Science.gov

Sample records for drosophila segment determination

  1. The role of homeotic genes in determining the segmental pattern of chordotonal organs in Drosophila.

    PubMed

    Wong, Darren C C; Merritt, David J

    2002-01-01

    The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, lch3 in the 1st thoracic segment, dch3 in the 2nd and 3rd thoracic segments and lch5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and veh1, in the wild type and mutants for Sexcombs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.

  2. Dosage Requirements of Ultrabithorax and Bithoraxoid in the Determination of Segment Identity in Drosophila Melanogaster

    PubMed Central

    Smolik-Utlaut, S. M.

    1990-01-01

    The wild-type Ultrabithorax (Ubx) and bithoraxoid (bxd) functions are primarily responsible for establishing the identity of parasegment 6 (PS6) in the Drosophila embryo and thus the identity of the posterior compartment of the third thoracic segment (pT3) and the anterior compartment of the first abdominal segment (aA1) in the adult. The experiments described were designed to test the ability of an increased dosage of Ubx(+) and bxd(+) to affect the transformation of PS5 toward PS6. The results are consistent with the ideas that (1) multiple copies of Ubx(+) and bxd(+) cause some cells within PS5 to take on the characteristics of PS6 cells but do not cause an overall parasegmental transformation of PS5 toward PS6, (2) cellular identity depends not only on the activity of Ubx(+) but on its concentration as well, and (3) that an interaction between Ubx(+) and the wild-type Antennapedia (Antp) gene establishes segmental identity in pT2. In the first instar larvae carrying eight copies of Ubx(+) and bxd(+) the fine hairs of the T3 setal belt are transformed toward the hook-like structures of the A1 setal belt. Other structures within this segment are unaffected. In the adult, the haltere is reduced in size. The transformation of pT2 cells (wing) toward pT3 cells (haltere) is seen in adults carrying eight doses of wild type Ubx and bxd by decreasing the amount of the bithorax complex (BX-C) regulator Polycomb (Pc). However, the transformation of the T3 setal belt is not enhanced in the larvae of these animals. The interaction between the genes of the Antennapedia complex (ANT-C) and the Ubx(+) and bxd(+) functions in pT2 is dosage sensitive only when the animals carry one copy of Pc. In these animals, the transformation of wing toward haltere is significantly enhanced. PMID:1968411

  3. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins.

    PubMed

    Paroush, Z; Finley, R L; Kidd, T; Wainwright, S M; Ingham, P W; Brent, R; Ish-Horowicz, D

    1994-12-02

    We have used the interaction trap, a yeast two-hybrid system, to identify proteins interacting with hairy, a basic-helix-loop-helix (bHLH) protein that represses transcription during Drosophila embryonic segmentation. We find that the groucho (gro) protein binds specifically to hairy and also to hairy-related bHLH proteins encoded by deadpan and the Enhancer of split complex. The C-terminal WRPW motif present in all these bHLH proteins is essential for this interaction. We demonstrate that these associations reflect in vivo maternal requirements for gro during neurogenesis, segmentation, and sex determination, three processes regulated by the above bHLH proteins, and we propose that gro is a transcriptional corepressor recruited to specific target promoters by hairy-related bHLH proteins.

  4. Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination.

    PubMed

    Rosenberg, Miriam I; Parkhurst, Susan M

    2002-05-17

    Yeast SIR2 is a NAD+-dependent histone deacetylase required for heterochromatic silencing at telomeres, rDNA, and mating-type loci. We find that the Drosophila homolog of Sir2 (dSir2) also encodes deacetylase activity and is required for heterochromatic silencing, but unlike ySir2, is not required for silencing at telomeres. We show that dSir2 interacts genetically and physically with members of the Hairy/Deadpan/E(Spl) family of bHLH euchromatic repressors, key regulators of Drosophila development. dSir2 is an essential gene whose loss of function results in both segmentation defects and skewed sex ratios, associated with reduced activities of the Hairy and Deadpan bHLH repressors. These results indicate that Sir2 in higher organisms plays an essential role in both euchromatic repression and heterochromatic silencing.

  5. Microevolutionary divergence pattern of the segmentation gene hunchback in Drosophila.

    PubMed

    Tautz, D; Nigro, L

    1998-11-01

    To study the microevolutionary processes shaping the evolution of the segmentation gene hunchback (hb) from Drosophila melanogaster, we cloned and sequenced the gene from 12 isofemale lines representing wild-type populations of D. melanogaster, as well as from the closely related species Drosophila sechellia, Drosophila orena, and Drosophila yakuba. We find a relatively low degree of sequence variation in D. melanogaster (theta = 0.0017), which is, however, consistent with its chromosomal location in a region of low recombination. Tests of neutrality do not reject a neutral-evolution model for the whole region. However, pairwise tests with different subregions indicate that there is a relative excess of polymorphic sites in the leader and the intron. Codon usage pattern analysis shows a particularly biased codon usage in the highly conserved regions, which is in line with the hypothesis that selection on translational accuracy is the driving force behind such a bias. A comparison of the expression pattern of hb in different sibling species of D. melanogaster reveals some regulatory changes in D. yakuba, which could be interpreted as changes in the timing of secondary expression domains.

  6. Robustness and modular design of the Drosophila segment polarity network

    PubMed Central

    Ma, Wenzhe; Lai, Luhua; Ouyang, Qi; Tang, Chao

    2006-01-01

    Biomolecular networks have to perform their functions robustly. A robust function may have preferences in the topological structures of the underlying network. We carried out an exhaustive computational analysis on network topologies in relation to a patterning function in Drosophila embryogenesis. We found that whereas the vast majority of topologies can either not perform the required function or only do so very fragilely, a small fraction of topologies emerges as particularly robust for the function. The topology adopted by Drosophila, that of the segment polarity network, is a top ranking one among all topologies with no direct autoregulation. Furthermore, we found that all robust topologies are modular—each being a combination of three kinds of modules. These modules can be traced back to three subfunctions of the patterning function, and their combinations provide a combinatorial variability for the robust topologies. Our results suggest that the requirement of functional robustness drastically reduces the choices of viable topology to a limited set of modular combinations among which nature optimizes its choice under evolutionary and other biological constraints. PMID:17170765

  7. Determination of Blastoderm Cells in Drosophila melanogaster

    PubMed Central

    Chan, L.-N.; Gehring, W.

    1971-01-01

    A method for culturing blastoderm cells of Drosophila in vivo has been developed that allows these cells to differentiate into larval or adult structures. By intermixture of genetically marked cells from bisected and whole embryos, it was shown that blastoderm cells are restricted in their potential for forming adult epidermal structures. Cells isolated from anterior-half embryos are determined for forming head and thoracic structures, whereas cells from posterior-half embryos are determined for forming thoracic and abdominal structures. The specificity of determination and the localization of determinative factors is discussed. Images PMID:5002429

  8. Noise in the segmentation gene network of Drosophila with implications for mechanisms of body axis specification

    NASA Astrophysics Data System (ADS)

    Holloway, David M.; Harrison, Lionel G.; Spirov, Alexander V.

    2003-05-01

    Specification of the anteroposterior (head-to-tail) axis in the fruit fly Drosophila melanogaster is one of the best understood examples of embryonic pattern formation, at the genetic level. A network of some 14 segmentation genes controls protein expression in narrow domains which are the first manifestation of the segments of the insect body. Work in the New York lab has led to a databank of more than 3300 confocal microscope images, quantifying protein expression for the segmentation genes, over a series of times during which protein pattern is developing (http://flyex.ams.sunysb.edu/FlyEx/). Quantification of the variability in expression evident in this data (both between embryos and within single embryos) allows us to determine error propagation in segmentation signalling. The maternal signal to the egg is highly variable, with noise levels more than several times those seen for expression of downstream genes. This implies that error suppression is active in the embryonic patterning mechanism. Error suppression is not possible with the favored mechanism of local concentration gradient reading for positional specification. We discuss possible patterning mechanisms which do reliably filter input noise.

  9. H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex.

    PubMed

    Bowman, Sarah K; Deaton, Aimee M; Domingues, Heber; Wang, Peggy I; Sadreyev, Ruslan I; Kingston, Robert E; Bender, Welcome

    2014-07-31

    The bithorax complex (BX-C) in Drosophila melanogaster is a cluster of homeotic genes that determine body segment identity. Expression of these genes is governed by cis-regulatory domains, one for each parasegment. Stable repression of these domains depends on Polycomb Group (PcG) functions, which include trimethylation of lysine 27 of histone H3 (H3K27me3). To search for parasegment-specific signatures that reflect PcG function, chromatin from single parasegments was isolated and profiled. The H3K27me3 profiles across the BX-C in successive parasegments showed a 'stairstep' pattern that revealed sharp boundaries of the BX-C regulatory domains. Acetylated H3K27 was broadly enriched across active domains, in a pattern complementary to H3K27me3. The CCCTC-binding protein (CTCF) bound the borders between H3K27 modification domains; it was retained even in parasegments where adjacent domains lack H3K27me3. These findings provide a molecular definition of the homeotic domains, and implicate precisely positioned H3K27 modifications as a central determinant of segment identity.

  10. Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature.

    PubMed

    Heckscher, Ellie S; Lockery, Shawn R; Doe, Chris Q

    2012-09-05

    Understanding rhythmic behavior at the developmental and genetic levels has important implications for neurobiology, medicine, evolution, and robotics. We studied rhythmic behavior--larval crawling--in the genetically and developmentally tractable organism, Drosophila melanogaster. We used narrow-diameter channels to constrain behavior to simple, rhythmic crawling. We quantified crawling at the organism, segment, and muscle levels. We showed that Drosophila larval crawling is made up of a series of periodic strides. Each stride consists of two phases. First, while most abdominal segments remain planted on the substrate, the head, tail, and gut translocate; this "visceral pistoning" moves the center of mass. The movement of the center of mass is likely powered by muscle contractions in the head and tail. Second, the head and tail anchor while a body wall wave moves each abdominal segment in the direction of the crawl. These two phases can be observed occurring independently in embryonic stages before becoming coordinated at hatching. During forward crawls, abdominal body wall movements are powered by simultaneous contraction of dorsal and ventral muscle groups, which occur concurrently with contraction of lateral muscles of the adjacent posterior segment. During reverse crawls, abdominal body wall movements are powered by phase-shifted contractions of dorsal and ventral muscles; and ventral muscle contractions occur concurrently with contraction of lateral muscles in the adjacent anterior segment. This work lays a foundation for use of Drosophila larva as a model system for studying the genetics and development of rhythmic behavior.

  11. How Notch establishes longitudinal axon connections between successive segments of the Drosophila CNS

    PubMed Central

    Kuzina, Irina; Song, Jeong K.; Giniger, Edward

    2011-01-01

    Development of the segmented central nerve cords of vertebrates and invertebrates requires connecting successive neuromeres. Here, we show both how a pathway is constructed to guide pioneer axons between segments of the Drosophila CNS, and how motility of the pioneers along that pathway is promoted. First, canonical Notch signaling in specialized glial cells causes nearby differentiating neurons to extrude a mesh of fine projections, and shapes that mesh into a continuous carpet that bridges from segment to segment, hugging the glial surface. This is the direct substratum that pioneer axons follow as they grow. Simultaneously, Notch uses an alternate, non-canonical signaling pathway in the pioneer growth cones themselves, promoting their motility by suppressing Abl signaling to stimulate filopodial growth while presumably reducing substratum adhesion. This propels the axons as they establish the connection between successive segments. PMID:21447553

  12. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  13. Regulation of the segmentation gene fushi tarazu has been functionally conserved in Drosophila.

    PubMed Central

    Maier, D; Preiss, A; Powell, J R

    1990-01-01

    An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila. Images Fig. 2. Fig. 6. PMID:2174353

  14. Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila.

    PubMed

    Technau, Gerhard M; Berger, Christian; Urbach, Rolf

    2006-04-01

    Development of the central nervous system (CNS) involves the transformation of a two-dimensional epithelial sheet of uniform ectodermal cells, the neuroectoderm, into a highly complex three-dimensional structure consisting of a huge variety of different neural cell types. Characteristic numbers of each cell type become arranged in reproducible spatial patterns, which is a prerequisite for the establishment of specific functional contacts. The fruitfly Drosophila is a suitable model to approach the mechanisms controlling the generation of cell diversity and pattern in the developing CNS, as it allows linking of gene function to individually identifiable cells. This review addresses aspects of the formation and specification of neural stem cells (neuroblasts) in Drosophila in the light of recent studies on their segmental diversification.

  15. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster

    SciTech Connect

    Kirby, D.A.; Stephan, W.

    1995-12-01

    Restriction map studies previously revealed extensive linkage disequilibria in the transcriptional unit of the white locus in natural Drosophila melanogaster populations. To understand the causes of these disequilibria, we sequenced a 4722-bp region of the white gene from 15 lines of D. melanogaster and 1 line of Drosophila simulans. Statistical tests applied to the entire 4722-bp region do not reject neutrality. In contrast, a test for high-frequency haplotypes ({open_quotes}Haplotype test{close_quotes}) revealed an 834-bp segment, encompassing the 3{prime} end of intron 1 to the 3{prime} end of intron 2, in which the structure of variation deviates significantly from the predictions of a neutral equilibrium model. The variants in this 834-bp segment segregate as single haplotype blocks. We propose that these unusually large haplotype blocks are due to positive selection on polymorphisms within the white gene, including a replacement polymorphism, Arg{yields}Leu, within this segment. 45 refs., 4 figs., 1 tab.

  16. Patterned Contractile Forces Promote Epidermal Spreading and Regulate Segment Positioning during Drosophila Head Involution.

    PubMed

    Czerniak, Natalia Dorota; Dierkes, Kai; D'Angelo, Arturo; Colombelli, Julien; Solon, Jérôme

    2016-07-25

    Epithelial spreading is a fundamental mode of tissue rearrangement occurring during animal development and wound closure. It has been associated either with the collective migration of cells [1, 2] or with actomyosin-generated forces acting at the leading edge (LE) and pulling the epithelial tissue [3, 4]. During the process of Drosophila head involution (HI), the epidermis spreads anteriorly to envelope the head tissues and fully cover the embryo [5]. This results in epidermal segments of equal width that will give rise to the different organs of the fly [6]. Here we perform a quantitative analysis of tissue spreading during HI. Combining high-resolution live microscopy with laser microsurgery and genetic perturbations, we show that epidermal movement is in part, but not solely, driven by a contractile actomyosin cable at the LE. Additional driving forces are generated within each segment by a gradient of actomyosin-based circumferential tension. Interfering with Hedgehog (Hh) signaling can modulate this gradient, thus suggesting the involvement of polarity genes in the regulation of HI. In particular, we show that disruption of these contractile forces alters segment widths and leads to a mispositioning of segments. Within the framework of a physical description, we confirm that given the geometry of the embryo, a patterned profile of active circumferential tensions can indeed generate propelling forces and control final segment position. Our study thus unravels a mechanism by which patterned tensile forces can regulate spreading and positioning of epithelial tissues.

  17. Segmental differences in firing properties and potassium currents in Drosophila larval motoneurons

    PubMed Central

    Srinivasan, Subhashini; Lance, Kimberley

    2012-01-01

    Potassium currents play key roles in regulating motoneuron activity, including functional specializations that are important for locomotion. The thoracic and abdominal segments in the Drosophila larval ganglion have repeated arrays of motoneurons that innervate body-wall muscles used for peristaltic movements during crawling. Although abdominal motoneurons and their muscle targets have been studied in detail, owing, in part, to their involvement in locomotion, little is known about the cellular properties of motoneurons in thoracic segments. The goal of this study was to compare firing properties among thoracic motoneurons and the potassium currents that influence them. Whole-cell, patch-clamp recordings performed from motoneurons in two thoracic and one abdominal segment revealed both transient and sustained voltage-activated K+ currents, each with Ca++-sensitive and Ca++-insensitive [A-type, voltage-dependent transient K+ current (IAv)] components. Segmental differences in the expression of voltage-activated K+ currents were observed. In addition, we demonstrate that Shal contributes to IAv currents in the motoneurons of the first thoracic segment. PMID:22157123

  18. Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways.

    PubMed

    Panser, Karin; Tirian, Laszlo; Schulze, Florian; Villalba, Santiago; Jefferis, Gregory S X E; Bühler, Katja; Straw, Andrew D

    2016-08-08

    Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates.

  19. Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila

    PubMed Central

    Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo

    2012-01-01

    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714

  20. spenito is required for sex determination in Drosophila melanogaster

    PubMed Central

    Yan, Dong; Perrimon, Norbert

    2015-01-01

    Sex-lethal (Sxl) encodes the master regulator of the sex determination pathway in Drosophila and acts by controlling sex identity in both soma and germ line. In females Sxl maintains its own expression by controlling the alternative splicing of its own mRNA. Here, we identify a novel sex determination gene, spenito (nito) that encodes a SPEN family protein. Loss of nito activity results in stem cell tumors in the female germ line as well as female-to-male somatic transformations. We show that Nito is a ubiquitous nuclear protein that controls the alternative splicing of the Sxl mRNA by interacting with Sxl protein and pre-mRNA, suggesting that it is directly involved in Sxl auto-regulation. Given that SPEN family proteins are frequently mutated in cancers, our results suggest that these factors might be implicated in tumorigenesis through splicing regulation. PMID:26324914

  1. Hybrid dysgenesis determinants in a natural Drosophila population from Altai

    SciTech Connect

    Kozhemyakina, T.A.; Furman, D.P.

    1995-09-01

    Localization of mobile elements P and hobo in the genomes of isofemale Drosophila lines obtained from a natural population from Biisk (Altai) was analyzed by in situ hybridization. The average copy number per genome was 27.1 for P and 22.0 for hobo. The highest number of P and hobo copies was recorded in the 3R and 21 chromosomes, respectively. The X chromosome contained the lowest number of hobo copies. For P, this relationship was not shown. Both transposons had preferential localization sites, or {open_quotes}hot spots,{close_quotes} which partly coincided with intercalary heterochromatin regions. Correlation analysis of P and hobo copy number showed independent distribution of these hybrid dysgenesis determinants. The 1A site, which is thought to be associated with the P cytotype expression, was not labelled in any line. 40 refs., 1 fig., 5 tabs.

  2. Canalization and Control in Automata Networks: Body Segmentation in Drosophila melanogaster

    PubMed Central

    Marques-Pita, Manuel; Rocha, Luis M.

    2013-01-01

    We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics – a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity – with the ultimate goal of explaining how do cells and tissues ‘compute’. PMID:23520449

  3. Canalization and control in automata networks: body segmentation in Drosophila melanogaster.

    PubMed

    Marques-Pita, Manuel; Rocha, Luis M

    2013-01-01

    We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics--a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity--with the ultimate goal of explaining how do cells and tissues 'compute'.

  4. Genome-Wide Survey of Hybrid Incompatibility Factors by the Introgression of Marked Segments of Drosophila Mauritiana Chromosomes into Drosophila Simulans

    PubMed Central

    True, J. R.; Weir, B. S.; Laurie, C. C.

    1996-01-01

    In hybrids between Drosophila simulans and D. mauritiana, males are sterile and females are fertile, in compliance with HALDANE's rule. The genetic basis of this phenomenon was investigated by introgression of segments of the mauritiana genome into a simulans background. A total of 87 positions throughout the mauritiana genome were marked with P-element insertions and replicate introgressions were made by repeated backcrossing to simulans for 15 generations. The fraction of hemizgyous X chromosomal introgressions that are male sterile is ~50% greater than the fraction of homozygous autosomal segments. This result suggests that male sterility factors have evolved at a higher rate on the X, but chromosomal differences in segment length cannot be ruled out. The fraction of homozygous autosomal introgressions that are male sterile is several times greater than the fraction that are either female sterile or inviable. This observation strongly indicates that male sterility factors have evolved more rapidly than either female sterility or inviability factors. These results, combined with previous work on these and other species, suggest that HALDANE's rule has at least two causes: recessivity of incompatibility factors and differential accumulation of sterility factors affecting males and females. PMID:8849890

  5. Axes determination for segmented true-coaxial HPGe detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Liu, J.; Majorovits, B.; Petrov, P.; Volynets, O.

    2012-03-01

    A fast method to determine the crystallographic axes of segmented true-coaxial high-purity germanium detectors is presented. It is based on the analysis of segment-occupancy patterns obtained by irradiation with radioactive sources. The measured patterns are compared to predictions for different axes orientations. The predictions require a simulation of the trajectories of the charge carriers taking the transverse anisotropy of their drift into account.

  6. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.

    PubMed

    Becker, Henrike; Renner, Simone; Technau, Gerhard M; Berger, Christian

    2016-03-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  7. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila

    PubMed Central

    Becker, Henrike; Renner, Simone; Technau, Gerhard M.; Berger, Christian

    2016-01-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  8. Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products.

    PubMed

    Holloway, David M; Harrison, Lionel G; Kosman, David; Vanario-Alonso, Carlos E; Spirov, Alexander V

    2006-11-01

    We analyze the relation between maternal gradients and segmentation in Drosophila, by quantifying spatial precision in protein patterns. Segmentation is first seen in the striped expression patterns of the pair-rule genes, such as even-skipped (eve). We compare positional precision between Eve and the maternal gradients of Bicoid (Bcd) and Caudal (Cad) proteins, showing that Eve position could be initially specified by the maternal protein concentrations but that these do not have the precision to specify the mature striped pattern of Eve. By using spatial trends, we avoid possible complications in measuring single boundary precision (e.g., gap gene patterns) and can follow how precision changes in time. During nuclear cleavage cycles 13 and 14, we find that Eve becomes increasingly correlated with egg length, whereas Bcd does not. This finding suggests that the change in precision is part of a separation of segmentation from an absolute spatial measure, established by the maternal gradients, to one precise in relative (percent egg length) units.

  9. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network

    PubMed Central

    Clark, Erik; Akam, Michael

    2016-01-01

    The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles. DOI: http://dx.doi.org/10.7554/eLife.18215.001 PMID:27525481

  10. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila

    PubMed Central

    Morcillo, Patrick; Rosen, Christina; Baylies, Mary K.; Dorsett, Dale

    1997-01-01

    The mechanisms allowing remote enhancers to regulate promoters several kilobase pairs away are unknown but are blocked by the Drosophila suppressor of Hairy-wing protein (Suhw) that binds to gypsy retrovirus insertions between enhancers and promoters. Suhw bound to a gypsy insertion in the cut gene also appears to act interchromosomally to antagonize enhancer–promoter interactions on the homologous chromosome when activity of the Chip gene is reduced. This implicates Chip in enhancer–promoter communication. We cloned Chip and find that it encodes a homolog of the recently discovered mouse Nli/Ldb1/Clim-2 and Xenopus Xldb1 proteins that bind nuclear LIM domain proteins. Chip protein interacts with the LIM domains in the Apterous homeodomain protein, and Chip interacts genetically with apterous, showing that these interactions are important for Apterous function in vivo. Importantly, Chip also appears to have broad functions beyond interactions with LIM domain proteins. Chip is present in all nuclei examined and at numerous sites along the salivary gland polytene chromosomes. Embryos without Chip activity lack segments and show abnormal gap and pair–rule gene expression, although no LIM domain proteins are known to regulate segmentation. We conclude that Chip is a ubiquitous chromosomal factor required for normal expression of diverse genes at many stages of development. We suggest that Chip cooperates with different LIM domain proteins and other factors to structurally support remote enhancer–promoter interactions. PMID:9334334

  11. Segmentation and determination of joint space width in foot radiographs

    NASA Astrophysics Data System (ADS)

    Schenk, O.; de Muinck Keizer, D. M.; Bernelot Moens, H. J.; Slump, C. H.

    2016-03-01

    Joint damage in rheumatoid arthritis is frequently assessed using radiographs of hands and feet. Evaluation includes measurements of the joint space width (JSW) and detection of erosions. Current visual scoring methods are timeconsuming and subject to inter- and intra-observer variability. Automated measurement methods avoid these limitations and have been fairly successful in hand radiographs. This contribution aims at foot radiographs. Starting from an earlier proposed automated segmentation method we have developed a novel model based image analysis algorithm for JSW measurements. This method uses active appearance and active shape models to identify individual bones. The model compiles ten submodels, each representing a specific bone of the foot (metatarsals 1-5, proximal phalanges 1-5). We have performed segmentation experiments using 24 foot radiographs, randomly selected from a large database from the rheumatology department of a local hospital: 10 for training and 14 for testing. Segmentation was considered successful if the joint locations are correctly determined. Segmentation was successful in only 14%. To improve results a step-by-step analysis will be performed. We performed JSW measurements on 14 randomly selected radiographs. JSW was successfully measured in 75%, mean and standard deviation are 2.30+/-0.36mm. This is a first step towards automated determination of progression of RA and therapy response in feet using radiographs.

  12. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants.

    PubMed

    Surkova, Svetlana; Golubkova, Elena; Manu; Panok, Lena; Mamon, Lyudmila; Reinitz, John; Samsonova, Maria

    2013-04-01

    Here we characterize the response of the Drosophila segmentation system to mutations in two gap genes, Kr and kni, in the form of single or double homozygotes and single heterozygotes. Segmentation gene expression in these genotypes was quantitatively monitored with cellular resolution in space and 6.5 to 13min resolution in time. As is the case with wild type, we found that gene expression domains in the posterior portion of the embryo shift to the anterior over time. In certain cases, such as the gt posterior domain in Kr mutants, the shifts are significantly larger than is seen in wild type embryos. We also investigated the effects of Kr and kni on the variability of gene expression. Mutations often produce variable phenotypes, and it is well known that the cuticular phenotype of Kr mutants is variable. We sought to understand the molecular basis of this effect. We find that throughout cycle 14A the relative levels of eve and ftz expression in stripes 2 and 3 are variable among individual embryos. Moreover, in Kr and kni mutants, unlike wild type, the variability in positioning of the posterior Hb domain and eve stripe 7 is not decreased or filtered with time. The posterior Gt domain in Kr mutants is highly variable at early times, but this variability decreases when this domain shifts in the anterior direction to the position of the neighboring Kni domain. In contrast to these findings, positional variability throughout the embryo does not decrease over time in double Kr;kni mutants. In heterozygotes the early expression patterns of segmentation genes resemble patterns seen in homozygous mutants but by the onset of gastrulation they become similar to the wild type patterns. Finally, we note that gene expression levels are reduced in Kr and kni mutant embryos and have a tendency to decrease over time. This is a surprising result in view of the role that mutual repression is thought to play in the gap gene system.

  13. How to make stripes: deciphering the transition from non-periodic to periodic patterns in Drosophila segmentation

    PubMed Central

    Schroeder, Mark D.; Greer, Christina; Gaul, Ulrike

    2011-01-01

    The generation of metameric body plans is a key process in development. In Drosophila segmentation, periodicity is established rapidly through the complex transcriptional regulation of the pair-rule genes. The ‘primary’ pair-rule genes generate their 7-stripe expression through stripe-specific cis-regulatory elements controlled by the preceding non-periodic maternal and gap gene patterns, whereas ‘secondary’ pair-rule genes are thought to rely on 7-stripe elements that read off the already periodic primary pair-rule patterns. Using a combination of computational and experimental approaches, we have conducted a comprehensive systems-level examination of the regulatory architecture underlying pair-rule stripe formation. We find that runt (run), fushi tarazu (ftz) and odd skipped (odd) establish most of their pattern through stripe-specific elements, arguing for a reclassification of ftz and odd as primary pair-rule genes. In the case of run, we observe long-range cis-regulation across multiple intervening genes. The 7-stripe elements of run, ftz and odd are active concurrently with the stripe-specific elements, indicating that maternal/gap-mediated control and pair-rule gene cross-regulation are closely integrated. Stripe-specific elements fall into three distinct classes based on their principal repressive gap factor input; stripe positions along the gap gradients correlate with the strength of predicted input. The prevalence of cis-elements that generate two stripes and their genomic organization suggest that single-stripe elements arose by splitting and subfunctionalization of ancestral dual-stripe elements. Overall, our study provides a greatly improved understanding of how periodic patterns are established in the Drosophila embryo. PMID:21693522

  14. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    PubMed Central

    Shimono, Kohei; Fujimoto, Azusa; Tsuyama, Taiichi; Yamamoto-Kochi, Misato; Sato, Motohiko; Hattori, Yukako; Sugimura, Kaoru; Usui, Tadao; Kimura, Ken-ichi; Uemura, Tadashi

    2009-01-01

    Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da) neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4) of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post-eclosion growth. It exhibited

  15. Sensory determinants of behavioral dynamics in Drosophila thermotaxis

    PubMed Central

    Klein, Mason; Afonso, Bruno; Vonner, Ashley J.; Hernandez-Nunez, Luis; Berck, Matthew; Tabone, Christopher J.; Kane, Elizabeth A.; Pieribone, Vincent A.; Nitabach, Michael N.; Cardona, Albert; Zlatic, Marta; Sprecher, Simon G.; Gershow, Marc; Garrity, Paul A.; Samuel, Aravinthan D. T.

    2015-01-01

    Complex animal behaviors are built from dynamical relationships between sensory inputs, neuronal activity, and motor outputs in patterns with strategic value. Connecting these patterns illuminates how nervous systems compute behavior. Here, we study Drosophila larva navigation up temperature gradients toward preferred temperatures (positive thermotaxis). By tracking the movements of animals responding to fixed spatial temperature gradients or random temperature fluctuations, we calculate the sensitivity and dynamics of the conversion of thermosensory inputs into motor responses. We discover three thermosensory neurons in each dorsal organ ganglion (DOG) that are required for positive thermotaxis. Random optogenetic stimulation of the DOG thermosensory neurons evokes behavioral patterns that mimic the response to temperature variations. In vivo calcium and voltage imaging reveals that the DOG thermosensory neurons exhibit activity patterns with sensitivity and dynamics matched to the behavioral response. Temporal processing of temperature variations carried out by the DOG thermosensory neurons emerges in distinct motor responses during thermotaxis. PMID:25550513

  16. Gcn5 determines the fate of Drosophila germline stem cells through degradation of Cyclin A.

    PubMed

    Liu, Tianqi; Wang, Qi; Li, Wenqing; Mao, Feiyu; Yue, Shanshan; Liu, Sun; Liu, Xiaona; Xiao, Shan; Xia, Laixin

    2017-02-10

    The fluctuating CDK-CYCLIN complex plays a general role in cell-cycle control. Many types of stem cells use unique features of the cell cycle to facilitate asymmetric division. However, the manner in which these features are established remains poorly understood. The cell cycle of Drosophila female germline stem cells (GSCs) is characterized by short G1 and very long G2 phases, making it an excellent model for the study of cell cycle control in stem cell fate determination. Using a Drosophila female GSCs model, we found Gcn5, the first discovered histone acetyltransferase, to maintain germline stem cells in Drosophila ovaries. Results showed that Gcn5 is dispensable for the transcriptional silencing of bam, but interacts with Cyclin A to facilitate proper turnover in GSCs. Results also showed that Gcn5 promotes Cyclin A ubiquitination, which is dependent on its acetylating activity. Finally, results showed that knockdown of Cyclin A rescued the GSC-loss phenotype caused by lack of Gcn5. Collectively, these findings support the conclusion that Gcn5 acts through acetylation to facilitate Cyclin A ubiquitination and proper turnover, thereby determining the fate of GSCs.-Liu, T., Wang, Q., Li, W., Mao, F., Yue, S., Liu, S., Liu, X., Xiao, S., Xia, L. Gcn5 determines the fate of Drosophila germline stem cells through degradation of Cyclin A.

  17. Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution

    PubMed Central

    Rothschild, Jeremy B.; Tsimiklis, Panagiotis; Siggia, Eric D.; François, Paul

    2016-01-01

    Molecular evolution is an established technique for inferring gene homology but regulatory DNA turns over so rapidly that inference of ancestral networks is often impossible. In silico evolution is used to compute the most parsimonious path in regulatory space for anterior-posterior patterning linking two Dipterian species. The expression pattern of gap genes has evolved between Drosophila (fly) and Anopheles (mosquito), yet one of their targets, eve, has remained invariant. Our model predicts that stripe 5 in fly disappears and a new posterior stripe is created in mosquito, thus eve stripe modules 3+7 and 4+6 in fly are homologous to 3+6 and 4+5 in mosquito. We can place Clogmia on this evolutionary pathway and it shares the mosquito homologies. To account for the evolution of the other pair-rule genes in the posterior we have to assume that the ancestral Dipterian utilized a dynamic method to phase those genes in relation to eve. PMID:27227405

  18. Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments.

    PubMed

    Kozłowska, Małgorzata; Tarczewska, Aneta; Jakób, Michał; Bystranowska, Dominika; Taube, Michał; Kozak, Maciej; Czarnocki-Cieciura, Mariusz; Dziembowski, Andrzej; Orłowski, Marek; Tkocz, Katarzyna; Ożyhar, Andrzej

    2017-01-11

    Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a β-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins.

  19. Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments

    PubMed Central

    Kozłowska, Małgorzata; Tarczewska, Aneta; Jakób, Michał; Bystranowska, Dominika; Taube, Michał; Kozak, Maciej; Czarnocki-Cieciura, Mariusz; Dziembowski, Andrzej; Orłowski, Marek; Tkocz, Katarzyna; Ożyhar, Andrzej

    2017-01-01

    Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a β-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins. PMID:28074868

  20. A Buoyancy-based Method of Determining Fat Levels in Drosophila.

    PubMed

    Hazegh, Kelsey E; Reis, Tânia

    2016-11-01

    Drosophila melanogaster is a key experimental system in the study of fat regulation. Numerous techniques currently exist to measure levels of stored fat in Drosophila, but most are expensive and/or laborious and have clear limitations. Here, we present a method to quickly and cheaply determine organismal fat levels in L3 Drosophila larvae. The technique relies on the differences in density between fat and lean tissues and allows for rapid detection of fat and lean phenotypes. We have verified the accuracy of this method by comparison to body fat percentage as determined by neutral lipid extraction and gas chromatography coupled with mass spectrometry (GCMS). We furthermore outline detailed protocols for the collection and synchronization of larvae as well as relevant experimental recipes. The technique presented below overcomes the major shortcomings in the most widely used lipid quantitation methods and provides a powerful way to quickly and sensitively screen L3 larvae for fat regulation phenotypes while maintaining the integrity of the larvae. This assay has wide applications for the study of metabolism and fat regulation using Drosophila.

  1. Toward new Drosophila paradigms.

    PubMed

    Andrioli, Luiz Paulo

    2012-08-01

    The fruit fly Drosophila melanogaster is a great model system in developmental biology studies and related disciplines. In a historical perspective, I focus on the formation of the Drosophila segmental body plan using a comparative approach. I highlight the evolutionary trend of increasing complexity of the molecular segmentation network in arthropods that resulted in an incredible degree of complexity at the gap gene level in derived Diptera. There is growing evidence that Drosophila is a highly derived insect, and we are still far from fully understanding the underlying evolutionary mechanisms that led to its complexity. In addition, recent data have altered how we view the transcriptional regulatory mechanisms that control segmentation in Drosophila. However, these observations are not all bad news for the field. Instead, they stimulate further study of segmentation in Drosophila and in other species as well. To me, these seemingly new Drosophila paradigms are very challenging ones.

  2. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    SciTech Connect

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C.; Agvaanluvsan, U.; Becvar, F.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{sup {pi}} = 1{sup -} and 2{sup -}.

  3. Altering the sex determination pathway in Drosophila fat body modifies sex-specific stress responses

    PubMed Central

    Neckameyer, Wendi S.

    2014-01-01

    The stress response in Drosophila melanogaster reveals sex differences in behavior, similar to what has been observed in mammals. However, unlike mammals, the sex determination pathway in Drosophila is well established, making this an ideal system to identify factors involved in the modulation of sex-specific responses to stress. In this study, we show that the Drosophila fat body, which has been shown to be important for energy homeostasis and sex determination, is a dynamic tissue that is altered in response to stress in a sex and time-dependent manner. We manipulated the sex determination pathway in the fat body via targeted expression of transformer and transformer-2 and analyzed these animals for changes in their response to stress. In the majority of cases, manipulation of transformer or transformer-2 was able to change the physiological output in response to starvation and oxidative stress to that of the opposite sex. Our data also uncover the possibility of additional downstream targets for transformer and transformer-2 that are separate from the sex determination pathway and can influence behavioral and physiological responses. PMID:24789992

  4. Human homologue sequences to the Drosophila dishevelled segment-polarity gene are deleted in the DiGeorge syndrome

    SciTech Connect

    Pizzuti, A.; Ratti, A.; Penso, D.; Silani, V.; Scarlato, G.

    1996-04-01

    DiGeorge syndrome (DGS) is a developmental defect of some of the neural crest derivatives. Most DGS patients show haploinsufficiency due to interstitial deletions of the proximal long arm of chromosome 22. Deletions of 22q11 have also been reported in patients with the velo-cardio-facial syndrome and familial conotruncal heart defects. It has been suggested that the wide phenotype spectrum associated with 22q11 monosomy is a consequence of contiguous-gene deletions. We report the isolation of human cDNAs homologous to the Drosophila dishevelled (dsh) segment-polarity gene. Sequences homologous to the 3{prime} UTR of these transcripts (DVL-22) were positioned within the DGS critical region and were found to be deleted in DGS patients. Human DVL mRNAs are expressed in several fetal and adult tissues, including the thymus and, at high levels, the heart. Two transcripts, 3.2 and 5 kb, were detected, in Northern blot analysis, with different expression patterns in the surveyed tissues when different cDNAs were used. The isolated cDNAs exhibit high amino acid homology with the mouse and Xenopus Dvl-1 gene, the only other vertebrate dsh homologues so far isolated. The pivotal role of dsh in fly development suggests an analogous key function in vertebrate embryogenesis of its homologue genes. Since DGS may be due to perturbation of differentiation mechanisms at decisive embryological stages, a Dsh-like gene in the small-region overlap (SRO) might be a candidate for the pathogenesis of this disorder. 52 refs., 3 figs.

  5. Human homologue sequences to the Drosophila dishevelled segment-polarity gene are deleted in the DiGeorge syndrome.

    PubMed

    Pizzuti, A; Novelli, G; Mari, A; Ratti, A; Colosimo, A; Amati, F; Penso, D; Sangiuolo, F; Calabrese, G; Palka, G; Silani, V; Gennarelli, M; Mingarelli, R; Scarlato, G; Scambler, P; Dallapiccola, B

    1996-04-01

    DiGeorge syndrome (DGS) is a developmental defect of some of the neural crest derivatives. Most DGS patients show haploinsufficiency due to interstitial deletions of the proximal long arm of chromosome 22. Deletions of 22q11 have also been reported with patients with the velocardio-facial syndrome and familial conotruncal heart defects. It has been suggested that the wide phenotype spectrum associated with 22q11 monosomy is a consequence of contiguous-gene deletions. We report the isolation of human cDNAs homologous to the Drosophila dishevelled (dsh) segment-polarity gene. Sequences homologous to the 3' UTR of these transcripts (DVL-22) were positioned within the DGS critical region and were found to be deleted in DGS patients. Human DVL mRNAs are expressed in several fetal and adult tissues, including the thymus and, at high levels, the heart. Two transcripts, 3.2 and 5kb, were detected, in northern blot analysis, with different expression patterns in the surveyed tissues when different cDNAs were used. The isolated cDNAs exhibit high amino acid homology with the mouse and Xenopus Dvl-1 gene, the only other vertebrate dsh homologues so far isolated. The pivotal role of dsh in fly development suggests an analogous key function in vertebrate embryogenesis of its homologue genes. Since DGS may be due to perturbation of differentiation mechanisms at decisive embryological stages, a Dsh-like gene in the small-region overlap (SRO) might be a candidate for the pathogenesis of this disorder.

  6. Human homologue sequences to the Drosophila dishevelled segment-polarity gene are deleted in the DiGeorge syndrome.

    PubMed Central

    Pizzuti, A.; Novelli, G.; Mari, A.; Ratti, A.; Colosimo, A.; Amati, F.; Penso, D.; Sangiuolo, F.; Calabrese, G.; Palka, G.; Silani, V.; Gennarelli, M.; Mingarelli, R.; Scarlato, G.; Scambler, P.; Dallapiccola, B.

    1996-01-01

    DiGeorge syndrome (DGS) is a developmental defect of some of the neural crest derivatives. Most DGS patients show haploinsufficiency due to interstitial deletions of the proximal long arm of chromosome 22. Deletions of 22q11 have also been reported with patients with the velocardio-facial syndrome and familial conotruncal heart defects. It has been suggested that the wide phenotype spectrum associated with 22q11 monosomy is a consequence of contiguous-gene deletions. We report the isolation of human cDNAs homologous to the Drosophila dishevelled (dsh) segment-polarity gene. Sequences homologous to the 3' UTR of these transcripts (DVL-22) were positioned within the DGS critical region and were found to be deleted in DGS patients. Human DVL mRNAs are expressed in several fetal and adult tissues, including the thymus and, at high levels, the heart. Two transcripts, 3.2 and 5kb, were detected, in northern blot analysis, with different expression patterns in the surveyed tissues when different cDNAs were used. The isolated cDNAs exhibit high amino acid homology with the mouse and Xenopus Dvl-1 gene, the only other vertebrate dsh homologues so far isolated. The pivotal role of dsh in fly development suggests an analogous key function in vertebrate embryogenesis of its homologue genes. Since DGS may be due to perturbation of differentiation mechanisms at decisive embryological stages, a Dsh-like gene in the small-region overlap (SRO) might be a candidate for the pathogenesis of this disorder. Images Figure 1 Figure 2 Figure 3 PMID:8644734

  7. Differential Selection within the Drosophila Retinal Determination Network and Evidence for Functional Divergence between Paralog Pairs

    PubMed Central

    Datta, Rhea R.; Cruickshank, Tami; Kumar, Justin P.

    2011-01-01

    The retinal determination (RD) network in Drosophila comprises fourteen known nuclear proteins that include DNA binding proteins, transcriptional co-activators, kinases and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of retinal determination genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, ten members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the retinal determination network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent to silent site substitutions (dN/dS) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared to its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs. PMID:21210943

  8. Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development.

    PubMed

    Koto, Akiko; Kuranaga, Erina; Miura, Masayuki

    2009-10-19

    The caspases comprise a family of cysteine proteases that function in various cellular processes, including apoptosis. However, how the balance is struck between the caspases' role in cell death and their nonapoptotic functions is unclear. To address this issue, we monitored the protein turnover of an endogenous caspase inhibitor, Drosophila IAP1 (DIAP1). DIAP1 is an E3 ubiquitin ligase that promotes the ubiquitination of caspases and thereby prevents caspase activation. For this study, we developed a fluorescent probe to monitor DIAP1 turnover in the external sensory organ precursor (SOP) lineage of living Drosophila. The SOP divides asymmetrically to make the shaft, socket, and sheath cells, and the neuron that comprise each sensory organ. We found that the quantity of DIAP1 changed dramatically depending on the cell type and maturity, and that the temporal regulation of DIAP1 turnover determines whether caspases function nonapoptotically in cellular morphogenesis or cause cell death.

  9. [Genetic determinants of generating the motor pattern of rhythmic movements in Drosophila melanogaster].

    PubMed

    Fedotov, S A; Bragina, Iu V; Besedina, N G; Danilenkova, L V; Kamysheva, E A; Kamyshev, N G

    2013-01-01

    To investigate molecular and cellular mechanisms of central pattern generators (CPG) functioning, we previously selected candidate genes mutations of which are accompanied with deviations in Drosophila melanogaster motor activity. In this research we tested locomotor parameters in lines with post transcriptional silencing of 12 candidate gene in Drosophila central nervous system. Silencing was provided by synthesis of interfering RNA by means of GAL4/UAS system under control of CNS-specific gene promoters (elav, nrv2, appl, tsh). It was found that RNA interference of most genes are accompanied with changes in one or several locomotor parameters. Pattern of revealed deviations under control of different promotors makes it possible to determine the genes that activity in nervous system is necessary for proper functioning of locomotor CPG.

  10. Neutral evolution of the sex-determining gene transformer in Drosophila.

    PubMed Central

    McAllister, B F; McVean, G A

    2000-01-01

    The amino acid sequence of the transformer (tra) gene exhibits an extremely rapid rate of evolution among Drosophila species, although the gene performs a critical step in sex determination. These changes in amino acid sequence are the result of either natural selection or neutral evolution. To differentiate between selective and neutral causes of this evolutionary change, analyses of both intraspecific and interspecific patterns of molecular evolution of tra gene sequences are presented. Sequences of 31 tra alleles were obtained from Drosophila americana. Many replacement and silent nucleotide variants are present among the alleles; however, the distribution of this sequence variation is consistent with neutral evolution. Sequence evolution was also examined among six species representative of the genus Drosophila. For most lineages and most regions of the gene, both silent and replacement substitutions have accumulated in a constant, clock-like manner. In exon 3 of D. virilis and D. americana we find evidence for an elevated rate of nonsynonymous substitution, but no statistical support for a greater rate of nonsynonymous relative to synonymous substitutions. Both levels of analysis of the tra sequence suggest that, although the gene is evolving at a rapid pace, these changes are neutral in function. PMID:10747064

  11. Sex and the Single Cell. I. on the Action of Major Loci Affecting Sex Determination in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Ridge, Kimberly A.

    1980-01-01

    Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra+ and tra-2+ cease being needed shortly before the termination of cell division in the abdomen, whereas dsx+ is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra+ and tra-2+ have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx+ is required in the foreleg at least until pupariation.——A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.—All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are

  12. Drosophila RpS3a, a novel Minute gene situated between the segment polarity genescubitus interruptus and dTCF.

    PubMed

    van Beest, M; Mortin, M; Clevers, H

    1998-10-01

    Genetic analysis of the small chromosome 4 of Drosophila has been hampered by the virtual lack of recombination. The segment polarity gene cubitus interruptus (ci) maps to the most intensively studied locus on this chromosome. Up to four complementation groups have been found to be associated with ci. We and others have recently characterized a second segment polarity gene, dTCF or pan, 12 kb upstream of ci, in a head-to-head configuration. During the course of these studies we identified a transcription unit in the intergenic region. We report here the cloning of cDNAs from this transcription unit, which encode the Drosophila homologue of the human ribosomal protein S3a (RpS3a). The RpS3a gene is expressed ubiquitously and throughout development. A Minute allele, M(4)101, linked tightly to ci, was found to harbour an integration of a Doc retroposon in the promotor region of RpS3a. Thus, like other Minute loci, M(4)101 encodes a component of the protein synthesis machinery. These data further unravel the complex genetics surrounding the ci and dTCF loci.

  13. Segments.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Presents a market taxonomy for higher education, including what it reveals about the structure of the market, the model's technical attributes, and its capacity to explain pricing behavior. Details the identification of the principle seams separating one market segment from another and how student aspirations help to organize the market, making…

  14. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size

    PubMed Central

    Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  15. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  16. asunder is required for dynein localization and dorsal fate determination during Drosophila oogenesis.

    PubMed

    Sitaram, Poojitha; Merkle, Julie A; Lee, Ethan; Lee, Laura A

    2014-02-01

    We previously showed that asunder (asun) is a critical regulator of dynein localization during Drosophila spermatogenesis. Because the expression of asun is much higher in Drosophila ovaries and early embryos than in testes, we herein sought to determine whether ASUN plays roles in oogenesis and/or embryogenesis. We characterized the female germline phenotypes of flies homozygous for a null allele of asun (asun(d93)). We find that asun(d93) females lay very few eggs and contain smaller ovaries with a highly disorganized arrangement of ovarioles in comparison to wild-type females. asun(d93) ovaries also contain a significant number of egg chambers with structural defects. A majority of the eggs laid by asun(d93) females are ventralized to varying degrees, from mild to severe; this ventralization phenotype may be secondary to defective localization of gurken transcripts, a dynein-regulated step, within asun(d93) oocytes. We find that dynein localization is aberrant in asun(d93) oocytes, indicating that ASUN is required for this process in both male and female germ cells. In addition to the loss of gurken mRNA localization, asun(d93) ovaries exhibit defects in other dynein-mediated processes such as migration of nurse cell centrosomes into the oocyte during the early mitotic divisions, maintenance of the oocyte nucleus in the anterior-dorsal region of the oocyte in late-stage egg chambers, and coupling between the oocyte nucleus and centrosomes. Taken together, our data indicate that asun is a critical regulator of dynein localization and dynein-mediated processes during Drosophila oogenesis.

  17. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system

    PubMed Central

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-01-01

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.13715.001 PMID:26987017

  18. Drosophila SETDB1 and caspase cooperatively fine-tune cell fate determination of sensory organ precursor.

    PubMed

    Shinoda, Natsuki; Obata, Fumiaki; Zhang, Liu; Miura, Masayuki

    2016-04-01

    Drosophila produce a constant number of mechanosensory bristles called macrochaetae (MC), which develop from sensory organ precursor (SOP) cells within a proneural cluster (PNC). However, what ensures the precise determination of SOP cells remains to be elucidated. In this study, we conducted RNAi screening in PNC for genes involved in epigenetic regulation. We identified a H3K9 histone methyltransferase, SETDB1/eggless, as a regulator of SOP development. Knockdown of SETDB1 in PNC led to additional SOPs. We further tested the relationship between SETDB1 and non-apoptotic function of caspase on SOP development. Reinforcing caspase activation by heterozygous Drosophila inhibitor of apoptosis protein 1 (DIAP1) mutation rescued ectopic SOP development caused by SETDB1 knockdown. Knockdown of SETDB1, however, had little effect on caspase activity. Simultaneous loss of SETDB1 and caspase activity resulted in further increase in MC, indicating that the two components work cooperatively. Our study suggests the fine-tuning mechanisms for SOP development by epigenetic methyltransferase and non-apoptotic caspase function.

  19. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    PubMed

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  20. Clinical value of prostate segmentation and volume determination on MRI in benign prostatic hyperplasia.

    PubMed

    Garvey, Brian; Türkbey, Barış; Truong, Hong; Bernardo, Marcelino; Periaswamy, Senthil; Choyke, Peter L

    2014-01-01

    Benign prostatic hyperplasia (BPH) is a nonmalignant pathological enlargement of the prostate, which occurs primarily in the transitional zone. BPH is highly prevalent and is a major cause of lower urinary tract symptoms in aging males, although there is no direct relationship between prostate volume and symptom severity. The progression of BPH can be quantified by measuring the volumes of the whole prostate and its zones, based on image segmentation on magnetic resonance imaging. Prostate volume determination via segmentation is a useful measure for patients undergoing therapy for BPH. However, prostate segmentation is not widely used due to the excessive time required for even experts to manually map the margins of the prostate. Here, we review and compare new methods of prostate volume segmentation using both manual and automated methods, including the ellipsoid formula, manual planimetry, and semiautomated and fully automated segmentation approaches. We highlight the utility of prostate segmentation in the clinical context of assessing BPH.

  1. Functional conservation of the sex-lethal sex determining promoter, Sxl-Pe, in Drosophila virilis.

    PubMed

    Jinks, Timothy Morgan; Calhoun, Gretchen; Schedl, Paul

    2003-05-01

    The primary sex determination signal in Drosophila melanogaster, the ratio of X chromosomes to autosomes, sets the activity state of the switch gene, Sex-lethal ( Sxl), by regulating the establishment promoter, m-Sxl-Pe. We have identified and characterized the establishment promoter, v-Sxl-Pe, of the distantly related species Drosophila virilis. Like melanogaster, the virilis Sxl-Pe is organized into four sub-domains: the Sxl-Pe mRNA leader and exon E1 of Sxl protein, the core promoter, the sex-specific element and the augmentation element. The core promoter and sex-specific element of v-Sxl-Pe show considerable sequence similarity to m-Sxl-Pe and contain target sites for components of the X/A signaling system. While the augmentation element of v-Sxl-Pe also has sequence motifs that could function as target sites for the X/A signaling system, it shows little similarity to the melanogaster augmentation element. Functional studies reveal that v-Sxl-Pe drives sex-specific expression in D. melanogaster embryos and that the activity of the virilis promoter is controlled by known components of the melanogaster X/A counting system. Although v-Sxl-Pe responds appropriately to the melanogaster sex determination signal, it is less active than Sxl-Pe from melanogaster. Unexpectedly, the reduced activity is due to differences in the activity of the conserved core promoter, while the non-conserved augmentation element functions effectively. These findings suggest that low-affinity target sites for the X/A counting system are critical for the functioning of Sxl-Pe.

  2. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila

    PubMed Central

    Mathews, Kristina Wehr; Cavegn, Margrith; Zwicky, Monica

    2017-01-01

    Drosophila females are larger than males. In this article, we describe how X-chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X-linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X-chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X-chromosome signal elements (XSEs), Sex-lethal (Sxl) is activated in female (XX) but not male (XY) animals. Sxl activates transformer (tra), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X-chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc, was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism. PMID:28064166

  3. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila.

    PubMed

    Wehr Mathews, Kristina; Cavegn, Margrith; Zwicky, Monica

    2017-01-06

    Drosophila females are larger than males. In this paper, we describe how X chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X-linked growth regulating gene and second, through female-specific activation of the sex-determination pathway. X-chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X-chromosome signal elements (XSEs), Sex-lethal (Sxl) is activated in female (XX) but not male (XY) animals. Sxl activates transformer (tra), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by over 9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc, was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early, development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism.

  4. Deformed protein binding sites and cofactor binding sites are required for the function of a small segment-specific regulatory element in Drosophila embryos.

    PubMed Central

    Zeng, C; Pinsonneault, J; Gellon, G; McGinnis, N; McGinnis, W

    1994-01-01

    How each of the homeotic selector proteins can regulate distinct sets of DNA target elements in embryos is not understood. Here we describe a detailed functional dissection of a small element that is specifically regulated by the Deformed homeotic protein. This 120 bp element (module E) is part of a larger 2.7 kb autoregulatory enhancer that maintains Deformed (Dfd) transcription in the epidermis of the maxillary and mandibular segments of Drosophila embryos. In vitro binding assays show that module E contains only one Dfd protein binding site. Mutations in the Dfd binding site that increase or decrease its in vitro affinity for Dfd protein generate parallel changes in the regulatory activity of module E in transgenic embryos, strong evidence that the in vitro-defined binding site is a direct target of Dfd protein in embryos. However, a monomer or multimer of the Dfd binding region alone is not sufficient to supply Dfd-dependent, segment-specific reporter gene expression. An analysis of a systematic series of clustered point mutations in module E revealed that an additional region containing an imperfect inverted repeat sequence is also required for the function of this homeotic protein response element. The Dfd binding site and the putative cofactor binding site(s) in the region of the inverted repeat are both necessary and in combination sufficient for the function of module E. Images PMID:7910795

  5. Comparison of human and Drosophila atlastin GTPases.

    PubMed

    Wu, Fuyun; Hu, Xiaoyu; Bian, Xin; Liu, Xinqi; Hu, Junjie

    2015-02-01

    Formation of the endoplasmic reticulum (ER) network requires homotypic membrane fusion, which involves a class of atlastin (ATL) GTPases. Purified Drosophila ATL is capable of mediating vesicle fusion in vitro, but such activity has not been reported for any other ATLs. Here, we determined the preliminary crystal structure of the cytosolic segment of Drosophila ATL in a GDP-bound state. The structure reveals a GTPase domain dimer with the subsequent three-helix bundles associating with their own GTPase domains and pointing in opposite directions. This conformation is similar to that of human ATL1, to which GDP and high concentrations of inorganic phosphate, but not GDP only, were included. Drosophila ATL restored ER morphology defects in mammalian cells lacking ATLs, and measurements of nucleotide-dependent dimerization and GTPase activity were comparable for Drosophila ATL and human ATL1. However, purified and reconstituted human ATL1 exhibited no in vitro fusion activity. When the cytosolic segment of human ATL1 was connected to the transmembrane (TM) region and C-terminal tail (CT) of Drosophila ATL, the chimera still exhibited no fusion activity, though its GTPase activity was normal. These results suggest that GDP-bound ATLs may adopt multiple conformations and the in vitro fusion activity of ATL cannot be achieved by a simple collection of functional domains.

  6. Primary Sex Determination in Drosophila melanogaster Does Not Rely on the Male-Specific Lethal Complex.

    PubMed

    Erickson, James W

    2016-02-01

    It has been proposed that the Male Specific Lethal (MSL) complex is active in Drosophila melanogaster embryos of both sexes prior to the maternal-to-zygotic transition. Elevated gene expression from the two X chromosomes of female embryos is proposed to facilitate the stable establishment of Sex-lethal (Sxl) expression, which determines sex and represses further activity of the MSL complex, leaving it active only in males. Important supporting data included female-lethal genetic interactions between the seven msl genes and either Sxl or scute and sisterlessA, two of the X-signal elements (XSE) that regulate early Sxl expression. Here I report contrary findings that there are no female-lethal genetic interactions between the msl genes and Sxl or its XSE regulators. Fly stocks containing the msl3(1) allele were found to exhibit a maternal-effect interaction with Sxl, scute, and sisterlessA mutations, but genetic complementation experiments showed that msl3 is neither necessary nor sufficient for the female-lethal interactions, which appear to be due to an unidentified maternal regulator of Sxl. Published data cited as evidence for an early function of the MSL complex in females, including a maternal effect of msl2, have been reevaluated and found not to support a maternal, or other effect, of the MSL complex in sex determination. These findings suggest that the MSL complex is not involved in primary sex determination or in X chromosome dosage compensation prior to the maternal-to-zygotic transition.

  7. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery

    SciTech Connect

    Stoecker, Christina; Moltz, Jan H.; Lassen, Bianca; Kuhnigk, Jan-Martin; Krass, Stefan; Welter, Stefan; Peitgen, Heinz-Otto

    2013-09-15

    Purpose: Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly desirable. Computer-assisted identification of lung segments in CT images is subject of this work.Methods: The authors present a new interactive approach for the segmentation of lung segments that uses the Euclidean distance of each point in the lung to the segmental branches of the pulmonary artery. The aim is to analyze the potential of the method. Detailed manual pulmonary artery segmentations are used to achieve the best possible segment approximation results. A detailed description of the method and its evaluation on 11 CT scans from clinical routine are given.Results: An accuracy of 2–3 mm is measured for the segment boundaries computed by the pulmonary artery-based method. On average, maximum deviations of 8 mm are observed. 135 intersegmental pulmonary veins detected in the 11 test CT scans serve as reference data. Furthermore, a comparison of the presented pulmonary artery-based approach to a similar approach that uses the Euclidean distance to the segmental branches of the bronchial tree is presented. It shows a significantly higher accuracy for the pulmonary artery-based approach in lung regions at least 30 mm distal to the lung hilum.Conclusions: A pulmonary artery-based determination of lung segments in CT images is promising. In the tests, the pulmonary artery-based determination has been shown to be superior to the bronchial tree-based determination. The suitability of the segment approximation method for application in the planning of segment resections in clinical practice has already been verified in experimental cases. However, automation of the method accompanied by an evaluation on a larger

  8. Isolating Spermathecae and Determining Mating Status of Drosophila suzukii: A Protocol for Tissue Dissection and Its Applications

    PubMed Central

    Avanesyan, Alina; Jaffe, Benjamin D.; Guédot, Christelle

    2017-01-01

    The spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), is an emerging invasive pest, which attacks a wide variety of fruits and berries. Although previous studies have focused on different aspects of D. suzukii reproductive biology, there are no protocols available for determining the mating status of D. suzukii females and drosophilids in general. In this study, a step-by-step protocol for tissue dissection, isolating spermathecae, and determining the mating status of females was developed specifically for D. suzukii. This protocol is an effective and relatively quick method for determining female mating status. It has important applications from exploring reproductive output of D. suzukii females to understanding the biology of D. suzukii winter morph, which presumably plays the main role in the overwintering of this invasive species. We demonstrated applicability of this protocol for both field collected flies and flies reared in the lab, including fly specimens stored on a long-term basis. PMID:28287438

  9. The origin of chromosomal inversions as a source of segmental duplications in the Sophophora subgenus of Drosophila.

    PubMed

    Puerma, Eva; Orengo, Dorcas J; Aguadé, Montserrat

    2016-07-29

    Chromosomal inversions can contribute to the adaptation of organisms to their environment by capturing particular advantageous allelic combinations of a set of genes included in the inverted fragment and also by advantageous functional changes due to the inversion process itself that might affect not only the expression of flanking genes but also their dose and structure. Of the two mechanisms originating inversions -ectopic recombination, and staggered double-strand breaks and subsequent repair- only the latter confers the inversion the potential to have dosage effects and/or to generate advantageous chimeric genes. In Drosophila subobscura, there is ample evidence for the adaptive character of its chromosomal polymorphism, with an important contribution of some warm-climate arrangements such as E1+2+9+12. Here, we have characterized the breakpoints of inversion E12 and established that it originated through the staggered-break mechanism like four of the five inversions of D. subobscura previously studied. This mechanism that also predominates in the D. melanogaster lineage might be prevalent in the Sophophora subgenus and contribute to the adaptive character of the polymorphic and fixed inversions of its species. Finally, we have shown that the D. subobscura inversion breakpoint regions have generally been disrupted by additional structural changes occurred at different time scales.

  10. The origin of chromosomal inversions as a source of segmental duplications in the Sophophora subgenus of Drosophila

    PubMed Central

    Puerma, Eva; Orengo, Dorcas J.; Aguadé, Montserrat

    2016-01-01

    Chromosomal inversions can contribute to the adaptation of organisms to their environment by capturing particular advantageous allelic combinations of a set of genes included in the inverted fragment and also by advantageous functional changes due to the inversion process itself that might affect not only the expression of flanking genes but also their dose and structure. Of the two mechanisms originating inversions —ectopic recombination, and staggered double-strand breaks and subsequent repair— only the latter confers the inversion the potential to have dosage effects and/or to generate advantageous chimeric genes. In Drosophila subobscura, there is ample evidence for the adaptive character of its chromosomal polymorphism, with an important contribution of some warm-climate arrangements such as E1+2+9+12. Here, we have characterized the breakpoints of inversion E12 and established that it originated through the staggered-break mechanism like four of the five inversions of D. subobscura previously studied. This mechanism that also predominates in the D. melanogaster lineage might be prevalent in the Sophophora subgenus and contribute to the adaptive character of the polymorphic and fixed inversions of its species. Finally, we have shown that the D. subobscura inversion breakpoint regions have generally been disrupted by additional structural changes occurred at different time scales. PMID:27470196

  11. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding

    PubMed Central

    Remus, Dirk; Beall, Eileen L; Botchan, Michael R

    2004-01-01

    Drosophila origin recognition complex (ORC) localizes to defined positions on chromosomes, and in follicle cells the chorion gene amplification loci are well-studied examples. However, the mechanism of specific localization is not known. We have studied the DNA binding of DmORC to investigate the cis-requirements for DmORC:DNA interaction. DmORC displays at best six-fold differences in the relative affinities to DNA from the third chorion locus and to random fragments in vitro, and chemical probing and DNase1 protection experiments did not identify a discrete binding site for DmORC on any of these fragments. The intrinsic DNA-binding specificity of DmORC is therefore insufficient to target DmORC to origins of replication in vivo. However, the topological state of the DNA significantly influences the affinity of DmORC to DNA. We found that the affinity of DmORC for negatively supercoiled DNA is about 30-fold higher than for either relaxed or linear DNA. These data provide biochemical evidence for the notion that origin specification in metazoa likely involves mechanisms other than simple replicator–initiator interactions and that in vivo other proteins must determine ORC's localization. PMID:14765124

  12. Drosophila eye size is determined by Innexin 2-dependent Decapentaplegic signalling.

    PubMed

    Richard, Mélisande; Hoch, Michael

    2015-12-01

    Organogenesis relies on specific genetic and molecular programmes, which orchestrate growth and cellular differentiation over developmental time. This is particularly important during Drosophila eye development in which cell-cell inductive events and long-range signalling have to be integrated to regulate proper cell proliferation, differentiation and morphogenesis. How these processes are coordinated is still not very well understood. Here we identify the gap junction protein Innexin2 (Inx2) as an important regulator of eye development. Depleting inx2 during eye development reduces eye size whereas elevating inx2 levels increases eye size. Loss- and gain-of-function experiments demonstrate that inx2 is required functionally in larval eye disc cells where it localises apico-laterally. inx2 regulates disc cell proliferation as well as morphogenetic furrow movement and as a result the amount of differentiated photoreceptors. inx2 interacts genetically with the Dpp pathway and we find that proper activation of the Dpp pathway transducer Mad at the furrow and expression of Dpp receptors Thickveins and Punt in the anterior disc compartment require inx2. We further show that inx2 is required for the transcriptional activation of dpp and punt in the eye disc. Our results highlight the crucial role of gap junction proteins in regulating morphogen-dependent organ size determination.

  13. Protein-protein interactions among components of the Drosophila primary sex determination signal.

    PubMed

    Liu, Y; Belote, J M

    1995-07-28

    Sex determination in Drosophila melanogaster is initiated in the early embryo by a signal provided by three types of genes: (1) X-linked numerator elements [e.g., sisterless-a (sis-a) and sisterless-b (sis-b)], (2) autosomally linked denominator elements [e.g., deadpan (dpn)], and (3) maternal factors [e.g., daughterless (da)]. This signal acts to stimulate transcription from an embryo-specific promoter of the master regulatory gene Sex-lethal (Sxl) in embryos that have two X chromosomes (females), while it fails to activate Sxl in those with only one X (males). It has been previously proposed that competitive dimerizations among the components of this signal might provide the molecular basis for this sex specificity. Here, we use the yeast two-hybrid system to demonstrate specific protein-protein interactions among the above-mentioned factors, and to delimit their interacting domains. These results support and extend the model of the molecular basis of the X/A ratio signal.

  14. Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe

    PubMed Central

    Apitz, Holger

    2016-01-01

    Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC. PMID:27381228

  15. An Interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision

    PubMed Central

    Mulvey, Brett B.; Olcese, Ursula; Cabrera, Janel R.; Horabin, Jamila I.

    2014-01-01

    Genome analysis in several eukaryotes shows a surprising number of transcripts which do not encode conventional messenger RNAs. Once considered noise, these non-coding RNAs (ncRNAs) appear capable of controlling gene expression by various means. We find Drosophila sex determination, specifically the master-switch gene Sex-lethal (Sxl), is regulated by long ncRNAs (>200 nt). The lncRNAs influence the dose sensitive establishment promoter of Sxl, SxlPe, which must be activated to specify female sex. They are primarily from two regions, R1 and R2, upstream of SxlPeand show a dynamic developmental profile. Of the four lncRNA strands only one, R2 antisense, has its peak coincident with SxlPe transcription, suggesting it may promote activation. Indeed, its expression is regulated by the X chromosome counting genes, whose dose determines whether SxlPe is transcribed. Transgenic lines which ectopically express each of the lncRNAs show they can act in trans, impacting the process of sex determination but also altering the levels of the other lncRNAs. Generally, expression of R1 is negative whereas R2 is positive to females. This ectopic expression also results in a change in the local chromatin marks, affecting the timing and strength of SxlPe transcription. The chromatin marks are those deposited by the Polycomb and Trithorax groups of chromatin modifying proteins, which we find bind to the lncRNAs. We suggest the increasing numbers of non-coding transcripts being identified are a harbinger of interacting networks similar to the one we describe. PMID:24954180

  16. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    SciTech Connect

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  17. Segmentation of fault networks determined from spatial clustering of earthquakes

    NASA Astrophysics Data System (ADS)

    Ouillon, G.; Sornette, D.

    2011-02-01

    We present a new method of data clustering applied to earthquake catalogs, with the goal of reconstructing the seismically active part of fault networks. We first use an original method to separate clustered events from uncorrelated seismicity using the distribution of volumes of tetrahedra defined by closest neighbor events in the original and randomized seismic catalogs. The spatial disorder of the complex geometry of fault networks is then taken into account by defining faults as probabilistic anisotropic kernels. The structure of those kernels is motivated by properties of discontinuous tectonic deformation and by previous empirical observations of the geometry of faults and of earthquake clusters at many spatial and temporal scales. Combining this a priori knowledge with information theoretical arguments, we propose the Gaussian mixture approach implemented in an expectation maximization (EM) procedure. A cross-validation scheme is then used that allows the determination of the number of kernels which provides an optimal data clustering of the catalog. This three-step approach is applied to a high-quality catalog of relocated seismicity following the 1986 Mount Lewis (Ml = 5.7) event in California. It reveals that events cluster along planar patches of about 2 km2, i.e., comparable to the size of the main event. The finite thickness of those clusters (about 290 m) suggests that events do not occur on well-defined and smooth Euclidean fault core surfaces but rather that there exist a deforming area and a damage zone surrounding faults which may be seismically active at depth. Finally, we propose a connection between our methodology and multiscale spatial analysis, based on the derivation of a spatial fractal dimension of about 1.8 for the set of hypocenters in the Mount Lewis area, consistent with recent observations on relocated catalogs.

  18. Determining the number of clusters for nuclei segmentation in breast cancer image

    NASA Astrophysics Data System (ADS)

    Fatichah, Chastine; Navastara, Dini Adni; Suciati, Nanik; Nuraini, Lubna

    2017-02-01

    Clustering is commonly technique for image segmentation, however determining an appropriate number of clusters is still challenging. Due to nuclei variation of size and shape in breast cancer image, an automatic determining number of clusters for segmenting the nuclei breast cancer is proposed. The phase of nuclei segmentation in breast cancer image are nuclei detection, touched nuclei detection, and touched nuclei separation. We use the Gram-Schmidt for nuclei cell detection, the geometry feature for touched nuclei detection, and combining of watershed and spatial k-Means clustering for separating the touched nuclei in breast cancer image. The spatial k-Means clustering is employed for separating the touched nuclei, however automatically determine the number of clusters is difficult due to the variation of size and shape of single cell breast cancer. To overcome this problem, first we apply watershed algorithm to separate the touched nuclei and then we calculate the distance among centroids in order to solve the over-segmentation. We merge two centroids that have the distance below threshold. And the new of number centroid as input to segment the nuclei cell using spatial k- Means algorithm. Experiment show that, the proposed scheme can improve the accuracy of nuclei cell counting.

  19. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding.

    PubMed

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-12-30

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos.

  20. The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis.

    PubMed

    Bhat, K M

    1999-04-01

    In a variety of tissues in eukaryotes, multipotential stem cells are responsible for maintaining a germinal population and generating a differentiated progeny. The Drosophila germline is one such tissue where a continuous supply of eggs or sperm relies on the normal functioning of stem cells. Recent studies have implicated a possible role for the posterior determinant gene nanos (nos) in stem cells. Here, I report that nanos is required in the Drosophila female germline as well as in the male germline. In the female, nos is required for the functioning of stem cells. In nos mutants, while the stem cells are specified, these cells divide only a few times at the most and then degenerate. The loss of germline stem cells in nos mutant mothers appears to be due to a progressive degeneration of the plasma membrane. Furthermore, following germ cell loss, the germaria in the nos mutant mothers appear to carry on massive mitochondrial biogenesis activity. Thus, the syncytia of such germaria are filled with mitochondria. In the male germline, the male fertility assay indicates that nos appears to be also required for the maintenance of stem cells. In these mutant males, spermatogenesis is progressively affected and these males eventually become sterile. These results indicate novel requirements for nos in the Drosophila germline.

  1. 76 FR 58867 - Endangered and Threatened Species; Determination of Nine Distinct Population Segments of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ...We (NMFS and USFWS; also collectively referred to as the Services) have determined that the loggerhead sea turtle (Caretta caretta) is composed of nine distinct population segments (DPSs) that constitute ``species'' that may be listed as threatened or endangered under the Endangered Species Act (ESA). In this final rule, we are listing four DPSs as threatened and five as endangered under the......

  2. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  3. An image segmentation based on a genetic algorithm for determining soil coverage by crop residues.

    PubMed

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P; Pajares, Gonzalo; del Arco, Maria J Sanchez; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm "El Encín" in Alcalá de Henares (Madrid, Spain).

  4. Meiosis in male Drosophila

    PubMed Central

    McKee, Bruce D.; Yan, Rihui; Tsai, Jui-He

    2012-01-01

    Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion. PMID:23087836

  5. Genetic and Cytogenetic Analysis of the 43a-E Region Containing the Segment Polarity Gene Costa and the Cellular Polarity Genes Prickle and Spiny-Legs in Drosophila Melanogaster

    PubMed Central

    Heitzler, P.; Coulson, D.; Saenz-Robles, M. T.; Ashburner, M.; Roote, J.; Simpson, P.; Gubb, D.

    1993-01-01

    A cytogenetic analysis of the 43A-E region of chromosome 2 in Drosophila melanogaster is presented. Within this interval 27 complementation groups have been identified by extensive F(2) screens and ordered by deletion mapping. The region includes the cellular polarity genes prickle and spiny-legs, the segmentation genes costa and torso, the morphogenetic locus sine oculis and is bounded on its distal side by the eye-color gene cinnabar. In addition 19 novel lethal complementation groups and two semi-lethal complementation groups with morphogenetic escaper phenotypes are described. PMID:8224812

  6. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster.

    PubMed

    Newell, Peter D; Douglas, Angela E

    2014-01-01

    The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes.

  7. Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster

    PubMed Central

    Douglas, Angela E.

    2014-01-01

    The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes. PMID:24242251

  8. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding

    PubMed Central

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-01-01

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos. DOI: http://dx.doi.org/10.7554/eLife.20828.001 PMID:28035903

  9. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy.

    PubMed

    Vaidyanathan, M; Clarke, L P; Velthuizen, R P; Phuphanich, S; Bensaid, A M; Hall, L O; Bezdek, J C; Greenberg, H; Trotti, A; Silbiger, M

    1995-01-01

    Two different multispectral pattern recognition methods are used to segment magnetic resonance images (MRI) of the brain for quantitative estimation of tumor volume and volume changes with therapy. A supervised k-nearest neighbor (kNN) rule and a semi-supervised fuzzy c-means (SFCM) method are used to segment MRI slice data. Tumor volumes as determined by the kNN and SFCM segmentation methods are compared with two reference methods, based on image grey scale, as a basis for an estimation of ground truth, namely: (a) a commonly used seed growing method that is applied to the contrast enhanced T1-weighted image, and (b) a manual segmentation method using a custom-designed graphical user interface applied to the same raw image (T1-weighted) dataset. Emphasis is placed on measurement of intra and inter observer reproducibility using the proposed methods. Intra- and interobserver variation for the kNN method was 9% and 5%, respectively. The results for the SFCM method was a little better at 6% and 4%, respectively. For the seed growing method, the intra-observer variation was 6% and the interobserver variation was 17%, significantly larger when compared with the multispectral methods. The absolute tumor volume determined by the multispectral segmentation methods was consistently smaller than that observed for the reference methods. The results of this study are found to be very patient case-dependent. The results for SFCM suggest that it should be useful for relative measurements of tumor volume during therapy, but further studies are required. This work demonstrates the need for minimally supervised or unsupervised methods for tumor volume measurements.

  10. deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination.

    PubMed

    Younger-Shepherd, S; Vaessin, H; Bier, E; Jan, L Y; Jan, Y N

    1992-09-18

    In Drosophila, sex is determined by the X:A ratio. One major numerator element on the X chromosome is sisterless-b (sis-b), also called scute, which encodes an HLH-type transcription factor. We report here that an essential pan-neural gene, the autosomal HLH gene deadpan (dpn), acts as a denominator element. As revealed by dosage-dependent dominant interactions, males die with too high a ratio of sc+ to dpn+, caused by misexpression of Sex lethal (Sxl) in embryos, and females die with too low a ratio of sc+ to dpn+, because of altered embryonic Sxl expression. In addition, we found that the HLH gene extramacrochaetae (emc), like daughterless (da), is needed maternally for proper communication of the X:A ratio, thus supporting the idea that a set of HLH genes comprises a functional cassette that makes a sensitive and stable genetic switch used in both neural determination and sex determination.

  11. Segmental dataset and whole body expression data do not support the hypothesis that non-random movement is an intrinsic property of Drosophila retrogenes

    PubMed Central

    2012-01-01

    Background Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlötterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. Results We reanalyzed the dataset published by Metta and Schlötterer and found several issues that led us to a different conclusion. In particular, Metta and Schlötterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schlötterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we

  12. Drosophila Condensin II subunit Chromosome-associated protein D3 regulates cell fate determination through non-cell-autonomous signaling

    PubMed Central

    Klebanow, Lindsey R.; Peshel, Emanuela C.; Schuster, Andrew T.; De, Kuntal; Sarvepalli, Kavitha; Lemieux, Madeleine E.; Lenoir, Jessica J.; Moore, Adrian W.; McDonald, Jocelyn A.

    2016-01-01

    The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Blistered) expression in specific regions of the larval wing disc promotes intervein cell fate, whereas EGFR activity promotes vein cell fate. Here, we report that the chromatin-organizing protein CAP-D3 acts to dampen dSRF levels at the anterior/posterior boundary in the larval wing disc, promoting differentiation of cells into the anterior crossvein. CAP-D3 represses KNOT expression in cells immediately adjacent to the anterior/posterior boundary, thus blocking KNOT-mediated repression of EGFR activity and preventing cell death. Maintenance of EGFR activity in these cells depresses dSRF levels in the neighboring anterior crossvein progenitor cells, allowing them to differentiate into vein cells. These findings uncover a novel transcriptional regulatory network influencing Drosophila wing vein development, and are the first to identify a Condensin II subunit as an important regulator of EGFR activity and cell fate determination in vivo. PMID:27317808

  13. Different approaches to synovial membrane volume determination by magnetic resonance imaging: manual versus automated segmentation.

    PubMed

    Ostergaard, M

    1997-11-01

    Automated fast (5-20 min) synovial membrane volume determination by MRI, based on pre-set post-gadolinium-DTPA enhancement thresholds, was evaluated as a substitute for a time-consuming (45-120 min), previously validated, manual segmentation method. Twenty-nine knees [rheumatoid arthritis (RA) 13, osteoarthritis (OA) 16] and 17 RA wrists were examined. At enhancement thresholds between 30 and 60%, the automated volumes (Syn(x%)) were highly significantly correlated to manual volumes (SynMan) (knees: rho = 0.78-0.91, P < 10(-5) to < 10(-9); wrists: rho = 0.87-0.95, P < 10(-4) to < 10(-6)). The absolute values of the automated estimates were extremely dependent on the threshold chosen. At the optimal threshold of 45%, the median numerical difference from SynMan was 7 ml (17%) in knees and 2 ml (25%) in wrists. At this threshold, the difference was not related to diagnosis, clinical inflammation or synovial membrane volume, e.g. no systematic errors were found. The inter-MRI variation, evaluated in three knees and three wrists, was higher than by manual segmentation, particularly due to sensitivity to malalignment artefacts. Examination of test objects proved the high accuracy of the general methodology for volume determinations (maximal error 6.3%). Preceded by the determination of reproducibility and the optimal threshold at the available MR unit, automated 'threshold' segmentation appears to be acceptable when changes rather than absolute values of synovial membrane volumes are most important, e.g. in clinical trials.

  14. Aster migration determines the length scale of nuclear separation in the Drosophila syncytial embryo

    PubMed Central

    Gáspár, Imre; Ephrussi, Anne; Surrey, Thomas

    2012-01-01

    In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos. PMID:22711698

  15. Molecular Determinants of Juvenile Hormone Action as Revealed by 3D QSAR Analysis in Drosophila

    PubMed Central

    Beňo, Milan; Farkaš, Robert

    2009-01-01

    Background Postembryonic development, including metamorphosis, of many animals is under control of hormones. In Drosophila and other insects these developmental transitions are regulated by the coordinate action of two principal hormones, the steroid ecdysone and the sesquiterpenoid juvenile hormone (JH). While the mode of ecdysone action is relatively well understood, the molecular mode of JH action remains elusive. Methodology/Principal Findings To gain more insights into the molecular mechanism of JH action, we have tested the biological activity of 86 structurally diverse JH agonists in Drosophila melanogaster. The results were evaluated using 3D QSAR analyses involving CoMFA and CoMSIA procedures. Using this approach we have generated both computer-aided and species-specific pharmacophore fingerprints of JH and its agonists, which revealed that the most active compounds must possess an electronegative atom (oxygen or nitrogen) at both ends of the molecule. When either of these electronegative atoms are replaced by carbon or the distance between them is shorter than 11.5 Å or longer than 13.5 Å, their biological activity is dramatically decreased. The presence of an electron-deficient moiety in the middle of the JH agonist is also essential for high activity. Conclusions/Significance The information from 3D QSAR provides guidelines and mechanistic scope for identification of steric and electrostatic properties as well as donor and acceptor hydrogen-bonding that are important features of the ligand-binding cavity of a JH target protein. In order to refine the pharmacophore analysis and evaluate the outcomes of the CoMFA and CoMSIA study we used pseudoreceptor modeling software PrGen to generate a putative binding site surrogate that is composed of eight amino acid residues corresponding to the defined molecular interactions. PMID:19547707

  16. Method 349.0 Determination of Ammonia in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of ammonia in estuarine and coastal waters. The method is based upon the indophenol reaction,1-5 here adapted to automated gas-segmented continuous flow analysis.

  17. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.

    PubMed

    Hatt, M; Lamare, F; Boussion, N; Turzo, A; Collet, C; Salzenstein, F; Roux, C; Jarritt, P; Carson, K; Cheze-Le Rest, C; Visvikis, D

    2007-06-21

    Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both

  18. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus.

    PubMed

    Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard

    2015-11-15

    The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase.

  19. Filamin, a synaptic organizer in Drosophila, determines glutamate receptor composition and membrane growth

    PubMed Central

    Lee, GaYoung; Schwarz, Thomas L

    2016-01-01

    Filamin is a scaffolding protein that functions in many cells as an actin-crosslinker. FLN90, an isoform of the Drosophila ortholog Filamin/cheerio that lacks the actin-binding domain, is here shown to govern the growth of postsynaptic membrane folds and the composition of glutamate receptor clusters at the larval neuromuscular junction. Genetic and biochemical analyses revealed that FLN90 is present surrounding synaptic boutons. FLN90 is required in the muscle for localization of the kinase dPak and, downstream of dPak, for localization of the GTPase Ral and the exocyst complex to this region. Consequently, Filamin is needed for growth of the subsynaptic reticulum. In addition, in the absence of filamin, type-A glutamate receptor subunits are lacking at the postsynapse, while type-B subunits cluster correctly. Receptor composition is dependent on dPak, but independent of the Ral pathway. Thus two major aspects of synapse formation, morphological plasticity and subtype-specific receptor clustering, require postsynaptic Filamin. DOI: http://dx.doi.org/10.7554/eLife.19991.001 PMID:27914199

  20. Dosage-Dependent Modifiers of Homoeotic Mutations in Drosophila melanogaster

    PubMed Central

    Kennison, James A.; Russell, Michael A.

    1987-01-01

    The determination of segment identity in Drosophila melanogaster appears to be controlled by a small number of genes. In order to identity new components in the process, we have systematically screened the autosomal complement for loci that show a dosage-dependent interaction with mutations in previously characterized genes thought to be important in the determination of segment identity. The dominant homoeotic phenotype of mutations at four loci involved in thoracic leg determination (Pc, Pcl, Antp and Scr) were quantitated in flies bearing a series of synthetic duplications covering more than 99% of the autosomal complement. Twelve regions were identified that when present in three wild-type copies strongly enhanced or suppressed the phenotype of mutations at one or more of the four homoeotic loci examined. The effects of five of these regions appear to correspond to previously described homoeotic loci; the effects of the remaining seven appear to identify new loci involved in the determination of segment identity. PMID:17246380

  1. The Insulin-Like Proteins dILPs-2/5 Determine Diapause Inducibility in Drosophila

    PubMed Central

    Kyriacou, Charalambos P.; O’Connor, Michael B.; Costa, Rodolfo

    2016-01-01

    Diapause is an actively induced dormancy that has evolved in Metazoa to resist environmental stresses. In temperate regions, many diapausing insects overwinter at low temperatures by blocking embryonic, larval or adult development. Despite its Afro-tropical origin, Drosophila melanogaster migrated to temperate regions of Asia and Europe where females overwinter as adults by arresting gonadal development (reproductive diapause) at temperatures <13°C. Recent work in D. melanogaster has implicated the developmental hormones dILPs-2 and/or dILP3, and dILP5, homologues of vertebrate insulin/insulin-like growth factors (IGFs), in reproductive arrest. However, polymorphisms in timeless (tim) and couch potato (cpo) dramatically affect diapause inducibility and these dILP experiments could not exclude this common genetic variation contributing to the diapause phenotype. Here, we apply an extensive genetic dissection of the insulin signaling pathway which allows us to see both enhancements and reductions in egg development that are independent of tim and cpo variations. We show that a number of manipulations dramatically enhance diapause to ~100%. These include ablating, or reducing the excitability of the insulin-producing cells (IPCs) that express dILPs-2,3,5 employing the dilp2,3,5-/- triple mutant, desensitizing insulin signaling using a chico mutation, or inhibiting dILP2 and 5 in the hemolymph by over-expressing Imaginal Morphogenesis Protein-Late 2 (Imp-L2). In addition, triple mutant dilp2,3,5-/- females maintain high levels of diapause even when temperatures are raised in adulthood to 19°C. However at 22°C, these females all show egg development revealing that the effects are conditional on temperature and not a general female sterility. In contrast, over-expression of dilps-2/5 or enhancing IPC excitability, led to levels of ovarian arrest that approached zero, underscoring dILPs-2 and 5 as key antagonists of diapause. PMID:27689881

  2. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    NASA Astrophysics Data System (ADS)

    Bruyneel, B.; Birkenbach, B.; Reiter, P.

    2016-03-01

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ-ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

  3. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET

    PubMed Central

    Hatt, Mathieu; Lamare, Frédéric; Boussion, Nicolas; Roux, Christian; Turzo, Alexandre; Cheze-Lerest, Catherine; Jarritt, Peter; Carson, Kathryn; Salzenstein, Fabien; Collet, Christophe; Visvikis, Dimitris

    2007-01-01

    Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the Fuzzy Hidden Markov Chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical Hidden Markov Chain (HMC) algorithm, FHMC takes into account noise, voxel’s intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the “fuzzy” nature of the object on interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8mm3 and 64mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both

  4. Identification of Regions Interacting with Ovo(d) Mutations: Potential New Genes Involved in Germline Sex Determination or Differentiation in Drosophila Melanogaster

    PubMed Central

    Pauli, D.; Oliver, B.; Mahowald, A. P.

    1995-01-01

    Only a few Drosophila melanogaster germline sex determination genes are known, and there have been no systematic screens to identify new genes involved in this important biological process. The ovarian phenotypes produced by females mutant for dominant alleles of the ovo gene are modified in flies with altered doses of other loci involved in germline sex determination in Drosophila (Sex-lethal(+), sans fille(+) and ovarian tumor(+)). This observation constitutes the basis for a screen to identify additional genes required for proper establishment of germline sexual identity. We tested 300 deletions, which together cover ~58% of the euchromatic portion of the genome, for genetic interactions with ovo(D). Hemizygosity for more than a dozen small regions show interactions that either partially suppress or enhance the ovarian phenotypes of females mutant for one or more of the three dominant ovo mutations. These regions probably contain genes whose products act in developmental hierarchies that include ovo(+) protein. PMID:7713427

  5. Contact-free determination of human body segment parameters by means of videometric image processing of an anthropomorphic body model

    NASA Astrophysics Data System (ADS)

    Hatze, Herbert; Baca, Arnold

    1993-01-01

    The development of noninvasive techniques for the determination of biomechanical body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers, etc.) receives increasing attention from the medical sciences (e,.g., orthopaedic gait analysis), bioengineering, sport biomechanics, and the various space programs. In the present paper, a novel method is presented for determining body segment parameters rapidly and accurately. It is based on the video-image processing of four different body configurations and a finite mass-element human body model. The four video images of the subject in question are recorded against a black background, thus permitting the application of shape recognition procedures incorporating edge detection and calibration algorithms. In this way, a total of 181 object space dimensions of the subject's body segments can be reconstructed and used as anthropometric input data for the mathematical finite mass- element body model. The latter comprises 17 segments (abdomino-thoracic, head-neck, shoulders, upper arms, forearms, hands, abdomino-pelvic, thighs, lower legs, feet) and enables the user to compute all the required segment parameters for each of the 17 segments by means of the associated computer program. The hardware requirements are an IBM- compatible PC (1 MB memory) operating under MS-DOS or PC-DOS (Version 3.1 onwards) and incorporating a VGA-board with a feature connector for connecting it to a super video windows framegrabber board for which there must be available a 16-bit large slot. In addition, a VGA-monitor (50 - 70 Hz, horizontal scan rate at least 31.5 kHz), a common video camera and recorder, and a simple rectangular calibration frame are required. The advantage of the new method lies in its ease of application, its comparatively high accuracy, and in the rapid availability of the body segment parameters, which is particularly useful in clinical practice

  6. Insulator and Ovo Proteins Determine the Frequency and Specificity of Insertion of the gypsy Retrotransposon in Drosophila melanogaster

    PubMed Central

    Labrador, Mariano; Sha, Ky; Li, Alice; Corces, Victor G.

    2008-01-01

    The gypsy retrovirus of Drosophila is quite unique among retroviruses in that it shows a strong preference for integration into specific sites in the genome. In particular, gypsy integrates with a frequency of >10% into the regulatory region of the ovo gene. We have used in vivo transgenic assays to dissect the role of Ovo proteins and the gypsy insulator during the process of gypsy site-specific integration. Here we show that DNA containing binding sites for the Ovo protein is required to promote site-specific gypsy integration into the regulatory region of the ovo gene. Using a synthetic sequence, we find that Ovo binding sites alone are also sufficient to promote gypsy site-specific integration into transgenes. These results indicate that Ovo proteins can determine the specificity of gypsy insertion. In addition, we find that interactions between a gypsy provirus and the gypsy preintegration complex may also participate in the process leading to the selection of gypsy integration sites. Finally, the results suggest that the relative orientation of two integrated gypsy sequences has an important role in the enhancer-blocking activity of the gypsy insulator. PMID:18791225

  7. Determination of the temperature-sensitive period of a new mutation lawc{sup P1} in Drosophila melanogaster

    SciTech Connect

    Simonova, O.B.; Petruk, S.F.; Gerasimova, T.I.

    1995-09-01

    Determination of the period of temperature sensitivity in the temperature-sensitive allele of the regulatory lawc{sup P1} mutation was performed. Homeotic transformation of arista into tarsus, frequency of leg deformation, and bristle superexpression were examined. The sensitive periods were detected with reciprocal changes of cultivation temperature from 28 to 17{degrees}C and from 17 to 28{degrees}C. The temperature-sensitive period (TSP) for arista transformation was shown to manifest polyphasic expression and sexual dimorphism. In females, it occurred in the late third instar larvae (the first phase) and prepupae (the second stage); in males, it includes the whole period from the late third instar larvae up to and including prepupa. TSP for the frequency of deformed legs was polyphasic and took place during the third larval instar (the first phase) and prepupa stage (the second one). TSP for bristle superexpression occurred during a single interval from the late third larval instar until the early prepupa stage. The products of the lawc gene are assumed to play a role both in the cell proliferation in the antennal and leg imaginal discs and in the control of bristle expression at the final stages of Drosophila ontogeny. 10 refs., 7 figs.

  8. Genetic and molecular analysis of the autosomal component of the primary sex determination signal of Drosophila melanogaster

    SciTech Connect

    Barbash, D.A.; Cline, T.W.

    1995-12-01

    Drosophila sex is determined by the action of the X:A chromosome balance on transcription of Sex-lethal (Sxl), a feminizing switch gene. We obtained loss-of-function mutations in denominator elements of the X:A signal by selecting for dominant suppressors of a female-specific lethal mutation in the numerator element, sisterlessA (sisA). Ten suppressors were recovered in this extensive genome-wide selection. All were mutations in deadpan (dpn), a pleiotropic locus previously discovered to be a denominator element. Detailed genetic and molecular characterization is presented of this diverse set of new dpn alleles including their effects on Sxl. Although selected only for impairment of sex-specific functions, all were also impaired in nonsex-specific functions. Male-lethal effects were anticipated for mutations in a major denominator element, but we found that viability of males lacking dpn function was reduced no more than 50% relative to their dpn{sup -} sisters. Moreover, loss of dpn activity in males caused only a modest depression of the Sxl {open_quotes}establishment{close_quotes} promoter (Sxl{sub Pe}), the X:A target. By itself, dpn cannot account for the masculinizing effect of increased autosomal ploidy, the effect that gave rise to the concept of the X:A ratio; nevertheless, if there are other denominator elements, our results suggest that their individual contributions to the sex-determination signal are even less than that of dpn. The time course of expression of dpn and Sxl in dpn mutant backgrounds suggests that dpn is required for sex determination only during the later stages of X:A signaling in males to prevent inappropriate expression of Sxl{sub Pe} in the face of increasing sis gene product levels. 77 refs., 6 figs., 6 tabs.

  9. Genetic and molecular analysis of the autosomal component of the primary sex determination signal of Drosophila melanogaster.

    PubMed

    Barbash, D A; Cline, T W

    1995-12-01

    Drosophila sex is determined by the action of the X:A chromosome balance on transcription of Sex-lethal (Sxl), a feminizing switch gene. We obtained loss-of-function mutations in denominator elements of the X:A signal by selecting for dominant suppressors of a female-specific lethal mutation in the numerator element, sisterlessA (sisA). Ten suppressors were recovered in this extensive genome-wide selection. All were mutations in deadpan (dpn), a pleiotropic locus previously discovered to be a denominator element. Detailed genetic and molecular characterization is presented of this diverse set of new dpn alleles including their effects on Sxl. Although selected only for impairment of sex-specific functions, all were also impaired in nonsex-specific functions. Male-lethal effects were anticipated for mutations in a major denominator element, but we found that viability of males lacking dpn function was reduced no more than 50% relative to their dpn- sisters. Moreover, loss of dpn activity in males caused only a modest derepression of the Sxl "establishment" promoter (Sxlpe), the X:A target. By itself, dpn cannot account for the masculinizing effect of increased autosomal ploidy, the effect that gave rise to the concept of the X:A ratio; nevertheless, if there are other denominator elements, our results suggest that their individual contributions to the sex-determination signal are even less than that of dpn. The time course of expression of dpn and of Sxl in dpn mutant backgrounds suggests that dpn is required for sex determination only during the later stages of X:A signaling in males to prevent inappropriate expression of Sxlpe in the face of increasing sis gene product levels.

  10. Structural determinants of species-selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies.

    PubMed

    Kaufmann, Kristian W; Dawson, Eric S; Henry, L Keith; Field, Julie R; Blakely, Randy D; Meiler, Jens

    2009-02-15

    To identify potential determinants of substrate selectivity in serotonin (5-HT) transporters (SERT), models of human and Drosophila serotonin transporters (hSERT, dSERT) were built based on the leucine transporter (LeuT(Aa)) structure reported by Yamashita et al. (Nature 2005;437:215-223), PBDID 2A65. Although the overall amino acid identity between SERTs and the LeuT(Aa) is only 17%, it increases to above 50% in the first shell of the putative 5-HT binding site, allowing de novo computational docking of tryptamine derivatives in atomic detail. Comparison of hSERT and dSERT complexed with substrates pinpoints likely structural determinants for substrate binding. Forgoing the use of experimental transport and binding data of tryptamine derivatives for construction of these models enables us to critically assess and validate their predictive power: A single 5-HT binding mode was identified that retains the amine placement observed in the LeuT(Aa) structure, matches site-directed mutagenesis and substituted cysteine accessibility method (SCAM) data, complies with support vector machine derived relations activity relations, and predicts computational binding energies for 5-HT analogs with a significant correlation coefficient (R = 0.72). This binding mode places 5-HT deep in the binding pocket of the SERT with the 5-position near residue hSERT A169/dSERT D164 in transmembrane helix 3, the indole nitrogen next to residue Y176/Y171, and the ethylamine tail under residues F335/F327 and S336/S328 within 4 A of residue D98. Our studies identify a number of potential contacts whose contribution to substrate binding and transport was previously unsuspected.

  11. Determining finger segmental centers of rotation in flexion-extension based on surface marker measurement.

    PubMed

    Zhang, Xudong; Lee, Sang-Wook; Braido, Peter

    2003-08-01

    This paper describes the development of a novel algorithm for deriving finger segmental center of rotation (COR) locations during flexion-extension from measured surface marker motions in vivo. The algorithm employs an optimization routine minimizing the time-variance of the internal link lengths, and incorporates an empirically quantifiable relationship between the local movement of a surface marker around a joint (termed "surface marker excursion") and the joint flexion-extension. The latter relationship constrains and simplifies the optimization routine to make it computationally tractable. To empirically investigate this relationship and test the proposed algorithm, an experiment was conducted, in which hand cylinder-grasping movements were performed by 24 subjects (12 males and 12 females). Spherical retro-reflective markers were placed at various surface landmarks on the dorsal aspect of each subject's right (grasping) hand, and were measured during the movements by an opto-electronic system. Analysis of experimental data revealed a highly linear relationship between the "surface marker excursion" and the marker-defined flexion-extension angle: the average R(2) in linear regression ranged from 0.89 to 0.97. The algorithm successfully determined the CORs of the distal interphalangeal, proximal interphalangeal, and metacarpophalangeal joints of digits 2-5 during measured motions. The derived CORs appeared plausible as examined in terms of the physical locations relative to surface marker trajectories and the congruency across different joints and individuals.

  12. Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila.

    PubMed

    Reiser, Michael B; Dickinson, Michael H

    2013-02-15

    inversion of the expansion-avoidance reflex can explain the spatial distribution of straight flight segments and collision-avoidance saccades when flies fly freely within an open circular arena.

  13. BRADOS - Dose determination in the Russian segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Fürstner, M.; Fugger, M.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.

    Absorbed dose and dose-average linear energy transfer (LET) were assessed by means of LiF: Mg, Ti thermoluminescence (TL) detectors at different locations onboard the Russian segment (RS) of the International Space Station (ISS) in the timeframe between February and November 2001, i.e. for 248 days. Based on calibrations of the employed detectors in a variety of heavy-ion beams, mainly at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan, the measured absorbed dose values could be corrected for the TL dose registration efficiency in the radiation climate onboard the ISS. Various strategies for efficiency correction are discussed. For the specific case the efficiency correction accounted for a reduction by nearly 20 % in dose, implying that without proper consideration of the TL efficiency behaviour the absorbed dose inside the ISS would be overestimated. The dose-average LET was derived from TLD-700 measurements evaluated according to the well-established high-temperature ratio (HTR) method which analyzes the TL emission in the temperature range between 248 and 310 C. According to the shielding distribution, the efficiency-corrected absorbed dose was found to vary between 155 μ Gy/d for panel N 457 (RS-ISS toilet) and 230 μ Gy/d for panel N 443 (RS-ISS starboard cabin). The determined LET indicated a modification of the spectral composition of the onboard radiation field for the different exposure locations. Arrangement of TLD-600 and TLD-700 in pair allowed also some information about the neutron component to be drawn. Experimentally determined absorbed dose values are compared with model calculations by means of a self-developed code, using as input data detailed shielding distributions and proton fluxes from AP-8 and JPL algorithms.

  14. Dorsoventral patterning of the Drosophila hindgut is determined by interaction of genes under the control of two independent gene regulatory systems, the dorsal and terminal systems.

    PubMed

    Hamaguchi, Takashi; Takashima, Shigeo; Okamoto, Aiko; Imaoka, Misa; Okumura, Takashi; Murakami, Ryutaro

    2012-01-01

    Dorsoventral (DV) patterning in the trunk region of Drosophila embryo is established through intricate molecular interactions that regulate Dpp/Scw signaling during the early blastoderm stages. The hindgut of Drosophila, which derives from posterior region of the cellular blastoderm, also shows dorsoventral patterning, being subdivided into distinct dorsal and ventral domains. engrailed (en) is expressed in the dorsal domain, which determines dorsal fate of the hindgut. Here we show that a repressor Brk restricts en expression to the dorsal domain of the hindgut. Expression domain of brk during early blastdermal stages is defined through antagonistic interaction with dpp, and expression domains of dpp and brk in the early blastoderm include prospective hindgut domain. After stage 9, dpp expression in the dorsal domain of the hindgut primordium disappears, but, the brk expression in the ventral domain continues. It was found that Dorsocross (Doc), which is a targe gene of Dpp, is responsible for restricting brk expression to the ventral domain of the hindgut. On the other hand, activation of en is under the control of brachyenteron (byn) that is regulated independently of dpp, brk, and Doc. The cooperative interaction of common DV positional cues with byn during hindgut development represents another aspect of mechanisms of DV patterning in the Drosophila embryo.

  15. The complex set of late transcripts from the Drosophila sex determination gene sex-lethal encodes multiple related polypeptides.

    PubMed Central

    Samuels, M E; Schedl, P; Cline, T W

    1991-01-01

    Sex-lethal (Sxl), a key sex determination gene in Drosophila melanogaster, is known to express a set of three early transcripts arising during early embryogenesis and a set of seven late transcripts occurring from midembryogenesis through adulthood. Among the late transcripts, male-specific mRNAs were distinguished from their female counterparts by the presence of an extra exon interrupting an otherwise long open reading frame (ORF). We have now analyzed the structures of the late Sxl transcripts by cDNA sequencing, Northern (RNA) blotting, primer extension, and RNase protection. The late transcripts appear to use a common 5' end but differ at their 3' ends by the use of alternative polyadenylation sites. Two of these sites lack canonical AATAAA sequences, and their use correlates in females with the presence of a functional germ line, suggesting possible tissue-specific polyadenylation. Besides the presence of the male-specific exon, no additional sex-specific splicing events were detected, although a number of non-sex-specific splicing variants were observed. In females, the various forms of late Sxl transcript potentially encode up to six slightly different polypeptides. All of the protein-coding differences occur outside the previously defined ribonucleoprotein motifs. One class of Sxl mRNAs also includes a second long ORF in the same frame as the first ORF but separated from it by a single ochre codon. The function of this second ORF is unknown. Significant amounts of apparently partially processed Sxl RNAs were observed, consistent with the hypothesis that the regulated Sxl splices occur relatively slowly. Images PMID:1710769

  16. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans.

    PubMed

    Li, W; Boswell, R; Wood, W B

    2000-02-15

    The Caenorhabditis elegans gene mag-1 can substitute functionally for its homolog mago nashi in Drosophila and is predicted to encode a protein that exhibits 80% identity and 88% similarity to Mago nashi (P. A. Newmark et al., 1997, Development 120, 3197-3207). We have used RNA-mediated interference (RNAi) to analyze the phenotypic consequences of impairing mag-1 function in C. elegans. We show here that mag-1(RNAi) causes masculinization of the germ line (Mog phenotype) in RNA-injected hermaphrodites, suggesting that mag-1 is involved in hermaphrodite germ-line sex determination. Epistasis analysis shows that ectopic sperm production caused by mag-1(RNAi) is prevented by loss-of-function (lf) mutations in fog-2, gld-1, fem-1, fem-2, fem-3, and fog-1, all of which cause germ-line feminization in XX hermaphrodites, but not by a her-1(lf) mutation which causes germ-line feminization only in XO males. These results suggest that mag-1 interacts with the fog, fem, and gld genes and acts independently of her-1. We propose that mag-1 normally allows oogenesis by inhibiting function of one or more of these masculinizing genes, which act during the fourth larval stage to promote transient sperm production in the hermaphrodite germ line. When the Mog phenotype is suppressed by a fog-2(lf) mutation, mag-1(RNAi) also causes lethality in the progeny embryos of RNA-injected, mated hermaphrodites, suggesting an essential role for mag-1 during embryogenesis. The defective embryos arrest during morphogenesis with an apparent elongation defect. The distribution pattern of a JAM-1::GFP reporter, which is localized to boundaries of hypodermal cells, shows that hypodermis is disorganized in these embryos. The temporal expression pattern of the mag-1 gene prior to and during morphogenesis appears to be consistent with an essential role of mag-1 in embryonic hypodermal organization and elongation.

  17. Genetic Evidence That the Sans Fille Locus Is Involved in Drosophila Sex Determination

    PubMed Central

    Oliver, B.; Perrimon, N.; Mahowald, A. P.

    1988-01-01

    Females homozygous for sans fille(1621) (= fs(1)1621) have an abnormal germ line. Instead of producing eggs, the germ-line cells proliferate forming ovarian tumors or excessive numbers of nurse cells. The Sex-lethal gene product(s) regulate the branch point of the dosage compensation and sex determination pathways in the soma. The role of Sex-lethal in the germ line is not clear but the germ line of females homozygous for female sterile Sex-lethal alleles or germ-line clones of loss-of-function alleles are characterized by ovarian tumors. Females heterozygous for sans fille(1621) or Sex-lethal are phenotypically wild type with respect to viability and fertility but females trans-heterozygous for sans fille(1621) and Sex-lethal show ovarian tumors, somatic sexual transformations, and greatly reduced viability. PMID:3220249

  18. Genetic structure is determined by stochastic factors in a natural population of Drosophila buzzatii in Argentina.

    PubMed

    Vilardi, J C; Hasson, E; Rodriguez, C; Fanara, J J

    1994-01-01

    D. buzzatii is a cactophilic species associated with several cactaceae in Argentina. This particular ecological niche implies that this species is faced with a non-uniform environment constituted by discrete and ephemeral breeding sites, which are colonized by a finite number of inseminated females. The genetic consequences of this population structure upon the second chromosome polymorphism were investigated by means of F-statistics in a natural endemic population of Argentina. The present study suggests that differentiation of inversion frequencies in third instar larvae among breeding sites has taken place mainly at random and selection is not operating to determine the structure of this population. The average number of parents breeding on a single pad seems to be similar to the number colonizing Opuntia ficus indica rotting cladodes in Carboneras, a derived population from Spain. There is no significant excess of heterokaryotypes within pads or in the population as a whole. The results obtained in the present study suggest that the potential role of selective versus stochastic factors relative to the among pad heterogeneity in the population here studied is different from that of the Spanish population previously reported. Potential mechanisms responsible for these differences are discussed.

  19. The specificity of proneural genes in determining Drosophila sense organ identity.

    PubMed

    Jarman, A P; Ahmed, I

    1998-08-01

    The proneural genes (atonal and the genes of the achaete-scute complex (AS-C)) are required for the selection of sense organ precursors. They also endow these precursors with sense organ subtype information. In most of the ectoderm, atonal is required for precursors of chordotonal sense organs, whereas AS-C are required for those of most external sense organs, such as bristles. To address the question of how proneural genes influence subtype identity, we have made use of the Gal4/UAS system of misexpression. Unlike previous misexpression experiments, we found that under specific conditions of misexpression, atonal shows high subtype specificity of ectopic sense organ formation. Moreover, atonal can even transform wild-type external sense organs to chordotonal organs, although scute cannot perform the reciprocal transformation. Our evidence demonstrates that atonal's subtype determining role is not to activate directly chordotonal fate, but to repress the activation of cut, a gene that is necessary for external sense organ fate, thereby freeing its precursors to follow the alternative chordotonal organ fate.

  20. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks.

    PubMed

    Davis, Trevor L; Rebay, Ilaria

    2017-01-15

    Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.

  1. A molecular view of onychophoran segmentation.

    PubMed

    Janssen, Ralf

    2017-02-14

    This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.

  2. Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms.

    PubMed

    Stahi, Reut; Chipman, Ariel D

    2016-10-12

    Segments are formed simultaneously in the blastoderm of the fly Drosophila melanogaster through a hierarchical cascade of interacting transcription factors. Conversely, in many insects and in all non-insect arthropods most segments are formed sequentially from the posterior. We have looked at segmentation in the milkweed bug Oncopeltus fasciatus. Posterior segments are formed sequentially, through what is probably the ancestral arthropod mechanism. Formation of anterior segments bears many similarities to the Drosophila segmentation mode. These segments appear nearly simultaneously in the blastoderm, via a segmentation cascade that involves orthologues of Drosophila gap genes working through a functionally similar mechanism. We suggest that simultaneous blastoderm segmentation evolved at or close to the origin of holometabolous insects, and formed the basis for the evolution of the segmentation mode seen in Drosophila We discuss the changes in segmentation mechanisms throughout insect evolution, and suggest that the appearance of simultaneous segmentation as a novel feature of holometabolous insects may have contributed to the phenomenal success of this group.

  3. Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms

    PubMed Central

    Stahi, Reut

    2016-01-01

    Segments are formed simultaneously in the blastoderm of the fly Drosophila melanogaster through a hierarchical cascade of interacting transcription factors. Conversely, in many insects and in all non-insect arthropods most segments are formed sequentially from the posterior. We have looked at segmentation in the milkweed bug Oncopeltus fasciatus. Posterior segments are formed sequentially, through what is probably the ancestral arthropod mechanism. Formation of anterior segments bears many similarities to the Drosophila segmentation mode. These segments appear nearly simultaneously in the blastoderm, via a segmentation cascade that involves orthologues of Drosophila gap genes working through a functionally similar mechanism. We suggest that simultaneous blastoderm segmentation evolved at or close to the origin of holometabolous insects, and formed the basis for the evolution of the segmentation mode seen in Drosophila. We discuss the changes in segmentation mechanisms throughout insect evolution, and suggest that the appearance of simultaneous segmentation as a novel feature of holometabolous insects may have contributed to the phenomenal success of this group. PMID:27708151

  4. Identification of regions interacting with ovo{sup D} mutations: Potential new genes involved in germline sex determination or differentiation in Drosophila melanogaster

    SciTech Connect

    Pauli, D.; Oliver, B.; Mahowald, A.P.

    1995-02-01

    Only a few Drosophila melanogaster germline sex determination genes are known, and there have been no systematic screens to identify new genes involved in this important biological process. The ovarian phenotypes produced by females mutant for dominant alleles of the ovo gene are modified in flies with altered doses of other loci involved in germline sex determination in Drosophila (Sex-lethal{sup +}, snas fille{sup +} and ovarian tumor{sup +}). This observation constitutes the basis for a screen to identify additional genes required for proper establishment of germline sexual identity. We tested 300 deletions, which together cover {approximately}58% of the euchromatic portion of the genome, for genetic interactions with ovo{sup D}. Hemizygosity for more than a dozen small regions show interactions that either partially suppress or enhance the ovarian phenotypes of females mutant for one or more of the three dominant ovo mutations. These regions probably contain genes whose products act in developmental heirarchies that include ovo{sup +} protein. 40 refs, 7 figs., 5 tabs.

  5. A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads.

    PubMed

    Tsouknidas, Alexander; Michailidis, Nikoalos; Savvakis, Savvas; Anagnostidis, Kleovoulos; Bouzakis, Konstantinos-Dionysios; Kapetanos, Georgios

    2012-08-01

    This study presents a CT-based finite element model of the lumbar spine taking into account all function-related boundary conditions, such as anisotropy of mechanical properties, ligaments, contact elements, mesh size, etc. Through advanced mesh generation and employment of compound elements, the developed model is capable of assessing the mechanical response of the examined spine segment for complex loading conditions, thus providing valuable insight on stress development within the model and allowing the prediction of critical loading scenarios. The model was validated through a comparison of the calculated force-induced inclination/deformation and a correlation of these data to experimental values. The mechanical response of the examined functional spine segment was evaluated, and the effect of the loading scenario determined for both vertebral bodies as well as the connecting intervertebral disc.

  6. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET.

    PubMed

    Hatt, Mathieu; Cheze le Rest, Catherine; Turzo, Alexandre; Roux, Christian; Visvikis, Dimitris

    2009-06-01

    Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.

  7. Female Fertilization: Effects of Sex-Specific Density and Sex Ratio Determined Experimentally for Colorado Potato Beetles and Drosophila Fruit Flies

    PubMed Central

    Vahl, Wouter K.; Boiteau, Gilles; de Heij, Maaike E.; MacKinley, Pamela D.; Kokko, Hanna

    2013-01-01

    If males and females affect reproduction differentially, understanding and predicting sexual reproduction requires specification of response surfaces, that is, two-dimensional functions that relate reproduction to the (numeric) densities of both sexes. Aiming at rigorous measurement of female per capita fertilization response surfaces, we conducted a multifactorial experiment and reanalyzed an extensive data set. In our experiment, we varied the density of male and female Leptinotarsa decemlineata (Colorado potato beetles) by placing different numbers of the two sexes on enclosed Solanum tuberosum (potato plants) to determine the proportion of females fertilized after 3 or 22 hours. In the reanalysis, we investigated how the short-term fertilization probability of three Drosophila strains (melanogaster ebony, m. sepia, and simulans) depended on adult sex ratio (proportion of males) and total density. The fertilization probability of female Leptinotarsa decemlineata increased logistically with male density, but not with female density. These effects were robust to trial duration. The fertilization probability of female Drosophila increased logistically with both sex ratio and total density. Treatment effects interacted in m. sepia, and simulans. These findings highlight the importance of well-designed, multifactorial experiments and strengthen previous experimental evidence for the relevance of sex-specific densities to understanding and prediction of female fertilization probability. PMID:23593206

  8. Female fertilization: effects of sex-specific density and sex ratio determined experimentally for Colorado potato beetles and Drosophila fruit flies.

    PubMed

    Vahl, Wouter K; Boiteau, Gilles; de Heij, Maaike E; MacKinley, Pamela D; Kokko, Hanna

    2013-01-01

    If males and females affect reproduction differentially, understanding and predicting sexual reproduction requires specification of response surfaces, that is, two-dimensional functions that relate reproduction to the (numeric) densities of both sexes. Aiming at rigorous measurement of female per capita fertilization response surfaces, we conducted a multifactorial experiment and reanalyzed an extensive data set. In our experiment, we varied the density of male and female Leptinotarsa decemlineata (Colorado potato beetles) by placing different numbers of the two sexes on enclosed Solanum tuberosum (potato plants) to determine the proportion of females fertilized after 3 or 22 hours. In the reanalysis, we investigated how the short-term fertilization probability of three Drosophila strains (melanogaster ebony, m. sepia, and simulans) depended on adult sex ratio (proportion of males) and total density. The fertilization probability of female Leptinotarsa decemlineata increased logistically with male density, but not with female density. These effects were robust to trial duration. The fertilization probability of female Drosophila increased logistically with both sex ratio and total density. Treatment effects interacted in m. sepia, and simulans. These findings highlight the importance of well-designed, multifactorial experiments and strengthen previous experimental evidence for the relevance of sex-specific densities to understanding and prediction of female fertilization probability.

  9. Identification of Virulence Determinants within the L Genomic Segment of the Pichinde Arenavirus

    PubMed Central

    McLay, Lisa; Lan, Shuiyun; Ansari, Aftab

    2013-01-01

    Several arenaviruses are responsible for causing viral hemorrhagic fevers (VHF) in humans. Lassa virus (LASV), the causative agent of Lassa fever, is a biosafety level 4 (BSL4) pathogen that requires handling in BSL4 facilities. In contrast, the Pichinde arenavirus (PICV) is a BSL2 pathogen that can cause hemorrhagic fever-like symptoms in guinea pigs that resemble those observed in human Lassa fever. Comparative sequence analysis of the avirulent P2 strain of PICV and the virulent P18 strain shows a high degree of sequence homology in the bisegmented genome between the two strains despite the polarized clinical outcomes noted for the infected animals. Using reverse genetics systems that we have recently developed, we have mapped the sequence changes in the large (L) segment of the PICV genome that are responsible for the heightened virulence phenotype of the P18 strain. By monitoring the degree of disease severity and lethality caused by the different mutant viruses, we have identified specific residues located within the viral L polymerase gene encoded on the L segment essential for mediating disease pathogenesis. Through quantitative reverse transcription-PCR (RT-PCR) analysis, we have confirmed that the same set of residues is responsible for the increased viral replicative potential of the P18 strain and its heightened disease severity in vivo. Our laboratory findings serve to reinforce field observations that a high level of viremia often correlates with severe disease outcomes in LASV-infected patients. PMID:23552411

  10. Nonlinear physical segmentation algorithm for determining the layer boundary from lidar signal.

    PubMed

    Mao, Feiyue; Li, Jun; Li, Chen; Gong, Wei; Min, Qilong; Wang, Wei

    2015-11-30

    Layer boundary (base and top) detection is a basic problem in lidar data processing, the results of which are used as inputs of optical properties retrieval. However, traditional algorithms not only require manual intervention but also rely heavily on the signal-to-noise ratio. Therefore, we propose a robust and automatic algorithm for layer detection based on a novel algorithm for lidar signal segmentation and representation. Our algorithm is based on the lidar equation and avoids most of the limitations of the traditional algorithms. Testing of the simulated and real signals shows that the algorithm is able to position the base and top accurately even with a low signal to noise ratio. Furthermore, the results of the classification are accurate and satisfactory. The experimental results confirm that our algorithm can be used for automatic detection, retrieval, and analysis of lidar data sets.

  11. Combining 3D tracking and surgical instrumentation to determine the stiffness of spinal motion segments: a validation study.

    PubMed

    Reutlinger, C; Gédet, P; Büchler, P; Kowal, J; Rudolph, T; Burger, J; Scheffler, K; Hasler, C

    2011-04-01

    The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.

  12. [Determination of fitness components of flies bearing the recessive lethal l(2)M167(DTS) mutation with dominant heat sensitivity in artificial Drosophila melanogaster populations].

    PubMed

    Kulikov, A M; Kuznetsov, A; Marec, F; Mitrofanov, V G

    2005-06-01

    Elimination of the heat-sensitive l(2)M167(DTS) mutation from artificial Drosophila melanogaster populations at constant temperature 25 degrees C and various frequencies of the mutation in the parental generation was studied. Components of fitness of the l(2)M167(DTS) mutation were estimated in the artificial populations by means of the recurrent model of the dependence of the frequency of this mutation in a given generation on its frequency in the previous generation. The model was solved by a numerical method with limitations on the values of some fitness components obtained in test experiments. According to the limitations and frequencies of the l(2)M167(DTS) mutation, the leading role and limits of the variation in egg-to-adult viability and female fertility were determined. The previously suggested effect of the positive selection for viability of individuals heterozygous for l(2)M167(DTS) was confirmed.

  13. An integrated segmentation and analysis approach for QCT of the knee to determine subchondral bone mineral density and texture.

    PubMed

    Zerfass, P; Lowitz, T; Museyko, O; Bousson, V; Laouisset, L; Kalender, W A; Laredo, J-D; Engelke, K

    2012-09-01

    We have developed a new integrated approach for quantitative computed tomography of the knee in order to quantify bone mineral density (BMD) and subchondral bone structure. The present framework consists of image acquisition and reconstruction, 3-D segmentation, determination of anatomic coordinate systems, and reproducible positioning of analysis volumes of interest (VOI). Novel segmentation algorithms were developed to identify growth plates of the tibia and femur and the joint space with high reproducibility. Five different VOIs with varying distance to the articular surface are defined in the epiphysis. Each VOI is further subdivided into a medial and a lateral part. In each VOI, BMD is determined. In addition, a texture analysis is performed on a high-resolution computed tomography (CT) reconstruction of the same CT scan in order to quantify subchondral bone structure. Local and global homogeneity, as well as local and global anisotropy were measured in all VOIs. Overall short-term precision of the technique was evaluated using double measurements of 20 osteoarthritic cadaveric human knees. Precision errors for volume were about 2-3% in the femur and 3-5% in the tibia. Precision errors for BMD were about 1-2% lower. Homogeneity parameters showed precision errors up to about 2% and anisotropy parameters up to about 4%.

  14. Dreams Fulfilled and Shattered: Determinants of Segmented Assimilation in the Second Generation.

    PubMed

    Haller, William; Portes, Alejandro; Lynch, Scott M

    2011-03-01

    We summarize prior theories on the adaptation process of the contemporary immigrant second generation as a prelude to presenting additive and interactive models showing the impact of family variables, school contexts and academic outcomes on the process. For this purpose, we regress indicators of educational and occupational achievement in early adulthood on predictors measured three and six years earlier. The Children of Immigrants Longitudinal Study (CILS), used for the analysis, allows us to establish a clear temporal order among exogenous predictors and the two dependent variables. We also construct a Downward Assimilation Index (DAI), based on six indicators and regress it on the same set of predictors. Results confirm a pattern of segmented assimilation in the second generation, with a significant proportion of the sample experiencing downward assimilation. Predictors of the latter are the obverse of those of educational and occupational achievement. Significant interaction effects emerge between these predictors and early school contexts, defined by different class and racial compositions. Implications of these results for theory and policy are examined.

  15. Stereophotogrammetrie Mass Distribution Parameter Determination Of The Lower Body Segments For Use In Gait Analysis

    NASA Astrophysics Data System (ADS)

    Sheffer, Daniel B.; Schaer, Alex R.; Baumann, Juerg U.

    1989-04-01

    Inclusion of mass distribution information in biomechanical analysis of motion is a requirement for the accurate calculation of external moments and forces acting on the segmental joints during locomotion. Regression equations produced from a variety of photogrammetric, anthropometric and cadaeveric studies have been developed and espoused in literature. Because of limitations in the accuracy of predicted inertial properties based on the application of regression equation developed on one population and then applied on a different study population, the employment of a measurement technique that accurately defines the shape of each individual subject measured is desirable. This individual data acquisition method is especially needed when analyzing the gait of subjects with large differences in their extremity geo-metry from those considered "normal", or who may possess gross asymmetries in shape in their own contralateral limbs. This study presents the photogrammetric acquisition and data analysis methodology used to assess the inertial tensors of two groups of subjects, one with spastic diplegic cerebral palsy and the other considered normal.

  16. Dreams Fulfilled and Shattered: Determinants of Segmented Assimilation in the Second Generation*

    PubMed Central

    Haller, William; Portes, Alejandro; Lynch, Scott M.

    2013-01-01

    We summarize prior theories on the adaptation process of the contemporary immigrant second generation as a prelude to presenting additive and interactive models showing the impact of family variables, school contexts and academic outcomes on the process. For this purpose, we regress indicators of educational and occupational achievement in early adulthood on predictors measured three and six years earlier. The Children of Immigrants Longitudinal Study (CILS), used for the analysis, allows us to establish a clear temporal order among exogenous predictors and the two dependent variables. We also construct a Downward Assimilation Index (DAI), based on six indicators and regress it on the same set of predictors. Results confirm a pattern of segmented assimilation in the second generation, with a significant proportion of the sample experiencing downward assimilation. Predictors of the latter are the obverse of those of educational and occupational achievement. Significant interaction effects emerge between these predictors and early school contexts, defined by different class and racial compositions. Implications of these results for theory and policy are examined. PMID:24223437

  17. Drosophila spermiogenesis

    PubMed Central

    Fabian, Lacramioara; Brill, Julie A.

    2012-01-01

    Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm. PMID:23087837

  18. Elements of olfactory reception in adult Drosophila melanogaster.

    PubMed

    Martin, Fernando; Boto, Tamara; Gomez-Diaz, Carolina; Alcorta, Esther

    2013-09-01

    The olfactory system of Drosophila has become an attractive and simple model to investigate olfaction because it follows the same organizational principles of vertebrates, and the results can be directly applied to other insects with economic and sanitary relevance. Here, we review the structural elements of the Drosophila olfactory reception organs at the level of the cells and molecules involved. This article is intended to reflect the structural basis underlying the functional variability of the detection of an olfactory universe composed of thousands of odors. At the genetic level, we further detail the genes and transcription factors (TF) that determine the structural variability. The fly's olfactory receptor organs are the third antennal segments and the maxillary palps, which are covered with sensory hairs called sensilla. These sensilla house the odorant receptor neurons (ORNs) that express one or few odorant receptors in a stereotyped pattern regulated by combinations of TF. Also, perireceptor events, such as odor molecules transport to their receptors, are carried out by odorant binding proteins. In addition, the rapid odorant inactivation to preclude saturation of the system occurs by biotransformation and detoxification enzymes. These additional events take place in the lymph that surrounds the ORNs. We include some data on ionotropic and metabotropic olfactory transduction, although this issue is still under debate in Drosophila.

  19. A Transmembrane Segment Determines the Steady-State Localization of an Ion-Transporting Adenosine Triphosphatase

    PubMed Central

    Dunbar, Lisa A.; Aronson, Paul; Caplan, Michael J.

    2000-01-01

    The H,K-adenosine triphosphatase (ATPase) of gastric parietal cells is targeted to a regulated membrane compartment that fuses with the apical plasma membrane in response to secretagogue stimulation. Previous work has demonstrated that the α subunit of the H,K-ATPase encodes localization information responsible for this pump's apical distribution, whereas the β subunit carries the signal responsible for the cessation of acid secretion through the retrieval of the pump from the surface to the regulated intracellular compartment. By analyzing the sorting behaviors of a number of chimeric pumps composed of complementary portions of the H,K-ATPase α subunit and the highly homologous Na,K-ATPase α subunit, we have identified a portion of the gastric H,K-ATPase, which is sufficient to redirect the normally basolateral Na,K-ATPase to the apical surface in transfected epithelial cells. This motif resides within the fourth of the H,K-ATPase α subunit's ten predicted transmembrane domains. Although interactions with glycosphingolipid-rich membrane domains have been proposed to play an important role in the targeting of several apical membrane proteins, the apically located chimeras are not found in detergent-insoluble complexes, which are typically enriched in glycosphingolipids. Furthermore, a chimera incorporating the Na,K-ATPase α subunit fourth transmembrane domain is apically targeted when both of its flanking sequences derive from H,K-ATPase sequence. These results provide the identification of a defined apical localization signal in a polytopic membrane transport protein, and suggest that this signal functions through conformational interactions between the fourth transmembrane spanning segment and its surrounding sequence domains. PMID:10684257

  20. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors

    PubMed Central

    Mnatsakanyan, Nelli; Jansen, Michaela

    2013-01-01

    Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop ligand-gated ion channel superfamily. Muscle nAChR are heteropentamers that assemble from two α, and one each of β, γ, and δ subunits. Each subunit is composed of three domains, extracellular, transmembrane and intracellular. The transmembrane domain consists of four α-helical segments (M1–M4). Pioneering structural information was obtained using electronmicroscopy of Torpedo nAChR. The recently-solved X-ray structure of the first eukaryotic Cys-loop receptor, a truncated (intracellular domain missing) glutamate-gated chloride channel α (GluClα)showed the same overall architecture . However, a significant difference with regard to the vertical alignment between the channel-lining segment M2 and segment M3 was observed. Here we used functional studies utilizing disulfide trapping experiments in muscle nAChR to determine the spatial orientation between M2 and M3. Our results are in agreement with the vertical alignment as obtained when using the GluClα structure as a template to homology model muscle nAChR, however, they cannot be reconciled with the current Torpedo nAChR model. The vertical M2–M3 alignments as observed in X-ray structures of prokaryotic Gloeobacter violaceus ligand-gated ion channel (GLIC) and GluClα are in agreement. Our results further confirm that this alignment in Cys-loop receptors is conserved between prokaryotes and eukaryotes. PMID:23565737

  1. Dipyridamole-induced ST segment depression during thallium-201 imaging in patients with coronary artery disease: angiographic and hemodynamic determinants

    SciTech Connect

    Chambers, C.E.; Brown, K.A.

    1988-07-01

    To examine the angiographic and hemodynamic determinants of dipyridamole-induced ST segment depression in patients with coronary artery disease, 41 patients with angiographically documented coronary disease who underwent dipyridamole-thallium-201 myocardial scintigraphy were studied. Dipyridamole-induced ST depression occurred in 14 (34%) of the 41 patients. Stepwise multivariate logistic regression was performed to compare the predictive value of angiographic findings (good coronary collateral vessels, jeopardized collateral vessels, multivessel disease), hemodynamic changes (changes in heart rate, systolic pressure, diastolic pressure and rate-pressure product), thallium-201 results (perfusion defect, thallium-201 redistribution) and demographic data (age, gender, medications). Only the presence of good coronary collateral vessels (p less than 0.02) and increases in rate-pressure product after dipyridamole infusion (p less than 0.02) were significant multivariate predictors of dipyridamole-induced ST depression. Good collateral vessels were more common in the group with ST depression (11 (79%) of 14) than they were in the group without ST depression (6 (22%) of 27; p less than 0.001). Rate-pressure product increased 2,835 +/- 1,648 beats/min.mm Hg in the group with ST depression compared with 1,179 +/- 1,417 beats/min.mm Hg in patients without ST depression (p less than 0.005). In conclusion, dipyridamole-induced ST segment depression in patients with coronary artery disease appears to be related to 1) the presence of good coronary collateral vessels, which may act by facilitating coronary steal, and 2) increases in rate-pressure product, reflecting increased myocardial oxygen demand. These observations may explain the lack of prognostic value of dipyridamole-induced ST segment depression described in previous reports.

  2. Application of self-organising maps towards segmentation of soybean samples by determination of amino acids concentration.

    PubMed

    Silva, Lívia Ramazzoti Chanan; Angilelli, Karina Gomes; Cremasco, Hágata; Romagnoli, Érica Signori; Galão, Olívio Fernandes; Borsato, Dionisio; Moraes, Larissa Alexandra Cardoso; Mandarino, José Marcos Gontijo

    2016-09-01

    Soybeans are widely used both for human nutrition and animal feed, since they are an important source of protein, and they also provide components such as phytosterols, isoflavones, and amino acids. In this study, were determined the concentrations of the amino acids lysine, histidine, arginine, asparagine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine present in 14 samples of conventional soybeans and 6 transgenic, cultivated in two cities of the state of Paraná, Londrina and Ponta Grossa. The results were tabulated and presented to a self-organising map for segmentation according planting regions and conventional or transgenic varieties. A network with 7000 training epochs and a 10 × 10 topology was used, and it proved appropriate in the segmentation of the samples using the data analysed. The weight maps provided by the network, showed that all the amino acids were important in targeting the samples, especially isoleucine. Three clusters were formed, one with only Ponta Grossa samples (including transgenic (PGT) and common (PGC)), a second group with Londrina transgenic (LT) samples and the third with Londrina common (LC) samples.

  3. optix functions as a link between the retinal determination network and the dpp pathway to control morphogenetic furrow progression in Drosophila

    PubMed Central

    Li, Yumei; Jiang, Yuwei; Chen, Yiyun; Karandikar, Umesh; Hoffman, Kristi; Chattopadhyay, Abanti; Mardon, Graeme; Chen, Rui

    2013-01-01

    optix, the Drosophila ortholog of the SIX3/6 gene family in vertebrate, encodes a homeodomain protein with a SIX protein-protein interaction domain. In vertebrates, Six3/6 genes are required for normal eye as well as brain development. However, the normal function of optix in Drosophila remains unknown due to lack of loss-of-function mutation. Previous studies suggest that optix is likely to play important role as part of the retinal determination (RD) network. To elucidate normal optix function during retinal development, multiple null alleles for optix have been generated. Loss-of-function mutations in optix result in lethality at the pupae stage. Surprisingly, close examination of its function during eye development reveals that, unlike other members of the RD network, optix is required only for morphogenetic furrow (MF) progression, but not initiation. The mechanisms by which optix regulates MF progression is likely through regulation of signaling molecules in the furrow. Specifically, although unaffected during MF initiation, expression of dpp in the MF is dramatically reduced in optix mutant clones. In parallel, we find that optix is regulated by sine oculis and eyes absent, key members of the RD network. Furthermore, positive feedback between optix and sine oculis and eyes absent is observed, which is likely mediated through dpp signaling pathway. Together with the observation that optix expression does not depend on hh or dpp, we propose that optix functions together with hh to regulate dpp in the MF, serving as a link between the RD network and the patterning pathways controlling normal retinal development. PMID:23792115

  4. Copy Number and Orientation Determine the Susceptibility of a Gene to Silencing by Nearby Heterochromatin in Drosophila

    PubMed Central

    Sabl, J. F.; Henikoff, S.

    1996-01-01

    The classical phenomenon of position-effect variegation (PEV) is the mosaic expression that occurs when a chromosomal rearrangement moves a euchromatic gene near heterochromatin. A striking feature of this phenomenon is that genes far away from the junction with heterochromatin can be affected, as if the heterochromatic state ``spreads.'' We have investigated classical PEV of a Drosophila brown transgene affected by a heterochromatic junction ~60 kb away. PEV was enhanced when the transgene was locally duplicated using P transposase. Successive rounds of P transposase mutagenesis and phenotypic selection produced a series of PEV alleles with differences in phenotype that depended on transgene copy number and orientation. As for other examples of classical PEV, nearby heterochromatin was required for gene silencing. Modifications of classical PEV by alterations at a single site are unexpected, and these observations contradict models for spreading that invoke propagation of heterochromatin along the chromosome. Rather, our results support a model in which local alterations affect the affinity of a gene region for nearby heterochromatin via homology-based pairing, suggesting an alternative explanation for this 65-year-old phenomenon. PMID:8852844

  5. Forces driven by morphogenesis modulate Twist Expression to determine Anterior Mid-gut Differentiation in Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Farge, Emmanuel

    2008-03-01

    By combining magnetic tweezers to in vivo laser ablation, we locally manipulate Drosophila embryonic tissues with physiologically relevant forces. We demonstrate that high level of Twist expression in the stomodeal primordium is mechanically induced in response to compression by the 60±20 nN force developed during germ-band extension (GBE). We find that this force triggers the junctional release and nuclear translocation of Armadillo involved in Twist mechanical induction in the stomodeum in a Src42A dependent way. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, as revealed by strong defects in Dve expression and abnormal larval lethality. Thus, mechanical induction of Twist overexpression in stomodeal cells is necessary for subsequent midgut differentiation. In collaboration with Nicolas Desprat, Willy Supatto, and Philippe-Alexandre Pouille, MGDET, UMR168 CNRS, Institut Curie11 rue Pierre et Marie Curie, F-75005, Paris, France; and Emmanuel Beaurepaire, LOB, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France.

  6. Maternal Groucho and bHLH repressors amplify the dose-sensitive X chromosome signal in Drosophila sex determination.

    PubMed

    Lu, Hong; Kozhina, Elena; Mahadevaraju, Sharvani; Yang, Dun; Avila, Frank W; Erickson, James W

    2008-11-15

    In Drosophila, XX embryos are fated to develop as females, and XY embryos as males, because the diplo-X dose of four X-linked signal element genes, XSEs, activates the Sex-lethal establishment promoter, SxlPe, whereas the haplo-X XSE dose leaves SxlPe off. The threshold response of SxlPe to XSE concentrations depends in part on the bHLH repressor, Deadpan, present in equal amounts in XX and XY embryos. We identified canonical and non-canonical DNA-binding sites for Dpn at SxlPe and found that cis-acting mutations in the Dpn-binding sites caused stronger and earlier Sxl expression than did deletion of dpn implicating other bHLH repressors in Sxl regulation. Maternal Hey encodes one such bHLH regulator but the E(spl) locus does not. Elimination of the maternal corepressor Groucho also caused strong ectopic Sxl expression in XY, and premature Sxl activation in XX embryos, but Sxl was still expressed differently in the sexes. Our findings suggest that Groucho and associated maternal and zygotic bHLH repressors define the threshold XSE concentrations needed to activate SxlPe and that they participate directly in sex signal amplification. We present a model in which the XSE signal is amplified by a feedback mechanism that interferes with Gro-mediated repression in XX, but not XY embryos.

  7. Gene expression suggests double-segmental and single-segmental patterning mechanisms during posterior segment addition in the beetle Tribolium castaneum.

    PubMed

    Janssen, Ralf

    2014-01-01

    In the model arthropod Drosophila, all segments are patterned simultaneously in the blastoderm. In most other arthropods, however, posterior segments are added sequentially from a posterior segment addition zone. Posterior addition of single segments likely represents the ancestral mode of arthropod segmentation, although in Drosophila, segments are patterned in pairs by the pair-rule genes. It has been shown that in the new model insect, the beetle Tribolium, a segmentation clock operates that apparently patterns all segments in pairs as well. Here, I report on the expression of the segment polarity gene H15/midline in Tribolium. In the anterior embryo, segmental stripes of H15 appear in pairs, but in the posterior of the embryo stripes appear in a single-segmental periodicity. This implies that either two completely different segmentation-mechanisms may act in the germ band of Tribolium, that the segmentation clock changes its periodicity during development, or that the speed in which posterior segments are patterned changes. In any case, the data suggest the presence of another (or modified), yet undiscovered, mechanism of posterior segment addition in one of the best-understood arthropod models. The finding of a hitherto unrecognized segmentation mechanism in Tribolium may have major implications for the understanding of the origin of segmentation mechanisms, including the origin of pair rule patterning. It also calls for (re)-investigation of posterior segment addition in Tribolium and other previously studied arthropod models.

  8. Using Drosophila for Studies of Intermediate Filaments.

    PubMed

    Bohnekamp, Jens; Cryderman, Diane E; Thiemann, Dylan A; Magin, Thomas M; Wallrath, Lori L

    2016-01-01

    Drosophila melanogaster is a useful organism for determining protein function and modeling human disease. Drosophila offers a rapid generation time and an abundance of genomic resources and genetic tools. Conservation in protein structure, signaling pathways, and developmental processes make studies performed in Drosophila relevant to other species, including humans. Drosophila models have been generated for neurodegenerative diseases, muscular dystrophy, cancer, and many other disorders. Recently, intermediate filament protein diseases have been modeled in Drosophila. These models have revealed novel mechanisms of pathology, illuminated potential new routes of therapy, and make whole organism compound screens feasible. The goal of this chapter is to outline steps to study intermediate filament function and model intermediate filament-associated diseases in Drosophila. The steps are general and can be applied to study the function of almost any protein. The protocols outlined here are for both the novice and experienced Drosophila researcher, allowing the rich developmental and cell biology that Drosophila offers to be applied to studies of intermediate filaments.

  9. Modelling of Polycomb-Dependent Chromosomal Interactions Involved in Drosophila Gene Silencing

    NASA Astrophysics Data System (ADS)

    Silke, Ritter; Odenheimer, Jens; Heermann, Dieter W.; Bantignies, Frederic; Grimaud, Charlotte; Cavalli, Giacomo

    The conditions of the chromosomes inside the nucleus in the Rabl configuration have been modelled as self-avoiding polymer chains under restraining conditions. To ensure that the chromosomes remain stretched out and lined up, we fixed their end points to two opposing walls. The numbers of segments N, the distances d1 and d2 between the fixpoints, and the wall-to-wall distance z (as measured in segment lengths) determine an approximate value for the Kuhn segment length kl. We have simulated the movement of the chromosomes using molecular dynamics to obtain the expected distance distribution between the genetic loci in the absence of further attractive or repulsive forces. A comparison to biological experiments on Drosophila Melanogaster yields information on the parameters for our model. With the correct parameters it is possible to draw conclusions on the strength and range of the attraction that leads to pairing.

  10. Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos.

    PubMed

    Michelson, A M; Abmayr, S M; Bate, M; Arias, A M; Maniatis, T

    1990-12-01

    We have isolated a Drosophila gene that is expressed in a temporal and spatial pattern during embryogenesis, strongly suggesting an important role for this gene in the early development of muscle. This gene, which we have named nautilus (nau), encodes basic and helix-loop-helix domains that display striking sequence similarity to those of the vertebrate myogenic regulatory gene family. nau transcripts are initially localized to segmentally repeated clusters of mesodermal cells, a pattern that is reminiscent of the expression of the achaete-scute genes in the Drosophila peripheral nervous system. These early nau-positive cells are detected just prior to the first morphological evidence of muscle cell fusion and occupy similar positions as the later-appearing muscle precursors. Subsequently, nau transcripts are present in at least a subset of growing muscle precursors and mature muscle fibers that exhibit distinct segmental differences. These observations establish nau as the earliest known marker of myogenesis in Drosophila and indicate that this gene may be a key determinant of pattern formation in the embryonic mesoderm.

  11. Feeding regulation in Drosophila

    PubMed Central

    Pool, Allan-Hermann; Scott, Kristin

    2014-01-01

    Neuromodulators play a key role in adjusting animal behavior based on environmental cues and internal needs. Here, we review the regulation of Drosophila feeding behavior to illustrate how neuromodulators achieve behavioral plasticity. Recent studies have made rapid progress in determining molecular and cellular mechanisms that translate the metabolic needs of the fly into changes in neuroendocrine and neuromodulatory states. These neuromodulators in turn promote or inhibit discrete feeding behavioral subprograms. This review highlights the links between physiological needs, neuromodulatory states, and feeding decisions. PMID:24937262

  12. A theoretical model for the regulation of Sex-lethal, a gene that controls sex determination and dosage compensation in Drosophila melanogaster.

    PubMed Central

    Louis, Matthieu; Holm, Liisa; Sánchez, Lucas; Kaufman, Marcelle

    2003-01-01

    Cell fate commitment relies upon making a choice between different developmental pathways and subsequently remembering that choice. Experimental studies have thoroughly investigated this central theme in biology for sex determination. In the somatic cells of Drosophila melanogaster, Sex-lethal (Sxl) is the master regulatory gene that specifies sexual identity. We have developed a theoretical model for the initial sex-specific regulation of Sxl expression. The model is based on the well-documented molecular details of the system and uses a stochastic formulation of transcription. Numerical simulations allow quantitative assessment of the role of different regulatory mechanisms in achieving a robust switch. We establish on a formal basis that the autoregulatory loop involved in the alternative splicing of Sxl primary transcripts generates an all-or-none bistable behavior and constitutes an efficient stabilization and memorization device. The model indicates that production of a small amount of early Sxl proteins leaves the autoregulatory loop in its off state. Numerical simulations of mutant genotypes enable us to reproduce and explain the phenotypic effects of perturbations induced in the dosage of genes whose products participate in the early Sxl promoter activation. PMID:14668388

  13. [When Tribolium complements the genetics of Drosophila].

    PubMed

    Bonneton, François

    2010-03-01

    With its recently sequenced genome, the red flour beetle Tribolium castaneum became one of the few model organisms with all the main genetic tools. As a coleoptera, it belongs to the most species-rich order of animals. Tribolium is also a worldwide pest for stored dried foods. Regarding developmental biology, Tribolium offers a complementary model to the highly derived Drosophila. For example, the function of many gap and pair-rule segmentation genes is different in both species. These differences reveal the evolutionary plasticity between two modes of development, with a long germ band in fly and a short one in Tribolium. This beetle allowed the identification of a new type of ecdysone receptor for holometabolous insects. Finally, in the search for the juvenile hormone receptor, a crucial result was obtained with experiments that could be performed only with Tribolium, and not with Drosophila. Tribolium, in association with Drosophila, should help to understand the general rules of development in insects.

  14. The size and internal structure of a heterochromatic block determine its ability to induce position effect variegation in Drosophila melanogaster.

    PubMed Central

    Tolchkov, E V; Rasheva, V I; Bonaccorsi, S; Westphal, T; Gvozdev, V A

    2000-01-01

    In the In(1LR)pn2a rearrangement, the 1A-2E euchromatic segment is transposed to the vicinity of X heterochromatin (Xh), resulting in position effect variegation (PEV) of the genes in the 2BE region. Practically the whole X-linked heterochromatin is situated adjacent to variegated euchromatic genes. Secondary rearrangements showing weakening or reversion of PEV were obtained by irradiation of the In(1LR)pn2a. These rearrangements demonstrate a positive correlation between the strength of PEV of the wapl locus and the sizes of the adjacent heterochromatic blocks carrying the centromere. The smallest PEV-inducing fragment consists of a block corresponding to approximately 10% of Xh and containing the entire XR, the centromere, and a very proximal portion of XL heterochromatin. Heterochromatic blocks retaining the entire XR near the 2E region, but lacking the centromere, show no PEV. Reversion of PEV was also observed as a result of an internal rearrangement of the Xh blocks where the centromere is moved away from the eu-heterochromatin boundary but the amount of X heterochromatin remaining adjacent to 2E is unchanged. We propose a primary role of the X pericentromeric region in PEV induction and an enhancing effect of the other blocks, positively correlated with their size. PMID:10747057

  15. Imaging fictive locomotor patterns in larval Drosophila

    PubMed Central

    Bayley, Timothy G.; Taylor, Adam L.; Berni, Jimena; Bate, Michael; Hedwig, Berthold

    2015-01-01

    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca2+ indicators. The Ca2+ signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca2+ signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca2+ signals were normally initiated did not eliminate production of Ca2+ waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188

  16. Automated Tracking of Drosophila Specimens

    PubMed Central

    Chao, Rubén; Macía-Vázquez, Germán; Zalama, Eduardo; Gómez-García-Bermejo, Jaime; Perán, José-Ramón

    2015-01-01

    The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained. PMID:26258779

  17. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila.

    PubMed

    Zweier, Christiane; de Jong, Eiko K; Zweier, Markus; Orrico, Alfredo; Ousager, Lilian B; Collins, Amanda L; Bijlsma, Emilia K; Oortveld, Merel A W; Ekici, Arif B; Reis, André; Schenck, Annette; Rauch, Anita

    2009-11-01

    Heterozygous copy-number variants and SNPs of CNTNAP2 and NRXN1, two distantly related members of the neurexin superfamily, have been repeatedly associated with a wide spectrum of neuropsychiatric disorders, such as developmental language disorders, autism spectrum disorders, epilepsy, and schizophrenia. We now identified homozygous and compound-heterozygous deletions and mutations via molecular karyotyping and mutational screening in CNTNAP2 and NRXN1 in four patients with severe mental retardation (MR) and variable features, such as autistic behavior, epilepsy, and breathing anomalies, phenotypically overlapping with Pitt-Hopkins syndrome. With a frequency of at least 1% in our cohort of 179 patients, recessive defects in CNTNAP2 appear to significantly contribute to severe MR. Whereas the established synaptic role of NRXN1 suggests that synaptic defects contribute to the associated neuropsychiatric disorders and to severe MR as reported here, evidence for a synaptic role of the CNTNAP2-encoded protein CASPR2 has so far been lacking. Using Drosophila as a model, we now show that, as known for fly Nrx-I, the CASPR2 ortholog Nrx-IV might also localize to synapses. Overexpression of either protein can reorganize synaptic morphology and induce increased density of active zones, the synaptic domains of neurotransmitter release. Moreover, both Nrx-I and Nrx-IV determine the level of the presynaptic active-zone protein bruchpilot, indicating a possible common molecular mechanism in Nrx-I and Nrx-IV mutant conditions. We therefore propose that an analogous shared synaptic mechanism contributes to the similar clinical phenotypes resulting from defects in human NRXN1 and CNTNAP2.

  18. An autoregulatory enhancer element of the Drosophila homeotic gene Deformed.

    PubMed

    Bergson, C; McGinnis, W

    1990-12-01

    The stable determination of different anterior-posterior regions of the Drosophila embryo is controlled by the persistent expression of homeotic selector genes. One mechanism that has been proposed to explain the persistent expression of the homeotic gene Deformed is an autoactivation circuit that would be used once Deformed expression had been established by earlier acting patterning genes. Here we show that a large cis-regulatory element mapping approximately 5 kb upstream of the Deformed transcription start has the properties predicted for a Deformed autoregulatory enhancer. This element provides late, spatially localized expression in the epidermal cells of the maxillary and mandibular segments which is wholly dependent upon endogenous Deformed function. In addition, the autoregulatory enhancer can be activated ectopically in embryos and in imaginal disc cells by ectopic expression of Deformed protein. Deletion analysis of the autoregulatory element indicates that it contains compartment specific sub-elements similar to those of other homeotic loci.

  19. PhyloFlu, a DNA Microarray for Determining the Phylogenetic Origin of Influenza A Virus Gene Segments and the Genomic Fingerprint of Viral Strains

    PubMed Central

    Paulin, Luis F.; Soto-Del Río, María de los D.; Sánchez, Iván; Hernández, Jesús; Gutiérrez-Ríos, Rosa M.; López-Martínez, Irma; Wong-Chew, Rosa M.; Parissi-Crivelli, Aurora; Isa, P.; López, Susana

    2014-01-01

    Recent evidence suggests that most influenza A virus gene segments can contribute to the pathogenicity of the virus. In this regard, the hemagglutinin (HA) subtype of the circulating strains has been closely surveyed, but the reassortment of internal gene segments is usually not monitored as a potential source of an increased pathogenicity. In this work, an oligonucleotide DNA microarray (PhyloFlu) designed to determine the phylogenetic origins of the eight segments of the influenza virus genome was constructed and validated. Clades were defined for each segment and also for the 16 HA and 9 neuraminidase (NA) subtypes. Viral genetic material was amplified by reverse transcription-PCR (RT-PCR) with primers specific to the conserved 5′ and 3′ ends of the influenza A virus genes, followed by PCR amplification with random primers and Cy3 labeling. The microarray unambiguously determined the clades for all eight influenza virus genes in 74% (28/38) of the samples. The microarray was validated with reference strains from different animal origins, as well as from human, swine, and avian viruses from field or clinical samples. In most cases, the phylogenetic clade of each segment defined its animal host of origin. The genomic fingerprint deduced by the combined information of the individual clades allowed for the determination of the time and place that strains with the same genomic pattern were previously reported. PhyloFlu is useful for characterizing and surveying the genetic diversity and variation of animal viruses circulating in different environmental niches and for obtaining a more detailed surveillance and follow up of reassortant events that can potentially modify virus pathogenicity. PMID:24353006

  20. The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis.

    PubMed

    Hannibal, Roberta L; Price, Alivia L; Patel, Nipam H

    2012-01-15

    In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea.

  1. Spatial dependence of predictions from image segmentation: a methods to determine appropriate scales for producing land-management information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A challenge in ecological studies is defining scales of observation that correspond to relevant ecological scales for organisms or processes. Image segmentation has been proposed as an alternative to pixel-based methods for scaling remotely-sensed data into ecologically-meaningful units. However, to...

  2. Repeatability and Reproducibility of Eight Macular Intra-Retinal Layer Thicknesses Determined by an Automated Segmentation Algorithm Using Two SD-OCT Instruments

    PubMed Central

    Huang, Shenghai; Leng, Lin; Zhu, Dexi; Lu, Fan

    2014-01-01

    Purpose To evaluate the repeatability, reproducibility, and agreement of thickness profile measurements of eight intra-retinal layers determined by an automated algorithm applied to optical coherence tomography (OCT) images from two different instruments. Methods Twenty normal subjects (12 males, 8 females; 24 to 32 years old) were enrolled. Imaging was performed with a custom built ultra-high resolution OCT instrument (UHR-OCT, ∼3 µm resolution) and a commercial RTVue100 OCT (∼5 µm resolution) instrument. An automated algorithm was developed to segment the macular retina into eight layers and quantitate the thickness of each layer. The right eye of each subject was imaged two times by the first examiner using each instrument to assess intra-observer repeatability and once by the second examiner to assess inter-observer reproducibility. The intraclass correlation coefficient (ICC) and coefficients of repeatability and reproducibility (COR) were analyzed to evaluate the reliability. Results The ICCs for the intra-observer repeatability and inter-observer reproducibility of both SD-OCT instruments were greater than 0.945 for the total retina and all intra-retinal layers, except the photoreceptor inner segments, which ranged from 0.051 to 0.643, and the outer segments, which ranged from 0.709 to 0.959. The CORs were less than 6.73% for the total retina and all intra-retinal layers. The total retinal thickness measured by the UHR-OCT was significantly thinner than that measured by the RTVue100. However, the ICC for agreement of the thickness profiles between UHR-OCT and RTVue OCT were greater than 0.80 except for the inner segment and outer segment layers. Conclusions Thickness measurements of the intra-retinal layers determined by the automated algorithm are reliable when applied to images acquired by the UHR-OCT and RTVue100 instruments. PMID:24505345

  3. Ectoparasitic mites and their Drosophila hosts.

    PubMed

    Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann

    2017-01-02

    Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages.

  4. Ectoparasitic mites and their Drosophila hosts

    PubMed Central

    Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann

    2017-01-01

    ABSTRACT Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages. PMID:27540774

  5. In vivo interactions of the Drosophila Hairy and Runt transcriptional repressors with target promoters.

    PubMed

    Jiménez, G; Pinchin, S M; Ish-Horowicz, D

    1996-12-16

    The Hairy and Runt pair-rule proteins regulate Drosophila segmentation by repressing transcription. To explore the ability of these proteins to function as promoter-bound regulators in vivo, we examined the effects of Hairy and Runt derivatives containing heterologous transcriptional activation domains (HairyAct and RunAct). Using this approach, we find that Hairy and Runt efficiently target such activation domains to specific segmentation gene promoters, leading to rapid induction of transcription. Our results strongly suggest that Hairy normally acts as a promoter-bound repressor of fushi tarazu, runt and odd-skipped, and that Runt directly represses even-skipped. We also show that expressing HairyAct in early blastoderm embryos causes ectopic Sex-lethal expression and male-specific lethality, implying that the Hairy-related denominator element Deadpan represses Sex-lethal during sex determination by directly recognizing the early Sex-lethal promoter.

  6. Optogenetics in Drosophila Neuroscience.

    PubMed

    Riemensperger, Thomas; Kittel, Robert J; Fiala, André

    2016-01-01

    Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory.

  7. To Study and Determine the Role of Anterior Segment Optical Coherence Tomography and Ultrasound Biomicroscopy in Corneal and Conjunctival Tumors

    PubMed Central

    Janssens, Katleen; Lauwers, Noémie; de Keizer, Rob J. W.; Mathysen, Danny G. P.

    2016-01-01

    Purpose. To analyze and describe corneal and conjunctival tumor thickness and internal characteristics and extension in depth and size and shape measured by two noninvasive techniques, anterior segment optical coherence tomography (AS-OCT) and ultrasound biomicroscopy (UBM). Design. Systematic review. Methods. This systematic review is based on a comprehensive search of 4 databases (Medline, Embase, Web of Science, and Cochrane Library). Articles published between January 1, 1999, and December 31, 2015, were included. We searched for articles using the following search terms in various combinations: “optical coherence tomography”, “ultrasound biomicroscopy”, “corneal neoplasm”, “conjunctival neoplasm”, “eye”, “tumor” and “anterior segment tumors”. Inclusion criteria were as follows: UBM and/or AS-OCT was used; the study included corneal or conjunctival tumors; and the article was published in English, French, Dutch, or German. Results. There were 14 sources selected. Discussion. Several studies on the quality of AS-OCT and UBM show that these imaging techniques provide useful information about the internal features, extension, size, and shape of tumors. Yet there is no enough evidence on the advantages and disadvantages of UBM and AS-OCT in certain tumor types. Conclusion. More comparative studies are needed to investigate which imaging technique is most suitable for a certain tumor type. PMID:28050274

  8. HLA-F coding and regulatory segments variability determined by massively parallel sequencing procedures in a Brazilian population sample.

    PubMed

    Lima, Thálitta Hetamaro Ayala; Buttura, Renato Vidal; Donadi, Eduardo Antônio; Veiga-Castelli, Luciana Caricati; Mendes-Junior, Celso Teixeira; Castelli, Erick C

    2016-10-01

    Human Leucocyte Antigen F (HLA-F) is a non-classical HLA class I gene distinguished from its classical counterparts by low allelic polymorphism and distinctive expression patterns. Its exact function remains unknown. It is believed that HLA-F has tolerogenic and immune modulatory properties. Currently, there is little information regarding the HLA-F allelic variation among human populations and the available studies have evaluated only a fraction of the HLA-F gene segment and/or have searched for known alleles only. Here we present a strategy to evaluate the complete HLA-F variability including its 5' upstream, coding and 3' downstream segments by using massively parallel sequencing procedures. HLA-F variability was surveyed on 196 individuals from the Brazilian Southeast. The results indicate that the HLA-F gene is indeed conserved at the protein level, where thirty coding haplotypes or coding alleles were detected, encoding only four different HLA-F full-length protein molecules. Moreover, a same protein molecule is encoded by 82.45% of all coding alleles detected in this Brazilian population sample. However, the HLA-F nucleotide and haplotype variability is much higher than our current knowledge both in Brazilians and considering the 1000 Genomes Project data. This protein conservation is probably a consequence of the key role of HLA-F in the immune system physiology.

  9. Tension, cell shape and triple-junction angle anisotropy in the Drosophila germband

    NASA Astrophysics Data System (ADS)

    Lacy, Monica; Hutson, M. Shane; Meyer, Christian; McDonald, Xena

    In the field of tissue mechanics, the embryonic development of Drosophila melanogaster offers many opportunities for study. One of Drosophila's most crucial morphogenetic stages is the retraction of an epithelial tissue called the germband. During retraction, the segments of the retracting germband, as well as the individual germband cells, elongate in response to forces from a connected tissue, the amnioserosa. Modeling of this elongation, based on tissue responses to laser wounding, has plotted the internal germband tension against the external amnioserosa stress, creating a phase space to determine points and regions corresponding to stable elongation. Although the resulting fits indicate a necessary opposition of internal and external forces, they are inconclusive regarding the exact balance. We will present results testing the model predictions by measuring cell shapes and the correlations between cell-edge directions and triple-junction angles. These measures resolve the ambiguity in pinpointing the internal-external force balance for each germband segment. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.

  10. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China)

    SciTech Connect

    Van der Woerd, J.; Meriaux, A.S. |; Ryerson, F.J.; Finkel, R.; Caffee, M.; Tapponnier, P.; Gaudemer, Y.; Guoguang, Z.; Qunlu, H.

    1998-08-01

    Cosmogenic dating, using in situ {sup 26}Al and {sup 10}Be in quartz pebbles from alluvial terrace surfaces, constrains the late Holocene slip rate on the Xidatan segment of the Kunlun fault in northeastern Tibet. Two terrace risers offset by 24 {+-} 3 and 33 {+-} 4 m, having respective ages of 1799 {+-} 388 and 2914 {+-} 471 yr, imply a slip rate of 12.1 {+-} 2.6 mm/yr. The full range of ages obtained ({le}22.8 k.y., most of them between 6.7 and 1.4 k.y.) confirm that terrace deposition and incision, hence landform evolution, are modulated by post-glacial climate change. Coupled with minimum offsets of 9--12 m, this slip rate implies that great earthquakes (M {approximately}8) with a recurrence time of 800--1000 yr, rupture the Kunlun fault near 94 E.

  11. Drosophila Blastorderm Analysis Software

    SciTech Connect

    2006-10-25

    PointCloudMake analyzes 3D fluorescent images of whole Drosophila embryo and produces a table-style "PointCloud" file which contains the coordinates and volumes of all the nuclei, cells, their associated relative gene expression levels along with morphological features of the embryo. See: Luengo Hendrix et at 2006 3D Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution manuscript submitted LBNL # LBNL-60178 Knowles DW, Keranen SVE, Biggin M. Sudar S (2002) Mapping organism expression levels at cellular resolution in developing Drosophila. In: Conchello JA, Cogswell CJ, Wilson T, editors. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX. pp. 57-64

  12. EVENT SEGMENTATION

    PubMed Central

    Zacks, Jeffrey M.; Swallow, Khena M.

    2012-01-01

    One way to understand something is to break it up into parts. New research indicates that segmenting ongoing activity into meaningful events is a core component of ongoing perception, with consequences for memory and learning. Behavioral and neuroimaging data suggest that event segmentation is automatic and that people spontaneously segment activity into hierarchically organized parts and sub-parts. This segmentation depends on the bottom-up processing of sensory features such as movement, and on the top-down processing of conceptual features such as actors’ goals. How people segment activity affects what they remember later; as a result, those who identify appropriate event boundaries during perception tend to remember more and learn more proficiently. PMID:22468032

  13. DISCO interacting protein 2 determines direction of axon projection under the regulation of c-Jun N-terminal kinase in the Drosophila mushroom body.

    PubMed

    Nitta, Yohei; Sugie, Atsushi

    2017-04-07

    Precisely controlled axon guidance for complex neuronal wiring is essential for appropriate neuronal function. c-Jun N-terminal kinase (JNK) was found to play a role in axon guidance recently as well as in cell proliferation, protection and apoptosis. In spite of many genetic and molecular studies on these biological processes regulated by JNK, how JNK regulates axon guidance accurately has not been fully explained thus far. To address this question, we use the Drosophila mushroom body (MB) as a model since the α/β axons project in two distinct directions. Here we show that DISCO interacting protein 2 (DIP2) is required for the accurate direction of axonal guidance. DIP2 expression is under the regulation of Basket (Bsk), the Drosophila homologue of JNK. We additionally found that the Bsk/DIP2 pathway is independent from the AP-1 transcriptional factor complex pathway, which is directly activated by Bsk. In conclusion, our findings revealed DIP2 as a novel effector downstream of Bsk modulating the direction of axon projection.

  14. Asymmetric stem cell division: lessons from Drosophila.

    PubMed

    Wu, Pao-Shu; Egger, Boris; Brand, Andrea H

    2008-06-01

    Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer. What we are learning from Drosophila as a model system has implication both for stem cell biology and also cancer research.

  15. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun Fault (Qinghai, Chin

    SciTech Connect

    Guoguang, Z; Caffee, M; Finkel, R; G,; demer, Y; Meriaux, A S; Qunlu,; Ryerson, F J; Tapponnier, P; Van der Woerd, J

    1998-09-01

    Cosmogenic dating, using in-situ 26A1 and 10Be in quartz pebbles from alluvial terrace surfaces, constrains the late Holocene slip rate on the Xidatan segment of the Kuniun fault in northeastern Tibet. Two terrace risers offset by 24 ± 3 and 33 f± 4m, having respective ages of 1788 ± 388 and 2914 ± 471 yr, imply a slip rate of 12.1 ± 2.6 mm/yr. The full range of ages obtained ((less than or equal to) 22.8 k.y., most of them between 6.7 and 1.4 k.y.) confirm that terrace deposition and incision, hence landform evolution, are modulated by post-glacial climate change. Coupled with minimum offsets of 9-12 m, this slip rate implies that great earthquakes (M-8) with a recurrence time of 800-1000 yr. rupture the Kunlun fault n

  16. In focus: spotted wing drosophila, Drosophila suzukii, across perspectives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An effective response to the invasion of spotted wing Drosophila (SWD), Drosophila suzukii, requires proper taxonomic identification at the initial phase, understanding its basic biology and phenology, developing management tools, transferring information and technology quickly to user groups, and e...

  17. Minimization of sample volume with air-segmented sample injection and the simultaneous determination of trace elements by ICP-MS.

    PubMed

    Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2008-05-01

    The application of inductively coupled plasma mass spectrometry (ICP-MS) to forensic chemistry was studied. The developed method, air-segmented sample injection (ASSI) coupled with ICP-MS, allowed the determination of about 25 elements at the sub-ppb level with only 0.2 ml of a sample solution. The optimum sample flow rate was found to be 0.4 ml min(-1), along with a sample suction time of 30 s. The proposed method was validated by determining trace elements in river-water certified reference material (SLRS-4) issued by National Research Council Canada. The analytical results of the proposed method were in good agreement with the certified values. This method was successfully applied to a human hair sample, the volume of which was 3 ml.

  18. Genetic control of segmentation of axial structures in vertebrates

    SciTech Connect

    Mglinets, V.A.

    1995-07-01

    The processes of segmentation of axial structures in vertebrates during early embryonic development are reviewed. These processes include the formation of neuromeres, somitomeres, cranial ganglia, and branchial arches in the head and of neuromeres, somites, spinal ganglia, and motor nerves in the body of the embryo. The class of vertebrate homeobox genes Hox is described with respect to the arrangement of these genes in four clusters, the structural and functional similarity of paralogues in gene subfamilies, and the type of Hox gene expression in the head and body. A hypothesis concerning the existence of a genetic Hox code, determining the fate of individual segments in neuroectodermal and mesenchymal derivatives, is discussed. In the context of this hypothesis, phenotypic expression of the mutant Hox genes, accompanied by the loss of their function and cases of excessive and ectopic expression of Hox genes, are analyzed. Only in such cases do mutant phenotypes demonstrate symptoms of actual homeotic transformation, in which specific segmental structures are substituted by their homologues, as has been described for homeotic mutations in Drosophila. 56 refs., 1 fig.

  19. A connectionist model of the Drosophila blastoderm

    SciTech Connect

    Reinitz, J. . Dept. of Biological Sciences); Mjolsness, E. . Dept. of Computer Science); Sharp, D.H. . Theoretical Div.)

    1990-11-01

    The authors present a phenomenological modeling framework for development, and apply it to the network of segmentation genes operating in the blastoderm of Drosophila. Their purpose is to provide a systematic method for discovering and expressing correlations in experimental data on gene expression and other developmental processes. The modeling framework is based on a connectionist or neural net dynamics for biochemical regulators, coupled to grammatical rules which describe certain features of the birth, growth, and death of cells, synapses and other biological entities. They present preliminary numerical results regarding regulatory interactions between the genes Kruppel and knirps that demonstrate the potential utility of the model. 14 refs., 5 figs.

  20. Determining the maximum diameter for holes in the shoe without compromising shoe integrity when using a multi-segment foot model.

    PubMed

    Shultz, Rebecca; Jenkyn, Thomas

    2012-01-01

    Measuring individual foot joint motions requires a multi-segment foot model, even when the subject is wearing a shoe. Each foot segment must be tracked with at least three skin-mounted markers, but for these markers to be visible to an optical motion capture system holes or 'windows' must be cut into the structure of the shoe. The holes must be sufficiently large avoiding interfering with the markers, but small enough that they do not compromise the shoe's structural integrity. The objective of this study was to determine the maximum size of hole that could be cut into a running shoe upper without significantly compromising its structural integrity or changing the kinematics of the foot within the shoe. Three shoe designs were tested: (1) neutral cushioning, (2) motion control and (3) stability shoes. Holes were cut progressively larger, with four sizes tested in all. Foot joint motions were measured: (1) hindfoot with respect to midfoot in the frontal plane, (2) forefoot twist with respect to midfoot in the frontal plane, (3) the height-to-length ratio of the medial longitudinal arch and (4) the hallux angle with respect to first metatarsal in the sagittal plane. A single subject performed level walking at her preferred pace in each of the three shoes with ten repetitions for each hole size. The largest hole that did not disrupt shoe integrity was an oval of 1.7cm×2.5cm. The smallest shoe deformations were seen with the motion control shoe. The least change in foot joint motion was forefoot twist in both the neutral shoe and stability shoe for any size hole. This study demonstrates that for a hole smaller than this size, optical motion capture with a cluster-based multi-segment foot model is feasible for measure foot in shoe kinematics in vivo.

  1. Premating isolation is determined by larval-rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations.

    PubMed

    Etges, W J; Ahrens, M A

    2001-12-01

    Adult epicuticular hydrocarbon variation of 14 geographically isolated populations of cactophilic Drosophila mojavensis was assessed to further investigate mechanisms of sexual isolation. Hydrocarbon transfer experiments demonstrated that these compounds are part of the mate recognition system in this species. Sixteen of the 23 epicuticular hydrocarbon components studied differed in amounts between males and females, and 13 differed in quantity between the geographic regions encompassing Baja California and mainland Mexico (Sonora and Sinaloa). Eight hydrocarbon components, seven of which differed in quantity between sexes, showed significant sex-by-region interactions, indicating region-specific sex reversals in hydrocarbon quantities. Such regional variation in epicuticular hydrocarbon profiles suggests that these hydrocarbon differences have also evolved in D. mojavensis since this species invaded mainland Sonora and Sinaloa from Baja California by switching host plants, in addition to a number of key genetic, behavioral, and life-history characters.

  2. The segment polarity network is a robust developmental module

    NASA Astrophysics Data System (ADS)

    von Dassow, George; Meir, Eli; Munro, Edwin M.; Odell, Garrett M.

    2000-07-01

    All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently `imprint' segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields. In contrast, although in locusts pair-rule homologues may not control segmentation, some segment polarity genes and their interactions are conserved. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.

  3. A sensitive LC-MS/MS method for the simultaneous determination of amoxicillin and ambroxol in human plasma with segmental monitoring.

    PubMed

    Dong, Xin; Ding, Li; Cao, Xiaomei; Jiang, Liyuan; Zhong, Shuisheng

    2013-04-01

    Amoxicillin (AMO) degrades in plasma at room temperature and readily undergoes hydrolysis by the plasma amidase. In this paper, a novel, rapid and sensitive LC-MS/MS method operated in segmental and multiple reaction monitoring has been developed for the simultaneous determination of amoxicillin and ambroxol in human plasma. The degradation of amoxicillin in plasma was well prevented by immediate addition of 20 μL glacial acetic acid to 200 μL aliquot of freshly collected plasma samples before storage at -80°C. The sensitivity of the method was improved with segmental monitoring of the analytes, and lower limits of quantitation of 0.5 ng/mL for ambroxol and 5 ng/mL for amoxicillin were obtained. The sensitivity of our method was five times better than those of the existing methods. Furthermore, the mass response saturation problem with amoxicillin was avoided by diluting the deproteinized plasma samples with water before injection into the LC-MS/MS system. The method was successfully employed in a pharmacokinetic study of the compound amoxicillin and ambroxol hydrochloride tablets.

  4. Corn leaf nitrate reductase - A nontoxic alternative to cadmium for photometric nitrate determinations in water samples by air-segmented continuous-flow analysis

    USGS Publications Warehouse

    Patton, C.J.; Fischer, A.E.; Campbell, W.H.; Campbell, E.R.

    2002-01-01

    Development, characterization, and operational details of an enzymatic, air-segmented continuous-flow analytical method for colorimetric determination of nitrate + nitrite in natural-water samples is described. This method is similar to U.S. Environmental Protection Agency method 353.2 and U.S. Geological Survey method 1-2545-90 except that nitrate is reduced to nitrite by soluble nitrate reductase (NaR, EC 1.6.6.1) purified from corn leaves rather than a packed-bed cadmium reactor. A three-channel, air-segmented continuous-flow analyzer-configured for simultaneous determination of nitrite (0.020-1.000 mg-N/L) and nitrate + nitrite (0.05-5.00 mg-N/L) by the nitrate reductase and cadmium reduction methods-was used to characterize analytical performance of the enzymatic reduction method. At a sampling rate of 90 h-1, sample interaction was less than 1% for all three methods. Method detection limits were 0.001 mg of NO2- -N/L for nitrite, 0.003 mg of NO3-+ NO2- -N/L for nitrate + nitrite by the cadmium-reduction method, and 0.006 mg of NO3- + NO2- -N/L for nitrate + nitrite by the enzymatic-reduction method. Reduction of nitrate to nitrite by both methods was greater than 95% complete over the entire calibration range. The difference between the means of nitrate + nitrite concentrations in 124 natural-water samples determined simultaneously by the two methods was not significantly different from zero at the p = 0.05 level.

  5. Molecular characterization of bsg25D: a blastoderm-specific locus of Drosophila melanogaster.

    PubMed Central

    Boyer, P D; Mahoney, P A; Lengyel, J A

    1987-01-01

    The blastoderm stage of Drosophila embryogenesis is a time of crucial transitions in RNA transcription, the cell cycle and segment determination. We have previously identified three loci encoding RNAs specific to this stage (Roark et al., Dev. Biol. 109, 476-488, 1985). We present here the complete nucleotide sequence of one of these loci, bsg25D, which encodes a 2.7 kb blastoderm-specific RNA. The primary structure of this RNA, and that of an overlapping 4.5 kb RNA, has been determined. The amino acid sequence of the predicted bsg25D protein has been compared to the NBRF protein database. Structural similarities between domains in the bsg25D, fos, and tropomyosin proteins, and their possible significance for early embryogenesis are discussed. Images PMID:3104878

  6. Flying Drosophila Orient to Sky Polarization

    PubMed Central

    Weir, Peter T.; Dickinson, Michael H.

    2015-01-01

    Summary Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], foraging bees and ants travel hundreds of meters to return to their nest [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of celestial cues for navigation is a general and perhaps ancient behavioral capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short straight segments are interspersed with rapid turns [7, 8]. Such flight modes, however, are inconsistent with measures of gene flow between geographically-separated populations [9-11], and individual Drosophila have been observed to travel 10 km across desert terrain in a single night [9, 12, 13] – a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the angle of polarization. Our findings indicate that flying Drosophila actively orient using the sky's natural polarization pattern. PMID:22177905

  7. Flying Drosophila orient to sky polarization.

    PubMed

    Weir, Peter T; Dickinson, Michael H

    2012-01-10

    Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern.

  8. Identifying Benefit Segments among College Students.

    ERIC Educational Resources Information Center

    Brown, Joseph D.

    1991-01-01

    Using concept of market segmentation (dividing market into distinct groups requiring different product benefits), surveyed 398 college students to determine benefit segments among students selecting a college to attend and factors describing each benefit segment. Identified one major segment of students (classroomers) plus three minor segments…

  9. Three-Dimensional Genome Organization and Function in Drosophila

    PubMed Central

    Schwartz, Yuri B.; Cavalli, Giacomo

    2017-01-01

    Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques. PMID:28049701

  10. New insights into Drosophila vision.

    PubMed

    Dolph, Patrick

    2008-01-10

    Studies of the Drosophila visual system have provided valuable insights into the function and regulation of phototransduction signaling pathways. Much of this work has stemmed from or relied upon the genetic tools offered by the Drosophila system. In this issue of Neuron, Wang and colleagues and Acharya and colleagues have further exploited the Drosophila genetic system to characterize two new phototransduction players.

  11. Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Watersby Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of dissolved silicate concentration in estuarine and coastal waters. The dissolved silicate is mainly in the form of silicic acid, H SiO , in estuarine and 4 4 coastal waters. All soluble silicate, including colloidal silici...

  12. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed Central

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-01-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen. Images PMID:2901348

  13. Study of accuracy in the position determination with SALSA, a γ-scanning system for the characterization of segmented HPGe detectors

    NASA Astrophysics Data System (ADS)

    Hernandez-Prieto, A.; Quintana, B.; Martìn, S.; Domingo-Pardo, C.

    2016-07-01

    Accurate characterization of the electric response of segmented high-purity germanium (HPGe) detectors as a function of the interaction position is one of the current goals of the Nuclear Physics community seeking to perform γ-ray tracking or even imaging with these detectors. For this purpose, scanning devices must be developed to achieve the signal-position association with the highest precision. With a view to studying the accuracy achieved with SALSA, the SAlamanca Lyso-based Scanning Array, here we report a detailed study on the uncertainty sources and their effect in the position determination inside the HPGe detector to be scanned. The optimization performed on the design of SALSA, aimed at minimizing the effect of the uncertainty sources, afforded an intrinsic uncertainty of ∼2 mm for large coaxial detectors and ∼1 mm for planar ones.

  14. Pyrotechnic hazards classification and evaluation program. Phase 2, segment 3: Test plan for determining hazards associated with pyrotechnic manufacturing processes

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A comprehensive test plan for determining the hazards associated with pyrotechnic manufacturing processes is presented. The rationale for each test is based on a systematic analysis of historical accounts of accidents and a detailed study of the characteristics of each manufacturing process. The most hazardous manufacturing operations have been determined to be pressing, mixing, reaming, and filling. The hazard potential of a given situation is evaluated in terms of the probabilities of initiation, communication, and transition to detonation (ICT). The characteristics which affect the ICT probabilities include the ignition mechanisms which are present either in normal or abnormal operation, the condition and properties of the pyrotechnic material, and the configuration of the processing equipment. Analytic expressions are derived which describe the physical conditions of the system, thus permitting a variety of processes to be evaluated in terms of a small number of experiments.

  15. Hearing regulates Drosophila aggression.

    PubMed

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick

    2017-02-21

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  16. The use of segmented cathodes to determine the spoke current density distribution in high power impulse magnetron sputtering plasmas

    SciTech Connect

    Poolcharuansin, Phitsanu; Estrin, Francis Lockwood; Bradley, James W.

    2015-04-28

    The localized target current density associated with quasi-periodic ionization zones (spokes) has been measured in a high power impulse magnetron sputtering (HiPIMS) discharge using an array of azimuthally separated and electrical isolated probes incorporated into a circular aluminum target. For a particular range of operating conditions (pulse energies up to 2.2 J and argon pressures from 0.2 to 1.9 Pa), strong oscillations in the probe current density are seen with amplitudes up to 52% above a base value. These perturbations, identified as spokes, travel around the discharge above the target in the E×B direction. Using phase information from the angularly separated probes, the spoke drift speeds, angular frequencies, and mode number have been determined. Generally, at low HiPIMS pulse energies E{sub p} < 0.8 J, spokes appear to be chaotic in nature (with random arrival times), however as E{sub p} increases, coherent spokes are observed with velocities between 6.5 and 10 km s{sup −1} and mode numbers m = 3 or above. At E{sub p} > 1.8 J, the plasma becomes spoke-free. The boundaries between chaotic, coherent, and no-spoke regions are weakly dependent on pressure. During each HiPIMS pulse, the spoke velocities increase by about 50%. Such an observation is explained by considering spoke velocities to be determined by the critical ionization velocity, which changes as the plasma composition changes during the pulse. From the shape of individual current density oscillations, it appears that the leading edge of the spoke is associated with a slow increase in local current density to the target and the rear with a more rapid decrease. The measurements show that the discharge current density associated with individual spokes is broadly spread over a wide region of the target.

  17. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.

    PubMed Central

    Spradling, A C; Stern, D; Beaton, A; Rhem, E J; Laverty, T; Mozden, N; Misra, S; Rubin, G M

    1999-01-01

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control. PMID:10471706

  18. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses.

    PubMed

    Takada, Saeko; Collins, Eric R; Kurahashi, Kayo

    2015-05-15

    DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage.

  19. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses

    PubMed Central

    Takada, Saeko; Collins, Eric R.; Kurahashi, Kayo

    2015-01-01

    DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage. PMID:25808488

  20. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection.

    PubMed

    Havens, J A; Etges, W J

    2013-03-01

    Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within-population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair-mated adults from no-choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population-specific plasticity in CHCs. Different groups of CHCs mediated female choice-based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems.

  1. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VIII. Mating success mediated by epicuticular hydrocarbons within and between isolated populations.

    PubMed

    Etges, W J; Tripodi, A D

    2008-11-01

    We tested the hypothesis that intrademic sexual selection has caused sexual isolation between populations of geographically isolated populations of cactophilic Drosophila mojavensis, and was mediated by epicuticular hydrocarbons (EHCs), contact pheromones in this system. Sexual selection and sexual isolation were estimated using a Baja California and mainland population by comparing the number of mated and unmated males and females in each of four pairwise population mating trials. EHC profiles were significantly different in mated and unmated males in the interdemic (Bajafemale symbol x Mainlandmale symbol and Mainlandfemale symbol x Bajamale symbol), but not the intrademic mating trials. A small number of EHCs was identified that best discriminated among mated and unmated males, mostly alkadienes with 34 and 37 carbons. Females showed population-specific preferences for male EHC profiles. However, EHC profiles between mated and unmated males in the intrademic mating trials were not significantly different, consistent with undetectable sexual selection estimated directly from numbers of copulating pairs vs. unmated adults. Thus, sexual isolation among populations was much stronger than sexual selection within these populations of D. mojavensis.

  2. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IV. Correlated responses in behavioral isolation to artificial selection on a life-history trait.

    PubMed

    Etges, W J

    1998-07-01

    Studies of behavioral isolation among geographically isolated populations of Drosophila mojavensis have provided an understanding of incipient speciation wherein phylogeny and ecology play a prominent role. Populations of D. mojavensis in mainland Mexico and southern Arizona exhibit low but significant premating isolation from Baja California populations in laboratory mate choice tests. These same populations have undergone considerable life-history evolution in response to use of different host plants, suggesting that behavioral isolation between populations is a pleiotropic consequence of adaptation to different environments, or Mayr's geographic speciation hypothesis. This hypothesis was tested using bidirectional artificial selection on egg-to-adult development time in replicate lines of a mainland and Baja population cultured on two host cacti for 13 generations. Response to selection was greatest in the slow lines cultured on one host, yet there was uneven response in some lines due to variation in cactus tissue quality. Realized heritabilities for development time ranged from 0.04 to 0.16, which is consistent with previous estimates from half-sib/full-sib analyses of genetic variation. In most lines that responded to selection, premating isolation decreased to near zero. Correlated responses in behavioral isolation suggest that adaptation to contrasting environments can cause secondary responses in mate recognition systems that can influence the formation of new species.

  3. Expression of the Idefix retrotransposon in early follicle cells in the germarium of Drosophila melanogaster is determined by its LTR sequences and a specific genomic context.

    PubMed

    Tcheressiz, S; Calco, V; Arnaud, F; Arthaud, L; Dastugue, B; Vaury, C

    2002-04-01

    Retrotransposons are transcriptionally activated in different tissues and cell types by a variety of genomic and environmental factors. Transcription of LTR retrotransposons is controlled by cis-acting regulatory sequences in the 5' LTR. Mobilization of two LTR retroelements, Idefix and ZAM, occurs in the unstable RevI line of Drosophila melanogaster, in which their copy numbers are high, while they are low in all other stocks tested. Here we show that both a full-length and a subgenomic Idefix transcript that are necessary for its mobilization are present in the Rev1 line, but not in the other lines. Studies on transgenic strains demonstrate that the 5' LTR of Idefix contains sequences that direct the tissue-specific expression of the retroelement in testes and ovaries of adult flies. In ovaries, expression occurs in the early follicle and in other somatic cells of the germarium, and is strictly associated with the unstable genetic context conferred by the RevI line. Control of tissue-specific Idefix expression by interactions between cis-acting sequences of its LTR and trans-acting genomic factors provides an opportunity to use this retroelement as a tool for the study of the early follicle cell lineage in the germarium.

  4. Chemical sensing in Drosophila.

    PubMed

    Benton, Richard

    2008-08-01

    Chemical sensing begins when peripheral receptor proteins recognise specific environmental stimuli and translate them into spatial and temporal patterns of sensory neuron activity. The chemosensory system of the fruit fly, Drosophila melanogaster, has become a dominant model to understand this process, through its accessibility to a powerful combination of molecular, genetic and electrophysiological analysis. Recent results have revealed many surprises in the biology of peripheral chemosensation in Drosophila, including novel structural and signalling properties of the insect odorant receptors (ORs), combinatorial mechanisms of chemical recognition by the gustatory receptors (GRs), and the implication of Transient Receptor Potential (TRP) ion channels as a novel class of chemosensory receptors.

  5. Studying aging in Drosophila.

    PubMed

    He, Ying; Jasper, Heinrich

    2014-06-15

    Drosophila melanogaster represents one of the most important genetically accessible model organisms for aging research. Studies in flies have identified single gene mutations that influence lifespan and have characterized endocrine signaling interactions that control homeostasis systemically. Recent studies have focused on the effects of aging on specific tissues and physiological processes, providing a comprehensive picture of age-related tissue dysfunction and the loss of systemic homeostasis. Here we review methodological aspects of this work and highlight technical considerations when using Drosophila to study aging and age-related diseases.

  6. Functional analysis of an olfactory receptor in Drosophila melanogaster

    PubMed Central

    Störtkuhl, Klemens F.; Kettler, Raffael

    2001-01-01

    Fifty nine candidate olfactory receptor (Or) genes have recently been identified in Drosophila melanogaster, one of which is Or43a. In wild-type flies, Or43a is expressed at the distal edge of the third antennal segment in about 15 Or neurons. To identify ligands for the receptor we used the Gal4/UAS system to misexpress Or43a in the third antennal segment. Or43a mRNA expression in the antenna of transformed and wild-type flies was visualized by in situ hybridization with a digoxigenin-labeled probe. Electroantennogram recordings from transformed and wild-type flies were used to identify cyclohexanol, cyclohexanone, benzaldehyde, and benzyl alcohol as ligands for the Or43a. This in vivo analysis reveals functional properties of one member of the recently isolated Or family in Drosophila and will provide further insight into our understanding of olfactory coding. PMID:11481495

  7. Evidence for horizontal transfer of Wolbachia by a Drosophila mite.

    PubMed

    Brown, Amy N; Lloyd, Vett K

    2015-07-01

    Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences.

  8. DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases

    NASA Astrophysics Data System (ADS)

    Thomson, Neil H.; Santos, Sergio; Mitchenall, Lesley A.; Stuchinskaya, Tanya; Taylor, James A.; Maxwell, Anthony

    2014-08-01

    DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the `exit gate' may be an important determinant of this process.

  9. Bronchopulmonary segments approximation using anatomical atlas

    NASA Astrophysics Data System (ADS)

    Busayarat, Sata; Zrimec, Tatjana

    2007-03-01

    Bronchopulmonary segments are valuable as they give more accurate localization than lung lobes. Traditionally, determining the segments requires segmentation and identification of segmental bronchi, which, in turn, require volumetric imaging data. In this paper, we present a method for approximating the bronchopulmonary segments for sparse data by effectively using an anatomical atlas. The atlas is constructed from a volumetric data and contains accurate information about bronchopulmonary segments. A new ray-tracing based image registration is used for transferring the information from the atlas to a query image. Results show that the method is able to approximate the segments on sparse HRCT data with slice gap up to 25 millimeters.

  10. Validation of an environmental friendly segmented flow method for the determination of phenol index in waters as alternative to the conventional one.

    PubMed

    Sousa, Ana R; Trancoso, Maria A

    2009-08-15

    Phenolic compounds are a sort of common pollutants in water. Phenol index becomes an expedite indicator for the evaluation of the contamination level of water samples, in spite of the knowledge of the individual phenol and its derivatives are also important. In this work, an environmental friendly method for the determination of phenols, using a segmented flow system based on the conventional method's reactions without the liquid-liquid extraction step, was validated. Three linear dynamic ranges using C(6)H(5)OH: 1-10 microg l(-1), 10-200 microg l(-1) and 0.2-2.5 mg l(-1), with a coefficient of variation lower than 2%, were obtained. Several method's performance parameters were determined: limits of detection, limits of quantification, precision through duplicate analysis and trueness using the reference materials purchased from LGC Promochem, RTC no. QCI-043-2 Lot:P1. Measurement uncertainty was evaluated using an interlaboratory approach based on proficiency testing data. Relative combined uncertainty for phenols in water samples, u(c)(rel)(gamma(sample)), of 0.054 were obtained, in according to those imposed by the Portuguese Legislation: target u(c)(rel)(gamma(sample))=0.58 for 1 microg l(-1) of phenol (surface waters) and target u(c)(rel)(gamma(sample))=0.06 for 500 microg l(-1) of phenol (wastewaters). A high efficiency reduction and elimination of reagents and wastes, reduction of analysis time and exposition of the analyst were also obtained.

  11. Uniqueness in the determination of vibration sources in rectangular Germain-Lagrange plates using displacement measurements over line segments with arbitrary small length

    NASA Astrophysics Data System (ADS)

    Kawano, Alexandre

    2013-08-01

    The theme of this work is related to the field of vibration and source detection, which is important in naval, aerospace and civil engineering industries. The detection of unexpected vibration sources, in general, signals malfunctioning, or even an undesired presence in the case of defense systems. The focus will be on thin plates, which are among the basic building blocks of large complex structures. Here, we consider loads acting on a rectangular plate R of the product form g(t)Q(x), where the function of time g has a continuous first derivative and the spatial load distribution Q is a square-integrable function over R. We prove that the observation of the displacement of a line segment with arbitrary length parallel to one of the sides of the plate is enough for the determination of Q, provided that the interval of time is long enough. We also prove that the normal derivative along a side of the rectangle measured for an arbitrarily small interval of time is sufficient to determine the spatial load distribution Q. The method used to obtain the results is based on the series decomposition of the dynamic response and an analysis of the almost periodic distribution that arises from it.

  12. The first determination of Trichuris sp. from roe deer by amplification and sequenation of the ITS1-5.8S-ITS2 segment of ribosomal DNA.

    PubMed

    Salaba, O; Rylková, K; Vadlejch, J; Petrtýl, M; Scháňková, S; Brožová, A; Jankovská, I; Jebavý, L; Langrová, I

    2013-03-01

    Trichuris nematodes were isolated from roe deer (Capreolus capreolus). At first, nematodes were determined using morphological and biometrical methods. Subsequently genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from ribosomal DNA (RNA) was amplified and sequenced using PCR techniques. With u sing morphological and biometrical methods, female nematodes were identified as Trichuris globulosa, and the only male was identified as Trichuris ovis. The females were classified into four morphotypes. However, analysis of the internal transcribed spacers (ITS1-5.8S-ITS2) of specimens did not confirm this classification. Moreover, the female individuals morphologically determined as T. globulosa were molecularly identified as Trichuris discolor. In the case of the only male molecular analysis match the result of the molecular identification. Furthermore, a comparative phylogenetic study was carried out with the ITS1 and ITS2 sequences of the Trichuris species from various hosts. A comparison of biometric information from T. discolor individuals from this study was also conducted.

  13. Cast segment evaluation

    NASA Technical Reports Server (NTRS)

    Diem, H. G.; Studhalter, W. R.

    1971-01-01

    Evaluation program to determine feasibility of fabricating segmented rocket engine thrust chambers using low cost, lightweight castings extends state of the art in areas of casting size and complexity, and in ability to provide thin sections and narrow, deep, cooling channels. Related developments are discussed.

  14. Heritable Endosymbionts of Drosophila

    PubMed Central

    Mateos, Mariana; Castrezana, Sergio J.; Nankivell, Becky J.; Estes, Anne M.; Markow, Therese A.; Moran, Nancy A.

    2006-01-01

    Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed. PMID:16783009

  15. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    SciTech Connect

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi; Brown, James B.; Chu, Hou Cheng; Zeng, Lucy; Grondona, Brandi P.; Hechmer, Aaron; Simirenko, Lisa; Keranen, Soile V.E.; Knowles, David W.; Stapleton, Mark; Bickel, Peter; Biggin, Mark D.; Eisen, Michael B.

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.

  16. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants.

    PubMed

    Etges, William J; de Oliveira, Cassia C

    2014-06-01

    Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild-caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14-18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age-specific CHC profiles where Baja adults showed far less age-specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed.

  17. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants

    PubMed Central

    Etges, William J; de Oliveira, Cassia C

    2014-01-01

    Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild-caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14–18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age-specific CHC profiles where Baja adults showed far less age-specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed. PMID:25360246

  18. Genetic Dissection of a Regionally Differentiated Network for Exploratory Behavior in Drosophila Larvae

    PubMed Central

    Berni, Jimena

    2015-01-01

    Summary An efficient strategy to explore the environment for available resources involves the execution of random walks where straight line locomotion alternates with changes of direction. This strategy is highly conserved in the animal kingdom, from zooplankton to human hunter-gatherers [1–8]. Drosophila larvae execute a routine of this kind, performing straight line crawling interrupted at intervals by pause turns that halt crawling and redirect the trajectory of movement [9–11]. The execution of this routine depends solely on the activity of networks located in the thoracic and abdominal segments of the nervous system, while descending input from the brain serves to modify it in a context-dependent fashion [9]. I used a genetic method to investigate the location and function of the circuitry required for the different elements of exploratory crawling. By using the Slit-Robo axon guidance pathway to target neuronal midline crossing defects selectively to particular regions of the thoracic and abdominal networks, it has been possible to define at least three functions required for the performance of the exploratory routine: (1) symmetrical outputs in thoracic and abdominal segments that generate the crawls; (2) asymmetrical output that is uniquely initiated in the thoracic segments and generates the turns; and (3) an intermittent interruption to crawling that determines the time-dependent transition between crawls and turns. PMID:25959962

  19. Genetic dissection of a regionally differentiated network for exploratory behavior in Drosophila larvae.

    PubMed

    Berni, Jimena

    2015-05-18

    An efficient strategy to explore the environment for available resources involves the execution of random walks where straight line locomotion alternates with changes of direction. This strategy is highly conserved in the animal kingdom, from zooplankton to human hunter-gatherers. Drosophila larvae execute a routine of this kind, performing straight line crawling interrupted at intervals by pause turns that halt crawling and redirect the trajectory of movement. The execution of this routine depends solely on the activity of networks located in the thoracic and abdominal segments of the nervous system, while descending input from the brain serves to modify it in a context-dependent fashion. I used a genetic method to investigate the location and function of the circuitry required for the different elements of exploratory crawling. By using the Slit-Robo axon guidance pathway to target neuronal midline crossing defects selectively to particular regions of the thoracic and abdominal networks, it has been possible to define at least three functions required for the performance of the exploratory routine: (1) symmetrical outputs in thoracic and abdominal segments that generate the crawls; (2) asymmetrical output that is uniquely initiated in the thoracic segments and generates the turns; and (3) an intermittent interruption to crawling that determines the time-dependent transition between crawls and turns.

  20. Roles of Hox genes in the patterning of the central nervous system of Drosophila

    PubMed Central

    Estacio-Gómez, Alicia; Díaz-Benjumea, Fernando J

    2014-01-01

    One of the key aspects of functional nervous systems is the restriction of particular neural subtypes to specific regions, which permits the establishment of differential segment-specific neuromuscular networks. Although Hox genes play a major role in shaping the anterior-posterior body axis during animal development, our understanding of how they act in individual cells to determine particular traits at precise developmental stages is rudimentary. We have used the abdominal leucokinergic neurons (ABLKs) to address this issue. These neurons are generated during both embryonic and postembryonic neurogenesis by the same progenitor neuroblast, and are designated embryonic and postembryonic ABLKs, respectively. We report that the genes of the Bithorax-Complex, Ultrabithorax (Ubx) and abdominal-A (abd-A) are redundantly required to specify the embryonic ABLKs. Moreover, the segment-specific pattern of the postembryonic ABLKs, which are restricted to the most anterior abdominal segments, is controlled by the absence of Abdominal-B (Abd-B), which we found was able to repress the expression of the neuropeptide leucokinin. We discuss this and other examples of how Hox genes generate diversity within the central nervous system of Drosophila. PMID:24406332

  1. The bacterial communities of Drosophila suzukii collected from undamaged cherries.

    PubMed

    Chandler, James Angus; James, Pamela M; Jospin, Guillaume; Lang, Jenna M

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  2. Rediscovering market segmentation.

    PubMed

    Yankelovich, Daniel; Meer, David

    2006-02-01

    In 1964, Daniel Yankelovich introduced in the pages of HBR the concept of nondemographic segmentation, by which he meant the classification of consumers according to criteria other than age, residence, income, and such. The predictive power of marketing studies based on demographics was no longer strong enough to serve as a basis for marketing strategy, he argued. Buying patterns had become far better guides to consumers' future purchases. In addition, properly constructed nondemographic segmentations could help companies determine which products to develop, which distribution channels to sell them in, how much to charge for them, and how to advertise them. But more than 40 years later, nondemographic segmentation has become just as unenlightening as demographic segmentation had been. Today, the technique is used almost exclusively to fulfill the needs of advertising, which it serves mainly by populating commercials with characters that viewers can identify with. It is true that psychographic types like "High-Tech Harry" and "Joe Six-Pack" may capture some truth about real people's lifestyles, attitudes, self-image, and aspirations. But they are no better than demographics at predicting purchase behavior. Thus they give corporate decision makers very little idea of how to keep customers or capture new ones. Now, Daniel Yankelovich returns to these pages, with consultant David Meer, to argue the case for a broad view of nondemographic segmentation. They describe the elements of a smart segmentation strategy, explaining how segmentations meant to strengthen brand identity differ from those capable of telling a company which markets it should enter and what goods to make. And they introduce their "gravity of decision spectrum", a tool that focuses on the form of consumer behavior that should be of the greatest interest to marketers--the importance that consumers place on a product or product category.

  3. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila.

    PubMed Central

    Navarro, A; Barbadilla, A; Ruiz, A

    2000-01-01

    Recombination is a main factor determining nucleotide variability in different regions of the genome. Chromosomal inversions, which are ubiquitous in the genus Drosophila, are known to reduce and redistribute recombination, and thus their specific effect on nucleotide variation may be of major importance as an explanatory factor for levels of DNA variation. Here, we use the coalescent approach to study this effect. First, we develop analytical expressions to predict nucleotide variability in old inversion polymorphisms that have reached mutation-drift-flux equilibrium. The effects on nucleotide variability of a new arrangement appearing in the population and reaching a stable polymorphism are then studied by computer simulation. We show that inversions modulate nucleotide variability in a complex way. The establishment of an inversion polymorphism involves a partial selective sweep that eliminates part of the variability in the population. This is followed by a slow convergence to the equilibrium values. During this convergence, regions close to the breakpoints exhibit much lower variability than central regions. However, at equilibrium, regions close to the breakpoints have higher levels of variability and differentiation between arrangements than regions in the middle of the inverted segment. The implications of these findings for overall variability levels during the evolution of Drosophila species are discussed. PMID:10835391

  4. Involvement of cytochrome P450 in host-plant utilization by Sonoran Desert Drosophila.

    PubMed Central

    Frank, M R; Fogleman, J C

    1992-01-01

    The four Drosophila species endemic to the Sonoran Desert (Drosophila mettleri, Drosophila mojavensis, Drosophila nigrospiracula, and Drosophila pachea) utilize necrotic cactus tissue or soil soaked by rot exudate as breeding substrates. Each Drosophila species uses a different cactus species as its primary host. D. pachea is limited to senita cactus by a biochemical dependency on unusual sterols available only in that cactus. For the other Drosophila species, no such chemical dependencies exist to explain the relationships with their primary host plants. Each cactus species has a different array of allelochemicals that have detrimental effects on non-resident fly species. We have hypothesized that the desert fly-cactus associations are due, in part, to differences between the fly species in their allelochemical detoxication enzymes, the cytochrome P450 system. To test whether P450s are involved in the detoxication of cactus allelochemicals, several experiments were done. (i) The effect of a specific P450 inhibitor, piperonyl butoxide, on larval survival through eclosion on each cactus substrate was investigated. (ii) In vitro metabolism of cactus alkaloids was determined for each Drosophila species. The effects of specific inducers and inhibitors were included in these experiments. (iii) The basal and induced content of cytochrome P450 in each species was determined. The results support the hypothesis that P450 enzymes are involved in host-plant utilization by these Sonoran Desert Drosophila species. Images PMID:1465429

  5. Chitosan nanofiber production from Drosophila by electrospinning.

    PubMed

    Kaya, Murat; Akyuz, Bahar; Bulut, Esra; Sargin, Idris; Eroglu, Fatma; Tan, Gamze

    2016-11-01

    Drosophila melanogaster is one of the important test organisms in genetics thanks to its fast growth rate in a culture. This study demonstrates that the fly D. melanogaster can also be exploited as a source for nanofiber production in biotechnical applications. First, its chitin content was determined (7.85%) and then high molecular weight chitosan (141.4kDa) was synthesized through deacetylation of chitin isolates. Chitosan nanofibers with the diameter of 40.0073±12.347nm were produced by electrospinning of Drosophila chitosan. The physicochemical properties of obtained chitin and chitosan from D. melanogaster were determined by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). The study demonstrated that the fly D. melanogaster can be utilized for production of chitosan nanofiber concerning its cultivability and low-cost culture requirements.

  6. Aging studies in Drosophila melanogaster.

    PubMed

    Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige

    2013-01-01

    Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake, and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity.

  7. Aging Studies in Drosophila melanogaster

    PubMed Central

    Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige

    2015-01-01

    Summary Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity. PMID:23929099

  8. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.

    1999-01-01

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

  9. Planar cell polarity in Drosophila

    PubMed Central

    Maung, Saw Myat Thanda W

    2011-01-01

    In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified. PMID:21983142

  10. Compatibility of segmented thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Ursell, T.

    2002-01-01

    It is well known that power generation efficiency improves when materials with appropriate properties are combined either in a cascaded or segmented fashion across a temperature gradient. Past methods for determining materials used in segmentation weremainly concerned with materials that have the highest figure of merit in the temperature range. However, the example of SiGe segmented with Bi2Te3 and/or various skutterudites shows a marked decline in device efficiency even though SiGe has the highest figure of merit in the temperature range. The origin of the incompatibility of SiGe with other thermoelectric materials leads to a general definition of compatibility and intrinsic efficiency. The compatibility factor derived as = (Jl+zr - 1) a is a function of only intrinsic material properties and temperature, which is represented by a ratio of current to conduction heat. For maximum efficiency the compatibility factor should not change with temperature both within a single material, and in the segmented leg as a whole. This leads to a measure of compatibility not only between segments, but also within a segment. General temperature trends show that materials are more self compatible at higher temperatures, and segmentation is more difficult across a larger -T. The compatibility factor can be used as a quantitative guide for deciding whether a material is better suited for segmentation orcascading. Analysis of compatibility factors and intrinsic efficiency for optimal segmentation are discussed, with intent to predict optimal material properties, temperature interfaces, and/or currentheat ratios.

  11. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  12. Drosophila by the dozen

    SciTech Connect

    Celniker, Susan E.; Hoskins, Roger A.

    2007-07-13

    This year's conference on Drosophila research illustratedwell the current focus of Drosophila genomics on the comprehensiveidentification of functional elements in the genome sequence, includingmRNA transcripts arising from multiple alternative start sites and splicesites, a multiplicity of noncoding transcripts and small RNAs,identification of binding sites for transcription factors, sequenceconservation in related species and sequence variation within species.Resources and technologies for genetics and functional genomics aresteadily being improved, including the building of collections oftransposon insertion mutants and hairpin constructs for RNA interference(RNAi). The conference also highlighted progress in the use of genomicinformation by many laboratories to study diverse aspects of biology andmodels of human disease. Here we will review a few highlights of especialinterest to readers of Genome Biology.

  13. Sexual circuitry in Drosophila.

    PubMed

    Auer, Thomas O; Benton, Richard

    2016-06-01

    The sexual behavior of Drosophila melanogaster is an outstanding paradigm to understand the molecular and neuronal basis of sophisticated animal actions. We discuss recent advances in our knowledge of the genetic hardwiring of the underlying neuronal circuitry, and how pertinent sensory cues are differentially detected and integrated in the male and female brain. We also consider how experience influences these circuits over short timescales, and the evolution of these pathways over longer timescales to endow species-specific sexual displays and responses.

  14. Comparison of homeobox-containing genes of the honeybee and Drosophila.

    PubMed Central

    Walldorf, U; Fleig, R; Gehring, W J

    1989-01-01

    We report the isolation of seven homeobox-containing genes from the honeybee (Apis mellifera). Sequence analysis of all homeoboxes and some flanking sequences showed that six of seven genes are more than 90% identical to their corresponding Drosophila homologues within the homeobox and, with one exception, also in the flanking sequences. The homologues that were identified include three homeotic selector genes [Sex combs reduced (Scr), Antennapedia (Antp), and abdominal-A (abd-A); the two engrailed (en) genes; and the muscle segment homeobox (msh)]. Surprisingly, no homologue of the segmentation gene fushi tarazu was found in the honeybee. For the remaining bee gene, a Drosophila homologue is not known. This indicates that, with some exceptions, structurally homologous genes are involved in the control of bee and Drosophila development, although Hymenoptera differ significantly in their embryogenesis from Diptera and have evolved separately for some 250 million years. Images PMID:2574865

  15. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    SciTech Connect

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed.

  16. The genome sequence of Drosophila melanogaster.

    PubMed

    Adams, M D; Celniker, S E; Holt, R A; Evans, C A; Gocayne, J D; Amanatides, P G; Scherer, S E; Li, P W; Hoskins, R A; Galle, R F; George, R A; Lewis, S E; Richards, S; Ashburner, M; Henderson, S N; Sutton, G G; Wortman, J R; Yandell, M D; Zhang, Q; Chen, L X; Brandon, R C; Rogers, Y H; Blazej, R G; Champe, M; Pfeiffer, B D; Wan, K H; Doyle, C; Baxter, E G; Helt, G; Nelson, C R; Gabor, G L; Abril, J F; Agbayani, A; An, H J; Andrews-Pfannkoch, C; Baldwin, D; Ballew, R M; Basu, A; Baxendale, J; Bayraktaroglu, L; Beasley, E M; Beeson, K Y; Benos, P V; Berman, B P; Bhandari, D; Bolshakov, S; Borkova, D; Botchan, M R; Bouck, J; Brokstein, P; Brottier, P; Burtis, K C; Busam, D A; Butler, H; Cadieu, E; Center, A; Chandra, I; Cherry, J M; Cawley, S; Dahlke, C; Davenport, L B; Davies, P; de Pablos, B; Delcher, A; Deng, Z; Mays, A D; Dew, I; Dietz, S M; Dodson, K; Doup, L E; Downes, M; Dugan-Rocha, S; Dunkov, B C; Dunn, P; Durbin, K J; Evangelista, C C; Ferraz, C; Ferriera, S; Fleischmann, W; Fosler, C; Gabrielian, A E; Garg, N S; Gelbart, W M; Glasser, K; Glodek, A; Gong, F; Gorrell, J H; Gu, Z; Guan, P; Harris, M; Harris, N L; Harvey, D; Heiman, T J; Hernandez, J R; Houck, J; Hostin, D; Houston, K A; Howland, T J; Wei, M H; Ibegwam, C; Jalali, M; Kalush, F; Karpen, G H; Ke, Z; Kennison, J A; Ketchum, K A; Kimmel, B E; Kodira, C D; Kraft, C; Kravitz, S; Kulp, D; Lai, Z; Lasko, P; Lei, Y; Levitsky, A A; Li, J; Li, Z; Liang, Y; Lin, X; Liu, X; Mattei, B; McIntosh, T C; McLeod, M P; McPherson, D; Merkulov, G; Milshina, N V; Mobarry, C; Morris, J; Moshrefi, A; Mount, S M; Moy, M; Murphy, B; Murphy, L; Muzny, D M; Nelson, D L; Nelson, D R; Nelson, K A; Nixon, K; Nusskern, D R; Pacleb, J M; Palazzolo, M; Pittman, G S; Pan, S; Pollard, J; Puri, V; Reese, M G; Reinert, K; Remington, K; Saunders, R D; Scheeler, F; Shen, H; Shue, B C; Sidén-Kiamos, I; Simpson, M; Skupski, M P; Smith, T; Spier, E; Spradling, A C; Stapleton, M; Strong, R; Sun, E; Svirskas, R; Tector, C; Turner, R; Venter, E; Wang, A H; Wang, X; Wang, Z Y; Wassarman, D A; Weinstock, G M; Weissenbach, J; Williams, S M; WoodageT; Worley, K C; Wu, D; Yang, S; Yao, Q A; Ye, J; Yeh, R F; Zaveri, J S; Zhan, M; Zhang, G; Zhao, Q; Zheng, L; Zheng, X H; Zhong, F N; Zhong, W; Zhou, X; Zhu, S; Zhu, X; Smith, H O; Gibbs, R A; Myers, E W; Rubin, G M; Venter, J C

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

  17. The genome sequence of Drosophila melanogaster.

    SciTech Connect

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the {approximately}120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes {approximately}13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

  18. Hedgehog signaling pathway function conserved in Tribolium segmentation

    PubMed Central

    Farzana, Laila

    2008-01-01

    In Drosophila, maintenance of parasegmental boundaries and formation of segmental grooves depend on interactions between segment polarity genes. Wingless and Engrailed appear to have similar roles in both short and long germ segmentation, but relatively little is known about the extent to which Hedgehog signaling is conserved. In a companion study to the Tribolium genome project, we analyzed the expression and function of hedgehog, smoothened, patched, and cubitus interruptus orthologs during segmentation in Tribolium. Their expression was largely conserved between Drosophila and Tribolium. Parental RNAi analysis of positive regulators of the pathway (Tc-hh, Tc-smo, or Tc-ci) resulted in small spherical cuticles with little or no evidence of segmental grooves. Segmental Engrailed expression in these embryos was initiated but not maintained. Wingless-independent Engrailed expression in the CNS was maintained and became highly compacted during germ band retraction, providing evidence that derivatives from every segment were present in these small spherical embryos. On the other hand, RNAi analysis of a negative regulator (Tc-ptc) resulted in embryos with ectopic segmental grooves visible during germband elongation but not discernible in the first instar larval cuticles. These transient grooves formed adjacent to Engrailed expressing cells that encircled wider than normal wg domains in the Tc-ptc RNAi embryos. These results suggest that the en–wg–hh gene circuit is functionally conserved in the maintenance of segmental boundaries during germ band retraction and groove formation in Tribolium and that the segment polarity genes form a robust genetic regulatory module in the segmentation of this short germ insect. PMID:18392879

  19. dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis

    PubMed Central

    Aerts, Stein; Casares, Fernando; Janody, Florence

    2016-01-01

    Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. PMID:27442438

  20. Hox genes and brain development in Drosophila.

    PubMed

    Reichert, Heinrich; Bello, Bruno

    2010-01-01

    Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.

  1. Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila

    PubMed Central

    Urbach, Rolf; Jussen, David; Technau, Gerhard M.

    2016-01-01

    The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, partially, to suppression of neuroblast formation and induction of programmed cell death by the Hox gene Deformed. Neuroblast patterns are further influenced by segmental modifications in dorsoventral and proneural gene expression. With the previously published neuroblast maps and those presented here for the gnathal region, all neuroectodermal neuroblasts building the CNS of the fly (ventral nerve cord and brain, except optic lobes) are now individually identified (in total 2×567 neuroblasts). This allows, for the first time, a comparison of the characteristics of segmental populations of stem cells and to screen for serially homologous neuroblasts throughout the CNS. We show that approximately half of the deutocerebral and all of the tritocerebral (posterior brain) and gnathal neuroblasts, but none of the protocerebral (anterior brain) neuroblasts, display serial homology to neuroblasts in thoracic/abdominal neuromeres. Modifications in the molecular signature of serially homologous neuroblasts are likely to determine the segment-specific characteristics of their lineages. PMID:27095493

  2. Genetic control of Drosophila nerve cord development

    NASA Technical Reports Server (NTRS)

    Skeath, James B.; Thor, Stefan

    2003-01-01

    The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.

  3. Transplantation of Nuclei in Drosophila melanogaster

    PubMed Central

    Zalokar, Marko

    1971-01-01

    Nuclei surrounded by ooplasm of the syncytial stage of developing eggs of wild-type Drosophila melanogaster were implanted into freshly laid fertilized eggs of females of a y w stock. More than half of the recipient eggs produced larvae, but few of the larvae hatched or developed further. The best sets of experiments gave about twelve percent of imagos, mostly y w in appearance. Several larvae were mosaics with yellow Malpighian tubes, and two flies had part of the abdominal segments of the wild type. Half of the flies were fertile, but they produced only y w offspring, except for two males that had y w appearance, but wild-type gonads. When crossed with y w females, they gave wild-type females and y w males. Images PMID:5283944

  4. Expression of engrailed-family genes in the jumping bristletail and discussion on the primitive pattern of insect segmentation.

    PubMed

    Nakagaki, Yasutaka; Sakuma, Masashi; Machida, Ryuichiro

    2015-09-01

    It has been shown that segmentation in the short-germ insects proceeds by a two-step mechanism. The anterior region is simultaneously segmented in a manner similar to that in Drosophila, which is apparently unique to insects, and the rest of the posterior region is segmented sequentially by a mechanism involving a segmentation clock, which is derived from the common ancestor of arthropods. In order to propose the evolutionary scenario of insect segmentation, we examined segmentation in the jumping bristletail, the basalmost extant insect. Using probes for engrailed-family genes for in situ hybridization, we found no sign of simultaneous segmentation in the anterior region of the jumping bristletail embryos. All segments except the anteriormost segment are formed sequentially. This condition shown in the jumping bristletail embryos may represent the primitive pattern of insect segmentation. The intercalating formation of the intercalary segment is assumed to be a synapomorphic trait shared among all insects after the branching of the jumping bristletail.

  5. The Drosophila melanogaster host model

    PubMed Central

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  6. Ancestral role of caudal genes in axis elongation and segmentation.

    PubMed

    Copf, Tijana; Schröder, Reinhard; Averof, Michalis

    2004-12-21

    caudal (cad/Cdx) genes are essential for the formation of posterior structures in Drosophila, Caenorhabditis elegans, and vertebrates. In contrast to Drosophila, the majority of arthropods generate their segments sequentially from a posteriorly located growth zone, a process known as short-germ development. caudal homologues are expressed in the growth zone of diverse short-germ arthropods, but until now their functional role in these animals had not been studied. Here, we use RNA interference to examine the function of caudal genes in two short-germ arthropods, the crustacean Artemia franciscana and the beetle Tribolium castaneum. We show that, in both species, caudal is required for the formation of most body segments. In animals with reduced levels of caudal expression, axis elongation stops, resulting in severe truncations that remove most trunk segments. We also show that caudal function is required for the early phases of segmentation and Hox gene expression. The observed phenotypes suggest that in arthropods caudal had an ancestral role in axis elongation and segmentation, and was required for the formation of most body segments. Similarities to the function of vertebrate Cdx genes in the presomitic mesoderm, from which somites are generated, indicate that this role may also predate the origin of the Bilateria.

  7. Queuine metabolism and cadmium toxicity in Drosophila

    SciTech Connect

    Farkas, W.R.; Siard, T. ); Jacobson, K.B. )

    1991-03-11

    Queuine is a derivative of guanine found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His and Tyr. The transcripts of these tRNAs contain a guanine in this position. This guanine is enzymatically excised and replaced by queuine. The ratio of queuine-containing or (q+) tRNA to its precursor or (q{minus}) tRNA changes throughout the Drosophila life cycle. in the egg 10% of the tRNA is (q+). During the three larval stages this ratio drops to zero. In the one day old adult it is about 10%. It has previously been shown that when flies are selected for the ability to grow in the presence of cadmium, the tolerant flies had 100% (q+) tRNA at the first day after pupation instead of 10%. However, it was not known whether the elevated level of (q+) tRNA was a coincidence or if the elevated levels of (q+) tRNA was protective. The authors explored this problem using germfree Drosophila. The first thing was to determine if Drosophila can synthesize queuine. Sterilized eggs were seeded onto sterile chemically defined medium. The flies were grown to the adult stage. This study showed that Drosophila like mammals cannot synthesize queuine. A second result of this research was the demonstration that the authors could alter the ratio of (q+) to (q{minus}) tRNA by adding exogenous queuine to the medium e.g. at 0.008 mM queuine the (q+) tRNA was 95% instead of {lt} 5% in the last instar stage. Finally, the authors investigated whether or not queuine gave protection against cadmium. The results were that when the flies were grown in the presence of 0.2 mM cadmium queuine at 0.008 mM gave a statistically significant increase in the number of survivors.

  8. Myc Function in Drosophila

    PubMed Central

    Gallant, Peter

    2013-01-01

    Drosophila contains a single MYC gene. Like its vertebrate homologs, it encodes a transcription factor that activates many targets, including prominently genes involved in ribosome biogenesis and translation. This activity makes Myc a central regulator of growth and/or proliferation of many cell types, such as imaginal disc cells, polyploid cells, stem cells, and blood cells. Importantly, not only does Myc act cell autonomously but it also affects the fate of adjacent cells and tissues. This potential of Myc is harnessed by many different signaling pathways, involving, among others, Wg, Dpp, Hpo, ecdysone, insulin, and mTOR. PMID:24086064

  9. Effect of Exercise Intensity on Percent Body Fat Determined by Leg-to-Leg and Segmental Bioelectrical Impedance Analyses in Adults

    ERIC Educational Resources Information Center

    Andreacci, Joseph L.; Nagle, Trisha; Fitzgerald, Elise; Rawson, Eric S.; Dixon, Curt B.

    2013-01-01

    Purpose: We examined the impact that cycle ergometry exercise had on percent body fat (%BF) estimates when assessed using either leg-to-leg or segmental bioelectrical impedance analysis (LBIA; SBIA) and whether the intensity of the exercise bout impacts the %BF magnitude of change. Method: Seventy-four college-aged adults participated in this…

  10. Spectral clustering algorithms for ultrasound image segmentation.

    PubMed

    Archip, Neculai; Rohling, Robert; Cooperberg, Peter; Tahmasebpour, Hamid; Warfield, Simon K

    2005-01-01

    Image segmentation algorithms derived from spectral clustering analysis rely on the eigenvectors of the Laplacian of a weighted graph obtained from the image. The NCut criterion was previously used for image segmentation in supervised manner. We derive a new strategy for unsupervised image segmentation. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The extension of the NCut technique to the unsupervised clustering is first described. The novel segmentation algorithm is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. Comparisons with the classical NCut algorithm are also presented. Finally, segmentation results on other types of medical images are shown.

  11. Vibration damping for the Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  12. Deconstructing Memory in Drosophila

    PubMed Central

    Margulies, Carla; Tully, Tim; Dubnau, Josh

    2011-01-01

    Unlike most organ systems, which have evolved to maintain homeostasis, the brain has been selected to sense and adapt to environmental stimuli by constantly altering interactions in a gene network that functions within a larger neural network. This unique feature of the central nervous system provides a remarkable plasticity of behavior, but also makes experimental investigations challenging. Each experimental intervention ramifies through both gene and neural networks, resulting in unpredicted and sometimes confusing phenotypic adaptations. Experimental dissection of mechanisms underlying behavioral plasticity ultimately must accomplish an integration across many levels of biological organization, including genetic pathways acting within individual neurons, neural network interactions which feed back to gene function, and phenotypic observations at the behavioral level. This dissection will be more easily accomplished for model systems such as Drosophila, which, compared with mammals, have relatively simple and manipulable nervous systems and genomes. The evolutionary conservation of behavioral phenotype and the underlying gene function ensures that much of what we learn in such model systems will be relevant to human cognition. In this essay, we have not attempted to review the entire Drosophila memory field. Instead, we have tried to discuss particular findings that provide some level of intellectual synthesis across three levels of biological organization: behavior, neural circuitry and biochemical pathways. We have attempted to use this integrative approach to evaluate distinct mechanistic hypotheses, and to propose critical experiments that will advance this field. PMID:16139203

  13. Epigenetic regulation in Drosophila.

    PubMed

    Lyko, F; Beisel, C; Marhold, J; Paro, R

    2006-01-01

    Epigenetic regulation of gene transcription relies on molecular marks like DNA methylation or histone modifications. Here we review recent advances in our understanding of epigenetic regulation in the fruit fly Drosophila melanogaster. In the past, DNA methylation research has primarily utilized mammalian model systems. However, several recent landmark discoveries have been made in other organisms. For example, the interaction between DNA methylation and histone methylation was first described in the filamentous fungus Neurospora crassa. Another example is provided by the interaction between epigenetic modifications and the RNA interference (RNAi) machinery that was first reported in the fission yeast Schizosaccharomyces pombe. Another organism with great experimental power is the fruit fly Drosophila. Epigenetic regulation by chromatin has been extensively analyzed in the fly and several of the key components have been discovered in this organism. In this chapter, we will focus on three aspects that represent the complexity of epigenetic gene regulation. (1) We will discuss the available data about the DNA methylation system, (2) we will illuminate the interaction between DNA methylation and chromatin regulation, and (3) we will provide an overview over the Polycomb system of epigenetic chromatin modifiers that has proved to be an important paradigm for a chromatin system regulating epigenetic programming.

  14. Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster.

    PubMed Central

    Jaeger, Johannes; Blagov, Maxim; Kosman, David; Kozlov, Konstantin N; Manu; Myasnikova, Ekaterina; Surkova, Svetlana; Vanario-Alonso, Carlos E; Samsonova, Maria; Sharp, David H; Reinitz, John

    2004-01-01

    Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system. PMID:15342511

  15. Efficient graph-cut tattoo segmentation

    NASA Astrophysics Data System (ADS)

    Kim, Joonsoo; Parra, Albert; Li, He; Delp, Edward J.

    2015-03-01

    Law enforcement is interested in exploiting tattoos as an information source to identify, track and prevent gang-related crimes. Many tattoo image retrieval systems have been described. In a retrieval system tattoo segmentation is an important step for retrieval accuracy since segmentation removes background information in a tattoo image. Existing segmentation methods do not extract the tattoo very well when the background includes textures and color similar to skin tones. In this paper we describe a tattoo segmentation approach by determining skin pixels in regions near the tattoo. In these regions graph-cut segmentation using a skin color model and a visual saliency map is used to find skin pixels. After segmentation we determine which set of skin pixels are connected with each other that form a closed contour including a tattoo. The regions surrounded by the closed contours are considered tattoo regions. Our method segments tattoos well when the background includes textures and color similar to skin.

  16. Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila.

    PubMed

    Ruiz, María-Fernanda; Sánchez, Lucas

    2010-01-01

    The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.

  17. Biochemical characterization of phosphoglucose isomerase and genetic variants from mouse and Drosophila melanogaster.

    PubMed

    Charles, D; Lee, C Y

    1980-01-16

    A simple and unique procedure was developed to purify phosphoglucose isomerase variants from the whole mouse body extracts and Drosophila homogenate. It involved the use of an 8-(6-aminohexyl)-amino-ATP-Sepharose column followed by a preparative isoelectric focusing. In each case, the enzyme in the homogenate was adsorbed by ionic interaction on the ATP-Sepharose column. Substantial purification was achieved by the affinity elution with the substrate-glucose-6-phosphate. Mouse and Drosophila phosphoglucose isomerase as well as the corresponding variants were shown to be dimers of similar molecular weight and to exhibit similar kinetic properties. The isoelectric points for the variants from DBA/2J and C57BL/6J mice were determined to be 8.4 and 8.7 respectively, while they were 6.8 and 6.3 respectively for Drosophila and 4/4 variants. Differential thermal stability was observed for the two mouse variants but not for the Drosophila ones. Amino acid composition analysis was performed for both mouse and Drosophila enzymes. Rabbit antisera for mouse (DBA/2J) and Drosophila (2/2) enzymes were raised. Within each species, complete immunological identity was observed between the variants. The antisera were used to characterize the null mutants of phosphoglucose isomerase identified in the mouse and Drosophila populations. By rocket immunoelectrophoresis, the null allele of the naturally occurring heterozygous null variant of Drosophila was shown to express no cross-reacting materials (CRM).

  18. Multiatlas segmentation as nonparametric regression.

    PubMed

    Awate, Suyash P; Whitaker, Ross T

    2014-09-01

    This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator's convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems.

  19. Multiatlas Segmentation as Nonparametric Regression

    PubMed Central

    Awate, Suyash P.; Whitaker, Ross T.

    2015-01-01

    This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator’s convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems. PMID:24802528

  20. Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo

    PubMed Central

    Carballès, Fabrice; Parassol, Nadège; Schaub, Sébastien; Cérézo, Delphine; Noselli, Stéphane

    2017-01-01

    Tissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process, JNK (JUN N-terminal Kinase) signalling controls leading edge (LE) differentiation generating local forces and cell shape changes essential for DC. The LE represents a key morphogenetic domain in which, in addition to JNK, a number of signalling pathways converges and interacts (anterior/posterior -AP- determination; segmentation genes, such as Wnt/Wingless; TGFβ/Decapentaplegic). To better characterize properties of the LE morphogenetic domain, we sought out new JNK target genes through a genomic approach: 25 were identified of which 8 are specifically expressed in the LE, similarly to decapentaplegic or puckered. Quantitative in situ gene profiling of this new set of LE genes reveals complex patterning of the LE along the AP axis, involving a three-way interplay between the JNK pathway, segmentation and HOX genes. Patterning of the LE into discrete domains appears essential for coordination of tissue sealing dynamics. Loss of anterior or posterior HOX gene function leads to strongly delayed and asymmetric DC, due to incorrect zipping in their respective functional domain. Therefore, in addition to significantly increasing the number of JNK target genes identified so far, our results reveal that the LE is a highly heterogeneous morphogenetic organizer, sculpted through crosstalk between JNK, segmental and AP signalling. This fine-tuning regulatory mechanism is essential to coordinate morphogenesis and dynamics of tissue sealing. PMID:28231245

  1. Quantitative microscopy uncovers ploidy changes during mitosis in live Drosophila embryos and their effect on nuclear size.

    PubMed

    Puah, Wee Choo; Chinta, Rambabu; Wasser, Martin

    2017-03-15

    Time-lapse microscopy is a powerful tool to investigate cellular and developmental dynamics. In Drosophila melanogaster, it can be used to study division cycles in embryogenesis. To obtain quantitative information from 3D time-lapse data and track proliferating nuclei from the syncytial stage until gastrulation, we developed an image analysis pipeline consisting of nuclear segmentation, tracking, annotation and quantification. Image analysis of maternal-haploid (mh) embryos revealed that a fraction of haploid syncytial nuclei fused to give rise to nuclei of higher ploidy (2n, 3n, 4n). Moreover, nuclear densities in mh embryos at the mid-blastula transition varied over threefold. By tracking synchronized nuclei of different karyotypes side-by-side, we show that DNA content determines nuclear growth rate and size in early interphase, while the nuclear to cytoplasmic ratio constrains nuclear growth during late interphase. mh encodes the Drosophila ortholog of human Spartan, a protein involved in DNA damage tolerance. To explore the link between mh and chromosome instability, we fluorescently tagged Mh protein to study its subcellular localization. We show Mh-mKO2 localizes to nuclear speckles that increase in numbers as nuclei expand in interphase. In summary, quantitative microscopy can provide new insights into well-studied genes and biological processes.

  2. Quantitative microscopy uncovers ploidy changes during mitosis in live Drosophila embryos and their effect on nuclear size

    PubMed Central

    Puah, Wee Choo; Chinta, Rambabu

    2017-01-01

    ABSTRACT Time-lapse microscopy is a powerful tool to investigate cellular and developmental dynamics. In Drosophila melanogaster, it can be used to study division cycles in embryogenesis. To obtain quantitative information from 3D time-lapse data and track proliferating nuclei from the syncytial stage until gastrulation, we developed an image analysis pipeline consisting of nuclear segmentation, tracking, annotation and quantification. Image analysis of maternal-haploid (mh) embryos revealed that a fraction of haploid syncytial nuclei fused to give rise to nuclei of higher ploidy (2n, 3n, 4n). Moreover, nuclear densities in mh embryos at the mid-blastula transition varied over threefold. By tracking synchronized nuclei of different karyotypes side-by-side, we show that DNA content determines nuclear growth rate and size in early interphase, while the nuclear to cytoplasmic ratio constrains nuclear growth during late interphase. mh encodes the Drosophila ortholog of human Spartan, a protein involved in DNA damage tolerance. To explore the link between mh and chromosome instability, we fluorescently tagged Mh protein to study its subcellular localization. We show Mh-mKO2 localizes to nuclear speckles that increase in numbers as nuclei expand in interphase. In summary, quantitative microscopy can provide new insights into well-studied genes and biological processes. PMID:28108477

  3. Segmentation and segment connection of obstructed colon

    NASA Astrophysics Data System (ADS)

    Medved, Mario; Truyen, Roel; Likar, Bostjan; Pernus, Franjo

    2004-05-01

    Segmentation of colon CT images is the main factor that inhibits automation of virtual colonoscopy. There are two main reasons that make efficient colon segmentation difficult. First, besides the colon, the small bowel, lungs, and stomach are also gas-filled organs in the abdomen. Second, peristalsis or residual feces often obstruct the colon, so that it consists of multiple gas-filled segments. In virtual colonoscopy, it is very useful to automatically connect the centerlines of these segments into a single colon centerline. Unfortunately, in some cases this is a difficult task. In this study a novel method for automated colon segmentation and connection of colon segments' centerlines is proposed. The method successfully combines features of segments, such as centerline and thickness, with information on main colon segments. The results on twenty colon cases show that the method performs well in cases of small obstructions of the colon. Larger obstructions are mostly also resolved properly, especially if they do not appear in the sigmoid part of the colon. Obstructions in the sigmoid part of the colon sometimes cause improper classification of the small bowel segments. If a segment is too small, it is classified as the small bowel segment. However, such misclassifications have little impact on colon analysis.

  4. Pre-analytical and analytical variation of drug determination in segmented hair using ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Nielsen, Marie Katrine Klose; Johansen, Sys Stybe; Linnet, Kristian

    2014-01-01

    Assessment of total uncertainty of analytical methods for the measurements of drugs in human hair has mainly been derived from the analytical variation. However, in hair analysis several other sources of uncertainty will contribute to the total uncertainty. Particularly, in segmental hair analysis pre-analytical variations associated with the sampling and segmentation may be significant factors in the assessment of the total uncertainty budget. The aim of this study was to develop and validate a method for the analysis of 31 common drugs in hair using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with focus on the assessment of both the analytical and pre-analytical sampling variations. The validated method was specific, accurate (80-120%), and precise (CV≤20%) across a wide linear concentration range from 0.025-25 ng/mg for most compounds. The analytical variation was estimated to be less than 15% for almost all compounds. The method was successfully applied to 25 segmented hair specimens from deceased drug addicts showing a broad pattern of poly-drug use. The pre-analytical sampling variation was estimated from the genuine duplicate measurements of two bundles of hair collected from each subject after subtraction of the analytical component. For the most frequently detected analytes, the pre-analytical variation was estimated to be 26-69%. Thus, the pre-analytical variation was 3-7 folds larger than the analytical variation (7-13%) and hence the dominant component in the total variation (29-70%). The present study demonstrated the importance of including the pre-analytical variation in the assessment of the total uncertainty budget and in the setting of the 95%-uncertainty interval (±2CVT). Excluding the pre-analytical sampling variation could significantly affect the interpretation of results from segmental hair analysis.

  5. The morphogen Decapentaplegic employs a two-tier mechanism to activate target retinal determining genes during ectopic eye formation in Drosophila

    PubMed Central

    Aggarwal, Poonam; Gera, Jayati; Mandal, Lolitika; Mandal, Sudip

    2016-01-01

    Understanding the role of morphogen in activating its target genes, otherwise epigenetically repressed, during change in cell fate specification is a very fascinating yet relatively unexplored domain. Our in vivo loss-of-function genetic analyses reveal that specifically during ectopic eye formation, the morphogen Decapentaplegic (Dpp), in conjunction with the canonical signaling responsible for transcriptional activation of retinal determining (RD) genes, triggers another signaling cascade. Involving dTak1 and JNK, this pathway down-regulates the expression of polycomb group of genes to do away with their repressive role on RD genes. Upon genetic inactivation of members of this newly identified pathway, the canonical Dpp signaling fails to trigger RD gene expression beyond a threshold, critical for ectopic photoreceptor differentiation. Moreover, the drop in ectopic RD gene expression and subsequent reduction in ectopic photoreceptor differentiation resulting from inactivation of dTak1 can be rescued by down-regulating the expression of polycomb group of genes. Our results unravel an otherwise unknown role of morphogen in coordinating simultaneous transcriptional activation and de-repression of target genes implicating its importance in cellular plasticity. PMID:27270790

  6. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    PubMed

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment.

  7. Cytoplasmic myosin from Drosophila melanogaster

    PubMed Central

    1986-01-01

    Myosin is identified and purified from three different established Drosophila melanogaster cell lines (Schneider's lines 2 and 3 and Kc). Purification entails lysis in a low salt, sucrose buffer that contains ATP, chromatography on DEAE-cellulose, precipitation with actin in the absence of ATP, gel filtration in a discontinuous KI-KCl buffer system, and hydroxylapatite chromatography. Yield of pure cytoplasmic myosin is 5-10%. This protein is identified as myosin by its cross-reactivity with two monoclonal antibodies against human platelet myosin, the molecular weight of its heavy chain, its two light chains, its behavior on gel filtration, its ATP-dependent affinity for actin, its characteristic ATPase activity, its molecular morphology as demonstrated by platinum shadowing, and its ability to form bipolar filaments. The molecular weight of the cytoplasmic myosin's light chains and peptide mapping and immunochemical analysis of its heavy chains demonstrate that this myosin, purified from Drosophila cell lines, is distinct from Drosophila muscle myosin. Two-dimensional thin layer maps of complete proteolytic digests of iodinated muscle and cytoplasmic myosin heavy chains demonstrate that, while the two myosins have some tryptic and alpha-chymotryptic peptides in common, most peptides migrate with unique mobility. One-dimensional peptide maps of SDS PAGE purified myosin heavy chain confirm these structural data. Polyclonal antiserum raised and reacted against Drosophila myosin isolated from cell lines cross-reacts only weakly with Drosophila muscle myosin isolated from the thoraces of adult Drosophila. Polyclonal antiserum raised against Drosophila muscle myosin behaves in a reciprocal fashion. Taken together our data suggest that the myosin purified from Drosophila cell lines is a bona fide cytoplasmic myosin and is very likely the product of a different myosin gene than the muscle myosin heavy chain gene that has been previously identified and characterized. PMID

  8. Review: Thermal preference in Drosophila

    PubMed Central

    Dillon, Michael E.; Wang, George; Garrity, Paul A.; Huey, Raymond B.

    2009-01-01

    Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild. PMID:20161211

  9. Safeguarding genetic information in Drosophila.

    PubMed

    Su, Tin Tin

    2011-12-01

    Eukaryotic cells employ a plethora of conserved proteins and mechanisms to ensure genome integrity. In metazoa, these mechanisms must operate in the context of organism development. This mini-review highlights two emerging features of DNA damage responses in Drosophila: a crosstalk between DNA damage responses and components of the spindle assembly checkpoint, and increasing evidence for the effect of DNA damage on the developmental program at multiple points during the Drosophila life cycle.

  10. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries.

    PubMed

    Hamby, Kelly A; Hernández, Alejandro; Boundy-Mills, Kyria; Zalom, Frank G

    2012-07-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii.

  11. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries

    PubMed Central

    Hernández, Alejandro; Zalom, Frank G.

    2012-01-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  12. P element excision in drosophila melanogaster and related drosophilids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  13. Cytokines in Drosophila immunity.

    PubMed

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.

  14. The developmental transcriptome of Drosophila melanogaster

    SciTech Connect

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    . Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.

  15. The open for business model of the bithorax complex in Drosophila.

    PubMed

    Maeda, Robert K; Karch, François

    2015-09-01

    After nearly 30 years of effort, Ed Lewis published his 1978 landmark paper in which he described the analysis of a series of mutations that affect the identity of the segments that form along the anterior-posterior (AP) axis of the fly (Lewis 1978). The mutations behaved in a non-canonical fashion in complementation tests, forming what Ed Lewis called a "pseudo-allelic" series. Because of this, he never thought that the mutations represented segment-specific genes. As all of these mutations were grouped to a particular area of the Drosophila third chromosome, the locus became known of as the bithorax complex (BX-C). One of the key findings of Lewis' article was that it revealed for the first time, to a wide scientific audience, that there was a remarkable correlation between the order of the segment-specific mutations along the chromosome and the order of the segments they affected along the AP axis. In Ed Lewis' eyes, the mutants he discovered affected "segment-specific functions" that were sequentially activated along the chromosome as one moves from anterior to posterior along the body axis (the colinearity concept now cited in elementary biology textbooks). The nature of the "segment-specific functions" started to become clear when the BX-C was cloned through the pioneering chromosomal walk initiated in the mid 1980s by the Hogness and Bender laboratories (Bender et al. 1983a; Karch et al. 1985). Through this molecular biology effort, and along with genetic characterizations performed by Gines Morata's group in Madrid (Sanchez-Herrero et al. 1985) and Robert Whittle's in Sussex (Tiong et al. 1985), it soon became clear that the whole BX-C encoded only three protein-coding genes (Ubx, abd-A, and Abd-B). Later, immunostaining against the Ubx protein hinted that the segment-specific functions could, in fact, be cis-regulatory elements regulating the expression of the three protein-coding genes. In 1987, Peifer, Karch, and Bender proposed a comprehensive model of

  16. Mapping Linked Genes in "Drosophila Melanogaster" Using Data from the F2 Generation of a Dihybrid Cross

    ERIC Educational Resources Information Center

    Marshall, Pamela A.

    2008-01-01

    "Drosophila melanogaster" is a commonly utilized organism for testing hypotheses about inheritance of traits. Students in both high school and university labs study the genetics of inheritance by analyzing offspring of appropriate "Drosophila" crosses to determine inheritance patterns, including gene linkage. However, most genetics investigations…

  17. Using Linear Agarose Channels to Study Drosophila Larval Crawling Behavior.

    PubMed

    Sun, Xiao; Heckscher, Ellie S

    2016-11-26

    Drosophila larval crawling is emerging as a powerful model to study neural control of sensorimotor behavior. However, larval crawling behavior on flat open surfaces is complex, including: pausing, turning, and meandering. This complexity in the repertoire of movement hinders detailed analysis of the events occurring during a single crawl stride cycle. To overcome this obstacle, linear agarose channels were made that constrain larval behavior to straight, sustained, rhythmic crawling. In principle, because agarose channels and the Drosophila larval body are both optically clear, the movement of larval structures labeled by genetically-encoded fluorescent probes can be monitored in intact, freely-moving larvae. In the past, larvae were placed in linear channels and crawling at the level of whole organism, segment, and muscle were analyzed(1). In the future, larvae crawling in channels can be used for calcium imaging to monitor neuronal activity. Moreover, these methods can be used with larvae of any genotype and with any researcher-designed channel. Thus the protocol presented below is widely applicable for studies using the Drosophila larva as a model to understand motor control.

  18. Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors.

    PubMed Central

    Sauer, F; Jäckle, H

    1995-01-01

    The Drosophila gap gene Krüppel (Kr) encodes a transcriptional regulator. It acts both as an integral part of the Drosophila segmentation gene in the early blastoderm and in a variety of tissues and organs at later stages of embryogenesis. In transfected tissue culture cells, the Kr protein (Kr) was shown to both activate and repress gene expression in a concentration-dependent manner when acting from a single binding site close to the promoter. Here we show that KR can associate with the transcription factors encoded by the gap genes knirps (kni) and hunchback (hb) which affect KR-dependent gene expression in Drosophila tissue culture cells. The association of DNA-bound hb protein or free kni protein with distinct but different regions of KR results in the formation of DNA-bound transcriptional repressor complexes. Our results suggest that individual transcription factors can associate to form protein complexes which act as direct repressors of transcription. The interactions shown here add an unexpected level of complexity to the control of gene expression. Images PMID:7588607

  19. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium.

    PubMed

    Lynch, Jeremy A; El-Sherif, Ezzat; Brown, Susan J

    2012-01-01

    Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.

  20. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall

    PubMed Central

    Xiang, Yang; Yuan, Quan; Vogt, Nina; Looger, Loren L.; Jan, Lily Yeh; Jan, Yuh Nung

    2011-01-01

    Photoreceptors for visual perception, phototaxis or light avoidance are typically clustered in eyes or related structures such as the Bolwig organ of Drosophila larvae. Unexpectedly, we found that the class IV dendritic arborization neurons of Drosophila melanogaster larvae respond to ultraviolet, violet and blue light, and are major mediators of light avoidance, particularly at high intensities. These class IV dendritic arborization neurons, which are present in every body segment, have dendrites tiling the larval body wall nearly completely without redundancy. Dendritic illumination activates class IV dendritic arborization neurons. These novel photoreceptors use phototransduction machinery distinct from other photoreceptors in Drosophila and enable larvae to sense light exposure over their entire bodies and move out of danger. PMID:21068723

  1. Estimating Divergence Dates and Substitution Rates in the Drosophila Phylogeny

    PubMed Central

    Obbard, Darren J.; Maclennan, John; Kim, Kang-Wook; Rambaut, Andrew; O’Grady, Patrick M.; Jiggins, Francis M.

    2012-01-01

    An absolute timescale for evolution is essential if we are to associate evolutionary phenomena, such as adaptation or speciation, with potential causes, such as geological activity or climatic change. Timescales in most phylogenetic studies use geologically dated fossils or phylogeographic events as calibration points, but more recently, it has also become possible to use experimentally derived estimates of the mutation rate as a proxy for substitution rates. The large radiation of drosophilid taxa endemic to the Hawaiian islands has provided multiple calibration points for the Drosophila phylogeny, thanks to the "conveyor belt" process by which this archipelago forms and is colonized by species. However, published date estimates for key nodes in the Drosophila phylogeny vary widely, and many are based on simplistic models of colonization and coalescence or on estimates of island age that are not current. In this study, we use new sequence data from seven species of Hawaiian Drosophila to examine a range of explicit coalescent models and estimate substitution rates. We use these rates, along with a published experimentally determined mutation rate, to date key events in drosophilid evolution. Surprisingly, our estimate for the date for the most recent common ancestor of the genus Drosophila based on mutation rate (25–40 Ma) is closer to being compatible with independent fossil-derived dates (20–50 Ma) than are most of the Hawaiian-calibration models and also has smaller uncertainty. We find that Hawaiian-calibrated dates are extremely sensitive to model choice and give rise to point estimates that range between 26 and 192 Ma, depending on the details of the model. Potential problems with the Hawaiian calibration may arise from systematic variation in the molecular clock due to the long generation time of Hawaiian Drosophila compared with other Drosophila and/or uncertainty in linking island formation dates with colonization dates. As either source of error will

  2. An alternative method to determine the 5' extremities of non-segmented, negative sense RNA viral genomes using positive replication intermediate 3' tailing: application to two members of the Paramyxoviridae family.

    PubMed

    Brown, Paul A; Briand, Francois-Xavier; Guionie, Olivier; Lemaitre, Evelyne; Courtillon, Celine; Henry, Aurelie; Jestin, Véronique; Eterradossi, Nicolas

    2013-10-01

    Determining the sequence of non-segmented, negative sense RNA viral genomes is far from routine and often requires the application of several techniques. In this study, an existing method used currently just for determination of the genomic 3' extremity was used to determine both the 3' and 5' sequence extremities of a Newcastle disease virus and an avian metapneumovirus. This was achieved with a single 3' nucleotide tailing reaction of both the genomic RNA and the full length, positive sense, antigenomic RNA, followed by a single reverse transcription reaction targeted to the common polynucleotide tails, and then individual PCRs specific for each extremity using PCR primers derived from the sequence of the RT primer or from neighbouring virus sequences known previously. For each virus the method was employed separately. Sequences from both viruses were in agreement with those reported previously for other paramyxoviruses, yet one extra base at the 3' and one extra base at the 5' were identified for the avian metapneumovirus. In this study, importantly, the newly determined extremities maintained the complementarity known to exist between the extremities of these viruses. The method was equally successful with both viruses and can be tailored easily to function with other non-segmented, negative sense viruses through minor modification of only the primer sequences.

  3. Two alternating motor programs drive navigation in Drosophila larva.

    PubMed

    Lahiri, Subhaneil; Shen, Konlin; Klein, Mason; Tang, Anji; Kane, Elizabeth; Gershow, Marc; Garrity, Paul; Samuel, Aravinthan D T

    2011-01-01

    When placed on a temperature gradient, a Drosophila larva navigates away from excessive cold or heat by regulating the size, frequency, and direction of reorientation maneuvers between successive periods of forward movement. Forward movement is driven by peristalsis waves that travel from tail to head. During each reorientation maneuver, the larva pauses and sweeps its head from side to side until it picks a new direction for forward movement. Here, we characterized the motor programs that underlie the initiation, execution, and completion of reorientation maneuvers by measuring body segment dynamics of freely moving larvae with fluorescent muscle fibers as they were exposed to temporal changes in temperature. We find that reorientation maneuvers are characterized by highly stereotyped spatiotemporal patterns of segment dynamics. Reorientation maneuvers are initiated with head sweeping movement driven by asymmetric contraction of a portion of anterior body segments. The larva attains a new direction for forward movement after head sweeping movement by using peristalsis waves that gradually push posterior body segments out of alignment with the tail (i.e., the previous direction of forward movement) into alignment with the head. Thus, reorientation maneuvers during thermotaxis are carried out by two alternating motor programs: (1) peristalsis for driving forward movement and (2) asymmetric contraction of anterior body segments for driving head sweeping movement.

  4. Proprioceptive feedback determines visuomotor gain in Drosophila

    PubMed Central

    Bartussek, Jan; Lehmann, Fritz-Olaf

    2016-01-01

    Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184

  5. RSRM Segment Train Derailment and Recovery

    NASA Technical Reports Server (NTRS)

    Taylor Jr., Robert H.; McConnaugghey, Paul K.; Beaman, David E.; Moore, Dennis R.; Reed, Harry

    2008-01-01

    On May 2, 2007, a freight train carrying segments of the space shuttle's solid rocket boosters derailed in Myrtlewood, Alabama, after a rail trestle collapsed. The train was carrying Reusable Solid Rocket Motors (RSRM) 98 center and forward segments (STS-120) and RSRM 99 aft segments (STS-122). Initially, it was not known if the segments had been seriously damaged. Four segments dropped approximately 10 feet when the trestle collapsed and one of those four rolled off the track onto its side. The exit cones and the other four segments, not yet on the trestle, remained on solid ground. ATK and NASA immediately dispatched an investigation and recovery team to determine the safety of the situation and eventually the usability of the segments and exit cones for flight. Instrumentation on each segment provided invaluable data to determine the acceleration loads imparted into each loaded segment and exit cone. This paper details the incident, recovery plan and the team work that created a success story that ended with the safe launch of STS120 using the four center segments and the launch of STS122 using the Aft exit cones assemblies.

  6. Segmental Rescoring in Text Recognition

    DTIC Science & Technology

    2014-02-04

    ttm № tes/m, m* tmvr mowm* a Smyrna Of l δrtA£ACf02S’ A w m - y i p m AmiKSiS € f № ) C № № m .. sg6#?«rA fiθN ; Atφ h Sft№’·’Spxn mm m fim f№b t&m&mm...applying a Hidden Markov Model (HMM) recognition approach. Generating the plurality text hypotheses for the image forming includes generating a first...image. Applying segmental analysis to a segmentation determined by a first OCR engine, such as a segmentation determined by a Hidden Markov Model (HMM

  7. Bioassay of prion-infected blood plasma in PrP transgenic Drosophila.

    PubMed

    Thackray, Alana M; Andreoletti, Olivier; Bujdoso, Raymond

    2016-12-01

    In pursuit of a tractable bioassay to assess blood prion infectivity, we have generated prion protein (PrP) transgenic Drosophila, which show a neurotoxic phenotype in adulthood after exposure to exogenous prions at the larval stage. Here, we determined the sensitivity of ovine PrP transgenic Drosophila to ovine prion infectivity by exposure of these flies to a dilution series of scrapie-infected sheep brain homogenate. Ovine PrP transgenic Drosophila showed a significant neurotoxic response to dilutions of 10(-2) to 10(-10) of the original scrapie-infected sheep brain homogenate. Significantly, we determined that this prion-induced neurotoxic response in ovine PrP transgenic Drosophila was transmissible to ovine PrP transgenic mice, which is indicative of authentic mammalian prion detection by these flies. As a consequence, we considered that PrP transgenic Drosophila were sufficiently sensitive to exogenous mammalian prions to be capable of detecting prion infectivity in the blood of scrapie-infected sheep. To test this hypothesis, we exposed ovine PrP transgenic Drosophila to scrapie-infected plasma, a blood fraction notoriously difficult to assess by conventional prion bioassays. Notably, pre-clinical plasma from scrapie-infected sheep induced neurotoxicity in PrP transgenic Drosophila and this effect was more pronounced after exposure to samples collected at the clinical phase of disease. The neurotoxic phenotype in ovine PrP transgenic Drosophila induced by plasma from scrapie-infected sheep was transmissible since head homogenate from these flies caused neurotoxicity in recipient flies during fly-to-fly transmission. Our data show that PrP transgenic Drosophila can be used successfully to bioassay prion infectivity in blood from a prion-diseased mammalian host.

  8. A Sensory Feedback Circuit Coordinates Muscle Activity in Drosophila

    PubMed Central

    Hughes, Cynthia L.; Thomas, John B.

    2007-01-01

    Drosophila larval crawling is a simple behavior that allows us to dissect the functions of specific neurons in the intact animal and explore the roles of genes in the specification of those neurons. By inhibiting subsets of neurons in the PNS, we have found that two classes of multidendritic neurons play a major role in larval crawling. The bipolar dendrites and class I mds send a feedback signal to the CNS that keeps the contraction wave progressing quickly, allowing smooth forward movement. Genetic manipulation of the sensory neurons suggests that this feedback depends on proper dendritic morphology and axon pathfinding to appropriate synaptic target areas in the CNS. Our data suggest that coordination of muscle activity in larval crawling requires feedback from neurons acting as proprioceptors, sending a “mission accomplished” signal in response to segment contraction, and resulting in rapid relaxation of the segment and propagation of the wave. PMID:17498969

  9. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.

    1999-08-10

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.

  10. Genome of Drosophila suzukii, the Spotted Wing Drosophila

    PubMed Central

    Chiu, Joanna C.; Jiang, Xuanting; Zhao, Li; Hamm, Christopher A.; Cridland, Julie M.; Saelao, Perot; Hamby, Kelly A.; Lee, Ernest K.; Kwok, Rosanna S.; Zhang, Guojie; Zalom, Frank G.; Walton, Vaughn M.; Begun, David J.

    2013-01-01

    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access. PMID:24142924

  11. Structure and function of the Groucho gene family and encoded transcriptional corepressor proteins from human, mouse, rat, Xenopus, Drosophila and nematode.

    PubMed

    Li, S S

    2000-04-01

    A gene family of the Groucho, TLE, ESG and AES proteins has been characterized from Drosophila, nematode, Xenopus, mouse, rat and human, and their structural relationships have been analyzed. The genomic organization of nematode ESG, human and mouse AES genes has been determined, and the expression of ESG and AES genes from Xenopus and human has been analyzed. The Groucho, TLE and ESG proteins all share a similar structure, consisting of a conserved amino-terminal domain, a variable middle region, and highly conserved carboxyl-terminal WD-40 repeats. The Drosophila Groucho transcriptional corepressor protein has been shown to interact with the DNA-binding bHLH domain of Enhancer of split, Hairy and Deadpan proteins, which proteins are involved in neurogenesis, segmentation and sex-determination, respectively. Human TLE1 protein has been demonstrated to interact with mammalian AML1 protein, which regulates hematopoiesis and osteoblast differentiation. The AES proteins from human, mouse, rat and Xenopus exhibit strong similarity to the amino-terminal domain of Groucho proteins; however, the biological function remains to be elucidated.

  12. Why Drosophila to Study Phototransduction?

    PubMed Central

    Pak, William L.

    2010-01-01

    This review recounts the early history of Drosophila phototransduction genetics, covering the period between approximately 1966 to 1979. Early in this period, the author felt that there was an urgent need for a new approach in phototransduction research. Through inputs from a number of colleagues, he was led to consider isolating Drosophila mutants that are defective in the electroretinogram. Thanks to the efforts of dedicated associates and technical staff, by the end of this period, he was able to accumulate a large number of such mutants. Particularly important in this effort was the use of the mutant assay protocol based on the “prolonged depolarizing afterpotential.” This collection of mutants formed the basis of the subsequent intensive investigations of the Drosophila phototransduction cascade by many investigators. PMID:20536286

  13. Modelling the Drosophila embryo.

    PubMed

    Jaeger, Johannes

    2009-12-01

    I provide a historical overview on the use of mathematical models to gain insight into pattern formation during early development of the fruit fly Drosophila melanogaster. It is my intention to illustrate how the aims and methodology of modelling have changed from the early beginnings of a theoretical developmental biology in the 1960s to modern-day systems biology. I show that even early modelling attempts addressed interesting and relevant questions, which were not tractable by experimental approaches. Unfortunately, their validation was severely hampered by a lack of specificity and appropriate experimental evidence. There is a simple lesson to be learned from this: we cannot deduce general rules for pattern formation from first principles or spurious reproduction of developmental phenomena. Instead, we must infer such rules (if any) from detailed and accurate studies of specific developmental systems. To achieve this, mathematical modelling must be closely integrated with experimental approaches. I report on progress that has been made in this direction in the past few years and illustrate the kind of novel insights that can be gained from such combined approaches. These insights demonstrate the great potential (and some pitfalls) of an integrative, systems-level investigation of pattern formation.

  14. Micromechanics of Drosophila Audition

    NASA Astrophysics Data System (ADS)

    Göpfert, M. C.; Robert, D.

    2003-02-01

    An analysis is presented of the auditory micromechanics of the fruit fly Drosophila melanogaster. In this animal, the distal part of the antenna constitutes a resonantly tuned sound receiver, the vibrations of which are transduced by a chordotonal sense organ in the antenna's base. Analyzing the mechanical behavior of the antennal receiver by means of microscanning laser Doppler vibrometry, we show that the auditory system of wild-type flies exhibits a hardening stiffness nonlinearity and spontaneously generates oscillations in the absence of external stimuli. According to the deprivation of these mechanical properties in mechanosensory mutants, the receiver's nonlinearity and oscillation activity are introduced by chordotonal auditory neurons. Requiring the mechanoreceptor-specific extracellular linker protein No-mechanoreceptor-potential-A (NompA), NompC mechanosensory transduction channels, Beethoven (Btv), and Touch-insensitive-larva-B (TilB), nonlinearity and oscillation activity of the fly's antennal receiver depend on prominent components of the auditory transduction machinery and seem to originate from motility of auditory receptor cilia.

  15. Method 353.4 Determination of Nitrate and Nitrite in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for determining nitrate and nitrite concentrations in estuarine and coastal waters. Nitrate is reduced to nitrite by cadmium,1-3 and the resulting nitrite determined by formation of an azo dye.4-6

  16. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.

    PubMed

    Mellert, David J; Williamson, W Ryan; Shirangi, Troy R; Card, Gwyneth M; Truman, James W

    2016-01-01

    Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

  17. Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster.

    PubMed Central

    Koryakov, Dmitry E; Zhimulev, Igor F; Dimitri, Patrizio

    2002-01-01

    Previous cytological analysis of heterochromatic rearrangements has yielded significant insight into the location and genetic organization of genes mapping to the heterochromatin of chromosomes X, Y, and 2 of Drosophila melanogaster. These studies have greatly facilitated our understanding of the genetic organization of heterochromatic genes. In contrast, the 12 essential genes known to exist within the mitotic heterochromatin of chromosome 3 have remained only imprecisely mapped. As a further step toward establishing a complete map of the heterochomatic genetic functions in Drosophila, we have characterized several rearrangements of chromosome 3 by using banding techniques at the level of mitotic chromosome. Most of the rearrangement breakpoints were located in the dull fluorescent regions h49, h51, and h58, suggesting that these regions correspond to heterochromatic hotspots for rearrangements. We were able to construct a detailed cytogenetic map of chromosome 3 heterochromatin that includes all of the known vital genes. At least 7 genes of the left arm (from l(3)80Fd to l(3)80Fj) map to segment h49-h51, while the most distal genes (from l(3)80Fa to l(3)80Fc) lie within the h47-h49 portion. The two right arm essential genes, l(3)81Fa and l(3)81Fb, are both located within the distal h58 segment. Intriguingly, a major part of chromosome 3 heterochromatin was found to be "empty," in that it did not contain either known genes or known satellite DNAs. PMID:11861557

  18. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila

    PubMed Central

    Mellert, David J.; Williamson, W. Ryan; Shirangi, Troy R.; Card, Gwyneth M.; Truman, James W.

    2016-01-01

    Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability “hotspot” depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change. PMID:27223118

  19. Station Tour: Russian Segment

    NASA Video Gallery

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  20. Circadian Rhythms and Sleep in Drosophila melanogaster.

    PubMed

    Dubowy, Christine; Sehgal, Amita

    2017-04-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful

  1. Segmented Target Design

    NASA Astrophysics Data System (ADS)

    Merhi, Abdul Rahman; Frank, Nathan; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    A proposed segmented target would improve decay energy measurements of neutron-unbound nuclei. Experiments like this have been performed at the National Superconducting Cyclotron Laboratory (NSCL) located at Michigan State University. Many different nuclei are produced in such experiments, some of which immediately decay into a charged particle and neutron. The charged particles are bent by a large magnet and measured by a suite of charged particle detectors. The neutrons are measured by the Modular Neutron Array (MoNA) and Large Multi-Institutional Scintillation Array (LISA). With the current target setup, a nucleus in a neutron-unbound state is produced with a radioactive beam impinged upon a beryllium target. The resolution of these measurements is very dependent on the target thickness since the nuclear interaction point is unknown. In a segmented target using alternating layers of silicon detectors and Be-targets, the Be-target in which the nuclear reaction takes place would be determined. Thus the experimental resolution would improve. This poster will describe the improvement over the current target along with the status of the design. Work supported by Augustana College and the National Science Foundation grant #0969173.

  2. Labor Market Segmentation and Librarian Salaries.

    ERIC Educational Resources Information Center

    Van House, Nancy A.

    1987-01-01

    Segmented labor market theory is used to explain how the structure of the library labor market may determine salary differences by type of library. Evidence that segmentation exists at intraoccupational levels and the possibility that comparing entire occupations may obscure results are also reported. (Author/CLB)

  3. Mid-ocean ridges: discontinuities, segments and giant cracks.

    PubMed

    Macdonald, K C; Scheirer, D S; Carbotte, S M

    1991-08-30

    Geological observations reveal that mid-ocean ridges are segmented by numerous rigid and nonrigid discontinuities. A hierarchy of segmentation, ranging from large, long-lived segments to others that are small, migratory, and transient, determines the pattern and timing of creation of new ocean floor. To the extent that spreading segments behave like giant cracks in a plate, the crack propagation force at segment tips increases with segment length, which may explain why long segments tend to lengthen and prevail over shorter neighboring segments. Partial melting caused by decompression of the upper mantle due to plate separation and changes in the direction of spreading result in the spawning of new short segments so that a balance of long and short segments is maintained.

  4. Symmetry Breaking During Drosophila Oogenesis

    PubMed Central

    Roth, Siegfried; Lynch, Jeremy A.

    2009-01-01

    The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal–ventral symmetry of the egg and embryo. PMID:20066085

  5. Antigenotoxicity studies in Drosophila melanogaster.

    PubMed

    Graf, U; Abraham, S K; Guzmán-Rincón, J; Würgler, F E

    1998-06-18

    The fruit fly Drosophila melangaster with its well developed array of genotoxicity test systems has been used in a number of studies on antigenotoxicity of various compounds and mixtures. In recent years, the newly developed Somatic Mutation and Recombination Tests (SMART) have mainly been employed. These one-generation tests make use of the wing or eye imaginal disc cells in larvae and have proven to be very efficient and sensitive. They are based on the principle that the loss of heterozygosity of suitable recessive markers can lead to the formation of mutant clones of cells that are then expressed as spots on the wings or eyes of the adult flies. We have employed the wing spot test with the two markers multiple wing hairs (mwh,3-0.3) and flare (flr,3-38.8). Three-day-old larvae, trans-heterozygous for these markers, are treated chronically or acutely by oral administration with the test compound(s) or complex mixtures. For antigenotoxicity studies, chronic co-treatments can be used, as well as separate pre-treatments with an antigenotoxic agent followed by a chronic treatment with a genotoxin. After eclosion, the wings of the adult flies are scored for the presence of single and twin spots. These spots can be due to different genotoxic events: either mitotic recombination or mutation (deletion, point mutation, specific types of translocation, etc.). The analysis of two different genotypes (one with structurally normal chromosomes, one with a multiply inverted balancer chromosome) allows for a quantitative determination of the recombinagenic activity of genotoxins. Results of two separate studies presented: (1) instant coffee has antirecombinagenic but not antimutagenic activity in the wing spot test; and (2) ascorbic acid and catechin are able to protect against in vivo nitrosation products of methyl urea in combination with sodium nitrite.

  6. Segment number and axial identity in a segmentation clock period mutant.

    PubMed

    Schröter, Christian; Oates, Andrew C

    2010-07-27

    A species-specific number of segments is a hallmark of the vertebrate body plan. The first segmental structures in the vertebrate embryo are the somites, which bud sequentially from the growing presomitic mesoderm (PSM). The Clock and Wavefront model for somitogenesis proposes that the total number of somites is determined by the period of an oscillator or clock operating in the PSM and the total duration of PSM growth. Furthermore, the number of oscillations of the segmentation clock has been suggested to regulate the regional identity of segments along the body axis. Here we test these two ideas in a zebrafish mutant in which the segmentation clock is specifically slowed. This reduces segment number as predicted, but hox gene expression and posterior anatomical markers align with lower segmental counts in mutants compared to the wild-type, arguing against an instructive role of the segmentation clock in determining axial identities. Our data therefore suggest that precise control of segmentation clock period in relation to axial growth ensures a species-specific segment number and that during evolution modulating the clock's period through genetic mutations may have been a relevant way to vary segment number independently of axial regionalization.

  7. A late phase of germ plasm accumulation during Drosophila oogenesis requires lost and rumpelstiltskin.

    PubMed

    Sinsimer, Kristina S; Jain, Roshan A; Chatterjee, Seema; Gavis, Elizabeth R

    2011-08-01

    Asymmetric mRNA localization is an effective mechanism for establishing cellular and developmental polarity. Posterior localization of oskar in the Drosophila oocyte targets the synthesis of Oskar to the posterior, where Oskar initiates the assembly of the germ plasm. In addition to harboring germline determinants, the germ plasm is required for localization and translation of the abdominal determinant nanos. Consequently, failure of oskar localization during oogenesis results in embryos lacking germ cells and abdominal segments. oskar accumulates at the oocyte posterior during mid-oogenesis through a well-studied process involving kinesin-mediated transport. Through live imaging of oskar mRNA, we have uncovered a second, mechanistically distinct phase of oskar localization that occurs during late oogenesis and results in amplification of the germ plasm. Analysis of two newly identified oskar localization factors, Rumpelstiltskin and Lost, that are required specifically for this late phase of oskar localization shows that germ plasm amplification ensures robust abdomen and germ cell formation during embryogenesis. In addition, our results indicate the importance of mechanisms for adapting mRNAs to utilize multiple localization pathways as necessitated by the dramatic changes in ovarian physiology that occur during oogenesis.

  8. Mechanisms and constraints shaping the evolution of body plan segmentation.

    PubMed

    Ten Tusscher, K H W J

    2013-05-01

    Segmentation of the major body axis into repeating units is arguably one of the major inventions in the evolution of animal body plan pattering. It is found in current day vertebrates, annelids and arthropods. Most segmented animals seem to use a clock-and-wavefront type mechanism in which oscillations emanating from a posterior growth zone become transformed into an anterior posterior sequence of segments. In contrast, few animals such as Drosophila use a complex gene regulatory hierarchy to simultaneously subdivide their entire body axis into segments. Here I discuss how in silico models simulating the evolution of developmental patterning can be used to investigate the forces and constraints that helped shape these two developmental modes. I perform an analysis of a series of previous simulation studies, exploiting the similarities and differences in their outcomes in relation to model characteristics to elucidate the circumstances and constraints likely to have been important for the evolution of sequential and simultaneous segmentation modes. The analysis suggests that constraints arising from the involved growth process and spatial patterning signal--posterior elongation producing a propagating wavefront versus a tissue wide morphogen gradient--and the evolutionary history--ancestral versus derived segmentation mode--strongly shaped both segmentation mechanisms. Furthermore, this implies that these patterning types are to be expected rather than random evolutionary outcomes and supports the likelihood of multiple parallel evolutionary origins.

  9. Milling Stability Analysis Based on Chebyshev Segmentation

    NASA Astrophysics Data System (ADS)

    HUANG, Jianwei; LI, He; HAN, Ping; Wen, Bangchun

    2016-09-01

    Chebyshev segmentation method was used to discretize the time period contained in delay differential equation, then the Newton second-order difference quotient method was used to calculate the cutter motion vector at each time endpoint, and the Floquet theory was used to determine the stability of the milling system after getting the transfer matrix of milling system. Using the above methods, a two degree of freedom milling system stability issues were investigated, and system stability lobe diagrams were got. The results showed that the proposed methods have the following advantages. Firstly, with the same calculation accuracy, the points needed to represent the time period are less by the Chebyshev Segmentation than those of the average segmentation, and the computational efficiency of the Chebyshev Segmentation is higher. Secondly, if the time period is divided into the same parts, the stability lobe diagrams got by Chebyshev segmentation method are more accurate than those of the average segmentation.

  10. Structural determinants of alpha-bungarotoxin binding to the sequence segment 181-200 of the muscle nicotinic acetylcholine receptor. alpha. subunit: Effects of cysteine/cystine modification and species-specific amino acid substitution

    SciTech Connect

    McLane, K.E.; Wu, Xiadong; Diethelm, B.; Conti-Tronconi, B.M. )

    1991-05-21

    The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) {alpha}subunit forms a binding site for {alpha}-bungarotoxin ({alpha}-BTX). Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR {alpha}1 subunits were tested for their ability to bind {sup 125}I-{alpha}-BTX, and differences in {alpha}-BTX affinity were determined by using solution (IC{sub 50}s) and solid-phase (K{sub d}s) assays. Panels of overlapping peptides corresponding to the complete {alpha}1 subunit of mouse and human were also tested for {alpha}-BTX binding, but other sequence segments forming the {alpha}-BTX site were not consistently detectable. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased {alpha}-BTX binding, whereas oxidation of the peptides had little effect. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/{alpha}1-subunit interface a vicinal disulfide bound was not required for {alpha}-BTX binding.

  11. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  12. Bacterial entomopathogens from the Drosophila paulistorum semispecies complex.

    PubMed

    Miller, S G; Campbell, B C; Becnel, J; Ehrman, L

    1995-03-01

    Bacteria which are infectious by inoculation in lepidoptera have been isolated and characterized from semispecies comprising the Drosophila paulistorum complex. These microorganisms are pathogenic toward lepidopteran hosts such as Heliothis virescens when introduced by injection of Drosophila tissue extracts and have been given the trivial name DpLE (D. paulistorum lepidopteran entomopathogen). The DpLE from two of the semispecies, Transitional and Andean, were determined to be related to Proteus vulgaris based upon nucleotide sequence comparisons of 16S rDNA genes. Infectivity and 16S rDNA-based PCR assays showed the bacterium to be localized in a number of drosophilid tissues except adult heads and thoraces. Based upon similar experiments, the DpLE in transinfected Heliothis larvae were found in all tissues assayed prior to the onset of mortality. Stocks of Drosophila which had spontaneously lost DpLE continued to produce sterile sons when crossed with incompatible semispecies' females, confirming that the bacilliform DpLE is not the causative agent of the Drosophila paulistorum intersemispecific hybrid male sterility. Acquisition of the sequences of the 16S rDNA molecules of DpLE from all six semispecies permitted the construction of a phylogenetic tree in which the groupings were found not to be congruent with the phylogenies of their insect hosts.

  13. Unsupervised segmentation with dynamical units.

    PubMed

    Rao, A Ravishankar; Cecchi, Guillermo A; Peck, Charles C; Kozloski, James R

    2008-01-01

    In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.

  14. Turing-Child field underlies spatial periodicity in Drosophila and planarians.

    PubMed

    Schiffmann, Yoram

    2011-05-01

    The regular spatial periodicity manifested in Drosophila gene expression has been considered as a test case for the involvement of a Turing system in biology. It was expected--if such involvement exists--to find a spatially periodic protein distribution where the proteins are Turing morphogens. The failure to find such a periodic distribution of Turing proteins, and the experimental findings of the involvement of different combinations of regulatory proteins and different binding sites for the different stripes of a periodic gene expression, has resulted in the dismissal of the involvement of a Turing system in Drosophila periodicity and segmentation. But if one is willing to allow a Turing system in the level of post-translational modification of proteins instead of in the protein level, one can explain the regular spatial periodicity of gene expression. The source of the spatial periodicity of gene expression does not lie in the regulatory proteins, but in the spatially periodic post-translational modification of these broadly distributed upstream regulatory proteins. The post-translational modification provides the missing spatial information for the regular pattern of 14 stripes. We report that such a field with segmental spatial periodicity that can affect downstream proteins and modify them post-translationally and periodically has been observed. This is the Turing-Child (TC) field. We explain the recent observation in Drosophila of phosphorylated transcription factor distributed with segmental periodicity, the disappearance of the spatially periodic gene expression when the regulatory protein loses its normal ability to be phosphorylated, and the spatially periodic segmental groove formation. Just as the reduction of Turing wavelength causes the appearance of 14 stripes in Drosophila so it causes the appearance of bipolar 2-headed Planaria.

  15. A Protein Complex Network of Drosophila melanogaster

    PubMed Central

    Guruharsha, K. G.; Rual, J. -F.; Zhai, B.; Mintseris, J.; Vaidya, P.; Vaidya, N.; Beekman, C.; Wong, C.; Rhee, D. Y.; Cenaj, O.; McKillip, E.; Shah, S.; Stapleton, M.; Wan, K. H.; Yu, C.; Parsa, B.; Carlson, J. W.; Chen, X.; Kapadia, B.; VijayRaghavan, K.; Gygi, S. P.; Celniker, S. E.; Obar, R. A.; Artavanis-Tsakonas, S.

    2011-01-01

    SUMMARY Determining the composition of protein complexes is an essential step towards understanding the cell as an integrated system. Using co-affinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly five thousand individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a novel statistical framework to define individual protein-protein interactions, led to the generation of a Drosophila Protein interaction Map (DPiM) encompassing 556 protein complexes. The high quality of DPiM and its usefulness as a paradigm for metazoan proteomes is apparent from the recovery of many known complexes, significant enrichment for shared functional attributes and validation in human cells. DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution. PMID:22036573

  16. Biological activity is the likely origin of the intersection between the photoreceptor inner and outer segments of the rat retina as determined by optical coherence tomography

    PubMed Central

    Yamauchi, Yasuyuki; Yagi, Hiromichi; Usui, Yoshihiko; Kimura, Keisuke; Agawa, Tsuyoshi; Tsukahara, Rintaro; Yamakawa, Naoyuki; Goto, Hiroshi

    2011-01-01

    Background Recent research on macular diseases has prompted investigations into the condition of the intersection between the photoreceptor inner and outer segments (IS/OS) and the relationship with retinal photoreceptor abnormalities. Although the origin of the IS/OS in optical coherence tomography (OCT) images is unclear, it may be related to either the cellular activity of the photoreceptors or the structure of the OS disks. To address this question, we compared the IS/OS status in OCT images of rat retinas before and after euthanasia. Methods OCT images were taken before and after euthanasia in four eyes of two Brown Norway rats. After the OCT images were taken, the rats were used for histopathological studies to confirm that retinal structures were intact. Results Before euthanasia, the IS/OS and external limiting membrane (ELM) line were clearly identifiable on the OCT images. However, after euthanasia, neither the IS/OS nor the ELM line was evident in three out of four eyes, and a faint IS/OS and an ELM line were identified in one eye. Histopathological analysis did not show any abnormalities in the retina in any of the four eyes. Conclusion The origin of the IS/OS identified in OCT images is likely related to the biological activities of the photoreceptor cells. PMID:22174571

  17. Use of FISH for determining duplication of segments of chromosomes: Analysis of a chromosome 9q34 duplication in Tuberous sclerosis

    SciTech Connect

    Bengtsson, U.; Williams, L.; Flodman, K.P.

    1994-09-01

    FISH analysis of interphase nuclei has facilitated identification of segments of DNA duplication. In equating the presence of 3 signals for a particular DNA probe in interphase nuclei to the presence of a duplication, duplication events must be distinguished from replication. Frequency of replication events is reduced by synchronizing cell cultures to obtain a very high percentage of G1 nuclei. We demonstrated that although it is possible to synchronize fibroblast cultures, it is very difficult to totally synchronize lymphoblastoid cells. An appropriate control to distinguish duplication and replication events is the use of a second DNA probe close to the duplication region but outside of the duplication. In analyzing the chromosome 9q34 duplication in a sporadic case of Tuberous sclerosis we examined interphase nuclei using one fluorescein labelled probe from within the duplicated region, and a second rhodamine labelled probe which mapped outside the duplication. Nuclei were scored as having 2 or 3 red signals and 2 or 3 yellow signals. We used as a test statistic McNemar`s chi square for matched observations (one tailed test). Using this form of analysis we were able to demonstrate that lymphoblasts from the patient showed 3 D9S66 signals significantly more often than 3 DBH signals (p<.005). Three signals were demonstrated significantly more frequently using a D9S66 contiguous cosmid than with the CEL locus cosmid in patient`s lymphoblasts (p<.005) and in patient`s fibroblasts.

  18. Antioxidants, metabolic rate and aging in Drosophila

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Fleming, J.; Economos, A. C.

    1982-01-01

    The metabolic rate-of-living theory of aging was investigated by determining the effect of several life-prolonging antioxidants on the metabolic rate and life span of Drosophila. The respiration rate of groups of continuously agitated flies was determined in a Gilson respirometer. Vitamin E, 2,4-dinitrophenol, nordihydroguaiaretic acid, and thiazolidine carboxylic acid were employed as antioxidants. Results show that all of these antioxidants reduced the oxygen consumption rate and increased the mean life span, and a significant negative linear correlation was found between the mean life span and the metabolic rate. It is concluded that these findings indicate that some antioxidants may inhibit respiration rate in addition to their protective effect against free radical-induced cellular damage.

  19. Evolutionary Origin of Body Axis Segmentation in Annelids and Arthropods

    NASA Technical Reports Server (NTRS)

    Shankland, S. Martin

    2003-01-01

    During the period of this report, we have made a number of important discoveries. To date this work has led to 4 peer-reviewed publications in primary research journals plus 1 minireview and 1 chapter in the proceedings of a meeting. Publications resulting from this grant support are enumerated at the end of the report. Two additional, on-going studies also described. 1. Using laser cell ablation, we have obtained evidence that an annelid - the leech Helobdella robusta - patterns the anteroposterior (AP) polarity of its nascent segment primordia independent of cell interactions oriented along the AP axis. 2. We cloned a Helobdella homologue (hro-hh) of the Drosophila segment polarity gene hedgehog, and used in situ hybridization and northern blots to characterize its expression in the embryo. 3. We have used laser cell ablations to examine the possible role of cell interactions during the developmental patterning of the 4 rostralmost "head" segments of the leech Helobdella robusta.

  20. deadpan, an essential pan-neural gene in Drosophila, encodes a helix-loop-helix protein similar to the hairy gene product.

    PubMed

    Bier, E; Vaessin, H; Younger-Shepherd, S; Jan, L Y; Jan, Y N

    1992-11-01

    Neural precursor cells in Drosophila acquire their identity early during their formation. In an attempt to determine whether all neural precursors share a set of genetic machinery, perhaps to control properties of differentiation common to all neurons, we used the enhancer-trap method to identify several genes (pan-neural genes) that are expressed in all neurons and/or their precursors. One of the pan-neural genes is deadpan, which encodes a helix-loop-helix protein closely related to the product of the segmentation gene hairy. The function of deadpan is essential for viability and is likely to be involved in the functional rather than the morphological differentiation of neurons.

  1. Bone image segmentation.

    PubMed

    Liu, Z Q; Liew, H L; Clement, J G; Thomas, C D

    1999-05-01

    Characteristics of microscopic structures in bone cross sections carry essential clues in age determination in forensic science and in the study of age-related bone developments and bone diseases. Analysis of bone cross sections represents a major area of research in bone biology. However, traditional approaches in bone biology have relied primarily on manual processes with very limited number of bone samples. As a consequence, it is difficult to reach reliable and consistent conclusions. In this paper we present an image processing system that uses microstructural and relational knowledge present in the bone cross section for bone image segmentation. This system automates the bone image analysis process and is able to produce reliable results based on quantitative measurements from a large number of bone images. As a result, using large databases of bone images to study the correlation between bone structural features and age-related bone developments becomes feasible.

  2. Multi-channel acoustic recording and automated analysis of Drosophila courtship songs

    PubMed Central

    2013-01-01

    Background Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs. Results Our novel hardware design enables recording of low amplitude sounds in most laboratory environments. We demonstrate the power of this system by collecting, segmenting and analyzing over 18 hours of courtship song from 75 males from five wild-type strains of Drosophila melanogaster. Our analysis reveals previously undetected modulation of courtship song features and extensive natural genetic variation for most components of courtship song. Despite having a large dataset with sufficient power to detect subtle modulations of song, we were unable to identify previously reported periodic rhythms in the inter-pulse interval of song. We provide detailed instructions for assembling the hardware and for using our open-source segmentation software. Conclusions Analysis of a large dataset of acoustic signals from Drosophila melanogaster provides novel insight into the structure and dynamics of species-specific courtship songs. Our new system for recording and analyzing fly acoustic signals should therefore greatly accelerate future studies of the genetics, neurobiology and evolution of courtship song. PMID:23369160

  3. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  4. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-17

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  5. Consecutive Non-Significant Segments — Joinpoint Help System 4.4.0.0

    Cancer.gov

    Sometimes, the APC for one segment is significantly different from zero, but when an extra joinpoint in the segment is determined by the Joinpoint software, neither APCs for the two consecutive segments are significant. Why?

  6. A Systematic Cell-Based Analysis of Localization of Predicted Drosophila Peroxisomal Proteins.

    PubMed

    Baron, Matthew N; Klinger, Christen M; Rachubinski, Richard A; Simmonds, Andrew J

    2016-05-01

    Peroxisomes are membrane-bound organelles found in almost all eukaryotic cells. They perform specialized biochemical functions that vary with organism, tissue or cell type. Mutations in human genes required for the assembly of peroxisomes result in a spectrum of diseases called the peroxisome biogenesis disorders. A previous sequence-based comparison of the predicted proteome of Drosophila melanogaster (the fruit fly) to human proteins identified 82 potential homologues of proteins involved in peroxisomal biogenesis, homeostasis or metabolism. However, the subcellular localization of these proteins relative to the peroxisome was not determined. Accordingly, we tested systematically the localization and selected functions of epitope-tagged proteins in Drosophila Schneider 2 cells to determine the subcellular localization of 82 potential Drosophila peroxisomal protein homologues. Excluding the Pex proteins, 34 proteins localized primarily to the peroxisome, 8 showed dual localization to the peroxisome and other structures, and 26 localized exclusively to organelles other than the peroxisome. Drosophila is a well-developed laboratory animal often used for discovery of gene pathways, including those linked to human disease. Our work establishes a basic understanding of peroxisome protein localization in Drosophila. This will facilitate use of Drosophila as a genetically tractable, multicellular model system for studying key aspects of human peroxisome disease.

  7. Non-destructive species identification of Drosophila obscura and D. subobscura (Diptera) using near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vinegar flies Drosophila subobscura and D. obscura frequently serve as study organisms for evolutionary biology. Their high morphological similarity renders traditional species determination difficult, especially when living specimens for setting up laboratory populations need to be identified. ...

  8. A segmentation clock operating in blastoderm and germband stages of Tribolium development.

    PubMed

    El-Sherif, Ezzat; Averof, Michalis; Brown, Susan J

    2012-12-01

    In Drosophila, all segments form in the blastoderm where morphogen gradients spanning the entire anterior-posterior axis of the embryo provide positional information. However, in the beetle Tribolium castaneum and most other arthropods, a number of anterior segments form in the blastoderm, and the remaining segments form sequentially from a posterior growth zone during germband elongation. Recently, the cyclic nature of the pair-rule gene Tc-odd-skipped was demonstrated in the growth zone of Tribolium, indicating that a vertebrate-like segmentation clock is employed in the germband stage of its development. This suggests that two mechanisms might function in the same organism: a Drosophila-like mechanism in the blastoderm, and a vertebrate-like mechanism in the germband. Here, we show that segmentation at both blastoderm and germband stages of Tribolium is based on a segmentation clock. Specifically, we show that the Tribolium primary pair-rule gene, Tc-even-skipped (Tc-eve), is expressed in waves propagating from the posterior pole and progressively slowing until they freeze into stripes; such dynamics are a hallmark of clock-based segmentation. Phase shifts between Tc-eve transcripts and protein confirm that these waves are due to expression dynamics. Moreover, by tracking cells in live embryos and by analyzing mitotic profiles, we found that neither cell movement nor oriented cell division could explain the observed wave dynamics of Tc-eve. These results pose intriguing evolutionary questions, as Drosophila and Tribolium segment their blastoderms using the same genes but different mechanisms.

  9. Unsupervised Segmentation Of Texture Images

    NASA Astrophysics Data System (ADS)

    Michel, Xavier; Leonardi, Riccardo; Gersho, Allen

    1988-10-01

    Past work on unsupervised segmentation of a texture image has been based on several restrictive assumptions to reduce the difficulty of this challenging segmentation task. Typically, a fixed number of different texture regions is assumed and each region is assumed to be generated by a simple model. Also, different first order statistics are used to facilitate discrimination between different textures. This paper introduces an approach to unsupervised segmentation that offers promise for handling unrestricted natural scenes containing textural regions. A simple but effective feature set and a novel measure of dissimilarity are used to accurately generate boundaries between an unknown number of regions without using first order statistics or texture models. A two stage approach is used to partition a texture image. In the first stage, a set of sliding windows scans the image to generate a sequence of feature vectors. The windowed regions providing the highest inhomo-geneity in their textural characteristics determine a crude first-stage boundary, separating textured areas that are unambiguously homogeneous from one another. These regions are used to estimate a set of prototype feature vectors. In the second stage, supervised segmentation is performed to obtain an accurate boundary between different textured regions by means of a constrained hierarchical clustering technique. Each inhomo-geneous window obtained in the first stage is split into four identical subwindows for which the feature vectors are estimated. Each of the subwindows is assigned to a homogeneous region to which it is connected. This region is chosen according to the closest prototype vector in the feature space. Any two adjacent subwindows that are assigned to different regions will in turn be considered as inhomogeneous windows and each is then split into four subwindows. The classification scheme is repeated in this hierarchical manner until the desired boundary resolution is achieved. The

  10. Media usage as health segmentation variables.

    PubMed

    Rodgers, Shelly; Chen, Qimei; Duffy, Margaret; Fleming, Kenneth

    2007-03-01

    The purpose of this research is to contrast a traditional audience segmentation model that uses demographics and health evaluations against a model that uses these same variables plus media usage variables. The goal was to determine whether media usage variables - typically not used in health segmentation studies - add predictive power in determining health behaviors and attitudes. The results of the analysis showed an increase in the ability to predict health behaviors such as aspirin use, vitamin use, diet, and exercise, and suggest that there is predictive value for including media variables as part of the segmentation process. Implications for public health education and campaign planning are discussed.

  11. Developing a Drosophila Model of Schwannomatosis

    DTIC Science & Technology

    2013-02-01

    scrib–/– animals (Pastor- Pareja et al., 2008). The Drosophila genome encodes a single member of the tumor necrosis factor (TNF) family, named Eiger...activation in Drosophila. Curr. Biol. 16, 1139-1146. Igaki, T., Pastor- Pareja , J. C., Aonuma, H., Miura, M. and Xu, T. (2009). Intrinsic tumor suppression...of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288-292. Pastor- Pareja , J. C., Wu, M. and Xu. T. (2008

  12. Methodologies to determine forces on bones and muscles of body segments during exercise, employing compact sensors suitable for use in crowded space vehicles

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1994-01-01

    A complete description of an instrumented ergometer system, including the sensors, the data acquisition system, and the methodologies to calculate the kinematic parameters were initially developed at Tulane University. This work was continued by the PI at NASA Johnson Space Center, where a flight ergometer was instrumented and tested during a KC-135 Zero-Gravity flight. The sensors that form part of the system include EMG probes and accelerometers mounted on the subject using the ergometer, load cells to measure pedal forces, and encoders to measure position and orientation of the pedal (foot). Currently, data from the flight test is being analyzed and processed to calculate the kinematic parameters of the individual. The formulation developed during the initial months of the grant will be used for this purpose. The system's components are compact (all sensors are very small). A salient feature of the system and associated methodology to determine the kinematics is that although it uses accelerometers, position is not determined by integration. Position is determined by determining the angle of two frames of reference for which acceleration at one point is known in coordinates of both frames.

  13. Sensorimotor structure of Drosophila larva phototaxis.

    PubMed

    Kane, Elizabeth A; Gershow, Marc; Afonso, Bruno; Larderet, Ivan; Klein, Mason; Carter, Ashley R; de Bivort, Benjamin L; Sprecher, Simon G; Samuel, Aravinthan D T

    2013-10-01

    The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons.

  14. Studying cytokinesis in Drosophila epithelial tissues.

    PubMed

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis.

  15. Sensorimotor structure of Drosophila larva phototaxis

    PubMed Central

    Kane, Elizabeth A.; Gershow, Marc; Afonso, Bruno; Larderet, Ivan; Klein, Mason; Carter, Ashley R.; de Bivort, Benjamin L.; Sprecher, Simon G.; Samuel, Aravinthan D. T.

    2013-01-01

    The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons. PMID:24043822

  16. Epigenetic regulation of transcription in Drosophila.

    PubMed

    Swaminathan, Aishwarya; Gajan, Ambikai; Pile, Lori A

    2012-01-01

    Post-translational modification of histones is a major mechanism of epigenetic regulation of eukaryotic transcription. Drosophila has proven to be an important model system for the study of histone modifying enzymes and the cross talk that occurs between the various modifications. Polytene chromosome analysis and genome-wide chromatin immunoprecipitation (ChIP) studies have provided much insight into the location of marks and many of the enzymes that perform the catalytic reactions. Gene specific effects have been determined through study of flies carrying mutations in histone modifying enzymes. This review will highlight classic studies and present recent progress on both the localization data and mutant analyses. This information has been used to assign function to the marks and to the enzymes that place or remove them, critical for the process of transcriptional regulation.

  17. Impact assisted segmented cutterhead

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1992-01-01

    An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.

  18. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation.

    PubMed

    Manu; Surkova, Svetlana; Spirov, Alexander V; Gursky, Vitaly V; Janssens, Hilde; Kim, Ah-Ram; Radulescu, Ovidiu; Vanario-Alonso, Carlos E; Sharp, David H; Samsonova, Maria; Reinitz, John

    2009-03-01

    Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Krüppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic

  19. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    PubMed

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques.

  20. Peroxiredoxin 5 modulates immune response in Drosophila

    PubMed Central

    Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Orr, William C.

    2010-01-01

    Background Peroxiredoxins are redox-sensing enzymes with multiple cellular functions. Previously, we reported on the potent antioxidant function of Drosophila peroxiredoxin 5 (dPrx5). Studies with mammalian and human cells suggest that peroxiredoxins can modulate immune-related signaling. Methods Survivorship studies and bacteriological analysis were used to determine resistance of flies to fungal and bacterial infections. RT-PCR and immunoblot analyses determined expression of dPrx5 and immunity factors in response to bacterial challenge. Double mutants for dprx5 gene and genes comprising the Imd/Relish and dTak1/Basket branches of the immune signaling pathways were used in epistatic analysis. Results The dprx5 mutant flies were more resistant to bacterial infection than controls, while flies overexpressing dPrx5 were more susceptible. The enhanced resistance to bacteria was accompanied by rapid induction of the Imd-dependent antimicrobial peptides, phosphorylation of the JNK kinase Basket and altered transcriptional profiling of the transient response genes, puckered, ets21C and relish, while the opposite effects were observed in flies over-expressing dPrx5. Epistatic analysis of double mutants, using attacin D and Puckered as read outs of activation of the Imd and JNK pathways, implicated dPrx5 function in the control of the dTak1-JNK arm of immune signaling. Conclusions Differential effects on fly survivorship suggested a trade-off between the antioxidant and immune functions of dPrx5. Molecular and epistatic analyses identified dPrx5 as a negative regulator in the dTak1-JNK arm of immune signaling. General significance Our findings suggest that peroxiredoxins play an important modulatory role in the Drosophila immune response. PMID:20600624

  1. The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996).

    PubMed

    Eriksson, Bo Joakim; Tait, Noel N; Budd, Graham E; Akam, Michael

    2009-05-01

    As the putative sister group to the arthropods, onychophorans can provide insight into ancestral developmental mechanisms in the panarthropod clade. Here, we examine the expression during segmentation of orthologues of wingless (Wnt1) and engrailed, two genes that play a key role in defining segment boundaries in Drosophila and that appear to play a role in segmentation in many other arthropods. Both are expressed in segmentally reiterated stripes in all forming segments except the first (brain) segment, which only shows an engrailed stripe. Engrailed is expressed before segments are morphologically visible and is expressed in both mesoderm and ectoderm. Segmental wingless expression is not detectable until after mesodermal somites are clearly distinct. Early engrailed expression lies in and extends to both sides of the furrow that first demarcates segments in the ectoderm, but is largely restricted to the posterior part of somites. Wingless expression lies immediately anterior to engrailed expression, as it does in many arthropods, but there is no precise cellular boundary between the two expression domains analogous to the overt parasegment boundary seen in Drosophila. Engrailed stripes extend along the posterior part of each limb bud, including the antenna, while wingless is restricted to the distal tip of the limbs and the neurectoderm basal to the limbs.

  2. XRA image segmentation using regression

    NASA Astrophysics Data System (ADS)

    Jin, Jesse S.

    1996-04-01

    Segmentation is an important step in image analysis. Thresholding is one of the most important approaches. There are several difficulties in segmentation, such as automatic selecting threshold, dealing with intensity distortion and noise removal. We have developed an adaptive segmentation scheme by applying the Central Limit Theorem in regression. A Gaussian regression is used to separate the distribution of background from foreground in a single peak histogram. The separation will help to automatically determine the threshold. A small 3 by 3 widow is applied and the modal of the local histogram is used to overcome noise. Thresholding is based on local weighting, where regression is used again for parameter estimation. A connectivity test is applied to the final results to remove impulse noise. We have applied the algorithm to x-ray angiogram images to extract brain arteries. The algorithm works well for single peak distribution where there is no valley in the histogram. The regression provides a method to apply knowledge in clustering. Extending regression for multiple-level segmentation needs further investigation.

  3. The Pingding segment of the Altyn Tagh Fault (91 °E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    SciTech Connect

    Meriaux, A. -S.; Van der Woerd, J.; Tapponnier, P.; Ryerson, F. J.; Finkel, R. C.; Lasserre, C.; Xu, X.

    2012-09-25

    Morphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at ~90.5°E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9 ± 1.1 mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4°E) and Akato Tagh (~88°E) sites. This rate is ~10 mm/yr less than the upper rate determined near Tura at ~87°E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9 ± 4 mm/yr rate determined at ~90°E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Furthermore, whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue.

  4. The Pingding segment of the Altyn Tagh Fault (91 °E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    DOE PAGES

    Meriaux, A. -S.; Van der Woerd, J.; Tapponnier, P.; ...

    2012-09-25

    Morphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at ~90.5°E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9 ± 1.1more » mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4°E) and Akato Tagh (~88°E) sites. This rate is ~10 mm/yr less than the upper rate determined near Tura at ~87°E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9 ± 4 mm/yr rate determined at ~90°E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Furthermore, whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue.« less

  5. The bithorax complex of Drosophila an exceptional Hox cluster.

    PubMed

    Maeda, Robert K; Karch, François

    2009-01-01

    In his 1978 seminal paper, Ed Lewis described a series of mutations that affect the segmental identities of the segments forming the posterior two-thirds of the Drosophila body plan. In each class of mutations, particular segments developed like copies of a more-anterior segment. Genetic mapping of the different classes of mutations led to the discovery that their arrangement along the chromosome paralleled the body segments they affect along the anteroposterior axis of the fly. As all these mutations mapped to the same cytological location, he named this chromosomal locus after its founding mutation. Thus the first homeotic gene (Hox) cluster became known as the bithorax complex (BX-C). Even before the sequencing of the BX-C, the fact that these similar mutations grouped together in a cluster, lead Ed Lewis to propose that the homeotic genes arose through a gene duplication mechanism and that these clusters would be conserved through evolution. With the identification of the homeobox in the early 1980s, Lewis' first prediction was confirmed. The two cloned Drosophila homeotic genes, Antennapedia and Ultrabithorax, were indeed related genes. Using the homeobox as an entry point, homologous genes have since been cloned in many other species. Today, Hox clusters have been discovered in almost all metazoan phyla, confirming Lewis' second prediction. Remarkably, these homologous Hox genes are also arranged in clusters with their order within each cluster reflecting the anterior boundary of their domain of expression along the anterior-posterior axis of the animal. This correlation between the genomic organization and the activity along the anteroposterior body axis is known as the principle of "colinearity." The description of the BX-C inspired decades of developmental and evolutionary biology. And although this first Hox cluster led to the identification of many important features common to all Hox gene clusters, it now turns out that the fly Hox clusters are rather

  6. Strehl ratio and modulation transfer function for segmented mirror telescopes as functions of segment phase error.

    PubMed

    Chanan, G; Troy, M

    1999-11-01

    We derive the Strehl ratio for a segmented mirror telescope as a function of the rms segment phase error and the observing wavelength, with and without the effects of the atmosphere. A simple analytical expression is given for the atmosphere-free case. Although our specific results are in the context of the Keck telescope, they are presented in a way that should be readily adaptable to other segmented geometries. We also derive the corresponding modulation transfer functions. These results are useful in determining how accurately a segmented mirror telescope needs to be phased for a variety of observing applications.

  7. A Drosophila complementary DNA resource

    SciTech Connect

    Rubin, Gerald M.; Hong, Ling; Brokstein, Peter; Evans-Holm, Martha; Frise, Erwin; Stapleton, Mark; Harvey, Damon A.

    2000-03-24

    Collections of nonredundant, full-length complementary DNA (cDNA) clones for each of the model organisms and humans will be important resources for studies of gene structure and function. We describe a general strategy for producing such collections and its implementation, which so far has generated a set of cDNAs corresponding to over 40% of the genes in the fruit fly Drosophila melanogaster.

  8. Drosophila's view on insect vision.

    PubMed

    Borst, Alexander

    2009-01-13

    Within the last 400 million years, insects have radiated into at least a million species, accounting for more than half of all known living organisms: they are the most successful group in the animal kingdom, found in almost all environments of the planet, ranging in body size from a mere 0.1 mm up to half a meter. Their eyes, together with the respective parts of the nervous system dedicated to the processing of visual information, have long been the subject of intense investigation but, with the exception of some very basic reflexes, it is still not possible to link an insect's visual input to its behavioral output. Fortunately for the field, the fruit fly Drosophila is an insect, too. This genetic workhorse holds great promise for the insect vision field, offering the possibility of recording, suppressing or stimulating any single neuron in its nervous system. Here, I shall give a brief synopsis of what we currently know about insect vision, describe the genetic toolset available in Drosophila and give some recent examples of how the application of these tools have furthered our understanding of color and motion vision in Drosophila.

  9. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  10. 'Peer pressure' in larval Drosophila?

    PubMed

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila.

  11. Leigh Syndrome in Drosophila melanogaster

    PubMed Central

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A.; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-01-01

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LSSurf1 patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R+ cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. PMID:25164807

  12. Optogenetic pacing in Drosophila melanogaster

    PubMed Central

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  13. Hospital benefit segmentation.

    PubMed

    Finn, D W; Lamb, C W

    1986-12-01

    Market segmentation is an important topic to both health care practitioners and researchers. The authors explore the relative importance that health care consumers attach to various benefits available in a major metropolitan area hospital. The purposes of the study are to test, and provide data to illustrate, the efficacy of one approach to hospital benefit segmentation analysis.

  14. Molecular population genetics of inversion breakpoint regions in Drosophila pseudoobscura.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2013-07-08

    Paracentric inversions in populations can have a profound effect on the pattern and organization of nucleotide variability along a chromosome. Regions near inversion breakpoints are expected to have greater levels of differentiation because of reduced genetic exchange between different gene arrangements whereas central regions in the inverted segments are predicted to have lower levels of nucleotide differentiation due to greater levels of genetic flux among different karyotypes. We used the inversion polymorphism on the third chromosome of Drosophila pseudoobscura to test these predictions with an analysis of nucleotide diversity of 18 genetic markers near and away from inversion breakpoints. We tested hypotheses about how the presence of different chromosomal arrangements affects the pattern and organization of nucleotide variation. Overall, markers in the distal segment of the chromosome had greater levels of nucleotide heterozygosity than markers within the proximal segment of the chromosome. In addition, our results rejected the hypothesis that the breakpoints of derived inversions will have lower levels of nucleotide variability than breakpoints of ancestral inversions, even when strains with gene conversion events were removed. High levels of linkage disequilibrium were observed within all 11 breakpoint regions as well as between the ends of most proximal and distal breakpoints. The central region of the chromosome had the greatest levels of linkage disequilibrium compared with the proximal and distal regions because this is the region that experiences the highest level of recombination suppression. These data do not fully support the idea that genetic exchange is the sole force that influences genetic variation on inverted chromosomes.

  15. A subset of interneurons required for Drosophila larval locomotion

    PubMed Central

    Yoshikawa, Shingo; Long, Hong; Thomas, John B.

    2015-01-01

    Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion. PMID:26621406

  16. A subset of interneurons required for Drosophila larval locomotion.

    PubMed

    Yoshikawa, Shingo; Long, Hong; Thomas, John B

    2016-01-01

    Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion.

  17. [Ecological imprinting and protein biosynthesis. Experiments with Drosophila melanogaster Meigen].

    PubMed

    Laudien, H; Iken, H H

    1977-06-01

    According to the "host selection principle", butterflies and other herbivorous insects preferentially lay their eggs on those plant races that they fed on when young. This is also true for karpophagic and parasitic insects. The selection of specific chemical conditions could be either inherited or acquired. If learned information determines host selection, we have a case of imprinting, as a) reception and use of the information are not simultaneous, b) there is no reward. In experiments with Drosophila melanogaster we marked the egg deposition medium with ethanol, acetic acid, peppermint oil, or benzaldehyd. The flies spontaneously prefer mediums with ethanol and acetic acid, and reject peppermint oil and benzaldehyd. If they are reared in one of these media, the preference for it is increased, or the rejection rate lowered. Rearing with actinomycin C neutralizes the effect of the other markers. It is concluded that actinomycin C blocks imprinting on the egg deposition substrate in Drosophila melanogaster.

  18. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  19. Fluorescent visualization of macromolecules in Drosophila whole mounts.

    PubMed

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto

    2010-01-01

    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues.

  20. The Dynamics in Epithelial Cell Intercalation in Drosophila Morphogenesis

    NASA Astrophysics Data System (ADS)

    Wolf, Fred; Reichl, Lars; Kong, Deqing; Zhang, Yujun; Eule, Stephan; Metzger, Jakob; Großhans, Jörg

    2015-03-01

    Epithelial cell rearrangement is important for many processes in morphogenesis. During germband extension in early gastrulation of Drosophila embryos, exchange of neighbors is achieved by junction remodeling that follows a topological T1 process. Its first step is the constriction of dorsal-ventral junctions and fusion of two 3x vertices into a 4x vertex a process believed to be junction autonomous. We established a high throughput imaging pipeline, by which we recorded, segmented and analysed more than 1000 neighbor exchanges in drosophila embryos. Characterizing the dynamics of junction lengths we find that the constriction of cell contacts follows intriguingly simple quantitative laws. (1) The mean contact length decreases approximately as a square root of time to collapse. (2) The time dependent variance of contact lengths is proportional to the square of the mean. (3) The time dependent probability density of the contact lengths remains close to Gaussian during the entire process. These observations are sufficient to derive a stochastic differential equation for contact length that captures the non-equilibrium statistical mechanics of contact collapse. Supported by the German Research Foundation.

  1. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster

    PubMed Central

    Dembeck, Lauren M.; Huang, Wen; Magwire, Michael M.; Lawrence, Faye; Lyman, Richard F.; Mackay, Trudy F. C.

    2015-01-01

    Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster. PMID:25933381

  2. Conserved Arrangement of Nested Genes at the Drosophila Gart Locus

    PubMed Central

    Henikoff, Steven; Eghtedarzadeh, Mohammad K.

    1987-01-01

    The Drosophila melanogaster Gart gene encodes three enzymatic activities in the pathway for purine de novo synthesis. Alternative processing of the primary transcript leads to the synthesis of two overlapping polypeptides. The coding sequence for both polypeptides is interrupted by an intron that contains a functional cuticle protein gene encoded on the opposite DNA strand. Here we show that this nested organization also exists at the homologous locus of a distantly related species, Drosophila pseudoobscura. In both species, the intronic cuticle gene is expressed in wandering larvae and in prepupae. Remarkably, there are 24 different highly conserved noncoding segments within the intron containing the cuticle gene. These are found upstream of the transcriptional start, at the 3' end, and even within the single intronic gene intron. Other introns in the purine gene, including the intron at which alternative processing occurs, show no such homologies. It seems likely that at least some of the conserved noncoding regions are involved in specifying the high level developmental expression of the cuticle gene. We discuss the possibility that shared cis-acting regulatory sites might enhance transcription of both genes and help explain their nested arrangement. PMID:3123310

  3. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Huang, Wen; Magwire, Michael M; Lawrence, Faye; Lyman, Richard F; Mackay, Trudy F C

    2015-05-01

    Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster.

  4. Drosophila and Beer: An Experimental Laboratory Exercise

    ERIC Educational Resources Information Center

    Kurvink, Karen

    2004-01-01

    Drosophila melanogaster is a popular organism for studying genetics and development. Maintaining Drosophila on medium prepared with varying concentrations of beer and evaluating the effects on reproduction, life cycle stages and other factors is one of the exercises that is versatile and applicable to many student levels.

  5. Pan-African reactivation of the Lurio segment of the Kibaran Belt system: a reappraisal from recent age determinations in northern Mozambique

    NASA Astrophysics Data System (ADS)

    Sacchi, R.; Cadoppi, P.; Costa, M.

    2000-04-01

    The role of the Lurio Belt in northern Mozambique, and the geological evolution of its foreland in the Proterozoic are discussed in the light of recent, single zircon age determinations showing Pan-African age for the granulite-facies metamorphism. The following tentative conclusions are reached, and evidence for and against them is reviewed. The Lurio Belt had a two-fold history, as a crust-forming orogen during the Kibaran and as a transpressive suture in Pan-African times. Together with the Zambezi Belt and the Schlesien-Mwembeshi Lineament, it formed a 3000 km discontinuity which underwent an embryonic oceanic development before being sutured during the Pan-African collisional event. The Lurio Belt foreland had a tectonic-metamorphic evolution at ca 1000 Ma, prior to major, Pan-African overprinting and was probably continuous with the basement of Queen Maud Land (Antarctica) and Natal. In Pan-African times, clockwise transpressive movements along the Lurio Belt brought about emplacement of granulite klippen in its foreland. If there is a southward continuation of the Pan-African Mozambique Belt beyond Mozambique, it is probably to be found in Antarctica.

  6. Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana.

    PubMed

    Pueyo, J I; Lanfear, R; Couso, J P

    2008-10-28

    Through division into segments, animal bodies can reach higher degrees of complexity and functionality during development and evolution. The segmentation mechanisms of insects and vertebrates have been seen as fundamentally different at the anatomical and molecular levels, and consequently, independently evolved. However, this conclusion was mostly based on observations of derived insects such as Drosophila. We have cloned the Delta, Notch, and hairy genes in the cockroach Periplaneta americana, a basal insect with short germ-band development, and carried out functional assays of Notch activity during its segmentation. Our results show that, in more basal insects, segmentation involves a similar developmental mechanism to that in vertebrates, including induction of segment formation by cyclic segmental stripes of hairy and Delta expression. This result indicates that Notch-mediated segmentation is the ancestral segmentation mechanism of insects, and together with previous results in the literature [Stollewerk A, Schoppmeier M, Damen WGM (2003) Nature 423:863-865], of arthropods as well. The similarity with vertebrate segmentation might suggest that Notch-mediated segmentation is an ancient developmental mechanism inherited from a common ancestor of insects and vertebrates.

  7. New Stopping Criteria for Segmenting DNA Sequences

    SciTech Connect

    Li, Wentian

    2001-06-18

    We propose a solution on the stopping criterion in segmenting inhomogeneous DNA sequences with complex statistical patterns. This new stopping criterion is based on Bayesian information criterion in the model selection framework. When this criterion is applied to telomere of S.cerevisiae and the complete sequence of E.coli, borders of biologically meaningful units were identified, and a more reasonable number of domains was obtained. We also introduce a measure called segmentation strength which can be used to control the delineation of large domains. The relationship between the average domain size and the threshold of segmentation strength is determined for several genome sequences.

  8. New Stopping Criteria for Segmenting DNA Sequences

    NASA Astrophysics Data System (ADS)

    Li, Wentian

    2001-06-01

    We propose a solution on the stopping criterion in segmenting inhomogeneous DNA sequences with complex statistical patterns. This new stopping criterion is based on Bayesian information criterion in the model selection framework. When this criterion is applied to telomere of S. cerevisiae and the complete sequence of E. coli, borders of biologically meaningful units were identified, and a more reasonable number of domains was obtained. We also introduce a measure called segmentation strength which can be used to control the delineation of large domains. The relationship between the average domain size and the threshold of segmentation strength is determined for several genome sequences.

  9. Developmental effects of exposing Drosophila embryos to ether vapour.

    PubMed

    Bownes, M; Seiler, M

    1977-01-01

    Drosophila embryos at precise developmental stages were exposed to ether vapour. The defects in the resulting embryos and adults were observed. Ether disrupted embroygenesis in specific ways, causing defects primarily at the anterior of the embryo and disorganizing the arrangement of the segments. Adults showed deficiencies and duplications of many imaginal disc and histoblast derivatives. Phenocopies of the bithorax mutation which transforms metathorax to mesothorax were observed. They were first induced at the syncytial blastoderm stage, had their peak of production at the cellular blastoderm, and were no longer observed after the anterior and posterior midgut were partially invaginated. It was observed that not only are the halter/wing transformations confined to the anterior compartment, but also leg 3 to leg 2 transformations only occurred in the anterior leg compartment.

  10. Keypoint Transfer Segmentation

    PubMed Central

    Toews, M.; Langs, G.; Wells, W.; Golland, P.

    2015-01-01

    We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm’s robustness enables the segmentation of scans with highly variable field-of-view. PMID:26221677

  11. Pancreas and cyst segmentation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  12. Keypoint Transfer Segmentation.

    PubMed

    Wachinger, C; Toews, M; Langs, G; Wells, W; Golland, P

    2015-01-01

    We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm's robustness enables the segmentation of scans with highly variable field-of-view.

  13. Methodologies to determine forces on bones and muscles of body segments during exercise, employing compact sensors suitable for use in crowded space vehicles

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1995-01-01

    Work under this grant was carried out by the author and by a graduate research assistant. An instrumented bicycle ergometer was implemented focusing on the stated objective: to estimate the forces exerted by each muscle of the feet, calf, and thigh of an individual while bicycling. The sensors used were light and compact. These were probes to measure muscle EMG activity, miniature accelerometers, miniature load sensors, and small encoders to measure angular positions of the pedal. A methodology was developed and implemented to completely describe the kinematics of the limbs using data from the sensors. This work has been published as a Master's Thesis by the Graduate student supported by the grant. The instrumented ergometer along with the sensors and instrumentation were tested during a KC-135 Zero-Gravity flight in July, 1994. A complete description of the system and the tests performed have been published as a report submitted to NASA Johnson Space Center. The data collected during the KC-135 flight is currently being processed so that a kinematic description of the bicycling experiment will be soon determined. A methodology to estimate the muscle forces has been formulated based on previous work. The methodology involves the use of optimization concepts so that the individual muscle forces that represent variables in dynamic equations of motion may be estimated. Optimization of a criteria (goal) function such as minimization of energy will be used along with constraint equations defined by rigid body equations of motion. Use of optimization principles is necessary, because the equations of motion alone constitute an indeterminate system of equations with respect to the large amount of muscle forces which constitute the variables in these equations. The number of variables is reduced somewhat by using forces measured by the load cells installed on the pedal. These load cells measure pressure and shear forces on the foot. The author and his collaborators at NASA

  14. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods.

    PubMed

    Janssen, Ralf

    2012-09-01

    Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.

  15. Native Microbial Colonization of Drosophila melanogaster and Its Use as a Model of Enterococcus faecalis Pathogenesis▿ †

    PubMed Central

    Cox, Christopher R.; Gilmore, Michael S.

    2007-01-01

    Enterococci are commensal organisms of the gastrointestinal (GI) tracts of a broad range of mammalian and insect hosts, but they are also leading causes of nosocomial infection. Little is known about the ecological role of enterococci in the GI tract consortia. To develop a tractable model for studying the roles of these organisms as commensals and pathogens, we characterized the Drosophila melanogaster microflora and examined the occurrence of enterococci in the gastrointestinal consortium of Drosophila. In a survey of laboratory-reared Drosophila and wild-captured flies, we found that Drosophila was naturally colonized by representatives of five bacterial phyla. Among these organisms were several species of enterococci, including Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinaraum, and Enterococcus durans, as well as a previously detected but uncultured Enterococcus species. Drosophila could be cured of enterococcal carriage by antibiotic treatment and could be reassociated with laboratory strains. High-level colonization by a well-characterized strain expressing the enterococcal cytolysin was found to be detrimental to Drosophila compared to the effect of an isogenic, noncytolytic control. The anatomical distribution of enterococci in the Drosophila GI tract was determined by immunohistochemical staining of thin sections of naturally colonized and reassociated flies. PMID:17220307

  16. Innovative strategies for self-pay segmentation.

    PubMed

    Boehler, Adam; Hansel, John

    2006-01-01

    Risk segmentation of self-pay accounts can help healthcare financial managers determine where to use collection resources. Assessment of self-pay patients should consider each patient's estimated financial condition and potential eligibility for charity care of public assistance patients. Segmenting patients on the basis of demographic variances and potential fraud can help hospitals increase self-pay collections and reduce A/R days.

  17. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  18. Determination of free bilirubin and its binding capacity by HSA using a microfluidic chip-capillary electrophoresis device with a multi-segment circular-ferrofluid-driven micromixing injection.

    PubMed

    Sun, Hui; Nie, Zhou; Fung, Ying Sing

    2010-09-01

    A PMMA microfluidic chip-CE device with a multi-segment circular-ferrofluid-driven micromixing injector has been developed for the determination of free bilirubin and its binding capacity by HSA at equilibrium. The design of the device and its fabrication by a low cost CO(2) laser are discussed for intended applications. Under optimized conditions, the total binding capacity of HSA for bilirubin was determined as 16.3±1.4 mg/l00 mL human serum (n=3) and residual binding capacity for bilirubin 9.8 mg/100 mL (n=3) in normal infants. To assess risk of hyperbilirubinemia, free bilirubin and residual binding capacity by HSA provide a better indicator than total bilirubin, as neonates with impaired bilirubin binding capacity could be detected. In addition, residual binding capacity provides an advanced indicator to predict the onset of hyperbilirubinemia before the appearance of free bilirubin. HSA down to 94 nL is used in each titration and a full assay of four titrations takes up 376 nL HSA, sufficient for newborns with HSA in microliter range. The device has shown capable to provide adequate margin of protection to detect an early rising level of bilirubin and impaired binding capacity prior to the onset of jaundice condition.

  19. Sequoia establishes tip-cell number in Drosophila trachea by regulating FGF levels.

    PubMed

    Araújo, Sofia J; Casanova, Jordi

    2011-07-15

    Competition and determination of leading and trailing cells during collective cell migration is a widespread phenomenon in development, wound healing and tumour invasion. Here, we analyse this issue during in vivo ganglionic branch cell migration in the Drosophila tracheal system. We identify Sequoia (Seq) as a negative transcriptional regulator of Branchless (Bnl), a Drosophila FGF homologue, and observe that modulation of Bnl levels determines how many cells will lead this migrating cluster, regardless of Notch lateral inhibition. Our results show that becoming a tip cell does not prevent others in the branch taking the same position, suggesting that leader choice does not depend only on sensing relative amounts of FGF receptor activity.

  20. The PCNN adaptive segmentation algorithm based on visual perception

    NASA Astrophysics Data System (ADS)

    Zhao, Yanming

    To solve network adaptive parameter determination problem of the pulse coupled neural network (PCNN), and improve the image segmentation results in image segmentation. The PCNN adaptive segmentation algorithm based on visual perception of information is proposed. Based on the image information of visual perception and Gabor mathematical model of Optic nerve cells receptive field, the algorithm determines adaptively the receptive field of each pixel of the image. And determines adaptively the network parameters W, M, and β of PCNN by the Gabor mathematical model, which can overcome the problem of traditional PCNN parameter determination in the field of image segmentation. Experimental results show that the proposed algorithm can improve the region connectivity and edge regularity of segmentation image. And also show the PCNN of visual perception information for segmentation image of advantage.

  1. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    PubMed

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-07

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.

  2. CPCs with segmented absorbers

    SciTech Connect

    Keita, M.; Robertson, H.S. )

    1991-01-01

    One of the most promising means of improving the performance of solar thermal collectors is to reduce the energy lost by the hot absorber. One way to do this, not currently part of the technology, is to recognize that since the absorber is usually not irradiated uniformly, it is therefore possible to construct an absorber of thermally isolated segments, circulate the fluid in sequence from low to high irradiance segments, and reduce loss by improving effective concentration. This procedure works even for ideal concentrators, without violating Winston's theorem. Two equivalent CPC collectors with single and segmented absorber were constructed and compared under actual operating conditions. The results showed that the daily thermal efficiency of the collector with segmented absorber is higher (about 13%) than that of the collector with nonsegmented absorber.

  3. Gut microbiota dictates the metabolic response of Drosophila to diet.

    PubMed

    Wong, Adam C-N; Dobson, Adam J; Douglas, Angela E

    2014-06-01

    Animal nutrition is profoundly influenced by the gut microbiota, but knowledge of the scope and core mechanisms of the underlying animal-microbiota interactions is fragmentary. To investigate the nutritional traits shaped by the gut microbiota of Drosophila, we determined the microbiota-dependent response of multiple metabolic and performance indices to systematically varied diet composition. Diet-dependent differences between Drosophila bearing its unmanipulated microbiota (conventional flies) and experimentally deprived of its microbiota (axenic flies) revealed evidence for: microbial sparing of dietary B vitamins, especially riboflavin, on low-yeast diets; microbial promotion of protein nutrition, particularly in females; and microbiota-mediated suppression of lipid/carbohydrate storage, especially on high sugar diets. The microbiota also sets the relationship between energy storage and body mass, indicative of microbial modulation of the host signaling networks that coordinate metabolism with body size. This analysis identifies the multiple impacts of the microbiota on the metabolism of Drosophila, and demonstrates that the significance of these different interactions varies with diet composition and host sex.

  4. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion.

  5. Planar Cell Polarity Signaling in the Drosophila Eye

    PubMed Central

    Jenny, Andreas

    2017-01-01

    Planar cell polarity (PCP) signaling regulates the establishment of polarity within the plane of an epithelium and allows cells to obtain directional information. Its results are as diverse as the determination of cell fates, the generation of asymmetric but highly aligned structures (e.g., stereocilia in the human ear or hairs on a fly wing), or the directional migration of cells during convergent extension during vertebrate gastrulation. Aberrant PCP establishment can lead to human birth defects or kidney disease. PCP signaling is governed by the noncanonical Wnt or Fz/PCP pathway. Traditionally, PCP establishment has been best studied in Drosophila, mainly due to the versatility of the fly as a genetic model system. In Drosophila, PCP is essential for the orientation of wing and abdominal hairs, the orientation of the division axis of sensory organ precursors, and the polarization of ommatidia in the eye, the latter requiring a highly coordinated movement of groups of photoreceptor cells during the process of ommatidial rotation. Here, I review our current understanding of PCP signaling in the Drosophila eye and allude to parallels in vertebrates. PMID:20959167

  6. Preference for and learning of amino acids in larval Drosophila

    PubMed Central

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram

    2017-01-01

    ABSTRACT Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila. PMID:28193602

  7. Preference for and learning of amino acids in larval Drosophila.

    PubMed

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram; Tanimura, Teiichi

    2017-03-15

    Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis - and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  8. A drosophila full-length cDNA resource

    SciTech Connect

    Stapleton, Mark; Carlson, Joseph; Brokstein, Peter; Yu, Charles; Champe, Mark; George, Reed; Guarin, Hannibal; Kronmiller, Brent; Pacleb, Joanne; Park, Soo; Rubin, Gerald M.; Celniker, Susan E.

    2003-05-09

    Background: A collection of sequenced full-length cDNAs is an important resource both for functional genomics studies and for the determination of the intron-exon structure of genes. Providing this resource to the Drosophila melanogaster research community has been a long-term goal of the Berkeley Drosophila Genome Project. We have previously described the Drosophila Gene Collection (DGC), a set of putative full-length cDNAs that was produced by generating and analyzing over 250,000 expressed sequence tags (ESTs) derived from a variety of tissues and developmental stages. Results: We have generated high-quality full-insert sequence for 8,921 clones in the DGC. We compared the sequence of these clones to the annotated Release 3 genomic sequence, and identified more than 5,300 cDNAs that contain a complete and accurate protein-coding sequence. This corresponds to at least one splice form for 40 percent of the predicted D. melanogaster genes. We also identified potential new cases of RNA editing. Conclusions: We show that comparison of cDNA sequences to a high-quality annotated genomic sequence is an effective approach to identifying and eliminating defective clones from a cDNA collection and ensure its utility for experimentation. Clones were eliminated either because they carry single nucleotide discrepancies, which most probably result from reverse transcriptase errors, or because they are truncated and contain only part of the protein-coding sequence.

  9. Distinct Biochemical Activities of Eyes absent During Drosophila Eye Development.

    PubMed

    Jin, Meng; Mardon, Graeme

    2016-03-16

    Eyes absent (Eya) is a highly conserved transcriptional coactivator and protein phosphatase that plays vital roles in multiple developmental processes from Drosophila to humans. Eya proteins contain a PST (Proline-Serine-Threonine)-rich transactivation domain, a threonine phosphatase motif (TPM), and a tyrosine protein phosphatase domain. Using a genomic rescue system, we find that the PST domain is essential for Eya activity and Dac expression, and the TPM is required for full Eya function. We also find that the threonine phosphatase activity plays only a minor role during Drosophila eye development and the primary function of the PST and TPM domains is transactivation that can be largely substituted by the heterologous activation domain VP16. Along with our previous results that the tyrosine phosphatase activity of Eya is dispensable for normal Eya function in eye formation, we demonstrate that a primary function of Eya during Drosophila eye development is as a transcriptional coactivator. Moreover, the PST/TPM and the threonine phosphatase activity are not required for in vitro interaction between retinal determination factors. Finally, this work is the first report of an Eya-Ey physical interaction. These findings are particularly important because they highlight the need for an in vivo approach that accurately dissects protein function.

  10. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  11. GPS Control Segment Improvements

    DTIC Science & Technology

    2015-04-29

    Systems Center GPS Control Segment Improvements Mr. Tim McIntyre GPS Product Support Manager GPS Ops Support and Sustainment Division Peterson...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...DATE 29 APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE GPS Control Segment Improvements 5a. CONTRACT

  12. Heterogeneity of the transition/transversion ratio in Drosophila and Hominidae genomes.

    PubMed

    Seplyarskiy, Vladimir B; Kharchenko, Peter; Kondrashov, Alexey S; Bazykin, Georgii A

    2012-08-01

    Mutation rate varies between sites in the genome. Part of this variation can be explained by well-recognized short nucleotide contexts, but a large component of this variation remains cryptic. We used data on interspecies divergence and intraspecies polymorphism in Drosophila and Hominidae to analyze variation of the average rate of the 12 possible kinds of single-nucleotide mutations and in the transition/transversion ratio κ at single-nucleotide resolution. Both the average mutation rate and κ vary by a factor of ~3 between nucleotide sites. The characteristic scale of variation in κ is up to at least ~30 nucleotides in Drosophila and ~5 nucleotides in Hominidae. Genome segments with locally elevated mutation rates possess lower values of κ; however, a substantial fraction of variation in κ cannot be directly explained by the local mutation rates.

  13. Anatomical and Molecular Design of the Drosophila Antenna as a Flagellar Auditory Organ

    PubMed Central

    TODI, SOKOL V.; SHARMA, YASHODA; EBERL, DANIEL F.

    2007-01-01

    The molecular basis of hearing is less well understood than many other senses. However, recent studies in Drosophila have provided some important steps towards a molecular understanding of hearing. In this report, we summarize these findings and their implications on the relationship between hearing and touch. In Drosophila, hearing is accomplished by Johnston’s Organ, a chordotonal organ containing over 150 scolopidia within the second antennal segment. We will discuss anatomical features of the antenna and how they contribute to the function of this flagellar auditory receptor. The effects of several mutants, identified through mutagenesis screens or as homologues of vertebrate auditory genes, will be summarized. Based on evidence gathered from these studies, we propose a speculative model for how the chordotonal organ might function. PMID:15252880

  14. Geometry Guided Segmentation

    NASA Astrophysics Data System (ADS)

    Dunn, Stanley M.; Liang, Tajen

    1989-03-01

    Our overall goal is to develop an image understanding system for automatically interpreting dental radiographs. This paper describes the module that integrates the intrinsic image data to form the region adjacency graph that represents the image. The specific problem is to develop a robust method for segmenting the image into small regions that do not overlap anatomical boundaries. Classical algorithms for finding homogeneous regions (i.e., 2 class segmentation or connected components) will not always yield correct results since blurred edges can cause adjacent anatomical regions to be labeled as one region. This defect is a problem in this and other applications where an object count is necessary. Our solution to the problem is to guide the segmentation by intrinsic properties of the constituent objects. The module takes a set of intrinsic images as arguments. A connected components-like algorithm is performed, but the connectivity relation is not 4- or 8-neighbor connectivity in binary images; the connectivity is defined in terms of the intrinsic image data. We shall describe both the classical method and the modified segmentation procedures, and present experiments using both algorithms. Our experiments show that for the dental radiographs a segmentation using gray level data in conjunction with edges of the surfaces of teeth give a robust and reliable segmentation.

  15. Fitness and density-dependent population growth in Drosophila melanogaster

    SciTech Connect

    Mueller, L.D.; Ayala, F.J.

    1981-03-01

    The density-dependent rates of population growth were determined for 26 populations of Drosophila melanogaster maintained in the serial transfer system. Twenty-five populations were homozygous for an entire chromosome 2 sampled from nature; the other was a random heterozygous population. Rates of population growth around the carrying capacity cannot explain the large fitness depression of these lines. However, the homozygous lines show large differences in rates of population growth at low densities relative to the random heterozygous standard. The average relative fitness of the homozygous lines, as determined from the growth rates at the lowest density, is 0.51.

  16. Selection Components in Background Replacement Lines of Drosophila

    PubMed Central

    Clark, Andrew G.; Bundgaard, Jørgen

    1984-01-01

    Selection components analysis was performed in lines of Drosophila melanogaster at three times during substitution backcrossing. The initial two lines were inbred isofemale lines from natural populations in California, and one had the spread wing mutation eagle. The selection components analysis revealed aspects of the genetic structure of the determinants of fitness by demonstrating changes in the marginal fitnesses of the eagle locus. Differences among backgrounds essentially disappeared by the 20th generation of backcrossing, suggesting that the previously observed differences were attributable to linkage disequilibrium. The method of bootstrapping was used as a novel means of determining statistical confidence in selection components. PMID:17246226

  17. Cryobiological preservation of Drosophila embryos

    SciTech Connect

    Mazur, P.; Schreuders, P.D.; Cole, K.W.; Hall, J.W. ); Mahowald, A.P. )

    1992-12-18

    The inability to cryobiologically preserve the fruit fly Drosophila melanogaster has required that fly stocks be maintained by frequent transfer of adults. This method is costly in terms of time and can lead to loss of stocks. Traditional slow freezing methods do not succeed because the embryos are highly sensitive to chilling. With the procedures described here, 68 percent of precisely staged 15-hour Oregon R (wild-type) embryos hatch after vitrification at -205[degree]C, and 40 percent of the resulting larvae develop into normal adult flies. These embryos are among the most complex organisms successfully preserved by cryobiology.

  18. Chromosome Conformation Capture in Drosophila.

    PubMed

    Li, Hua-Bing

    2016-01-01

    Linear chromatin fiber is packed inside the nuclei as a complex three-dimensional structure, and the organization of the chromatin has important roles in the appropriate spatial and temporal regulation of gene expression. To understand how chromatin organizes inside nuclei, and how regulatory proteins physically interact with genes, chromosome conformation capture (3C) technique provides a powerful and sensitive tool to detect both short- and long-range DNA-DNA interaction. Here I describe the 3C technique to detect the DNA-DNA interactions mediated by insulator proteins that are closely related to PcG in Drosophila, which is also broadly applicable to other systems.

  19. Geotaxis baseline data for Drosophila

    NASA Technical Reports Server (NTRS)

    Schnebel, E. M.; Bhargava, R.; Grossfield, J.

    1987-01-01

    Geotaxis profiles for 20 Drosophila species and semispecies at different ages have been examined using a calibrated, adjustable slant board device. Measurements were taken at 5 deg intervals ranging from 0 deg to 85 deg. Clear strain and species differences are observed, with some groups tending to move upward (- geotaxis) with increasing angles, while others move downward (+ geotaxis). Geotactic responses change with age in some, but not all experimental groups. Sample geotaxis profiles are presented and their application to ecological and aging studies are discussed. Data provide a baseline for future evaluations of the biological effects of microgravity.

  20. Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.

    PubMed

    Gjorgjieva, Julijana; Berni, Jimena; Evers, Jan Felix; Eglen, Stephen J

    2013-01-01

    Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central pattern generator (CPG). We characterized crawling behavior of newly hatched Drosophila larvae by quantifying timing and duration of segmental boundary contractions. We developed a CPG network model that recapitulates these patterns based on segmentally repeated units of excitatory and inhibitory (EI) neuronal populations coupled with immediate neighboring segments. A single network with symmetric coupling between neighboring segments succeeded in generating both forward and backward propagation of activity. The CPG network was robust to changes in amplitude and variability of connectivity strength. Introducing sensory feedback via "stretch-sensitive" neurons improved wave propagation properties such as speed of propagation and segmental contraction duration as observed experimentally. Sensory feedback also restored propagating activity patterns when an inappropriately tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we demonstrated that two types of connectivity could synchronize the activity of two independent networks: connections from excitatory neurons on one side to excitatory contralateral neurons (E to E), and connections from inhibitory neurons on one side to excitatory contralateral neurons (I to E). To our knowledge, such I to E connectivity has not yet been found in any experimental system; however, it provides the most robust mechanism to synchronize activity between contralateral CPGs in our model. Our model provides a general framework for studying the conditions under which a single locally coupled network generates bilaterally synchronized and longitudinally propagating waves in either direction.

  1. A wrapper-based approach to image segmentation and classification.

    PubMed

    Farmer, Michael E; Jain, Anil K

    2005-12-01

    The traditional processing flow of segmentation followed by classification in computer vision assumes that the segmentation is able to successfully extract the object of interest from the background image. It is extremely difficult to obtain a reliable segmentation without any prior knowledge about the object that is being extracted from the scene. This is further complicated by the lack of any clearly defined metrics for evaluating the quality of segmentation or for comparing segmentation algorithms. We propose a method of segmentation that addresses both of these issues, by using the object classification subsystem as an integral part of the segmentation. This will provide contextual information regarding the objects to be segmented, as well as allow us to use the probability of correct classification as a metric to determine the quality of the segmentation. We view traditional segmentation as a filter operating on the image that is independent of the classifier, much like the filter methods for feature selection. We propose a new paradigm for segmentation and classification that follows the wrapper methods of feature selection. Our method wraps the segmentation and classification together, and uses the classification accuracy as the metric to determine the best segmentation. By using shape as the classification feature, we are able to develop a segmentation algorithm that relaxes the requirement that the object of interest to be segmented must be homogeneous in some low-level image parameter, such as texture, color, or grayscale. This represents an improvement over other segmentation methods that have used classification information only to modify the segmenter parameters, since these algorithms still require an underlying homogeneity in some parameter space. Rather than considering our method as, yet, another segmentation algorithm, we propose that our wrapper method can be considered as an image segmentation framework, within which existing image segmentation

  2. Haploidy and androgenesis in Drosophila.

    PubMed Central

    Komma, D J; Endow, S A

    1995-01-01

    Adrogenesis, development from paternal but not maternal chromosomes, can be induced to occur in some organisms, including vertebrates, but has only been reported to occur naturally in interspecific hybrids of the Sicilian stick insect. Androgenesis has not been described previously in Drosophila. We now report the recovery of androgenetic offspring from Drosophila melanogaster females mutant for a gene that affects an oocyte- and embryo-specific alpha-tubulin. The androgenetic exceptions are X,X diploid females that develop from haploid embryos and express paternal markers on all 4 chromosomes. The exceptional females arise by fusion of haploid cleavage nuclei or failure of newly replicated haploid chromosomes to segregate, rather than fusion of two inseminating sperm. The frequency of androgenetic offspring is greatly enhanced by a partial loss-of-function mutant of the NCD (nonclaret disjunctional) microtubule motor protein, suggesting that wild-type NCD functions is pronuclear fusion. Diploidization of haploid paternal chromosome complements results in complete genetic homozygosity, which could facilitate studies of gene variation and mutational load in populations. Images Fig. 2 Fig. 3 PMID:8524868

  3. Drosophila Genetics in the Classroom

    PubMed Central

    Sofer, W.; Tompkins, L.

    1994-01-01

    Drosophila has long been useful for demonstrating the principles of classical Mendelian genetics in the classroom. In recent years, the organism has also helped students understand biochemical and behavioral genetics. In this connection, this article describes the development of a set of integrated laboratory exercises and descriptive materials--a laborotory module--in biochemical genetics for use by high-school students. The module focuses on the Adh gene and its product, the alcohol dehydrogenase enzyme. Among other activities, students using the module get to measure alcohol tolerance and to assay alcohol dehydrogenase activity in Adh-negative and -postive flies. To effectively present the module in the classroom, teachers attend a month-long Dissemination Institute in the summer. During this period, they learn about other research activities that can be adapted for classroom use. One such activity that has proved popular with teachers and students utilizes Drosophila to introduce some of the concepts of behavioral genetics to the high-school student. By establishing closer interactions between high-school educators and research scientists, the gulf between the two communities can begin to be bridged. It is anticipated that the result of a closer relationship will be that the excitement and creativity of science will be more effectively conveyed to students. PMID:8138175

  4. Drosophila genetics in the classroom.

    PubMed

    Sofer, W; Tompkins, L

    1994-01-01

    Drosophila has long been useful for demonstrating the principles of classical Mendelian genetics in the classroom. In recent years, the organism has also helped students understand biochemical and behavioral genetics. In this connection, this article describes the development of a set of integrated laboratory exercises and descriptive materials--a laboratory module--in biochemical genetics for use by high-school students. The module focuses on the Adh gene and its product, the alcohol dehydrogenase enzyme. Among other activities, students using the module get to measure alcohol tolerance and to assay alcohol dehydrogenase activity in Adh-negative and -positive flies. To effectively present the module in the classroom, teachers attend a month-long Dissemination Institute in the summer. During this period, they learn about other research activities that can be adapted for classroom use. One such activity that has proved popular with teachers and students utilizes Drosophila to introduce some of the concepts of behavioral genetics to the high-school student. By establishing closer interactions between high-school educators and research scientists, the gulf between the two communities can begin to be bridged. It is anticipated that the result of a closer relationship will be that the excitement and creativity of science will be more effectively conveyed to students.

  5. Cooperative processes in image segmentation

    NASA Technical Reports Server (NTRS)

    Davis, L. S.

    1982-01-01

    Research into the role of cooperative, or relaxation, processes in image segmentation is surveyed. Cooperative processes can be employed at several levels of the segmentation process as a preprocessing enhancement step, during supervised or unsupervised pixel classification and, finally, for the interpretation of image segments based on segment properties and relations.

  6. Segmented heterochromia in scalp hair.

    PubMed

    Yoon, Kyeong Han; Kim, Daehwan; Sohn, Seonghyang; Lee, Won Soo

    2003-12-01

    Segmented heterochromia of scalp hair is characterized by the irregularly alternating segmentation of hair into dark and light bands and is known to be associated with iron deficiency anemia. The authors report the case of an 11-year-old boy with segmented heterochromia associated with iron deficiency anemia. After 11 months of iron replacement, the boy's segmented heterochromic hair recovered completely.

  7. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  8. Function of Lipid Storage Droplet 1 (Lsd1) in Wing Development of Drosophila melanogaster.

    PubMed

    Men, Tran Thanh; Binh, Tran Duy; Yamaguchi, Masamitsu; Huy, Nguyen Tien; Kamei, Kaeko

    2016-04-29

    Perilipins are evolutionarily conserved from Drosophila to humans, the lipid storage droplet 1 (Lsd1) is a Drosophila homolog of human perilipin 1. The function of Lsd1 as a regulator of lipolysis in Drosophila has been demonstrated, as the Lsd1 mutant causes an increase of lipid droplet size. However, the functions of this gene during development are still under investigation. In order to determine the function of Lsd1 during development, Lsd1 was knocked down in Drosophila using the GAL4-UAS system. Selective knockdown of Lsd1 in the dorsal wing disc caused an atrophied wing phenotype. The generation of reactive oxygen species in the wing pouch compartment of the Lsd1-knockdown flies was significantly higher than in the control. Immunostaining with caspase-3 antibody revealed a greater number of apoptotic cells in Lsd1-knockdown wing discs than in the control. Cell death by autophagy was also induced in the knockdown flies. Moreover, cells deprived of Lsd1 showed mitochondrial expansion and decreased ATP levels. These results strongly suggest that knockdown of Lsd1 induces mitochondrial stress and the production of reactive oxygen species that result in cell death, via apoptosis and the autophagy pathway. These results highlight the roles of Drosophila Lsd1 during wing development.

  9. Progressive tarsal patterning in the Drosophila by temporally dynamic regulation of transcription factor genes.

    PubMed

    Natori, Kohei; Tajiri, Reiko; Furukawa, Shiori; Kojima, Tetsuya

    2012-01-15

    The morphology of insect appendages, such as the number and proportion of leg tarsal segments, is immensely diverse. In Drosophila melanogaster, adult legs have five tarsal segments. Accumulating evidence indicates that tarsal segments are formed progressively through dynamic changes in the expression of transcription factor genes, such as Bar genes, during development. In this study, to examine further the basis of progressive tarsal patterning, the precise expression pattern and function of several transcription factor genes were investigated in relation to the temporal regulation of Bar expression. The results indicate that nubbin is expressed over a broad region at early stages but gradually disappears from the middle of the tarsal region. This causes the progressive expansion of rotund expression, which in turn progressively represses Bar expression, leading to the formation of the tarsal segment 3. The region corresponding to the tarsal segment 4 is formed when apterous expression is initiated, which renders Bar expression refractory to rotund. In addition, the tarsal segment 2 appears to be derived from the region that expresses Bar at a very early stage. Cessation of Bar expression in this region requires the function of spineless, which also regulates rotund expression. These findings indicate that the temporally dynamic regulatory interaction of these transcription factor genes is the fundamental basis of the progressive patterning of the tarsal region.

  10. Multi-step control of muscle diversity by Hox proteins in the Drosophila embryo

    PubMed Central

    Enriquez, Jonathan; Boukhatmi, Hadi; Dubois, Laurence; Philippakis, Anthony A.; Bulyk, Martha L.; Michelson, Alan M.; Crozatier, Michèle; Vincent, Alain

    2010-01-01

    Summary Hox transcription factors control many aspects of animal morphogenetic diversity. The segmental pattern of Drosophila larval muscles shows stereotyped variations along the anteroposterior body axis. Each muscle is seeded by a founder cell and the properties specific to each muscle reflect the expression by each founder cell of a specific combination of ‘identity’ transcription factors. Founder cells originate from asymmetric division of progenitor cells specified at fixed positions. Using the dorsal DA3 muscle lineage as a paradigm, we show here that Hox proteins play a decisive role in establishing the pattern of Drosophila muscles by controlling the expression of identity transcription factors, such as Nautilus and Collier (Col), at the progenitor stage. High-resolution analysis, using newly designed intron-containing reporter genes to detect primary transcripts, shows that the progenitor stage is the key step at which segment-specific information carried by Hox proteins is superimposed on intrasegmental positional information. Differential control of col transcription by the Antennapedia and Ultrabithorax/Abdominal-A paralogs is mediated by separate cis-regulatory modules (CRMs). Hox proteins also control the segment-specific number of myoblasts allocated to the DA3 muscle. We conclude that Hox proteins both regulate and contribute to the combinatorial code of transcription factors that specify muscle identity and act at several steps during the muscle-specification process to generate muscle diversity. PMID:20056681

  11. A probabilistic level set formulation for interactive organ segmentation

    NASA Astrophysics Data System (ADS)

    Cremers, Daniel; Fluck, Oliver; Rousson, Mikael; Aharon, Shmuel

    2007-03-01

    Level set methods have become increasingly popular as a framework for image segmentation. Yet when used as a generic segmentation tool, they suffer from an important drawback: Current formulations do not allow much user interaction. Upon initialization, boundaries propagate to the final segmentation without the user being able to guide or correct the segmentation. In the present work, we address this limitation by proposing a probabilistic framework for image segmentation which integrates input intensity information and user interaction on equal footings. The resulting algorithm determines the most likely segmentation given the input image and the user input. In order to allow a user interaction in real-time during the segmentation, the algorithm is implemented on a graphics card and in a narrow band formulation.

  12. F-actin staining of Drosophila testes.

    PubMed

    Bonaccorsi, Silvia; Giansanti, Maria G; Cenci, Giovanni; Gatti, Maurizio

    2012-01-01

    Preparations of Drosophila testes fixed with paraformaldehyde can be stained for F-actin according to the protocol described here. This staining procedure is particularly suitable for staining the male fusome and the cytokinetic contractile ring.

  13. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  14. The Drosophila cyst stem cell lineage

    PubMed Central

    Zoller, Richard; Schulz, Cordula

    2012-01-01

    In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has made the Drosophila testis an excellent model for studying both the roles of somatic cells in guiding germline development and the interdependence of two separate stem cell lineages. This review focuses on our current understanding of CySC specification, CySC self-renewing divisions, cyst cell differentiation, and soma-germline interactions. Many of the mechanisms guiding these processes in Drosophila testes are similarly essential for the development and function of tissues in other organisms, most importantly for gametogenesis in mammals. PMID:23087834

  15. Ecdysteroid receptors in Drosophila melanogaster adult females

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  16. Gaining insights into diabetic cardiomyopathy from Drosophila

    PubMed Central

    Diop, Soda Balla; Bodmer, Rolf

    2015-01-01

    The high degree of genetic conservation between Drosophila melanogaster and mammals has helped to translate many important findings into new knowledge, and has led to better understanding of many biological processes in vertebrates. For over a century, the Drosophila model has been used in studies aimed at understanding molecular mechanisms implicated in heredity, development, disease progression, and aging. The current epidemic of obesity and associated diabetic cardiomyopathy and heart failure has led to a shift in Drosophila research towards understanding the basic mechanisms leading to metabolic syndrome and associated cardiac risk factors. Here, we discuss recent findings in Drosophila that highlight the importance of this organism as an excellent model to study the effects of metabolic imbalance on cardiac function. PMID:26482877

  17. [Pulmonary segmental mediolytic arteriopathy].

    PubMed

    Müller, A M; Kullmann, H J

    2006-03-01

    Segmental mediolytic arteriopathy (SMA) is defined as non-inflammatory arteriopathy with mediolysis due to segmental loss of media and consecutive formation of vascular gaps. Up to now, less than 40 cases of visceral and cerebral SMA and, to our knowledge, only one case of pulmonary SMA have been reported. We present the history of a 21 year old female patient, admitted to hospital with hemoptysis, but without other symptoms. Apart from two lesions in the sixth and tenth pulmonary segment, documented by CT and interpreted as colliquations, there were no other clinical and laboratory findings. Repeated bronchoscopy supplied no further information. Histomorphology of the resected lesion revealed SMA without evidence of vasculitis. Wegener's disease could be excluded. The aetiology of the disease is still unknown. Acute vasospasm (due to inappropriate reactions to catecholamine or endothelial dysfunction), as well as SMA as a precursor or subtype of fibromuscular dysplasia, are two theories still under discussion.

  18. Phasing a segmented telescope

    NASA Astrophysics Data System (ADS)

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N.

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors.

  19. Head segmentation in vertebrates

    PubMed Central

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Here again, a basic segmental plan for the head has been sought among chordates. We convened a symposium that brought together leading researchers dealing with this problem, in a number of different evolutionary and developmental contexts. Here we give an overview of the outcome and the status of the field in this modern era of Evo-Devo. We emphasize the fact that the head segmentation problem is not fully resolved, and we discuss new directions in the search for hints for a way out of this maze. PMID:20607135

  20. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  1. Segmental expression of Pax3/7 and engrailed homologs in tardigrade development.

    PubMed

    Gabriel, Willow N; Goldstein, Bob

    2007-06-01

    How morphological diversity arises through evolution of gene sequence is a major question in biology. In Drosophila, the genetic basis for body patterning and morphological segmentation has been studied intensively. It is clear that some of the genes in the Drosophila segmentation program are functioning similarly in certain other taxa, although many questions remain about when these gene functions arose and which taxa use these genes similarly to establish diverse body plans. Tardigrades are an outgroup to arthropods in the Ecdysozoa and, as such, can provide insight into how gene functions have evolved among the arthropods and their close relatives. We developed immunostaining methods for tardigrade embryos, and we used cross-reactive antibodies to investigate the expression of homologs of the pair-rule gene paired (Pax3/7) and the segment polarity gene engrailed in the tardigrade Hypsibius dujardini. We find that in H. dujardini embryos, Pax3/7 protein localizes not in a pair-rule pattern but in a segmentally iterated pattern, after the segments are established, in regions of the embryo where neurons later arise. Engrailed protein localizes in the posterior ectoderm of each segment before ectodermal segmentation is apparent. Together with previous results from others, our data support the conclusions that the pair-rule function of Pax3/7 is specific to the arthropods, that some of the ancient functions of Pax3/7 and Engrailed in ancestral bilaterians may have been in neurogenesis, and that Engrailed may have a function in establishing morphological boundaries between segments that is conserved at least among the Panarthropoda.

  2. Characterization of two Drosophila melanogaster cytochrome c genes and their transcripts.

    PubMed

    Limbach, K J; Wu, R

    1985-01-25

    Analysis of total Drosophila melanogaster DNA by genomic blot hybridization indicates that two cytochrome c-like sequences exist in the Drosophila genome. These two sequences, DC3 and DC4, have been isolated from a Charon 4A-D. melanogaster genomic library. DC3 and DC4 are located within a 4 kb region of DNA, at position 36A 10-11, on the left arm of chromosome 2. The nucleotide sequence of these two clones has been determined. Both DC3 and DC4 can encode functional cytochrome c proteins. The polypeptide sequences predicted by these two genes, however, differ at 32 amino acid residues. DC4 is expressed at varying, but relatively high levels throughout Drosophila development. In contrast, DC3 is expressed at constant, but relatively low levels throughout development.

  3. Do the genes of the innate immune response contribute to neuroprotection in Drosophila?

    PubMed

    Cantera, Rafael; Barrio, Rosa

    2015-01-01

    A profound debate exists on the relationship between neurodegeneration and the innate immune response in humans. Although it is clear that such a relation exists, the causes and consequences of this complex association remain to be determined in detail. Drosophila is being used to investigate the mechanisms involved in neurodegeneration, and all genomic studies on this issue have generated gene catalogues enriched in genes of the innate immune response. We review the data reported in these publications and propose that the abundance of immune genes in studies of neurodegeneration reflects at least two phenomena: (i) some proteins have functions in both immune and nervous systems, and (ii) immune genes might also be of neuroprotective value in Drosophila. This review opens this debate in Drosophila, which could thus be used as an instrumental model to elucidate this question.

  4. A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider.

    PubMed

    Damen, W G; Hausdorf, M; Seyfarth, E A; Tautz, D

    1998-09-01

    Chelicerates constitute a basic arthropod group with fossil representatives from as early as the Cambrian period. Embryonic development and the subdivision of the segmented body region into a prosoma and an opisthosoma are very similar in all extant chelicerates. The mode of head segmentation, however, has long been controversial. Although all other arthropod groups show a subdivision of the head region into six segments, the chelicerates are thought to have the first antennal segment missing. To examine this problem on a molecular level, we have compared the expression pattern of Hox genes in the spider Cupiennius salei with the pattern known from insects. Surprisingly, we find that the anterior expression borders of the Hox genes are in the same register and the same relative segmental position as in Drosophila. This contradicts the view that the homologue of the first antennal segment is absent in the spider. Instead, our data suggest that the cheliceral segment is homologous to the first antennal segment and the pedipalpal segment is homologous to the second antennal (or intercalary) segment in arthropods. Our finding implies that chelicerates, myriapods, crustaceans, and insects share a single mode of head segmentation, reinforcing the argument for a monophyletic origin of the arthropods.

  5. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  6. Increased volatile anesthetic requirement in short-sleeping Drosophila mutants

    PubMed Central

    Weber, Bernd; Schaper, Christian; Bushey, Daniel; Rohlfs, Marko; Steinfath, Markus; Tononi, Giulio; Cirelli, Chiara; Scholz, Jens; Bein, Berthold

    2009-01-01

    Background Anesthesia and sleep share physiological and behavioral similarities. The anesthetic requirement of the recently identified Drosophila mutant minisleeper and other Drosophila mutants was investigated. Methods Sleep and wakefulness were determined by measuring activity of individual wild-type and mutant flies. Based on the response of the flies at different concentrations of the volatile anesthetics isoflurane and sevoflurane, concentration-response curves were generated and EC50 values were calculated. Results The average amount of daily sleep in wild-type Drosophila (n=64) was 965 ±15 minutes and 1022 ± 29 in na[har38] p>0.05; n=32) (mean ± SEM, all p compared to wild-type and other shaker alleles). Shmns flies slept 584 ±13 minutes (n=64, p<0.01), Sh102 412 ± 22 minutes (n=32, p<0.01) and Sh120 782 ± 25 minutes (n=32, p<0.01). The EC50 values for isoflurane were 0.706 (95% confidence interval 0.649 to 0.764, n=661) and for sevoflurane 1.298 (1.180 to 1.416, n=522) in wild-type Drosophila, 1.599 (1.527 to 1.671, n=308) and 2.329 (2.177 to 2.482, n=282) in Sh102, 1.306 (1.212 to 1.400, n=393) and 2.013 (1.868 to 2.158, n=550) in Shmns, 0.957 (0.860 to 1.054, n=297) and 1.619 (1.508 to 1.731, n=386) in Sh120, and 0.6154 (0.581 to 0.649, n=360; p<0.05) and 0.9339 (0.823 to 1.041, n= 274) in na[har38], respectively (all p<0.01). Conclusions A single-gene mutation in Drosophila that causes an extreme reduction in daily sleep is responsible for a significant increase in the requirement of volatile anesthetics. This suggests that a single gene mutation affects both sleep behavior and anesthesia and sedation. PMID:19164958

  7. A novel function for the Hox gene Abd-B in the male accessory gland regulates the long-term female post-mating response in Drosophila.

    PubMed

    Gligorov, Dragan; Sitnik, Jessica L; Maeda, Robert K; Wolfner, Mariana F; Karch, François

    2013-03-01

    In insects, products of the male reproductive tract are essential for initiating and maintaining the female post-mating response (PMR). The PMR includes changes in egg laying, receptivity to courting males, and sperm storage. In Drosophila, previous studies have determined that the main cells of the male accessory gland produce some of the products required for these processes. However, nothing was known about the contribution of the gland's other secretory cell type, the secondary cells. In the course of investigating the late functions of the homeotic gene, Abdominal-B (Abd-B), we discovered that Abd-B is specifically expressed in the secondary cells of the Drosophila male accessory gland. Using an Abd-B BAC reporter coupled with a collection of genetic deletions, we discovered an enhancer from the iab-6 regulatory domain that is responsible for Abd-B expression in these cells and that apparently works independently from the segmentally regulated chromatin domains of the bithorax complex. Removal of this enhancer results in visible morphological defects in the secondary cells. We determined that mates of iab-6 mutant males show defects in long-term egg laying and suppression of receptivity, and that products of the secondary cells are influential during sperm competition. Many of these phenotypes seem to be caused by a defect in the storage and gradual release of sex peptide in female mates of iab-6 mutant males. We also found that Abd-B expression in the secondary cells contributes to glycosylation of at least three accessory gland proteins: ovulin (Acp26Aa), CG1656, and CG1652. Our results demonstrate that long-term post-mating changes observed in mated females are not solely induced by main cell secretions, as previously believed, but that secondary cells also play an important role in male fertility by extending the female PMR. Overall, these discoveries provide new insights into how these two cell types cooperate to produce and maintain a robust female PMR.

  8. Progress in understanding the Drosophila dnc locus.

    PubMed

    Nighorn, A; Qiu, Y; Davis, R L

    1994-05-01

    The genetic dissection of learning and memory in Drosophila is two decades old. Recently, a great deal of progress has been made towards isolating new mutants as well as towards a better understanding of the originally isolated ones. This paper reviews the recent developments in the understanding of the structure and function of the gene identified by the first and best-characterized of these mutants, the Drosophila dunce mutant.

  9. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  10. Humidity implications for populations of Drosophila suzukii (Diptera: Drosophilidae) on blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature and humidity affect insect physiology, survival, fecundity, reproductive status and behavior. Drosophila suzukii is an invasive pest of soft-skinned fruit and can cause severe economic losses in a wide range of susceptible crops. This study was conducted on blueberries to determine the e...

  11. The Impact of Odor--Reward Memory on Chemotaxis in Larval "Drosophila"

    ERIC Educational Resources Information Center

    Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander; Gerber, Bertram; Louis, Matthieu

    2015-01-01

    How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the "Drosophila" larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii)…

  12. Tetrahydropterin as a possible natural cofactor in the drosophila phenylalanine hydroxylation system

    SciTech Connect

    Bel, Y.; Jacobson, K.B.; Ferre, J. . Dept. of Genetics; Oak Ridge National Lab., TN; Valencia Univ. . Dept. of Genetics)

    1989-01-01

    The aim of the present work is the study of phenylalanine hydroxylase (PH) activity of Drosophila melanogaster wild type with different cofactors: the two natural occurring tetrahydropteridines (BH{sub 4} and PH{sub 4}) and the synthetic 6,7-dimethyltetrahydropterin (DMPH{sub 4}), as well as the determination of this activity at different developmental stages. 7 refs., 2 figs.

  13. Saccadic body turns in walking Drosophila

    PubMed Central

    Geurten, Bart R. H.; Jähde, Philipp; Corthals, Kristina; Göpfert, Martin C.

    2014-01-01

    Drosophila melanogaster structures its optic flow during flight by interspersing translational movements with abrupt body rotations. Whether these “body saccades” are accompanied by steering movements of the head is a matter of debate. By tracking single flies moving freely in an arena, we now discovered that walking Drosophila also perform saccades. Movement analysis revealed that the flies separate rotational from translational movements by quickly turning their bodies by 15 degrees within a tenth of a second. Although walking flies moved their heads by up to 20 degrees about their bodies, their heads moved with the bodies during saccadic turns. This saccadic strategy contrasts with the head saccades reported for e.g., blowflies and honeybees, presumably reflecting optical constraints: modeling revealed that head saccades as described for these latter insects would hardly affect the retinal input in Drosophila because of the lower acuity of its compound eye. The absence of head saccades in Drosophila was associated with the absence of haltere oscillations, which seem to guide head movements in other flies. In addition to adding new twists to Drosophila walking behavior, our analysis shows that Drosophila does not turn its head relative to its body when turning during walking. PMID:25386124

  14. Segment lengths influence hill walking strategies.

    PubMed

    Sheehan, Riley C; Gottschall, Jinger S

    2014-08-22

    Segment lengths are known to influence walking kinematics and muscle activity patterns. During level walking at the same speed, taller individuals take longer, slower strides than shorter individuals. Based on this, we sought to determine if segment lengths also influenced hill walking strategies. We hypothesized that individuals with longer segments would display more joint flexion going uphill and more extension going downhill as well as greater lateral gastrocnemius and vastus lateralis activity in both directions. Twenty young adults of varying heights (below 155 cm to above 188 cm) walked at 1.25 m/s on a level treadmill as well as 6° and 12° up and downhill slopes while we collected kinematic and muscle activity data. Subsequently, we ran linear regressions for each of the variables with height, leg, thigh, and shank length. Despite our population having twice the anthropometric variability, the level and hill walking patterns matched closely with previous studies. While there were significant differences between level and hill walking, there were few hill walking variables that were correlated with segment length. In support of our hypothesis, taller individuals had greater knee and ankle flexion during uphill walking. However, the majority of the correlations were between tibialis anterior and lateral gastrocnemius activities and shank length. Contrary to our hypothesis, relative step length and muscle activity decreased with segment length, specifically shank length. In summary, it appears that individuals with shorter segments require greater propulsion and toe clearance during uphill walking as well as greater braking and stability during downhill walking.

  15. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  16. Behavioral and antennal responses of spotted wing drosophila, drosophila suzukii, to volatiles from fruit extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to Southeast Asia, the spotted wing drosophila, Drosophila suzukii, has become a serious pest of soft-skinned fruit crops since its introduction into North America and Europe in 2008. Current monitoring strategies use baits based on fermentation products; however, to date, no fruit-based vola...

  17. Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): a global perspective and future priorities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian vinegar fly species Drosophila suzukii (spotted-wing Drosophila or SWD) has emerged as an important invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000’s. While research efforts have rapidly progressed in Asia, North America, and Europe over ...

  18. The susceptibility of small fruits and cherries to Spotted Wing Drosophila, Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is native to Asia and has been detected in the North American mainland and Europe in 2008-10. SWD is a serious economic pest because it lays eggs within ripening fruit before harvest which can lead to crop loss. The aim ...

  19. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Caneberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  20. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  1. Spotted wing drosophila, Drosophila suzukii (Matsumura)(Diptera: drosophilidae), trapped with combinations of wines and vinegars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trapping experiments evaluated wine and vinegar baits for spotted wing drosophila flies, Drosophila suzukii (Matsumura), and assessed variance in biat attractiveness with wit type, vinegar type, and bait age. A mixture of apple cider vinegar and a Merlot wine attracted more flies than a mixtur...

  2. Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene.

    PubMed

    Wallingford, John B; Goto, Toshiyasu; Keller, Ray; Harland, Richard M

    2002-08-01

    We have cloned Xenopus orthologues of the Drosophila planar cell polarity (PCP) gene Prickle. Xenopus Prickle (XPk) is expressed in tissues at the dorsal midline during gastrulation and early neurulation. XPk is later expressed in a segmental pattern in the presomitic mesoderm and then in recently formed somites. XPk is also expressed in the tailbud, pronephric duct, retina, and the otic vesicle. The complex expression pattern of XPk suggests that PCP signaling is used in a diverse array of developmental processes in vertebrate embryos.

  3. Semiautomatic and rapid quantification of heartbeat parameters in Drosophila using optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Guo, Shou-Yuan; Liao, Fang-Tsu; Su, Ming-Tsan; Chang, Cheng-Yi; Su, Hong-Ren; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2013-02-01

    We report a semiautomatic algorithm that is specialized for rapid analysis of beat-to-beat contraction-relaxation parameters of the heart in Drosophila. The presented algorithm adapts the general graph theoretical image segmentation algorithm and a histogram-based thresholding algorithm, which can measure many cardiac parameters, including heart rate, heart period, diastolic and systolic intervals, and end-diastolic and end-systolic areas. Additionally, dynamic cardiac functions, such as arrhythmia index and percent fractional shortening, can be automatically calculated for all the recorded heartbeats over significant periods of time.

  4. The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of Drosophila.

    PubMed

    Matute, Daniel R; Harris, Alexandra

    2013-08-01

    Drosophila yakuba and D. santomea are sister species that differ in their levels of abdominal pigmentation; D. yakuba shows heavily pigmented posterior abdominal segments in both sexes, whereas D. santomea lacks dark pigment anywhere on its body. Using naturally collected lines, we demonstrate the existence of altitudinal variation in abdominal pigmentation in D. yakuba but not in D. santomea. We use the variation in pigmentation within D. yakuba and two body-color mutants in D. yakuba to elucidate selective advantage of differences in pigmentation. Our results indicate that although differences in abdominal pigmentation have no effect on desiccation resistance, lighter pigmentation confers ultraviolet radiation resistance in this pair of species.

  5. Molecular neurobiology of Drosophila taste.

    PubMed

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-10-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation.

  6. A Drosophila mechanosensory transduction channel.

    PubMed

    Walker, R G; Willingham, A T; Zuker, C S

    2000-03-24

    Mechanosensory transduction underlies a wide range of senses, including proprioception, touch, balance, and hearing. The pivotal element of these senses is a mechanically gated ion channel that transduces sound, pressure, or movement into changes in excitability of specialized sensory cells. Despite the prevalence of mechanosensory systems, little is known about the molecular nature of the transduction channels. To identify such a channel, we analyzed Drosophila melanogaster mechanoreceptive mutants for defects in mechanosensory physiology. Loss-of-function mutations in the no mechanoreceptor potential C (nompC) gene virtually abolished mechanosensory signaling. nompC encodes a new ion channel that is essential for mechanosensory transduction. As expected for a transduction channel, D. melanogaster NOMPC and a Caenorhabditis elegans homolog were selectively expressed in mechanosensory organs.

  7. Studying Polyglutamine Diseases in Drosophila

    PubMed Central

    Xu, Zhen; Tito, Antonio; Rui, Yan-Ning; Zhang, Sheng

    2015-01-01

    Polyglutamine (polyQ) diseases are a family of dominantly transmitted neurodegenerative disorders caused by an abnormal expansion of CAG trinucleotide repeats in the protein-coding regions of the respective disease-causing genes. Despite their simple genetic basis, the etiology of these diseases is far from clear. Over the past two decades, Drosophila has proven to be successful in modeling this family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. Additionally, it has been valuable in probing the pathogenic mechanisms, in identifying and evaluating disease modifiers, and in helping elucidate the normal functions of disease-causing genes. Knowledge learned from this simple invertebrate organism has had a large impact on our understanding of these devastating brain diseases. PMID:26257024

  8. Molecular neurobiology of Drosophila taste

    PubMed Central

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-01-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. PMID:26102453

  9. The organization of Drosophila genes.

    PubMed

    Maroni, G

    1994-01-01

    This study was designed to examine the range of size variations in the major functional elements of Drosophila genes and to test whether those size variations occur independently of each other. In a sample of 111 genes the following median values occur: leaders, 123 base pairs (bp); coding regions, 1242 bp; 3' untranslated regions (3'UTR), 246 bp; mRNAs, 1803 bp; 3' terminal exons 843 bp; and exons upstream of the last one 233 bp. Introns show a bimodal distribution with medians of 62 and 595 bp. Unexpected size correlations are evident for several of these elements. The size of the leader, for example, is correlated with the sizes of the coding region and the 3'UTR with very high levels of significance, and the size of the first intron is similarly correlated with the sizes of each of the individual components of the mature mRNA.

  10. [Segmental testicular infarction].

    PubMed

    Ripa Saldías, L; Guarch Troyas, R; Hualde Alfaro, A; de Pablo Cárdenas, A; Ruiz Ramo, M; Pinós Paul, M

    2006-02-01

    We report the case of a 47 years old man previously diagnosed of left hidrocele. After having a recent mild left testicular pain, an ultrasonografic study revealed a solid hipoecoic testicular lesion rounded by a big hidrocele, suggesting a testicular neoplasm. Radical inguinal orchiectomy was made and pathologic study showed segmental testicular infarction. No malignancy was found. We review the literature of the topic.

  11. Segmentation and Impoverished Youth.

    ERIC Educational Resources Information Center

    Friedman, Judith J.; Friedman, Samuel R.

    1986-01-01

    The following characteristics of jobs held by impoverished youth who applied for a job training program were examined: (1) benefits; (2) skills; (3) career ladders; and (4) unionization. Results imply that segmentation models are not fruitful as guides to labor market experiences of youth at the bottom of wage scale. Other studies were also…

  12. Multiple Drosophila Tracking System with Heading Direction

    PubMed Central

    Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi

    2017-01-01

    Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800

  13. Modulation of Drosophila male behavioral choice

    PubMed Central

    Certel, Sarah J.; Savella, Mary Grace; Schlegel, Dana C. F.; Kravitz, Edward A.

    2007-01-01

    The reproductive and defensive behaviors that are initiated in response to specific sensory cues can provide insight into how choices are made between different social behaviors. We manipulated both the activity and sex of a subset of neurons and found significant changes in male social behavior. Results from aggression assays indicate that the neuromodulator octopamine (OCT) is necessary for Drosophila males to coordinate sensory cue information presented by a second male and respond with the appropriate behavior: aggression rather than courtship. In competitive male courtship assays, males with no OCT or with low OCT levels do not adapt to changing sensory cues and court both males and females. We identified a small subset of neurons in the suboesophageal ganglion region of the adult male brain that coexpress OCT and male forms of the neural sex determination factor, Fruitless (FruM). A single FruM-positive OCT neuron sends extensive bilateral arborizations to the suboesophageal ganglion, the lateral accessory lobe, and possibly the posterior antennal lobe, suggesting a mechanism for integrating multiple sensory modalities. Furthermore, eliminating the expression of FruM by transformer expression in OCT/tyramine neurons changes the aggression versus courtship response behavior. These results provide insight into how complex social behaviors are coordinated in the nervous system and suggest a role for neuromodulators in the functioning of male-specific circuitry relating to behavioral choice. PMID:17360588

  14. Exploring strategies for protein trapping in Drosophila

    SciTech Connect

    Quinones-Coello, Ana T.; Petrella, Lisa N.; Ayers, Kathleen; Melillo, Anthony; Mazzalupo, Stacy; Hudson, Andrew M.; Wang, Shu; Castiblanco, Claudia; Buszczak, Michael; Hoskins, Roger A.; Cooley, Lynn

    2006-12-18

    The use of fluorescent protein tags has had a huge impact oncell biological studies in virtually every experimental system.Incorporation of coding sequence for fluorescent proteins such as greenfluorescent protein (GFP) into genes at their endogenous chromosomalposition is especially useful for generating GFP-fusion proteins thatprovide accurate cellular and subcellular expression data. We testedmodifications of a transposon-based protein trap screening procedure inDrosophila to optimize the rate of recovering useful protein traps andtheir analysis. Transposons carrying the GFP-coding sequence flanked bysplice acceptor and donor sequences were mobilized, and new insertionsthat resulted in production of GFP were captured using an automatedembryo sorter. Individual stocks were established, GFP expression wasanalyzed during oogenesis, and insertion sites were determined bysequencing genomic DNA flanking the insertions. The resulting collectionincludes lines with protein traps in which GFP was spliced into mRNAs andembedded within endogenous proteins or enhancer traps in which GFPexpression depended on splicing into transposon-derived RNA. We report atotal of 335 genes associated with protein or enhancer traps and aweb-accessible database for viewing molecular information and expressiondata for these genes.

  15. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer

    PubMed Central

    Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros

    2014-01-01

    Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer. PMID:24409421

  16. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer.

    PubMed

    Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros

    2014-01-09

    Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.

  17. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  18. Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda.

    PubMed

    Smith, Frank W; Goldstein, Bob

    2016-10-31

    The origin and diversification of segmented metazoan body plans has fascinated biologists for over a century. The superphylum Panarthropoda includes three phyla of segmented animals-Euarthropoda, Onychophora, and Tardigrada. This superphylum includes representatives with relatively simple and representatives with relatively complex segmented body plans. At one extreme of this continuum, euarthropods exhibit an incredible diversity of serially homologous segments. Furthermore, distinct tagmosis patterns are exhibited by different classes of euarthropods. At the other extreme, all tardigrades share a simple segmented body plan that consists of a head and four leg-bearing segments. The modular body plans of panarthropods make them a tractable model for understanding diversification of animal body plans more generally. Here we review results of recent morphological and developmental studies of tardigrade segmentation. These results complement investigations of segmentation processes in other panarthropods and paleontological studies to illuminate the earliest steps in the evolution of panarthropod body plans.

  19. Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity

    PubMed Central

    Busser, Brian W.; Shokri, Leila; Jaeger, Savina A.; Gisselbrecht, Stephen S.; Singhania, Aditi; Berger, Michael F.; Zhou, Bo; Bulyk, Martha L.; Michelson, Alan M.

    2012-01-01

    A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity. PMID:22296846

  20. Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression

    PubMed Central

    Verd, Berta; Crombach, Anton

    2017-01-01

    Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory

  1. Resources for Biological Annotation of the Drosophila Genome

    SciTech Connect

    Gerald M. Rubin

    2005-08-08

    This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.

  2. Phylogenetic Relationships among DROSOPHILA LONGICORNIS, DROSOPHILA PROPACHUCA and DROSOPHILA PACHUCA, a Triad of Sibling Species

    PubMed Central

    Wasserman, Marvin; Koepfer, H. Roberta

    1977-01-01

    Drosophila longicornis, D. propachuca and D. pachuca comprise a triad of sibling species. They are morphologically indistinguishable, sympatric forms that, under laboratory conditions, are capable of exchanging genes through the production of fertile F1 females. However, we have no evidence for introgressive hybridization in nature. The chromosomal constitution of our strains indicates that the ancestral species had the Primitive E gene sequence, and therefore differed from the standard repleta sequence by being Xabc; 2abcg; 3abc. This Primitive E sequence is found in both D. propachuca and D. longicornis. Each of these two species has its own unique rearrangements. D. pachuca is a derived species, which evolved from propachuca. It is cytologically more advanced and has, as its most primitive gene arrangement, one of the more advanced arrangements found in propachuca. PMID:17248778

  3. Assessment of the Effect of Intestinal Permeability Probes (Lactulose And Mannitol) and Other Liquids on Digesta Residence Times in Various Segments of the Gut Determined by Wireless Motility Capsule: A Randomised Controlled Trial

    PubMed Central

    Sequeira, Ivana R.; Lentle, Roger G.; Kruger, Marlena C.; Hurst, Roger D.

    2015-01-01

    Background Whilst the use of the mannitol/lactulose test for intestinal permeability has been long established it is not known whether the doses of these sugars modify transit time Similarly it is not known whether substances such as aspirin that are known to increase intestinal permeability to lactulose and mannitol and those such as ascorbic acid which are stated to be beneficial to gastrointestinal health also influence intestinal transit time. Methods Gastric and intestinal transit times were determined with a SmartPill following consumption of either a lactulose mannitol solution, a solution containing 600 mg aspirin, a solution containing 500 mg of ascorbic acid or an extract of blackcurrant, and compared by doubly repeated measures ANOVA with those following consumption of the same volume of a control in a cross-over study in six healthy female volunteers. The dominant frequencies of cyclic variations in gastric pressure recorded by the Smartpill were determined by fast Fourier transforms. Results The gastric transit times of lactulose mannitol solutions, of aspirin solutions and of blackcurrant juice did not differ from those of the control. The gastric transit times of the ascorbic acid solutions were significantly shorter than those of the other solutions. There were no significant differences between the various solutions either in the total small intestinal or colonic transit times. The intraluminal pHs during the initial quartiles of the small intestinal transit times were lower than those in the succeeding quartiles. This pattern did not vary with the solution that was consumed. The power of the frequencies of cyclic variation in intragastric pressure recorded by the Smartpill declined exponentially with increase in frequency and did not peak at the reported physiological frequencies of gastric contractile activity. Conclusions Whilst the segmental residence times were broadly similar to those using other methods, the high degree of variation between

  4. Enhancing Undergraduate Teaching and Research with a "Drosophila" Virginizing System

    ERIC Educational Resources Information Center

    Venema, Dennis R.

    2006-01-01

    Laboratory exercises using "Drosophila" crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using "Drosophila." A significant barrier to using "Drosophila" for undergraduate teaching or research is the time and skill…

  5. Differential DNA sequence recognition is a determinant of specificity in homeotic gene action.

    PubMed Central

    Ekker, S C; von Kessler, D P; Beachy, P A

    1992-01-01

    The homeotic genes of Drosophila encode transcriptional regulatory proteins that specify distinct segment identities. Previous studies have implicated the homeodomain as a major determinant of biological specificity within these proteins, but have not established the physical basis of this specificity. We show here that the homeodomains encoded by the Ultrabithorax and Deformed homeotic genes bind optimally to distinct DNA sequences and have mapped the determinants responsible for differential recognition. We further show that relative transactivation by these two proteins in a simple in vivo system can differ by nearly two orders of magnitude. Such differences in DNA sequence recognition and target activation provide a biochemical basis for at least part of the biological specificity of homeotic gene action. Images PMID:1356765

  6. Probing Polymer-Segment Motions By ESR

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Gupta, Amitava

    1988-01-01

    Molecular origins of mechanical properties and aging processes studied. Rotational motions of segments of poly(methyl methacrylate) molecules studied theoretically and experimentally. Activation energies of these motions as determined from temperature dependencies of ESR spectra agree closely with predictions of theory.

  7. Phosphorylation status of the SCR homeodomain determines its functional activity: essential role for protein phosphatase 2A,B′

    PubMed Central

    Berry, Meera; Gehring, Walter

    2000-01-01

    Sex combs reduced (SCR) is a Drosophila Hox protein that determines the identity of the labial and prothoracic segments. In search of factors that might associate with SCR to control its activity and/or specificity, we performed a yeast two-hybrid screen. A Drosophila homologue of the regulatory subunit (B′/PR61) of serine-threonine protein phosphatase 2A (dPP2A,B′) specifically interacted with the SCR homeodomain. The N-terminal arm within the SCR homeodomain was shown to be a target of phosphorylation/dephosphorylation by cAMP-dependent protein kinase A and protein phosphatase 2A, respectively. In vivo analyses revealed that mutant forms of SCR mimicking constitutively dephosphorylated or phosphorylated states of the homeodomain were active or inactive, respectively. Inactivity of the phosphorylated mimic form was attributed to impaired DNA binding. Specific ablation of dPP2A,B′ gene activity by double-stranded RNA-mediated genetic interference resulted in embryos without salivary glands, an SCR null phenotype. Our data demonstrate an essential role for Drosophila PP2A,B′ in positively modulating SCR function. PMID:10856239

  8. Segmental arterial mediolysis.

    PubMed

    Chao, Christine P

    2009-09-01

    Segmental arterial mediolysis (SAM) is a nonatherosclerotic, noninflammatory arteriopathy, which is characterized by dissecting aneurysms resulting from lysis of the outer media of the arterial wall. The most common presentation is abdominal pain and hemorrhage in the elderly. Computed tomography (CT) and angiography imaging findings overlap with various vasculitides and include segmental changes of aneurysm and stenosis. A key distinguishing feature is the presence of dissections, the principle morphologic expression of SAM. Differentiation and exclusion of an inflammatory arteritis is crucial in appropriate management, as immunosuppressants generally used for treatment of vasculitis may be ineffective or even worsen the vasculopathy. Although the disease can be self-limiting without treatment or with conservative medical therapy, the acute process carries a 50% mortality rate and may necessitate urgent surgical and/or endovascular therapy. Prompt recognition and diagnosis are therefore of utmost importance in appropriate management of this rare entity.

  9. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila.

    PubMed

    Peron, Samantha; Zordan, Mauro A; Magnabosco, Anna; Reggiani, Carlo; Megighian, Aram

    2009-10-01

    The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies.

  10. Example based lesion segmentation

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2014-03-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer's disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  11. Drosophila chem mutations disrupt epithelial polarity in Drosophila embryos

    PubMed Central

    Zamudio-Arroyo, José M.

    2016-01-01

    Drosophila embryogenesis has proven to be an extremely powerful system for developmental gene discovery and characterization. We isolated five new EMS-induced alleles that do not complement the l(3R)5G83 lethal line isolated in the Nüsslein-Volhard and Wieschaus screens. We have named this locus chem. Lethality of the new alleles as homozygous zygotic mutants is not completely penetrant, and they have an extended phenocritical period. Like the original allele, a fraction of mutant embryos die with cuticular defects, notably head involution and dorsal closure defects. Embryonic defects are much more extreme in germline clones, where the majority of mutant embryos die during embryogenesis and do not form cuticle, implying a strong chem maternal contribution. chem mutations genetically interact with mutations in cytoskeletal genes (arm) and with mutations in the epithelial polarity genes coracle, crumbs, and yurt. chem mutants dorsal open defects are similar to those present in yurt mutants, and, likewise, they have epithelial polarity defects. chem1 and chem3 mutations suppress yurt3, and chem3 mutants suppress crumbs1 mutations. In contrast, chem1 and coracle2 mutations enhance each other. Compared to controls, in chem mutants in embryonic lateral epithelia Crumbs expression is mislocalized and reduced, Coracle is increased and mislocalized basally at embryonic stages 13–14, then reduced at stage 16. Arm expression has a similar pattern but levels are reduced. PMID:27920954

  12. Environmental ethanol as an ecological constraint on dietary breadth of Spotted-Wing Drosophila, Drosophila suzukii Mat. (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted-wing Drosophila (SWD), Drosophila suzukii, is a recent fruit pest of the Americas whose destructiveness stems from its subcutaneous insertion of eggs into cultivated berries via a female’s prominent double bladed and serrated ovipositor. Atypical of most other Drosophila, D. suzukii adults a...

  13. Segmentation by surface-to-image registration

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyong; Tamez-Pena, Jose; Gieseg, Michael; Liachenko, Serguei; Dhamija, Shantanu; Chiao, Ping

    2006-03-01

    This paper presents a new image segmentation algorithm using surface-to-image registration. The algorithm employs multi-level transformations and multi-resolution image representations to progressively register atlas surfaces (modeling anatomical structures) to subject images based on weighted external forces in which weights and forces are determined by gradients and local intensity profiles obtained from images. The algorithm is designed to prevent atlas surfaces converging to unintended strong edges or leaking out of structures of interest through weak edges where the image contrast is low. Segmentation of bone structures on MR images of rat knees analyzed in this manner performs comparably to technical experts using a semi-automatic tool.

  14. Feature Learning Based Random Walk for Liver Segmentation

    PubMed Central

    Zheng, Yongchang; Ai, Danni; Zhang, Pan; Gao, Yefei; Xia, Likun; Du, Shunda; Sang, Xinting; Yang, Jian

    2016-01-01

    Liver segmentation is a significant processing technique for computer-assisted diagnosis. This method has attracted considerable attention and achieved effective result. However, liver segmentation using computed tomography (CT) images remains a challenging task because of the low contrast between the liver and adjacent organs. This paper proposes a feature-learning-based random walk method for liver segmentation using CT images. Four texture features were extracted and then classified to determine the classification probability corresponding to the test images. Seed points on the original test image were automatically selected and further used in the random walk (RW) algorithm to achieve comparable results to previous segmentation methods. PMID:27846217

  15. Head and tail development of the Drosophila embryo involves spalt, a novel homeotic gene

    PubMed Central

    Jürgens, Gerd

    1988-01-01

    Mutations in spalt (sal), a novel homeotic gene on the second chromosome of Drosophila, cause opposite transformations in two subterminal regions of the embryo: posterior head segments are transformed into anterior thoracic structures and anterior tail segments are transformed into posterior abdominal structures. The embryonic phenotypes of double mutants for sal and various Antennapedia (ANT-C) or bithorax (BX-C) genes indicate that sal acts independently of the hierarchical order of the latter gene complexes. Trans-regulatory gene mutations causing ectopic expression of ANT-C and BX-C genes do not change the realms of sal action. It is proposed that the region-specific action of the sal gene primarily promotes head as opposed to trunk development, while the BX-C gene AbdB distinguishes tail from head. Images PMID:16453820

  16. Functional analysis of the white gene of Drosophila by P-factor-mediated transformation.

    PubMed

    Gehring, W J; Klemenz, R; Weber, U; Kloter, U

    1984-09-01

    A 12-kb DNA segment spanning the white (w) locus of Drosophila has been inserted into a P-transposon vector and used for P-factor-mediated germ-line transformation. Several red-eyed transformants were recovered which complement the white mutant phenotype. Analysis of the eye pigments and the interaction with the zeste mutation indicates that the w gene inserted at several new chromosomal sites is expressed normally. The tissue-specific accumulation of w transcripts, as studied by in situ hybridization to tissue sections, is the same in transformant and wild-type larvae. This indicates that all the genetic information specified by the w locus is contained within this 12-kb segment of DNA. By secondary mobilization it was shown that the w sequences have been inserted as a functional P(w) transposon which is capable of further transposition.

  17. A circuit mechanism for the propagation of waves of muscle contraction in Drosophila.

    PubMed

    Fushiki, Akira; Zwart, Maarten F; Kohsaka, Hiroshi; Fetter, Richard D; Cardona, Albert; Nose, Akinao

    2016-02-15

    Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.

  18. A Segmentation Framework of Pulmonary Nodules in Lung CT Images.

    PubMed

    Mukhopadhyay, Sudipta

    2016-02-01

    Accurate segmentation of pulmonary nodules is a prerequisite for acceptable performance of computer-aided detection (CAD) system designed for diagnosis of lung cancer from lung CT images. Accurate segmentation helps to improve the quality of machine level features which could improve the performance of the CAD system. The well-circumscribed solid nodules can be segmented using thresholding, but segmentation becomes difficult for part-solid, non-solid, and solid nodules attached with pleura or vessels. We proposed a segmentation framework for all types of pulmonary nodules based on internal texture (solid/part-solid and non-solid) and external attachment (juxta-pleural and juxta-vascular). In the proposed framework, first pulmonary nodules are categorized into solid/part-solid and non-solid category by analyzing intensity distribution in the core of the nodule. Two separate segmentation methods are developed for solid/part-solid and non-solid nodules, respectively. After determining the category of nodule, the particular algorithm is set to remove attached pleural surface and vessels from the nodule body. The result of segmentation is evaluated in terms of four contour-based metrics and six region-based metrics for 891 pulmonary nodules from Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) public database. The experimental result shows that the proposed segmentation framework is reliable for segmentation of various types of pulmonary nodules with improved accuracy compared to existing segmentation methods.

  19. 31 Flavors of Drosophila Rab proteins

    SciTech Connect

    Zhang, Jun; Schulze, Karen L.; Hiesinger, P. Robin; Suyama, Kaye; Wang, Stream; Fish, Matthew; Acar, Melih; Hoskins, Roger A.; Bellen, HugoJ.; Scott, Matthew P.

    2007-04-03

    Rab proteins are small GTPases that play important roles intransport of vesicle cargo and recruitment, association of motor andother proteins with vesicles, and docking and fusion of vesicles atdefined locations. In vertebrates, more than 75 Rab genes have beenidentified, some of which have been intensively studied for their rolesin endosome and synaptic vesicle trafficking. Recent studies of thefunctions of certain Rab proteins have revealed specific roles inmediating developmental signal transduction. We have begun a systematicgenetic study of the 33 Rab genes in Drosophila. Most of the fly proteinsare clearly related to specific vertebrate proteins. We report here thecreation of a set of transgenic fly lines that allow spatially andtemporally regulated expression of Drosophila Rab proteins. We generatedfluorescent protein-tagged wild-type, dominant-negative, andconstitutively active forms of 31 Drosophila Rab proteins. We describeDrosophila Rab expression patterns during embryogenesis, the subcellularlocalization of some Rab proteins, and comparisons of the localization ofwild-type, dominant-negative, and constitutively active forms of selectedRab proteins. The high evolutionary conservation and low redundancy ofDrosophila Rab proteins make these transgenic lines a useful toolkit forinvestigating Rab functions in vivo.

  20. Gut-associated microbes of Drosophila melanogaster

    PubMed Central

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  1. The Minimal Word Hypothesis: A Speech Segmentation Strategy

    ERIC Educational Resources Information Center

    Meador, Diane L.

    1996-01-01

    Previous investigations have sought to determine how listeners might locate word boundaries in the speech signal for the purpose of lexical access. Cutler (1990) proposes the Metrical Segmentation Strategy (MSS), such that only full vowels in stressed syllables and their preceding syllabic onsets are segmented from the speech stream. I report the…

  2. Sorting of influenza A virus RNA genome segments after nuclear export

    SciTech Connect

    Takizawa, Naoki; Kumakura, Michiko; Takeuchi, Kaoru; Kobayashi, Nobuyuki; Nagata, Kyosuke

    2010-06-05

    The genome of the influenza A virus consists of eight different segments. These eight segments are thought to be sorted selectively in infected cells. However, the cellular compartment where segments are sorted is not known. We examined using temperature sensitive (ts) mutant viruses and cell fusion where segments are sorted in infected cells. Different cells were infected with different ts mutant viruses, and these cells were fused. In fused cells, genome segments are mixed only in the cytoplasm, because M1 prevents their re-import into the nucleus. We made a marker ts53 virus, which has silent mutations in given segments and determined the reassortment frequency on all segments using ts1 and marker ts53. In both co-infected and fused cells, all of marker ts53 segments and ts1 segments were incorporated into progeny virions in a random fashion. These results suggest that influenza virus genome segments are sorted after nuclear export.

  3. Segmenting the Adult Education Market.

    ERIC Educational Resources Information Center

    Aurand, Tim

    1994-01-01

    Describes market segmentation and how the principles of segmentation can be applied to the adult education market. Indicates that applying segmentation techniques to adult education programs results in programs that are educationally and financially satisfying and serve an appropriate population. (JOW)

  4. Market Segmentation for Information Services.

    ERIC Educational Resources Information Center

    Halperin, Michael

    1981-01-01

    Discusses the advantages and limitations of market segmentation as strategy for the marketing of information services made available by nonprofit organizations, particularly libraries. Market segmentation is defined, a market grid for libraries is described, and the segmentation of information services is outlined. A 16-item reference list is…

  5. Functional Segments in Tongue Movement

    ERIC Educational Resources Information Center

    Stone, Maureen; Epstein, Melissa A.; Iskarous, Khalil

    2004-01-01

    The tongue is a deformable object, and moves by compressing or expanding local functional segments. For any single phoneme, these functional tongue segments may move in similar or opposite directions, and may reach target maximum synchronously or not. This paper will discuss the independence of five proposed segments in the production of speech.…

  6. Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype

    PubMed Central

    Chaston, John M.; Dobson, Adam J.; Newell, Peter D.

    2015-01-01

    A wealth of studies has demonstrated that resident microorganisms (microbiota) influence the pattern of nutrient allocation to animal protein and energy stores, but it is unclear how the effects of the microbiota interact with other determinants of animal nutrition, including animal genetic factors and diet. Here, we demonstrate that members of the gut microbiota in Drosophila melanogaster mediate the effect of certain animal genetic determinants on an important nutritional trait, triglyceride (lipid) content. Parallel analysis of the taxonomic composition of the associated bacterial community and host nutritional indices (glucose, glycogen, triglyceride, and protein contents) in multiple Drosophila genotypes revealed significant associations between the abundance of certain microbial taxa, especially Acetobacteraceae and Xanthamonadaceae, and host nutritional phenotype. By a genome-wide association study of Drosophila lines colonized with a defined microbiota, multiple host genes were statistically associated with the abundance of one bacterium, Acetobacter tropicalis. Experiments using mutant Drosophila validated the genetic association evidence and reveal that host genetic control of microbiota abundance affects the nutritional status of the flies. These data indicate that the abundance of the resident microbiota is influenced by host genotype, with consequent effects on nutrient allocation patterns, demonstrating that host genetic control of the microbiome contributes to the genotype-phenotype relationship of the animal host. PMID:26567306

  7. Segmented nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  8. Evolution of the Drosophila Feminizing Switch Gene Sex-lethal

    PubMed Central

    Cline, Thomas W.; Dorsett, Maia; Sun, Sha; Harrison, Melissa M.; Dines, Jessica; Sefton, Louise; Megna, Lisa

    2010-01-01

    In Drosophila melanogaster, the gene Sex-lethal (Sxl) controls all aspects of female development. Since melanogaster males lacking Sxl appear wild type, Sxl would seem to be functionally female specific. Nevertheless, in insects as diverse as honeybees and houseflies, Sxl seems not to determine sex or to be functionally female specific. Here we describe three lines of work that address the questions of how, when, and even whether the ancestor of melanogaster Sxl ever shed its non-female-specific functions. First, to test the hypothesis that the birth of Sxl's closest paralog allowed Sxl to lose essential ancestral non-female-specific functions, we determined the CG3056 null phenotype. That phenotype failed to support this hypothesis. Second, to define when Sxl might have lost ancestral non-female-specific functions, we isolated and characterized Sxl mutations in D. virilis, a species distant from melanogaster and notable for the large amount of Sxl protein expression in males. We found no change in Sxl regulation or functioning in the 40+ MY since these two species diverged. Finally, we discovered conserved non-sex-specific Sxl mRNAs containing a previously unknown, potentially translation-initiating exon, and we identified a conserved open reading frame starting in Sxl male-specific exon 3. We conclude that Drosophila Sxl may appear functionally female specific not because it lost non-female-specific functions, but because those functions are nonessential in the laboratory. The potential evolutionary relevance of these nonessential functions is discussed. PMID:20837995

  9. Development of Connectivity in a Motoneuronal Network in Drosophila Larvae

    PubMed Central

    Couton, Louise; Mauss, Alex S.; Yunusov, Temur; Diegelmann, Soeren; Evers, Jan Felix; Landgraf, Matthias

    2015-01-01

    Summary Background Much of our understanding of how neural networks develop is based on studies of sensory systems, revealing often highly stereotyped patterns of connections, particularly as these diverge from the presynaptic terminals of sensory neurons. We know considerably less about the wiring strategies of motor networks, where connections converge onto the dendrites of motoneurons. Here, we investigated patterns of synaptic connections between identified motoneurons with sensory neurons and interneurons in the motor network of the Drosophila larva and how these change as it develops. Results We find that as animals grow, motoneurons increase the number of synapses with existing presynaptic partners. Different motoneurons form characteristic cell-type-specific patterns of connections. At the same time, there is considerable variability in the number of synapses formed on motoneuron dendrites, which contrasts with the stereotypy reported for presynaptic terminals of sensory neurons. Where two motoneurons of the same cell type contact a common interneuron partner, each postsynaptic cell can arrive at a different connectivity outcome. Experimentally changing the positioning of motoneuron dendrites shows that the geography of dendritic arbors in relation to presynaptic partner terminals is an important determinant in shaping patterns of connectivity. Conclusions In the Drosophila larval motor network, the sets of connections that form between identified neurons manifest an unexpected level of variability. Synapse number and the likelihood of forming connections appear to be regulated on a cell-by-cell basis, determined primarily by the postsynaptic dendrites of motoneuron terminals. PMID:25702582

  10. Domain-specific functions of Stardust in Drosophila embryonic development

    PubMed Central

    Koch, Leonie; Feicht, Sabine; Sun, Rui; Sen, Arnab

    2016-01-01

    In Drosophila, the adaptor protein Stardust is essential for the stabilization of the polarity determinant Crumbs in various epithelial tissues, including the embryonic epidermis, the follicular epithelium and photoreceptor cells of the compound eye. In turn, Stardust recruits another adaptor protein, PATJ, to the subapical region to support adherens junction formation and morphogenetic events. Moreover, Stardust binds to Lin-7, which is dispensable in epithelial cells but functions in postsynaptic vesicle fusion. Finally, Stardust has been reported to bind directly to PAR-6, thereby linking the Crumbs–Stardust–PATJ complex to the PAR-6/aPKC complex. PAR-6 and aPKC are also capable of directly binding Bazooka (the Drosophila homologue of PAR-3) to form the PAR/aPKC complex, which is essential for apical–basal polarity and cell–cell contact formation in most epithelia. However, little is known about the physiological relevance of these interactions in the embryonic epidermis of Drosophila in vivo. Thus, we performed a structure–function analysis of the annotated domains with GFP-tagged Stardust and evaluated the localization and function of the mutant proteins in epithelial cells of the embryonic epidermis. The data presented here confirm a crucial role of the PDZ domain in binding Crumbs and recruiting the protein to the subapical region. However, the isolated PDZ domain is not capable of being recruited to the cortex, and the SH3 domain is essential to support the binding to Crumbs. Notably, the conserved N-terminal regions (ECR1 and ECR2) are not crucial for epithelial polarity. Finally, the GUK domain plays an important role for the protein's function, which is not directly linked to Crumbs stabilization, and the L27N domain is essential for epithelial polarization independently of recruiting PATJ. PMID:28018665

  11. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  12. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    PubMed

    Marcu, Oana; Lera, Matthew P; Sanchez, Max E; Levic, Edina; Higgins, Laura A; Shmygelska, Alena; Fahlen, Thomas F; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-11

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  13. Strong Dietary Restrictions Protect Drosophila against Anoxia/Reoxygenation Injuries

    PubMed Central

    Vigne, Paul; Tauc, Michel; Frelin, Christian

    2009-01-01

    Background Reoxygenation of ischemic tissues is a major factor that determines the severity of cardiovascular diseases. This paper describes the consequences of anoxia/reoxygenation (A/R) stresses on Drosophila, a useful, anoxia tolerant, model organism. Methodology/Principal Findings Newly emerged adult male flies were exposed to anoxic conditions (<1% O2) for 1 to 6 hours, reoxygenated and their survival was monitored. Results A/R stresses induced a transient increase in mortality which peaked at the time of reoxygenation. Then flies recovered low mortality rates similar to those of control flies. A/R induced mortality was strongly dependent on dietary conditions during the 48 h that preceded anoxia. Well fed flies were anoxia sensitive. Strong dietary restrictions and starvation conditions protected flies against A/R injuries. The tolerance to anoxia was associated to large decreases in glycogen, protein, and ATP contents. During anoxia, anoxia tolerant flies produced more lactate, less phosphate and they maintained more stable ATP levels than anoxia sensitive flies. Moderate dietary restrictions, which increased the longevity of normoxic flies, did not promote resistance to A/R stresses. Diet dependent A/R injuries were still observed in sima loss of function mutants and they were insensitive to dietary rapamycin or resveratrol. AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribosefuranoside), an activator AMP kinase decreased A/R injuries. Mutants in the insulin signalling pathway were more anoxia tolerant in a fed state. Conclusion/Significance Long A/R stresses induce a transient increase in mortality in Drosophila. This mortality is highly dependent on dietary conditions prior to the stress. Strong dietary restrictions and starvation conditions protect flies against A/R injuries, probably by inducing a major remodelling of energy metabolism. The results also indicate that mechanistically different responses develop in response to dietary restrictions of

  14. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling.

    PubMed

    Takashima, Shigeo; Mkrtchyan, Marianna; Younossi-Hartenstein, Amelia; Merriam, John R; Hartenstein, Volker

    2008-07-31

    The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system.

  15. Mutagenic effect of tritium on DNA of Drosophila melanogaster. Comprehensive performance report, December 15, 1985-June 1, 1988

    SciTech Connect

    Lee, W.R.

    1988-01-01

    The results of the RBE determination of tritium to cobalt-69 gamma radiation along with a description of methods of treatment and dose determination are given. Using the described procedures for exposing Drosophila to tritiated water, the authors induced mutations by tritium beta radiation and recovered them at the Adh locus.

  16. Arabic handwritten: pre-processing and segmentation

    NASA Astrophysics Data System (ADS)

    Maliki, Makki; Jassim, Sabah; Al-Jawad, Naseer; Sellahewa, Harin

    2012-06-01

    This paper is concerned with pre-processing and segmentation tasks that influence the performance of Optical Character Recognition (OCR) systems and handwritten/printed text recognition. In Arabic, these tasks are adversely effected by the fact that many words are made up of sub-words, with many sub-words there associated one or more diacritics that are not connected to the sub-word's body; there could be multiple instances of sub-words overlap. To overcome these problems we investigate and develop segmentation techniques that first segment a document into sub-words, link the diacritics with their sub-words, and removes possible overlapping between words and sub-words. We shall also investigate two approaches for pre-processing tasks to estimate sub-words baseline, and to determine parameters that yield appropriate slope correction, slant removal. We shall investigate the use of linear regression on sub-words pixels to determine their central x and y coordinates, as well as their high density part. We also develop a new incremental rotation procedure to be performed on sub-words that determines the best rotation angle needed to realign baselines. We shall demonstrate the benefits of these proposals by conducting extensive experiments on publicly available databases and in-house created databases. These algorithms help improve character segmentation accuracy by transforming handwritten Arabic text into a form that could benefit from analysis of printed text.

  17. Freehand 3D ultrasound breast tumor segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  18. Segmentation Assisted Food Classification for Dietary Assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Schap, Tusarebecca; Khanna, Nitin; Ebert, David S; Boushey, Carol J; Delp, Edward J

    2011-01-24

    Accurate methods and tools to assess food and nutrient intake are essential for the association between diet and health. Preliminary studies have indicated that the use of a mobile device with a built-in camera to obtain images of the food consumed may provide a less burdensome and more accurate method for dietary assessment. We are developing methods to identify food items using a single image acquired from the mobile device. Our goal is to automatically determine the regions in an image where a particular food is located (segmentation) and correctly identify the food type based on its features (classification or food labeling). Images of foods are segmented using Normalized Cuts based on intensity and color. Color and texture features are extracted from each segmented food region. Classification decisions for each segmented region are made using support vector machine methods. The segmentation of each food region is refined based on feedback from the output of classifier to provide more accurate estimation of the quantity of food consumed.

  19. Segmentation assisted food classification for dietary assessment

    NASA Astrophysics Data System (ADS)

    Zhu, Fengqing; Bosch, Marc; Schap, TusaRebecca; Khanna, Nitin; Ebert, David S.; Boushey, Carol J.; Delp, Edward J.

    2011-03-01

    Accurate methods and tools to assess food and nutrient intake are essential for the association between diet and health. Preliminary studies have indicated that the use of a mobile device with a built-in camera to obtain images of the food consumed may provide a less burdensome and more accurate method for dietary assessment. We are developing methods to identify food items using a single image acquired from the mobile device. Our goal is to automatically determine the regions in an image where a particular food is located (segmentation) and correctly identify the food type based on its features (classification or food labeling). Images of foods are segmented using Normalized Cuts based on intensity and color. Color and texture features are extracted from each segmented food region. Classification decisions for each segmented region are made using support vector machine methods. The segmentation of each food region is refined based on feedback from the output of classifier to provide more accurate estimation of the quantity of food consumed.

  20. Segmentation in reading and film comprehension.

    PubMed

    Zacks, Jeffrey M; Speer, Nicole K; Reynolds, Jeremy R

    2009-05-01

    When reading a story or watching a film, comprehenders construct a series of representations in order to understand the events depicted. Discourse comprehension theories and a recent theory of perceptual event segmentation both suggest that comprehenders monitor situational features such as characters' goals, to update these representations at natural boundaries in activity. However, the converging predictions of these theories had previously not been tested directly. Two studies provided evidence that changes in situational features such as characters, their locations, their interactions with objects, and their goals are related to the segmentation of events in both narrative texts and films. A 3rd study indicated that clauses with event boundaries are read more slowly than are other clauses and that changes in situational features partially mediate this relation. A final study suggested that the predictability of incoming information influences reading rate and possibly event segmentation. Taken together, these results suggest that processing situational changes during comprehension is an important determinant of how one segments ongoing activity into events and that this segmentation is related to the control of processing during reading.