in Drosophila. PMID:15342518

  9. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster.

    PubMed Central

    Toba, G; Ohsako, T; Miyata, N; Ohtsuka, T; Seong, K H; Aigaki, T

    1999-01-01

    We have constructed a P-element-based gene search vector for efficient detection of genes in Drosophila melanogaster. The vector contains two copies of the upstream activating sequence (UAS) enhancer adjacent to a core promoter, one copy near the terminal inverted repeats at each end of the vector, and oriented to direct transcription outward. Genes were detected on the basis of phenotypic changes caused by GAL4-dependent forced expression of vector-flanking DNA, and the transcripts were identified with reverse transcriptase PCR (RT-PCR) using the vector-specific primer and followed by direct sequencing. The system had a greater sensitivity than those already in use for gain-of-function screening: 64% of the vector insertion lines (394/613) showed phenotypes with forced expression of vector-flanking DNA, such as lethality or defects in adult structure. Molecular analysis of 170 randomly selected insertions with forced expression phenotypes revealed that 21% matched the sequences of cloned genes, and 18% matched reported expressed sequence tags (ESTs). Of the insertions in cloned genes, 83% were upstream of the protein-coding region. We discovered two new genes that showed sequence similarity to human genes, Ras-related protein 2 and microsomal glutathione S-transferase. The system can be useful as a tool for the functional mapping of the Drosophila genome. PMID:9927464

  10. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  11. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  12. A new paramutation-like example at the Delta gene of Drosophila

    PubMed Central

    Capovilla, Maria; Robichon, Alain; Rassoulzadegan, Minoo

    2017-01-01

    The hereditary transmission of a phenotype independent from DNA sequence implies epigenetic effects. Paramutation is a heritable epigenetic phenomenon observed in plants and animals. To investigate paramutation in Drosophila, we used the P{ry+t7.2 = PZ}Dl05151 P-element insertion in the Drosophila melanogaster genome that causes a dominant visible phenotype: the presence of characteristic extra-veins in the fly wings. This extra-vein phenotype presents variable expressivity and incomplete penetrance. The insert is a PZ element located 680 bp upstream from the ATG of the Delta (Dl) gene, encoding the Notch ligand involved in wing vein development, and acts as a null allele. In the G2 offspring from a cross between the heterozygous transgenic stock and wild-type flies, we observed the transmission of the extra-vein phenotype to wild-type flies without the transgene, independently of gender and across many generations. This is a “paramutation-like” example in the fly: the heritable transmission of a phenotypic change not linked to a classical genetic mutation. A “paramutagenic” allele in heterozygotes transmits the phenotype of the heterozygotes to the wild-type allele (“paramutant”) in a stable manner through generations. Distinct from paramutation events so far described in Drosophila, here we deal with a dominant effect on a single gene involving variable hereditary signals. PMID:28355214

  13. [Analysis of Phenotypic Manifestation of peanut Gene Expression Suppression by RNAi in Drosophila Oogenesis].

    PubMed

    Akhmetova, K A; Dorogova, C N; Chesnokov, I N; Fedorova, S A

    2015-09-01

    The peanut gene functions in Drosophila melanogaster oogenesis were studied. It was demonstrated that the suppression of peanut expression by RNA interference in the ovary follicular cells results in the violation of oocyte polarization, anomalous cytokinesis in the chorion cells, and violation of the chromatin condensation in follicular cells. No oogenesis violations were observed in females with decreased peanut gene expression or an absence of the Pnut protein in the ovary generative cells. However, embryos produced by such females had a decreased survival rate caused by two death peaks.

  14. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.

    PubMed

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun

    2014-03-21

    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor.

  15. Misexpression of the white (w) gene triggers male-male courtship in Drosophila.

    PubMed Central

    Zhang, S D; Odenwald, W F

    1995-01-01

    We report here that the general ectopic expression of a tryptophan/guanine transmembrane transporter gene, white (w), induces male-male courtship in Drosophila. Activation of a hsp-70/miniwhite (mini-w) transgene in mature males results in a marked change in their sexual behavior such that they begin to vigorously court other mature males. In transformant populations containing equal numbers of both sexes, most males participate, thus forming male-male courtship chains, circles, and lariats. Mutations that ablate the w transgene function also abolish this inducible behavior. Female sexual behavior does not appear to be altered by ectopic w expression. By contrast, when exposed to an active homosexual courtship environment, non-transformant males alter their behavior and actively participate in the male-male chaining. These findings demonstrate that, in Drosophila, both genetic and environmental factors play a role in male sexual behavior. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7777542

  16. Drosophila polytene chromosome bands formed by gene introns.

    PubMed

    Zhimulev, I F; Boldyreva, L V; Demakova, O V; Poholkova, G V; Khoroshko, V A; Zykova, T Yu; Lavrov, S A; Belyaeva, E S

    2016-01-01

    Genetic organization of bands and interbands in polytene chromosomes has long remained a puzzle for geneticists. It has been recently demonstrated that interbands typically correspond to the 5'-ends of house-keeping genes, whereas adjacent loose bands tend to be composed of coding sequences of the genes. In the present work, we made one important step further and mapped two large introns of ubiquitously active genes on the polytene chromosome map. We show that alternative promoter regions of these genes map to interbands, whereas introns and coding sequences found between those promoters correspond to loose grey bands. Thus, a gene having its long intron "sandwiched" between to alternative promoters and a common coding sequence may occupy two interbands and one band in the context of polytene chromosomes. Loose, partially decompacted bands appear to host large introns.

  17. Spatial regulation of the Antennapedia and Ultrabithorax homeotic genes during Drosophila early development.

    PubMed Central

    Irish, V F; Martinez-Arias, A; Akam, M

    1989-01-01

    Both maternally supplied products and zygotically acting segmentation genes are required to establish the segment pattern of the Drosophila embryo. These genes are thought to act in part by regulating the expression of the homeotic genes. Products of the maternal and zygotic gap genes are present in the egg prior to blastoderm formation, when the homeotic genes are initially expressed within precisely bounded domains. In order to assess the first regulatory interactions between some of these gap gene products and the homeotic genes, we have examined the spatial distribution of transcripts arising from the homeotic Antp and Ubx genes during early embryogenesis in various mutant backgrounds. Here we show that mutations in both maternally and zygotically acting gap genes differentially affect the initial spatial domains of transcripts arising from each of these homeotic gene promoters. Later in embryogenesis, the patterns of homeotic gene expression change in both the wild-type and mutant cases, suggesting that other regulatory activities come into play. We propose a model in which the initial activation of each homeotic gene promoter depends on a unique combination of gap and pair-rule gene activities. Images PMID:2569971

  18. Chimeric Genes as a Source of Rapid Evolution in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Hartl, Daniel L.

    2012-01-01

    Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (dS < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster. PMID:21771717

  19. Interaction between genes Mos and mwh expressed in somatic cells of Drosophila melanogaster

    SciTech Connect

    Vaisman, N.Ya.; Zakharov, I.K.

    1995-07-01

    Gene Mosaic (Mos) of chromosome 3 of Drosophila melanogaster was located by means of dominant markers Ly, Sb, and Dr. This gene was shown to be located between Ly and Sb in the centromeric region (45-50 map units). An analysis of interaction between Mos and mwh genes in cis- and trans-heterozygotes showed a significant effect of the Mos gene on mutability (recombinogenesis) of chromosome mwh in somatic cells. In the cis heterozygote mwh Mos/++, the frequency of small mutant clones on wings of flies increased. In mwh/Mos heterozygotes, the Mos gene caused a significant reduction of dorsocentral and scutellar bristles (78% in mwh/Mos, 85% in mwh +/+ Mos, and 98% in mwh Mos/mwh +). 20 refs., 3 tabs.

  20. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    SciTech Connect

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter; Hong, Ling; Carninci, Piero; Shiraki, Toshiyuki; Hayashizaki, Yoshihide; Champe, Mark; Pacleb, Joanne; Wan, Ken; Yu, Charles; Carlson, Joe; George, Reed; Celniker, Susan; Rubin, Gerald M.

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remaining genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.

  1. The conditional inhibition of gene expression in cultured Drosophila cells by antisense RNA.

    PubMed Central

    Bunch, T A; Goldstein, L S

    1989-01-01

    Genes producing antisense RNA are becoming important tools for the selective inhibition of gene expression. Experiments in different biological systems, targeting different mRNAs have yielded diverse results with respect to the success of the technique and its mechanism of action. We have examined the potential of three antisense genes, whose transcription is driven by a Drosophila metallothionein promoter, to inhibit the expression of alcohol dehydrogenase (ADH) or a microtubule associated protein (205K MAP) in cultured Drosophila cells. Expression of ADH was significantly reduced upon induction of the anti-ADH genes. The ADH mRNA does not appear to be destabilized by the presence of antisense RNA but rather exists at similar levels in hybrid form. Hybrids are detected with both spliced and unspliced ADH RNA. In contrast to these results, antisense genes producing antisense RNA in great excess to 205K MAP mRNA, which is itself far less abundant than the ADH mRNA, failed to show any inhibition of 205K MAP expression. Images PMID:2481266

  2. Divergent Functions Through Alternative Splicing: The Drosophila CRMP Gene in Pyrimidine Metabolism, Brain, and Behavior

    PubMed Central

    Morris, Deanna H.; Dubnau, Josh; Park, Jae H.; Rawls, John M.

    2012-01-01

    DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals. PMID:22649077

  3. Identification and Functional Analysis of Antifungal Immune Response Genes in Drosophila

    PubMed Central

    Jin, Li Hua; Shim, Jaewon; Yoon, Joon Sun; Kim, Byungil; Kim, Jihyun; Kim-Ha, Jeongsil; Kim, Young-Joon

    2008-01-01

    Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-κB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila. PMID:18833296

  4. 20-Hydroxyecdysone stimulates the accumulation of translatable yolk polypeptide gene transcript in adult male Drosophila melanogaster.

    PubMed

    Shirk, P D; Minoo, P; Postlethwait, J H

    1983-01-01

    Yolk polypeptide (YP) synthesis is hormonally stimulated during maturation of adult female Drosophila melanogaster. Synthesis of the three YPs is sex specific and occurs in fat body cells and follicle cells of adult females. However, males have been shown to produce YPs when treated with the steroid hormone 20-hydroxyecdysone (20-HE). By using a cell-free translation system as an assay for YP mRNA, we found that 20-HE also causes the accumulation of translatable YP message in males. In addition, hybridization of cloned copies of genes for both YP1 and YP3 to total RNA from males showed that 20-HE caused the appearance of YP gene transcripts in males. Eight hours after treatment of males with 20-HE, YP gene transcript levels had increased at least 25-fold to approximately 2.7 x 10(6) copies of YP1 gene transcript per adult male fly. In normal adult females, there were 42 x 10(6) copies per fly by 24 hr. There was neither detectable YP synthesis nor translatable YP gene transcript in either normal 1- to 3-day-old males or 24-hr-old males treated with a juvenile hormone analogue. This evidence shows that 20-HE acts to regulate the levels of translatable YP mRNA in male Drosophila.

  5. Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster

    SciTech Connect

    Slusarski, D.C.; Motzny, C.K.; Holmgren, R.

    1995-01-01

    The cubitus interruptus (ci) gene is a member of the Drosophila segment polarity gene family and encodes a protein with a zinc finger domain homologous to the vertebrate Gli genes and the nematode tra-1 gene. Three classes of existing mutations in the ci locus alter the regulation of ci expression and can be used to examine ci function during development. The first class of ci mutations causes interruptions in wing veins four and five due to inappropriate expression of the ci product in the posterior compartment of imaginal discs. The second class of mutations eliminates ci protein early in embryogenesis and causes the deletion of structures that are derived from the region including and adjacent to the engrailed expressing cells. The third class of mutations eliminates ci protein later in embryogenesis and blocks the formation of the ventral naked cuticle. The loss of ci expression at these two different stages in embryonic development correlates with the subsequent elimination of wingless expression. Adults heterozygous for the unique ci{sup Ce} mutation have deletions between wing veins three and four. A similar wing defect is present in animals mutant for the segment polarity gene fused that encodes a putative serine/threonine kinase. In ci{sup Ce}/+ and fused mutants, the deletions between wing veins three and four correlate with increased ci protein levels in the anterior compartment. Thus, proper regulation of both the ci mRNA and protein appears to be critical for normal Drosophila development. 47 refs., 9 figs., 1 tab.

  6. Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development.

    PubMed Central

    Walldorf, U; Gehring, W J

    1992-01-01

    The empty spiracles (ems) gene of Drosophila melanogaster is necessary for proper head formation and the development of the posterior spiracles. We have isolated a homeobox-containing gene, W13, by cross-homology using the Drosophila muscle segment homeobox gene (msh) as a probe. The W13 gene maps at 88A, where the ems locus has been previously localized genetically. The sequence alterations found in the W13 coding region from two mutant ems alleles show that W13 is the ems gene. A 2.4 kb RNA corresponding to the ems transcript is expressed from cellular blastoderm throughout all embryonic and larval stages. In situ hybridization to whole mount embryos reveals two domains of expression. During the cellular blastoderm stage ems is expressed in the developing head in a single anterior band. This is correlated with its possible function as an anterior gap gene that is expressed in the preantennal, antennal and intercalary segments and is required for the development of the antennal sense organ, the optic lobe and parts of the head skeleton. The early expression of the ems gene is controlled by the anterior morphogen bicoid (bcd). Using a gene fusion we identified a cis-acting element which is a target for the bcd gene product. Later during embryogenesis ems is expressed in lateral regions of each segment, where the tracheal pits form and lateral neuroblasts originate, as well as in the posterior spiracles. This late expression partially correlates with defects seen in the tracheal tree of ems embryos. In addition to a homeodomain, the N-terminal portion of the predicted protein sequence is very proline-rich, whereas the C-terminus has an acidic profile consistent with the role of the ems gene product as a transcription factor. Images PMID:1376248

  7. Gene Expression in Adult Metafemales of Drosophila Melanogaster

    PubMed Central

    Birchler, J. A.; Hiebert, J. C.; Krietzman, M.

    1989-01-01

    The expression of selected X-linked and autosomal genes was examined in metafemales (3X:2A) compared to diploid sisters. Three enzyme activities (glucose-6-phosphate dehydrogenase, 6-phospho-gluconate dehydrogenase, β-hydroxyacid dehydrogenase) encoded by X-linked genes are not significantly different in the two classes of flies. In contrast, three autosomally encoded enzyme activities (alcohol dehydrogenase, α-glycerophosphate dehydrogenase, isocitrate dehydrogenase) are reduced in metafemales. Protein and DNA comparisons between metafemales and diploid sisters show a lowered level of total protein whereas the total DNA measurements are similar. Thus, the total cell number in metafemales is basically unchanged but gene expression is reduced. Phenotypic analysis of three autosomal loci, glass (gl), purple (pr) and pink-peach (p(p)), show that all three have lowered expression in metafemales while the X-linked loci, white-apricot (w(a)) and Bar (B), are dosage compensated. Quantitative dot blot analysis of messenger RNA levels of the second chromosomal locus, alcohol dehydrogenase (Adh), and the X chromosomal locus, rudimentary (r), show that Adh has reduced expression and r is partially compensated per total RNA in metafemales. It is proposed that the increased dosage of the X chromosome inversely affects both the X and autosomal gene expression but the simultaneous increased dosage of the structural genes on the X results in dosage compensation. The reduced levels of expression of autosomal genes could contribute to the great inviability of metafemales. PMID:2503426

  8. Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster.

    PubMed Central

    Jaeger, Johannes; Blagov, Maxim; Kosman, David; Kozlov, Konstantin N; Manu; Myasnikova, Ekaterina; Surkova, Svetlana; Vanario-Alonso, Carlos E; Samsonova, Maria; Sharp, David H; Reinitz, John

    2004-01-01

    Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system. PMID:15342511

  9. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  10. On the origins of tandemly repeated genes: does histone gene copy number in Drosophila reflect chromosomal location?

    PubMed

    Fitch, D H; Strausbaugh, L D; Barrett, V

    1990-04-01

    Widely regarded beliefs about Drosophila histone gene copy numbers and developmental requirements have been generalized from fairly limited data since studies on histone gene arrangements and copy numbers have been largely confined to a single species, D. melanogaster. Histone gene copy numbers and chromosomal locations were examined in three species: D. melangaster, D. hydei and D. hawaiiensis. Quantitative whole genome blot analysis of DNA from diploid tissues revealed a tenfold variability in histone gene copy numbers for these three species. In situ hybridization to polytene chromosomes showed that the histone DNA (hDNA) chromosomal location is different in all three species. These observations lead us to propose a relationship between histone gene reiteration and chromosomal position.

  11. Genes expressed in the ring gland, the major endocrine organ of Drosophila melanogaster.

    PubMed Central

    Harvie, P D; Filippova, M; Bryant, P J

    1998-01-01

    We have used an enhancer-trap approach to begin characterizing the function of the Drosophila endocrine system during larval development. Five hundred and ten different lethal PZ element insertions were screened to identify those in which a reporter gene within the P element showed strong expression in part or all of the ring gland, the major site of production and release of developmental hormones, and which had a mutant phenotype consistent with an endocrine defect. Nine strong candidate genes were identified in this screen, and eight of these are expressed in the lateral cells of the ring gland that produce ecdysteroid molting hormone (EC). We have confirmed that the genes detected by these enhancer traps are expressed in patterns similar to those detected by the reporter gene. Two of the genes encode proteins, protein kinase A and calmodulin, that have previously been implicated in the signaling pathway leading to EC synthesis and release in other insects. A third gene product, the translational elongation factor EF-1alpha F1, could play a role in the translational regulation of EC production. The screen also identified the genes couch potato and tramtrack, previously known from their roles in peripheral nervous system development, as being expressed in the ring gland. One enhancer trap revealed expression of the gene encoding the C subunit of vacuolar ATPase (V-ATPase) in the medial cells of the ring gland, which produce the juvenile hormone that controls progression through developmental stages. This could reveal a function of V-ATPase in the response of this part of the ring gland to adenotropic neuropeptides. However, the gene identified by this enhancer trap is ubiquitously expressed, suggesting that the enhancer trap is detecting only a subset of its control elements. The results show that the enhancer trap approach can be a productive way of exploring tissue-specific genetic functions in Drosophila. PMID:9584098

  12. A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    PubMed Central

    Ghabrial, Amin S.; Levi, Boaz P.; Krasnow, Mark A.

    2011-01-01

    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system. PMID:21750678

  13. Behavioral responses to odorants in drosophila require nervous system expression of the beta integrin gene myospheroid.

    PubMed

    Bhandari, Poonam; Gargano, Julia Warner; Goddeeris, Matthew M; Grotewiel, Michael S

    2006-09-01

    Integrins are cell adhesion molecules that mediate numerous developmental processes in addition to a variety of acute physiological events. Two reports implicate a Drosophila beta integrin, betaPS, in olfactory behavior. To further investigate the role of integrins in Drosophila olfaction, we used Gal4-driven expression of RNA interference (RNAi) transgenes to knock down expression of myospheroid (mys), the gene that encodes betaPS. Expression of mys-RNAi transgenes in the wing reduced betaPS immunostaining and produced morphological defects associated with loss-of-function mutations in mys, demonstrating that this strategy knocked down mys function. Expression of mys-RNAi transgenes in the antennae, antennal lobes, and mushroom bodies via two Gal4 lines, H24 and MT14, disrupted olfactory behavior but did not alter locomotor abilities or central nervous system structure. Olfactory behavior was normal in flies that expressed mys-RNAi transgenes via other Gal4 lines that specifically targeted the antennae, the projection neurons, the mushroom bodies, bitter and sweet gustatory neurons, or Pox neuro neurons. Our studies confirm that mys is important for the development or function of the Drosophila olfactory system. Additionally, our studies demonstrate that mys is required for normal behavioral responses to both aversive and attractive odorants. Our results are consistent with a model in which betaPS mediates events within the antennal lobes that influence odorant sensitivity.

  14. A novel muscle LIM-only protein is generated from the paxillin gene locus in Drosophila

    PubMed Central

    Yagi, Ryohei; Ishimaru, Satoshi; Yano, Hajime; Gaul, Ulrike; Hanafusa, Hidesaburo; Sabe, Hisataka

    2001-01-01

    Paxillin is a protein containing four LIM domains, and functions in integrin signaling. We report here that two transcripts are generated from the paxillin gene locus in Drosophila; one encodes a protein homolog of the vertebrate Paxillin (DPxn37), and the other a protein with only three LIM domains, partly encoded by its own specific exon (PDLP). At the myotendinous junctions of Drosophila embryos where integrins play important roles, both DPxn37 and PDLP are highly expressed with different patterns; DPxn37 is predominantly concentrated at the center of the junctions, whereas PDLP is highly enriched at neighboring sides of the junction centers, primarily expressed in the mesodermal myotubes. Northern blot analysis revealed that DPxn37 is ubiquitously expressed throughout the life cycle, whereas PDLP expression exhibits a biphasic pattern during development, largely concomitant with muscle generation and remodeling. Our results collectively reveal that a unique system exists in Drosophila for the generation of a novel type of LIM-only protein, highly expressed in the embryonic musclature, largely utilizing the Paxillin LIM domains. PMID:11520860

  15. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    PubMed

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  16. Age-dependent chromosomal distribution of male-biased genes in Drosophila.

    PubMed

    Zhang, Yong E; Vibranovski, Maria D; Krinsky, Benjamin H; Long, Manyuan

    2010-11-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales.

  17. Age-dependent chromosomal distribution of male-biased genes in Drosophila

    PubMed Central

    Zhang, Yong E.; Vibranovski, Maria D.; Krinsky, Benjamin H.; Long, Manyuan

    2010-01-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales. PMID:20798392

  18. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    PubMed Central

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  19. Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster.

    PubMed Central

    Robin, Stéphanie; Chambeyron, Séverine; Bucheton, Alain; Busseau, Isabelle

    2003-01-01

    Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing. PMID:12807773

  20. Shaped singular spectrum analysis for quantifying gene expression, with application to the early Drosophila embryo.

    PubMed

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns.

  1. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    PubMed

    Ma, Lingling; Ma, Jun; Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  2. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum.

    PubMed

    Jensen, Helen R; Scott, Ian M; Sims, Steve; Trudeau, Vance L; Arnason, John Thor

    2006-02-22

    Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.

  3. The Embryonically Active Gene, Unkempt, of Drosophila Encodes a Cys(3)his Finger Protein

    PubMed Central

    Mohler, J.; Weiss, N.; Murli, S.; Mohammadi, S.; Vani, K.; Vasilakis, G.; Song, C. H.; Epstein, A.; Kuang, T.; English, J.; Cherdak, D.

    1992-01-01

    The unkempt gene of Drosophila encodes a set of embryonic RNAs, which are abundant during early stages of embryogenesis and are present ubiquitously in most somatic tissues from the syncytial embryo through stage 15 of embryogenesis. Expression of unkempt RNAs becomes restricted predominantly to the central nervous system in stages 16 and early 17. Analysis of cDNAs from this locus reveals the presence of five Cys(3)His fingers in the protein product. Isolation and analysis of mutations affecting the unkempt gene, including complete deletions of this gene, indicate that there is no zygotic requirement for unkempt during embryogenesis, presumably due to the contribution of maternally supplied RNA, although the gene is essential during post-embryonic development. PMID:1339381

  4. An essential cell cycle regulation gene causes hybrid inviability in Drosophila.

    PubMed

    Phadnis, Nitin; Baker, EmilyClare P; Cooper, Jacob C; Frizzell, Kimberly A; Hsieh, Emily; de la Cruz, Aida Flor A; Shendure, Jay; Kitzman, Jacob O; Malik, Harmit S

    2015-12-18

    Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.

  5. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  6. Identification of Genes Associated with Resilience/Vulnerability to Sleep Deprivation and Starvation in Drosophila

    PubMed Central

    Thimgan, Matthew S.; Seugnet, Laurent; Turk, John; Shaw, Paul J.

    2015-01-01

    Background and Study Objectives: Flies mutant for the canonical clock protein cycle (cyc01) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc01 mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. Design: We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc01 mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Setting: Laboratory. Patients or Participants: Drosophila melanogaster. Interventions: Sleep deprivation and starvation. Measurements and Results: We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc01 mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. Conclusions: We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. Citation: Thimgan MS

  7. Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles.

    PubMed

    Ikmi, Aissam; Netter, Sophie; Coen, Dario

    2008-05-15

    The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.

  8. The goddard and saturn genes are essential for Drosophila male fertility and may have arisen de novo.

    PubMed

    Gubala, Anna M; Schmitz, Jonathan F; Kearns, Michael J; Vinh, Tery T; Bornberg-Bauer, Erich; Wolfner, Mariana F; Findlay, Geoffrey D

    2017-01-19

    New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from non-coding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown males fail to produce mature sperm, while saturn knockdown males produce fewer sperm that function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the non-coding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can evolve essential roles in male reproduction.

  9. A systematic phenotypic screen of F-box genes through a tissue-specific RNAi-based approach in Drosophila.

    PubMed

    Dui, Wen; Lu, Wei; Ma, Jun; Jiao, Renjie

    2012-08-20

    F-box proteins are components of the SCF (SkpA-Cullin 1-F-box) E3 ligase complexes, acting as the specificity-determinants in targeting substrate proteins for ubiquitination and degradation. In humans, at least 22 out of 75 F-box proteins have experimentally documented substrates, whereas in Drosophila 12 F-box proteins have been characterized with known substrates. To systematically investigate the genetic and molecular functions of F-box proteins in Drosophila, we performed a survey of the literature and databases. We identified 45 Drosophila genes that encode proteins containing at least one F-box domain. We collected publically available RNAi lines against these genes and used them in a tissue-specific RNAi-based phenotypic screen. Here, we present our systematic phenotypic dataset from the eye, the wing and the notum. This dataset is the first of its kind and represents a useful resource for future studies of the molecular and genetic functions of F-box genes in Drosophila. Our results show that, as expected, F-box genes in Drosophila have regulatory roles in a diverse array of processes including cell proliferation, cell growth, signal transduction, and cellular and animal survival.

  10. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  11. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  12. FlyBase: establishing a Gene Group resource for Drosophila melanogaster.

    PubMed

    Attrill, Helen; Falls, Kathleen; Goodman, Joshua L; Millburn, Gillian H; Antonazzo, Giulia; Rey, Alix J; Marygold, Steven J

    2016-01-04

    Many publications describe sets of genes or gene products that share a common biology. For example, genome-wide studies and phylogenetic analyses identify genes related in sequence; high-throughput genetic and molecular screens reveal functionally related gene products; and advanced proteomic methods can determine the subunit composition of multi-protein complexes. It is useful for such gene collections to be presented as discrete lists within the appropriate Model Organism Database (MOD) so that researchers can readily access these data alongside other relevant information. To this end, FlyBase (flybase.org), the MOD for Drosophila melanogaster, has established a 'Gene Group' resource: high-quality sets of genes derived from the published literature and organized into individual report pages. To facilitate further analyses, Gene Group Reports also include convenient download and analysis options, together with links to equivalent gene groups at other databases. This new resource will enable researchers with diverse backgrounds and interests to easily view and analyse acknowledged D. melanogaster gene sets and compare them with those of other species.

  13. Drosophila Dynein intermediate chain gene, Dic61B, is required for spermatogenesis.

    PubMed

    Fatima, Roshan

    2011-01-01

    This study reports the identification and characterization of a novel gene, Dic61B, required for male fertility in Drosophila. Complementation mapping of a novel male sterile mutation, ms21, isolated in our lab revealed it to be allelic to CG7051 at 61B1 cytogenetic region, since two piggyBac insertion alleles, CG7051(c05439) and CG7051(f07138) failed to complement. CG7051 putatively encodes a Dynein intermediate chain. All three mutants, ms21, CG7051(c05439) and CG7051(f07138), exhibited absolute recessive male sterility with abnormally coiled sperm axonemes causing faulty sperm individualization as revealed by Phalloidin staining in Don Juan-GFP background. Sequencing of PCR amplicons uncovered two point mutations in ms21 allele and confirmed the piggyBac insertions in CG7051(c05439) and CG7051(f07138) alleles to be in 5'UTR and 4(th) exon of CG7051 respectively, excision of which reverted the male sterility. In situ hybridization to polytene chromosomes demonstrated CG7051 to be a single copy gene. RT-PCR of testis RNA revealed defective splicing of the CG7051 transcripts in mutants. Interestingly, expression of cytoplasmic dynein intermediate chain, α, β, γ tubulins and α-spectrin was normal in mutants while ultra structural studies revealed defects in the assembly of sperm axonemes. Bioinformatics further highlighted the homology of CG7051 to axonemal dynein intermediate chain of various organisms, including DNAI1 of humans, mutations in which lead to male sterility due to immotile sperms. Based on these observations we conclude that CG7051 encodes a novel axonemal dynein intermediate chain essential for male fertility in Drosophila and rename it as Dic61B. This is the first axonemal Dic gene of Drosophila to be characterized at molecular level and shown to be required for spermatogenesis.

  14. Structure and transcription of the Drosophila mulleri alcohol dehydrogenase genes.

    PubMed

    Fischer, J A; Maniatis, T

    1985-10-11

    The D. melanogaster Adh gene is transcribed from two different promoters; a proximal (larval) promoter is active during late embryonic and larval stages, and a distal (adult) promoter is active primarily in third instar larvae and in adult flies (1). Genetic analyses suggest that several species of the mulleri subgroup (distant relatives of D. melanogaster) have two closely-linked Adh genes, Adh-1 and Adh-2, each of which expresses a different ADH protein (2). The temporal pattern of expression of Adh-1 and Adh-2 is similar to the expression of D. melanogaster Adh from the proximal and distal promoters (2,3,4). We are interested in the molecular basis for the pattern of Adh expression in the mulleri subgroup species and in the mechanism of the switch in Adh promoter utilization. For these reasons, we have studied the structure and transcription of the Adh locus of D. mulleri, a species of the mulleri subgroup. We show that the ADH-1 and ADH-2 proteins are expressed from two distinct genes separated by 2 kilobase pairs, and that Adh-1 and Adh-2 are transcribed in the expected temporal pattern. In addition, we find a pseudogene 1.2 kb upstream from Adh-2, which is transcribed in a temporal pattern similar to Adh-2.

  15. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    PubMed Central

    2009-01-01

    Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4%) have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate of adaptive evolution is

  16. Identification and Genetic Analysis of Wunen, a Gene Guiding Drosophila Melanogaster Germ Cell Migration

    PubMed Central

    Zhang, N.; Zhang, J.; Cheng, Y.; Howard, K.

    1996-01-01

    We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA. PMID:8807296

  17. Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene.

    PubMed

    Wallingford, John B; Goto, Toshiyasu; Keller, Ray; Harland, Richard M

    2002-08-01

    We have cloned Xenopus orthologues of the Drosophila planar cell polarity (PCP) gene Prickle. Xenopus Prickle (XPk) is expressed in tissues at the dorsal midline during gastrulation and early neurulation. XPk is later expressed in a segmental pattern in the presomitic mesoderm and then in recently formed somites. XPk is also expressed in the tailbud, pronephric duct, retina, and the otic vesicle. The complex expression pattern of XPk suggests that PCP signaling is used in a diverse array of developmental processes in vertebrate embryos.

  18. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder

    PubMed Central

    Grotewiel, Mike; Bettinger, Jill C.

    2015-01-01

    Background Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral–genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. Methods In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. Results Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. Conclusions Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD. PMID:26173477

  19. A single gene causes an interspecific difference in pigmentation in Drosophila.

    PubMed

    Ahmed-Braimah, Yasir H; Sweigart, Andrea L

    2015-05-01

    The genetic basis of species differences remains understudied. Studies in insects have contributed significantly to our understanding of morphological evolution. Pigmentation traits in particular have received a great deal of attention and several genes in the insect pigmentation pathway have been implicated in inter- and intraspecific differences. Nonetheless, much remains unknown about many of the genes in this pathway and their potential role in understudied taxa. Here we genetically analyze the puparium color difference between members of the virilis group of Drosophila. The puparium of Drosophila virilis is black, while those of D. americana, D. novamexicana, and D. lummei are brown. We used a series of backcross hybrid populations between D. americana and D. virilis to map the genomic interval responsible for the difference between this species pair. First, we show that the pupal case color difference is caused by a single Mendelizing factor, which we ultimately map to an ∼11-kb region on chromosome 5. The mapped interval includes only the first exon and regulatory region(s) of the dopamine N-acetyltransferase gene (Dat). This gene encodes an enzyme that is known to play a part in the insect pigmentation pathway. Second, we show that this gene is highly expressed at the onset of pupation in light brown taxa (D. americana and D. novamexicana) relative to D. virilis, but not in the dark brown D. lummei. Finally, we examine the role of Dat in adult pigmentation between D. americana (heavily melanized) and D. novamexicana (lightly melanized) and find no discernible effect of this gene in adults. Our results demonstrate that a single gene is entirely or almost entirely responsible for a morphological difference between species.

  20. Culex tarsalis Vitellogenin Gene Promoters Investigated In Silico and In Vivo Using Transgenic Drosophila melanogaster

    PubMed Central

    Chen, Song; Rasgon, Jason L.

    2014-01-01

    Introduction Genetic modification, or transgenesis, is a powerful technique to investigate the molecular interactions between vector-borne pathogens and their arthropod hosts, as well as a potential novel approach for vector-borne disease control. Transgenesis requires the use of specific regulatory regions, or promoters, to drive expression of genes of interest in desired target tissues. In mosquitoes, the vast majority of described promoters are from Anopheles and Aedes mosquitoes. Results Culex tarsalis is one of the most important vectors of arboviruses (including West Nile virus) in North America, yet it has not been the subject of molecular genetic study. In order to facilitate molecular genetic work in this important vector species, we isolated four fat body-specific promoter sequences located upstream of the Cx. tarsalis vitellogenin genes (Vg1a, Vg1b, Vg2a and Vg2b). Sequences were analyzed in silico to identify requisite cis-acting elements. The ability for promoter sequences to drive expression of green fluorescent protein (GFP) in vivo was investigated using transgenic Drosophila melanogaster. All four promoters were able to drive GFP expression but there was dramatic variation between promoters and between individual Drosophila lines, indicating significant position effects. The highest expression was observed in line Vg2bL3, which was >300-fold higher than the lowest line Vg1aL2. Conclusions These new promoters will be useful for driving expression of genes of interest in transgenic Cx. tarsalis and perhaps other insects. PMID:24586476

  1. Activity, Expression and Function of a Second Drosophila Protein Kinase a Catalytic Subunit Gene

    PubMed Central

    Melendez, A.; Li, W.; Kalderon, D.

    1995-01-01

    The DC2 gene was isolated previously on the basis of sequence similarity to DCO, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. PMID:8601490

  2. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia

    PubMed Central

    McBride, Carolyn S.

    2007-01-01

    Our understanding of the genetic basis of host specialization in insects is limited to basic information on the number and location of genetic factors underlying changes in conspicuous phenotypes. We know nothing about general patterns of molecular evolution that may accompany host specialization but are not traceable to a single prominent phenotypic change. Here, I describe changes in the entire repertoire of 136 olfactory receptor (Or) and gustatory receptor (Gr) genes of the recently specialized vinegar fly Drosophila sechellia. I find that D. sechellia is losing Or and Gr genes nearly 10 times faster than its generalist sibling Drosophila simulans. Moreover, those D. sechellia receptors that remain intact have fixed amino acid replacement mutations at a higher rate relative to silent mutations than have their D. simulans orthologs. Comparison of these patterns with those observed in a random sample of genes indicates that the changes at Or and Gr loci are likely to reflect positive selection and/or relaxed constraint associated with the altered ecological niche of this fly. PMID:17360391

  3. Ectopic mitotic recombination in Drosophila probed with bacterial beta-galactosidase gene-based reporter transgenes.

    PubMed Central

    Bärtsch, S; Dücker, K; Würgler, F E; Sengstag, C

    1997-01-01

    Plasmids were constructed to investigate homologous mitotic recombination in Drosophila cells. Heteroalleles containing truncated but overlapping segments of the bacterial beta-galactosidase gene (lacZ) were positioned either on separate plasmids or as direct repeats on the same chromosome. Recombination reconstituted a functional lacZgene leading to expression of LacZ+activity detectable by histochemical staining. High extrachromosomal recombination (ECR) frequencies between unlinked heteroalleles were observed upon transient co-transfection into Drosophila melanogaster Schneider line 2 (S2) cells. Stably transfected cells containing the lacZ heteroalleles linked on a chromosome exhibited intrachromosomal recombination (ICR) frequencies two orders of magnitude lower than ECR frequencies. Recombination was inducible by exposing the cells to ethyl methanesulphonate or mitomycin C. Recombination products were characterized by multiplex PCR analysis and unequal sister chromatid recombination was found as the predominant mechanism reconstituting the lacZ gene. To investigate recombination in vivo imaginal disc cells from transgenic larvae carrying the reporter gene on the X chromosome were isolated and stained for LacZ+ activity. The presence of a few LacZ+ clones indicated that mitotic recombination events occurred at frequencies two orders of magnitude lower than the corresponding event in cultured cells and late during larval development. PMID:9380517

  4. A Maternal Screen for Genes Regulating Drosophila Oocyte Polarity Uncovers New Steps in Meiotic Progression

    PubMed Central

    Barbosa, Vitor; Kimm, Naomi; Lehmann, Ruth

    2007-01-01

    Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been linked to decreased levels of the TGFα-like molecule Gurken, which controls normal eggshell patterning. We used this easy-to-score eggshell phenotype in a germ-line mosaic screen in Drosophila to identify new genes affecting meiotic progression, DNA condensation, and Gurken signaling. One hundred eighteen new ventralizing mutants on the second chromosome fell into 17 complementation groups. Here we describe the analysis of 8 complementation groups, including Kinesin heavy chain, the SR protein kinase cuaba, the cohesin-related gene dPds5/cohiba, and the Tudor-domain gene montecristo. Our findings challenge the hypothesis that checkpoint activation upon persistent DSBs is exclusively mediated by ATR/Mei-41 kinase and instead reveal a more complex network of interactions that link DSB formation, checkpoint activation, meiotic delay, DNA condensation, and Gurken protein synthesis. PMID:17507684

  5. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster

    PubMed Central

    Lee, Hangnoh; Cho, Dong-Yeon; Roote, John; Kaufman, Thomas; Cook, Kevin; Przytycka, Teresa; Oliver, Brian

    2016-01-01

    Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds. PMID:27599372

  6. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    PubMed Central

    2010-01-01

    Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors. PMID:20925960

  7. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila

    PubMed Central

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-01-01

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665

  8. Functional Interactions between Unlinked Muscle Genes within Haploinsufficient Regions of the Drosophila Genome

    PubMed Central

    Homyk-Jr., T.; Emerson-Jr., C. P.

    1988-01-01

    Mutations in 13 genes affecting muscle development in Drosophila have been examined in pairwise combinations for evidence of genetic interactions. Heterozygous combinations of mutations in five genes, including the gene coding for myosin heavy chain, result in more severe phenotypes than respective single heterozygous mutant controls. The various mutant interactions include examples showing allele-specific intergenic interactions, gene specific interactions, and allele-specific intragenic complementations, suggesting that some interactions result from the manner in which mutant gene products associate. Interactions that result from alterations in ``+'' gene copy number were also uncovered, suggesting that normal myofibril development requires that the relative amounts of respective gene products produced be tightly regulated. The importance of the latter parameter is substantiated by the finding that all five interacting loci map to disperse haploinsufficient or haplolethal regions of the genome. The implications of the present findings are discussed in relation to pursuing the phenomena involving genetic interactions to identify new genes encoding interacting myofibrillar proteins, to examine the nature of intermolecular interactions in mutant and normal development and to decipher the quantitative and temporal regulation of a large family of functionally related gene products. PMID:3135237

  9. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila.

    PubMed

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-10-13

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H(+) ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes.

  10. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  11. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker.

  12. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  13. The function of the Drosophila argos gene product in the development of embryonic chordotonal organs.

    PubMed

    Okabe, M; Sawamoto, K; Okano, H

    1996-04-10

    We characterized the embryonic expression pattern and mutant phenotypes of the Drosophila gene argos, which encodes a secreted protein with an epidermal growth factor motif. The argos null mutation caused an increase in chordotonal (Ch) organs in both the thoracic and the abdominal segments, whereas overexpression of the argos gene resulted in a decrease in these organs. We showed that the argos transcripts are expressed transiently in the cells surrounding the Ch organ precursor and that the gene rhomboid (rho), which is involved in the regulation of the number of Ch organs, acts epistatically to argos in this event. Our findings suggest that argos plays a role in Ch organ precursor formation and regulates the final number of Ch organs.

  14. EGF receptor signaling triggers recruitment of Drosophila sense organ precursors by stimulating proneural gene autoregulation.

    PubMed

    zur Lage, Petra I; Powell, Lynn M; Prentice, David R A; McLaughlin, Paul; Jarman, Andrew P

    2004-11-01

    In Drosophila, commitment of a cell to a sense organ precursor (SOP) fate requires bHLH proneural transcription factor upregulation, a process that depends in most cases on the interplay of proneural gene autoregulation and inhibitory Notch signaling. A subset of SOPs are selected by a recruitment pathway involving EGFR signaling to ectodermal cells expressing the proneural gene atonal. We show that EGFR signaling drives recruitment by directly facilitating atonal autoregulation. Pointed, the transcription factor that mediates EGFR signaling, and Atonal protein itself bind cooperatively to adjacent conserved binding sites in an atonal enhancer. Recruitment is therefore contingent on the combined presence of Atonal protein (providing competence) and EGFR signaling (triggering recruitment). Thus, autoregulation is the nodal control point targeted by signaling. This exemplifies a simple and general mechanism for regulating the transition from competence to cell fate commitment whereby a cell signal directly targets the autoregulation of a selector gene.

  15. Stochastic model for gene transcription on Drosophila melanogaster embryos

    NASA Astrophysics Data System (ADS)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  16. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    PubMed Central

    2011-01-01

    Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes. PMID:21542906

  17. Regulatory autonomy and molecular characterization of the Drosophila out at first gene

    SciTech Connect

    Bergstrom, D.E.; Merli, C.A.; Cygan, J.A.; Shelby, R.; Blackman, R.K.

    1995-03-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3{prime} of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frames separated by a single UGA stop codon. Suppression of the UGA codon during translation, as seen previously in Drosophila, could lead to the production of different proteins from the same RNA. During oogenesis, oaf RNA is expressed in nurse cells of all ages and maternally contributed to the egg. During embryonic development, zygotic transcription of the gene occurs in small clusters of cells in most or all segments at the time of germband extension and subsequently in a segmentally repeated pattern in the developing central nervous system. The gene is also expressed in the embryonic, larval and adult gonads of both sexes. We also characterize an enhancer trap line with its transposon inserted within the oaf gene and use it to generate six recessive oaf mutations. All six cause death near the beginning of the first larval instar, with two characterized lines showing nervous system defects. Last, we discuss our data in light of the observation that the enhancers controlling dpp expression in the imaginal disks have no effect on the relatively nearby oaf gene. 67 refs., 10 figs., 1 tab.

  18. dyschronic, a Drosophila Homolog of a Deaf-Blindness Gene, Regulates Circadian Output and Slowpoke Channels

    PubMed Central

    Jepson, James E. C.; Peterson, Drew; Pan, Huihui; Koh, Kyunghee

    2012-01-01

    Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc). dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO), an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein–protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system. PMID:22532808

  19. Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster.

    PubMed Central

    Terracol, R; Prud'homme, N

    1986-01-01

    In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus. Images PMID:3023865

  20. Identification of Genes That Promote or Inhibit Olfactory Memory Formation in Drosophila

    PubMed Central

    Walkinshaw, Erica; Gai, Yunchao; Farkas, Caitlin; Richter, Daniel; Nicholas, Eric; Keleman, Krystyna; Davis, Ronald L.

    2015-01-01

    Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources. PMID:25644700

  1. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5.

    PubMed

    Telford, M J

    2000-03-23

    The DNA-binding homeobox motif was first identified in several Drosophila homeotic genes but also in fushi tarazu, a gene found in the Hox cluster yet involved in segmentation, not anteroposterior patterning [1]. Homeotic transformations are not seen in insect ftz mutants, and insect ftz genes do not have Hox-like expression except within the nervous system [2] [3]. Insect ftz homeobox sequences link them to the Antp-class genes and Tribolium and Schistocerca orthologs have Antp-class YPWM motifs amino-terminal to the homeobox [2] [3]. Orthologs of ftz cloned from a centipede and an onychophoran [4] show that it predates the emergence of the arthropods, but the inability to pinpoint non-arthropodan orthologs suggested that ftz is the product of a Hox gene duplication in the arthropod ancestor [4] [5]. I have cloned ftz orthologs from a mite and a tardigrade, arthropod outgroups of the insects [6]. Mite ftz is expressed in a Hox-like pattern, confirming its ancestral role in anteroposterior patterning. Phylogenetic analyses indicate that arthropod ftz genes are orthologous to the Lox5 genes of lophotrochozoans (a group that includes molluscs) [7] and, possibly, with the Mab-5 genes of nematodes and Hox6 genes of deuterostomes and would therefore have been present in the triploblast ancestor.

  2. Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster

    PubMed Central

    Wu, Xianwen; Li, Rongni; Li, Qianqian; Bao, Haigang; Wu, Changxin

    2016-01-01

    We observed heteroses for body weight in Drosophila melanogaster after generating hybrids from three inbred lines. To better understand the mechanism for this phenomenon at the mRNA level, we compared the mRNA profiles of the parental and hybrid lines using high-throughput RNA-seq. A total of 5877 differentially expressed genes (DEGs) were found and about 92% of these exhibited parental expression level dominance. Genes in the dominance category were functionally characterized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the gene classifications offered by the Gene Ontology (GO) Consortium. The analysis identified genes associated with crucial processes such as development and growth in all three crosses. Functional assignments involving aminoglycan metabolism, starch and sucrose metabolism, and galactose metabolism are significantly overrepresented amongst the 215 common dominance DEGs. We conclude that dominance DEGs are important in heteroses in Drosophila melanogaster and contribute specifically to body weight heterosis. PMID:26928435

  3. Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster.

    PubMed

    Wu, Xianwen; Li, Rongni; Li, Qianqian; Bao, Haigang; Wu, Changxin

    2016-03-01

    We observed heteroses for body weight in Drosophila melanogaster after generating hybrids from three inbred lines. To better understand the mechanism for this phenomenon at the mRNA level, we compared the mRNA profiles of the parental and hybrid lines using high-throughput RNA-seq. A total of 5877 differentially expressed genes (DEGs) were found and about 92% of these exhibited parental expression level dominance. Genes in the dominance category were functionally characterized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the gene classifications offered by the Gene Ontology (GO) Consortium. The analysis identified genes associated with crucial processes such as development and growth in all three crosses. Functional assignments involving aminoglycan metabolism, starch and sucrose metabolism, and galactose metabolism are significantly overrepresented amongst the 215 common dominance DEGs. We conclude that dominance DEGs are important in heteroses in Drosophila melanogaster and contribute specifically to body weight heterosis.

  4. Chromatin Remodeling Mediated by Drosophila GAGA Factor and ISWI Activates fushi tarazu Gene Transcription In Vitro

    PubMed Central

    Okada, Masahiro; Hirose, Susumu

    1998-01-01

    GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template. PMID:9566866

  5. The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP.

    PubMed

    Cabrero, Pablo; Radford, Jonathan C; Broderick, Kate E; Costes, Laurence; Veenstra, Jan A; Spana, Eric P; Davies, Shireen A; Dow, Julian A T

    2002-12-01

    Dh, the gene that encodes a CRF-like peptide in Drosophila melanogaster, is described. The product of this gene is a 44-amino-acid peptide (Drome-DH(44)) with a sequence almost identical to the Musca domestica and Stomoxys calcitrans diuretic hormones. There are no other similar peptides encoded within the known Drosophila genomic sequence. Functional studies showed that the deduced peptide stimulated fluid production, and that this effect was mediated by cyclic AMP in principal cells only: there was no effect on the levels of either cyclic GMP or intracellular calcium. Stimulation also elevated levels of cyclic AMP (but not cyclic GMP) phosphodiesterase, a new mode of action for this class of hormone. The transcript was localised by in situ hybridisation, and the peptide by immunocytochemistry, to two groups of three neurones in the pars intercerebralis within the brain. These cells also express receptors for leucokinin, another major diuretic peptide, implying that the cells may be important in homeostatic regulation.

  6. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster

    SciTech Connect

    Kirby, D.A.; Stephan, W.

    1995-12-01

    Restriction map studies previously revealed extensive linkage disequilibria in the transcriptional unit of the white locus in natural Drosophila melanogaster populations. To understand the causes of these disequilibria, we sequenced a 4722-bp region of the white gene from 15 lines of D. melanogaster and 1 line of Drosophila simulans. Statistical tests applied to the entire 4722-bp region do not reject neutrality. In contrast, a test for high-frequency haplotypes ({open_quotes}Haplotype test{close_quotes}) revealed an 834-bp segment, encompassing the 3{prime} end of intron 1 to the 3{prime} end of intron 2, in which the structure of variation deviates significantly from the predictions of a neutral equilibrium model. The variants in this 834-bp segment segregate as single haplotype blocks. We propose that these unusually large haplotype blocks are due to positive selection on polymorphisms within the white gene, including a replacement polymorphism, Arg{yields}Leu, within this segment. 45 refs., 4 figs., 1 tab.

  7. Argos and Spitz group genes function to regulate midline glial cell number in Drosophila embryos.

    PubMed

    Stemerdink, C; Jacobs, J R

    1997-10-01

    The midline glia of the Drosophila embryonic nerve cord undergo a reduction in cell number after facilitating commissural tract morphogenesis. The numbers of midline glia entering apoptosis at this stage can be increased by a loss or reduction of function in genes of the spitz group or Drosophila EGF receptor (DER) pathway. Argos, a secreted molecule with an atypical EGF motif, is postulated to function as a DER antagonist. In this work, we assess the role of argos in the determination of midline glia cell number. Although all midline glia express DER, argos expression is restricted to the midline glia which do not enter apoptosis. Fewer midline glia enter apoptosis in embryos lacking argos function. Ectopic expression of argos is sufficient to remove all DER-expressing midline glia from the nerve cord, even those that already express argos. DER expression is not terminated in the midline glia after spitz group signaling triggers changes in gene expression. It is therefore likely that an attenuation of DER signaling by Argos is integrated with the augmentation of DER signaling by Spitz throughout the period of reduction of midline glia number. We suggest that signaling by Spitz but not Argos is restricted to adhesive junctions. In this manner, midline glia not forming signaling junctions remain sensitive to juxtacrine Argos signaling, while an autocrine Argos signal is excluded by the adhesive junction.

  8. Protease Gene Duplication and Proteolytic Activity in Drosophila Female Reproductive Tracts

    PubMed Central

    Kelleher, Erin S.; Pennington, James E.

    2009-01-01

    Secreted proteases play integral roles in sexual reproduction in a broad range of taxa. In the genetic model Drosophila melanogaster, these molecules are thought to process peptides and activate enzymes inside female reproductive tracts, mediating critical postmating responses. A recent study of female reproductive tract proteins in the cactophilic fruit fly Drosophila arizonae, identified pervasive, lineage-specific gene duplication amongst secreted proteases. Here, we compare the evolutionary dynamics, biochemical nature, and physiological significance of secreted female reproductive serine endoproteases between D. arizonae and its congener D. melanogaster. We show that D. arizonae lower female reproductive tract (LFRT) proteins are significantly enriched for recently duplicated secreted proteases, particularly serine endoproteases, relative to D. melanogaster. Isolated lumen from D. arizonae LFRTs, furthermore, exhibits significant trypsin-like and elastase-like serine endoprotease acitivity, whereas no such activity is seen in D. melanogaster. Finally, trypsin- and elastase-like activity in D. arizonae female reproductive tracts is negatively regulated by mating. We propose that the intense proteolytic environment of the D. arizonae female reproductive tract relates to the extraordinary reproductive physiology of this species and that ongoing gene duplication amongst these proteases is an evolutionary consequence of sexual conflict. PMID:19546158

  9. Activity, expression and function of a second Drosophila protein kinase a catalytic subunit gene

    SciTech Connect

    Melendez, A.; Li, W.; Kalderon, D.

    1995-12-01

    The DC2 was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. 62 refs., 10 figs., 2 tabs.

  10. Drosophila lilliputian is required for proneural gene expression in retinal development

    PubMed Central

    DiStefano, Ginnene M.; Gangemi, Andrew J.; Khandelwal, Preeti J.; Saunders, Aleister J.; Marenda, Daniel R.

    2012-01-01

    Background Proper neurogenesis in the developing Drosophila retina requires the regulated expression of the basic helix-loop-helix (bHLH) proneural transcription factors Atonal (Ato) and Daughterless (Da). Factors that control the timing and spatial expression of these bHLH proneural genes in the retina are required for the proper formation and function of the adult eye and nervous system. Results Here, we report that lilliputian (lilli), the Drosophila homolog of the FMR2/AF4 family of proteins regulates the transcription of ato and da in the developing fly retina. We find that lilli controls ato expression at multiple enhancer elements. We also find that lilli contributes to ato auto-regulation in the morphogenetic furrow by first regulating the expression of da prior to ato. We show that FMR2 regulates the ato and da homologs MATH5 and TCF12 in human cells, suggesting a conservation of this regulation from flies to humans. Conclusions We conclude that lilliputian is part of the genetic program that regulates the expression of proneural genes in the developing retina. PMID:22275119

  11. Multiple transcription factor codes activate epidermal wound-response genes in Drosophila.

    PubMed

    Pearson, Joseph C; Juarez, Michelle T; Kim, Myungjin; Drivenes, Øyvind; McGinnis, William

    2009-02-17

    Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes-Ddc, ple, msn, and kkv-that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound-response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view.

  12. Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF

    SciTech Connect

    Dang Thi Phuong Thao; Ida, Hiroyuki; Yoshida, Hideki; Yamaguchi, Masamitsu . E-mail: myamaguc@kit.ac.jp

    2006-11-01

    SKPa is component of a Drosophila SCF complex that functions in combination with the ubiquitin-conjugating enzyme UbcD1. skpA null mutation results in centrosome overduplication, unusual chromatin condensation, defective endoreduplication and cell-cycle progression. While the molecular mechanisms that regulate expression of the skpA gene are poorly understood, the DNA replication-related element (DRE) and the DRE-binding factor (DREF) play important roles in regulating proliferation-related genes in Drosophila and DRE (5'-TATCGATA) and DRE-like (5'-CATCGATT) sequences were here found to be involved in skpA promoter activity. Thus both luciferase transient expression assays in cultured Drosophila S2 cells using skpA promoter-luciferase fusion plasmids and anti-lacZ immunostaining of various tissues from transgenic third instar larvae carrying the skpA promoter-lacZ fusion genes provided supportive evidence. Furthermore, anti-SKPa immunostaining of eye imaginal discs from flies overexpressing DREF showed ectopic expression of protein in the region posterior to the morphogenetic furrow where DREF is overexpressed. Knockdown of DREF in some tissues where SKPa distribution is well known almost completely abrogated the skpA gene expression. These findings, taken together, indicate that the Drosophila skpA gene is a novel target of the transcription factor DREF.

  13. Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF.

    PubMed

    Phuong Thao, Dang Thi; Ida, Hiroyuki; Yoshida, Hideki; Yamaguchi, Masamitsu

    2006-11-01

    SKPa is component of a Drosophila SCF complex that functions in combination with the ubiquitin-conjugating enzyme UbcD1. skpA null mutation results in centrosome overduplication, unusual chromatin condensation, defective endoreduplication and cell-cycle progression. While the molecular mechanisms that regulate expression of the skpA gene are poorly understood, the DNA replication-related element (DRE) and the DRE-binding factor (DREF) play important roles in regulating proliferation-related genes in Drosophila and DRE (5'-TATCGATA) and DRE-like (5'-CATCGATT) sequences were here found to be involved in skpA promoter activity. Thus both luciferase transient expression assays in cultured Drosophila S2 cells using skpA promoter-luciferase fusion plasmids and anti-lacZ immunostaining of various tissues from transgenic third instar larvae carrying the skpA promoter-lacZ fusion genes provided supportive evidence. Furthermore, anti-SKPa immunostaining of eye imaginal discs from flies overexpressing DREF showed ectopic expression of protein in the region posterior to the morphogenetic furrow where DREF is overexpressed. Knockdown of DREF in some tissues where SKPa distribution is well known almost completely abrogated the skpA gene expression. These findings, taken together, indicate that the Drosophila skpA gene is a novel target of the transcription factor DREF.

  14. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate Drosophila genes

    PubMed Central

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2017-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Due to the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a two-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. PMID:27009801

  15. Dietary switch reveals fast coordinated gene expression changes in Drosophila melanogaster

    PubMed Central

    Ding, Feifei; Tatar, Marc; Helfand, Stephen L.; Neretti, Nicola

    2014-01-01

    Dietary restriction (DR) reduces age-specific mortality and increases lifespan in many organisms. DR elicits a large number of physiological changes, however many are undoubtedly not related to longevity. Whole-genome gene expression studies have typically revealed hundreds to thousands of differentially expressed genes in response to DR, and a key open question is which subset of genes mediates longevity. Here we performed transcriptional profiling of fruit flies in a closely spaced time series immediately following a switch to the DR regime and identified four patterns of transcriptional dynamics. Most informatively we find 144 genes rapidly switched to the same level observed in the DR cohort and are hence strong candidates as proximal mediators of reduced mortality upon DR. This class was enriched for genes involved in carbohydrate and fatty acid metabolism. Folate biosynthesis was the only pathway enriched for gene up-regulated upon DR. Four among the down-regulated genes are involved in key regulatory steps within the pentose phosphate pathway, which has been previously associated with lifespan extension in Drosophila. Combined analysis of dietary switch with whole-genome time-course profiling can identify transcriptional responses that are closely associated with and perhaps causal to longevity assurance conferred by dietary restriction. PMID:24864304

  16. The Drosophila wings apart Gene Anchors a Novel, Evolutionarily Conserved Pathway of Neuromuscular Development

    PubMed Central

    Morriss, Ginny R.; Jaramillo, Carmelita T.; Mikolajczak, Crystal M.; Duong, Sandy; Jaramillo, MaryAnn S.; Cripps, Richard M.

    2013-01-01

    wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes. PMID:24026097

  17. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.

    PubMed

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L; Chechenova, Maria B; Guerin, Paul; Cripps, Richard M

    2016-05-06

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016.

  18. Gene length may contribute to graded transcriptional responses in the Drosophila embryo

    PubMed Central

    McHale, Peter; Mizutani, Claudia M.; Kosman, David; MacKay, Danielle L.; Belu, Mirela; Hermann, Anita; McGinnis, William; Bier, Ethan; Hwa, Terence

    2011-01-01

    An important question in developmental biology is how relatively shallow gradients of morphogens can reliably establish a series of distinct transcriptional readouts. Current models emphasize interactions between transcription factors binding in distinct modes to cis-acting sequences of target genes. Another recent idea is that the cis-acting interactions may amplify preexisting biases or prepatterns to establish robust transcriptional responses. In this study, we examine the possible contribution of one such source of prepattern, namely gene length. We developed quantitative imaging tools to measure gene expression levels for several loci at a time on a single-cell basis and applied these quantitative imaging tools to dissect the establishment of a gene expression border separating the mesoderm and neuroectoderm in the early Drosophila embryo. We first characterized the formation of a transient ventral-to-dorsal gradient of the Snail (Sna) repressor and then examined the relationship between this gradient and repression of neural target genes in the mesoderm. We found that neural genes are repressed in a nested pattern within a zone of the mesoderm abutting the neuroectoderm, where Sna levels are graded. While several factors may contribute to the transient graded response to the Sna gradient, our analysis suggests that gene length may play an important, albeit transient, role in establishing these distinct transcriptional responses. One prediction of the gene-length-dependent transcriptional patterning model is that the co-regulated genes knirps (a short gene) and knirps-related (a long gene) should be transiently expressed in domains of differing widths, which we confirmed experimentally. These findings suggest that gene length may contribute to establishing graded responses to morphogen gradients by providing transient prepatterns that are subsequently amplified and stabilized by traditional cis-regulatory interactions. PMID:21920356

  19. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  20. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data.

    PubMed

    Matthews, Beverley B; Dos Santos, Gilberto; Crosby, Madeline A; Emmert, David B; St Pierre, Susan E; Gramates, L Sian; Zhou, Pinglei; Schroeder, Andrew J; Falls, Kathleen; Strelets, Victor; Russo, Susan M; Gelbart, William M

    2015-06-24

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.

  1. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain

    NASA Technical Reports Server (NTRS)

    Hassan, B. A.; Bermingham, N. A.; He, Y.; Sun, Y.; Jan, Y. N.; Zoghbi, H. Y.; Bellen, H. J.

    2000-01-01

    Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.

  2. Position effect variegation of an acid phosphatase gene in Drosophila melanogaster.

    PubMed

    Frisardi, M C; MacIntyre, R J

    1984-01-01

    X-ray mutagenesis has produced a series of deficiencies in a duplication of part of the third chromosome containing the acid phosphatase gene (Acph-1) in Drosophila melanogaster. In one of these deficiencies, Acph-1 is shown to be undergoing position effect variegation. Naturally occurring electrophoretic variants of the enzyme were used to visualize and determine quantitatively the extent of variegation of the allele which is cis to the heterochromatic breakpoint. Alteration of genotypic background and temperature provided further evidence for position effect. Rocket immunoelectrophoresis was used to correlate the levels of acid phosphatase activity and protein in flies containing the deficiency. A novel result indicates that the variegation is not the consequence of an averaging of active and inactive cells, but rather due to a quantitative alteration of gene activity within at least some individual cells.

  3. Adaptive response due to changes in gene regulation: a study with Drosophila.

    PubMed Central

    McDonald, J F; Chambers, G K; David, J; Ayala, F J

    1977-01-01

    In spite of the critical role of the process of adaptation in evolution, there are few detailed studies of the genotypic and molecular basis of the process. Drosophila melanogaster flies selected for increased tolerance to ethanol exhibited higher levels of alcohol dehydrogenase (alcohol:NAD+ oxidoreductase; EC 1.1.1.1) activity than unselected controls. A series of tests (electrophoresis, product inhibition, temperature stability, pH optima, substrate specificity, and Michaelis constants) gave no evidence of structural differences in the enzyme of the selected and the control flies. However, quantitative immunological assays showed that the selected flies contained significantly higher amounts of alcohol dehydrogenase. Adaptation of the selected flies to higher alcohol tolerance has most likely taken place by changes not in the structural gene locus coding for the enzyme, but by regulatory changes affecting the amount of gene product. Images PMID:412190

  4. Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein

    PubMed Central

    Gontijo, Alisson M.; Miguela, Veronica; Whiting, Michael F.; Woodruff, R.C.; Dominguez, Maria

    2011-01-01

    Genomes can encode a variety of proteins with unrelated architectures and activities. It is known that protein-coding genes of de novo origin have significantly contributed to this diversity. However, the molecular mechanisms and evolutionary processes behind these originations are still poorly understood. Here we show that the last 102 codons of a novel gene, Noble, assembled directly from non-coding DNA following an intronic deletion that induced alternative intron retention at the Drosophila melanogaster Rieske Iron Sulphur Protein (RFeSP) locus. A systematic analysis of the evolutionary processes behind the origin of Noble showed that its emergence was strongly biased by natural selection on and around the RFeSP locus. Noble mRNA is shown to encode a bona fide protein that lacks an iron sulphur domain and localizes to mitochondria. Together, these results demonstrate the generation of a novel protein at a naturally selected site. PMID:21610726

  5. Using Database Matches with HMMGene for Automated Gene Detection in Drosophila

    PubMed Central

    Krogh, Anders

    2000-01-01

    The application of the gene finder HMMGene to the Adh region of the Drosophila melanogaster is described, and the prediction results are analyzed. HMMGene is based on a probabilistic model called a hidden Markov model, and the probabilistic framework facilitates the inclusion of database matches of varying degrees of certainty. It is shown that database matches clearly improve the performance of the gene finder. For instance, the sensitivity for coding exons predicted with both ends correct grows from 62% to 70% on a high-quality test set, when matches to proteins, cDNAs, repeats, and transposons are included. The specificity drops more than the sensitivity increases when ESTs are used. This is due to the high noise level in EST matches, and it is discussed in more detail why this is and how it might be improved. PMID:10779492

  6. Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene.

    PubMed

    Xu, S Y; Cang, C L; Liu, X F; Peng, Y Q; Ye, Y Z; Zhao, Z Q; Guo, A K

    2006-11-01

    Nociception, warning of injury that should be avoided, serves an important protective function in animals. In this study, we show that adult Drosophila avoids noxious heat by a jump response. To quantitatively analyze this nociceptive behavior, we developed two assays. In the CO2 laser beam assay, flies exhibit this behavior when a laser beam heats their abdomens. The consistency of the jump latency in this assay meets an important criterion for a good nociceptive assay. In the hot plate assay, flies jump quickly to escape from a hot copper plate (>45 degrees C). Our results demonstrate that, as in mammals, the latency of the jump response is inversely related to stimulus intensity, and innoxious thermosensation does not elicit this nociceptive behavior. To explore the genetic mechanisms of nociception, we examined several mutants in both assays. Abnormal nociceptive behavior of a mutant, painless, indicates that painless, a gene essential for nociception in Drosophila larvae, is also required for thermal nociception in adult flies. painless is expressed in certain neurons of the peripheral nervous system and thoracic ganglia, as well as in the definite brain structures, the mushroom bodies. However, chemical or genetic insults to the mushroom bodies do not influence the nociceptive behavior, suggesting that different painless-expressing neurons play diverse roles in thermal nociception. Additionally, no-bridge(KS49), a mutant that has a structural defect in the protocerebral bridge, shows defective response to noxious heat. Thus, our results validate adult Drosophila as a useful model to study the genetic mechanisms of thermal nociception.

  7. Integrating Circadian Activity and Gene Expression Profiles to Predict Chronotoxicity of Drosophila suzukii Response to Insecticides

    PubMed Central

    Hamby, Kelly A.; Kwok, Rosanna S.; Zalom, Frank G.; Chiu, Joanna C.

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between ‘summer’ and ‘winter’ conditions due to differences in photoperiod and temperature. In the ‘summer’, D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the ‘winter’, activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as

  8. CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development.

    PubMed

    Yu, Zhongsheng; Wu, Honggang; Chen, Hanqing; Wang, Ruoqi; Liang, Xuehong; Liu, Jiyong; Li, Changqing; Deng, Wu-Min; Jiao, Renjie

    2013-09-01

    The histone chaperone CAF-1 is known for its role in DNA replication-coupled histone deposition. However, loss of function causes lethality only in higher multicellular organisms such as mice and flies, but not in unicellular organisms such as yeasts, suggesting that CAF-1 has other important functions than histone deposition during animal development. Emerging evidence indicates that CAF-1 also has a role in higher order chromatin organization and heterochromatin-mediated gene expression; it remains unclear whether CAF-1 has a role in specific signaling cascades to promote gene expression during development. Here, we report that knockdown of one of the subunits of Drosophila CAF-1, dCAF-1-p105 (Caf1-105), results in phenotypes that resemble those of, and are augmented synergistically by, mutations of Notch positive regulatory pathway components. Depletion of dCAF-1-p105 leads to abrogation of cut expression and to downregulation of other Notch target genes in wing imaginal discs. dCAF-1-p105 is associated with Suppressor of Hairless [Su(H)] and regulates its binding to the enhancer region of E(spl)mβ. The association of dCAF-1-p105 with Su(H) on chromatin establishes an active local chromatin status for transcription by maintaining a high level of histone H4 acetylation. In response to induced Notch activation, dCAF-1 associates with the Notch intracellular domain to activate the expression of Notch target genes in cultured S2 cells, manifesting the role of dCAF-1 in Notch signaling. Together, our results reveal a novel epigenetic function of dCAF-1 in promoting Notch pathway activity that regulates normal Drosophila development.

  9. Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: A potential case of cytonuclear cointrogression

    PubMed Central

    Beck, Emily A.; Thompson, Aaron C.; Sharbrough, Joel; Brud, Evgeny; Llopart, Ana

    2015-01-01

    Introgression is the effective exchange of genetic information between species through natural hybridization. Previous genetic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear‐encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS cointrogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear‐ and mitochondrial‐encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum‐likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial‐encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression. PMID:26155926

  10. The Drosophila Hrb87F gene encodes a new member of the A and B hnRNP protein group.

    PubMed Central

    Haynes, S R; Johnson, D; Raychaudhuri, G; Beyer, A L

    1991-01-01

    Nascent premessenger RNA transcripts are packaged into heterogeneous nuclear ribonucleoprotein (hnRNP) complexes containing specific nuclear proteins, the hnRNP proteins. The A and B group proteins constitute a major class of small basic proteins found in mammalian hnRNP complexes. We have previously characterized the Drosophila melanogaster Hrb98DE gene, which is alternatively spliced to encode four protein isoforms closely related to the A and B proteins. We report here that the Drosophila genome contains a family of genes related to the Hrb98DE gene. One member of the family, Hrb87F, is very homologous to Hrb98DE in both sequence and structure. The Hrb87F transcripts (1.7 and 2.2 kb) utilize two alternative polyadenylation sites, are abundant in ovaries and early embryos, and are present in lesser amounts throughout development. In one wildtype strain of Drosophila there is a naturally-occurring polymorphism in this gene due to the insertion of a 412 transposable element in the 3' untranslated region. The larger transcript is not produced in these files and thus is not required for viability. Sequence identities among the Drosophila Hrb proteins and the vertebrate A and B hnRNP proteins suggest that these proteins may form a distinct subfamily within the larger family of related RNA binding proteins. Images PMID:1849257

  11. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  12. A Direct Role for Cohesin in Gene Regulation and Ecdysone Response in Drosophila Salivary Glands

    PubMed Central

    Pauli, Andrea; van Bemmel, Joke G.; Oliveira, Raquel A.; Itoh, Takehiko; Shirahige, Katsuhiko; van Steensel, Bas; Nasmyth, Kim

    2015-01-01

    Summary Background Developmental abnormalities observed in Cornelia de Lange syndrome have been genetically linked to mutations in the cohesin machinery. These and other recent experimental findings have led to the suggestion that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression. Results We report that cleavage of cohesin’s kleisin subunit in postmitotic Drosophila salivary glands induces major changes in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Among these genes are several that are regulated by the steroid hormone ecdysone. Cytological visualization of transcription at selected ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in ecdysone receptor could be detected at this locus. Conclusion We conclude that cohesin regulates expression of a distinct set of genes, including those mediating the ecdysone response. PMID:20933422

  13. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    SciTech Connect

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  14. A genetic analysis of the Drosophila closely linked interacting genes bulge, argos and soba.

    PubMed

    Wemmer, T; Klämbt, C

    1995-06-01

    The Drosophila gene argos encodes a diffusible protein that acts as a negative regulator of cell fate decisions. To define interacting gene products, we performed a genetic analysis of argos, which suggests the presence of several partially redundant gene functions in its immediate vicinity at the chromosomal position 73A. Dose titration experiments have identified two of these loci. One of them corresponds to the gene bulge. Loss of function bulge alleles suppress the rough eye phenotype associated with overexpression of argos; conversely, amorphic argos mutations suppress the eye phenotype seen in flies bearing a single dominant bulge allele. Recombination mapping localized bulge 0.15 cM distal to argos. A second gene, suppressor of bulge and argos (soba), corresponds to the recently described lethal complementation group 73Aj. soba alleles suppress the eye phenotypes seen in flies expressing either the dominant bulge allele or the hs-argos construct. soba resides 120 kb proximal to argos. In addition, we have identified one allele of a new gene, clown, which like soba suppresses the eye phenotypes associated with hs-argos and bulgeDominant. clown maps on chromosome 3 at the cytological position 68CD.

  15. A Genetic Analysis of the Drosophila Closely Linked Interacting Genes Bulge, Argos and Soba

    PubMed Central

    Wemmer, T.; Klambt, C.

    1995-01-01

    The Drosophila gene argos encodes a diffusible protein that acts as a negative regulator of cell fate decisions. To define interacting gene products, we performed a genetic analysis of argos, which suggests the presence of several partially redundant gene functions in its immediate vicinity at the chromosomal position 73A. Dose titration experiments have identified two of these loci. One of them corresponds to the gene bulge. Loss of function bulge alleles suppress the rough eye phenotype associated with overexpression of argos; conversely, amorphic argos mutations suppress the eye phenotype seen in flies bearing a single dominant bulge allele. Recombination mapping localized bulge 0.15 cM distal to argos. A second gene, suppressor of bulge and argos (soba), corresponds to the recently described lethal complementation group 73Aj. soba alleles suppress the eye phenotypes seen in flies expressing either the dominant bulge allele or the hs-argos construct. soba resides 120 kb proximal to argos. In addition, we have identified one allele of a new gene, clown, which like soba suppresses the eye phenotypes associated with hs-argos and bulge(Dominant). clown maps on chromosome 3 at the cytological position 68CD. PMID:7498742

  16. A gene expression map for the euchromatic genome of Drosophila melanogaster.

    PubMed

    Stolc, Viktor; Gauhar, Zareen; Mason, Christopher; Halasz, Gabor; van Batenburg, Marinus F; Rifkin, Scott A; Hua, Sujun; Herreman, Tine; Tongprasit, Waraporn; Barbano, Paolo Emilio; Bussemaker, Harmen J; White, Kevin P

    2004-10-22

    We used a maskless photolithography method to produce DNA oligonucleotide microarrays with unique probe sequences tiled throughout the genome of Drosophila melanogaster and across predicted splice junctions. RNA expression of protein coding and nonprotein coding sequences was determined for each major stage of the life cycle, including adult males and females. We detected transcriptional activity for 93% of annotated genes and RNA expression for 41% of the probes in intronic and intergenic sequences. Comparison to genome-wide RNA interference data and to gene annotations revealed distinguishable levels of expression for different classes of genes and higher levels of expression for genes with essential cellular functions. Differential splicing was observed in about 40% of predicted genes, and 5440 previously unknown splice forms were detected. Genes within conserved regions of synteny with D. pseudoobscura had highly correlated expression; these regions ranged in length from 10 to 900 kilobase pairs. The expressed intergenic and intronic sequences are more likely to be evolutionarily conserved than nonexpressed ones, and about 15% of them appear to be developmentally regulated. Our results provide a draft expression map for the entire nonrepetitive genome, which reveals a much more extensive and diverse set of expressed sequences than was previously predicted.

  17. FlpStop, a tool for conditional gene control in Drosophila

    PubMed Central

    Fisher, Yvette E; Yang, Helen H; Isaacman-Beck, Jesse; Xie, Marjorie; Gohl, Daryl M; Clandinin, Thomas R

    2017-01-01

    Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation. DOI: http://dx.doi.org/10.7554/eLife.22279.001 PMID:28211790

  18. On the Long-term Stability of Clines in Some Metabolic Genes in Drosophila melanogaster

    PubMed Central

    Cogni, Rodrigo; Kuczynski, Kate; Koury, Spencer; Lavington, Erik; Behrman, Emily L.; O’Brien, Katherine R.; Schmidt, Paul S.; Eanes, Walter F.

    2017-01-01

    Very little information exists for long-term changes in genetic variation in natural populations. Here we take the unique opportunity to compare a set of data for SNPs in 15 metabolic genes from eastern US collections of Drosophila melanogaster that span a large latitudinal range and represent two collections separated by 12 to 13 years. We also expand this to a 22-year interval for the Adh gene and approximately 30 years for the G6pd and Pgd genes. During these intervals, five genes showed a statistically significant change in average SNP allele frequency corrected for latitude. While much remains unchanged, we see five genes where latitudinal clines have been lost or gained and two where the slope significantly changes. The long-term frequency shift towards a southern favored Adh S allele reported in Australia populations is not observed in the eastern US over a period of 21 years. There is no general pattern of southern-favored or northern-favored alleles increasing in frequency across the genes. This observation points to the fluid nature of some allelic variation over this time period and the action of selective responses or migration that may be more regional than uniformly imposed across the cline. PMID:28220806

  19. Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development

    PubMed Central

    Eggert, Tanja; Hauck, Bernd; Hildebrandt, Nicole; Gehring, Walter J.; Walldorf, Uwe

    1998-01-01

    Vertebrate and invertebrate eye development require the activity of several evolutionarily conserved genes. Among these the Pax-6 genes play a major role in the genetic control of eye development. Mutations in Pax-6 genes affect eye development in humans, mice, and Drosophila, and misexpression of Pax-6 genes in Drosophila can induce ectopic eyes. Here we report the identification of a paired-like homeobox gene, DRx, which is also conserved from flies to vertebrates. Highly conserved domains in the Drosophila protein are the octapeptide, the identical homeodomain, the carboxyl-terminal OAR domain, and a newly identified Rx domain. DRx is expressed in the embryo in the procephalic region and in the clypeolabrum from stage 8 on and later in the brain and the central nervous system. Compared with eyeless, the DRx expression in the embryo starts earlier, similar to the pattern in vertebrates, where Rx expression precedes Pax-6 expression. Because the vertebrate Rx genes have a function during brain and eye development, it was proposed that DRx has a similar function. The DRx expression pattern argues for a conserved function at least during brain development, but we could not detect any expression in the embryonic eye primordia or in the larval eye imaginal discs. Therefore DRx could be considered as a homolog of vertebrate Rx genes. The Rx genes might be involved in brain patterning processes and specify eye fields in different phyla. PMID:9482887

  20. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    PubMed Central

    Landeen, Emily L.; Muirhead, Christina A.; Meiklejohn, Colin D.; Presgraves, Daven C.

    2016-01-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  1. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    PubMed

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  2. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites

    PubMed Central

    Parrish, Jay Z.; Emoto, Kazuo; Jan, Lily Yeh; Jan, Yuh Nung

    2007-01-01

    Dendritic fields are important determinants of neuronal function. However, how neurons establish and then maintain their dendritic fields is not well understood. Here we show that Polycomb group (PcG) genes are required for maintenance of complete and nonoverlapping dendritic coverage of the larval body wall by Drosophila class IV dendrite arborization (da) neurons. In esc, Su(z)12, or Pc mutants, dendritic fields are established normally, but class IV neurons display a gradual loss of dendritic coverage, while axons remain normal in appearance, demonstrating that PcG genes are specifically required for dendrite maintenance. Both multiprotein Polycomb repressor complexes (PRCs) involved in transcriptional silencing are implicated in regulation of dendrite arborization in class IV da neurons, likely through regulation of homeobox (Hox) transcription factors. We further show genetic interactions and association between PcG proteins and the tumor suppressor kinase Warts (Wts), providing evidence for their cooperation in multiple developmental processes including dendrite maintenance. PMID:17437999

  3. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size

    PubMed Central

    Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  4. Prenatal hyperbaric normoxia treatment improves healthspan and regulates chitin metabolic genes in Drosophila melanogaster

    PubMed Central

    Yu, Suyeun; Lee, Eunil; Tsogbadrakh, Bodokhsuren; Son, Gwang-Ic; Kim, Mari

    2016-01-01

    Aging is a universal, irreversible process accompanied by physiological declines that culminate in death. Rapid progress in gerontology research has revealed that aging can be slowed through mild stress-induced hormesis. We previously reported that hyperbaric normoxia (HN, 2 atm absolute pressure with 10% O2) induces a cytoprotective response in vitro by regulating fibronectin. In the present study, we investigated the hormetic effects of prenatal HN exposure on Drosophila healthspan related to molecular defense mechanisms. HN exposure had no disruptive effect on developmental rate or adult body weight. However, lifespan was clearly enhanced, as was resistance to oxidative and heat stress. In addition, levels of reactive oxygen species were significantly decreased and motor performance was increased. HN stress has been shown to trigger molecular changes in the heat shock response and ROS scavenging system, including hsp70, catalase, glutathione synthase, and MnSOD. Furthermore, to determine the hormetic mechanism underlying these phenotypic and molecular changes, we performed a genome-wide profiling in HN-exposed and control flies. Genes encoding chitin metabolism were highly up-regulated, which could possibly serve to scavenge free radicals. These results identify prenatal HN exposure as a potential hormetic factor that may improve longevity and healthspan by enhancing defense mechanisms in Drosophila. PMID:27777382

  5. Mutation in a structural gene for a beta-tubulin specific to testis in Drosophila melanogaster.

    PubMed Central

    Kemphues, K J; Raff, R A; Kaufman, T C; Raff, E C

    1979-01-01

    By two-dimensional gel electrophoresis of tubulins prepared from tissues of Drosophila melanogaster we have identified a beta-tubulin subunit that is present only in the testis. Furthermore, we have isolated, as a male sterile, a third chromosome dominant mutation [ms(3)KKD] in the structural gene for this beta-tubulin. Males heterozygous for this mutation produce no motile spermatozoa. Beginning with meiosis, all processes in spermatogenesis are abnormal to some extent. Many microtubules (including both cytoplasmic microtubules and doublet tubules of the axoneme) show aberrant structure in cross section, and the overall morphology of the developing spermatids is disorganized. Testes from these males were shown, by two-dimensional gel electrophoresis, to contain both the normal testis-specific beta-tubulin and an electrophoretic variant of this tubulin in equal amounts. Both wild-type and mutant testis-specific beta-tubulins were characterized by vinblastine sulfate precipitation, coassembly with purified Drosophila embryo tubulin, and peptide mapping. Images PMID:115008

  6. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  7. The Effects of Royal Jelly on Fitness Traits and Gene Expression in Drosophila melanogaster.

    PubMed

    Shorter, John R; Geisz, Matthew; Özsoy, Ergi; Magwire, Michael M; Carbone, Mary Anna; Mackay, Trudy F C

    2015-01-01

    Royal Jelly (RJ) is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D. melanogaster reared on standard culture medium supplemented with increasing concentrations of RJ. We found that lower concentrations of RJ do induce significant differences in body size in both sexes; higher concentrations reduce size, increase mortality, shorten lifespan and reduce productivity. Increased concentrations of RJ also consistently lengthened development time in both sexes. RJ is associated with changes in expression of 1,581 probe sets assessed using Affymetrix Drosophila 2.0 microarrays, which were enriched for genes associated with metabolism and amino acid degradation. The transcriptional changes are consistent with alterations in cellular processes to cope with excess nutrients provided by RJ, including biosynthesis and detoxification, which might contribute to accelerated senescence and reduced lifespan.

  8. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior.

    PubMed

    Evans, Daniel S; Cline, Thomas W

    2013-11-19

    The switch gene Sex-lethal (Sxl) was thought to elicit all aspects of Drosophila female somatic differentiation other than size dimorphism by controlling only the switch gene transformer (tra). Here we show instead that Sxl controls an aspect of female sexual behavior by acting on a target other than or in addition to tra. We inferred the existence of this unknown Sxl target from the observation that a constitutively feminizing tra transgene that restores fertility to tra(-) females failed to restore fertility to Sxl-mutant females that were adult viable but functionally tra(-). The sterility of these mutant females was caused by an ovulation failure. Because tra expression is not sufficient to render these Sxl-mutant females fertile, we refer to this pathway as the tra-insufficient feminization (TIF) branch of the sex-determination regulatory pathway. Using a transgene that conditionally expresses two Sxl feminizing isoforms, we find that the TIF branch is required developmentally for neurons that also sex-specifically express fruitless, a tra gene target controlling sexual behavior. Thus, in a subset of fruitless neurons, targets of the TIF and tra pathways appear to collaborate to control ovulation. In most insects, Sxl has no sex-specific functions, and tra, rather than Sxl, is both the target of the primary sex signal and the gene that maintains the female developmental commitment via positive autoregulation. The TIF pathway may represent an ancestral female-specific function acquired by Sxl in an early evolutionary step toward its becoming the regulator of tra in Drosophila.

  9. Cytogenetic mapping of the Muller F element genes in Drosophila willistoni group.

    PubMed

    Pita, Sebastián; Panzera, Yanina; Lúcia da Silva Valente, Vera; de Melo, Zilpa das Graças Silva; Garcia, Carolina; Garcia, Ana Cristina Lauer; Montes, Martín Alejandro; Rohde, Claudia

    2014-10-01

    Comparative genomics in Drosophila began in 1940, when Muller stated that the ancestral haploid karyotype of this genus is constituted by five acrocentric chromosomes and one dot chromosome, named A to F elements. In some species of the willistoni group such as Drosophila willistoni and D. insularis, the F element, instead of a dot chromosome, has been incorporated into the E element, forming chromosome III (E + F fusion). The aim of this study was to investigate the scope of the E + F fusion in the willistoni group, evaluating six other species. Fluorescent in situ hybridization was used to locate two genes of the F element previously studied-cubitus interruptus (ci) and eyeless (ey)-in species of the willistoni and bocainensis subgroups. Moreover, polytene chromosome photomaps corresponding to the F element (basal portion of chromosome III) were constructed for each species studied. In D. willistoni, D. paulistorum and D. equinoxialis, the ci gene was located in subSectction 78B and the ey gene in 78C. In D. tropicalis, ci was located in subSection 76B and ey in 76C. In species of the bocainensis subgroup, ci and ey were localized, respectively, at subsections 76B and 76C in D. nebulosa and D. capricorni, and 76A and 76C in D. fumipennis. Despite the differences in the subsection numbers, all species showed the same position for ci and ey. The results confirm the synteny of E + F fusion in willistoni and bocainensis subgroups, and allow estimating the occurrence of this event at 15 Mya, at least.

  10. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids

    PubMed Central

    Liénard, Marjorie A.; Araripe, Luciana O.; Hartl, Daniel L.

    2016-01-01

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1. Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1. Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation. PMID:27357670

  11. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    SciTech Connect

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.

  12. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor.

    PubMed

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (-40 to -47), DRE2 (-48 to -55), and DRE3 (-267 to -274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.

  13. The Drosophila pigmentation gene pink (p) encodes a homologue of human Hermansky-Pudlak syndrome 5 (HPS5).

    PubMed

    Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C

    2007-02-01

    Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.

  14. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster

    PubMed Central

    Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-01-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  15. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster.

    PubMed

    Gibert, Jean-Michel; Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-08-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  16. Autoregulation of the Drosophila disconnected gene in the developing visual system.

    PubMed

    Lee, K J; Mukhopadhyay, M; Pelka, P; Campos, A R; Steller, H

    1999-10-15

    The Drosophila disconnected (disco) gene is required for the formation of appropriate connections between the larval optic nerve and its target cells in the brain. The disco gene encodes a nuclear protein with two zinc fingers, which suggests that the gene product is a transcription factor. Here, we present data supporting this notion. We find that disco expression in the optic lobe primordium, a group of cells contacted by the developing optic nerve, depends on an autoregulatory feedback loop. We show that wild-type disco function is required for maintenance of disco mRNA and protein expression in the developing optic lobe. In addition, we demonstrate that ubiquitous Disco activity supplied by a heat-inducible gene construct activates expression from the endogenous disco gene specifically in the optic lobe primordium. Consistent with a role of Disco as a transcriptional regulatory protein, we show that portions of the Disco protein are capable of activating the transcription of reporter constructs in a heterologous system. Moreover, we find that the zinc finger portion of Disco binds in vitro to sequences located near the disco transcription unit, suggesting that Disco autoregulates its transcription in the optic lobe primordium by direct binding to a regulatory element in its own promoter.

  17. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster.

    PubMed

    Lyckegaard, E M; Clark, A G

    1989-03-01

    Multigene families on the Y chromosome face an unusual array of evolutionary forces. Both ribosomal DNA and Stellate, the two families examined here, have multiple copies of similar sequences on the X and Y chromosomes. Although the rate of sequence divergence on the Y chromosome depends on rates of mutation, gene conversion and exchange with the X chromosome, as well as purifying selection, the regulation of gene copy number may also depend on other pleiotropic functions, such as maintenance of chromosome pairing. Gene copy numbers were estimated for a series of 34 Y chromosome replacement lines using densitometric measurements of slot blots of genomic DNA from adult Drosophila melanogaster. Scans of autoradiographs of the same blots probed with the cloned alcohol dehydrogenase gene, a single copy gene, served as internal standards. Copy numbers span a 6-fold range for ribosomal DNA and a 3-fold range for Stellate DNA. Despite this magnitude of variation, there was no association between copy number and segregation variation of the sex chromosomes.

  18. The Drosophila over compensating males gene genetically inhibits dosage compensation in males.

    PubMed

    Lim, Chiat Koo; Kelley, Richard L

    2013-01-01

    Male Drosophila are monosomic for the X chromosome, but survive due to dosage compensation. They use the Male Specific Lethal (MSL) complex composed of noncoding roX RNA and histone modifying enzymes to hypertranscribe most genes along the X ∼1.6-1.8 fold relative to each female allele. It is not known how the MSL complex achieves this precise adjustment to a large and diverse set of target genes. We carried out a genetic screen searching for novel factors that regulate dosage compensation in flies. This strategy generated thirty alleles in a previously uncharacterized gene, over compensating males (ocm) that antagonizes some aspect of MSL activity. The mutations were initially recovered because they derepressed an MSL-dependent eye color reporter. Null ocm mutations are lethal to both sexes early in development revealing an essential function. Combinations of hypomorphic ocm alleles display a male specific lethality similar to mutations in the classic msl genes, but ocm males die due to excessive, rather than lack of dosage compensation. Males that die due to very low MSL activity can be partially rescued by ocm mutations. Likewise, males that would die from ocm mutations can be rescued by reducing the dose of various msl and roX genes. ocm encodes a large nuclear protein that shares a novel cysteine rich motif with known transcription factors.

  19. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    PubMed

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  20. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans

    PubMed Central

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J.

    2015-01-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3’ UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes. PMID:25950438

  1. Identification of novel Drosophila meiotic genes recovered in a P-element screen.

    PubMed

    Sekelsky, J J; McKim, K S; Messina, L; French, R L; Hurley, W D; Arbel, T; Chin, G M; Deneen, B; Force, S J; Hari, K L; Jang, J K; Laurençon, A C; Madden, L D; Matthies, H J; Milliken, D B; Page, S L; Ring, A D; Wayson, S M; Zimmerman, C C; Hawley, R S

    1999-06-01

    The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes.

  2. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster.

    PubMed

    Remnant, Emily J; Good, Robert T; Schmidt, Joshua M; Lumb, Christopher; Robin, Charles; Daborn, Phillip J; Batterham, Philip

    2013-09-03

    The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala(301) to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala(301) to Ser resistance mutation and Met(360) to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser(301) homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser(301) change into an Ala(301) background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene.

  3. Transcriptional regulation of the Drosophila moira and osa genes by the DREF pathway.

    PubMed

    Nakamura, Kumi; Ida, Hiroyuki; Yamaguchi, Masamitsu

    2008-07-01

    The DNA replication-related element binding factor (DREF) plays an important role in regulation of cell proliferation in Drosophila, binding to DRE and activating transcription of genes carrying this element in their promoter regions. Overexpression of DREF in eye imaginal discs induces a rough eye phenotype in adults, which can be suppressed by half dose reduction of the osa or moira (mor) genes encoding subunits of the BRM complex. This ATP-dependent chromatin remodeling complex is known to control gene expression and the cell cycle. In the 5' flanking regions of the osa and mor genes, DRE and DRE-like sequences exist which contribute to their promoter activities. Expression levels and promoter activities of osa and mor are decreased in DREF knockdown cells and our results in vitro and in cultured cells indicate that transcription of osa and mor is regulated by the DRE/DREF regulatory pathway. In addition, mRNA levels of other BRM complex subunits and a target gene, string/cdc25, were found to be decreased by knockdown of DREF. These results indicate that DREF is involved in regulation of the BRM complex and thereby the cell cycle.

  4. Transcriptional regulation of the Drosophila ANT gene by the DRE/DREF system.

    PubMed

    Kim, Young Shin; Shin, Meong Joo; Yang, Dong Jin; Yamaguchi, Masamitsu; Park, So Young; Yoo, Mi Ae

    2007-05-01

    Adenine nucleotide translocase (ANT) is a crucial component in the maintenance of cellular energy homeostasis, as well as in the formation of the mitochondrial permeability transition pores. However, the molecular mechanisms regulating the expression of the ANT gene are poorly understood. In this study, we have identified three DNA replication-related elements (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila ANT (dANT) gene. Gel-mobility shift analyses revealed that all three of the DREs were recognized by the DRE-binding factor (DREF). The site-directed mutagenesis of these DRE sites induces a considerable reduction in the activity of the dANT gene promoter in vitro. Analyses with transgenic flies harboring a dANT-lacZ fusion gene bearing the wild-type or mutant DRE sites showed that the DRE sites were required for the expression of dANT in vivo. We determined that the over-expression or knockdown of DREF exerts a regulatory effect on the activity of the dANT promoter. In addition, we observed the collapse of mitochondrial membrane potential in the eye imaginal discs in which DREF was over-expressed. These results show that DRE/DREF is a crucial regulator of dANT gene expression, and also suggest the possibility that cross-talk may occur between the DRE/DREF system and mitochondrial functioning.

  5. A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster.

    PubMed Central

    Huang, A M; Rubin, G M

    2000-01-01

    Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell differentiation, and causes a rough eye phenotype. To identify genes that modulate RAS signaling, we screened for genes that alter RAS1/KSR signaling efficiency when misexpressed. In this screen, we recovered three known genes, Lk6, misshapen, and Akap200. We also identified seven previously undescribed genes; one encodes a novel rel domain member of the NFAT family, and six encode novel proteins. These genes may represent new components of the RAS pathway or components of other signaling pathways that can modulate signaling by RAS. We discuss the utility of gain-of-function screens in identifying new components of signaling pathways in Drosophila. PMID:11063696

  6. Evolutionary history of the third chromosome gene arrangements of Drosophila pseudoobscura inferred from inversion breakpoints.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2011-08-01

    The third chromosome of Drosophila pseudoobscura is polymorphic for numerous gene arrangements that form classical clines in North America. The polytene salivary chromosomes isolated from natural populations revealed changes in gene order that allowed the different gene arrangements to be linked together by paracentric inversions representing one of the first cases where genetic data were used to construct a phylogeny. Although the inversion phylogeny can be used to determine the relationships among the gene arrangements, the cytogenetic data are unable to infer the ancestral arrangement or the age of the different chromosome types. These are both important properties if one is to infer the evolutionary forces responsible for the spread and maintenance of the chromosomes. Here, we employ the nucleotide sequences of 18 regions distributed across the third chromosome in 80-100 D. pseudoobscura strains to test whether five gene arrangements are of unique or multiple origin, what the ancestral arrangement was, and what are the ages of the different arrangements. Each strain carried one of six commonly found gene arrangements and the sequences were used to infer their evolutionary relationships. Breakpoint regions in the center of the chromosome supported monophyly of the gene arrangements, whereas regions at the ends of the chromosome gave phylogenies that provided less support for monophyly of the chromosomes either because the individual markers did not have enough phylogenetically informative sites or genetic exchange scrambled information among the gene arrangements. A data set where the genetic markers were concatenated strongly supported a unique origin of the different gene arrangements. The inversion polymorphism of D. pseudoobscura is estimated to be about a million years old. We have also shown that the generated phylogeny is consistent with the cytological phylogeny of this species. In addition, the data presented here support hypothetical as the ancestral

  7. Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression

    PubMed Central

    Verd, Berta; Crombach, Anton

    2017-01-01

    Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory

  8. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila.

    PubMed

    Brun, Sylvain; Vidal, Sheila; Spellman, Paul; Takahashi, Kuniaki; Tricoire, Hervé; Lemaitre, Bruno

    2006-04-01

    Septic injury triggers a rapid and widespread response in Drosophila adults that involves the up-regulation of many genes required to combat infection and for wound healing. Genome-wide expression profiling has already demonstrated that this response is controlled by signaling through the Toll, Imd, JAK-STAT and JNK pathways. Using oligonucleotide microarrays, we now demonstrate that the MAPKKK Mekk1 regulates a small subset of genes induced by septic injury including Turandot (Tot) stress genes. Our analysis indicates that Tot genes show a complex regulation pattern including signals from both the JAK-STAT and Imd pathways and Mekk1. Interestingly, Mekk1 flies are resistant to microbial infection but susceptible to paraquat, an inducer of oxidative stress. These results point to a role of Mekk1 in the protection against tissue damage and/or protein degradation and indicate complex interactions between stress and immune pathways in Drosophila.

  9. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  10. Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology

    PubMed Central

    Buchon, Nicolas

    2014-01-01

    ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556

  11. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    PubMed Central

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  12. The effect of neurospecific knockdown of candidate genes for locomotor behavior and sound production in Drosophila melanogaster.

    PubMed

    Fedotov, Sergey A; Bragina, Julia V; Besedina, Natalia G; Danilenkova, Larisa V; Kamysheva, Elena A; Panova, Anna A; Kamyshev, Nikolai G

    2014-01-01

    Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination.

  13. The effect of neurospecific knockdown of candidate genes for locomotor behavior and sound production in Drosophila melanogaster

    PubMed Central

    Fedotov, Sergey A; Bragina, Julia V; Besedina, Natalia G; Danilenkova, Larisa V; Kamysheva, Elena A; Panova, Anna A; Kamyshev, Nikolai G

    2014-01-01

    Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination. PMID:25494872

  14. The pineapple eye gene is required for survival of Drosophila imaginal disc cells.

    PubMed Central

    Shi, Wei; Stampas, Argyrios; Zapata, Cynthia; Baker, Nicholas E

    2003-01-01

    Each ommatidium of the Drosophila eye is constructed by precisely 19 specified precursor cells, generated in part during a second mitotic wave of cell divisions that overlaps early stages of ommatidial cell specification. Homozygotes for the pineapple eye mutation lack sufficient precursor cells due to apoptosis during the period of fate specification. In addition development is delayed by apoptosis during earlier imaginal disc growth. Null alleles are recessive lethal and allelic to l(2)31Ek; heteroallelic combinations can show developmental delay, abnormal eye development, and reduced fertility. Mosaic clones autonomously show extensive cell death. The pineapple eye gene was identified and predicted to encode a novel 582-amino-acid protein. The protein contains a novel, cysteine-rich domain of 270 amino acids also found in predicted proteins of unknown function from other animals. PMID:14704172

  15. Isolation of Drosophila genes encoding G protein-coupled receptor kinases.

    PubMed Central

    Cassill, J A; Whitney, M; Joazeiro, C A; Becker, A; Zuker, C S

    1991-01-01

    G protein-coupled receptors are regulated via phosphorylation by a variety of protein kinases. Recently, termination of the active state of two such receptors, the beta-adrenergic receptor and rhodopsin, has been shown to be mediated by agonist- or light-dependent phosphorylation of the receptor by members of a family of protein-serine/threonine kinases (here referred to as G protein-coupled receptor kinases). We now report the isolation of a family of genes encoding a set of Drosophila protein kinases that appear to code for G protein-coupled receptor kinases. These proteins share a high degree of sequence homology with the bovine beta-adrenergic receptor kinase. The presence of a conserved family of G protein-coupled receptor kinases in vertebrates and invertebrates points to the central role of these kinases in signal transduction cascades. Images PMID:1662381

  16. Functional analysis of the white gene of Drosophila by P-factor-mediated transformation.

    PubMed

    Gehring, W J; Klemenz, R; Weber, U; Kloter, U

    1984-09-01

    A 12-kb DNA segment spanning the white (w) locus of Drosophila has been inserted into a P-transposon vector and used for P-factor-mediated germ-line transformation. Several red-eyed transformants were recovered which complement the white mutant phenotype. Analysis of the eye pigments and the interaction with the zeste mutation indicates that the w gene inserted at several new chromosomal sites is expressed normally. The tissue-specific accumulation of w transcripts, as studied by in situ hybridization to tissue sections, is the same in transformant and wild-type larvae. This indicates that all the genetic information specified by the w locus is contained within this 12-kb segment of DNA. By secondary mobilization it was shown that the w sequences have been inserted as a functional P(w) transposon which is capable of further transposition.

  17. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.

    PubMed

    Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H

    1999-10-01

    Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.

  18. Mutations in the neverland gene turned Drosophila pachea into an obligate specialist species

    PubMed Central

    Lang, Michael; Murat, Sophie; Clark, Andrew G.; Gouppil, Géraldine; Blais, Catherine; Matzkin, Luciano M.; Guittard, Émilie; Yoshiyama−Yanagawa, Takuji; Kataoka, Hiroshi; Niwa, Ryusuke; Lafont, René; Dauphin−Villemant, Chantal; Orgogozo, Virginie

    2016-01-01

    Most living species exploit a limited range of resources. However, little is known on how tight links build up during evolution between specialist species and the hosts they utilize. We examined the dependence of Drosophila pachea on its single host, the senita cactus. Several amino acid changes in the Neverland oxygenase rendered D. pachea unable to transform cholesterol into 7-dehydrocholesterol (first reaction in the steroid hormone biosynthetic pathway in insects) and thus made D. pachea dependent on the uncommon sterols of its host plant. The neverland mutations increase survival on the cactus unusual sterols and are in a genomic region that faced recent positive selection. This study illustrates how relatively few genetic changes in a single gene may restrict the ecological niche of a species. PMID:23019649

  19. Passover: a gene required for synaptic connectivity in the giant fiber system of Drosophila.

    PubMed

    Krishnan, S N; Frei, E; Swain, G P; Wyman, R J

    1993-06-04

    Passover (Pas) flies fail to jump in response to a light-off stimulus. The mutation disrupts specific synapses of the giant fibers (GFs), command neurons for this response. Pas was cloned from a P element-induced allele. The cDNA encodes a putative membrane protein of 361 amino acids. Null, hypomorphic, and dominant alleles were sequenced. In the adult central nervous system, and in the pupa during GF synapse formation, Pas is consistently expressed in the GF and in a large thoracic cell in the location of its postsynaptic targets. Pas establishes a new gene family. The Drosophila ogre protein, required for postembryonic neuroblast development, is 47% identical; the C. elegans Unc-7 protein, which when mutated alters the connectivity of a few neurons, is 33% identical.

  20. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains.

    PubMed

    Hou, Chunhui; Li, Li; Qin, Zhaohui S; Corces, Victor G

    2012-11-09

    The mechanisms responsible for the establishment of physical domains in metazoan chromosomes are poorly understood. Here we find that physical domains in Drosophila chromosomes are demarcated at regions of active transcription and high gene density that are enriched for transcription factors and specific combinations of insulator proteins. Physical domains contain different types of chromatin defined by the presence of specific proteins and epigenetic marks, with active chromatin preferentially located at the borders and silenced chromatin in the interior. Domain boundaries participate in long-range interactions that may contribute to the clustering of regions of active or silenced chromatin in the nucleus. Analysis of transgenes suggests that chromatin is more accessible and permissive to transcription at the borders than inside domains, independent of the presence of active or silencing histone modifications. These results suggest that the higher-order physical organization of chromatin may impose an additional level of regulation over classical epigenetic marks.

  1. The white gene as a marker in a new P-element vector for gene transfer in Drosophila.

    PubMed Central

    Klemenz, R; Weber, U; Gehring, W J

    1987-01-01

    We describe new vectors suitable for P-element mediated germ line transformation of Drosophila melanogaster using passenger genes whose expression does not result in a readily detectable phenotypic change of the transformed flies. The P-element vectors contain the white gene fused to the heat shock protein 70 (hsp70) gene promoter. Expression of the white gene rescues the white phenotype of recipient flies partly or completely even without heat treatment. Transformed descendents of most founder animals (GO) fall into two classes which are distinguishable by their orange and red eye colours. The different levels of white expression are presumably due to position effects associated with different chromosomal sites of insertion. Doubling of the gene dose in orange eyed fly stocks results in an easily visible darkening of the eye colour. Consequently, the generation of homozygous transformants is easily possible by simple inbreeding due to the phenotypic distinction of homo- and heterozygous transformants. Cloning into these P-element vectors is facilitated by the presence of polylinkers with 8 and 12 unique restriction sites. Images PMID:3108854

  2. White as a Reporter Gene to Detect Transcriptional Silencers Specifying Position-Specific Gene Expression during Drosophila Melanogaster Eye Development

    PubMed Central

    Sun, Y. H.; Tsai, C. J.; Green, M. M.; Chao, J. L.; Yu, C. T.; Jaw, T. J.; Yeh, J. Y.; Bolshakov, V. N.

    1995-01-01

    The white(+) gene was used as a reporter to detect transcriptional silencer activity in the Drosophila genome. Changes in the spatial expression pattern of white were scored in the adult eye as nonuniform patterns of pigmentation. Thirty-six independent P[lacW] transposant lines were collected. These represent 12 distinct pigmentation patterns and probably 21 loci. The spatial pigmentation pattern is due to cis-acting suppression of white(+) expression, and the suppression probably depends on cell position rather than cell type. The mechanism of suppression differs from inactivation by heterochromatin. In addition, activation of lacZ in P[lacW] occurs also in specific patterns in imaginal discs and embryos in many of the lines. The expression patterns of white(+) and lacZ may reflect the activity of regulatory elements belonging to an endogenous gene near each P[lacW] insertion site. We speculate that these putative POSE (position-specific expression) genes may have a role in pattern formation of the eye as well as other imaginal structures. Three of the loci identified are optomotor-blind, engrailed and invected. teashirt is also implicated as a candidate gene. We propose that this ``silencer trap'' may be an efficient way of identifying genes involved in imaginal pattern formation. PMID:8582614

  3. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure.

    PubMed

    Li, Si-Si; Zhang, Zi-Yan; Yang, Chuan-Jun; Lian, Hui-Yong; Cai, Peng

    2013-12-12

    Extremely low frequency electromagnetic field (ELF-EMF) exposure is attracting increased attention as a possible disease-inducing factor. The in vivo effects of short-term and long-term ELF-EMF exposure on male Drosophila melanogaster were studied using transcriptomic analysis for preliminary screening and QRT-PCR for further verification. Transcriptomic analysis indicated that 439 genes were up-regulated and 874 genes were down-regulated following short-term exposures and that 514 genes were up-regulated and 1206 genes were down-regulated following long-term exposures (expression >2- or <0.5-fold, respectively). In addition, there are 238 up-regulated genes and 598 down-regulated genes in the intersection of short-term and long-term exposure (expression >2- or <0.5-fold). The DEGs (differentially expressed genes) in D. melanogaster following short-term exposures were involved in metabolic processes, cytoskeletal organization, mitotic spindle organization, cell death, protein modification and proteolysis. Long-term exposure let to changes in expression of genes involved in metabolic processes, response to stress, mitotic spindle organization, aging, cell death and cellular respiration. In the intersection of short-term and long-term exposure, a series of DEGs were related to apoptosis, aging, immunological stress and reproduction. To check the ELF-EMF effects on reproduction, some experiments on male reproduction ability were performed. Their results indicated that short-term ELF-EMF exposure may decrease the reproductive ability of males, but long-term exposures had no effect on reproductive ability. Down-regulation of ark gene in the exposed males suggests that the decrease in reproductive capacity may be induced by the effects of ELF-EMF exposure on spermatogenesis through the caspase pathway. QRT-PCR analysis confirmed that jra, ark and decay genes were down regulated in males exposed for 1 Generation (1G) and 72 h, which suggests that apoptosis may be

  4. A genetic analysis of intersex, a gene regulating sexual differentiation in Drosophila melanogaster females

    SciTech Connect

    Chase, B.A. |; Baker, B.S.

    1995-04-01

    Sex-type in Drosophila melanogaster is controlled by a hierarchically acting set of regulatory genes. At the terminus of this hierarchy lie those regulatory genes responsible for implementing sexual differentiation: genes that control the activity of target loci whose products give rise to sexually dimorphic phenotypes. The genetic analysis of the intersex (ix) gene presented here demonstrates that ix is such a terminally positioned regulatory locus. The ix locus has been localized to the cytogenetic interval between 47E3-6 and 47F11-18. A comparison of the morphological and behavioral phenotypes of homozygotes and hemizygotes for three point mutations at ix indicates that the null phenotypes of homozygotes diplo-X animals into intersexes while leaving haplo-X animals unaffected. Analysis of X-ray induced, mitotic recombination clones lacking ix{sup +} function in the abdomen of diplo-X individuals indicates that the ix{sup +} product functions in a cell-autonomous manner and that it is required at least until the termination of cell division in this tissue. Taken together with previous analyses, our results indicate that the ix{sup +} product is required to function with the female-specific product of doublesex to implement appropriate female sexual differentiation in diplo-X animals. 55 refs., 4 figs., 4 tabs.

  5. Modeling the temporal evolution of the Drosophila gene expression from DNA microarray time series

    NASA Astrophysics Data System (ADS)

    Haye, Alexandre; Dehouck, Yves; Kwasigroch, Jean Marc; Bogaerts, Philippe; Rooman, Marianne

    2009-03-01

    The time evolution of gene expression across the developmental stages of the host organism can be inferred from appropriate DNA microarray time series. Modeling this evolution aims eventually at improving the understanding and prediction of the complex phenomena that are the basis of life. We focus on the embryonic-to-adult development phases of Drosophila melanogaster, and chose to model the expression network with the help of a system of differential equations with constant coefficients, which are nonlinear in the transcript concentrations but linear in their logarithms. To reduce the dimensionality of the problem, genes having similar expression profiles are grouped into 17 clusters. We show that a simple linear model is able to reproduce the experimental data with very good precision, owing to the large number of parameters that represent the connections between the clusters. Remarkably, the parameter reduction allowed elimination of up to 80-85% of these connections while keeping fairly good precision. This result supports the low-connectivity hypothesis of gene expression networks, with about three connections per cluster, without introducing a priori hypotheses. The core of the network shows a few gene clusters with negative self-regulation, and some highly connected clusters involving proteins with crucial functions.

  6. Mutations in the Drosophila melanogaster gene encoding S-adenosylmethionine suppress position-effect variegation

    SciTech Connect

    Larsson, J.; Rasmuson-Lestander, A.; Zhang, Jingpu

    1996-06-01

    In Drosophila melanogaster, the study of trans-acting modifier mutations of position-effect variegation and Polycomb group (Pc-G) genes have been useful tools to investigate genes involved in chromatin structure. We have cloned a modifier gene, Suppressor of zeste 5 (Su(z)5), which encodes S-adenosylmethionine synthetase, and we present here molecular results and data concerning its expression in mutants and genetic interactions. The mutant alleles Su(z)5, l(2)R23 and l(2)M6 show suppression of w{sup m4} and also of two white mutants induced by roo element insertions in the regulatory region i.e., w{sup is} (in combination with z{sup 1}) and w{sup sp1}. Two of the Su(z)5 alleles, as well as a deletion of the gene, also act as enhancers of Polycomb by increasing the size of sex combes on midleg. The results suggest that Su(z)5 is connected with regulation of chromatin structure. The enzyme S-adenosylmethionine synthetase is involved in the synthesis of S-adenosylmethionine, a methyl group donor and also, after decarboxylation, a propylamino group donor in the biosynthesis of polyamines. Our results from HPLC analysis show that in ovaries from heterozygous Su(z)5 mutants the content of spermine is significantly reduced. Results presented here suggest that polyamines are an important molecule class in the regulation of chromatin structure. 50 refs., 5 figs., 3 tabs.

  7. Genetic Analysis of Transvection Effects Involving Cis-Regulatory Elements of the Drosophila Ultrabithorax Gene

    PubMed Central

    Micol, J. L.; Castelli-Gair, J. E.; Garcia-Bellido, A.

    1990-01-01

    The Ultrabithorax (Ubx) gene of Drosophila melanogaster contains two functionally distinguishable regions: the protein-coding Ubx transcription unit and, upstream of it, the transcribed but non-protein-coding bxd region. Numerous recessive, partial loss-of-function mutations which appear to be regulatory mutations map within the bxd region and within the introns of the Ubx transcription unit. In addition, mutations within the Ubx unit exons are known and most of these behave as null alleles. Ubx(1) is one such allele. We have confirmed that, although the Ubx(1) allele does not produce detectable Ubx proteins (UBX), it does retain other genetic functions detectable by their effects on the expression of a paired, homologous Ubx allele, i.e., by transvection. We have extended previous analyses made by E. B. Lewis by mapping the critical elements of the Ubx gene which participate in transvection effects. Our results show that the Ubx(1) allele retains wild-type functions whose effectiveness can be reduced (1) by additional cis mutations in the bxd region or in introns of the Ubx transcription unit, as well as (2) by rearrangements disturbing pairing between homologous Ubx genes. Our results suggest that those remnant functions in Ubx(1) are able to modulate the activity of the allele located in the homologous chromosome. We discuss the normal cis regulatory role of these functions involved in trans interactions between homologous Ubx genes, as well as the implications of our results for the current models on transvection. PMID:2123161

  8. Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila.

    PubMed

    Lessing, Derek; Bonini, Nancy M

    2008-02-01

    The expansion of polyglutamine tracts in a variety of proteins causes devastating, dominantly inherited neurodegenerative diseases, including six forms of spinal cerebellar ataxia (SCA). Although a polyglutamine expansion encoded in a single allele of each of the responsible genes is sufficient for the onset of each disease, clinical observations suggest that interactions between these genes may affect disease progression. In a screen for modifiers of neurodegeneration due to SCA3 in Drosophila, we isolated atx2, the fly ortholog of the human gene that causes a related ataxia, SCA2. We show that the normal activity of Ataxin-2 (Atx2) is critical for SCA3 degeneration and that Atx2 activity hastens the onset of nuclear inclusions associated with SCA3. These activities depend on a conserved protein interaction domain of Atx2, the PAM2 motif, which mediates binding of cytoplasmic poly(A)-binding protein (PABP). We show here that PABP also influences SCA3-associated neurodegeneration. These studies indicate that the toxicity of one polyglutamine disease protein can be dramatically modulated by the normal activity of another. We propose that functional links between these genes are critical to disease severity and progression, such that therapeutics for one disease may be applicable to others.

  9. Cloning, chromosome mapping and expression analysis of the HIRA gene from Drosophila melanogaster.

    PubMed

    Llevadot, R; Marqués, G; Pritchard, M; Estivill, X; Ferrús, A; Scambler, P

    1998-08-19

    The human HIRA gene was identified as a putative transcriptional regulator mapping within the DiGeorge syndrome critical region at 22q11. HIRA-related proteins have been described in a number of species, but functional information concerning family members is only available in Saccharomyces cerevisiae, where the Hir1p and Hir2p proteins are known to be transcriptional corepressors. In order to analyse conservation of HIRA-related genes and to provide resources for functional studies in another model organism we have isolated the HIRA gene from Drosophila melanogaster (dhira). The 3374 nucleotide cDNA encodes a protein of 1047 aa, showing 42% identity with the human protein. Alignment with the predicted HIRA proteins from human, mouse, chick and pufferfish reveals strong conservation within the N-terminal region which contains seven WD domains, with less conservation of C-terminal sequences. In situ hybridisation to salivary gland chromosomes indicates that the gene resides in region 7B2-3 of the X chromosome. Dhira is expressed through embryonic development and at lower levels during larval and pupal development. The expression of dhira is dramatically increased in early embryos and in females, suggesting that the dhira mRNA could be maternally deposited in the embryos.

  10. A genome-wide screen identifies genes that affect somatic homolog pairing in Drosophila.

    PubMed

    Bateman, Jack R; Larschan, Erica; D'Souza, Ryan; Marshall, Lauren S; Dempsey, Kyle E; Johnson, Justine E; Mellone, Barbara G; Kuroda, Mitzi I

    2012-07-01

    In Drosophila and other Dipterans, homologous chromosomes are in close contact in virtually all nuclei, a phenomenon known as somatic homolog pairing. Although homolog pairing has been recognized for over a century, relatively little is known about its regulation. We performed a genome-wide RNAi-based screen that monitored the X-specific localization of the male-specific lethal (MSL) complex, and we identified 59 candidate genes whose knockdown via RNAi causes a change in the pattern of MSL staining that is consistent with a disruption of X-chromosomal homolog pairing. Using DNA fluorescent in situ hybridization (FISH), we confirmed that knockdown of 17 of these genes has a dramatic effect on pairing of the 359 bp repeat at the base of the X. Furthermore, dsRNAs targeting Pr-set7, which encodes an H4K20 methyltransferase, cause a modest disruption in somatic homolog pairing. Consistent with our results in cultured cells, a classical mutation in one of the strongest candidate genes, pebble (pbl), causes a decrease in somatic homolog pairing in developing embryos. Interestingly, many of the genes identified by our screen have known roles in diverse cell-cycle events, suggesting an important link between somatic homolog pairing and the choreography of chromosomes during the cell cycle.

  11. Progressive tarsal patterning in the Drosophila by temporally dynamic regulation of transcription factor genes.

    PubMed

    Natori, Kohei; Tajiri, Reiko; Furukawa, Shiori; Kojima, Tetsuya

    2012-01-15

    The morphology of insect appendages, such as the number and proportion of leg tarsal segments, is immensely diverse. In Drosophila melanogaster, adult legs have five tarsal segments. Accumulating evidence indicates that tarsal segments are formed progressively through dynamic changes in the expression of transcription factor genes, such as Bar genes, during development. In this study, to examine further the basis of progressive tarsal patterning, the precise expression pattern and function of several transcription factor genes were investigated in relation to the temporal regulation of Bar expression. The results indicate that nubbin is expressed over a broad region at early stages but gradually disappears from the middle of the tarsal region. This causes the progressive expansion of rotund expression, which in turn progressively represses Bar expression, leading to the formation of the tarsal segment 3. The region corresponding to the tarsal segment 4 is formed when apterous expression is initiated, which renders Bar expression refractory to rotund. In addition, the tarsal segment 2 appears to be derived from the region that expresses Bar at a very early stage. Cessation of Bar expression in this region requires the function of spineless, which also regulates rotund expression. These findings indicate that the temporally dynamic regulatory interaction of these transcription factor genes is the fundamental basis of the progressive patterning of the tarsal region.

  12. Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes.

    PubMed

    Harrison, Melissa M; Botchan, Michael R; Cline, Thomas W

    2010-09-15

    Maternally contributed mRNAs and proteins control the initial stages of development following fertilization. During this time, most of the zygotic genome remains transcriptionally silent. The initiation of widespread zygotic transcription is coordinated with the degradation of maternally provided mRNAs at the maternal-to-zygotic transition (MZT). While most of the genome is silenced prior to the MZT, a small subset of zygotic genes essential for the future development of the organism is transcribed. Previous work in our laboratory and others identified the TAGteam element, a set of related heptameric DNA-sequences in the promoters of many early-expressed Drosophila genes required to drive their unusually early transcription. To understand how this unique subset of genes is regulated, we identified a TAGteam-binding factor Grainyhead (Grh). We demonstrated that Grh and the previously characterized transcriptional activator Zelda (Zld) bind to different TAGteam sequences with varying affinities, and that Grh competes with Zld for TAGteam occupancy. Moreover, overexpression of Grh in the early embryo causes defects in cell division, phenocopying Zld depletion. Our findings indicate that during early embryonic development the precise timing of gene expression is regulated by both the sequence of the TAGteam elements in the promoter and the relative levels of the transcription factors Grh and Zld.

  13. Relative paucity of genes causing inviability in hybrids between Drosophila melanogaster and D. simulans.

    PubMed Central

    Coyne, J A; Simeonidis, S; Rooney, P

    1998-01-01

    Using deficiencies from Drosophila melanogaster, we looked for genomic regions in the sister species D. simulans that could cause lethality when hemizygous on a hybrid genetic background. Such genotypes allow hemizygous genes from one species to interact with heterozygous genes from other species and may correspond to the kinds of genotypes causing Haldane's rule, the observation that if only one gender is sterile or inviable in species hybrids, it is nearly always the heterogametic sex. A survey of roughly 50% of the D. simulans genome (114 chromosome regions) revealed only four regions causing hybrid lethality and five causing severe reductions in hybrid viability. However, the viability of all of these genotypes was at least partially restored by rearing hybrids at lower temperature or using different genetic backgrounds from D. simulans. We therefore detected no D. simulans chromosome regions causing unconditional hybrid lethality, although several regions were shown to be deleterious under most tested temperatures and genetic backgrounds. The relative paucity of "inviability genes" supports the idea, suggested by work on other species, that hybrid inviability between closely related species might be caused by interactions among relatively few genes, while hybrid sterility may involve many more loci. PMID:9799261

  14. Structural complexity and evolutionary conservation of the Drosophila homeotic gene proboscipedia.

    PubMed Central

    Cribbs, D L; Pultz, M A; Johnson, D; Mazzulla, M; Kaufman, T C

    1992-01-01

    Mutations of the homeotic gene proboscipedia (pb) of Drosophila cause striking transformations of the adult mouthparts, to legs or antennae. We report here an analysis of the gene structure of pb. Coding sequences across a 34 kb interval yield, by alternative splicing, four identified mRNA forms which differ immediately upstream of the homeobox. As a consequence, the homeodomain is expected to reside in four different contexts in the predicted protein isoforms. Mammalian homologs of pb, human HOX-2H and murine Hox-2.8, were identified based on the similarities of their homeodomains (95% identity) and several other conserved motifs. Examination of a collection of pb mutant alleles with antisera directed against the N-terminal region, the center or the C-terminal region of the protein showed that, surprisingly, several partial loss-of-function pb alleles appear to generate partially functional proteins truncated at their C-termini. This suggests that a significant portion of the protein contributes quantitatively to pb function, but is partially dispensable. Finally, evolutionary considerations suggest that pb may be one of several ancient genes which preceded the process yielding the modern homeotic gene complexes. Images PMID:1348688

  15. Identification and characterization of autosomal genes that interact with glass in the developing Drosophila eye

    SciTech Connect

    Ma, Chaoyong; Liu, Hui; Zhou, Ying; Moses, K.

    1996-04-01

    The glass gene encodes a zinc finger, DNA-binding protein that is required for photoreceptor cell development in Drosophila melanogaster. In the developing compound eye, glass function is regulated at two points: (1) the protein is expressed in all cells` nuclei posterior to the morphogenetic furrow and (2) the ability of the Glass protein to regulate downstream genes is largely limited to the developing photoreceptor cells. We conducted a series of genetic screen for autosomal dominant second-site modifiers of the weak allele glass, to discover genes with products that may regulate glass function at either of these levels. Seventy-six dominant enhancer mutations were recovered (and no dominant suppressors). Most of these dominant mutations are in essential genes and are associated with recessive lethality. We have assigned these mutations to 23 complementation groups that include multiple alleles of Star and hedgehog as well as single alleles of Delta, roughened eye, glass and hairy. Mutations in 18 of the complementation groups are embryonic lethals, and of these, 13 show abnormal adult retinal phenotypes in homozygous clones, usually with altered numbers of photoreceptor cells in some of the ommatidia. 116 refs., 9 figs., 2 tabs.

  16. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster

    PubMed Central

    Reyes-Taboada, José Luis; Covarrubias, Alejandra A; Narvaez-Padilla, Verónica; Reynaud, Enrique

    2015-01-01

    In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to “knock out” half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets. PMID:26222315

  17. Adhesive pad differentiation in Drosophila melanogaster depends on the Polycomb group gene Su(z)2.

    PubMed

    Hüsken, Mirko; Hufnagel, Kim; Mende, Katharina; Appel, Esther; Meyer, Heiko; Peisker, Henrik; Tögel, Markus; Wang, Shuoshuo; Wolff, Jonas; Gorb, Stanislav N; Paululat, Achim

    2015-04-15

    The ability of many insects to walk on vertical smooth surfaces such as glass or even on the ceiling has fascinated biologists for a long time, and has led to the discovery of highly specialized adhesive organs located at the distal end of the animals' legs. So far, research has primarily focused on structural and ultrastructural investigations leading to a deeper understanding of adhesive organ functionality and to the development of new bioinspired materials. Genetic approaches, e.g. the analysis of mutants, to achieve a better understanding of adhesive organ differentiation have not been used so far. Here, we describe the first Drosophila melanogaster mutant that develops malformed adhesive organs, resulting in a complete loss of climbing ability on vertical smooth surfaces. Interestingly, these mutants fail to make close contact between the setal tips and the smooth surface, a crucial condition for wet adhesion mediated by capillary forces. Instead, these flies walk solely on their claws. Moreover, we were able to show that the mutation is caused by a P-element insertion into the Su(z)2 gene locus. Remobilization of the P-element restores climbing ability. Furthermore, we provide evidence that the P-element insertion results in an artificial Su(z)2 transcript, which most likely causes a gain-of-function mutation. We presume that this transcript causes deregulation of yet unknown target genes involved in pulvilli differentiation. Our results nicely demonstrate that the genetically treatable model organism Drosophila is highly suitable for future investigations on adhesive organ differentiation.

  18. The evolution of small insertions and deletions in the coding genes of Drosophila melanogaster.

    PubMed

    Chong, Zechen; Zhai, Weiwei; Li, Chunyan; Gao, Min; Gong, Qiang; Ruan, Jue; Li, Juan; Jiang, Lan; Lv, Xuemei; Hungate, Eric; Wu, Chung-I

    2013-12-01

    Studies of protein evolution have focused on amino acid substitutions with much less systematic analysis on insertion and deletions (indels) in protein coding genes. We hence surveyed 7,500 genes between Drosophila melanogaster and D. simulans, using D. yakuba as an outgroup for this purpose. The evolutionary rate of coding indels is indeed low, at only 3% of that of nonsynonymous substitutions. As coding indels follow a geometric distribution in size and tend to fall in low-complexity regions of proteins, it is unclear whether selection or mutation underlies this low rate. To resolve the issue, we collected genomic sequences from an isogenic African line of D. melanogaster (ZS30) at a high coverage of 70× and analyzed indel polymorphism between ZS30 and the reference genome. In comparing polymorphism and divergence, we found that the divergence to polymorphism ratio (i.e., fixation index) for smaller indels (size ≤ 10 bp) is very similar to that for synonymous changes, suggesting that most of the within-species polymorphism and between-species divergence for indels are selectively neutral. Interestingly, deletions of larger sizes (size ≥ 11 bp and ≤ 30 bp) have a much higher fixation index than synonymous mutations and 44.4% of fixed middle-sized deletions are estimated to be adaptive. To our surprise, this pattern is not found for insertions. Protein indel evolution appear to be in a dynamic flux of neutrally driven expansion (insertions) together with adaptive-driven contraction (deletions), and these observations provide important insights for understanding the fitness of new mutations as well as the evolutionary driving forces for genomic evolution in Drosophila species.

  19. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster.

    PubMed

    Sanchez-Díaz, Iván; Rosales-Bravo, Fernando; Reyes-Taboada, José Luis; Covarrubias, Alejandra A; Narvaez-Padilla, Verónica; Reynaud, Enrique

    2015-01-01

    In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to "knock out" half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets.

  20. A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation.

    PubMed Central

    Feder, J N; Jan, L Y; Jan, Y N

    1993-01-01

    Several genes encoding transcription factors with a helix-loop-helix (HLH) motif are involved in the early process of neural development in Drosophila spp. We report the isolation from the rat a homolog of one of these genes, called hairy. The rat-hairy-like (RHL) gene is expressed early during embryogenesis. In contrast to the restricted expression of hairy mRNA in Drosophila spp., however, the mRNA encoded by RHL is detectable in all tissues examined. Stimulation of PC12 pheochromocytoma cells by nerve growth factor, basis fibroblast growth factor, or epidermal growth factor or of Rat-1 fibroblasts by epidermal growth factor causes a rapid and transient induction of the RHL gene. Thus, RHL acts as an immediate-early gene that can potentially transduce growth factor signals during the development of the mammalian embryo. Images PMID:8417318

  1. Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila

    PubMed Central

    Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo

    2012-01-01

    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714

  2. Females and Males Contribute in Opposite Ways to the Evolution of Gene Order in Drosophila

    PubMed Central

    Díaz-Castillo, Carlos

    2013-01-01

    An intriguing association between the spatial layout of chromosomes within nuclei and the evolution of chromosome gene order was recently uncovered. Chromosome regions with conserved gene order in the Drosophila genus are larger if they interact with the inner side of the nuclear envelope in D. melanogaster somatic cells. This observation opens a new door to understand the evolution of chromosomes in the light of the dynamics of the spatial layout of chromosomes and the way double-strand breaks are repaired in D. melanogaster germ lines. Chromosome regions at the nuclear periphery in somatic cell nuclei relocate to more internal locations of male germ line cell nuclei, which might prefer a gene order-preserving mechanism to repair double-strand breaks. Conversely, chromosome regions at the nuclear periphery in somatic cells keep their location in female germ line cell nuclei, which might be inaccessible for cellular machinery that causes gene order-disrupting chromosome rearrangements. Thus, the gene order stability for genome regions at the periphery of somatic cell nuclei might result from the active repair of double-strand breaks using conservative mechanisms in male germ line cells, and the passive inaccessibility for gene order-disrupting factors at the periphery of nuclei of female germ line cells. In the present article, I find evidence consistent with a DNA break repair-based differential contribution of both D. melanogaster germ lines to the stability/disruption of gene order. The importance of germ line differences for the layout of chromosomes and DNA break repair strategies with regard to other genomic patterns is briefly discussed. PMID:23696898

  3. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila.

    PubMed Central

    Weill, Mylène; Fort, Philippe; Berthomieu, Arnaud; Dubois, Marie Pierre; Pasteur, Nicole; Raymond, Michel

    2002-01-01

    Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed. PMID:12396499

  4. A human homologue of the Drosophila polarity gene frizzled has been identified and mapped to 17q21.1

    SciTech Connect

    Zhao, Z.; Lee, C.C.; Baldini, A.

    1995-05-20

    The frizzled (fz) locus in Drosophila is required for the transmission of polarity signals across the plasma membrane in epidermal cells, as well as to their neighboring cells in the developing wing. The identification of a tissue polarity gene from the fz locus in Drosophila melanogaster has been reported. The fz gene encodes a protein (Fz) with seven putative transmembrane domains, which was suggested to function as a G-protein-coupled receptor. Here the authors report the identification of a human homologue for the fz gene (FZD2). The FZD2 gene was isolated from a human ovarian cDNA library and mapped to 17q21.1 by fluorescent in situ hybridization (FISH) with a corresponding cosmid. The full-length cDNA of human FZD2 encodes a protein (FZD-2) of 565 amino acids that shares 56% sequence identity with Drosophila Fz. The expression of the FZD2 gene seems to be developmentally regulated, with high levels of expression in fetal kidney and lung and in adult colon and ovary. The structure of FZD-2 suggests that it has a role in transmembrane signal transmission, although its precise physiological function and associated pathways are yet to be determined. 9 refs., 2 figs.

  5. [Molecular evolution of mobile elements of the gypsy group: a homolog of the gag gene in Drosophila].

    PubMed

    Nefedova, L N; Kim, A I

    2009-01-01

    Retrotransposons of the gypsy group of Drosophila melanogaster that are structurally similar to retroviruses of vertebrates occupy an important place among retroelements of eukaryotes. The infectious abilities of some retrotransposons of this group (gypsy, ZAM, and Idefix) have been demonstrated experimentally, and therefore they are true retroviruses. It is supposed that retrotransposons can evolve acquiring new components, the sources of which remain to be elucidated. In this work, the CG4680 gene (Gag related protein, Grp) homologous to gag of retrotransposons of the gypsy group has been identified in the genome of D. melanogaster and characterized. The Grp gene product has a highly conserved structure in different species of the Drosophilidae family and is under of stabilizing selection, which suggests its important genomic function in Drosophila. In view of the earlier data, it can be concluded that homologous genes of all components of gypsy retrotransposons are present in the Drosophila genome. These genes can be both precursors and products of domestication of retrovirus genes.

  6. Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift.

    PubMed

    Shiao, Meng-Shin; Chang, Jia-Ming; Fan, Wen-Lang; Lu, Mei-Yeh Jade; Notredame, Cedric; Fang, Shu; Kondo, Rumi; Li, Wen-Hsiung

    2015-10-01

    Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c--previously reported to be a larva-specific gene--showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes.

  7. The mouse Enhancer trap locus 1 (Etl-1): a novel mammalian gene related to Drosophila and yeast transcriptional regulator genes.

    PubMed

    Soininen, R; Schoor, M; Henseling, U; Tepe, C; Kisters-Woike, B; Rossant, J; Gossler, A

    1992-11-01

    A novel mouse gene, Enhancer trap locus 1 (Etl-1), was identified in close proximity to a lacZ enhancer trap integration in the mouse genome showing a specific beta-galactosidase staining pattern during development. In situ analysis revealed a widespread but not ubiquitous expression of Etl-1 throughout development with particularly high levels in the central nervous system and epithelial cells. The amino acid sequence of the Etl-1 protein deduced from the cDNA shows strong similarity, over a stretch of 500 amino acids, to the Drosophila brahma protein involved in the regulation of homeotic genes and to the yeast transcriptional activator protein SNF2/SWI2 as well as to the RAD54 protein and the recently described helicase-related yeast proteins STH1 and MOT1. Etl-1 is the first mammalian member of this group of proteins that are implicated in gene regulation and/or influencing chromatin structure. The homology to the regulatory proteins SNF2/SWI2 and brahma and the expression pattern during embryogenesis suggest that Etl-1 protein might be involved in gene regulating pathways during mouse development.

  8. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    PubMed

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica.

  9. BEST: a novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development.

    PubMed Central

    Kumar, Sudhir; Jayaraman, Karthik; Panchanathan, Sethuraman; Gurunathan, Rajalakshmi; Marti-Subirana, Ana; Newfeld, Stuart J

    2002-01-01

    Embryonic gene expression patterns are an indispensable part of modern developmental biology. Currently, investigators must visually inspect numerous images containing embryonic expression patterns to identify spatially similar patterns for inferring potential genetic interactions. The lack of a computational approach to identify pattern similarities is an impediment to advancement in developmental biology research because of the rapidly increasing amount of available embryonic gene expression data. Therefore, we have developed computational approaches to automate the comparison of gene expression patterns contained in images of early stage Drosophila melanogaster embryos (prior to the beginning of germ-band elongation); similarities and differences in gene expression patterns in these early stages have extensive developmental effects. Here we describe a basic expression search tool (BEST) to retrieve best matching expression patterns for a given query expression pattern and a computational device for gene interaction inference using gene expression pattern images and information on the associated genotypes and probes. Analysis of a prototype collection of Drosophila gene expression pattern images is presented to demonstrate the utility of these methods in identifying biologically meaningful matches and inferring gene interactions by direct image content analysis. In particular, the use of BEST searches for gene expression patterns is akin to that of BLAST searches for finding similar sequences. These computational developmental biology methodologies are likely to make the great wealth of embryonic gene expression pattern data easily accessible and to accelerate the discovery of developmental networks. PMID:12524369

  10. Drosophila melanogaster as a model for studying protein-encoding genes that are resident in constitutive heterochromatin.

    PubMed

    Corradini, N; Rossi, F; Giordano, E; Caizzi, R; Verní, F; Dimitri, P

    2007-01-01

    The organization of chromosomes into euchromatin and heterochromatin is one of the most enigmatic aspects of genome evolution. For a long time, heterochromatin was considered to be a genomic wasteland, incompatible with gene expression. However, recent studies--primarily conducted in Drosophila melanogaster--have shown that this peculiar genomic component performs important cellular functions and carries essential genes. New research on the molecular organization, function and evolution of heterochromatin has been facilitated by the sequencing and annotation of heterochromatic DNA. About 450 predicted genes have been identified in the heterochromatin of D. melanogaster, indicating that the number of active genes is higher than had been suggested by genetic analysis. Most of the essential genes are still unknown at the molecular level, and a detailed functional analysis of the predicted genes is difficult owing to the lack of mutant alleles. Far from being a peculiarity of Drosophila, heterochromatic genes have also been found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Oryza sativa and Arabidopsis thaliana, as well as in humans. The presence of expressed genes in heterochromatin seems paradoxical because they appear to function in an environment that has been considered incompatible with gene expression. In the future, genetic, functional genomic and proteomic analyses will offer powerful approaches with which to explore the functions of heterochromatic genes and to elucidate the mechanisms driving their expression.

  11. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis.

    PubMed

    Puah, Wee Choo; Wasser, Martin

    2016-03-01

    Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future.

  12. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.

    PubMed

    Allen, Aaron M; Anreiter, Ina; Neville, Megan C; Sokolowski, Marla B

    2017-02-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for(0) null allele, and used recombineering to reintegrate a full copy of the gene, generating the {for(BAC)} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis.

  13. The Drosophila prage Gene, Required for Maternal Transcript Destabilization in Embryos, Encodes a Predicted RNA Exonuclease

    PubMed Central

    Cui, Jun; Lai, Yun Wei; Sartain, Caroline V.; Zuckerman, Rebecca M.; Wolfner, Mariana F.

    2016-01-01

    Egg activation, the transition of mature oocytes into developing embryos, is critical for the initiation of embryogenesis. This process is characterized by resumption of meiosis, changes in the egg’s coverings and by alterations in the transcriptome and proteome of the egg; all of these occur in the absence of new transcription. Activation of the egg is prompted by ionic changes in the cytoplasm (usually a rise in cytosolic calcium levels) that are triggered by fertilization in some animals and by mechanosensitive cues in others. The egg’s transcriptome is dramatically altered during the process, including by the removal of many maternal mRNAs that are not needed for embryogenesis. However, the mechanisms and regulators of this selective RNA degradation are not yet fully known. Forward genetic approaches in Drosophila have identified maternal-effect genes whose mutations prevent the transcriptome changes. One of these genes, prage (prg), was identified by Tadros et al. in a screen for mutants that fail to destabilize maternal transcripts. We identified the molecular nature of the prg gene through a combination of deficiency mapping, complementation analysis, and DNA sequencing of both extant prg mutant alleles. We find that prg encodes a ubiquitously expressed predicted exonuclease, consistent with its role in maternal mRNA destabilization during egg activation. PMID:27172196

  14. A Novel Gene Controlling the Timing of Courtship Initiation in Drosophila melanogaster.

    PubMed

    Luu, Peter; Zaki, Sadaf A; Tran, David H; French, Rachael L

    2016-03-01

    Over the past 35 years, developmental geneticists have made impressive progress toward an understanding of how genes specify morphology and function, particularly as they relate to the specification of each physical component of an organism. In the last 20 years, male courtship behavior in Drosophila melanogaster has emerged as a robust model system for the study of genetic specification of behavior. Courtship behavior is both complex and innate, and a single gene, fruitless (fru), is both necessary and sufficient for all aspects of the courtship ritual. Typically, loss of male-specific Fruitless protein function results in male flies that perform the courtship ritual incorrectly, slowly, or not at all. Here we describe a novel requirement for fru: we have identified a group of cells in which male Fru proteins are required to reduce the speed of courtship initiation. In addition, we have identified a gene, Trapped in endoderm 1 (Tre1), which is required in these cells for normal courtship and mating behavior. Tre1 encodes a G-protein-coupled receptor required for establishment of cell polarity and cell migration and has previously not been shown to be involved in courtship behavior. We describe the results of feminization of the Tre1-expressing neurons, as well as the effects on courtship behavior of mutation of Tre1. In addition, we show that Tre1 is expressed in a sexually dimorphic pattern in the central and peripheral nervous systems and investigate the role of the Tre1 cells in mate identification.

  15. Developmental and molecular analysis of Deformed; a homeotic gene controlling Drosophila head development

    PubMed Central

    Regulski, Michael; McGinnis, Nadine; Chadwick, Robin; McGinnis, William

    1987-01-01

    The characteristic morphology of many elements of the Drosophila body plan is crucially dependent upon the proper spatial expression of homeotic selector genes. The Deformed locus, which we isolated by virtue of its homology to the homeo box, is a candidate for a homeotic selector in the head region of the developing embryo. Here we show that null mutants of Deformed result in a loss of pattern elements derived from the maxillary and mandibular segments, and a duplication of a cuticular element of the larval head skeleton. Molecular analysis of the locus shows that Dfd transcripts are encoded in five exons distributed over 11 kb. The major transcript of 2.8 kb contains a 1758-bp open reading frame that would translate to yield a 63.5-kd protein containing a homeo domain and conspicuous regions of monotonic amino acid sequences. The Dfd protein exhibits extensive homology to a protein encoded by a Xenopus homeo box gene, Xhox 1A, suggesting that the Xenopus gene is the frog homologue of Dfd. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 5. PMID:16453752

  16. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells

    PubMed Central

    1993-01-01

    The Drosophila wing is decorated with a regular array of distally pointing hairs. In the pupal wing, the hairs are formed from micro- villus like prehairs that contain large bundles of actin filaments. The distal orientation of the actin bundles reveals the proximal-distal polarity within the pupal wing epithelium. We have used F-actin staining to examine early stages of prehair development in both wild- type and mutant pupal wings. We have found a striking correlation between hair polarity and the subcellular location for assembly of the prehair. In a wild-type wing, all of the distally pointing hairs are derived from prehairs that are formed at the distal vertex of the hexagonally shaped pupal wing cells. Mutations in six tissue polarity genes result in abnormal hair polarity on the adult wing, and all also alter the subcellular location for prehair initiation. Based on their cellular phenotypes, we can place these six genes into three phenotypic groups. Double mutant analysis indicates that these phenotypic groups correspond to epistasis groups. This suggests that the tissue polarity genes function in or on a pathway that controls hair polarity by regulating the subcellular location for prehair formation. PMID:8408199

  17. A Variably Occupied CTCF Binding Site in the Ultrabithorax Gene in the Drosophila Bithorax Complex

    PubMed Central

    Magbanua, Jose Paolo; Runneburger, Estelle; Russell, Steven

    2014-01-01

    Although the majority of genomic binding sites for the insulator protein CCCTC-binding factor (CTCF) are constitutively occupied, a subset show variable occupancy. Such variable sites provide an opportunity to assess context-specific CTCF functions in gene regulation. Here, we have identified a variably occupied CTCF site in the Drosophila Ultrabithorax (Ubx) gene. This site is occupied in tissues where Ubx is active (third thoracic leg imaginal disc) but is not bound in tissues where the Ubx gene is repressed (first thoracic leg imaginal disc). Using chromatin conformation capture, we show that this site preferentially interacts with the Ubx promoter region in the active state. The site lies close to Ubx enhancer elements and is also close to the locations of several gypsy transposon insertions that disrupt Ubx expression, leading to the bx mutant phenotype. gypsy insertions carry the Su(Hw)-dependent gypsy insulator and were found to affect both CTCF binding at the variable site and the chromatin topology. This suggests that insertion of the gypsy insulator in this region interferes with CTCF function and supports a model for the normal function of the variable CTCF site as a chromatin loop facilitator, promoting interaction between Ubx enhancers and the Ubx transcription start site. PMID:25368383

  18. The Alcohol Dehydrogenase Gene Is Nested in the Outspread Locus of Drosophila Melanogaster

    PubMed Central

    McNabb, S.; Greig, S.; Davis, T.

    1996-01-01

    This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh(r) are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5' end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5' extension verifies that Adh and Adh(r) are nested in osp and shows that osp has a transcription unit of >=74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature. PMID:8725237

  19. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster

    PubMed Central

    Mack, Paul D.; Kapelnikov, Anat; Heifetz, Yael; Bender, Michael

    2006-01-01

    Male-derived accessory gland proteins that are transferred to females during mating have profound effects on female reproductive physiology including increased ovulation, mating inhibition, and effects on sperm utilization and storage. The extreme rates of evolution seen in accessory gland proteins may be driven by sperm competition and sexual conflict, processes that may ultimately drive complex interactions between female- and male-derived molecules and sperm. However, little is known of how gene expression in female reproductive tissues changes in response to the presence of male molecules and sperm. To characterize this response, we conducted parallel genomic and proteomic analyses of gene expression in the reproductive tract of 3-day-old unmated and mated female Drosophila melanogaster. Using DNA microarrays, we identified 539 transcripts that are differentially expressed in unmated vs. mated females and revealed a striking peak in differential expression at 6 h postmating and a marked shift from primarily down-regulated to primarily up-regulated transcripts within 3 h after mating. Combining two-dimensional gel electrophoresis and liquid chromatography mass spectrometry analyses, we identified 84 differentially expressed proteins at 3 h postmating, including proteins that appeared to undergo posttranslational modification. Together, our observations define transcriptional and translational response to mating within the female reproductive tract and suggest a bimodal model of postmating gene expression initially correlated with mating and the final stages of female reproductive tract maturation and later with the declining presence of male reproductive molecules and with sperm maintenance and utilization. PMID:16798875

  20. Genome-wide identification of neuronal activity-regulated genes in Drosophila

    PubMed Central

    Chen, Xiao; Rahman, Reazur; Guo, Fang; Rosbash, Michael

    2016-01-01

    Activity-regulated genes (ARGs) are important for neuronal functions like long-term memory and are well-characterized in mammals but poorly studied in other model organisms like Drosophila. Here we stimulated fly neurons with different paradigms and identified ARGs using high-throughput sequencing from brains as well as from sorted neurons: they included a narrow set of circadian neurons as well as dopaminergic neurons. Surprisingly, many ARGs are specific to the stimulation paradigm and very specific to neuron type. In addition and unlike mammalian immediate early genes (IEGs), fly ARGs do not have short gene lengths and are less enriched for transcription factor function. Chromatin assays using ATAC-sequencing show that the transcription start sites (TSS) of ARGs do not change with neural firing but are already accessible prior to stimulation. Lastly based on binding site enrichment in ARGs, we identified transcription factor mediators of firing and created neuronal activity reporters. DOI: http://dx.doi.org/10.7554/eLife.19942.001 PMID:27936378

  1. The alcohol dehydrogenase gene is nested in the outspread locus of Drosophila melanogaster

    SciTech Connect

    McNabb, S.; Greig, S.; Davis, T.

    1996-06-01

    This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh{sup r} are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5{prime} end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5{prime} extension verifies that Adh and Adh{sup r} are nested in osp and shows that osp has a transcription unit of {ge}74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature. 55 refs., 11 figs., 1 tab.

  2. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  3. Dissecting sources of quantitative gene expression pattern divergence between Drosophila species

    PubMed Central

    Wunderlich, Zeba; Bragdon, Meghan D; Eckenrode, Kelly B; Lydiard-Martin, Tara; Pearl-Waserman, Sivanne; DePace, Angela H

    2012-01-01

    Gene expression patterns can diverge between species due to changes in a gene's regulatory DNA or changes in the proteins, e.g., transcription factors (TFs), that regulate the gene. We developed a modeling framework to uncover the sources of expression differences in blastoderm embryos of three Drosophila species, focusing on the regulatory circuit controlling expression of the hunchback (hb) posterior stripe. Using this framework and cellular-resolution expression measurements of hb and its regulating TFs, we found that changes in the expression patterns of hb's TFs account for much of the expression divergence. We confirmed our predictions using transgenic D. melanogaster lines, which demonstrate that this set of orthologous cis-regulatory elements (CREs) direct similar, but not identical, expression patterns. We related expression pattern differences to sequence changes in the CRE using a calculation of the CRE's TF binding site content. By applying this calculation in both the transgenic and endogenous contexts, we found that changes in binding site content affect sensitivity to regulating TFs and that compensatory evolution may occur in circuit components other than the CRE. PMID:22893002

  4. Dissecting sources of quantitative gene expression pattern divergence between Drosophila species.

    PubMed

    Wunderlich, Zeba; Bragdon, Meghan D; Eckenrode, Kelly B; Lydiard-Martin, Tara; Pearl-Waserman, Sivanne; DePace, Angela H

    2012-01-01

    Gene expression patterns can diverge between species due to changes in a gene's regulatory DNA or changes in the proteins, e.g., transcription factors (TFs), that regulate the gene. We developed a modeling framework to uncover the sources of expression differences in blastoderm embryos of three Drosophila species, focusing on the regulatory circuit controlling expression of the hunchback (hb) posterior stripe. Using this framework and cellular-resolution expression measurements of hb and its regulating TFs, we found that changes in the expression patterns of hb's TFs account for much of the expression divergence. We confirmed our predictions using transgenic D. melanogaster lines, which demonstrate that this set of orthologous cis-regulatory elements (CREs) direct similar, but not identical, expression patterns. We related expression pattern differences to sequence changes in the CRE using a calculation of the CRE's TF binding site content. By applying this calculation in both the transgenic and endogenous contexts, we found that changes in binding site content affect sensitivity to regulating TFs and that compensatory evolution may occur in circuit components other than the CRE.

  5. Cytogenetic and molecular localization of tipE: a gene affecting sodium channels in Drosophila melanogaster.

    PubMed

    Feng, G; Deák, P; Kasbekar, D P; Gil, D W; Hall, L M

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new gamma-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggest that tipE does not encode a standard sodium channel alpha-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation.

  6. Roles of Hox genes in the patterning of the central nervous system of Drosophila

    PubMed Central

    Estacio-Gómez, Alicia; Díaz-Benjumea, Fernando J

    2014-01-01

    One of the key aspects of functional nervous systems is the restriction of particular neural subtypes to specific regions, which permits the establishment of differential segment-specific neuromuscular networks. Although Hox genes play a major role in shaping the anterior-posterior body axis during animal development, our understanding of how they act in individual cells to determine particular traits at precise developmental stages is rudimentary. We have used the abdominal leucokinergic neurons (ABLKs) to address this issue. These neurons are generated during both embryonic and postembryonic neurogenesis by the same progenitor neuroblast, and are designated embryonic and postembryonic ABLKs, respectively. We report that the genes of the Bithorax-Complex, Ultrabithorax (Ubx) and abdominal-A (abd-A) are redundantly required to specify the embryonic ABLKs. Moreover, the segment-specific pattern of the postembryonic ABLKs, which are restricted to the most anterior abdominal segments, is controlled by the absence of Abdominal-B (Abd-B), which we found was able to repress the expression of the neuropeptide leucokinin. We discuss this and other examples of how Hox genes generate diversity within the central nervous system of Drosophila. PMID:24406332

  7. Noise in the segmentation gene network of Drosophila with implications for mechanisms of body axis specification

    NASA Astrophysics Data System (ADS)

    Holloway, David M.; Harrison, Lionel G.; Spirov, Alexander V.

    2003-05-01

    Specification of the anteroposterior (head-to-tail) axis in the fruit fly Drosophila melanogaster is one of the best understood examples of embryonic pattern formation, at the genetic level. A network of some 14 segmentation genes controls protein expression in narrow domains which are the first manifestation of the segments of the insect body. Work in the New York lab has led to a databank of more than 3300 confocal microscope images, quantifying protein expression for the segmentation genes, over a series of times during which protein pattern is developing (http://flyex.ams.sunysb.edu/FlyEx/). Quantification of the variability in expression evident in this data (both between embryos and within single embryos) allows us to determine error propagation in segmentation signalling. The maternal signal to the egg is highly variable, with noise levels more than several times those seen for expression of downstream genes. This implies that error suppression is active in the embryonic patterning mechanism. Error suppression is not possible with the favored mechanism of local concentration gradient reading for positional specification. We discuss possible patterning mechanisms which do reliably filter input noise.

  8. Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster.

    PubMed

    Sen, Sonia; Hartmann, Beate; Reichert, Heinrich; Rodrigues, Veronica

    2010-11-01

    In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. Here, we show that empty spiracles acts in a subset of precursors that generate the olfactory sense organs of the adult antenna. All empty spiracles-expressing precursor cells co-express the proneural gene amos and the early patterning gene lozenge. Moreover, the expression of empty spiracles in these precursor cells is dependent on both amos and lozenge. Functional analysis reveals two distinct roles of empty spiracles in the development of olfactory sense organs. Genetic interaction studies in a lozenge-sensitized background uncover a requirement of empty spiracles in the formation of trichoid and basiconic olfactory sensilla. MARCM-based clonal mutant analysis reveals an additional role during axonal targeting of olfactory sensory neurons to glomeruli within the antennal lobe. Our findings on empty spiracles action in olfactory sense organ development complement previous studies that demonstrate its requirement in olfactory interneurons and, taken together with studies on the murine homologs of empty spiracles, suggest that conserved molecular genetic programs might be responsible for the formation of both peripheral and central olfactory circuitry in insects and mammals.

  9. Association between Circadian Clock Genes and Diapause Incidence in Drosophila triauraria

    PubMed Central

    Yamada, Hirokazu; Yamamoto, Masa-Toshi

    2011-01-01

    Diapause is an adaptive response triggered by seasonal photoperiodicity to overcome unfavorable seasons. The photoperiodic clock is a system that controls seasonal physiological processes, but our knowledge about its physiological mechanisms and genetic architecture remains incomplete. The circadian clock is another system that controls daily rhythmic physiological phenomena. It has been argued that there is a connection between the two clocks. To examine the genetic connection between them, we analyzed the associations of five circadian clock genes (period, timeless, Clock, cycle and cryptochrome) with the occurrence of diapause in Drosophila triauraria, which shows a robust reproductive diapause with clear photoperiodicity. Non-diapause strains found in low latitudes were compared in genetic crosses with the diapause strain, in which the diapause trait is clearly dominant. Single nucleotide polymorphism and deletion analyses of the five circadian clock genes in backcross progeny revealed that allelic differences in timeless and cryptochrome between the strains were additively associated with the differences in the incidence of diapause. This suggests that there is a molecular link between certain circadian clock genes and the occurrence of diapause. PMID:22164210

  10. Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift

    PubMed Central

    Shiao, Meng-Shin; Chang, Jia-Ming; Fan, Wen-Lang; Lu, Mei-Yeh Jade; Notredame, Cedric; Fang, Shu; Kondo, Rumi; Li, Wen-Hsiung

    2015-01-01

    Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c—previously reported to be a larva-specific gene—showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes. PMID:26430061

  11. Polycomb silencing of the Drosophila 4E-BP gene regulates imaginal disc cell growth

    PubMed Central

    Mason-Suares, Heather; Tie, Feng; Yan, Christopher; Harte, Peter J.

    2015-01-01

    Polycomb group (PcG) proteins are best known for their role in maintaining stable, mitotically heritable silencing of the homeotic (HOX) genes during development. In addition to loss of homeotic gene silencing, some PcG mutants also have small imaginal discs. These include mutations in E(z), Su(z)12, esc and escl, which encode Polycomb Repressive Complex 2 (PRC2) subunits. The cause of this phenotype is not known, but the human homologs of PRC2 subunits have been shown to play a role in cell proliferation, are over-expressed in many tumors, and appear to be required for tumor proliferation. Here we show that the small imaginal disc phenotype arises, at least in part, from a cell growth defect. In homozygous E(z) mutants, imaginal disc cells are smaller than cells in normally proliferating discs. We show that the Thor gene, which encodes eIF4E-Binding Protein (4E-BP), the evolutionarily conserved inhibitor of cap-dependent translation and potent inhibitor of cell growth, is involved in the development of this phenotype. The Thor promoter region contains DNA binding motifs for transcription factors found in well-characterized Polycomb Response Elements (PREs), including PHO/PHOL, GAGA Factor, and others, suggesting that Thor may be a direct target of Polycomb silencing. We present chromatin immunoprecipitation evidence that PcG proteins are bound to the Thor 5’ region in vivo. The Thor gene is normally repressed in imaginal discs, but Thor mRNA and 4E-BP protein levels are elevated in imaginal discs of PRC2 subunit mutant larvae. Deletion of the Thor gene in E(z) mutants partially restores imaginal disc size toward wild-type and results in an increase in the fraction of larvae that pupariate. These results thus suggest that PcG proteins can directly modulate cell growth in Drosophila, in part by regulating Thor expression. PMID:23523430

  12. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster.

    PubMed

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  13. A Hh-driven gene network controls specification, pattern and size of the Drosophila simple eyes.

    PubMed

    Aguilar-Hidalgo, Daniel; Domínguez-Cejudo, María A; Amore, Gabriele; Brockmann, Anette; Lemos, María C; Córdoba, Antonio; Casares, Fernando

    2013-01-01

    During development, extracellular signaling molecules interact with intracellular gene networks to control the specification, pattern and size of organs. One such signaling molecule is Hedgehog (Hh). Hh is known to act as a morphogen, instructing different fates depending on the distance to its source. However, how Hh, when signaling across a cell field, impacts organ-specific transcriptional networks is still poorly understood. Here, we investigate this issue during the development of the Drosophila ocellar complex. The development of this sensory structure, which is composed of three simple eyes (or ocelli) located at the vertices of a triangular patch of cuticle on the dorsal head, depends on Hh signaling and on the definition of three domains: two areas of eya and so expression--the prospective anterior and posterior ocelli--and the intervening interocellar domain. Our results highlight the role of the homeodomain transcription factor engrailed (en) both as a target and as a transcriptional repressor of hh signaling in the prospective interocellar region. Furthermore, we identify a requirement for the Notch pathway in the establishment of en maintenance in a Hh-independent manner. Therefore, hh signals transiently during the specification of the interocellar domain, with en being required here for hh signaling attenuation. Computational analysis further suggests that this network design confers robustness to signaling noise and constrains phenotypic variation. In summary, using genetics and modeling we have expanded the ocellar gene network to explain how the interaction between the Hh gradient and this gene network results in the generation of stable mutually exclusive gene expression domains. In addition, we discuss some general implications our model may have in some Hh-driven gene networks.

  14. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  15. A Genetic Mosaic Screen Reveals Ecdysone-Responsive Genes Regulating Drosophila Oogenesis

    PubMed Central

    Ables, Elizabeth T.; Hwang, Grace H.; Finger, Danielle S.; Hinnant, Taylor D.; Drummond-Barbosa, Daniela

    2016-01-01

    Multiple aspects of Drosophila oogenesis, including germline stem cell activity, germ cell differentiation, and follicle survival, are regulated by the steroid hormone ecdysone. While the transcriptional targets of ecdysone signaling during development have been studied extensively, targets in the ovary remain largely unknown. Early studies of salivary gland polytene chromosomes led to a model in which ecdysone stimulates a hierarchical transcriptional cascade, wherein a core group of ecdysone-sensitive transcription factors induce tissue-specific responses by activating secondary branches of transcriptional targets. More recently, genome-wide approaches have identified hundreds of putative ecdysone-responsive targets. Determining whether these putative targets represent bona fide targets in vivo, however, requires that they be tested via traditional mutant analysis in a cell-type specific fashion. To investigate the molecular mechanisms whereby ecdysone signaling regulates oogenesis, we used genetic mosaic analysis to screen putative ecdysone-responsive genes for novel roles in the control of the earliest steps of oogenesis. We identified a cohort of genes required for stem cell maintenance, stem and progenitor cell proliferation, and follicle encapsulation, growth, and survival. These genes encode transcription factors, chromatin modulators, and factors required for RNA transport, stability, and ribosome biogenesis, suggesting that ecdysone might control a wide range of molecular processes during oogenesis. Our results suggest that, although ecdysone target genes are known to have cell type-specific roles, many ecdysone response genes that control larval or pupal cell types at developmental transitions are used reiteratively in the adult ovary. These results provide novel insights into the molecular mechanisms by which ecdysone signaling controls oogenesis, laying new ground for future studies. PMID:27226164

  16. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres.

    PubMed Central

    Laible, G; Wolf, A; Dorn, R; Reuter, G; Nislow, C; Lebersorger, A; Popkin, D; Pillus, L; Jenuwein, T

    1997-01-01

    Gene silencing is required to stably maintain distinct patterns of gene expression during eukaryotic development and has been correlated with the induction of chromatin domains that restrict gene activity. We describe the isolation of human (EZH2) and mouse (Ezh1) homologues of the Drosophila Polycomb-group (Pc-G) gene Enhancer of zeste [E(z)], a crucial regulator of homeotic gene expression implicated in the assembly of repressive protein complexes in chromatin. Mammalian homologues of E(z) are encoded by two distinct loci in mouse and man, and the two murine Ezh genes display complementary expression profiles during mouse development. The E(z) gene family reveals a striking functional conservation in mediating gene repression in eukaryotic chromatin: extra gene copies of human EZH2 or Drosophila E(z) in transgenic flies enhance position effect variegation of the heterochromatin-associated white gene, and expression of either human EZH2 or murine Ezh1 restores gene repression in Saccharomyces cerevisiae mutants that are impaired in telomeric silencing. Together, these data provide a functional link between Pc-G-dependent gene repression and inactive chromatin domains, and indicate that silencing mechanism(s) may be broadly conserved in eukaryotes. PMID:9214638

  17. [Radiation biology of structurally different Drosophila genes. Report 2. The vestigial gene: molecular characteristics of chromosome mutations].

    PubMed

    Afanas'eva, K P; Aleksandrova, M V; Aleksandrov, I D; Korablinova, S V

    2012-01-01

    The results of the PCR-assay of mutation lesions at each of 16 fragments overlapping the entire vestigial (vg) gene of Drosophila melanogaster in 52 gamma-ray-, neutron- and neutron + gamma-ray-induced vg mutants having the inversion or translocation breakpoint within the vg microregion are presented. 4 from 52 mutants studied were found to have large deletions of about 200 kb covering the entire vg gene and adjacent to sca and l(2)C gene-markers as well. 23 mutants from 48 (47.9%) were found to have a wild-type gene structure showing that the exchange breakpoints are located outside of the vg gene. 25 others display the intragenic lesions of different complexity detected by PCR as the absence of(i) either one fragment or (ii) two or more (6-7) adjacent fragments and (iii) simultaneously several (i) or (i) and (ii) types separated by normal gene regions. It is important that 6 from 25 mutants have the breakpoint inside the vg gene and display the (i) or (ii) type of lesions at the gene regions containing the putative break whereas 5 others from 25 with the above lesions have the exchange breakpoint outside the vg gene. Therefore, the breakpoints underlying either inversions or translocations induced by low- and high-LET radiation are likely to be located within and outside the gene under study. Thereby, the formation of exchanges is accompanied by DNA deletions of various sizes at the exchange breakpoints. The molecular model of formation of such exchange-deletion rearrangements is elaborated and presented. Also, conception of the predominately clustered action of both low- and high-LET radiation on the germ cell genome is suggested as the summing-up of the presented results. The ability of ionizing radiation to induce the clusters of genetic alterations in the form of hidden DNA damages as well as gene/chromosome mutations is determined by the track structure and hierarchical organization of the genome. To detect the quality and frequency patterns of all

  18. twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development.

    PubMed

    Czerny, T; Halder, G; Kloter, U; Souabni, A; Gehring, W J; Busslinger, M

    1999-03-01

    The Drosophila Pax-6 gene eyeless (ey) plays a key role in eye development. Here we show tht Drosophila contains a second Pax-6 gene, twin of eyeless (toy), due to a duplication during insect evolution. Toy is more similar to vertebrate Pax-6 proteins than Ey with regard to overall sequence conservation, DNA-binding function, and early expression in the embryo, toy and ey share a similar expression pattern in the developing visual system, and targeted expression of Toy, like Ey, induces the formation of ectopic eyes. Genetic and biochemical evidence indicates, however, that Toy functions upstream of ey by directly regulating the eye-specific enhancer of ey. Toy is therefore required for initiation of ey expression in the embryo and acts through Ey to activate the eye developmental program.

  19. Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila.

    PubMed

    Baek, Myungin; Enriquez, Jonathan; Mann, Richard S

    2013-05-01

    Adult Drosophila walk using six multi-jointed legs, each controlled by ∼50 leg motoneurons (MNs). Although MNs have stereotyped morphologies, little is known about how they are specified. Here, we describe the function of Hox genes and homothorax (hth), which encodes a Hox co-factor, in Drosophila leg MN development. Removing either Hox or Hth function from a single neuroblast (NB) lineage results in MN apoptosis. A single Hox gene, Antennapedia (Antp), is primarily responsible for MN survival in all three thoracic segments. When cell death is blocked, partially penetrant axon branching errors are observed in Hox mutant MNs. When single MNs are mutant, errors in both dendritic and axon arborizations are observed. Our data also suggest that Antp levels in post-mitotic MNs are important for specifying their identities. Thus, in addition to being essential for survival, Hox and hth are required to specify accurate MN morphologies in a level-dependent manner.

  20. Structure and expression of the Drosophila melanogaster gene for the U1 small nuclear ribonucleoprotein particle 70K protein.

    PubMed Central

    Mancebo, R; Lo, P C; Mount, S M

    1990-01-01

    A genomic clone encoding the Drosophila U1 small nuclear ribonucleoprotein particle 70K protein was isolated by hybridization with a human U1 small nuclear ribonucleoprotein particle 70K protein cDNA. Southern blot and in situ hybridizations showed that this U1 70K gene is unique in the Drosophila genome, residing at cytological position 27D1,2. Polyadenylated transcripts of 1.9 and 3.1 kilobases were observed. While the 1.9-kilobase mRNA is always more abundant, the ratio of these two transcripts is developmentally regulated. Analysis of cDNA and genomic sequences indicated that these two RNAs encode an identical protein with a predicted molecular weight of 52,879. Comparison of the U1 70K proteins predicted from Drosophila, human, and Xenopus cDNAs revealed 68% amino acid identity in the most amino-terminal 214 amino acids, which include a sequence motif common to many proteins which bind RNA. The carboxy-terminal half is less well conserved but is highly charged and contains distinctive arginine-rich regions in all three species. These arginine-rich regions contain stretches of arginine-serine dipeptides like those found in transformer, transformer-2, and suppressor-of-white-apricot proteins, all of which have been identified as regulators of mRNA splicing in Drosophila melanogaster. Images PMID:1692955

  1. Organizational analysis of elav gene and functional analysis of ELAV protein of Drosophila melanogaster and Drosophila virilis

    SciTech Connect

    Yao, Kwokming; White, K. )

    1991-06-01

    Drosophila virilis genomic DNA corresponding analysis of a 3.8-kb genomic piece allowed identification of (1) an open reading frame (ORF) with striking homology to the previously identified D. melanogaster ORF and (2) conserved sequence elements of possible regulatory relevance within and flanking the second intron. Conceptual translation of the D. virilis ORF predicts a 519-amino-acid-long ribonucleoprotein consensus sequence-type protein. Similar to D. melanogaster ELAV protein, it contains three tandem RNA-binding domains and an alanine/glutamine-rich amino-terminal region. The sequence throughout the RNA-binding domains, comprising the carboxy-terminal 346 amino acids, shows an extraordinary 100% identify at the amino acid level, indicating a strong structural constraint for this functional domain. Thus, the divergence of the amino-terminal region of the ELAV protein reflects lowered functional constraint rather than species-specific functional specification.

  2. Structural analysis of the Drosophila rpA1 gene, a member of the eucaryotic 'A' type ribosomal protein family.

    PubMed Central

    Qian, S; Zhang, J Y; Kay, M A; Jacobs-Lorena, M

    1987-01-01

    The expression of ribosomal protein (r-protein) genes is uniquely regulated at the translational level during early development of Drosophila. Here we report results of a detailed analysis of the r-protein rpA1 gene. A cloned DNA sequence coding for rpA1 has been identified by hybrid-selected translation and amino acid composition analysis. The rpA1 gene was localized to polytene chromosome band 53CD. The nucleotide sequence of the rpA1 gene and its cDNA have been determined. rpA1 is a single copy gene and sequence comparison between the gene and its cDNA indicates that this r-protein gene is intronless. Allelic restriction site polymorphisms outside of the gene were observed, while the coding sequence is well conserved between two Drosophila strains. The protein has unusual domains rich in Ala and charged residues. The rpA1 is homologous to the "A" family of eucaryotic acidic r-proteins which are known to play a key role in the initiation and elongation steps of protein synthesis. Images PMID:3103101

  3. Global gene expression shift during the transition from early neural development to late neuronal differentiation in Drosophila melanogaster.

    PubMed

    Cantera, Rafael; Ferreiro, María José; Aransay, Ana María; Barrio, Rosa

    2014-01-01

    Regulation of transcription is one of the mechanisms involved in animal development, directing changes in patterning and cell fate specification. Large temporal data series, based on microarrays across the life cycle of the fly Drosophila melanogaster, revealed the existence of groups of genes which expression increases or decreases temporally correlated during the life cycle. These groups of genes are enriched in different biological functions. Here, instead of searching for temporal coincidence in gene expression using the entire genome expression data, we searched for temporal coincidence in gene expression only within predefined catalogues of functionally related genes and investigated whether a catalogue's expression profile can be used to generate larger catalogues, enriched in genes necessary for the same function. We analyzed the expression profiles from genes already associated with early neurodevelopment and late neurodifferentiation, at embryonic stages 16 and 17 of Drosophila life cycle. We hypothesized that during this interval we would find global downregulation of genes important for early neuronal development together with global upregulation of genes necessary for the final differentiation of neurons. Our results were consistent with this hypothesis. We then investigated if the expression profile of gene catalogues representing particular processes of neural development matched the temporal sequence along which these processes occur. The profiles of genes involved in patterning, neurogenesis, axogenesis or synaptic transmission matched the prediction, with largest transcript values at the time when the corresponding biological process takes place in the embryo. Furthermore, we obtained catalogues enriched in genes involved in temporally matching functions by performing a genome-wide systematic search for genes with their highest expression levels at the corresponding embryonic intervals. These findings imply the use of gene expression data in

  4. Gene leopard nuclei (len P103) participating in control of disjunction and coiling of chromosomes in Drosophila

    SciTech Connect

    Omel`yanchuk, L.V.

    1995-12-01

    A lethal insertion of an element P[lArB], which caused nondisjunction and structural abnormalities in chromosomes in the neuroblasts of homozygous larvae, was found. The insertion was mapped to region 57B1-12 of the polytene map of chromosome 2 of Drosophila. The expression of the corresponding gene was found in testes, ovaries, and neural ganglia. 8 refs., 6 figs.

  5. Enhancement of Overgrowth by Gene Interactions in Lethal(2)giant Discs Imaginal Discs from Drosophila Melanogaster

    PubMed Central

    Buratovich, M. A.; Bryant, P. J.

    1997-01-01

    Recessive lethal mutations of the lethal(2)giant discs (l(2)gd) and lethal(2)fat (l(2)ft) loci of Drosophila melanogaster cause imaginal disc hyperplasia during a prolonged larval stage. Imaginal discs from l(2)ft l(2)gd or Gl(2)gd double homozygotes show more extensive overgrowth than in either single homozygote, and double homozygous l(2)ft l(2)gd mitotic clones in adult flies show much more overgrowth than is seen in clones homozygous for either l(2)gd or l(2)ft alone. dachsous (ds) also acts as an enhancer of l(2)gd, producing dramatically overgrown discs and causing failure to pupariate in double homozygotes. The comb gap (cg) mutation, which also interacts with ds, greatly enhances the tendency of imaginal discs from l(2)gd larvae to duplicate as they overgrow. If l(2)gd homozygotes are made heterozygous for l(2)ft, then several discs duplicate, indicating that l(2)ft acts as a dominant enhancer of l(2)gd. l(2)ft also acts as a dominant enhancer of l(2)gd, and conversely l(2)gd acts as a dominant modifier of l(2)ft. The enhancement of overgrowth caused by various mutant combinations is accompanied by changes in expression of Decapentaplegic and Wingless. These results show that tumor suppressor genes act in combination to control cell proliferation, and that tissue hyperplasia can be associated with ectopic expression of genes involved in pattern formation. PMID:9335602

  6. The Ih Channel Gene Promotes Synaptic Transmission and Coordinated Movement in Drosophila melanogaster

    PubMed Central

    Hegle, Andrew P.; Frank, C. Andrew; Berndt, Anthony; Klose, Markus; Allan, Douglas W.; Accili, Eric A.

    2017-01-01

    Hyperpolarization-activated cyclic nucleotide-gated “HCN” channels, which underlie the hyperpolarization-activated current (Ih), have been proposed to play diverse roles in neurons. The presynaptic HCN channel is thought to both promote and inhibit neurotransmitter release from synapses, depending upon its interactions with other presynaptic ion channels. In larvae of Drosophila melanogaster, inhibition of the presynaptic HCN channel by the drug ZD7288 reduces the enhancement of neurotransmitter release at motor terminals by serotonin but this drug has no effect on basal neurotransmitter release, implying that the channel does not contribute to firing under basal conditions. Here, we show that genetic disruption of the sole HCN gene (Ih) reduces the amplitude of the evoked response at the neuromuscular junction (NMJ) of third instar larvae by decreasing the number of released vesicles. The anatomy of the (NMJ) is not notably affected by disruption of the Ih gene. We propose that the presynaptic HCN channel is active under basal conditions and promotes neurotransmission at larval motor terminals. Finally, we demonstrate that Ih partial loss-of-function mutant adult flies have impaired locomotion, and, thus, we hypothesize that the presynaptic HCN channel at the (NMJ) may contribute to coordinated movement. PMID:28286469

  7. Multiple Genes Cause Postmating Prezygotic Reproductive Isolation in the Drosophila virilis Group

    PubMed Central

    2016-01-01

    Understanding the genetic basis of speciation is a central problem in evolutionary biology. Studies of reproductive isolation have provided several insights into the genetic causes of speciation, especially in taxa that lend themselves to detailed genetic scrutiny. Reproductive barriers have usually been divided into those that occur before zygote formation (prezygotic) and after (postzygotic), with the latter receiving a great deal of attention over several decades. Reproductive barriers that occur after mating but before zygote formation [postmating prezygotic (PMPZ)] are especially understudied at the genetic level. Here, I present a phenotypic and genetic analysis of a PMPZ reproductive barrier between two species of the Drosophila virilis group: D. americana and D. virilis. This species pair shows strong PMPZ isolation, especially when D. americana males mate with D. virilis females: ∼99% of eggs laid after these heterospecific copulations are not fertilized. Previous work has shown that the paternal loci contributing to this incompatibility reside on two chromosomes, one of which (chromosome 5) likely carries multiple factors. The other (chromosome 2) is fixed for a paracentric inversion that encompasses nearly half the chromosome. Here, I present two results. First, I show that PMPZ in this species cross is largely due to defective sperm storage in heterospecific copulations. Second, using advanced intercross and backcross mapping approaches, I identify genomic regions that carry genes capable of rescuing heterospecific fertilization. I conclude that paternal incompatibility between D. americana males and D. virilis females is underlain by four or more genes on chromosomes 2 and 5. PMID:27729433

  8. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

    PubMed Central

    van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.

    2003-01-01

    The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of ≈250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)n repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)n is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)n elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors. PMID:12601174

  9. The human archain gene, ARCN1, has highly conserved homologs in rice and drosophila

    SciTech Connect

    Radice, P.; Jones, C.; Perry, H.

    1995-03-01

    A novel human gene, ARCN1, has been identified in chromosome band 11q23.3. It maps approximately 50 kb telomeric to MLL, a gene that is disrupted in a number of leukemia-associated translocation chromosomes. cDNA clones representing ARCN1 hybridize to 4-kb mRNA species present in all tissues tested. Sequencing of cDNAs suggests that at least two forms of mRNA with alternative 5 {prime} ends are present within the cell. The mRNA with the longest open reading frame gives rise to a protein of 57 kDa. Although the sequence reported is novel, remarkable similarity is observed with two predicted protein sequences from partial DNA sequences generated by rice (Oryza sativa) and fruit fly (Drosophila melanogaster) genome projects. The degree of sequence conservation is comparable to that observed for highly conserved structural proteins, such as heat shock protein HSP70, and is greater than that of {gamma}-gubulin and heat shock protein HSP60. A more distant relationship to the group of clathrin-associated proteins suggests a possible role in vesicle structure or trafficking. In view of its ancient pedigree and a potential involvement in cellular architecture, the authors propose that the ARCN1 protein be named archain. 20 refs., 5 figs.

  10. Distribution of the Sex combs reduced Gene Products in Drosophila melanogaster

    PubMed Central

    Mahaffey, James W.; Kaufman, Thomas C.

    1987-01-01

    The spatial and temporal distribution of RNA and protein encoded by the homeotic Sex combs reduced (Scr) gene were examined during Drosophila development. The gene products are present in the epidermis of both the labial and first thoracic segments as would be predicted from prior genetic studies. However, the pattern in the central nervous system (CNS) and mesoderm is further restricted; the major expression located in the labial neuromere of the CNS and the mesoderm of the first thoracic segment. The spatial restriction within the CNS is correlated with and may be due to a differential timing of expression in the labial and first thoracic ectoderm. The labial ectoderm accumulates the Scr RNA prior to segregation of the neuroblasts while expression in the first thoracic ectoderm occurs after neuroblast segregation. The protein is also observed in the subesophageal ganglia of both larvae and adults, as well as in the labial and first thoracic imaginal discs. Surprisingly, the protein is also present to a lesser extent in second and third thoracic leg discs. PMID:3117618

  11. Reverse-engineering post-transcriptional regulation of gap genes in Drosophila melanogaster.

    PubMed

    Becker, Kolja; Balsa-Canto, Eva; Cicin-Sain, Damjan; Hoermann, Astrid; Janssens, Hilde; Banga, Julio R; Jaeger, Johannes

    2013-10-01

    Systems biology proceeds through repeated cycles of experiment and modeling. One way to implement this is reverse engineering, where models are fit to data to infer and analyse regulatory mechanisms. This requires rigorous methods to determine whether model parameters can be properly identified. Applying such methods in a complex biological context remains challenging. We use reverse engineering to study post-transcriptional regulation in pattern formation. As a case study, we analyse expression of the gap genes Krüppel, knirps, and giant in Drosophila melanogaster. We use detailed, quantitative datasets of gap gene mRNA and protein expression to solve and fit a model of post-transcriptional regulation, and establish its structural and practical identifiability. Our results demonstrate that post-transcriptional regulation is not required for patterning in this system, but is necessary for proper control of protein levels. Our work demonstrates that the uniqueness and specificity of a fitted model can be rigorously determined in the context of spatio-temporal pattern formation. This greatly increases the potential of reverse engineering for the study of development and other, similarly complex, biological processes.

  12. Gene Flow and the Geographical Distribution of a Molecular Polymorphism in DROSOPHILA PSEUDOOBSCURA

    PubMed Central

    Jones, J. S.; Bryant, S. H.; Lewontin, R. C.; Moore, J. A.; Prout, T.

    1981-01-01

    This paper discusses the relation between the geographical distribution of an enzyme polymorphism and population structure in Drosophila pseudoobscura. California populations of this species living in very different montane and lowland habitats separated by several kilometers are similar to each other in the frequency of an esterase allele. Previous estimates suggest that gene flow is too limited to account for this homogeneity of genetic structure, so that it must reflect some balancing force of natural selection. We show, however, that dispersal over unfavorable habitats is much greater than earlier supposed. Isolated populations of D. pseudoobscura separated by 15 km from other populations are subject to large amounts of immigration. This is shown by changes in the seasonal abundance of this species and in the annual pattern of lethal alleles in such populations. The genetic structure of an experimentally perturbed isolated population in an oasis returned to normal within a single year, suggesting that such populations are ephemeral and that the oasis is subject to annual recolonization by distant migrants. Direct assessment of marked flies shows that they can move at least 10 km in 24 hours over a desert. Such extensive gene flow may help explain the distribution of the esterase allele, and is relevant to the high level of molecular polymorphism and its general lack of geographic differentiation throughout the range of D. pseudoobscura. PMID:7338302

  13. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie.

    PubMed

    Parker, Joseph; Struhl, Gary

    2015-10-01

    Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes--a phenomenon we term "nuclear seclusion." Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability.

  14. Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster.

    PubMed

    Norry, Fabian M; Larsen, Peter F; Liu, Yongjie; Loeschcke, Volker

    2009-11-01

    Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype.

  15. The role of homeotic genes in determining the segmental pattern of chordotonal organs in Drosophila.

    PubMed

    Wong, Darren C C; Merritt, David J

    2002-01-01

    The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, lch3 in the 1st thoracic segment, dch3 in the 2nd and 3rd thoracic segments and lch5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and veh1, in the wild type and mutants for Sexcombs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.

  16. An indel polymorphism in the hybrid incompatibility gene lethal hybrid rescue of Drosophila is functionally relevant.

    PubMed

    Maheshwari, Shamoni; Barbash, Daniel A

    2012-10-01

    Hybrid incompatibility (HI) genes are frequently observed to be rapidly evolving under selection. This observation has led to the attractive conjecture that selection-derived protein-sequence divergence is culpable for incompatibilities in hybrids. The Drosophila simulans HI gene Lethal hybrid rescue (Lhr) is an intriguing case, because despite having experienced rapid sequence evolution, its HI properties are a shared function inherited from the ancestral state. Using an unusual D. simulans Lhr hybrid rescue allele, Lhr(2), we here identify a conserved stretch of 10 amino acids in the C terminus of LHR that is critical for causing hybrid incompatibility. Altering these 10 amino acids weakens or abolishes the ability of Lhr to suppress the hybrid rescue alleles Lhr(1) or Hmr(1), respectively. Besides single-amino-acid substitutions, Lhr orthologs differ by a 16-aa indel polymorphism, with the ancestral deletion state fixed in D. melanogaster and the derived insertion state at very high frequency in D. simulans. Lhr(2) is a rare D. simulans allele that has the ancestral deletion state of the 16-aa polymorphism. Through a series of transgenic constructs we demonstrate that the ancestral deletion state contributes to the rescue activity of Lhr(2). This indel is thus a polymorphism that can affect the HI function of Lhr.

  17. Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe

    PubMed Central

    Apitz, Holger

    2016-01-01

    Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC. PMID:27381228

  18. Relation Between Motility, Accelerated Aging and Gene Expression in Selected Drosophila Strains under Hypergravity Conditions

    NASA Astrophysics Data System (ADS)

    Serrano, Paloma; van Loon, Jack J. W. A.; Medina, F. Javier; Herranz, Raúl

    2013-02-01

    Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2 g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies' survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies' gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.

  19. Gene Expression Associated with Early and Late Chronotypes in Drosophila melanogaster

    PubMed Central

    Pegoraro, Mirko; Picot, Emma; Hansen, Celia N.; Kyriacou, Charalambos P.; Rosato, Ezio; Tauber, Eran

    2015-01-01

    The circadian clock provides the temporal framework for rhythmic behavioral and metabolic functions. In the modern era of industrialization, work, and social pressures, clock function is jeopardized, and can result in adverse and chronic effects on health. Understanding circadian clock function, particularly individual variation in diurnal phase preference (chronotype), and the molecular mechanisms underlying such chronotypes may lead to interventions that could abrogate clock dysfunction and improve human (and animal) health and welfare. Our preliminary studies suggested that fruit-flies, like humans, can be classified as early rising “larks” or late rising “owls,” providing a convenient model system for these types of studies. We have identified strains of flies showing increased preference for morning emergence (Early or E) from the pupal case, or more pronounced preference for evening emergence (Late or L). We have sampled pupae the day before eclosion (fourth day after pupariation) at 4 h intervals in the E and L strains, and examined differences in gene expression by RNA-seq. We have identified differentially expressed transcripts between the E and L strains, which provide candidate genes for subsequent studies of Drosophila chronotypes and their human orthologs. PMID:26097463

  20. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed Central

    Medina, Izarne; Casal, José; Fabre, Caroline C. G.

    2015-01-01

    ABSTRACT Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  1. A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development.

    PubMed Central

    Janody, Florence; Lee, Jeffrey D; Jahren, Neal; Hazelett, Dennis J; Benlali, Aude; Miura, Grant I; Draskovic, Irena; Treisman, Jessica E

    2004-01-01

    The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors. PMID:15020417

  2. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster

    SciTech Connect

    Wakimoto, B.T.; Hearn, M.G. )

    1990-05-01

    The light (lt) gene of Drosophila melanogaster is located at the base of the left arm of chromosome 2, within or very near centromeric heterochromatin (2Lh). Chromosome rearrangements that move the lt{sup +} gene from its normal proximal position and place the gene in distal euchromatin result in mosaic or variegated expression of the gene. The cytogenetic and genetic properties of 17 lt-variegated rearrangements induced by X radiation are described in this report. The authors show that five of the heterochromatic genes adjacent to lt are subject to inactivation by these rearrangements and that the euchromatic loci in proximal 2L are not detectably affected. The properties of the rearrangements suggest that proximity to heterochromatin is an important regulatory requirement for at least six 2Lh genes. They discuss how the properties of the position effects on heterochromatic genes relate to other proximity-dependent phenomena such as transvection.

  3. Novel Genes Involved in Controlling Specification of Drosophila FMRFamide Neuropeptide Cells

    PubMed Central

    Bivik, Caroline; Bahrampour, Shahrzad; Ulvklo, Carina; Nilsson, Patrik; Angel, Anna; Fransson, Fredrik; Lundin, Erika; Renhorn, Jakob; Thor, Stefan

    2015-01-01

    The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system. PMID:26092715

  4. Drosophila Lipid Storage Droplet 2 gene (Lsd-2) is expressed and controls lipid storage in wing imaginal discs.

    PubMed

    Fauny, Jean Daniel; Silber, Joël; Zider, Alain

    2005-03-01

    Lipid droplets are the major neutral lipid storage organelles in higher eukaryotes. The PAT domain proteins (Perilipin, ADRP [adipose differentiation related protein], and TIP47 [tail-interacting 47-kDa protein]) are associated with these structures. Perilipin and ADRP are involved in the regulation of lipid storage and metabolism in mammals. Two genes encoding PAT proteins, Drosophila Lipid Storage Droplet 2 Gene (Lsd-2) and Lsd-2, have been identified in Drosophila. Lsd-2 is expressed in fat bodies and in the female germ line and is involved in lipid storage in these tissues. We showed that Lsd-2 is expressed in third-instar wing imaginal discs in Drosophila, with higher levels in the wing pouch, which corresponds to the presumptive wing region of the wing disc. This specific expression pattern is correlated with a high level of neutral lipid accumulation. We also showed that neutral lipid deposition in the wing disc is severely reduced in an Lsd-2 mutant and is increased with Lsd-2 overexpression. Finally, we showed that overexpression of the vestigial (vg) pro-wing gene induces Lsd-2 expression, suggesting that Lsd-2 mediates a vg role during wing formation. Our results suggest that Lsd-2 function is not restricted to tissues directly involved in lipid storage and could play additional roles during development.

  5. Characterization of the Cis-Regulatory Region of the Drosophila Homeotic Gene Sex Combs Reduced

    PubMed Central

    Gindhart-Jr., J. G.; King, A. N.; Kaufman, T. C.

    1995-01-01

    The Drosophila homeotic gene Sex combs reduced (Scr) controls the segmental identity of the labial and prothoracic segments in the embryo and adult. It encodes a sequence-specific transcription factor that controls, in concert with other gene products, differentiative pathways of tissues in which Scr is expressed. During embryogenesis, Scr accumulation is observed in a discrete spatiotemporal pattern that includes the labial and prothoracic ectoderm, the subesophageal ganglion of the ventral nerve cord and the visceral mesoderm of the anterior and posterior midgut. Previous analyses have demonstrated that breakpoint mutations located in a 75-kb interval, including the Scr transcription unit and 50 kb of upstream DNA, cause Scr misexpression during development, presumably because these mutations remove Scr cis-regulatory sequences from the proximity of the Scr promoter. To gain a better understanding of the regulatory interactions necessary for the control of Scr transcription during embryogenesis, we have begun a molecular analysis of the Scr regulatory interval. DNA fragments from this 75-kb region were subcloned into P-element vectors containing either an Scr-lacZ or hsp70-lacZ fusion gene, and patterns of reporter gene expression were assayed in transgenic embryos. Several fragments appear to contain Scr regulatory sequences, as they direct reporter gene expression in patterns similar to those normally observed for Scr, whereas other DNA fragments direct Scr reporter gene expression in developmentally interesting but non-Scr-like patterns during embryogenesis. Scr expression in some tissues appears to be controlled by multiple regulatory elements that are separated, in some cases, by more than 20 kb of intervening DNA. Interestingly, regulatory sequences that direct reporter gene expression in an Scr-like pattern in the anterior and posterior midgut are imbedded in the regulatory region of the segmentation gene fushi tarazu (ftz), which is normally located

  6. Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers.

    PubMed

    Affolter, M; Walldorf, U; Kloter, U; Schier, A F; Gehring, W J

    1993-04-01

    An induction process occurring between the mesodermal and the endodermal germ layers has recently been described in the regulation of the Drosophila homeotic gene labial (lab). We report here that proper spatial regulation of the Drosophila POU box gene pdm-1 products also involves interaction between these two germ layers. pdm-1 transcripts are initially present in both the anterior and the posterior endodermal midgut primordia. Upon fusion of the two primordia, transcripts disappear from two regions in the endoderm, a central domain and an anterior domain. The anterior repression domain of pdm-1 is independent of the expression of known homeotic genes and genes encoding secreted signalling molecules in the visceral mesoderm, both for its positioning and its repression. Repression in the central domain requires both the homeotic gene Ultrabithorax (Ubx) and the decapentaplegic (dpp) gene, which encodes a secreted protein. Both of these genes are also required for lab induction. However, the analysis of pdm-1 expression in various mutant backgrounds indicates that the regulation of lab and pdm-1 across germ layers is controlled by different genetic cascades. Our study indicates that dpp is not the signal that dictates central pdm-1 repression across germ layers and suggests that in the same midgut region, different signalling pathways result in the differential activation or repression of potential transcription factors.

  7. The Drosophila Meiotic Recombination Gene Mei-9 Encodes a Homologue of the Yeast Excision Repair Protein Rad1

    PubMed Central

    Sekelsky, J. J.; McKim, K. S.; Chin, G. M.; Hawley, R. S.

    1995-01-01

    Meiotic recombination and DNA repair are mediated by overlapping sets of genes. In the yeast Saccharomyces cerevisiae, many genes required to repair DNA double-strand breaks are also required for meiotic recombination. In contrast, mutations in genes required for nucleotide excision repair (NER) have no detectable effects on meiotic recombination in S. cerevisiae. The Drosophila melanogaster mei-9 gene is unique among known recombination genes in that it is required for both meiotic recombination and NER. We have analyzed the mei-9 gene at the molecular level and found that it encodes a homologue of the S. cerevisiae excision repair protein Rad1, the probable homologue of mammalian XPF/ERCC4. Hence, the predominant process of meiotic recombination in Drosophila proceeds through a pathway that is at least partially distinct from that of S. cerevisiae, in that it requires an NER protein. The biochemical properties of the Rad1 protein allow us to explain the observation that mei-9 mutants suppress reciprocal exchange without suppressing the frequency of gene conversion. PMID:8647398

  8. A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate.

    PubMed

    Staller, Max V; Fowlkes, Charless C; Bragdon, Meghan D J; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H

    2015-02-01

    In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression atlas containing the levels of mRNA or protein expression of 13 core patterning genes over six time points for every cell of the blastoderm embryo. This is the first cellular resolution dataset of a genetically perturbed Drosophila embryo that captures all cells in 3D. We describe the technical developments required to build this atlas and how the method can be employed and extended by others. We also analyze this novel dataset to characterize the degree and timing of cell fate canalization in the segmentation network. We find that in two layers of this gene regulatory network, following depletion of bcd, individual cells rapidly canalize towards normal cell fates. This result supports the hypothesis that the segmentation network directly canalizes cell fate, rather than an alternative hypothesis whereby cells are initially mis-specified and later eliminated by apoptosis. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further computational modeling of canalization and gene regulation in this transcriptional network.

  9. A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate

    PubMed Central

    Staller, Max V.; Fowlkes, Charless C.; Bragdon, Meghan D. J.; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H.

    2015-01-01

    In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression atlas containing the levels of mRNA or protein expression of 13 core patterning genes over six time points for every cell of the blastoderm embryo. This is the first cellular resolution dataset of a genetically perturbed Drosophila embryo that captures all cells in 3D. We describe the technical developments required to build this atlas and how the method can be employed and extended by others. We also analyze this novel dataset to characterize the degree and timing of cell fate canalization in the segmentation network. We find that in two layers of this gene regulatory network, following depletion of bcd, individual cells rapidly canalize towards normal cell fates. This result supports the hypothesis that the segmentation network directly canalizes cell fate, rather than an alternative hypothesis whereby cells are initially mis-specified and later eliminated by apoptosis. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further computational modeling of canalization and gene regulation in this transcriptional network. PMID:25605785

  10. Genetic architecture and functional characterization of genes underlying the rapid diversification of male external genitalia between Drosophila simulans and Drosophila mauritiana.

    PubMed

    Tanaka, Kentaro M; Hopfen, Corinna; Herbert, Matthew R; Schlötterer, Christian; Stern, David L; Masly, John P; McGregor, Alistair P; Nunes, Maria D S

    2015-05-01

    Male sexual characters are often among the first traits to diverge between closely related species and identifying the genetic basis of such changes can contribute to our understanding of their evolutionary history. However, little is known about the genetic architecture or the specific genes underlying the evolution of male genitalia. The morphology of the claspers, posterior lobes, and anal plates exhibit striking differences between Drosophila mauritiana and D. simulans. Using QTL and introgression-based high-resolution mapping, we identified several small regions on chromosome arms 3L and 3R that contribute to differences in these traits. However, we found that the loci underlying the evolution of clasper differences between these two species are independent from those that contribute to posterior lobe and anal plate divergence. Furthermore, while most of the loci affect each trait in the same direction and act additively, we also found evidence for epistasis between loci for clasper bristle number. In addition, we conducted an RNAi screen in D. melanogaster to investigate if positional and expression candidate genes located on chromosome 3L, are also involved in genital development. We found that six of these genes, including components of Wnt signaling and male-specific lethal 3 (msl3), regulate the development of genital traits consistent with the effects of the introgressed regions where they are located and that thus represent promising candidate genes for the evolution these traits.

  11. Genetic Architecture and Functional Characterization of Genes Underlying the Rapid Diversification of Male External Genitalia Between Drosophila simulans and Drosophila mauritiana

    PubMed Central

    Tanaka, Kentaro M.; Hopfen, Corinna; Herbert, Matthew R.; Schlötterer, Christian; Stern, David L.; Masly, John P.; McGregor, Alistair P.; Nunes, Maria D. S.

    2015-01-01

    Male sexual characters are often among the first traits to diverge between closely related species and identifying the genetic basis of such changes can contribute to our understanding of their evolutionary history. However, little is known about the genetic architecture or the specific genes underlying the evolution of male genitalia. The morphology of the claspers, posterior lobes, and anal plates exhibit striking differences between Drosophila mauritiana and D. simulans. Using QTL and introgression-based high-resolution mapping, we identified several small regions on chromosome arms 3L and 3R that contribute to differences in these traits. However, we found that the loci underlying the evolution of clasper differences between these two species are independent from those that contribute to posterior lobe and anal plate divergence. Furthermore, while most of the loci affect each trait in the same direction and act additively, we also found evidence for epistasis between loci for clasper bristle number. In addition, we conducted an RNAi screen in D. melanogaster to investigate if positional and expression candidate genes located on chromosome 3L, are also involved in genital development. We found that six of these genes, including components of Wnt signaling and male-specific lethal 3 (msl3), regulate the development of genital traits consistent with the effects of the introgressed regions where they are located and that thus represent promising candidate genes for the evolution these traits. PMID:25783699

  12. Adaptive evolution of genes involved in the regulation of germline stem cells in Drosophila melanogaster and D. simulans.

    PubMed

    Flores, Heather A; DuMont, Vanessa L Bauer; Fatoo, Aalya; Hubbard, Diana; Hijji, Mohammed; Barbash, Daniel A; Aquadro, Charles F

    2015-02-09

    Population genetic and comparative analyses in diverse taxa have shown that numerous genes involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience recurrent, adaptive evolution in both Drosophila melanogaster and D. simulans. Here we report a population genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to several evolutionary pressures may be acting to drive the adaptive evolution of these genes.

  13. Seven Genes of the Enhancer of Split Complex of Drosophila Melanogaster Encode Helix-Loop-Helix Proteins

    PubMed Central

    Knust, E.; Schrons, H.; Grawe, F.; Campos-Ortega, J. A.

    1992-01-01

    Enhancer of split [E(spl)] is one of the neurogenic loci of Drosophila and, as such, is required for normal segregation of neural and epidermal cell progenitors. Genetic observations indicate that the E(spl) locus is in fact a gene complex comprising a cluster of related genes and that other genes of the region are also required for normal early neurogenesis. Three of the genes of the complex were known to encode helix-loop-helix (HLH) proteins and to be transcribed in nearly identical patterns. Here, we show that four other genes in the vicinity also encode HLH proteins and, during neuroblast segregation, three of them are expressed in the same pattern. We show by germ-line transformation that these three genes are also necessary to allow epidermal development of the neuroectodermal cells. PMID:1427040

  14. Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    PubMed Central

    Sun, Kailiang; Westholm, Jakub Orzechowski; Tsurudome, Kazuya; Hagen, Joshua W.; Lu, Yubing; Kohwi, Minoree; Betel, Doron; Gao, Fen-Biao; Haghighi, A. Pejmun; Doe, Chris Q.; Lai, Eric C.

    2012-01-01

    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology. PMID:22347817

  15. Widespread Discordance of Gene Trees with Species Tree inDrosophila: Evidence for Incomplete Lineage Sorting

    SciTech Connect

    Pollard, Daniel A.; Iyer, Venky N.; Moses, Alan M.; Eisen,Michael B.

    2006-08-28

    The phylogenetic relationship of the now fully sequencedspecies Drosophila erecta and D. yakuba with respect to the D.melanogaster species complex has been a subject of controversy. All threepossible groupings of the species have been reported in the past, thoughrecent multi-gene studies suggest that D. erecta and D. yakuba are sisterspecies. Using the whole genomes of each of these species as well as thefour other fully sequenced species in the subgenus Sophophora, we set outto investigate the placement of D. erecta and D. yakuba in the D.melanogaster species group and to understand the cause of the pastincongruence. Though we find that the phylogeny grouping D. erecta and D.yakuba together is the best supported, we also find widespreadincongruence in nucleotide and amino acid substitutions, insertions anddeletions, and gene trees. The time inferred to span the two keyspeciation events is short enough that under the coalescent model, theincongruence could be the result of incomplete lineage sorting.Consistent with the lineage-sorting hypothesis, substitutions supportingthe same tree were spatially clustered. Support for the different treeswas found to be linked to recombination such that adjacent genes supportthe same tree most often in regions of low recombination andsubstitutions supporting the same tree are most enriched roughly on thesame scale as linkage disequilibrium, also consistent with lineagesorting. The incongruence was found to be statistically significant androbust to model and species choice. No systematic biases were found. Weconclude that phylogenetic incongruence in the D. melanogaster speciescomplex is the result, at least in part, of incomplete lineage sorting.Incomplete lineage sorting will likely cause phylogenetic incongruence inmany comparative genomics datasets. Methods to infer the correct speciestree, the history of every base in the genome, and comparative methodsthat control for and/or utilize this information will be

  16. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila

    SciTech Connect

    Leicht, B.G.; Muse, S.V.; Hanczyc, M.

    1995-01-01

    Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two Mlc1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium. does seem to be present in the 5{prime} half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule. 48 refs., 5 figs., 3 tabs.

  17. Genomewide identification of target genes of histone methyltransferase dG9a during Drosophila embryogenesis.

    PubMed

    Shimaji, Kouhei; Konishi, Takahiro; Tanaka, Shintaro; Yoshida, Hideki; Kato, Yasuko; Ohkawa, Yasuyuki; Sato, Tetsuya; Suyama, Mikita; Kimura, Hiroshi; Yamaguchi, Masamitsu

    2015-11-01

    Post-translational modification of the histone plays important roles in epigenetic regulation of various biological processes. Among the identified histone methyltransferases (HMTases), G9a is a histone H3 Lys 9 (H3K9)-specific example active in euchromatic regions. Drosophila G9a (dG9a) has been reported to feature H3K9 dimethylation activity in vivo. Here, we show that the time required for hatching of a homozygous dG9a null mutant and heteroallelic combination of dG9a null mutants is delayed, suggesting that dG9a is at least partially responsible for progression of embryogenesis. Immunocytochemical analyses of the wild-type and the dG9a null mutant flies indicated that dG9a localizes in cytoplasm up to nuclear division cycle 7 where it is likely responsible for di-methylation of nucleosome-free H3K9. From cycles 8-11, dG9a moves into the nucleus and is responsible for di-methylating H3K9 in nucleosomes. RNA-sequence analysis utilizing early wild-type and dG9a mutant embryos showed that dG9a down-regulates expression of genes responsible for embryogenesis. RNA fluorescent in situ hybridization analysis further showed temporal and spatial expression patterns of these mRNAs did not significantly change in the dG9a mutant. These results indicate that dG9a controls transcription levels of some zygotic genes without changing temporal and spatial expression patterns of the transcripts of these genes.

  18. Effects of Transposable Elements on the Expression of the Forked Gene of Drosophila Melanogaster

    PubMed Central

    Hoover, K. K.; Chien, A. J.; Corces, V. G.

    1993-01-01

    The products of the forked gene are involved in the formation and/or maintenance of a temporary fibrillar structure within the developing bristle rudiment of Drosophila melanogaster. Mutations in the forked locus alter this structure and result in aberrant development of macrochaetae, microchaetae and trichomes. The locus has been characterized at the molecular level by walking, mutant characterization and transcript analysis. Expression of the six forked transcripts is temporally restricted to midlate pupal development. At this time, RNAs of 6.4, 5.6, 5.4, 2.5, 1.9 and 1.1 kilobases (kb) are detected by Northern analysis. The coding region of these RNAs has been found to be within a 21-kb stretch of genomic DNA. The amino terminus of the proteins encoded by the 5.4- and 5.6-kb forked transcripts contain tandem copies of ankyrin-like repeats that may play an important role in the function of forked-encoded products. The profile of forked RNA expression is altered in seven spontaneous mutations characterized during this study. Three forked mutations induced by the insertion of the gypsy retrotransposon contain a copy of this element inserted into an intron of the gene. In these mutants, the 5.6-, 5.4- and 2.5-kb forked mRNAs are truncated via recognition of the polyadenylation site in the 5' long terminal repeat of the gypsy retrotransposon. These results help explain the role of the forked gene in fly development and further our understanding of the role of transposable elements in mutagenesis. PMID:8244011

  19. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network

    PubMed Central

    Clark, Erik; Akam, Michael

    2016-01-01

    The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles. DOI: http://dx.doi.org/10.7554/eLife.18215.001 PMID:27525481

  20. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body.

    PubMed Central

    Izpisúa-Belmonte, J C; Falkenstein, H; Dollé, P; Renucci, A; Duboule, D

    1991-01-01

    The cloning, characterization and developmental expression patterns of two novel murine Hox genes, Hox-4.6 and Hox-4.7, are reported. Structural data allow us to classify the four Hox-4 genes located in the most upstream (5') position in the HOX-4 complex as members of a large family of homeogenes related to the Drosophila homeotic gene Abdominal B (AbdB). It therefore appears that these vertebrate genes are derived from a selective amplification of an ancestral gene which gave rise, during evolution, to the most posterior of the insect homeotic genes so far described. In agreement with the structural colinearity, these genes have very posteriorly restricted expression profiles. In addition, their developmental expression is temporally regulated according to a cranio-caudal sequence which parallels the physical ordering of these genes along the chromosome. We discuss the phylogenetic alternative in the evolution of genetic complexity by amplifying either genes or regulatory sequences, as exemplified by this system in the mouse and Drosophila. Furthermore, the possible role of 'temporal colinearity' in the ontogeny of all coelomic (metamerized) metazoans showing a temporal anteroposterior morphogenetic progression is addressed. Images PMID:1676674

  1. Robust non-linear differential equation models of gene expression evolution across Drosophila development

    PubMed Central

    2012-01-01

    Background This paper lies in the context of modeling the evolution of gene expression away from stationary states, for example in systems subject to external perturbations or during the development of an organism. We base our analysis on experimental data and proceed in a top-down approach, where we start from data on a system's transcriptome, and deduce rules and models from it without a priori knowledge. We focus here on a publicly available DNA microarray time series, representing the transcriptome of Drosophila across evolution from the embryonic to the adult stage. Results In the first step, genes were clustered on the basis of similarity of their expression profiles, measured by a translation-invariant and scale-invariant distance that proved appropriate for detecting transitions between development stages. Average profiles representing each cluster were computed and their time evolution was analyzed using coupled differential equations. A linear and several non-linear model structures involving a transcription and a degradation term were tested. The parameters were identified in three steps: determination of the strongest connections between genes, optimization of the parameters defining these connections, and elimination of the unnecessary parameters using various reduction schemes. Different solutions were compared on the basis of their abilities to reproduce the data, to keep realistic gene expression levels when extrapolated in time, to show the biologically expected robustness with respect to parameter variations, and to contain as few parameters as possible. Conclusions We showed that the linear model did very well in reproducing the data with few parameters, but was not sufficiently robust and yielded unrealistic values upon extrapolation in time. In contrast, the non-linear models all reached the latter two objectives, but some were unable to reproduce the data. A family of non-linear models, constructed from the exponential of linear combinations

  2. Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster

    SciTech Connect

    Holdridge, C.; Dorsett, D. )

    1991-04-01

    The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. The authors found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. They propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.

  3. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    PubMed

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  4. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis

    PubMed Central

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D.; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5’ ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis. PMID:26942929

  5. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila.

    PubMed

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R

    2015-10-15

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.

  6. Dietary rescue of altered metabolism gene reveals unexpected Drosophila mating cues[S

    PubMed Central

    Bousquet, François; Chauvel, Isabelle; Flaven-Pouchon, Justin; Farine, Jean-Pierre; Ferveur, Jean-François

    2016-01-01

    To develop and reproduce, animals need long-chain MUFAs and PUFAs. Although some unsaturated FAs (UFAs) can be synthesized by the organism, others must be provided by the diet. The gene, desat1, involved in Drosophila melanogaster UFA metabolism, is necessary for both larval development and for adult sex pheromone communication. We first characterized desat1 expression in larval tissues. Then, we found that larvae in which desat1 expression was knocked down throughout development died during the larval stages when raised on standard food. By contrast pure MUFAs or PUFAs, but not saturated FAs, added to the larval diet rescued animals to adulthood with the best effect being obtained with oleic acid (C18:1). Male and female mating behavior and fertility were affected very differently by preimaginal UFA-rich diet. Adult diet also strongly influenced several aspects of reproduction: flies raised on a C18:1-rich diet showed increased mating performance compared with flies raised on standard adult diet. Therefore, both larval and adult desat1 expression control sex-specific mating signals. A similar nutrigenetics approach may be useful in other metabolic mutants to uncover cryptic effects otherwise masked by severe developmental defects. PMID:26759364

  7. Quantitative perturbation-based analysis of gene expression predicts enhancer activity in early Drosophila embryo

    PubMed Central

    Sayal, Rupinder; Dresch, Jacqueline M; Pushel, Irina; Taylor, Benjamin R; Arnosti, David N

    2016-01-01

    Enhancers constitute one of the major components of regulatory machinery of metazoans. Although several genome-wide studies have focused on finding and locating enhancers in the genomes, the fundamental principles governing their internal architecture and cis-regulatory grammar remain elusive. Here, we describe an extensive, quantitative perturbation analysis targeting the dorsal-ventral patterning gene regulatory network (GRN) controlled by Drosophila NF-κB homolog Dorsal. To understand transcription factor interactions on enhancers, we employed an ensemble of mathematical models, testing effects of cooperativity, repression, and factor potency. Models trained on the dataset correctly predict activity of evolutionarily divergent regulatory regions, providing insights into spatial relationships between repressor and activator binding sites. Importantly, the collective predictions of sets of models were effective at novel enhancer identification and characterization. Our study demonstrates how experimental dataset and modeling can be effectively combined to provide quantitative insights into cis-regulatory information on a genome-wide scale. DOI: http://dx.doi.org/10.7554/eLife.08445.001 PMID:27152947

  8. Partial Functional Diversification of Drosophila melanogaster Septin Genes Sep2 and Sep5

    PubMed Central

    O’Neill, Ryan S.; Clark, Denise V.

    2016-01-01

    The septin family of hetero-oligomeric complex-forming proteins can be divided into subgroups, and subgroup members are interchangeable at specific positions in the septin complex. Drosophila melanogaster has five septin genes, including the two SEPT6 subgroup members Sep2 and Sep5. We previously found that Sep2 has a unique function in oogenesis, which is not performed by Sep5. Here, we find that Sep2 is uniquely required for follicle cell encapsulation of female germline cysts, and that Sep2 and Sep5 are redundant for follicle cell proliferation. The five D. melanogaster septins localize similarly in oogenesis, including as rings flanking the germline ring canals. Pnut fails to localize in Sep5; Sep2 double mutant follicle cells, indicating that septin complexes fail to form in the absence of both Sep2 and Sep5. We also find that mutations in septins enhance the mutant phenotype of bazooka, a key component in the establishment of cell polarity, suggesting a link between septin function and cell polarity. Overall, this work suggests that Sep5 has undergone partial loss of ancestral protein function, and demonstrates redundant and unique functions of septins. PMID:27172205

  9. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie

    PubMed Central

    Parker, Joseph; Struhl, Gary

    2015-01-01

    Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes—a phenomenon we term “nuclear seclusion.” Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability. PMID:26474042

  10. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster.

    PubMed

    Helfrich-Förster, Charlotte; Shafer, Orie T; Wülbeck, Corinna; Grieshaber, Eva; Rieger, Dirk; Taghert, Paul

    2007-01-01

    The clock-gene-expressing lateral neurons are essential for the locomotor activity rhythm of Drosophila melanogaster. Traditionally, these neurons are divided into three groups: the dorsal lateral neurons (LN(d)), the large ventral lateral neurons (l-LN(v)), and the small ventral lateral neurons (s-LN(v)), whereby the latter group consists of four neurons that express the neuropeptide pigment-dispersing factor (PDF) and a fifth PDF-negative neuron. So far, only the l-LN(v) and the PDF-positive s-LN(v) have been shown to project into the accessory medulla, a small neuropil that contains the circadian pacemaker center in several insects. We show here that the other lateral neurons also arborize in the accessory medulla, predominantly forming postsynaptic sites. Both the l-LN(v) and LN(d) are anatomically well suited to connect the accessory medullae. Whereas the l-LN(v) may receive ipsilateral photic input from the Hofbauer-Buchner eyelet, the LN(d) invade mainly the contralateral accessory medulla and thus may receive photic input from the contralateral side. Both the LN(d) and the l-LN(v) differentiate during midmetamorphosis. They do so in close proximity to one another and the fifth PDF-negative s-LN(v), suggesting that these cell groups may derive from common precursors.

  11. Gene and protein expression of Drosophila Starvin during cold stress and recovery from chill coma.

    PubMed

    Colinet, Hervé; Hoffmann, Ary

    2010-05-01

    In Drosophila melanogaster, the sole member of the Bcl-2-associated anthanogene (BAG)-family proteins, called Starvin (Stv), has only been recently described. BAG proteins regulate a large range of physiological processes including life/death cell balance and stress response. The role of Stv has been poorly studied in the context of abiotic stress and particularly during and after cold stress. In this study we investigated the temporal expression of Stv gene and protein in adult flies during both the cold stress (up to 9 h at 0 degrees C) and the subsequent recovery phase (up to 8 h at 25 degrees C). Because BAG proteins can regulate positively and negatively the function of Hsp70/Hsc70, we also checked whether Stv expression was related to Hsp70 and Hsc70. Stv mRNA and Stv protein both showed a similar expression pattern: no modulation during the cold period followed by a significant up-regulation during the recovery period. A coordinated response of Stv and Hsp70 mRNA was observed, but not for Hsc70. Our findings indicate that Stv expression is part of a stress-induced program in D. melanogaster. It probably acts as a co-chaperone modulating the activity of Hsp70 chaperone machinery during recovery from cold stress. Finally our results support the suggestion that Stv and human BAG3 may be functional homologs.

  12. Transcription of gypsy elements in a Y-chromosome male fertility gene of Drosophila hydei

    SciTech Connect

    Hochstenbach, R.; Harhangi, H.; Hennig, W.

    1996-02-01

    We have found that defective gypsy retrotransposons are a major constituent of the lampbrush loop pair Nooses in the short arm of Y chromosome of Drosophila hydei. The loop pair is formed by male fertility gene Q during the primary spermatocyte stage of spermatogenesis, each loop being a single transcription unit with an estimated length of 260 kb. Using fluorescent in situ hybridization, we show that throughout the loop transcripts gypsy elements are interspersed with blocks of a tandemly repetitive Y-specific DNA sequence, ayl. Nooses transcripts containing both sequence types show a wide size range on Northern blots, do not migrate to the cytoplasm, and are degraded just before the first meiotic division. Only one strand of ayl and only the coding strand of gypsy can be detected in the loop transcripts. However, as cloned genomic DNA fragments also display opposite orientations of ayl and gypsy, such DNA sections cannot be part of the Nooses. Hence, they are most likely derived from the flanking heterochromatin. The direction of transcription of ayl and gypsy thus appears to be of a functional significance. 76 refs., 5 figs.

  13. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila

    PubMed Central

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B.; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R.

    2015-01-01

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC. PMID:26227968

  14. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster.

    PubMed

    Venken, Koen J T; Bellen, Hugo J

    2014-06-15

    The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.

  15. Discs large 5, an Essential Gene in Drosophila, Regulates Egg Chamber Organization.

    PubMed

    Reilly, Eve; Changela, Neha; Naryshkina, Tatyana; Deshpande, Girish; Steward, Ruth

    2015-03-19

    Discs large 5 (Dlg5) is a member of the MAGUK family of proteins that typically serve as molecular scaffolds and mediate signaling complex formation and localization. In vertebrates, Dlg5 has been shown to be responsible for polarization of neural progenitors and to associate with Rab11-positive vesicles in epithelial cells. In Drosophila, however, the function of Dlg5 is not well-documented. We have identified dlg5 as an essential gene that shows embryonic lethality. dlg5 embryos display partial loss of primordial germ cells (PGCs) during gonad coalescence between stages 12 and 15 of embryogenesis. Loss of Dlg5 in germline and somatic stem cells in the ovary results in the depletion of both cell lineages. Reduced expression of Dlg5 in the follicle cells of the ovary leads to a number of distinct phenotypes, including defects in egg chamber budding, stalk cell overgrowth, and ectopic polar cell induction. Interestingly, loss of Dlg5 in follicle cells results in abnormal distribution of a critical component of cell adhesion, E-cadherin, shown to be essential for proper organization of egg chambers.

  16. Drosophila melanogaster Prat, a Purine de Novo Synthesis Gene, Has a Pleiotropic Maternal-Effect Phenotype

    PubMed Central

    Malmanche, Nicolas; Clark, Denise V.

    2004-01-01

    In Drosophila melanogaster, two genes, Prat and Prat2, encode the enzyme, amidophosphoribosyltransferase, that performs the first and limiting step in purine de novo synthesis. Only Prat mRNA is present in the female germline and 0- to 2-hr embryos prior to the onset of zygotic transcription. We studied the maternal-effect phenotype caused by Prat loss-of-function mutations, allowing us to examine the effects of decreased purine de novo synthesis during oogenesis and the early stages of embryonic development. In addition to the purine syndrome previously characterized, we found that Prat mutant adult females have a significantly shorter life span and are conditionally semisterile. The semisterility is associated with a pleiotropic phenotype, including egg chamber defects and later effects on embryonic and larval viability. Embryos show mitotic synchrony and/or nuclear content defects at the syncytial blastoderm stages and segmentation defects at later stages. The semisterility is partially rescued by providing Prat mutant females with an RNA-enriched diet as a source of purines. Our results suggest that purine de novo synthesis is a limiting factor during the processes of cellular or nuclear proliferation that take place during egg chamber and embryonic development. PMID:15611171

  17. Chemical Mutagens, Transposons, and Transgenes to Interrogate Gene Function in Drosophila melanogaster

    PubMed Central

    Venken, Koen J.T.; Bellen, Hugo J.

    2014-01-01

    The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters. PMID:24583113

  18. The Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids.

    PubMed Central

    Barbash, D A; Roote, J; Ashburner, M

    2000-01-01

    The Drosophila melanogaster mutation Hmr rescues inviable hybrid sons from the cross of D. melanogaster females to males of its sibling species D. mauritiana, D. simulans, and D. sechellia. We have extended previous observations that hybrid daughters from this cross are poorly viable at high temperatures and have shown that this female lethality is suppressed by Hmr and the rescue mutations In(1)AB and D. simulans Lhr. Deficiencies defined here as Hmr(-) also suppressed lethality, demonstrating that reducing Hmr(+) activity can rescue otherwise inviable hybrids. An Hmr(+) duplication had the opposite effect of reducing the viability of female and sibling X-male hybrid progeny. Similar dose-dependent viability effects of Hmr were observed in the reciprocal cross of D. simulans females to D. melanogaster males. Finally, Lhr and Hmr(+) were shown to have mutually antagonistic effects on hybrid viability. These data suggest a model where the interaction of sibling species Lhr(+) and D. melanogaster Hmr(+) causes lethality in both sexes of species hybrids and in both directions of crossing. Our results further suggest that a twofold difference in Hmr(+) dosage accounts in part for the differential viability of male and female hybrid progeny, but also that additional, unidentified genes must be invoked to account for the invariant lethality of hybrid sons of D. melanogaster mothers. Implications of our findings for understanding Haldane's rule-the observation that hybrid breakdown is often specific to the heterogametic sex-are also discussed. PMID:10747067

  19. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.

    PubMed

    Berndt, Anthony J E; Tang, Jonathan C Y; Ridyard, Marc S; Lian, Tianshun; Keatings, Kathleen; Allan, Douglas W

    2015-12-01

    Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly

  20. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons

    PubMed Central

    Ridyard, Marc S.; Lian, Tianshun; Keatings, Kathleen; Allan, Douglas W.

    2015-01-01

    Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly

  1. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    SciTech Connect

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  2. Sense organ identity in the Drosophila antenna is specified by the expression of the proneural gene atonal.

    PubMed

    Jhaveri, D; Sen, A; Reddy, G V; Rodrigues, V

    2000-12-01

    We have shown that the basic helix-loop-helix transcription factor Atonal is sufficient for specification of one of the three subsets of olfactory sense organs on the Drosophila antenna. Misexpression of Atonal in all sensory precursors in the antennal disc results in their conversion to coeloconic sensilla. The mechanism by which specific sense organ fate is triggered remains unclear. We have shown that the homeodomain transcription factor Cut which acts in the chordotonal-external sense organ choice does not play a role in olfactory sense organ development. The expression of atonal in specific domains of the antennal disc is regulated by an interplay of the patterning genes, Hedgehog and Wingless, and Drosophila epidermal growth factor receptor pathway.

  3. Family Size Evolution in Drosophila Chemosensory Gene Families: A Comparative Analysis with a Critical Appraisal of Methods

    PubMed Central

    Almeida, Francisca C.; Sánchez-Gracia, Alejandro; Campos, Jose Luis; Rozas, Julio

    2014-01-01

    Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila—the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families—to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia’s gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process. PMID:24951565

  4. [Radiation biology of structurally different Drosophila melanogaster genes. Report I. The vestigial gene: molecular characteristic of "point" mutations].

    PubMed

    Aleksandrov, I D; Afanas'eva, K P; Aleksandrova, M V; Lapidus, I L

    2012-01-01

    The screening of PCR-detected DNA alterations in 9 spontaneous and 59 gamma-ray-, neutron - or neutron + gamma-ray-induced Drosophila vestigial (vg) gene/"point" mutations was carried out. The detected patterns of existence or absence of either of 16 overlapping fragments into which vg gene (15.1 kb, 8 exons, 7 introns) was divided enable us to subdivide all mutants into 4 classes: (i) PCR+ (40.7%) without the detected changes; (ii) "single-site" (33.9%) with the loss of a single fragment; (iii) partial detections (15.2%) as a loss of 2-9 adjacent fragments and (iv) "cluster" mutants (10.2%) having 2-3 independent changes of(ii) and/or (iii) classes. All spontaneous mutants except one were found to be classified as (ii) whereas radiation-induced mutants are represented by all 4 classes whose interrelation is determined by the dose and radiation quality. In particular, the efficacy of neutrons was found to be nine times as large as that of gamma-rays under the "cluster" mutant induction. Essentially, the distribution of DNA changes along the gene is uneven. CSGE-assay of PCR+-exon 3 revealed DNA heteroduplexes in 5 out of 17 PCR+-mutants studied, 2 of which had small deletions (5 and 11 b) and 3 others made transitions (A --> G) as shown by the sequencing. Therefore, gamma-rays and neutrons seem to be significant environmental agents increasing the SNP risk for the population through their action on the germ cells. The results obtained are also discussed within the framework of the track structure theory and the notion of quite different chromatin organization in somatic and germ cells.

  5. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    PubMed

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.

  6. Toward new Drosophila paradigms.

    PubMed

    Andrioli, Luiz Paulo

    2012-08-01

    The fruit fly Drosophila melanogaster is a great model system in developmental biology studies and related disciplines. In a historical perspective, I focus on the formation of the Drosophila segmental body plan using a comparative approach. I highlight the evolutionary trend of increasing complexity of the molecular segmentation network in arthropods that resulted in an incredible degree of complexity at the gap gene level in derived Diptera. There is growing evidence that Drosophila is a highly derived insect, and we are still far from fully understanding the underlying evolutionary mechanisms that led to its complexity. In addition, recent data have altered how we view the transcriptional regulatory mechanisms that control segmentation in Drosophila. However, these observations are not all bad news for the field. Instead, they stimulate further study of segmentation in Drosophila and in other species as well. To me, these seemingly new Drosophila paradigms are very challenging ones.

  7. The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis.

    PubMed Central

    Appel, L F; Prout, M; Abu-Shumays, R; Hammonds, A; Garbe, J C; Fristrom, D; Fristrom, J

    1993-01-01

    The Stubble-stubbloid (Sb-sbd) gene is required for hormone-dependent epithelial morphogenesis of imaginal discs of Drosophila, including the formation of bristles, legs, and wings. The gene has been cloned by using Sb-sbd-associated DNA lesions in a 20-kilobase (kb) region of a 263-kb genomic walk. The region specifies an approximately 3.8-kb transcript that is induced by the steroid hormone 20-hydroxyecdysone in imaginal discs cultured in vitro. The conceptually translated protein is an apparent 786-residue type II transmembrane protein (N terminus in, C terminus out), including an intracellular N-terminal domain of at least 35 residues and an extracellular C-terminal trypsin-like serine protease domain of 244 residues. Sequence analyses indicate that the Sb-sbd-encoded protease could activate itself by proteolytic cleavage. Consistent with the cell-autonomous nature of the Sb-sbd bristle phenotype, a disulfide bond between cysteine residues in the noncatalytic N-terminal fragment and the C-terminal catalytic fragment could tether the protease to the membrane after activation. Both dominant Sb and recessive sbd mutations affect the organization of microfilament bundles during bristle morphogenesis. We propose that the Sb-sbd product has a dual function. (i) It acts through its proteolytic extracellular domain to detach imaginal disc cells from extracellular matrices, and (ii) it transmits an outside-to-inside signal to its intracellular domain to modify the cytoskeleton and facilitate cell shape changes underlying morphogenesis. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7685111

  8. Nucleotide variation of the Est-6 gene region in natural populations of Drosophila melanogaster.

    PubMed Central

    Balakirev, Evgeniy S; Ayala, Francisco J

    2003-01-01

    We have investigated nucleotide polymorphism in the Est-6 gene region in four samples of Drosophila melanogaster derived from natural populations of East Africa (Zimbabwe), Europe (Spain), North America (California), and South America (Venezuela). There are two divergent sequence types in the North and South American samples, which are not perfectly (North America) or not at all (South America) associated with the Est-6 allozyme variation. Less pronounced or no sequence dimorphism occurs in the European and African samples, respectively. The level of nucleotide diversity is highest in the African sample, lower (and similar to each other) in the samples from Europe and North America, and lowest in the sample from South America. The extent of linkage disequilibrium is low in Africa (1.23% significant associations), but much higher in non-African populations (22.59, 21.45, and 37.68% in Europe, North America, and South America, respectively). Tests of neutrality with recombination are significant in non-African samples but not significant in the African sample. We propose that demographic history (bottleneck and admixture of genetically different populations) is the major factor shaping the nucleotide patterns in the Est-6 gene region. However, positive selection modifies the pattern: balanced selection creates elevated levels of nucleotide variation around functionally important (target) polymorphic sites (RsaI-/RsaI+ in the promoter region and F/S in the coding region) in both African and non-African samples; and directional selection, acting during the geographic expansion phase of D. melanogaster, creates an excess of very similar sequences (RsaI- and S allelic lineages, in the promoter and coding regions, respectively) in the non-African samples. PMID:14704175

  9. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons.

    PubMed

    Frickenhaus, Marie; Wagner, Marina; Mallik, Moushami; Catinozzi, Marica; Storkebaum, Erik

    2015-03-16

    To expand the rich genetic toolkit of Drosophila melanogaster, we evaluated whether introducing FRT or LoxP sites in endogenous genes could allow for cell-type-specific gene inactivation in both dividing and postmitotic cells by GAL4-driven expression of FLP or Cre recombinase. For proof of principle, conditional alleles were generated for cabeza (caz), the Drosophila homolog of human FUS, a gene implicated in the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Upon selective expression in neurons or muscle, both FLP and Cre mediated caz inactivation in all neurons or muscle cells, respectively. Neuron-selective caz inactivation resulted in failure of pharate adult flies to eclose from the pupal case, and adult escapers displayed motor performance defects and reduced life span. Due to Cre-toxicity, FLP/FRT is the preferred system for cell-type-specific gene inactivation, and this strategy outperforms RNAi-mediated knock-down. Furthermore, the GAL80 target system allowed for temporal control over gene inactivation, as induction of FLP expression from the adult stage onwards still inactivated caz in >99% of neurons. Remarkably, selective caz inactivation in adult neurons did not affect motor performance and life span, indicating that neuronal caz is required during development, but not for maintenance of adult neuronal function.

  10. Molecular Characterization and Evolution of a Gene Family Encoding Both Female- and Male-Specific Reproductive Proteins in Drosophila

    PubMed Central

    Sirot, Laura K.; Findlay, Geoffrey D.; Sitnik, Jessica L.; Frasheri, Dorina; Avila, Frank W.; Wolfner, Mariana F.

    2014-01-01

    Gene duplication is an important mechanism for the evolution of new reproductive proteins. However, in most cases, each resulting paralog continues to function within the same sex. To investigate the possibility that seminal fluid proteins arise through duplicates of female reproductive genes that become “co-opted” by males, we screened female reproductive genes in Drosophila melanogaster for cases of duplication in which one of the resulting paralogs produces a protein in males that is transferred to females during mating. We identified a set of three tandemly duplicated genes that encode secreted serine-type endopeptidase homologs, two of which are expressed primarily in the female reproductive tract (RT), whereas the third is expressed specifically in the male RT and encodes a seminal fluid protein. Evolutionary and gene expression analyses across Drosophila species suggest that this family arose from a single-copy gene that was female-specific; after duplication, one paralog evolved male-specific expression. Functional tests of knockdowns of each gene in D. melanogaster show that one female-expressed gene is essential for full fecundity, and both female-expressed genes contribute singly or in combination to a female’s propensity to remate. In contrast, knockdown of the male-expressed paralog had no significant effect on female fecundity or remating. These data are consistent with a model in which members of this gene family exert effects on females by acting on a common, female-expressed target. After duplication and male co-option of one paralog, the evolution of the interacting proteins could have resulted in differential strengths or effects of each paralog. PMID:24682282

  11. The Essential Gene wda Encodes a WD40 Repeat Subunit of Drosophila SAGA Required for Histone H3 Acetylation

    PubMed Central

    Guelman, Sebastián; Suganuma, Tamaki; Florens, Laurence; Weake, Vikki; Swanson, Selene K.; Washburn, Michael P.; Abmayr, Susan M.; Workman, Jerry L.

    2006-01-01

    Histone acetylation provides a switch between transcriptionally repressive and permissive chromatin. By regulating the chromatin structure at specific promoters, histone acetyltransferases (HATs) carry out important functions during differentiation and development of higher eukaryotes. HAT complexes are present in organisms as diverse as Saccharomyces cerevisiae, humans, and flies. For example, the well-studied yeast SAGA is related to three mammalian complexes. We previously identified Drosophila melanogaster orthologues of yeast SAGA components Ada2, Ada3, Spt3, and Tra1 and demonstrated that they associate with dGcn5 in a high-molecular-weight complex. To better understand the function of Drosophila SAGA (dSAGA), we sought to affinity purify and characterize this complex in more detail. A proteomic approach led to the identification of an orthologue of the yeast protein Ada1 and the novel protein encoded by CG4448, referred to as WDA (will decrease acetylation). Embryos lacking both alleles of the wda gene exhibited reduced levels of histone H3 acetylation and could not develop into adult flies. Our results point to a critical function of dSAGA and histone acetylation during Drosophila development. PMID:16980620

  12. The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis.

    PubMed

    Bhat, K M

    1999-04-01

    In a variety of tissues in eukaryotes, multipotential stem cells are responsible for maintaining a germinal population and generating a differentiated progeny. The Drosophila germline is one such tissue where a continuous supply of eggs or sperm relies on the normal functioning of stem cells. Recent studies have implicated a possible role for the posterior determinant gene nanos (nos) in stem cells. Here, I report that nanos is required in the Drosophila female germline as well as in the male germline. In the female, nos is required for the functioning of stem cells. In nos mutants, while the stem cells are specified, these cells divide only a few times at the most and then degenerate. The loss of germline stem cells in nos mutant mothers appears to be due to a progressive degeneration of the plasma membrane. Furthermore, following germ cell loss, the germaria in the nos mutant mothers appear to carry on massive mitochondrial biogenesis activity. Thus, the syncytia of such germaria are filled with mitochondria. In the male germline, the male fertility assay indicates that nos appears to be also required for the maintenance of stem cells. In these mutant males, spermatogenesis is progressively affected and these males eventually become sterile. These results indicate novel requirements for nos in the Drosophila germline.

  13. The ABCs of Eye Color in Tribolium castaneum: Orthologs of the Drosophila white, scarlet, and brown Genes

    PubMed Central

    Grubbs, Nathaniel; Haas, Sue; Beeman, Richard W.; Lorenzen, Marcé D.

    2015-01-01

    In Drosophila melanogaster, each of the three paralogous ABC transporters, White, Scarlet and Brown, is required for normal pigmentation of the compound eye. We have cloned the three orthologous genes from the beetle Tribolium castaneum. Conceptual translations of Tribolium white (Tcw), scarlet (Tcst), and brown (Tcbw) are 51, 48, and 32% identical to their respective Drosophila counterparts. We have identified loss-of-eye-pigment strains that bear mutations in Tcw and Tcst: the Tcw gene in the ivory (i) strain carries a single-base transversion, which leads to an E → D amino-acid substitution in the highly conserved Walker B motif, while the Tcst gene in the pearl (p) strain has a deletion resulting in incorporation of a premature stop codon. In light of these findings, the mutant strains i and p are herein renamed whiteivory (wi) and scarletpearl (stp), respectively. In addition, RNA inhibition of Tcw and Tcst recapitulates the mutant phenotypes, confirming the roles of these genes in normal eye pigmentation, while RNA interference of Tcbw provides further evidence that it has no role in eye pigmentation in Tribolium. We also consider the evolutionary implications of our findings. PMID:25555987

  14. Stage-Specific Effects of Candidate Heterochronic Genes on Variation in Developmental Time along an Altitudinal Cline of Drosophila melanogaster

    PubMed Central

    Mensch, Julián; Carreira, Valeria; Lavagnino, Nicolás; Goenaga, Julieta; Folguera, Guillermo; Hasson, Esteban; Fanara, Juan José

    2010-01-01

    Background Previously, we have shown there is clinal variation for egg-to-adult developmental time along geographic gradients in Drosophila melanogaster. Further, we also have identified mutations in genes involved in metabolic and neurogenic pathways that affect development time (heterochronic genes). However, we do not know whether these loci affect variation in developmental time in natural populations. Methodology/Principal Findings Here, we constructed second chromosome substitution lines from natural populations of Drosophila melanogaster from an altitudinal cline, and measured egg-adult development time for each line. We found not only a large amount of genetic variation for developmental time, but also positive associations of the development time with thermal amplitude and altitude. We performed genetic complementation tests using substitution lines with the longest and shortest developmental times and heterochronic mutations. We identified segregating variation for neurogenic and metabolic genes that largely affected the duration of the larval stages but had no impact on the timing of metamorphosis. Conclusions/Significance Altitudinal clinal variation in developmental time for natural chromosome substitution lines provides a unique opportunity to dissect the response of heterochronic genes to environmental gradients. Ontogenetic stage-specific variation in invected, mastermind, cricklet and CG14591 may affect natural variation in development time and thermal evolution. PMID:20585460

  15. Identification of Genes Mediating Drosophila Follicle Cell Progenitor Differentiation by Screening for Modifiers of GAL4::UAS Variegation

    PubMed Central

    Lee, Ming-Chia; Skora, Andrew D.; Spradling, Allan C.

    2016-01-01

    The Drosophila melanogaster ovarian follicle cell lineage provides a powerful system for investigating how epigenetic changes contribute to differentiation. Downstream from an epithelial stem cell, follicle progenitors undergo nine mitotic cell cycles before transitioning to the endocycle and initiating differentiation. During their proliferative phase, follicle progenitors experience Lsd1-dependent changes in epigenetic stability that can be monitored using GAL4::UAS variegation. Eventually, follicle progenitors acquire competence to respond to Delta, a Notch ligand present in the environment, which signals them to cease division and initiate differentiation. The time required to acquire competence determines the duration of mitotic cycling and hence the final number of follicle cells. We carried out a screen for dominant modifiers of variegation spanning nearly 70% of Drosophila euchromatin to identify new genes influencing follicle progenitor epigenetic maturation. The eight genes found include chromatin modifiers, but also cell cycle regulators and transcription factors. Five of the modifier genes accelerate the acquisition of progenitor competence and reduce follicle cell number, however, the other three genes affect follicle cell number in an unexpected manner. PMID:27866148

  16. Repair of UV-induced pyrimidine dimers in the individual genes Gart, Notch and white from Drosophila melanogaster cell lines.

    PubMed Central

    de Cock, J G; Klink, E C; Ferro, W; Lohman, P H; Eeken, J C

    1991-01-01

    The excision repair of UV-induced pyrimidine dimers was investigated in three genes: Gart, Notch and white in a permanent Drosophila cell line Kc, derived from wild type Drosophila melanogaster embryonic cells. In this cell line Gart and Notch are actively transcribed, whereas white is not expressed. In all three genes UV-induced pyrimidine dimers were removed with the same rate and to the same extent: 60% removal within 16 hours, up to 80-100% in 24 hours after irradiation with 10 or 15 J/m2 UV. These kinetics are similar to the time course of dimer removal measured in the genome overall. No difference in repair of the inactive white locus compared to the active Gart and Notch genes was found. Similar results were obtained using a different wild type cell line, SL2, although repair appeared to be somewhat slower in this cell line. The results are discussed with respect to the data found for gene specific repair in other eukaryotic systems. Images PMID:1648203

  17. Identification of Genes Mediating Drosophila Follicle Cell Progenitor Differentiation by Screening for Modifiers of GAL4::UAS Variegation.

    PubMed

    Lee, Ming-Chia; Skora, Andrew D; Spradling, Allan C

    2017-01-05

    The Drosophila melanogaster ovarian follicle cell lineage provides a powerful system for investigating how epigenetic changes contribute to differentiation. Downstream from an epithelial stem cell, follicle progenitors undergo nine mitotic cell cycles before transitioning to the endocycle and initiating differentiation. During their proliferative phase, follicle progenitors experience Lsd1-dependent changes in epigenetic stability that can be monitored using GAL4::UAS variegation. Eventually, follicle progenitors acquire competence to respond to Delta, a Notch ligand present in the environment, which signals them to cease division and initiate differentiation. The time required to acquire competence determines the duration of mitotic cycling and hence the final number of follicle cells. We carried out a screen for dominant modifiers of variegation spanning nearly 70% of Drosophila euchromatin to identify new genes influencing follicle progenitor epigenetic maturation. The eight genes found include chromatin modifiers, but also cell cycle regulators and transcription factors. Five of the modifier genes accelerate the acquisition of progenitor competence and reduce follicle cell number, however, the other three genes affect follicle cell number in an unexpected manner.

  18. The ABCs of eye color in Tribolium castaneum: orthologs of the Drosophila white, scarlet, and brown Genes.

    PubMed

    Grubbs, Nathaniel; Haas, Sue; Beeman, Richard W; Lorenzen, Marcé D

    2015-03-01

    In Drosophila melanogaster, each of the three paralogous ABC transporters, White, Scarlet and Brown, is required for normal pigmentation of the compound eye. We have cloned the three orthologous genes from the beetle Tribolium castaneum. Conceptual translations of Tribolium white (Tcw), scarlet (Tcst), and brown (Tcbw) are 51, 48, and 32% identical to their respective Drosophila counterparts. We have identified loss-of-eye-pigment strains that bear mutations in Tcw and Tcst: the Tcw gene in the ivory (i) strain carries a single-base transversion, which leads to an E → D amino-acid substitution in the highly conserved Walker B motif, while the Tcst gene in the pearl (p) strain has a deletion resulting in incorporation of a premature stop codon. In light of these findings, the mutant strains i and p are herein renamed white(ivory) (w(i)) and scarlet(pearl) (st(p)), respectively. In addition, RNA inhibition of Tcw and Tcst recapitulates the mutant phenotypes, confirming the roles of these genes in normal eye pigmentation, while RNA interference of Tcbw provides further evidence that it has no role in eye pigmentation in Tribolium. We also consider the evolutionary implications of our findings.

  19. The inhibitor of DNA replication encoded by the Drosophila gene plutonium is a small, ankyrin repeat protein.

    PubMed Central

    Axton, J M; Shamanski, F L; Young, L M; Henderson, D S; Boyd, J B; Orr-Weaver, T L

    1994-01-01

    The plutonium (plu) gene product controls DNA replication early in Drosophila development. plu mutant females lay unfertilized eggs that have undergone extensive DNA synthesis. In fertilized embryos from plu mutant mothers, S-phase is uncoupled from mitosis. The gene is expressed only in ovaries and embryos, null alleles are strict maternal effect mutations, and the phenotype of inappropriate DNA replication is the consequence of loss-of-gene function. plu therefore negatively regulates S-phase at a time in early development when commitment to S-phase does not depend on cyclic transcription. plu encodes a protein with two ankyrin-like repeats, a domain for protein-protein interaction. plu is immediately adjacent to, but distinct from, the PCNA gene. Images PMID:8313891

  20. [SWI/SNF Protein Complexes Participate in the Initiation and Elongation Stages of Drosophila hsp70 Gene Transcription].

    PubMed

    Mazina, M Yu; Nikolenko, Yu V; Krasnov, A N; Vorobyeva, N E

    2016-02-01

    The participation of the SWI/SNF chromatin remodeling complex in the stimulation of the RNA polymerase II binding to gene promotors was demonstrated in all model eukaryotic organisms. It was shown eight years ago that the SWI/SNF complex influence on transcription is not limited to its role in initiation but also includes participation in elongation and alternative splicing. In the current work, we describe the subunit composition of the SWI/SNF complexes participating in initiation, preparing for the elongation and elongation of hsp70 gene transcription in Drosophila melanogaster. The data reveal the high mobility of the SWI/SNF complex composition during the hsp 70 gene transcription process. We suggest a model describing the process of sequential SWI/SNF complex formation during heat-shock induced transcription of the hsp 70 gene.

  1. deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination.

    PubMed

    Younger-Shepherd, S; Vaessin, H; Bier, E; Jan, L Y; Jan, Y N

    1992-09-18

    In Drosophila, sex is determined by the X:A ratio. One major numerator element on the X chromosome is sisterless-b (sis-b), also called scute, which encodes an HLH-type transcription factor. We report here that an essential pan-neural gene, the autosomal HLH gene deadpan (dpn), acts as a denominator element. As revealed by dosage-dependent dominant interactions, males die with too high a ratio of sc+ to dpn+, caused by misexpression of Sex lethal (Sxl) in embryos, and females die with too low a ratio of sc+ to dpn+, because of altered embryonic Sxl expression. In addition, we found that the HLH gene extramacrochaetae (emc), like daughterless (da), is needed maternally for proper communication of the X:A ratio, thus supporting the idea that a set of HLH genes comprises a functional cassette that makes a sensitive and stable genetic switch used in both neural determination and sex determination.

  2. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11.

    PubMed

    McKie, J M; Sutherland, H F; Harvey, E; Kim, U J; Scambler, P J

    1997-11-01

    A Drosophila-related expressed sequence tag (DRES) with sequence similarity to the peanut gene has previously been localized to human chromosome 22q11. We have isolated the cDNA corresponding to this DRES and show that it is a novel member of the family of septin genes, which encode proteins with GTPase activity thought to interact during cytokinesis. The predicted protein has P-loop nucleotide binding and GTPase motifs. The gene, which we call PNUTL1, maps to the region of 22q11.2 frequently deleted in DiGeorge and velo-cardio-facial syndromes and is particularly highly expressed in the brain. The mouse homologue, Pnutl1, maps to MMU16 adding to the growing number of genes from the DiGeorge syndrome region that map to this chromosome.

  3. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster.

    PubMed

    Deng, Xinxian; Hiatt, Joseph B; Nguyen, Di Kim; Ercan, Sevinc; Sturgill, David; Hillier, LaDeana W; Schlesinger, Felix; Davis, Carrie A; Reinke, Valerie J; Gingeras, Thomas R; Shendure, Jay; Waterston, Robert H; Oliver, Brian; Lieb, Jason D; Disteche, Christine M

    2011-10-23

    Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals, C. elegans and Drosophila. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.

  4. Cloning and mapping of a novel human cDNA homologous to DROER, the enhancer of the Drosophila melanogaster rudimentary gene

    SciTech Connect

    Isomura, Minoru; Okui, Keiko; Nakamura, Yusuke

    1996-02-15

    This article reports on the isolation and localization to human chromosome 7q34 of a human cDNA clone that encodes a protein which is homologous to DROER, the enhancer of the Drosophila melanogaster rudimentary gene. The structure and expression of this gene is also discussed. 12 refs., 3 figs.

  5. The product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity.

    PubMed Central

    Denisenko, O N; Bomsztyk, K

    1997-01-01

    The heterogeneous nuclear ribonucleoprotein K protein represents a novel class of proteins that may act as docking platforms that orchestrate cross-talk among molecules involved in signal transduction and gene expression. Using a fragment of K protein as bait in the yeast two-hybrid screen, we isolated a cDNA that encodes a protein whose primary structure has extensive similarity to the Drosophila melanogaster extra sex combs (esc) gene product, Esc, a putative silencer of homeotic genes. The cDNA that we isolated is identical to the cDNA of the recently positionally cloned mouse embryonic ectoderm development gene, eed. Like Esc, Eed contains six WD-40 repeats in the C-terminal half of the protein and is thought to repress homeotic gene expression during mouse embryogenesis. Eed binds to K protein through a domain in its N terminus, but interestingly, this domain is not found in the Drosophila Esc. Gal4-Eed fusion protein represses transcription of a reporter gene driven by a promoter that contains G