Sample records for drought resistance explained

  1. Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits

    PubMed Central

    George, Jan-Peter; Schueler, Silvio; Karanitsch-Ackerl, Sandra; Mayer, Konrad; Klumpp, Raphael T.; Grabner, Michael

    2016-01-01

    Understanding drought sensitivity of tree species and its intra-specific variation is required to estimate the effects of climate change on forest productivity, carbon sequestration and tree mortality as well as to develop adaptive forest management measures. Here, we studied the variation of drought reaction of six European Abies species and ten provenances of Abies alba planted in the drought prone eastern Austria. Tree-ring and X-ray densitometry data were used to generate early- and latewood measures for ring width and wood density. Moreover, the drought reaction of species and provenances within six distinct drought events between 1970 and 2011, as identified by the standardized precipitation index, was determined by four drought response measures. The mean reaction of species and provenances to drought events was strongly affected by the seasonal occurrence of the drought: a short, strong drought at the beginning of the growing season resulted in growth reductions up to 50%, while droughts at the end of the growing season did not affect annual increment. Wood properties and drought response measures showed significant variation among Abies species as well as among A. alba provenances. Whereas A. alba provenances explained significant parts in the variation of ring width measures, the Abies species explained significant parts in the variation of wood density parameters. A consistent pattern in drought response across the six drought events was observed only at the inter-specific level, where A. nordmanniana showed the highest resistance and A. cephalonica showed the best recovery after drought. In contrast, differences in drought reaction among provenances were only found for the milder drought events in 1986, 1990, 1993 and 2000 and the ranking of provenances varied at each drought event. This indicates that genetic variation in drought response within A. alba is more limited than among Abies species. Low correlations between wood density parameters and drought response measures suggest that wood density is a poor predictor of drought sensitivity in Abies spec. PMID:27713591

  2. Response of Main Maize Varieties to Water Stress and Comprehensive Evaluation in Hebei Province

    NASA Astrophysics Data System (ADS)

    Yue, Haiwang; Chen, Shuping; Bu, Junzhou; Wei, Jianwei; Peng, Haicheng; Li, Yuan; Li, Chunjie; Xie, Junliang

    2018-01-01

    Drought is a serious threat to maize production in Hebei province. Planting drought resistant maize varieties is an effective measure to solve drought in arid and less rain areas. Drought resistance in maize is controlled by many genes, and multiple indexes should be used for comprehensive evaluation (Campos H et al.2004). In the arid rain shed, using 34 maize varieties to promote crop production compared to the drought resistance test. The experiment was conducted with two treatments of drought stress (irrigation only at seedling stage) and normal irrigation, and 12 agronomic traits related to drought resistance of maize were determined. The results showed that drought had significant effects on maize yield and main agronomic characters. Under drought stress, plant height, ear length, bare tip, ear row number, row grains, 1000-kernel weight, ASI index can be used as identification index of drought resistance of maize in different period. The results indicated that the variety with strong drought resistance is Zhongdi175, the worst drought resistance is Woyu964.

  3. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains

    PubMed Central

    Pescador, David S.; Sierra-Almeida, Ángela; Torres, Pablo J.; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants found in xeric mountains. PMID:26941761

  4. Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency.

    PubMed

    Mashilo, Jacob; Odindo, Alfred O; Shimelis, Hussein A; Musenge, Pearl; Tesfay, Samson Z; Magwaza, Lembe S

    2017-11-01

    Successful cultivation of bottle gourd in arid and semi-arid areas of sub-Saharan Africa and globally requires the identification of drought tolerant parents for developing superior genotypes with increased drought resistance. The objective of this study was to determine the level of drought tolerance among genetically diverse South African bottle gourd landraces based on leaf gas exchange and photosynthetic efficiency and identify promising genotypes for breeding. The responses of 12 bottle gourd landraces grown in glasshouse under non-stressed (NS) and drought-stressed (DS) conditions were studied. A significant genotype x water regime interaction was observed for gs, T, A, A/C i , IWUE, WUE ins , F m ', F v '/F m ', Ф PSII , qP, qN, ETR, ETR/A and AES indicating variability in response among the studied bottle gourd landraces under NS and DS conditions. Principal component analysis identified three principal components (PC's) under drought stress condition contributing to 82.9% of total variation among leaf gas exchange and chlorophyll fluorescence parameters measured. PC1 explained 36% of total variation contributed by gs, T, F 0 ', F m ', F v '/F m ' and qN, while PC2 explained 28% of the variation and highly correlated with A, A/C i , IWUE, WUE ins ETR/A and AES. PC3 explained 14% of total variation contributed by Ф PSII , qP and ETR. Principal biplot analysis allowed the identification of drought tolerant genotypes such as BG-27, BG-48, BG-58, BG-79, BG-70 and BG-78 which were grouped based on high gs, A, F m 'F v '/F m ', qN, ETR/A and AES under DS condition. The study suggests that the identified physiological traits could be useful indicators in the selection of bottle gourd genotypes for increased drought tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Individual traits as determinants of time to death under extreme drought in Pinus sylvestris L.

    PubMed

    Garcia-Forner, Núria; Sala, Anna; Biel, Carme; Savé, Robert; Martínez-Vilalta, Jordi

    2016-10-01

    Plants exhibit a variety of drought responses involving multiple interacting traits and processes, which makes predictions of drought survival challenging. Careful evaluation of responses within species, where individuals share broadly similar drought resistance strategies, can provide insight into the relative importance of different traits and processes. We subjected Pinus sylvestris L. saplings to extreme drought (no watering) leading to death in a greenhouse to (i) determine the relative effect of predisposing factors and responses to drought on survival time, (ii) identify and rank the importance of key predictors of time to death and (iii) compare individual characteristics of dead and surviving trees sampled concurrently. Time until death varied over 3 months among individual trees (from 29 to 147 days). Survival time was best predicted (higher explained variance and impact on the median survival time) by variables related to carbon uptake and carbon/water economy before and during drought. Trees with higher concentrations of monosaccharides before the beginning of the drought treatment and with higher assimilation rates prior to and during the treatment survived longer (median survival time increased 25-70 days), even at the expense of higher water loss. Dead trees exhibited less than half the amount of nonstructural carbohydrates (NSCs) in branches, stem and relative to surviving trees sampled concurrently. Overall, our results indicate that the maintenance of carbon assimilation to prevent acute depletion of NSC content above some critical level appears to be the main factor explaining survival time of P. sylvestris trees under extreme drought. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C

    2013-02-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late-successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late-successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity. © 2012 Blackwell Publishing Ltd.

  7. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula.

    PubMed

    Serra-Maluquer, X; Mencuccini, M; Martínez-Vilalta, J

    2018-05-01

    Understanding which variables affect forest resilience to extreme drought is key to predict future dynamics under ongoing climate change. In this study, we analyzed how tree resistance, recovery and resilience to drought have changed along three consecutive droughts and how they were affected by species, tree size, plot basal area (as a proxy for competition) and climate. We focused on the three most abundant pine species in the northeast Iberian Peninsula: Pinus halepensis, P. nigra and P. sylvestris during the three most extreme droughts recorded in the period 1951-2010 (occurred in 1986, 1994, and 2005-2006). We cored trees from permanent sample plots and used dendrochronological techniques to estimate resistance (ability to maintain growth level during drought), recovery (growth increase after drought) and resilience (capacity to recover pre-drought growth levels) in terms of tree stem basal area increment. Mixed-effects models were used to determine which tree- and plot-level variables were the main determinants of resistance, recovery and resilience, and to test for differences among the studied droughts. Larger trees were significantly less resistant and resilient. Plot basal area effects were only observed for resilience, with a negative impact only during the last drought. Resistance, recovery and resilience differed across the studied drought events, so that the studied populations became less resistant, less resilient and recovered worse during the last two droughts. This pattern suggests an increased vulnerability to drought after successive drought episodes.

  8. Mean annual precipitation predicts primary production resistance and resilience to extreme drought

    DOE PAGES

    Stuart-Haëntjens, Ellen; De Boeck, Hans J.; Lemoine, Nathan P.; ...

    2018-09-01

    Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitationmore » (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought – a vulnerability that is expected to compound as extreme drought frequency increases in the future.« less

  9. Mean annual precipitation predicts primary production resistance and resilience to extreme drought.

    PubMed

    Stuart-Haëntjens, Ellen; De Boeck, Hans J; Lemoine, Nathan P; Mänd, Pille; Kröel-Dulay, György; Schmidt, Inger K; Jentsch, Anke; Stampfli, Andreas; Anderegg, William R L; Bahn, Michael; Kreyling, Juergen; Wohlgemuth, Thomas; Lloret, Francisco; Classen, Aimée T; Gough, Christopher M; Smith, Melinda D

    2018-04-27

    Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitation (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought - a vulnerability that is expected to compound as extreme drought frequency increases in the future. Copyright © 2018. Published by Elsevier B.V.

  10. Mean annual precipitation predicts primary production resistance and resilience to extreme drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart-Haëntjens, Ellen; De Boeck, Hans J.; Lemoine, Nathan P.

    Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitationmore » (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought – a vulnerability that is expected to compound as extreme drought frequency increases in the future.« less

  11. Genetic Mapping of Quantitative Trait Loci for Grain Yield under Drought in Rice under Controlled Greenhouse Conditions

    NASA Astrophysics Data System (ADS)

    Solis, Julio; Gutierrez, Andres; Mangu, Venkata; Sanchez, Eduardo; Bedre, Renesh; Linscombe, Steve; Baisakh, Niranjan

    2017-12-01

    Drought stress is a constant threat to rice production worldwide. Most Mmodern rice cultivars are sensitive to drought, and the effect is severe at the reproductive stage. Conventional breeding for drought resistant (DR) rice varieties is slow and limited due to the quantitative nature of the DR traits. Identification of genes (QTLs)/markers associated with DR traits is a prerequisite for marker-assisted breeding. Grain yield is the most important trait and to this end drought yield QTLs have been identified under field conditions. The present study reports identification of drought yield QTLs under controlled conditions without confounding effects of other factors prevalent under natural conditions. A linkage map covering 1,781.5 cM with an average resolution of 9.76 cM was constructed using an F2 population from a cross between two Japonica cultivars, Cocodrie (drought sensitive) and Vandana (drought tolerant) with 213 markers distributed over 12 rice chromosomes. A subset of 59 markers (22 genic SSRs and 37 SNPs) derived from the transcriptome of the parents were also placed in the map. Single marker analysis using 187 F2:3 progeny identified 6 markers distributed on chromosomes 1, 5, and 8 to be associated with grain yield under drought (GYD). Composite interval mapping identified six genomic regions/quantitative trait loci (QTL) on chromosome 1, 5, 8, and 9 to be associated with GYD. QTLs located on chromosome 1 (qGYD1.2, qGYD1.3), chromosome 5 (qGYD5.1) and chromosome 8 (qGYD8.1) were contributed by Vandana alleles, whereas the QTLs, qGYD1.1 and qQYD9.1 were contributed by Cocodrie alelles. The additive positive phenotypic variance explained by the QTLs ranged from 30.0% to 34.0%. Candidate genes annotation within QTLs suggested the role of transcription factors and genes involved in osmotic potential regulation through catalytic/metabolic pathways in drought resistance tolerance mechanism contributing to yield.

  12. Xylem vulnerability curves of canopy branches of mature trees from Caxiuana and Tapajos National Forests, Para, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Thomas; Moorcroft, Paul

    Raw data for xylem vulnerability curves measured on upper canopy branches of mature trees from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from km67 transects, which is nearby the decommissioned throughfall-exclusion, drought-experiment plots. Caxiuana samples were harvested from trees growing in the throughfall-exclusion, drought-experiment plots. Data were collected in 2011 and 2012. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), xylem pressure, percent loss of conductivity. Air injection method was used. Data reference: Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differencesmore » in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less

  13. Genome-assisted Breeding For Drought Resistance

    PubMed Central

    Khan, Awais; Sovero, Valpuri; Gemenet, Dorcus

    2016-01-01

    Drought stress caused by unpredictable precipitation poses a major threat to food production worldwide, and its impact is only expected to increase with the further onset of climate change. Understanding the effect of drought stress on crops and plants' response is critical for developing improved varieties with stable high yield to fill a growing food gap from an increasing population depending on decreasing land and water resources. When a plant encounters drought stress, it may use multiple response types, depending on environmental conditions, drought stress intensity and duration, and the physiological stage of the plant. Drought stress responses can be divided into four broad types: drought escape, drought avoidance, drought tolerance, and drought recovery, each characterized by interacting mechanisms, which may together be referred to as drought resistance mechanisms. The complex nature of drought resistance requires a multi-pronged approach to breed new varieties with stable and enhanced yield under drought stress conditions. High throughput genomics and phenomics allow marker-assisted selection (MAS) and genomic selection (GS), which offer rapid and targeted improvement of populations and identification of parents for rapid genetic gains and improved drought-resistant varieties. Using these approaches together with appropriate genetic diversity, databases, analytical tools, and well-characterized drought stress scenarios, weather and soil data, new varieties with improved drought resistance corresponding to grower preferences can be introduced into target regions rapidly. PMID:27499682

  14. Grassland Resistance and Resilience after Drought Depends on Management Intensity and Species Richness

    PubMed Central

    Vogel, Anja; Scherer-Lorenzen, Michael; Weigelt, Alexandra

    2012-01-01

    The degree to which biodiversity may promote the stability of grasslands in the light of climatic variability, such as prolonged summer drought, has attracted considerable interest. Studies so far yielded inconsistent results and in addition, the effect of different grassland management practices on their response to drought remains an open question. We experimentally combined the manipulation of prolonged summer drought (sheltered vs. unsheltered sites), plant species loss (6 levels of 60 down to 1 species) and management intensity (4 levels varying in mowing frequency and amount of fertilizer application). Stability was measured as resistance and resilience of aboveground biomass production in grasslands against decreased summer precipitation, where resistance is the difference between drought treatments directly after drought induction and resilience is the difference between drought treatments in spring of the following year. We hypothesized that (i) management intensification amplifies biomass decrease under drought, (ii) resistance decreases with increasing species richness and with management intensification and (iii) resilience increases with increasing species richness and with management intensification. We found that resistance and resilience of grasslands to summer drought are highly dependent on management intensity and partly on species richness. Frequent mowing reduced the resistance of grasslands against drought and increasing species richness decreased resistance in one of our two study years. Resilience was positively related to species richness only under the highest management treatment. We conclude that low mowing frequency is more important for high resistance against drought than species richness. Nevertheless, species richness increased aboveground productivity in all management treatments both under drought and ambient conditions and should therefore be maintained under future climates. PMID:22615865

  15. Relationship between carbohydrate partitioning and drought resistance in common bean.

    PubMed

    Cuellar-Ortiz, Sonia M; De La Paz Arrieta-Montiel, Maria; Acosta-Gallegos, Jorge; Covarrubias, Alejandra A

    2008-10-01

    Drought is a major yield constraint in common bean (Phaseolus vulgaris L.). Pulse-chase (14)C-labelling experiments were performed using Pinto Villa (drought resistant) and Canario 60 (drought sensitive) cultivars, grown under optimal irrigation and water-deficit conditions. Starch and the radioactive label incorporated into starch were measured in leaves and pods at different time points, between the initiation of pod development and the production of mature pods. The water-stress treatment induced a higher starch accumulation in the drought-resistant cultivar pods than in those of the drought-sensitive cultivar. This effect was more noticeable during the early stages of pod development. Consistently, a reduction of starch content occurred in the leaves of the drought-resistant cultivar during the grain-filling stage. Furthermore, a synchronized accumulation of sucrose was observed in immature pods of this cultivar. These data indicate that carbohydrate partitioning is affected by drought in common bean, and that the modulation of this partitioning towards seed filling has been a successful strategy in the development of drought-resistant cultivars. In addition, our results suggest that, in the drought-resistant cultivar, the efficient carbon mobilization towards the seeds in response to water limitation is favoured by a mechanism that implies a more effective sucrose transport.

  16. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration.

    PubMed

    Cheng, Lixiang; Wang, Yuping; He, Qiang; Li, Huijun; Zhang, Xiaojing; Zhang, Feng

    2016-08-31

    Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.

  17. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance

    PubMed Central

    Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu

    2017-01-01

    The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143

  18. Hatch plasticity in response to varied inundation frequency in Aedes albopictus.

    PubMed

    Vitek, Christopher J; Livdahl, Todd

    2009-07-01

    Eggs of container-breeding mosquitoes are able to withstand drought conditions as an egg and hatch when submerged. Frequent rainfall can be simulated by frequent submersion, and drought conditions can be simulated by infrequent submersion. We examined the hatch response of Aedes albopictus (Skuse) eggs to simulated drought conditions. Ae. albopictus eggs from a strain originating outside Kobe, Japan, were subjected to one of three treatments; high-frequency hatch stimulation consisting of submerging the eggs in a nutrient broth mixture every 3 d, low-frequency hatch stimulation consisting of submerging the eggs every 7 d, and delayed high-frequency hatch stimulation. Eggs that were subjected to lower-frequency stimulation showed a significant decrease in hatch delay, which was the opposite of the predicted response. This decrease in hatch delay may be an example of hatch plasticity in response to drought conditions. This response could not be explained as a result of the difference in the ages of the eggs on any given stimulus. A decreased hatch delay response to potential drought conditions combined with rapid larval development may enable Ae. albopictus, whose eggs are not as desiccation resistant as some other container-breeding mosquitoes, to survive extended drought.

  19. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-03-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature.

  20. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  1. Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress

    PubMed Central

    Lintunen, A.; Hölttä, T.; Kulmala, M.

    2013-01-01

    Water in the xylem, the water transport system of plants, is vulnerable to freezing and cavitation, i.e. to phase change from liquid to ice or gaseous phase. The former is a threat in cold and the latter in dry environmental conditions. Here we show that a small xylem conduit diameter, which has previously been shown to be associated with lower cavitation pressure thus making a plant more drought resistant, is also associated with a decrease in the temperature required for ice nucleation in the xylem. Thus the susceptibility of freezing and cavitation are linked together in the xylem of plants. We explain this linkage by the regulation of the sizes of the nuclei catalysing freezing and drought cavitation. Our results offer better understanding of the similarities of adaption of plants to cold and drought stress, and offer new insights into the ability of plants to adapt to the changing environment. PMID:23778457

  2. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding

    Treesearch

    Fernando Pineda-Garcia; Horacio Paz; Frederick C. Meinzer

    2013-01-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early...

  3. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses.

    PubMed

    Ximénez-Embún, Miguel G; Glas, Joris J; Ortego, Felix; Alba, Juan M; Castañera, Pedro; Kant, Merijn R

    2017-12-01

    Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.

  4. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    PubMed Central

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-01-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature. PMID:26987482

  5. Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought stress resistance.

    PubMed

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-09-01

    Drought (water-deficit) stress is a serious environmental problem in plant growth and cultivation. As one of widely cultivated warm-season turfgrass, bermudagrass (Cynodon dactylon (L). Pers.) exhibits drastic natural variation in the drought stress resistance in leaves and stems of different varieties. In this study, proteomic analysis was performed to identify drought-responsive proteins in both leaves and stems of two bermudagrass varieties contrasting in drought stress resistance, including drought sensitive variety (Yukon) and drought tolerant variety (Tifgreen). Through comparative proteomic analysis, 39 proteins with significantly changed abundance were identified, including 3 commonly increased and 2 decreased proteins by drought stress in leaves and stems of Yukon and Tifgreen varieties, 2 differentially regulated proteins in leaves and stems of two varieties after drought treatment, 23 proteins increased by drought stress in Yukon variety and constitutively expressed in Tifgreen variety, and other 3 differentially expressed proteins under control and drought stress conditions. Among them, proteins involved in photosynthesis (PS), glycolysis, N-metabolism, tricarboxylicacid (TCA) and redox pathways were largely enriched, which might be contributed to the natural variation of drought resistance between Yukon and Tifgreen varieties. These studies provide new insights to understand the molecular mechanism underlying bermudagrass response to drought stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation].

    PubMed

    Wang, Yi; Ding, Gui-jie

    2013-03-01

    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  7. Drought resistance of Ailanthus altissima: root hydraulics and water relations.

    PubMed

    Trifilò, P; Raimondo, F; Nardini, A; Lo Gullo, M A; Salleo, S

    2004-01-01

    Drought resistance of Ailanthus altissima (Mill.) Swingle is a major factor underlying the impressively wide expansion of this species in Europe and North America. We studied the specific mechanism used by A. altissima to withstand drought by subjecting potted seedlings to four irrigation regimes. At the end of the 13-week treatment period, soil water potential was -0.05 MPa for well-watered control seedlings (W) and -0.4, -0.8 and -1.7 MPa for drought-stressed seedlings (S) in irrigation regimes S1, S2 and S3, respectively. Root and shoot biomass production did not differ significantly among the four groups. A progressively marked stomatal closure was observed in drought-stressed seedlings, leading to homeostasis of leaf water potential, which was maintained well above the turgor loss point. Root and shoot hydraulics were measured with a high-pressure flow meter. When scaled by leaf surface area, shoot hydraulic conductance did not differ among the treated seedlings, whereas root hydraulic conductance decreased by about 20% in S1 and S2 seedlings and by about 70% in S3 seedlings, with respect to the well-watered control value. Similar differences were observed when root hydraulic conductance was scaled by root surface area, suggesting that roots had become less permeable to water. Anatomical observations of root cross sections revealed that S3 seedlings had shrunken cortical cells and a multilayer endodermal-like tissue that probably impaired soil-to-root stele water transport. We conclude that A. altissima seedlings are able to withstand drought by employing a highly effective water-saving mechanism that involves reduced water loss by leaves and reduced root hydraulic conductance. This water-saving mechanism helps explain how A. altissima successfully competes with native vegetation.

  8. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon).

    PubMed

    Zhang, Fantao; Zhou, Yi; Zhang, Meng; Luo, Xiangdong; Xie, Jiankun

    2017-06-30

    Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice ( Oryza rufipogon , DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars. © 2017 The Author(s).

  9. Hydraulic adjustments underlying drought resistance of Pinus halepensis.

    PubMed

    Klein, Tamir; Cohen, Shabtai; Yakir, Dan

    2011-06-01

    Drought-induced tree mortality has increased over the last decades in forests around the globe. Our objective was to investigate under controlled conditions the hydraulic adjustments underlying the observed ability of Pinus halepensis to survive seasonal drought under semi-arid conditions. One hundred 18-month saplings were exposed in the greenhouse to 10 different drought treatments, simulating combinations of intensities (fraction of water supply relative to control) and durations (period with no water supply) for 30 weeks. Stomata closed at a leaf water potential (Ψ(l)) of -2.8 MPa, suggesting isohydric stomatal regulation. In trees under extreme drought treatments, stomatal closure reduced CO(2) uptake to -1 µmol m(-2) s(-1), indicating the development of carbon starvation. A narrow hydraulic safety margin of 0.3 MPa (from stomatal closure to 50% loss of hydraulic conductivity) was observed, indicating a strategy of maximization of CO2 uptake in trees otherwise adapted to water stress. A differential effect of drought intensity and duration was observed, and was explained by a strong dependence of the water stress effect on the ratio of transpiration to evapotranspiration T/ET and the larger partitioning to transpiration associated with larger irrigation doses. Under intense or prolonged drought, the root system became the main target for biomass accumulation, taking up to 100% of the added biomass, while the stem tissue biomass decreased, associated with up to 60% reduction in xylem volume.

  10. Effects of biotic and abiotic factors on resistance versus resilience of Douglas fir to drought.

    PubMed

    Carnwath, Gunnar; Nelson, Cara

    2017-01-01

    Significant increases in tree mortality due to drought-induced physiological stress have been documented worldwide. This trend is likely to continue with increased frequency and severity of extreme drought events in the future. Therefore, understanding the factors that influence variability in drought responses among trees will be critical to predicting ecosystem responses to climate change and developing effective management actions. In this study, we used hierarchical mixed-effects models to analyze drought responses of Pseudotsuga menziesii in 20 unmanaged forests stands across a broad range of environmental conditions in northeastern Washington, USA. We aimed to 1) identify the biotic and abiotic attributes most closely associated with the responses of individual trees to drought and 2) quantify the variability in drought responses at different spatial scales. We found that growth rates and competition for resources significantly affected resistance to a severe drought event in 2001: slow-growing trees and trees growing in subordinate canopy positions and/or with more neighbors suffered greater declines in radial growth during the drought event. In contrast, the ability of a tree to return to normal growth when climatic conditions improved (resilience) was unaffected by competition or relative growth rates. Drought responses were significantly influenced by tree age: older trees were more resistant but less resilient than younger trees. Finally, we found differences between resistance and resilience in spatial scale: a significant proportion (approximately 50%) of the variability in drought resistance across the study area was at broad spatial scales (i.e. among different forest types), most likely due to differences in the total amount of precipitation received at different elevations; in contrast, variation in resilience was overwhelmingly (82%) at the level of individual trees within stands and there was no difference in drought resilience among forest types. Our results suggest that for Pseudotsuga menziesii resistance and resilience to drought are driven by different factors and vary at different spatial scales.

  11. Effects of biotic and abiotic factors on resistance versus resilience of Douglas fir to drought

    PubMed Central

    Nelson, Cara

    2017-01-01

    Significant increases in tree mortality due to drought-induced physiological stress have been documented worldwide. This trend is likely to continue with increased frequency and severity of extreme drought events in the future. Therefore, understanding the factors that influence variability in drought responses among trees will be critical to predicting ecosystem responses to climate change and developing effective management actions. In this study, we used hierarchical mixed-effects models to analyze drought responses of Pseudotsuga menziesii in 20 unmanaged forests stands across a broad range of environmental conditions in northeastern Washington, USA. We aimed to 1) identify the biotic and abiotic attributes most closely associated with the responses of individual trees to drought and 2) quantify the variability in drought responses at different spatial scales. We found that growth rates and competition for resources significantly affected resistance to a severe drought event in 2001: slow-growing trees and trees growing in subordinate canopy positions and/or with more neighbors suffered greater declines in radial growth during the drought event. In contrast, the ability of a tree to return to normal growth when climatic conditions improved (resilience) was unaffected by competition or relative growth rates. Drought responses were significantly influenced by tree age: older trees were more resistant but less resilient than younger trees. Finally, we found differences between resistance and resilience in spatial scale: a significant proportion (approximately 50%) of the variability in drought resistance across the study area was at broad spatial scales (i.e. among different forest types), most likely due to differences in the total amount of precipitation received at different elevations; in contrast, variation in resilience was overwhelmingly (82%) at the level of individual trees within stands and there was no difference in drought resilience among forest types. Our results suggest that for Pseudotsuga menziesii resistance and resilience to drought are driven by different factors and vary at different spatial scales. PMID:28973008

  12. Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency

    PubMed Central

    Kumar, Pradeep; Rouphael, Youssef; Cardarelli, Mariateresa; Colla, Giuseppe

    2017-01-01

    Drought is one of the most prevalent limiting factors causing considerable losses in crop productivity, inflicting economic as well as nutritional insecurity. One of the greatest challenges faced by the scientific community in the next few years is to minimize the yield losses caused by drought. Drought resistance is a complex quantitative trait controlled by many genes. Thus, introgression of drought resistance traits into high yielding genotypes has been a challenge to plant breeders. Vegetable grafting using rootstocks has emerged as a rapid tool in tailoring plants to better adapt to suboptimal growing conditions. This has induced changes in shoot physiology. Grafting applications have expanded mainly in Solanaceous crops and cucurbits, which are commonly grown in arid and semi-arid areas characterized by long drought periods. The current review gives an overview of the recent scientific literature on root-shoot interaction and rootstock-driven alteration of growth, yield, and fruit quality in grafted vegetable plants under drought stress. Further, we elucidate the drought resistance mechanisms of grafted vegetables at the morpho-physiological, biochemical, and molecular levels. PMID:28713405

  13. Variation in drought resistance, drought acclimation and water conservation in four willow cultivars used for biomass production.

    PubMed

    Wikberg, Jenny; Ogren, Erling

    2007-09-01

    Growth and water-use parameters of four willow (Salix spp.) clones grown in a moderate drought regime or with ample water supply were determined to characterize their water-use efficiency, drought resistance and capacity for drought acclimation. At the end of the 10-week, outdoor pot experiment, clonal differences were observed in: (1) water-use efficiency of aboveground biomass production (WUE); (2) resistance to xylem cavitation; and (3) stomatal conductance to leaf-specific, whole-plant hydraulic conductance ratio (g(st)/K(P); an indicator of water balance). Across clones and regimes, WUE was positively correlated with the assimilation rate to stomatal conductance ratio (A/g(st)), a measure of instantaneous water-use efficiency. Both of these water-use efficiency indicators were generally higher in drought-treated trees compared with well-watered trees. However, the between-treatment differences in (shoot-based) WUE were smaller than expected, considering the differences in A/g(st) for two of the clones, possibly because plants reallocated dry mass from shoots to roots when subject to drought. Higher root hydraulic conductance to shoot hydraulic conductance ratios (K(R)/K(S)) during drought supports this hypothesis. The same clones were also the most sensitive to xylem cavitation and, accordingly, showed the strongest reduction in g(st)/K(P) in response to drought. Drought acclimation was manifested in decreased g(st), g(st)/K(P), osmotic potential and leaf area to vessel internal cross-sectional area ratio, and increased K(R), K(P) and WUE. Increased resistance to stem xylem cavitation in response to drought was observed in only one clone. It is concluded that WUE and drought resistance traits are inter-linked and that both may be enhanced by selection and breeding.

  14. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing.

    PubMed

    Zhang, Tiejun; Yu, Long-Xi; Zheng, Ping; Li, Yajun; Rivera, Martha; Main, Dorrie; Greene, Stephanie L

    2015-01-01

    Drought resistance is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. Identification of genes involved in drought tolerance will facilitate breeding for improving drought resistance and water use efficiency in alfalfa. Our objective was to use a diversity panel of alfalfa accessions comprised of 198 cultivars and landraces to identify genes involved in drought tolerance. The panel was selected from the USDA-ARS National Plant Germplasm System alfalfa collection and genotyped using genotyping by sequencing. A greenhouse procedure was used for phenotyping two important traits associated with drought tolerance: drought resistance index (DRI) and relative leaf water content (RWC). Marker-trait association identified nineteen and fifteen loci associated with DRI and RWC, respectively. Alignments of target sequences flanking to the resistance loci against the reference genome of M. truncatula revealed multiple chromosomal locations. Markers associated with DRI are located on all chromosomes while markers associated with RWC are located on chromosomes 1, 2, 3, 4, 5, 6 and 7. Co-localizations of significant markers between DRI and RWC were found on chromosomes 3, 5 and 7. Most loci associated with DRI in this work overlap with the reported QTLs associated with biomass under drought in alfalfa. Additional significant markers were targeted to several contigs with unknown chromosomal locations. BLAST search using their flanking sequences revealed homology to several annotated genes with functions in stress tolerance. With further validation, these markers may be used for marker-assisted breeding new alfalfa varieties with drought resistance and enhanced water use efficiency.

  15. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California

    USGS Publications Warehouse

    Vernon, Michael J.; Sherriff, Rosemary L.; van Mantgem, Phillip; Kane, Jeffrey M.

    2018-01-01

    Drought is an important stressor in forest ecosystems that can influence tree vigor and survival. In the U.S., forest managers use two primary management techniques to promote resistance and resilience to drought: prescribed fire and mechanical thinning. Generally applied to reduce fuels and fire hazard, treatments may also reduce competition for resources that may improve tree-growth and reduce mortality during drought. A recent severe and prolonged drought in California provided a natural experiment to investigate tree-growth responses to fuel treatments and climatic stress. We assessed tree-growth from 299 ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) in treated and untreated stands during severe drought from 2012 to 2015 in the mixed-conifer forests of Whiskeytown National Recreation Area (WNRA) in northern California. The treatment implemented at WNRA removed 34% of live basal area through mechanical thinning with a subsequent pile burning of residual fuels. Tree-growth was positively associated with crown ratio and negatively associated with competition and a 1-year lag of climate water deficit, an index of drought. Douglas-fir generally had higher annual growth than ponderosa pine, although factors affecting growth were the same for both species. Drought resistance, expressed as the ratio between mean growth during drought and mean growth pre-drought, was higher in treated stands compared to untreated stands during both years of severe drought (2014 and 2015) for ponderosa pine but only one year (2014) for Douglas-fir. Thinning improved drought resistance, but tree size, competition and species influenced this response. On-going thinning treatments focused on fuels and fire hazard reduction are likely to be effective at promoting growth and greater drought resistance in dry mixed-conifer forests. Given the likelihood of future droughts, land managers may choose to implement similar treatments to reduce potential impacts.

  16. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis.

    PubMed

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-Hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. 'Ladino' and drought-resistant cv. 'Haifa') under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. 'Haifa', but had no effect on drought-susceptible cv. 'Ladino'. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. 'Ladino' than that in cv. 'Haifa'. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.

  17. The resistance of the active microbiome as a fundamental compartment of soil quality in the face of climate change

    NASA Astrophysics Data System (ADS)

    Bastida, Felipe; Andrés, Manuela; Torres, Irene; García, Carlos; Ruiz Navarro, Antonio; Moreno, Francisco R.; López Serrano, Francisco R.

    2017-04-01

    Arid and semiarid ecosystems will be severely affected by drought derived from climate change. Forest management can promote the adaptations of plant and microbial communities to drought. For instance, thinning reduces competition for resources through a decrease in tree density and the promotion of plant survival. The resistance of soil microbial communities must be strongly related to the soil quality. However, in order to evaluate these properties, the active (and not only the total) microbial community should be carefully assessed. Here, we studied the functional and phylogenetic responses of the microbial community to six years of drought induced by rainfall exclusion and how thinning shapes its resistance to drought, in a semiarid ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel strategies against drought. The diversity and the composition of the total and active soil microbial communities were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially-mediated ecosystem multifunctionality was studied by the evaluation of enzyme activities related to C, N, and P dynamics. The microbial biomass and ecosystem multifunctionality decreased in plots subjected to drought, but this decrease was greater in unthinned plots. The diversity of the total bacterial and fungal communities were resistant to drought but were shaped by seasonal dynamics. However, the active community was more sensitive to drought and related to multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of multifunctionality to drought by changes in the active microbiome. Protein-based phylogeny was a better predictor of the impacts of drought and the adaptations of microbial communities. We highlight that the resistance of the microbial community and the active microbial community are ecological concepts strongly related to the concept of soil quality in the face of climate change.

  18. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara.

    PubMed

    Nguyen, Duy; D'Agostino, Nunzio; Tytgat, Tom O G; Sun, Pulu; Lortzing, Tobias; Visser, Eric J W; Cristescu, Simona M; Steppuhn, Anke; Mariani, Celestina; van Dam, Nicole M; Rieu, Ivo

    2016-07-01

    In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants. © 2016 John Wiley & Sons Ltd.

  19. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23–24 × SEA 5 of Common Bean

    PubMed Central

    Polania, Jose; Rao, Idupulapati M.; Cajiao, Cesar; Grajales, Miguel; Rivera, Mariela; Velasquez, Federico; Raatz, Bodo; Beebe, Stephen E.

    2017-01-01

    Drought is the major abiotic stress factor limiting yield of common bean (Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23–24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean. PMID:28316609

  20. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23-24 × SEA 5 of Common Bean.

    PubMed

    Polania, Jose; Rao, Idupulapati M; Cajiao, Cesar; Grajales, Miguel; Rivera, Mariela; Velasquez, Federico; Raatz, Bodo; Beebe, Stephen E

    2017-01-01

    Drought is the major abiotic stress factor limiting yield of common bean ( Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23-24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean.

  1. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    PubMed Central

    Polania, Jose A.; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M.

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two groups, water savers and water spenders. Pod harvest index could be a useful selection criterion in breeding programs to select for drought resistance in common bean. PMID:27242861

  2. Testing the apparent resistance of three dominant plants to chronic drought on the Colorado Plateau

    USGS Publications Warehouse

    Hoover, David L.; Duniway, Michael C.; Belnap, Jayne

    2016-01-01

    Many drylands, including the south-western United States, are projected to become more water-limited as these regions become warmer and drier with climate change. Such chronic drought may push individual species or plant functional types beyond key thresholds leading to reduced growth or even mortality. Indeed, recent observational and experimental evidence from the Colorado Plateau suggests that C3 grasses are the most vulnerable to chronic drought, while C4 grasses and C3 shrubs appear to have greater resistance.The effects of chronic, or press-drought are predicted to begin at the physiological level and translate up to higher hierarchical levels. To date, the drought resistance of C4grasses and C3 shrubs in this region has been only evaluated at the community level and thus we lack information on whether there are sensitivities to drought at lower hierarchical levels. In this study, we tested the apparent drought resistance of three dominant species (Pleuraphis jamesii, a C4 rhizomatous grass; Coleogyne ramosissima, a C3 drought-deciduous shrub; and Ephedra viridis, a C3 evergreen shrub) to an ongoing experimental press-drought (-35% precipitation) by comparing individual-level responses (ecophysiology and growth dynamics) to community-level responses (plant cover).For all three species, we observed consistent responses across all hierarchical levels:P. jamesii was sensitive to drought across all measured variables, while the shrubsC. ramosissima and E. viridis had little to no responses to the experimental press-drought at any given level.Synthesis. Our findings suggest that the apparent drought resistance at higher hierarchical levels, such as cover, may serve as good proxies for lower-level responses. Furthermore, it appears the shrubs are avoiding drought, possibly by utilizing moisture at deeper soil layers, while the grasses are limited to shallower layers and must endure the drought conditions. Give this differential sensitivity to drought, a future with less precipitation and higher temperatures may increase the dominance of shrubs on the Colorado Plateau, as grasses succumb to chronic water stress.

  3. Spermine Alleviates Drought Stress in White Clover with Different Resistance by Influencing Carbohydrate Metabolism and Dehydrins Synthesis

    PubMed Central

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. ‘Ladino’ and drought-resistant cv. ‘Haifa’) under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. ‘Haifa’, but had no effect on drought-susceptible cv. ‘Ladino’. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. ‘Ladino’ than that in cv. ‘Haifa’. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression. PMID:25835290

  4. Taking transgenic rice drought screening to the field.

    PubMed

    Gaudin, Amélie C M; Henry, Amelia; Sparks, Adam H; Slamet-Loedin, Inez H

    2013-01-01

    Numerous transgenes have been reported to increase rice drought resistance, mostly in small-scale experiments under vegetative-stage drought stress, but few studies have included grain yield or field evaluations. Different definitions of drought resistance are currently in use for field-based and laboratory evaluations of transgenics, the former emphasizing plant responses that may not be linked to yield under drought. Although those fundamental studies use efficient protocols to uncover and validate gene functions, screening conditions differ greatly from field drought environments where the onset of drought stress symptoms is slow (2-3 weeks). Simplified screening methods, including severely stressed survival studies, are therefore not likely to identify transgenic events with better yield performance under drought in the target environment. As biosafety regulations are becoming established to allow field trials in some rice-producing countries, there is a need to develop relevant screening procedures that scale from preliminary event selection to greenhouse and field trials. Multilocation testing in a range of drought environments may reveal that different transgenes are necessary for different types of drought-prone field conditions. We describe here a pipeline to improve the selection efficiency and reproducibility of results across drought treatments and test the potential of transgenic rice for the development of drought-resistant material for agricultural purposes.

  5. Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress

    PubMed Central

    Olsovska, Katarina; Kovar, Marek; Brestic, Marian; Zivcak, Marek; Slamka, Pavol; Shao, Hong Bo

    2016-01-01

    Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought. PMID:27551283

  6. Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests.

    PubMed

    Sohn, Julia A; Hartig, Florian; Kohler, Martin; Huss, Jürgen; Bauhus, Jürgen

    2016-10-01

    Droughts and their negative effects on forest ecosystems are projected to increase under climate change for many regions. It has been suggested that intensive thinning could reduce drought impacts on established forests in the short-term. Most previous studies on the effect of thinning on drought impacts, however, have been confined to single forest sites. It is therefore still unclear how general and persisting the benefits of thinning are. This study assesses the potential of thinning to increase drought tolerance of the wide spread Scots pine (Pinus sylvestris) in Central Europe. We hypothesized (1) that increasing thinning intensity benefits the maintenance of radial growth of crop trees during drought (resistance) and its recovery following drought, (2) that those benefits to growth decrease with time elapsed since the last thinning and with stand age, and (3) that they may depend on drought severity as well as water limitations in pre- and post-drought periods. To test these hypotheses, we assessed the effects of thinning regime, stand age, and drought severity on radial growth of 129 Scots pine trees during and after drought events in four long-term thinning experiments in Germany. We found that thinning improved the recovery of radial growth following drought and to a lesser extent the growth resistance during a drought event. Growth recovery following drought was highest after the first thinning intervention and in recently and heavily thinned stands. With time since the last thinning, however, this effect decreased and could even become negative when compared to unthinned stands. Further, thinning helped to avoid an age-related decline in growth resistance (and recovery) following drought. The recovery following drought, but not the resistance during drought, was related to water limitations in the drought period. This is the first study that analyzed drought-related radial growth in trees of one species across several stands of different age. The interaction between thinning intensity and time since the last thinning underline the importance to distinguish between short- and long-term effects of thinning. According to our analysis, only thinning regimes, with relatively heavy and frequent thinning interventions would increase drought tolerance in pine stands. © 2016 by the Ecological Society of America.

  7. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance.

    PubMed

    Rosales, Miguel A; Ocampo, Edilia; Rodríguez-Valentín, Rocío; Olvera-Carrillo, Yadira; Acosta-Gallegos, Jorge; Covarrubias, Alejandra A

    2012-07-01

    Terminal drought is a major problem for common bean production because it occurs during the reproductive stage, importantly affecting seed yield. Diverse common bean cultivars with different drought susceptibility have been selected from different gene pools in several drought environments. To better understand the mechanisms associated with terminal drought resistance in a particular common bean race (Durango) and growth habit (type-III), we evaluated several metabolic and physiological parameters using two cultivars, Bayo Madero and Pinto Saltillo, with contrasting drought susceptibility. The common bean cultivars were submitted to moderate and severe terminal drought treatments under greenhouse conditions. We analyzed the following traits: relative growth rate, photosynthesis and transpiration rates, stomatal conductance, water-use efficiency, relative water content, proline accumulation, glycolate oxidase activity and their antioxidant response. Our results indicate that the competence of the drought-resistant cultivar (Pinto Saltillo) to maintain seed production upon terminal drought relies on an early response and fine-tuning of stomatal conductance, CO₂ diffusion and fixation, and by an increased water use and avoidance of ROS accumulation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress.

    PubMed

    Shakirova, Farida; Allagulova, Chulpan; Maslennikova, Dilara; Fedorova, Kristina; Yuldashev, Ruslan; Lubyanova, Alsu; Bezrukova, Marina; Avalbaev, Azamat

    2016-11-01

    In this study, we performed a comparative analysis of the physiological and biochemical parameters of wheat cultivars with contrasting drought resistance, drought-resistant Omskaya 35 (O-35) and less drought-resistant Salavat Yulaev (SYu), during 7-day germination under drought stress simulated by 5% mannitol. In addition, we evaluated the effectiveness of pre-sowing seed treatment with 0.4 μM 24-epibrassinolide (EBR) used to increase the resistance of plants of both cultivars to drought stress. It was revealed that mannitol has caused significant changes in the hormonal balance of the plants of both cultivars, associated with abscisic acid (ABA) accumulation and decrease in the contents of indoleacetic acid (IAA) and cytokinins (CKs). It should be noted that more dramatic changes in the content of phytohormones were characteristic for seedlings of SYu cultivar, which was reflected in a stronger growth inhibition of these plants. Pretreatment with EBR mitigated the negative effect of drought on the hormonal status and growth of seedlings during their germination. Furthermore, we found that drought caused accumulation of dehydrin (DHN) proteins, especially of low molecular weight DHNs, whose abundance was 2.5 times greater in O-35 cultivar than in SYu plants. EBR-pretreated plants of both cultivars were characterized by the additional accumulation of DHNs, indicating their involvement in the development of the EBR-induced wheat drought resistance. The use of fluridone allowed us to demonstrate ABA-dependent and ABA-independent pathways of regulation of low molecular mass dehydrins accumulation by EBR in wheat plants of both cultivars under drought conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Field Phenotyping Strategies and Breeding for Adaptation of Rice to Drought†

    PubMed Central

    Fischer, Ken S.; Fukai, Shu; Kumar, Arvind; Leung, Hei; Jongdee, Boonrat

    2012-01-01

    This paper is a section of the book “Drought phenotyping in crops: from theory to practice” (Monneveux Philippe and Ribaut Jean-Marcel eds, published by CGIAR Generation Challenge Programme. Texcoco, Mexico). The section describes recent experience in drought phenotyping in rice which is one of the most drought-susceptible crops. The section contains genetic and genomic resources for drought adaptation and methods for selection of drought-resistant varieties in rice. In appendix, there is experience from Thailand on integration of direct selection for grain yield and physiological traits to confer drought resistance. PMID:22934036

  10. Mapping QTL and identification of genes associated with drought resistance in sorghum

    USDA-ARS?s Scientific Manuscript database

    Water limits global agricultural production and the global increasing aridity, growing human population, and the depletion of aquifers will only increase its scarcity for agriculture. Water is essential for plant growth and in areas that are prone to drought, the use of drought resistant crops is a ...

  11. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    PubMed

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  12. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions.

    PubMed

    Duan, Lingfeng; Han, Jiwan; Guo, Zilong; Tu, Haifu; Yang, Peng; Zhang, Dong; Fan, Yuan; Chen, Guoxing; Xiong, Lizhong; Dai, Mingqiu; Williams, Kevin; Corke, Fiona; Doonan, John H; Yang, Wanneng

    2018-01-01

    Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future.

  13. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    USGS Publications Warehouse

    Malone, Sparkle; Tulbure, Mirela; Pérez-Luque, Antonio J.; Assal, Timothy J.; Bremer, Leah; Drucker, Debora; Hillis, Vicken; Varela, Sara; Goulden, Michael

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and function. We quantified ecosystem resistance to drought by comparing changes in satellite-derived estimates of water-use efficiency (WUE = net primary productivity [NPP]/evapotranspiration [ET]) under normal (i.e., baseline) and drought conditions (ΔWUE = WUE2014 − baseline WUE). With this method, areas with increasing WUE under drought conditions are considered more resilient than systems with declining WUE. Baseline WUE varied across California (0.08 to 3.85 g C/mm H2O) and WUE generally increased under severe drought conditions in 2014. Strong correlations between ΔWUE, precipitation, and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e., grasslands) also had greater C-uptake rates when water was limiting and higher rates of carbon-uptake efficiency (CUE = NPP/LAI) under drought conditions. We also found that systems with a baseline WUE ≤ 0.4 exhibited a decline in WUE under drought conditions, suggesting that a baseline WUE ≤ 0.4 might be indicative of low drought resistance. Drought severity, precipitation, and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.

  14. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    PubMed

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  15. Forest resilience to drought varies across biomes.

    PubMed

    Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego

    2018-05-01

    Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.

  16. A possible link between life and death of a xeric tree in desert.

    PubMed

    Xu, Gui-Qing; McDowell, Nate G; Li, Yan

    2016-05-01

    Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7MPa, beyond the P50leaf of -4.1MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Survival or productivity? Global synthesis of root and tuber production during drought

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2016-12-01

    According to FAO, there are six major root and tuber crops: potato, cassava, sweet potato, yam, taro, and yautia. Some root and tuber crops (e.g., sweet potato and cassava) are considered to be `drought-resistant', although quantitative evidence that support the premise was still lacking. Greater uncertainties exist on how drought effects co-vary with: 1) soil texture, 2) agro-ecological region, and 3) drought timing. To address these uncertainties, we collected literature data between 1980 and 2015 that reported monoculture root and tuber yield responses to drought under field conditions, and analyzed this large data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with root or tuber species and the phenological phase during which drought occurred. In contrast to common assumptions regarding drought resistance of certain root and tuber crops, we found that yield reduction was similar between potato and species thought to be `drought-resistant' such as cassava and sweet potato. Here we suggest that drought-resistance in cassava and sweet potato could be more related to survival rather than yield. All roots or tubers crops, however, experienced greater yield reduction when drought occurred during the tuberization period compared to during their vegetative phase. The effect of soil texture as well as region (and related climatic factors) on yield reduction and crop sensitivity were less obvious. Our study provides useful information that could inform agricultural planning, and influence the direction of research for improving the productivity and the resilience of these under-utilized crops in the drought-prone regions of the world.

  18. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana

    PubMed Central

    Li, Weiqiang; Nguyen, Kien Huu; Ha, Chien Van; Watanabe, Yasuko; Osakabe, Yuriko; Leyva-González, Marco Antonio; Sato, Mayuko; Tanaka, Maho; Mostofa, Mohammad Golam; Seki, Motoaki; Seo, Mitsunori; Yamaguchi, Shinjiro; Nelson, David C.; Herrera-Estrella, Luis

    2017-01-01

    Drought causes substantial reductions in crop yields worldwide. Therefore, we set out to identify new chemical and genetic factors that regulate drought resistance in Arabidopsis thaliana. Karrikins (KARs) are a class of butenolide compounds found in smoke that promote seed germination, and have been reported to improve seedling vigor under stressful growth conditions. Here, we discovered that mutations in KARRIKIN INSENSITIVE2 (KAI2), encoding the proposed karrikin receptor, result in hypersensitivity to water deprivation. We performed transcriptomic, physiological and biochemical analyses of kai2 plants to understand the basis for KAI2-regulated drought resistance. We found that kai2 mutants have increased rates of water loss and drought-induced cell membrane damage, enlarged stomatal apertures, and higher cuticular permeability. In addition, kai2 plants have reduced anthocyanin biosynthesis during drought, and are hyposensitive to abscisic acid (ABA) in stomatal closure and cotyledon opening assays. We identified genes that are likely associated with the observed physiological and biochemical changes through a genome-wide transcriptome analysis of kai2 under both well-watered and dehydration conditions. These data provide evidence for crosstalk between ABA- and KAI2-dependent signaling pathways in regulating plant responses to drought. A comparison of the strigolactone receptor mutant d14 (DWARF14) to kai2 indicated that strigolactones also contributes to plant drought adaptation, although not by affecting cuticle development. Our findings suggest that chemical or genetic manipulation of KAI2 and D14 signaling may provide novel ways to improve drought resistance. PMID:29131815

  19. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana.

    PubMed

    Li, Weiqiang; Nguyen, Kien Huu; Chu, Ha Duc; Ha, Chien Van; Watanabe, Yasuko; Osakabe, Yuriko; Leyva-González, Marco Antonio; Sato, Mayuko; Toyooka, Kiminori; Voges, Laura; Tanaka, Maho; Mostofa, Mohammad Golam; Seki, Motoaki; Seo, Mitsunori; Yamaguchi, Shinjiro; Nelson, David C; Tian, Chunjie; Herrera-Estrella, Luis; Tran, Lam-Son Phan

    2017-11-01

    Drought causes substantial reductions in crop yields worldwide. Therefore, we set out to identify new chemical and genetic factors that regulate drought resistance in Arabidopsis thaliana. Karrikins (KARs) are a class of butenolide compounds found in smoke that promote seed germination, and have been reported to improve seedling vigor under stressful growth conditions. Here, we discovered that mutations in KARRIKIN INSENSITIVE2 (KAI2), encoding the proposed karrikin receptor, result in hypersensitivity to water deprivation. We performed transcriptomic, physiological and biochemical analyses of kai2 plants to understand the basis for KAI2-regulated drought resistance. We found that kai2 mutants have increased rates of water loss and drought-induced cell membrane damage, enlarged stomatal apertures, and higher cuticular permeability. In addition, kai2 plants have reduced anthocyanin biosynthesis during drought, and are hyposensitive to abscisic acid (ABA) in stomatal closure and cotyledon opening assays. We identified genes that are likely associated with the observed physiological and biochemical changes through a genome-wide transcriptome analysis of kai2 under both well-watered and dehydration conditions. These data provide evidence for crosstalk between ABA- and KAI2-dependent signaling pathways in regulating plant responses to drought. A comparison of the strigolactone receptor mutant d14 (DWARF14) to kai2 indicated that strigolactones also contributes to plant drought adaptation, although not by affecting cuticle development. Our findings suggest that chemical or genetic manipulation of KAI2 and D14 signaling may provide novel ways to improve drought resistance.

  20. Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability.

    PubMed

    Fountain, Jake C; Koh, Jin; Yang, Liming; Pandey, Manish K; Nayak, Spurthi N; Bajaj, Prasad; Zhuang, Wei-Jian; Chen, Zhi-Yuan; Kemerait, Robert C; Lee, R Dewey; Chen, Sixue; Varshney, Rajeev K; Guo, Baozhu

    2018-02-21

    Aspergillus flavus is an opportunistic pathogen of plants such as maize and peanut under conducive conditions such as drought stress resulting in significant aflatoxin production. Drought-associated oxidative stress also exacerbates aflatoxin production by A. flavus. The objectives of this study were to use proteomics to provide insights into the pathogen responses to H 2 O 2 -derived oxidative stress, and to identify potential biomarkers and targets for host resistance breeding. Three isolates, AF13, NRRL3357, and K54A with high, moderate, and no aflatoxin production, were cultured in medium supplemented with varying levels of H 2 O 2 , and examined using an iTRAQ (Isobaric Tags for Relative and Absolute Quantification) approach. Overall, 1,173 proteins were identified and 220 were differentially expressed (DEPs). Observed DEPs encompassed metabolic pathways including antioxidants, carbohydrates, pathogenicity, and secondary metabolism. Increased lytic enzyme, secondary metabolite, and developmental pathway expression in AF13 was correlated with oxidative stress tolerance, likely assisting in plant infection and microbial competition. Elevated expression of energy and cellular component production in NRRL3357 and K54A implies a focus on oxidative damage remediation. These trends explain isolate-to-isolate variation in oxidative stress tolerance and provide insights into mechanisms relevant to host plant interactions under drought stress allowing for more targeted efforts in host resistance research.

  1. Promotive effects of alginate-derived oligosaccharides on the inducing drought resistance of tomato

    NASA Astrophysics Data System (ADS)

    Liu, Ruizhi; Jiang, Xiaolu; Guan, Huashi; Li, Xiaoxia; Du, Yishuai; Wang, Peng; Mou, Haijin

    2009-09-01

    In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato ( Lycopersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO (0.05%, 0.10%, 0.20%, 0.30% and 0.50%) after drought stress was simulated by exposing the roots to 0.6 molL-1 PEG-6000 solution for 6 h. Changes in biomass, electrolyte leakage and malondialdehyde (MDA), free proline, total soluble sugars (TSS) and abscisic acid (ABA), the enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) were measured to investigate the effects of ADO treatment. The results showed that the treatment with an ADO concentration of 0.20% exhibited the highest performance of drought stress resistance in the tomato seedlings by decreasing the electrolyte leakage and the concentration of MDA, increasing the contents of free proline, TSS and ABA, and increasing the activities of CAT, SOD, POD and PAL after treatment with ADO. It is suggested that changes in electrolyte leakage, MDA, osmotic solutes, ABA, anti-oxidative enzyme and PAL activities were responsible for the increased drought stress resistance in tomato seedlings. To our best knowledge, this is the first report of the effect of ADO treatment on enhancing the drought stress resistance of tomato seedlings.

  2. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

    USGS Publications Warehouse

    D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn; Palik, Brian J.

    2013-01-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 yrs) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forest systems.

  3. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems.

    PubMed

    D'Amato, Anthony W; Bradford, John B; Fraver, Shawn; Palik, Brian J

    2013-12-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (> 50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.

  4. Tree diversity does not always improve resistance of forest ecosystems to drought.

    PubMed

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  5. Leaf to landscape responses of giant sequoia to hotter drought: An introduction and synthesis for the special section

    USGS Publications Warehouse

    Nydick, Koren R.; Stephenson, Nathan L.; Ambrose, Anthony R.; Asner, Gregory P.; Baxter, Wendy L.; Das, Adrian J.; Dawson, Todd E.; Martin, Roberta E.; Paz-Kagan, Tarin

    2018-01-01

    Hotter droughts are becoming more common as climate change progresses, and they may already have caused instances of forest dieback on all forested continents. Learning from hotter droughts, including where on the landscape forests are more or less vulnerable to these events, is critical to help resource managers proactively prepare for the future. As part of our Leaf to Landscape Project, we measured the response of giant sequoia, the world’s largest tree species, to the extreme 2012–2016 hotter drought in California. The project integrated leaf-level physiology measurements, crown-level foliage dieback surveys, and remotely sensed canopy water content (CWC) to shed light on mechanisms and spatial patterns in drought response. Here we summarize initial findings, present a conceptual model of drought response, and discuss management implications; details are presented in the other four articles of the special section on Giant Sequoias and Drought. Giant sequoias exhibited both leaf- and canopy-level responses that were effective in protecting whole-tree hydraulic integrity for the vast majority of individual sequoias. Very few giant sequoias died during the drought compared to other mixed conifer tree species; however, the magnitude of sequoia drought response varied across the landscape. This variability was partially explained by local site characteristics, including variables related to site water balance. We found that low CWC is an indicator of recent foliage dieback, which occurs when stress levels are high enough that leaf-level adjustments alone are insufficient for giant sequoias to maintain hydraulic integrity. CWC or change in CWC may be useful indicators of drought stress that reveal patterns of vulnerability to future hotter droughts. Future work will measure recovery from the drought and strengthen our ability to interpret CWC maps. Our ultimate goal is to produce giant sequoia vulnerability maps to help target management actions, such as reducing other stressors, increasing resistance to hotter drought through prescribed fire or mechanical thinning, and planting sequoias in projected future suitable habitat, which may occur outside current grove distributions. We suggest that managers compare different types of vulnerability assessments and combine vulnerability maps with other sources of information to inform decisions.

  6. Leaf Pressure Volume Data in Caxiuana and Tapajos National Forest, Para, Brazil (2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Thomas; Moorcroft, Paul

    Pressure volume curve measurements on leaves of canopy trees from the from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from the km 67 forested area, which is adjacent to the decommissioned throughfall exclusion drought experimental plot. Caxiuana samples were harvested from trees growing in the throughfall exclusion plots. Data were collected in 2011. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), leaf area, fresh weight, relative weight, leaf water potential, and leaf water loss. P-V curve parameters (turgor loss point, osmotic potential, and bulk modulus of elasticity) canmore » be found in Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less

  7. What functional strategies drive drought survival and recovery of perennial species from upland grassland?

    PubMed Central

    Zwicke, Marine; Picon-Cochard, Catherine; Morvan-Bertrand, Annette; Prud’homme, Marie-Pascale; Volaire, Florence

    2015-01-01

    Background and Aims Extreme climatic events such as severe droughts are expected to increase with climate change and to limit grassland perennity. The present study aimed to characterize the adaptive responses by which temperate herbaceous grassland species resist, survive and recover from a severe drought and to explore the relationships between plant resource use and drought resistance strategies. Methods Monocultures of six native perennial species from upland grasslands and one Mediterranean drought-resistant cultivar were compared under semi-controlled and non-limiting rooting depth conditions. Above- and below-ground traits were measured under irrigation in spring and during drought in summer (50 d of withholding water) in order to characterize resource use and drought resistance strategies. Plants were then rehydrated and assessed for survival (after 15 d) and recovery (after 1 year). Key Results Dehydration avoidance through water uptake was associated with species that had deep roots (>1·2 m) and high root mass (>4 kg m−3). Cell membrane stability ensuring dehydration tolerance of roots and meristems was positively correlated with fructan content and negatively correlated with sucrose content. Species that survived and recovered best combined high resource acquisition in spring (leaf elongation rate >9 mm d−1 and rooting depth >1·2 m) with both high dehydration avoidance and tolerance strategies. Conclusions Most of the native forage species, dominant in upland grassland, were able to survive and recover from extreme drought, but with various time lags. Overall the results suggest that the wide range of interspecific functional strategies for coping with drought may enhance the resilience of upland grassland plant communities under extreme drought events. PMID:25851134

  8. What functional strategies drive drought survival and recovery of perennial species from upland grassland?

    PubMed

    Zwicke, Marine; Picon-Cochard, Catherine; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Volaire, Florence

    2015-11-01

    Extreme climatic events such as severe droughts are expected to increase with climate change and to limit grassland perennity. The present study aimed to characterize the adaptive responses by which temperate herbaceous grassland species resist, survive and recover from a severe drought and to explore the relationships between plant resource use and drought resistance strategies. Monocultures of six native perennial species from upland grasslands and one Mediterranean drought-resistant cultivar were compared under semi-controlled and non-limiting rooting depth conditions. Above- and below-ground traits were measured under irrigation in spring and during drought in summer (50 d of withholding water) in order to characterize resource use and drought resistance strategies. Plants were then rehydrated and assessed for survival (after 15 d) and recovery (after 1 year). Dehydration avoidance through water uptake was associated with species that had deep roots (>1·2 m) and high root mass (>4 kg m(-3)). Cell membrane stability ensuring dehydration tolerance of roots and meristems was positively correlated with fructan content and negatively correlated with sucrose content. Species that survived and recovered best combined high resource acquisition in spring (leaf elongation rate >9 mm d(-1) and rooting depth >1·2 m) with both high dehydration avoidance and tolerance strategies. Most of the native forage species, dominant in upland grassland, were able to survive and recover from extreme drought, but with various time lags. Overall the results suggest that the wide range of interspecific functional strategies for coping with drought may enhance the resilience of upland grassland plant communities under extreme drought events. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.

    PubMed

    Vitali, Valentina; Büntgen, Ulf; Bauhus, Jürgen

    2017-12-01

    Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long-term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought-tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed-species stands along an altitudinal gradient (400-1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population-level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change. © 2017 John Wiley & Sons Ltd.

  10. Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis.

    PubMed

    Salunkhe, Arvindkumar Shivaji; Poornima, R; Prince, K Silvas Jebakumar; Kanagaraj, P; Sheeba, J Annie; Amudha, K; Suji, K K; Senthil, A; Babu, R Chandra

    2011-09-01

    Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212-RM302-RM8085-RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.

  11. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants.

    PubMed

    Engelbrecht, Bettina M J; Kursar, Thomas A

    2003-08-01

    Quantifying plant drought resistance is important for understanding plant species' association to microhabitats with different soil moisture availability and their distribution along rainfall gradients, as well as for understanding the role of underlying morphological and physiological mechanisms. The effect of dry season drought on survival and leaf-area change of first year seedlings of 28 species of co-occurring woody tropical plants was experimentally quantified in the understory of a tropical moist forest. The seedlings were subjected to a drought or an irrigation treatment in the forest for 22 weeks during the dry season. Drought decreased survival and growth (assessed as leaf-area change) in almost all of the species. Both survival and leaf-area change in the dry treatment ranged fairly evenly from 0% to about 100% of that in the irrigated treatment. In 43% of the species the difference between treatments in survival was not significant even after 22 weeks. In contrast, only three species showed no significant effect of drought on leaf-area change. The effects of drought on species' survival and growth were not correlated with each other, reflecting different strategies in response to drought. Seedling size at the onset of the dry season had no significant effect on species' drought response. Our study is the first to comparatively assess seedling drought resistance in the habitat for a large number of tropical species, and underlines the importance of drought for plant population dynamics in tropical forests.

  12. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander

    PubMed Central

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836

  13. Intra-annual plasticity of growth mediates drought resilience over multiple years in tropical seedling communities.

    PubMed

    O'Brien, Michael J; Ong, Robert; Reynolds, Glen

    2017-10-01

    Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra-annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought. © 2017 John Wiley & Sons Ltd.

  14. Improved Understanding of the Photosynthetic Response of Seven Rice Genotypes with Different Drought Sensitivity using Light and CO2 Response Curves

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Basu, S.; Bereznyakov, D.; Pereira, A.; Naithani, K. J.

    2015-12-01

    Drought across different agro-climatic regions of the world has the capacity to drastically impact the yield potential of rice. Consequently, there is growing interest in developing drought tolerant rice varieties with high yield. We parameterized two photosynthesis models based on light and CO2 response curves for seven different rice genotypes with different drought survival mechanisms: sensitive (Nipponbar, TEJ), resistance (Bengal, TRJ), avoidance by osmotic adjustment (Kaybonnet, TRJ; IRAT177, TRJ; N22, Aus; Vandana, Aus; and O Glabberrima, 316603). All rice genotypes were grown in greenhouse conditions (24 °C ± 3°C air temperature and ~ 600 μmol m-2 s-1 light intensity) with light/dark cycles of 10/14 h in water filled trays simulating flooded conditions. Measurements were conducted on fully grown plants (35 - 60 days old) under simulated flooded and drought conditions. Preliminary results have shown that the drought sensitive genotype, Nipponbare has the lowest photosynthetic carboxylation capacity (Vcmax) and a similar electron transport rate (Jmax) compared to the drought resistant genotype IRAT 177. Mitochondrial respiration (Rd) of all the genotypes were similar while quantum yield of the drought sensitive genotype was greater than that of the drought resistant genotypes. While both drought tolerant and drought sensitive rice genotypes have the same photosynthetic yield, from an irrigation perspective the former would require less 'drop per grain'. This has enormous economic and management implications on account of dwindling water resources across the world due to drought.

  15. Water use efficiency and functional traits of a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Perez-Priego, Oscar; Lopez-Ballesteros, Ana; Sánchez-Cañete, Enrique P.; Serrano-Ortiz, Penélope; Carrara, Arnaud; Palomares-Palacio, Agustí; Oyonarte, Cecilio; Domingo, Francisco; Kowalski, Andrew S.

    2013-04-01

    In semiarid climates, water is the fundamental factor determining ecosystem productivity and thereby the capacity for carbon sequestration. Increased water use efficiency (WUE), the ratio of carbon dioxide assimilation (canopy photosynthesis, Pc) to water transpired (canopy evaporation, Ec), is assumed to be an adaptive strategy for sclerophyll shrublands to improve productivity and stress resistance in water-limited environments. However, the real complexity of WUE lies in its dependence on both plant physiological traits (e.g. stomatal resistance, photosynthetic capacity, leaf chemical composition, structure) and on environmental conditions (e.g. atmospheric CO2 concentration, vapour pressure deficit, temperature, light, soil water availability). We used a transient-state closed canopy-chamber to characterise CO2 and water vapour exchanges at the whole plant scale under different environmental conditions and phenological stages. Diurnal and seasonal variations in Pc, Ec and WUE were explained by both physiological and environmental variables. All species showed symmetric patterns in both Pc and Ec when not water limited, but asymmetry during summer drought when leaf water potential was low. During drought, grasses (Festuca sp.) showed a marked decline in functioning (Pc and Ec), whereas shrubs (Genista sp., Hormathophylla sp.) maintained spring-like assimilation rates all morning until stomatal controls shut down gas exchanges. While grasses showed the highest WUE when not water limited, their near senescence during summer drought yielded the lowest WUE. Shrubs showed reduced WUE under moderate drought stress, in contradiction to the assumptions made in global ecosystem models. The importance of the appropriate time-scale for calculating WUE (daily versus hourly), together with water use strategies and ecological functions of individual species, will be further discussed.

  16. Developmental ecology of annual killifish Millerichthys robustus (Cyprinodontiformes: Cynolebiidae).

    PubMed

    Domínguez-Castanedo, Omar; Valdesalici, Stefano; Rosales-Torres, Ana María

    2017-11-01

    Populations of annual killifishes persist in temporary water bodies over the dry season through the expression of diapause in their drought-resistant embryos. Environmental cues may influence expression of the diapause phenotype during embryonic incubation. Millerichthys robustus is the only annual killifish distributed in North America. The aim of this review is to analyze the ecology of M. robustus development and contrast this with that of annual killifishes in austral locations. The temporary water bodies inhabited by M. robustus present the following environmental conditions: flood, drought, and humidity. During the flooding period, the environment presents the lowest temperatures, shortest photoperiod, and highest precipitation, and embryos were found in diapause I. The drought period features the highest temperatures and lowest precipitation, and embryos were found in diapause II. In contrast, during the humid period at the beginning of the rainy season, embryos were found in diapause I, II, and III, associated with the longer photoperiod and high temperatures. These dynamics of the diapause phenotypes can be explained by a combination of the strategies of phenotypic plasticity during flood and drought periods, and bet-hedging during the humid period. Moreover, the microenvironmental conditions in which embryos were buried could influence developmental trajectories. Developmental Dynamics 246:802-806, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Isohydric species are not necessarily more carbon limited than anisohydric species during drought.

    PubMed

    Garcia-Forner, N; Biel, C; Savé, R; Martínez-Vilalta, J

    2017-04-01

    Isohydry (i.e., strong regulation of leaf water potential, Ψl) is commonly associated with strict stomatal regulation of transpiration under drought, which in turn is believed to minimize hydraulic risk at the expense of reduced carbon assimilation. Hence, the iso/anisohydric classification has been widely used to assess drought resistance and mortality mechanisms across species, with isohydric species being hypothetically more prone to carbon starvation and anisohydric species more vulnerable to hydraulic failure. These hypotheses and their underlying assumptions, however, have rarely been tested under controlled, experimental conditions. Our objective is to assess the physiological mechanisms underlying drought resistance differences between two co-occurring Mediterranean forest species with contrasting drought responses: Phillyrea latifolia L. (anisohydric and more resistant to drought) and Quercus ilex L. (isohydric and less drought resistant). A total of 100 large saplings (50 per species) were subjected to repeated drought treatments for a period of 3 years, after which Q. ilex showed 18% mortality whereas no mortality was detected in P. latifolia. Relatively isohydric behavior was confirmed for Q. ilex, but higher vulnerability to cavitation in this species implied that estimated embolism levels were similar across species (12-52% in Q. ilex vs ~30% in P. latifolia). We also found similar seasonal patterns of stomatal conductance and assimilation between species. If anything, the anisohydric P. latifolia tended to show lower assimilation rates than Q. ilex under extreme drought. Similar growth rates and carbon reserves dynamics in both species also suggests that P. latifolia was as carbon-constrained as Q. ilex. Increasing carbon reserves under extreme drought stress in both species, concurrent with Q. ilex mortality, suggests that mortality in our study was not triggered by carbon starvation. Our results warn against making direct connections between Ψl regulation, stomatal behavior and the mechanisms of drought-induced mortality in plants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California’s Historic Drought of 2014

    PubMed Central

    MacKinnon, Evan D.; Dario, Hannah L.; Jacobsen, Anna L.; Pratt, R. Brandon; Davis, Stephen D.

    2016-01-01

    Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species. PMID:27391489

  19. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California's Historic Drought of 2014.

    PubMed

    Venturas, Martin D; MacKinnon, Evan D; Dario, Hannah L; Jacobsen, Anna L; Pratt, R Brandon; Davis, Stephen D

    2016-01-01

    Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species.

  20. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice.

    PubMed

    Yu, Yanwen; Yang, Dexin; Zhou, Shirong; Gu, Juntao; Wang, Fengru; Dong, Jingao; Huang, Rongfeng

    2017-01-01

    Drought is an important factor limiting plant development and crop production. Dissecting the factors involved in this process is the key for enhancement of plant tolerance to drought stress by genetic approach. Here, we evaluated the regulatory function of a novel rice ethylene response factor (ERF) OsERF109 in drought stress. Expression of OsERF109 was rapidly induced by stress and phytohormones. Subcellular localization and transactivation assay demonstrated that OsERF109 was localized in nucleus and possessed transactivation activity. Transgenic plants overexpressing (OE) and knockdown with RNA interfering (RI) OsERF109 exhibited significantly reduced and improved drought resistance, respectively, indicating that OsERF109 negatively regulates drought resistance in rice. Furthermore, measurement by gas chromatography showed that ethylene contents were less in OE while more in RI lines than these in wild types, supporting the data of drought tolerance and water loss in transgenic lines. Quantitative real-time PCR analysis also proved the regulation of OsERF109 in the expression of OSACS6, OSACO2, and OsERF3, which have been identified to play important roles in ethylene biosynthesis. Based on these results, our data evidence that OsERF109 regulates drought resistance by affecting the ethylene biosynthesis in rice. Overall, our study reveals the negative role of OsERF109 in ethylene biosynthesis and drought tolerance in rice.

  1. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  2. Transcriptomic basis for drought-resistance in Brassica napus L.

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  3. Establishing an efficient way to utilize the drought resistance germplasm population in wheat.

    PubMed

    Wang, Jiancheng; Guan, Yajing; Wang, Yang; Zhu, Liwei; Wang, Qitian; Hu, Qijuan; Hu, Jin

    2013-01-01

    Drought resistance breeding provides a hopeful way to improve yield and quality of wheat in arid and semiarid regions. Constructing core collection is an efficient way to evaluate and utilize drought-resistant germplasm resources in wheat. In the present research, 1,683 wheat varieties were divided into five germplasm groups (high resistant, HR; resistant, R; moderate resistant, MR; susceptible, S; and high susceptible, HS). The least distance stepwise sampling (LDSS) method was adopted to select core accessions. Six commonly used genetic distances (Euclidean distance, Euclid; Standardized Euclidean distance, Seuclid; Mahalanobis distance, Mahal; Manhattan distance, Manhat; Cosine distance, Cosine; and Correlation distance, Correlation) were used to assess genetic distances among accessions. Unweighted pair-group average (UPGMA) method was used to perform hierarchical cluster analysis. Coincidence rate of range (CR) and variable rate of coefficient of variation (VR) were adopted to evaluate the representativeness of the core collection. A method for selecting the ideal constructing strategy was suggested in the present research. A wheat core collection for the drought resistance breeding programs was constructed by the strategy selected in the present research. The principal component analysis showed that the genetic diversity was well preserved in that core collection.

  4. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    PubMed

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  5. Spatiotemporal analysis of the agricultural drought risk in Heilongjiang Province, China

    NASA Astrophysics Data System (ADS)

    Pei, Wei; Fu, Qiang; Liu, Dong; Li, Tian-xiao; Cheng, Kun; Cui, Song

    2017-06-01

    Droughts are natural disasters that pose significant threats to agricultural production as well as living conditions, and a spatial-temporal difference analysis of agricultural drought risk can help determine the spatial distribution and temporal variation of the drought risk within a region. Moreover, this type of analysis can provide a theoretical basis for the identification, prevention, and mitigation of drought disasters. In this study, the overall dispersion and local aggregation of projection points were based on research by Friedman and Tukey (IEEE Trans on Computer 23:881-890, 1974). In this work, high-dimensional samples were clustered by cluster analysis. The clustering results were represented by the clustering matrix, which determined the local density in the projection index. This method avoids the problem of determining a cutoff radius. An improved projection pursuit model is proposed that combines cluster analysis and the projection pursuit model, which offer advantages for classification and assessment, respectively. The improved model was applied to analyze the agricultural drought risk of 13 cities in Heilongjiang Province over 6 years (2004, 2006, 2008, 2010, 2012, and 2014). The risk of an agricultural drought disaster was characterized by 14 indicators and the following four aspects: hazard, exposure, sensitivity, and resistance capacity. The spatial distribution and temporal variation characteristics of the agricultural drought risk in Heilongjiang Province were analyzed. The spatial distribution results indicated that Suihua, Qigihar, Daqing, Harbin, and Jiamusi are located in high-risk areas, Daxing'anling and Yichun are located in low-risk areas, and the differences among the regions were primarily caused by the aspects exposure and resistance capacity. The temporal variation results indicated that the risk of agricultural drought in most areas presented an initially increasing and then decreasing trend. A higher value for the exposure aspect increased the risk of drought, whereas a higher value for the resistance capacity aspect reduced the risk of drought. Over the long term, the exposure level of the region presented limited increases, whereas the resistance capacity presented considerable increases. Therefore, the risk of agricultural drought in Heilongjiang Province will continue to exhibit a decreasing trend.

  6. Belowground Carbon Allocation and Plant-Microbial Interactions Drive Resistance and Resilience of Mountain Grassland Communities to Drought

    NASA Astrophysics Data System (ADS)

    Karlowsky, S.; Augusti, A.; Ingrisch, J.; Hasibeder, R.; Lavorel, S.; Bahn, M.; Gleixner, G.

    2016-12-01

    Belowground carbon allocation (BCA) and plant-microbial interactions are crucial for the functioning of terrestrial ecosystems. Recent research suggests that extreme events can have severe effects on these processes but it is unknown how land use intensity potentially modifies their responses. We studied the resistance and resilience of mountain grassland communities to prolonged drought and investigated the role of plant C allocation and soil microbial communities in mediating drought resistance and immediate recovery. In a common garden experiment we exposed monoliths from an abandoned grassland and a hay meadow to an early summer drought. Two independent 13C pulse labeling experiments were conducted, the first during peak drought and the second during the recovery phase. The 13C incorporation was analyzed in above- and belowground plant parts and in phospho- and neutral lipid fatty acids of soil microorganisms. In addition, a 15N label was added at the rewetting to determine plant N uptake. We found that C uptake, BCA and C transfer to soil microorganisms were less strongly reduced by drought in the abandoned grassland than in the meadow. Moreover, drought induced an increase of arbuscular mycorrhiza fungi (AMF) marker in the abandoned grassland. Nevertheless, C uptake and related parameters were quickly recovered and N uptake increased in the meadow during recovery. Unexpectedly, AMF and their C uptake were generally reduced during recovery, while bacteria increased and quickly recovered C uptake, particularly in the meadow. Our results showed a negative relation between high resistance and fast recovery. The more resistant abandoned grassland plant communities seemed to invest more C below ground and into interactions with AMF during drought, likely to access water through their hyphal network. Conversely, meadow communities invested more C from recent photosynthesis into bacterial communities during recovery, obviously to gain more nutrients for regrowth through fueling mineralization in the rhizosphere.

  7. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance.

    PubMed

    Costa E Silva, F; Shvaleva, A; Broetto, F; Ortuño, M F; Rodrigues, M L; Almeida, M H; Chaves, M M; Pereira, J S

    2009-01-01

    We tested the hypothesis that Eucalyptus globulus Labill. genotypes that are more resistant to dry environments might also exhibit higher cold tolerances than drought-sensitive plants. The effect of low temperatures was evaluated in acclimated and unacclimated ramets of a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of E. globulus. We studied the plants' response via leaf gas exchanges, leaf water and osmotic potentials, concentrations of soluble sugars, several antioxidant enzymes and leaf electrolyte leakage. Progressively lowering air temperatures (from 24/16 to 10/-2 degrees C, day/night) led to acclimation of both clones. Acclimated ramets exhibited higher photosynthetic rates, stomatal conductances and lower membrane relative injuries when compared to unacclimated ramets. Moreover, low temperatures led to significant increases of soluble sugars and antioxidant enzymes activity (glutathione reductase, ascorbate peroxidase and superoxide dismutases) of both clones in comparison to plants grown at control temperature (24/16 degrees C). On the other hand, none of the clones, either acclimated or not, exhibited signs of photoinhibition under low temperatures and moderate light. The main differences in the responses to low temperatures between the two clones resulted mainly from differences in carbon metabolism, including a higher accumulation of soluble sugars in the drought-resistant clone CN5 as well as a higher capacity for osmotic regulation, as compared to the drought-sensitive clone ST51. Although membrane injury data suggested that both clones had the same inherent freezing tolerance before and after cold acclimation, the results also support the hypothesis that the drought-resistant clone had a greater cold tolerance at intermediate levels of acclimation than the drought-sensitive clone. A higher capacity to acclimate in a short period can allow a clone to maintain an undamaged leaf surface area along sudden frost events, increasing growth capacity. Moreover, it can enhance survival chances in frost-prone sites expanding the plantation range with more adaptive clones.

  8. Effect of Experimentally Manipulated Fire Regimes on the Response of Forests to Drought

    NASA Astrophysics Data System (ADS)

    Refsland, T. K.; Knapp, B.; Fraterrigo, J.

    2017-12-01

    Climate change is expected to increase drought stress in many forests and alter fire regimes. Fire can reduce tree density and thus competition for limited water, but the effects of changing fire regimes on forest productivity during drought remain poorly understood. We measured the annual ring-widths of adult oak (Quercus spp.) trees in Mark Twain National Forest, Missouri USA that experienced unburned, annual or periodic (every 4 years) surface fire treatments from 1951 - 2015. Severe drought events were identified using the BILJOU water balance model. We determined the effect of fire treatment on stand-level annual growth rates as well as stand-level resistance and resilience to drought, defined as the drought-induced reduction in growth and post-drought recovery in growth, respectively. During favorable wet years, annual and periodic fire treatments reduced annual growth rates by approximately 10-15% relative to unburned controls (P < 0.001). Stand-level growth rates declined 22-40% during drought events (P < 0.001), but fire-driven changes to stand basal area had no effect on the resistance or resilience of trees to drought. The decline in annual growth rates of burned stands during favorable wet years was likely caused by increased nitrogen (N) limitation in burned plots. After 60 years of treatment, burned plots experienced 30% declines in total soil N relative to unburned plots. Our finding that drought resistance and resilience were similar across all treatments suggest that fire-driven reductions in stand density may have negligible effects on soil moisture availability during drought. Our results highlight that climate-fire interactions can have important long-term effects on forest productivity.

  9. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii).

    PubMed

    Bansal, Sheel; Harrington, Constance A; Gould, Peter J; St Clair, J Bradley

    2015-02-01

    There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought-resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space-for-time substitution, common garden experiment with 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as 'cool/moist', 'moderate', or 'warm/dry') to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought-resistance, (ii) the patterns of genetic variation are related to the native source-climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought-resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpiration(min)), water deficit (% below turgid saturation), and specific leaf area (SLA, cm(2) g(-1)) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought-resistance (i.e., lower transpiration(min), water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought-resistance across all test sites. Multiple regression analysis indicated that Douglas-fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Genetic Diversity and Phenotypic Variation for Drought Resistance in Alfalfa (Medicago sativa L.) Germplasm Collected for Drought Tolerance

    USDA-ARS?s Scientific Manuscript database

    Drought is a major environmental factor hampering alfalfa productivity worldwide. Gene banks provide an array of trait diversity, frequently consisting of specific seed collection projects that focused on acquiring germplasm adapted to specific traits such as drought tolerance. These subsets provide...

  11. Resistance of tropical seedlings to drought is mediated by neighbourhood diversity.

    PubMed

    O'Brien, Michael J; Reynolds, Glen; Ong, Robert; Hector, Andy

    2017-11-01

    Occasional periods of drought are typical of most tropical forests, but climate change is increasing drought frequency and intensity in many areas across the globe, threatening the structure and function of these ecosystems. The effects of intermittent drought on tropical tree communities remain poorly understood and the potential impacts of intensified drought under future climatic conditions are even less well known. The response of forests to altered precipitation will be determined by the tolerances of different species to reduced water availability and the interactions among plants that alleviate or exacerbate the effects of drought. Here, we report the response of experimental monocultures and mixtures of tropical trees to simulated drought, which reveals a fundamental shift in the nature of interactions among species. Weaker competition for water in diverse communities allowed seedlings to maintain growth under drought while more intense competition among conspecifics inhibited growth under the same conditions. These results show that reduced competition for water among species in mixtures mediates community resistance to drought. The delayed onset of competition for water among species in more diverse neighbourhoods during drought has potential implications for the coexistence of species in tropical forests and the resilience of these systems to climate change.

  12. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach.

    PubMed

    Dixit, Shalabh; Huang, B Emma; Sta Cruz, Ma Teresa; Maturan, Paul T; Ontoy, Jhon Christian E; Kumar, Arvind

    2014-01-01

    The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast. A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait. Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population. This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.

  13. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Isolation of Mycorrhizal Rhizoctonia as resistance inducer of Dendrobium macrophyllum to drought

    NASA Astrophysics Data System (ADS)

    Soelistijono, R.; Daryanti; Handayani, M. T.

    2018-03-01

    One of the obstacles encountered in the cultivation of orchids Dendrobium macrophyllum is difficult to cultivate in areas with high drought due to the slow absorption of nutrients. Based on previous research, the mycorrhizal binucleate Rhizoctonia (BNR) has the ability to increase the resistance of vanilla (Vanilla planifolia Andrews) to drought, but it has never been tried on orchid Dendrobium macrophyllum. The objectives of this study was to isolate resistance inducer organisms by induced resistance techniques on orchids against drought. It is expected that the administration of mycorrhizal Rhizoctonia can increase the absorption of nutrients in D. macrophyllum which is exposed to high water stress. Each treatment consisted of 3 replications of 3 potted plants. The characterization of mycorrhizal Rhizoctonia isolate from D. macrophyllum root from Surakarta, Kopeng, Magelang, and Yogyakarta did not different morphologically. Character equations are in colony color, cell length and number of cores, while character differences are present in cell width and all isolates are capable of forming a peloton structure.

  15. Tropical river suspended sediment and solute dynamics in storms during an extreme drought

    NASA Astrophysics Data System (ADS)

    Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.

    2017-05-01

    Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) "new water" dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.

  16. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    PubMed

    Yu, Jingling; Yang, Lei; Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  17. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    Treesearch

    Sparkle L. Malone; Mirela G. Tulbure; Antonio J. Perez-Luque; Timothy J. Assal; Leah L. Bremer; Debora P. Drucker; Vicken Hillis; Sara Varela; Michael L. Goulden

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and...

  18. Learning To Cope with Drought in Zimbabwe.

    ERIC Educational Resources Information Center

    von Kotze, Astrid

    2002-01-01

    A program started during a drought in Zimbabwe involved the cultivation of drought-resistant crops. The program made the women less dependent on their often-absent husbands and changed the relationship between men and women in the village. (JOW)

  19. Modeling Drought Impact Occurrence Based on Climatological Drought Indices for Europe

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Kohn, I.; Tallaksen, L. M.; Stahl, K.

    2014-12-01

    Meteorological drought indices are often assumed to accurately characterize the severity of a drought event; however, these indices do not necessarily reflect the likelihood or severity of a particular type of drought impact experienced on the ground. In previous research, this link between index and impact was often estimated based on thresholds found by experience, measured using composite indices with assumed weighting schemes, or defined based on very narrow impact measures, using either a narrow spatial extent or very specific impacts. This study expands on earlier work by demonstrating the feasibility of relating user-provided impact reports to the climatological drought indices SPI and SPEI by logistic regression. The user-provided drought impact reports are based on the European Drought Impact Inventory (EDII, www.geo.uio.no/edc/droughtdb/), a newly developed online database that allows both public report submission and querying the more than 4,000 reported impacts spanning 33 European countries. This new tool is used to quantify the link between meteorological drought indices and impacts focusing on four primary impact types, spanning agriculture, energy and industry, public water supply, and freshwater ecosystem across five European countries. Statistically significant climate indices are retained as predictors using step-wise regression and used to compare the most relevant drought indices and accumulation periods for different impact types and regions. Agricultural impacts are explained best by 2-12 month anomalies, with 2-3 month anomalies found in predominantly rain-fed agricultural regions, and anomalies greater than 3 months related to agricultural management practices. Energy and industry impacts, related to hydropower and energy cooling water in these countries, respond to longer accumulated precipitation anomalies (6-12 months). Public water supply and freshwater ecosystem impacts are explained by a more complex combination of short (1-3 month) and seasonal (6-12 month) anomalies. A mean of 47.0% (22.4-71.6%) impact deviance is explained by the resulting models, highlighting the feasibility of using such statistical techniques and drought impact databases to model drought impact likelihood based on relatively easily calculated meteorological drought indices.

  20. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan

    2016-04-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.

  1. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, A.; Laaha, G.; Van Lanen, H.; Parajka, J.; Fleig, A. K.; Ploum, S.

    2015-12-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.

  2. Evaluation of drought using SPEI drought class transitions and log-linear models for different agro-ecological regions of India

    NASA Astrophysics Data System (ADS)

    Alam, N. M.; Sharma, G. C.; Moreira, Elsa; Jana, C.; Mishra, P. K.; Sharma, N. K.; Mandal, D.

    2017-08-01

    Markov chain and 3-dimensional log-linear models were attempted to model drought class transitions derived from the newly developed drought index the Standardized Precipitation Evapotranspiration Index (SPEI) at a 12 month time scale for six major drought prone areas of India. Log-linear modelling approach has been used to investigate differences relative to drought class transitions using SPEI-12 time series derived form 48 yeas monthly rainfall and temperature data. In this study, the probabilities of drought class transition, the mean residence time, the 1, 2 or 3 months ahead prediction of average transition time between drought classes and the drought severity class have been derived. Seasonality of precipitation has been derived for non-homogeneous Markov chains which could be used to explain the effect of the potential retreat of drought. Quasi-association and Quasi-symmetry log-linear models have been fitted to the drought class transitions derived from SPEI-12 time series. The estimates of odds along with their confidence intervals were obtained to explain the progression of drought and estimation of drought class transition probabilities. For initial months as the drought severity increases the calculated odds shows lower value and the odds decreases for the succeeding months. This indicates that the ratio of expected frequencies of occurrence of transition from drought class to the non-drought class decreases as compared to transition to any drought class when the drought severity of the present class increases. From 3-dimensional log-linear model it is clear that during the last 24 years the drought probability has increased for almost all the six regions. The findings from the present study will immensely help to assess the impact of drought on the gross primary production and to develop future contingent planning in similar regions worldwide.

  3. Root attributes affecting water uptake of rice (Oryza sativa) under drought

    PubMed Central

    Henry, Amelia

    2012-01-01

    Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp r) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function. PMID:22791828

  4. Root attributes affecting water uptake of rice (Oryza sativa) under drought.

    PubMed

    Henry, Amelia; Cal, Andrew J; Batoto, Tristram C; Torres, Rolando O; Serraj, Rachid

    2012-08-01

    Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lpr) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.

  5. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems.

    PubMed

    Hoover, David L; Duniway, Michael C; Belnap, Jayne

    2015-12-01

    In drylands, climate change is predicted to cause chronic reductions in water availability (press-droughts) through reduced precipitation and increased temperatures as well as increase the frequency and intensity of short-term extreme droughts (pulse-droughts). These changes in precipitation patterns may have profound ecosystem effects, depending on the sensitivities of the dominant plant functional types (PFTs). Here we present the responses of four Colorado Plateau PFTs to an experimentally imposed, 4-year, press-drought during which a natural pulse-drought occurred. Our objectives were to (1) identify the drought sensitivities of the PFTs, (2) assess the additive effects of the press- and pulse-drought, and (3) examine the interactive effects of soils and drought. Our results revealed that the C3 grasses were the most sensitive PFT to drought, the C3 shrubs were the most resistant, and the C4 grasses and shrubs had intermediate drought sensitivities. Although we expected the C3 grasses would have the greatest response to drought, the higher resistance of C3 shrubs relative to the C4 shrubs was contrary to our predictions based on the higher water use efficiency of C4 photosynthesis. Also, the additive effects of press- and pulse-droughts caused high morality in C3 grasses, which has large ecological and economic ramifications for this region. Furthermore, despite predictions based on the inverse texture hypothesis, we observed no interactive effects of soils with the drought treatment on cover or mortality. These results suggest that plant responses to droughts in drylands may differ from expectations and have large ecological effects if press- and pulse-droughts push species beyond physiological and mortality thresholds.

  6. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems

    USGS Publications Warehouse

    Hoover, David L.; Duniway, Michael C.; Belnap, Jayne

    2015-01-01

    In drylands, climate change is predicted to cause chronic reductions in water availability (press-droughts) through reduced precipitation and increased temperatures as well as increase the frequency and intensity of short-term extreme droughts (pulse-droughts). These changes in precipitation patterns may have profound ecosystem effects, depending on the sensitivities of the dominant plant functional types (PFTs). Here we present the responses of four Colorado Plateau PFTs to an experimentally imposed, 4-year, press-drought during which a natural pulse-drought occurred. Our objectives were to (1) identify the drought sensitivities of the PFTs, (2) assess the additive effects of the press- and pulse-drought, and (3) examine the interactive effects of soils and drought. Our results revealed that the C3 grasses were the most sensitive PFT to drought, the C3shrubs were the most resistant, and the C4 grasses and shrubs had intermediate drought sensitivities. Although we expected the C3 grasses would have the greatest response to drought, the higher resistance of C3 shrubs relative to the C4 shrubs was contrary to our predictions based on the higher water use efficiency of C4 photosynthesis. Also, the additive effects of press- and pulse-droughts caused high morality in C3 grasses, which has large ecological and economic ramifications for this region. Furthermore, despite predictions based on the inverse texture hypothesis, we observed no interactive effects of soils with the drought treatment on cover or mortality. These results suggest that plant responses to droughts in drylands may differ from expectations and have large ecological effects if press- and pulse-droughts push species beyond physiological and mortality thresholds.

  7. Change of arginine content and some physiological traits under midseason drought in peanut genotypes with different levels of drought resistance

    USDA-ARS?s Scientific Manuscript database

    Peanut production areas frequently suffer from drought, which can cause severe yield losses, increased aflatoxin, and compositional changes in seed. Midseason drought is generally the most detrimental to seed yields and in altering seed protein composition. The purpose of this study was to investi...

  8. Agro-morphological characterization of diverse sorghum lines for pre-and postflowering drought tolerance

    USDA-ARS?s Scientific Manuscript database

    The impact of drought stress on sorghum yield does not only depend on the intensity and timing of drought, but as well on the developmental stage of the crop. One of the limitations in breeding for pre-and/or postflowering drought stress resistance in sorghum is the fewer availability of diverse gen...

  9. Who Died, Where? Quantification of Drought-Induced Tree Mortality in Texas

    NASA Astrophysics Data System (ADS)

    Schwantes, A.; Swenson, J. J.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.

    2014-12-01

    During 2011, Texas experienced a severe drought that killed millions of trees across the state. Drought-induced tree mortality can have significant ecological impacts and is expected to increase with climate change. We identify methods to quantify tree mortality in central Texas by using remotely sensed images before and after the drought at multiple spatial resolutions. Fine-scale tree mortality maps were created by classifying 1-m orthophotos from the National Agriculture Imagery Program. These classifications showed a high correlation with field estimates of percent canopy loss (RMSE = 2%; R2=0.9), and were thus used to calibrate coarser scale 30-m Landsat imagery. Random Forest, a machine learning method, was applied to obtain sub-pixel estimates of tree mortality. Traditional per-pixel classification techniques can map mortality of whole stands of trees (e.g. fire). However, these methods are often inadequate in detecting subtle changes in land cover, such as those associated with drought-induced tree mortality, which is often a widespread but scattered disturbance. Our method is unique, because it is capable of mapping death of individual canopies within a pixel. These 30-m tree mortality maps were then used to identify ecological systems most impacted by the drought and edaphic factors that control spatial distributions of tree mortality across central Texas. Ground observations coupled with our remote sensing analyses revealed that the majority of the mortality was Juniperus ashei. From a physiological standpoint this is surprising, because J. ashei is a drought-resistant tree. However, over the last century, this species has recently encroached into many areas previously dominated by grassland. Also, J. ashei tends to occupy landscape positions with lower available water storage, which could explain its high mortality rate. Predominantly tree mortality occurred in dry landscape positions (e.g. areas dominated by shallow soils, a low compound topographic index, and a high heat index). As increases in extreme drought events are predicted to occur with climate change, it will become more important to establish methods capable of detecting associated drought-induced tree mortality, to recognize vulnerable ecological systems, and to identify edaphic factors that predispose trees to mortality.

  10. Tropical river suspended sediment and solute dynamics in storms during an extreme drought

    USGS Publications Warehouse

    Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.

    2017-01-01

    Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) “new water” dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.

  11. Genetic variation, phenotypic stability, and repeatability of drought response in European larch throughout 50 years in a common garden experiment

    PubMed Central

    George, Jan-Peter; Grabner, Michael; Karanitsch-Ackerl, Sandra; Mayer, Konrad; Weißenbacher, Lambert; Schueler, Silvio

    2017-01-01

    Abstract Assessing intra-specific variation in drought stress response is required to mitigate the consequences of climate change on forest ecosystems. Previous studies suggest that European larch (Larix decidua Mill.), an important European conifer in mountainous and alpine forests, is highly vulnerable to drought. In light of this, we estimated the genetic variation in drought sensitivity and its degree of genetic determination in a 50-year-old common garden experiment in the drought-prone northeastern Austria. Tree ring data from larch provenances originating from across the species' natural range were used to estimate the drought reaction in four consecutive drought events (1977, 1981, 1990–1994, and 2003) with extremely low standardized precipitation- and evapotranspiration-index values that affected growth in all provenances. We found significant differences among provenances across the four drought periods for the trees’ capacity to withstand drought (resistance) and for their capacity to reach pre-drought growth levels after drought (resilience). Provenances from the species' northern distribution limit in the Polish lowlands were found to be more drought resistant and showed higher stability across all drought periods than provenances from mountainous habitats at the southern fringe. The degree of genetic determination, as estimated by the repeatability, ranged up to 0.39, but significantly differed among provenances, indicating varying degrees of natural selection at the provenance origin. Generally, the relationship between the provenances’ source climate and drought behavior was weak, suggesting that the contrasting patterns of drought response are a result of both genetic divergence out of different refugial lineages and local adaptation to summer or winter drought conditions. Our analysis suggests that European larch posseses high genetic variation among and within provenances that can be used for assisted migration and breeding programs. PMID:28173601

  12. Proteomic analysis of drought resistance in crabapple seedlings primed by the xenobiotic Beta-aminobutyric acid

    USDA-ARS?s Scientific Manuscript database

    In a variety of annual crops and model plants, the xenobiotic DL-Beta-aminobutyric acid (BABA) has been shown to enhance disease resistance and increase salt, drought and thermotolerance. BABA does not activate stress genes directly, but sensitizes plants to respond more quickly and strongly to biot...

  13. How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes

    PubMed Central

    Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis

    2009-01-01

    Background and Aims Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. Methods A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels. Key Results Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation. Conclusions Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions. PMID:19773272

  14. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  15. Repeated drought alters resistance of seed bank regeneration in baldcypress swamps of North America

    USGS Publications Warehouse

    Lei, Ting; Middleton, Beth A.

    2018-01-01

    Recurring drying and wetting events are likely to increase in frequency and intensity in predicted future droughts in the central USA and alter the regeneration potential of species. We explored the resistance of seed banks to successive droughts in 53 sites across the nine locations in baldcypress swamps in the southeastern USA. Along the Mississippi River Alluvial Valley and northern Gulf of Mexico, we investigated the capacity of seed banks to retain viable seeds after successive periods of drying and wetting in a greenhouse study. Mean differences in species richness and seed density were compared to examine the interactions of successive droughts, geographical location and water regime. The results showed that both species richness and total density of germinating seedlings decreased over repeated drought trials. These responses were more pronounced in geographical areas with higher annual mean temperature. In seed banks across the southeastern swamp region, most species were exhausted after Trial 2 or 3, except for semiaquatic species in Illinois and Tennessee, and aquatic species in Texas. Distinct geographical trends in seed bank resistance to drought demonstrate that climate-induced drying of baldcypress swamps could influence the regeneration of species differently across their ranges. Despite the health of adult individuals, lack of regeneration may push ecosystems into a relict status. Seed bank depletion by germination without replenishment may be a major conservation threat in a future with recurring droughts far less severe than megadrought. Nevertheless, the protection of moist refugia might aid conservation.

  16. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    PubMed

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  17. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply

    PubMed Central

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root–shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root–shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency. PMID:27802318

  18. The Multi-Resistant Reaction of Drought-Tolerant Coffee 'Conilon Clone 14' to Meloidogyne spp. and Late Hypersensitive-Like Response in Coffea canephora.

    PubMed

    Lima, Edriana A; Furlanetto, Cleber; Nicole, Michel; Gomes, Ana C M M; Almeida, Maria R A; Jorge-Júnior, Aldemiro; Correa, Valdir R; Salgado, Sônia Maria; Ferrão, Maria A G; Carneiro, Regina M D G

    2015-06-01

    Root-knot nematodes (RKN), Meloidogyne spp., have major economic impact on coffee production in Central and South America. Genetic control of RKN constitutes an essential part for integrated pest management strategy. The objective of this study was to evaluate the resistance of Coffea canephora genotypes (clones) to Meloidogyne spp. Sensitive and drought-tolerant coffee genotypes were used to infer their resistance using nematode reproduction factor and histopathology. Eight clonal genotypes were highly resistant to M. paranaensis. 'Clone 14' (drought-tolerant) and 'ESN2010-04' were the only genotypes highly resistant and moderately resistant, respectively, to both M. incognita races 3 and 1. Several clones were highly resistant to both avirulent and virulent M. exigua. Clone 14 and ESN2010-04 showed multiple resistance to major RKNs tested. Roots of 'clone 14' (resistant) and 'clone 22' (susceptible) were histologically studied against infection by M. incognita race 3 and M. paranaensis. Reduction of juvenile (J2) penetration in clone 14 was first seen at 2 to 6 days after inoculation (DAI). Apparent early hypersensitive reaction (HR) was seen in root cortex between 4 and 6 DAI, which led to cell death and prevention of some nematode development. At 12 to 20 DAI, giant cells formed in the vascular cylinder, besides normal development into J3/J4. From 32 to 45 DAI, giant cells were completely degenerated. Late, intense HR and cell death were frequently observed around young females and giant cells reported for the first time in coffee pathosystem. These results provide rational bases for future studies, including prospection, characterization, and expression profiling of genomic loci involved in both drought tolerance and resistance to multiple RKN species.

  19. Density-dependent vulnerability of forest ecosystems to drought

    USGS Publications Warehouse

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.

    2017-01-01

    1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.

  20. Deciphering drought-induced metabolic responses and regulation in developing maize kernels.

    PubMed

    Yang, Liming; Fountain, Jake C; Ji, Pingsheng; Ni, Xinzhi; Chen, Sixue; Lee, Robert D; Kemerait, Robert C; Guo, Baozhu

    2018-02-12

    Drought stress conditions decrease maize growth and yield, and aggravate preharvest aflatoxin contamination. While several studies have been performed on mature kernels responding to drought stress, the metabolic profiles of developing kernels are not as well characterized, particularly in germplasm with contrasting resistance to both drought and mycotoxin contamination. Here, following screening for drought tolerance, a drought-sensitive line, B73, and a drought-tolerant line, Lo964, were selected and stressed beginning at 14 days after pollination. Developing kernels were sampled 7 and 14 days after drought induction (DAI) from both stressed and irrigated plants. Comparative biochemical and metabolomic analyses profiled 409 differentially accumulated metabolites. Multivariate statistics and pathway analyses showed that drought stress induced an accumulation of simple sugars and polyunsaturated fatty acids and a decrease in amines, polyamines and dipeptides in B73. Conversely, sphingolipid, sterol, phenylpropanoid and dipeptide metabolites accumulated in Lo964 under drought stress. Drought stress also resulted in the greater accumulation of reactive oxygen species (ROS) and aflatoxin in kernels of B73 in comparison with Lo964 implying a correlation in their production. Overall, field drought treatments disordered a cascade of normal metabolic programming during development of maize kernels and subsequently caused oxidative stress. The glutathione and urea cycles along with the metabolism of carbohydrates and lipids for osmoprotection, membrane maintenance and antioxidant protection were central among the drought stress responses observed in developing kernels. These results also provide novel targets to enhance host drought tolerance and disease resistance through the use of biotechnologies such as transgenics and genome editing. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Biochar alters the resistance and resilience to drought in a tropical soil

    NASA Astrophysics Data System (ADS)

    Liang, Chenfei; Zhu, Xiaolin; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2014-05-01

    Soil microbes play a key role in nutrient cycling and carbon sequestration. Global change can alter soil microbial population composition and behavior. Biochar addition has been explored in the last years as a way to mitigate global warming. However, responses of microbial communities to biochar addition in particular in relation to abiotic disturbances are seldom documented. An example of these disturbances, which is predicted to be exacerbated with global warming, is regional drought. It has been known that fungal-based food webs are more resistant to drought than their bacterial counterparts. Our study found that biochar addition can increase the resistance of both the bacterial and fungal networks to drought. Contrary to expected, this result was not related to a change in the dominance of fungal or bacteria. In general, soil amended with biochar was characterized by a faster recovery of soil microbial properties to its basal values. Biochar addition to the soil also suppressed the Birch effect, a result that has not been previously reported.

  2. Creating Drought- and Salt-Tolerant Crops by Overexpressing a Vacuolar Pyrophosphatase Gene

    USDA-ARS?s Scientific Manuscript database

    Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proto...

  3. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    USDA-ARS?s Scientific Manuscript database

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant unde...

  4. Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications.

    PubMed

    Rodríguez-Calcerrada, Jesús; López, Rosana; Salomón, Roberto; Gordaliza, Guillermo G; Valbuena-Carabaña, María; Oleksyn, Jacek; Gil, Luis

    2015-06-01

    Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra- and inter-specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es ) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non-structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought-tolerant trees is related to higher NSC concentration and Es . We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species. © 2014 John Wiley & Sons Ltd.

  5. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island.

    PubMed

    Trueba, Santiago; Pouteau, Robin; Lens, Frederic; Feild, Taylor S; Isnard, Sandrine; Olson, Mark E; Delzon, Sylvain

    2017-02-01

    Increases in drought-induced tree mortality are being observed in tropical rain forests worldwide and are also likely to affect the geographical distribution of tropical vegetation. However, the mechanisms underlying the drought vulnerability and environmental distribution of tropical species have been little studied. We measured vulnerability to xylem embolism (P 50 ) of 13 woody species endemic to New Caledonia and with different xylem conduit morphologies. We examined the relation between P 50 , along with other leaf and xylem functional traits, and a range of habitat variables. Selected species had P 50 values ranging between -4.03 and -2.00 MPa with most species falling in a narrow range of resistance to embolism above -2.7 MPa. Embolism vulnerability was significantly correlated with elevation, mean annual temperature and percentage of species occurrences located in rain forest habitats. Xylem conduit type did not explain variation in P 50 . Commonly used functional traits such as wood density and leaf traits were not related to embolism vulnerability. Xylem embolism vulnerability stands out among other commonly used functional traits as a major driver of species environmental distribution. Drought-induced xylem embolism vulnerability behaves as a physiological trait closely associated with the habitat occupation of rain forest woody species. © 2016 John Wiley & Sons Ltd.

  6. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    Treesearch

    Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...

  7. Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands.

    PubMed

    Ding, H; Pretzsch, H; Schütze, G; Rötzer, T

    2017-09-01

    Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size-dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany. Samples were collected in both monospecific and mixed-species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods. The results show that ageing-related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over-yielding spruce in pure stands. The importance of the influence of size-dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. [Effects of drought stress on leaf gas exchange and chlorophyll fluorescence of Salvia miltiorrhiza].

    PubMed

    Luo, Ming-Hua; Hu, Jin-Yao; Wu, Qing-Gui; Yang, Jing-Tian; Su, Zhi-Xian

    2010-03-01

    Taking the seedlings of Salvia miltiorrhiza cv. Sativa (SA) and S. miltiorrhiza cv. Silcestris (SI) as test materials, this paper studied the effects of drought stress on their leaf gas exchange and chlorophyll fluorescence parameters. After 15 days of drought stress, the net photosynthetic rate (P(n)) and the maximal photochemical efficiency of PS II (F(v)/F(m)) of SA were decreased by 66.42% and 10.98%, whereas those of SI were decreased by 29.32% and 5.47%, respectively, compared with the control, suggesting that drought stress had more obvious effects on the P(n) and F(v)/F(m) of SA than of SI. For SI, the reduction of P, under drought stress was mainly due to stomatal limitation; while for SA, it was mainly due to non-stomatal limitation. Drought led to a decrease of leaf stomatal conductance (G(s)), but induced the increase of water use efficiency (WUE), non-photochemical quenching coefficient (q(N)), and the ratio of photorespiration rate to net photosynthetic rate (P(r)/P(n)), resulting in the enhancement of drought resistance. The increment of WUE, q(N), and P(r)/P(n) was larger for SI than for SA, indicating that SI had a higher drought resistance capacity than SA.

  9. Vulnerability to drought-induced embolism of Bornean heath and dipterocarp forest trees.

    PubMed

    Tyree, Melvin T.; Patiño, Sandra; Becker, Peter

    1998-01-01

    Occasional droughts may be important in controlling the distribution and structure of forest types in relatively aseasonal north Borneo. The low water retention capacity of the coarse, sandy soils on which tropical heath forest occurs may cause drought to develop more quickly and severely than on the finer textured soils of nearby dipterocarp forest. Resistance to drought-induced embolism is considered an important component of drought tolerance. We constructed embolism vulnerability curves relating loss in hydraulic conductivity to xylem tension by the air-injection method for understory trees of 14 species from both tropical heath and mixed dipterocarp forests in Brunei Darussalam. There was no significant difference (Mann-Whitney U-test, P = 0.11) between forest types in the xylem tension at which 50% loss of hydraulic conductivity occurred. Most species from both forest types were highly vulnerable to embolism compared with species from seasonal tropical forests. We speculate that other mechanisms, such as stomatal control to prevent development of embolism-inducing xylem tensions, are more cost-effective adaptations against occasional drought, but that the attendant reduction in productivity and competitive ability places a greater premium on resistance to embolism when drought is annual and predictable.

  10. Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits.

    PubMed

    van der Sande, Masha T; Poorter, Lourens; Schnitzer, Stefan A; Markesteijn, Lars

    2013-08-01

    Lianas are an important component of neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P50) and maximum hydraulic conductivity (K(h)), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.

  11. Genome Wide Association Study for Drought, Aflatoxin Resistance, and Important Agronomic Traits of Maize Hybrids in the Sub-Tropics

    PubMed Central

    Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike

    2015-01-01

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370

  12. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?

    USGS Publications Warehouse

    McDowell, Nate G.; Pockman, William T.; Allen, Craig D.; Breshears, David D.; Cobb, Neil; Kolb, Thomas; Plaut, Jennifer; Sperry, John; West, Adam; Williams, David G.; Yepez, Enrico A.

    2008-01-01

    Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.

  13. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions.

    PubMed

    Karlowsky, Stefan; Augusti, Angela; Ingrisch, Johannes; Hasibeder, Roland; Lange, Markus; Lavorel, Sandra; Bahn, Michael; Gleixner, Gerd

    2018-05-01

    Mountain grasslands have recently been exposed to substantial changes in land use and climate and in the near future will likely face an increased frequency of extreme droughts. To date, how the drought responses of carbon (C) allocation, a key process in the C cycle, are affected by land-use changes in mountain grassland is not known.We performed an experimental summer drought on an abandoned grassland and a traditionally managed hay meadow and traced the fate of recent assimilates through the plant-soil continuum. We applied two 13 CO 2 pulses, at peak drought and in the recovery phase shortly after rewetting.Drought decreased total C uptake in both grassland types and led to a loss of above-ground carbohydrate storage pools. The below-ground C allocation to root sucrose was enhanced by drought, especially in the meadow, which also held larger root carbohydrate storage pools.The microbial community of the abandoned grassland comprised more saprotrophic fungal and Gram(+) bacterial markers compared to the meadow. Drought increased the newly introduced AM and saprotrophic (A+S) fungi:bacteria ratio in both grassland types. At peak drought, the 13 C transfer into AM and saprotrophic fungi, and Gram(-) bacteria was more strongly reduced in the meadow than in the abandoned grassland, which contrasted the patterns of the root carbohydrate pools.In both grassland types, the C allocation largely recovered after rewetting. Slowest recovery was found for AM fungi and their 13 C uptake. In contrast, all bacterial markers quickly recovered C uptake. In the meadow, where plant nitrate uptake was enhanced after drought, C uptake was even higher than in control plots. Synthesis . Our results suggest that resistance and resilience (i.e. recovery) of plant C dynamics and plant-microbial interactions are negatively related, that is, high resistance is followed by slow recovery and vice versa. The abandoned grassland was more resistant to drought than the meadow and possibly had a stronger link to AM fungi that could have provided better access to water through the hyphal network. In contrast, meadow communities strongly reduced C allocation to storage and C transfer to the microbial community in the drought phase, but in the recovery phase invested C resources in the bacterial communities to gain more nutrients for regrowth. We conclude that the management of mountain grasslands increases their resilience to drought.

  14. Drought, Agriculture, and Labor: Understanding Drought Impacts and Vulnerability in California

    NASA Astrophysics Data System (ADS)

    Greene, C.

    2015-12-01

    Hazardous drought impacts are a product of not only the physical intensity of drought, but also the economic, social, and environmental characteristics of the region exposed to drought. Drought risk management requires understanding the complex links between the physical and human dimensions of drought. Yet, there is a research gap in identifying and explaining the socio-economic complexities of drought in the context of the first world, especially for economic and socially marginal groups who rely on seasonal and temporary jobs. This research uses the current drought in California as a case study to identify the socioeconomic impacts of drought on farmworker communities in California's San Joaquin Valley, with a specific focus on the relationship between drought and agricultural labor. Through both a narrative analysis of drought coverage in newspaper media, drought policy documents, and interviews with farmworkers, farmers, community based organizations, and government officials in the San Joaquin Valley, this research aims to highlight the different understandings and experiences of the human impacts of drought and drought vulnerability in order to better inform drought risk planning and policy.

  15. Drought Response in the Spikes of Barley: Gene Expression in the Lemma, Palea, Awn, and Seed

    USDA-ARS?s Scientific Manuscript database

    The photosynthetic organs of the barley spike (lemma, palea, and awn) are considered resistant to drought. This is a beneficial trait because they can sustain grain-filling when drought occurs at the reproductive stage. However, there is little information about gene expression in the spike organs u...

  16. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge.

    PubMed

    Cavin, Liam; Jump, Alistair S

    2017-01-01

    Biogeographical and ecological theory suggests that species distributions should be driven to higher altitudes and latitudes as global temperatures rise. Such changes occur as growth improves at the poleward edge of a species distribution and declines at the range edge in the opposite or equatorial direction, mirrored by changes in the establishment of new individuals. A substantial body of evidence demonstrates that such processes are underway for a wide variety of species. Case studies from populations at the equatorial range edge of a variety of woody species have led us to understand that widespread growth decline and distributional shifts are underway. However, in apparent contrast, other studies report high productivity and reproduction in some range edge populations. We sought to assess temporal trends in the growth of the widespread European beech tree (Fagus sylvatica) across its latitudinal range. We explored the stability of populations to major drought events and the implications for predicted widespread growth decline at its equatorial range edge. In contrast to expectations, we found greatest sensitivity and low resistance to drought in the core of the species range, whilst dry range edge populations showed particularly high resistance to drought and little evidence of drought-linked growth decline. We hypothesize that this high range edge resistance to drought is driven primarily by local environmental factors that allow relict populations to persist despite regionally unfavourable climate. The persistence of such populations demonstrates that range-edge decline is not ubiquitous and is likely to be driven by declining population density at the landscape scale rather than sudden and widespread range retraction. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L.) Using Genome-Wide Sequencing and Association Mapping

    PubMed Central

    Yu, Long-Xi

    2017-01-01

    Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses. PMID:28706532

  18. How well do meteorological indicators represent agricultural and forest drought across Europe?

    NASA Astrophysics Data System (ADS)

    Bachmair, S.; Tanguy, M.; Hannaford, J.; Stahl, K.

    2018-03-01

    Drought monitoring and early warning (M&EW) systems are an important component of agriculture/silviculture drought risk assessment. Many operational information systems rely mostly on meteorological indicators, and a few incorporate vegetation state information. However, the relationships between meteorological drought indicators and agricultural/silvicultural drought impacts vary across Europe. The details of this variability have not been elucidated sufficiently on a continental scale in Europe to inform drought risk management at administrative scales. The objective of this study is to fill this gap and evaluate how useful the variety of meteorological indicators are to assess agricultural/silvicultural drought across Europe. The first part of the analysis systematically linked meteorological drought indicators to remote sensing based vegetation indices (VIs) for Europe at NUTs3 administrative regions scale using correlation analysis for crops and forests. In a second step, a stepwise multiple linear regression model was deployed to identify variables explaining the spatial differences observed. Finally, corn crop yield in Germany was chosen as a case study to verify VIs’ representativeness of agricultural drought impacts. Results show that short accumulation periods of SPI and SPEI are best linked to crop vegetation stress in most cases, which further validates the use of SPI3 in existing operational drought monitors. However, large regional differences in correlations are also revealed. Climate (temperature and precipitation) explained the largest proportion of variance, suggesting that meteorological indices are less informative of agricultural/silvicultural drought in colder/wetter parts of Europe. These findings provide important context for interpreting meteorological indices on widely used national to continental M&EW systems, leading to a better understanding of where/when such M&EW tools can be indicative of likely agricultural stress and impacts.

  19. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing-Tianjin Sand Source Region, China.

    PubMed

    Wu, Zhitao; Wu, Jianjun; He, Bin; Liu, Jinghui; Wang, Qianfeng; Zhang, Hong; Liu, Yong

    2014-10-21

    To improve the ecological conditions, the Chinese government adopted six large-scale ecological restoration programs including 'Three-North Shelterbelt Project', "Grain for Green Project" and "Beijing-Tianjin Sand Source Control Project". Meanwhile, these ecologically vulnerable areas have experienced frequent droughts. However, little attention has been paid to the impact of drought on the effectiveness of these programs. Taking Beijing-Tianjin Sand Source Region (BTSSR) as study area, we investigated the role of droughts and ecological restoration program on trends of vegetation activities and to address the question of a possible "drought signal" in assessing effectiveness of ecological restoration program. The results demonstrate the following: (1) Vegetation activity increased in the BTSSR during 2000-2010, with 58.44% of the study area showing an increased NDVI, of which 11.80% had a significant increase at 0.95 confidential level. The decreasing NDVI trends were mainly concentrated in a southwest-to-northeast strip in the study area. (2) Drought was the main driving force for a decreasing trend of vegetation activity in the southwest-to-northeast regions of the BTSSR at the regional and spatial scales. Summer droughts in 2007 and 2009 contributed to the decreasing trend in NDVI. The severe and extreme droughts in summer reduced the NDVI by approximately 13.06% and 23.55%, respectively. (3) The residual analysis result showed that human activities, particularly the ecological restoration programs, have a positive impact on vegetation change. Hence, the decreasing trends in the southwest-to-northeast regions of the BTSSR cannot be explained by the improper ecological restoration program and is partly explained by droughts, especially summer droughts. Therefore, drought offset the ecological restoration program-induced increase in vegetation activity in the BTSSR.

  20. Proteomic analysis of B-aminobutyric acid priming and aba-induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes

    USDA-ARS?s Scientific Manuscript database

    In a variety of annual crops and model plants, the xenobiotic compound, DL-beta-aminobutyric acid (BABA), has been shown to enhance disease resistance and increase salt, drought, and thermotolerance. BABA does not activate stress genes directly but rather sensitizes plants to respond more quickly a...

  1. Resistance of native oak to recurrent drought conditions simulating predicted climatic changes in the Mediterranean region.

    PubMed

    Saunier, Amélie; Ormeño, Elena; Havaux, Michel; Wortham, Henri; Ksas, Brigitte; Temime-Roussel, Brice; Blande, James D; Lecareux, Caroline; Mévy, Jean-Philippe; Bousquet-Mélou, Anne; Gauquelin, Thierry; Fernandez, Catherine

    2018-05-10

    The capacity of a Quercus pubescens forest to resist recurrent drought was assessed on an in situ experimental platform through the measurement of a large set of traits (ecophysiological and metabolic) studied under natural drought (ND) and amplified drought induced by partial rain exclusion (AD). This study was performed during the 3 rd and 4 th years of AD, which correspond to conditions of moderate AD in 2014 and harsher AD in 2015, respectively. Although water potential (Ψ) and net photosynthesis (Pn) were noticeably reduced under AD in 2015 compared to ND, trees showed similar growth and no oxidative stress. The absence of oxidative damage could be due to a strong accumulation of α-tocopherol, suggesting that this compound is a major component of the Q. pubescens antioxidant system. Other antioxidants were rather stable under AD in 2014, but slight changes started to be observed in 2015 (carotenoids and isoprene) due to harsher conditions. Our results indicate that Q. pubescens could be able to cope with AD, for at least 4 years, likely due to its antioxidant system. However, growth decrease was observed during the 5 th year (2016) of AD, suggesting that this resistance could be threatened over longer periods of recurrent drought. This article is protected by copyright. All rights reserved.

  2. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress.

    PubMed

    Liu, Hang; Zhang, Yun-Hong; Yin, Heng; Wang, Wen-Xia; Zhao, Xiao-Ming; Du, Yu-Guang

    2013-01-01

    Alginate oligosaccharides (AOS) prepared from degradation of alginate is a potent plant elicitor. Hydroponic experiments were carried out to investigate the mechanism of AOS on improving Triticum aestivum L. resistant ability to drought stress. Drought model was simulated by exposing the roots of wheat to polyethylene glycol-6000 (PEG-6000) solution (150 g L(-1)) for 4 days and the growth of wheat treated with PEG was significantly decreased. However, after AOS application, seedling and root length, fresh weight and relative water content of wheat were increased by 18%, 26%, 43% and 33% under dehydration status compared with that of PEG group, respectively. Moreover, the antioxidative enzymes activities were obviously enhanced and malondialdehyde (MDA) content was reduced by 37.9% in samples treated by AOS. Additionally, the drought resistant related genes involved in ABA signal pathway, such as late embryogenesis abundant protein 1 gene (LEA1), psbA gene, Sucrose non-fermenting 1-related protein kinase 2 gene (SnRK2) and Pyrroline-5-Carboxylate Synthetase gene (P5CS) were up-regulated by AOS. Our results suggested that AOS might regulate ABA-dependent signal pathway to enhance drought stress resistance of wheat during growth period. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. Seedling growth characteristics relates to the staygreen trait and dhurrin levels in sorghum

    USDA-ARS?s Scientific Manuscript database

    The impact of drought stress on sorghum yield does not only depend on the intensity and timing of drought, but as well on the developmental stage of the crop. One of the limitations in breeding for pre-and/or postflowering drought stress resistance in sorghum is the fewer availability of diverse gen...

  4. Method to improve drought tolerance in plants

    DOEpatents

    Schroeder, Julian I.; Kwak, June Myoung

    2003-10-21

    A method to increase drought resistance in plants is provided. The method comprises inhibiting or disabling inward-rectifying K.sup.+ (K.sup.+.sub.in) channels in the stomatal guard cells of the plant.

  5. High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought.

    PubMed

    Stampfli, Andreas; Bloor, Juliette M G; Fischer, Markus; Zeiter, Michaela

    2018-05-01

    Climate change projections anticipate increased frequency and intensity of drought stress, but grassland responses to severe droughts and their potential to recover are poorly understood. In many grasslands, high land-use intensity has enhanced productivity and promoted resource-acquisitive species at the expense of resource-conservative ones. Such changes in plant functional composition could affect the resistance to drought and the recovery after drought of grassland ecosystems with consequences for feed productivity resilience and environmental stewardship. In a 12-site precipitation exclusion experiment in upland grassland ecosystems across Switzerland, we imposed severe edaphic drought in plots under rainout shelters and compared them with plots under ambient conditions. We used soil water potentials to scale drought stress across sites. Impacts of precipitation exclusion and drought legacy effects were examined along a gradient of land-use intensity to determine how grasslands resisted to, and recovered after drought. In the year of precipitation exclusion, aboveground net primary productivity (ANPP) in plots under rainout shelters was -15% to -56% lower than in control plots. Drought effects on ANPP increased with drought severity, specified as duration of topsoil water potential ψ < -100 kPa, irrespective of land-use intensity. In the year after drought, ANPP had completely recovered, but total species diversity had declined by -10%. Perennial species showed elevated mortality, but species richness of annuals showed a small increase due to enhanced recruitment. In general, the more resource-acquisitive grasses increased at the expense of the deeper-rooted forbs after drought, suggesting that community reorganization was driven by competition rather than plant mortality. The negative effects of precipitation exclusion on forbs increased with land-use intensity. Our study suggests a synergistic impact of land-use intensification and climate change on grassland vegetation composition, and implies that biomass recovery after drought may occur at the expense of biodiversity maintenance. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  6. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis.

    PubMed

    Wei, Tao; Deng, Kejun; Wang, Hongbin; Zhang, Lipeng; Wang, Chunguo; Song, Wenqin; Zhang, Yong; Chen, Chengbin

    2018-03-12

    In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A -expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the 'signal transduction mechanisms' category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with "ribosome", "plant hormone signal transduction", photosynthesis", "plant-pathogen interaction", "glycolysis/gluconeogenesis" and "carbon fixation" are hypothesized to perform major functions in drought resistance in AtDREB1A -expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.

  7. Drought responses of Arrhenatherum elatius grown in plant assemblages of varying species richness

    NASA Astrophysics Data System (ADS)

    Otieno, Dennis; Kreyling, Juergen; Purcell, Andrew; Herold, Nadine; Grant, Kerstin; Tenhunen, John; Beierkuhnlein, Carl; Jentsch, Anke

    2012-02-01

    Evidence exists that plant community diversity influences productivity of individual members and their resistance and resilience during and after perturbations. We simulated drought within the long-term EVENT experimental site in the Ecological-Botanical Garden, University of Bayreuth to understand how Arrhenatherum elatius (L.) responds to water stress when grown in three different plant assemblages. The set up consisted of five replications for each factorial combination of drought and plant assemblages differing in functional diversity. Leaf water potential (ΨL), leaf gas exchange, natural δ13C, plant biomass and cover were measured. Imposed drought had different effects on A. elatius, depending on plant assemblage composition. Severe water stress was however, avoided by slowing down the rate of decline in ΨL, and this response was modified by community composition. High ΨL was associated with high stomatal conductance and leaf photosynthesis. Biomass production of A. elatius increased due to drought stress only in the least diverse assemblage, likely due to increased tillering and competitive advantage against neighbors in the drought-treated plants. Our results indicate that beneficial traits among plant species in a community may be responsible for the enhanced capacity to survive drought stress. Resistance to drought may, therefore, not be linked to species richness, but rather to the nature of interaction that exists between the community members.

  8. Interactive effects of seasonal drought and elevated atmospheric carbon dioxide concentration on prokaryotic rhizosphere communities.

    PubMed

    Drigo, Barbara; Nielsen, Uffe N; Jeffries, Thomas C; Curlevski, Nathalie J A; Singh, Brajesh K; Duursma, Remko A; Anderson, Ian C

    2017-08-01

    Global change models indicate that rainfall patterns are likely to shift towards more extreme events concurrent with increasing atmospheric carbon dioxide concentration ([CO 2 ]). Both changes in [CO 2 ] and rainfall regime are known to impact above- and belowground communities, but the interactive effects of these global change drivers have not been well explored, particularly belowground. In this experimental study, we examined the effects of elevated [CO 2 ] (ambient + 240 ppm; [eCO 2 ]) and changes in rainfall patterns (seasonal drought) on soil microbial communities associated with forest ecosystems. Our results show that bacterial and archaeal communities are highly resistant to seasonal drought under ambient [CO 2 ]. However, substantial taxa specific responses to seasonal drought were observed at [eCO 2 ], suggesting that [eCO 2 ] compromise the resistance of microbial communities to extreme events. Within the microbial community we were able to identify three types of taxa specific responses to drought: tolerance, resilience and sensitivity that contributed to this pattern. All taxa were tolerant to seasonal drought at [aCO 2 ], whereas resilience and sensitivity to seasonal drought were much greater in [eCO 2 ]. These results provide strong evidence that [eCO 2 ] moderates soil microbial community responses to drought in forests, with potential implications for their long-term persistence and ecosystem functioning. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Drought predisposes piñon-juniper woodlands to insect attacks and mortality.

    PubMed

    Gaylord, Monica L; Kolb, Thomas E; Pockman, William T; Plaut, Jennifer A; Yepez, Enrico A; Macalady, Alison K; Pangle, Robert E; McDowell, Nate G

    2013-04-01

    To test the hypothesis that drought predisposes trees to insect attacks, we quantified the effects of water availability on insect attacks, tree resistance mechanisms, and mortality of mature piñon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma) using an experimental drought study in New Mexico, USA. The study had four replicated treatments (40 × 40 m plot/replicate): removal of 45% of ambient annual precipitation (H2 O-); irrigation to produce 125% of ambient annual precipitation (H2 O+); a drought control (C) to quantify the impact of the drought infrastructure; and ambient precipitation (A). Piñon began dying 1 yr after drought initiation, with higher mortality in the H2 O- treatment relative to other treatments. Beetles (bark/twig) were present in 92% of dead trees. Resin duct density and area were more strongly affected by treatments and more strongly associated with piñon mortality than direct measurements of resin flow. For juniper, treatments had no effect on insect resistance or attacks, but needle browning was highest in the H2 O- treatment. Our results provide strong evidence that ≥ 1 yr of severe drought predisposes piñon to insect attacks and increases mortality, whereas 3 yr of the same drought causes partial canopy loss in juniper. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species.

    PubMed

    Scholz, Alexander; Rabaey, David; Stein, Anke; Cochard, Hervé; Smets, Erik; Jansen, Steven

    2013-07-01

    Various structure-function relationships regarding drought-induced cavitation resistance of secondary xylem have been postulated. These hypotheses were tested on wood of 10 Prunus species showing a range in P50 (i.e., the pressure corresponding to 50% loss of hydraulic conductivity) from -3.54 to -6.27 MPa. Hydraulically relevant wood characters were quantified using light and electron microscopy. A phylogenetic tree was constructed to investigate evolutionary correlations using a phylogenetically independent contrast (PIC) analysis. Vessel-grouping characters were found to be most informative in explaining interspecific variation in P50, with cavitation-resistant species showing more solitary vessels than less resistant species. Co-evolution between vessel-grouping indices and P50 was reported. P50 was weakly correlated with the shape of the intervessel pit aperture, but not with the total intervessel pit membrane area per vessel. A negative correlation was found between P50 and intervessel pit membrane thickness, but this relationship was not supported by the PIC analysis. Cavitation resistance has co-evolved with vessel grouping within Prunus and was mainly influenced by the spatial distribution of the vessel network.

  11. Metabolic Pathways Regulated by Chitosan Contributing to Drought Resistance in White Clover.

    PubMed

    Li, Zhou; Zhang, Yan; Zhang, Xinquan; Merewitz, Emily; Peng, Yan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2017-08-04

    Increased endogenous chitosan (CTS) could be associated with improved drought resistance in white clover (Trifolium repens). Plants were pretreated with or without 1 mg/mL CTS and then were subjected to optimal or water-limited condition in controlled growth chambers for 6 days. Phenotypic and physiological results indicated that exogenous CTS significantly improved drought resistance of white clover. Metabolome results showed that exogenous CTS induced a significant increase in endogenous CTS content during dehydration accompanied by the maintenance of greater accumulation of sugars, sugar alcohols, amino acids, organic acids, and other metabolites (ascorbate, glutathione, flavonoids, putrescine, and spermidine). These compounds are associated with osmotic adjustment, antioxidant defense, stress signaling, and energy metabolism under stress condition. Similarly, transcriptome revealed that many genes in relation to amino acid and carbohydrate metabolism, energy production and conversion, and ascorbate-glutathione and flavonoid metabolism were significantly up-regulated by CTS in response to dehydration stress. CTS-induced drought resistance was associated with the accumulation of stress protective metabolites, the enhancement of ascorbate-glutathione and tricarboxylic acid cycle, and increases in the γ-aminobutyric acid shunt, polyamine synthesis, and flavonoids metabolism contributing to improved osmotic adjustment, antioxidant capacity, stress signaling, and energy production for stress defense, thereby maintaining metabolic homeostasis under dehydration stress.

  12. Td4IN2: A drought-responsive durum wheat (Triticum durum Desf.) gene coding for a resistance like protein with serine/threonine protein kinase, nucleotide binding site and leucine rich domains.

    PubMed

    Rampino, Patrizia; De Pascali, Mariarosaria; De Caroli, Monica; Luvisi, Andrea; De Bellis, Luigi; Piro, Gabriella; Perrotta, Carla

    2017-11-01

    Wheat, the main food source for a third of world population, appears strongly under threat because of predicted increasing temperatures coupled to drought. Plant complex molecular response to drought stress relies on the gene network controlling cell reactions to abiotic stress. In the natural environment, plants are subjected to the combination of abiotic and biotic stresses. Also the response of plants to biotic stress, to cope with pathogens, involves the activation of a molecular network. Investigations on combination of abiotic and biotic stresses indicate the existence of cross-talk between the two networks and a kind of overlapping can be hypothesized. In this work we describe the isolation and characterization of a drought-related durum wheat (Triticum durum Desf.) gene, identified in a previous study, coding for a protein combining features of NBS-LRR type resistance protein with a S/TPK domain, involved in drought stress response. This is one of the few examples reported where all three domains are present in a single protein and, to our knowledge, it is the first report on a gene specifically induced by drought stress and drought-related conditions, with this particular structure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine.

    PubMed

    Sherwood, Patrick; Villari, Caterina; Capretti, Paolo; Bonello, Pierluigi

    2015-05-01

    Plants experiencing drought stress are frequently more susceptible to pathogens, likely via alterations in physiology that create favorable conditions for pathogens. Common plant responses to drought include the production of reactive oxygen species (ROS) and the accumulation of free amino acids (AAs), particularly proline. These same phenomena also frequently occur during pathogenic attack. Therefore, drought-induced perturbations in AA and ROS metabolism could potentially contribute to the observed enhanced susceptibility. Furthermore, nitrogen (N) availability can influence AA accumulation and affect plant resistance, but its contributions to drought-induced susceptibility are largely unexplored. Here we show that drought induces accumulation of hydrogen peroxide (H2O2) in Austrian pine (Pinus nigra Arnold) shoots, but that shoot infection by the blight and canker pathogen Diplodia sapinea (Fr.) Fuckel leads to large reductions in H2O2 levels in droughted plants. In in vitro assays, H2O2 was toxic to D. sapinea, and the fungus responded to this oxidative stress by increasing catalase and peroxidase activities, resulting in substantial H2O2 degradation. Proline increased in response to drought and infection when examined independently, but unlike all other AAs, proline further increased in infected shoots of droughted trees. In the same tissues, the proline precursor, glutamate, decreased significantly. Proline was found to protect D. sapinea from H2O2 damage, while also serving as a preferred N source in vitro. Fertilization increased constitutive and drought-induced levels of some AAs, but did not affect plant resistance. A new model integrating interactions of proline and H2O2 metabolism with drought and fungal infection of plants is proposed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Canopy Defoliation has More Impact on Carbohydrate Availability than on Hydraulic Function in Declining Scots Pine Populations

    NASA Astrophysics Data System (ADS)

    Poyatos, R.; Aguadé, D.; Gómez, M.; Mencuccini, M.; Martínez-Vilalta, J.

    2013-12-01

    Drought-induced defoliation has recently been associated with depletion of carbohydrate reserves and increased mortality risk in Scots pine (Pinus sylvestris L.) at its dry limit. Are defoliated pines hydraulically impaired compared to non-defoliated pines? Moreover, how do defoliated pines cope with potentially lethal droughts, as compared to non-defoliated pines in the same population? In order to address these questions, we measured the seasonal dynamics of sap flow and needle water potentials (2010-2012), hydraulic function and non-structural carbohydrates (NSC) (2012) in healthy and defoliated pines in the Prades mountains (NE Spain). The summer drought was mild in 2010, intense in 2012 and extremely long in 2011. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but they were more sensitive to summer drought (Figure 1). This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance, which could not be explained by differences in branch vulnerability to embolism across defoliation classes. Accordingly, the native loss of xylem conductivity in branches, measured in 2012, remained similar across defoliation classes and reached >65% at the peak of the drought. However, a steeper vulnerability curve was observed for root xylem of defoliated pines. Xylem diameter variations (2011-2012) will be used to further investigate possible differences in the aboveground/belowground partitioning of hydraulic resistance across defoliation classes. NSC levels varied across tree organs (leaves>branches>roots>trunk) and strongly declined with drought. Defoliated pines displayed reduced NSC levels throughout the study period, despite enhanced water transport capacity and increased gas exchange rates during spring. Overall, the defoliated vs. healthy status seems to be more associated to differences in carbohydrate storage and dynamics than to hydraulic differences per se. However, starch conversion to soluble sugars during drought also suggests that NSC may be actively involved in the maintenance of xylem and phloem transport. These results highlight the close connection between carbon and water relations in declining Scots pines. Seasonal course (2010-2012) of VPD (upper panel), soil moisture (mid panel) and sap flow per unit leaf area of defoliated and non defoliated Scots pines (lower panel).

  15. Can diversity in root architecture explain plant water use efficiency? A modeling study

    PubMed Central

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-01-01

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment. PMID:26412932

  16. Can diversity in root architecture explain plant water use efficiency? A modeling study.

    PubMed

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-09-24

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment.

  17. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil.

    PubMed

    Gorim, Linda Y; Vandenberg, Albert

    2017-01-01

    Increasingly unpredictable annual rainfall amounts and distribution patterns have far reaching implications for pulse crop biology. Seedling and whole plant survival will be affected given that water is a key factor in plant photosynthesis and also influences the evolving disease spectrum that affects crops. The wild relatives of cultivated lentil are native to drought prone areas, making them good candidates for the evaluation of drought tolerance traits. We evaluated root and shoot traits of genotypes of cultivated lentil and five wild species grown under two water deficit regimes as well as fully watered conditions over a 13 week period indoors. Plants were grown in sectioned polyvinyl chloride (PVC) tubes containing field soil from the A, B, and C horizons. We found that root distribution into different soil horizons varied among wild lentil genotypes. Secondly, wild lentil genotypes employed diverse strategies such as delayed flowering, reduced transpiration rates, reduced plant height, and deep root systems to either escape, evade or tolerate drought conditions. In some cases, more than one drought strategy was observed within the same genotype. Sequence based classification of wild and cultivated genotypes did not explain patterns of drought response. The environmental conditions at their centers of origin may explain the patterns of drought strategies observed in wild lentils. The production of numerous small seeds by wild lentil genotypes may have implications for yield improvement in lentil breeding programs.

  18. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions.

    PubMed

    Shi, Huili; Ma, Wenjun; Song, Junyu; Lu, Mei; Rahman, Siddiq Ur; Bui, Thi Tuyet Xuan; Vu, Dinh Duy; Zheng, Huifang; Wang, Junhui; Zhang, Yi

    2017-11-01

    Many semi-arid ecosystems are simultaneously limited by soil water and nitrogen (N). We conducted a greenhouse experiment to address how N availability impacts drought-resistant traits of Catalpa bungei C. A. Mey at the physiological and molecular level. A factorial design was used, consisting of sufficient-N and deficient-N combined with moderate drought and well-watered conditions. Seedling biomass and major root parameters were significantly suppressed by drought under the deficient-N condition, whereas N application mitigated the inhibiting effects of drought on root growth, particularly that of fine roots with a diameter <0.2 mm. Intrinsic water-use efficiency was promoted by N addition under both water conditions, whereas stable carbon isotope compositions (δ13C) was promoted by N addition only under the well-watered condition. Nitrogen application positively impacted drought adaptive responses including osmotic adjustment and homeostasis of reactive oxygen species, the content of free proline, soluble sugar and superoxide dismutase activity: all were increased upon drought under sufficient-N conditions but not under deficient-N conditions. The extent of abscisic acid (ABA) inducement upon drought was elevated by N application. Furthermore, an N-dependent crosstalk between ABA, jasmonic acid and indole acetic acid at the biosynthesis level contributed to better drought acclimation. Moreover, the transcriptional level of most genes responsible for the ABA signal transduction pathway, and genes encoding the antioxidant enzymes and plasma membrane intrinsic proteins, are elevated upon drought only under sufficient-N addition. These observations confirmed at the molecular level that major adaptive responses to drought are dependent on sufficient N nutrition. Although N uptake was decreased under drought, N-use efficiency and transcription of most genes encoding N metabolism enzymes were elevated, demonstrating that active N metabolism positively contributed drought resistance and growth of C. bungei under sufficient-N conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Modeling drought impact occurrence based on climatological drought indices for four European countries

    NASA Astrophysics Data System (ADS)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts were explained best by shorter, seasonal indices (2-6 months), while impacts to the Energy sector were best explained by long-duration (12-24 month) anomalies, related to hydropower reservoir storage. Notably, drought impacts in the UK were not affected by short (< 6 month) anomalies, which may point to successful management strategies or underlying geoclimatic differences. By identifying the climatological drought indices most strongly linked to drought impact occurrence and generating regression equations that can predict the likelihood of a drought event, this research is a valuable step towards measuring and predicting drought risk. This work provides a methodological example using only a subset of European countries and impact types, but the accuracy and scope of these results will improve as the EDII grows with further contributions and collaboration.

  20. Research frontiers in drought-induced tree mortality: Crossing scales and disciplines

    DOE PAGES

    Hartmann, Henrik; Adams, Henry D.; Anderegg, William R. L.; ...

    2015-01-12

    Sudden and widespread forest die-back and die-off (e.g., Huang & Anderegg, 2012) and increased mortality rates (e.g., Peng et al., 2011) in many forest ecosystems across the globe have been linked to drought and elevated temperatures (Allen et al., 2010, Fig. 1). Furthermore, these observations have caused a focus on the physiological mechanisms of drought-induced tree mortality (e.g. McDowell et al., 2008) and many studies, both observational and manipulative, have been carried out to explain tree death during drought from a physiological perspective.

  1. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding

    PubMed Central

    DELZON, SYLVAIN; DOUTHE, CYRIL; SALA, ANNA; COCHARD, HERVE

    2010-01-01

    Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from −2.9 to −11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. PMID:20636490

  2. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding.

    PubMed

    Delzon, Sylvain; Douthe, Cyril; Sala, Anna; Cochard, Herve

    2010-12-01

    Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P(50), a proxy for cavitation resistance) varied widely among species, from -2.9 to -11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. © 2010 Blackwell Publishing Ltd.

  3. ZmNF-YB16 Overexpression Improves Drought Resistance and Yield by Enhancing Photosynthesis and the Antioxidant Capacity of Maize Plants

    PubMed Central

    Wang, Baomei; Li, Zhaoxia; Ran, Qijun; Li, Peng; Peng, Zhenghua; Zhang, Juren

    2018-01-01

    ZmNF-YB16 is a basic NF-YB superfamily member and a member of a transcription factor complex composed of NF-YA, NF-YB, and NF-YC in maize. ZmNF-YB16 was transformed into the inbred maize line B104 to produce homozygous overexpression lines. ZmNF-YB16 overexpression improves dehydration and drought stress resistance in maize plants during vegetative and reproductive stages by maintaining higher photosynthesis and increases the maize grain yield under normal and drought stress conditions. Based on the examination of differentially expressed genes between the wild-type (WT) and transgenic lines by quantitative real time PCR (qRT-PCR), ZmNF-YB16 overexpression increased the expression of genes encoding antioxidant enzymes, the antioxidant synthase, and molecular chaperones associated with the endoplasmic reticulum (ER) stress response, and improved protection mechanism for photosynthesis system II. Plants that overexpression ZmNF-YB16 showed a higher rate of photosynthesis and antioxidant enzyme activity, better membrane stability and lower electrolyte leakage under control and drought stress conditions. These results suggested that ZmNF-YB16 played an important role in drought resistance in maize by regulating the expression of a number of genes involved in photosynthesis, the cellular antioxidant capacity and the ER stress response. PMID:29896208

  4. Variations in xylem embolism susceptibility under drought between intact saplings of three walnut species.

    PubMed

    Knipfer, Thorsten; Barrios-Masias, Felipe H; Cuneo, Italo F; Bouda, Martin; Albuquerque, Caetano P; Brodersen, Craig R; Kluepfel, Daniel A; McElrone, Andrew J

    2018-05-30

    A germplasm collection containing varied Juglans genotypes holds potential to improve drought resistance of plant materials for commercial production. We used X-ray computed microtomography to evaluate stem xylem embolism susceptibility/repair in relation to vessel anatomical features (size, arrangement, connectivity and pit characteristics) in 2-year-old saplings of three Juglans species. In vivo analysis revealed interspecific variations in embolism susceptibility among Juglans microcarpa, J. hindsii (both native to arid habitats) and J. ailantifolia (native to mesic habitats). Stem xylem of J. microcarpa was more resistant to drought-induced embolism as compared with J. hindsii and J. ailantifolia (differences in embolism susceptibility among older and current year xylem were not detected in any species). Variations in most vessel anatomical traits were negligible among the three species; however, we detected substantial interspecific differences in intervessel pit characteristics. As compared with J. hindsii and J. ailantifolia, low embolism susceptibility in J. microcarpa was associated with smaller pit size in larger diameter vessels, a smaller area of the shared vessel wall occupied by pits, lower pit frequency and no changes in pit characteristics as vessel diameters increased. Changes in amount of embolized vessels following 40 days of re-watering were minor in intact saplings of all three species highlighting that an embolism repair mechanism did not contribute to drought recovery. In conclusion, our data indicate that interspecific variations in drought-induced embolism susceptibility are associated with species-specific pit characteristics, and these traits may provide a future target for breeding efforts aimed at selecting walnut germplasm with improved drought resistance.

  5. Epiphyte response to drought and experimental warming in an Andean cloud forest

    PubMed Central

    Rapp, Joshua M.; Silman, Miles R.

    2014-01-01

    The high diversity and abundance of vascular epiphytes in tropical montane cloud forest is associated with frequent cloud immersion, which is thought to protect plants from drought stress. Increasing temperature and rising cloud bases associated with climate change may increase epiphyte drought stress, leading to species and biomass loss. We tested the hypothesis that warmer and drier conditions associated with a lifting cloud base will lead to increased mortality and/or decreased recruitment of epiphyte ramets, altering species composition in epiphyte mats. By using a reciprocal transplant design, where epiphyte mats were transplanted across an altitudinal gradient of increasing cloud immersion, we differentiated between the effects of warmer and drier conditions from the more general prediction of niche theory that transplanting epiphytes in any direction away from their home elevation should result in reduced performance. Effects differed among species, but effects were generally stronger and more negative for epiphytes in mats transplanted down slope from the highest elevation, into warmer and drier conditions, than for epiphyte mats transplanted from other elevations. In contrast, epiphytes from lower elevations showed greater resistance to drought in all treatments. Epiphyte community composition changed with elevation, but over the timescale of the experiment there were no consistent changes in species composition. Our results suggest some epiphytes may show resistance to climate change depending on the environmental and evolutionary context. In particular, sites where high rainfall makes cloud immersion less important for epiphyte water-balance, or where occasional drought has previously selected for drought-resistant taxa, may be less adversely affected by predicted climate changes. PMID:25165534

  6. Epiphyte response to drought and experimental warming in an Andean cloud forest.

    PubMed

    Rapp, Joshua M; Silman, Miles R

    2014-01-01

    The high diversity and abundance of vascular epiphytes in tropical montane cloud forest is associated with frequent cloud immersion, which is thought to protect plants from drought stress. Increasing temperature and rising cloud bases associated with climate change may increase epiphyte drought stress, leading to species and biomass loss. We tested the hypothesis that warmer and drier conditions associated with a lifting cloud base will lead to increased mortality and/or decreased recruitment of epiphyte ramets, altering species composition in epiphyte mats. By using a reciprocal transplant design, where epiphyte mats were transplanted across an altitudinal gradient of increasing cloud immersion, we differentiated between the effects of warmer and drier conditions from the more general prediction of niche theory that transplanting epiphytes in any direction away from their home elevation should result in reduced performance. Effects differed among species, but effects were generally stronger and more negative for epiphytes in mats transplanted down slope from the highest elevation, into warmer and drier conditions, than for epiphyte mats transplanted from other elevations. In contrast, epiphytes from lower elevations showed greater resistance to drought in all treatments. Epiphyte community composition changed with elevation, but over the timescale of the experiment there were no consistent changes in species composition. Our results suggest some epiphytes may show resistance to climate change depending on the environmental and evolutionary context. In particular, sites where high rainfall makes cloud immersion less important for epiphyte water-balance, or where occasional drought has previously selected for drought-resistant taxa, may be less adversely affected by predicted climate changes.

  7. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas.

    PubMed

    Huang, Xiaohui; Liu, Yun; Li, Jiaxing; Xiong, Xingzheng; Chen, Yang; Yin, Xiaohua; Feng, Dalan

    2013-10-01

    Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.

  8. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).

    PubMed

    Ramírez-Valiente, Jose A; Cavender-Bares, Jeannine

    2017-07-01

    In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not necessarily tightly coupled with resource-use strategies. Overall, our study demonstrates the importance of considering intraspecific variation in analyses of the vulnerability of tropical trees to climate change. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  10. Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance.

    PubMed

    Kleiber, Anita; Duan, Qiuxiao; Jansen, Kirstin; Verena Junker, Laura; Kammerer, Bernd; Rennenberg, Heinz; Ensminger, Ingo; Gessler, Arthur; Kreuzwieser, Jürgen

    2017-12-01

    Douglas fir (Pseudotsuga menziesii) is a conifer species that stores large amounts of terpenoids, mainly monoterpenoids in resin ducts of various tissues. The effects of drought on stored leaf terpenoid concentrations in trees are scarcely studied and published data are partially controversial, since reduced, unaffected or elevated terpenoid contents due to drought have been reported. Even less is known on the effect of drought on root terpenoids. In the present work, we investigated the effect of reduced water availability on the terpenoid content in roots and needles of Douglas fir seedlings. Two contrasting Douglas fir provenances were studied: an interior provenance (var. glauca) with assumed higher drought resistance, and a coastal provenance (var. menziesii) with assumed lower drought resistance. We tested the hypothesis that both provenances show specific patterns of stored terpenoids and that the patterns will change in response to drought in both, needles and roots. We further expected stronger changes in the less drought tolerant coastal provenance. For this purpose, we performed an experiment under controlled conditions, in which the trees were exposed to moderate and severe drought stress. According to our expectations, the study revealed clear provenance-specific terpenoid patterns in needles. However, such patterns were not detected in the roots. Drought slightly increased the needle terpenoid contents of the coastal but not of the interior provenance. We also observed increased terpenoid abundance mainly in roots of the moderately stressed coastal provenance. Overall, from the observed provenance-specific reactions with increased terpenoid levels in trees of the coastal origin in response to drought, we conclude on functions of terpenoids for abiotic stress tolerance that might be fulfilled by other, constitutively expressed mechanisms in drought-adapted interior provenances. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2015-07-01

    Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size.

  12. Aridity and grazing as convergent selective forces: an experiment with an Arid Chaco bunchgrass.

    PubMed

    Quiroga, R Emiliano; Golluscio, Rodolfo A; Blanco, Lisandro J; Fernández, Roberto J

    2010-10-01

    It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history (semiarid/ subhumid x heavily grazed/lightly grazed), established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot: root ratio and a higher resource allocation to reserves (starch) in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller (and with more erect tillers) than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure history environments for selecting drought-resistant ones.

  13. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    PubMed

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana.

    PubMed

    Song, Shun; Xu, Yi; Huang, Dongmei; Miao, Hongxia; Liu, Juhua; Jia, Caihong; Hu, Wei; Valarezo, Ana Valeria; Xu, Biyu; Jin, Zhiqiang

    2018-07-01

    Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress.

    PubMed

    Ye, Jianqiu; Yang, Hai; Shi, Haitao; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Yan, Yan; Luo, Ying; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Li, Kaimian; Zhang, He; Hu, Wei

    2017-11-02

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), an important unit of MAPK cascade, play crucial roles in plant development and response to various stresses. However, little is known concerning the MAPKKK family in the important subtropical and tropical crop cassava. In this study, 62 MAPKKK genes were identified in the cassava genome, and were classified into 3 subfamilies based on phylogenetic analysis. Most of MAPKKKs in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis showed that MAPKKK genes participated in tissue development and response to drought stress. Comparative expression profiles revealed that many MAPKKK genes were activated in cultivated varieties SC124 and Arg7 and the function of MeMAPKKKs in drought resistance may be different between SC124/Arg7 and W14. Expression analyses of the 7 selected MeMAPKKK genes showed that most of them were significantly upregulated by osmotic, salt and ABA treatments, whereas slightly induced by H 2 O 2 and cold stresses. Taken together, this study identified candidate MeMAPKKK genes for genetic improvement of abiotic stress resistance and provided new insights into MAPKKK -mediated cassava resistance to drought stress.

  16. Land use alters the resistance and resilience of soil food webs to drought

    USGS Publications Warehouse

    de Vries, Franciska T.; Liiri, Mira E.; Bjørnlund, Lisa; Bowker, Matthew A.; Christensen, Søren; Setälä, Heikki; Bardgett, Richard D.

    2012-01-01

    Soils deliver several ecosystem services including carbon sequestration and nutrient cycling, which are of central importance to climate mitigation and sustainable food production. Soil biota play an important role in carbon and nitrogen cycling, and, although the effects of land use on soil food webs are well documented the consequences for their resistance and resilience to climate change are not known. We compared the resistance and resilience to drought--which is predicted to increase under climate change of soil food webs of two common land-use systems: intensively managed wheat with a bacterial-based soil food web and extensively managed grassland with a fungal-based soil food web. We found that the fungal-based food web, and the processes of C and N loss it governs, of grassland soil was more resistant, although not resilient, and better able to adapt to drought than the bacterial-based food web of wheat soil. Structural equation modelling revealed that fungal-based soil food webs and greater microbial evenness mitigated C and N loss. Our findings show that land use strongly affects the resistance and resilience of soil food webs to climate change, and that extensively managed grassland promotes more resistant, and adaptable, fungal-based soil food webs.

  17. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars

    PubMed Central

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A.; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm) and water-limited (290–320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass—specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance. PMID:27148287

  18. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500-2012) modulated by the Interdecadal Pacific Oscillation

    NASA Astrophysics Data System (ADS)

    Palmer, Jonathan G.; Cook, Edward R.; Turney, Chris S. M.; Allen, Kathy; Fenwick, Pavla; Cook, Benjamin I.; O'Donnell, Alison; Lough, Janice; Grierson, Pauline; Baker, Patrick

    2015-12-01

    Agricultural production across eastern Australia and New Zealand is highly vulnerable to drought, but there is a dearth of observational drought information prior to CE 1850. Using a comprehensive network of 176 drought-sensitive tree-ring chronologies and one coral series, we report the first Southern Hemisphere gridded drought atlas extending back to CE 1500. The austral summer (December-February) Palmer drought sensitivity index reconstruction accurately reproduces historically documented drought events associated with the first European settlement of Australia in CE 1788, and the leading principal component explains over 50% of the underlying variance. This leading mode of variability is strongly related to the Interdecadal Pacific Oscillation tripole index (IPO), with a strong and robust antiphase correlation between (1) eastern Australia and the New Zealand North Island and (2) the South Island. Reported positive, negative, and neutral phases of the IPO are consistently reconstructed by the drought atlas although the relationship since CE 1976 appears to have weakened.

  19. Drought Variability in the Eastern Australia and New Zealand Summer Drought Atlas (ANZDA, CE 1500-2012) Modulated by the Interdecadal Pacific Oscillation

    NASA Technical Reports Server (NTRS)

    Palmer, Jonathan G.; Cook, Edward R.; Turney, Chris S. M.; Allen, Kathy; Fenwick, Pavla; Cook, Benjamin I.; O'Donnell, Alison; Lough, Janice; Grierson, Pauline; Baker, Patrick

    2015-01-01

    Agricultural production across eastern Australia and New Zealand is highly vulnerable to drought, but there is a dearth of observational drought information prior to CE (Christian Era) 1850. Using a comprehensive network of 176 drought-sensitive tree-ring chronologies and one coral series, we report the first Southern Hemisphere gridded drought atlas extending back to CE 1500. The austral summer (December-February) Palmer drought sensitivity index reconstruction accurately reproduces historically documented drought events associated with the first European settlement of Australia in CE 1788, and the leading principal component explains over 50 percent of the underlying variance. This leading mode of variability is strongly related to the Interdecadal Pacific Oscillation tripole index (IPO), with a strong and robust antiphase correlation between (1) eastern Australia and the New Zealand North Island and (2) the South Island. Reported positive, negative, and neutral phases of the IPO are consistently reconstructed by the drought atlas although the relationship since CE 1976 appears to have weakened.

  20. The compensation effects of physiology and yield in cotton after drought stress.

    PubMed

    Niu, Jing; Zhang, Siping; Liu, Shaodong; Ma, Huijuan; Chen, Jing; Shen, Qian; Ge, Changwei; Zhang, Xiaomeng; Pang, Chaoyou; Zhao, Xinhua

    The objective of this study was to investigate the root growth compensatory effects and cotton yield under drought stress. The results indicate that the root dry weight, boll weight, and cotton yield increased in both the drought-resistant cultivar (CCRI-45) and the drought-sensitive cultivar (CCRI-60). Compensation effects were exhibited under the three-day drought stress treatment at a soil relative water content (SRWC) of 60% and 45% during the seedling stage, and flowering and boll-forming stage over two years. The yield of the drought-resistant cultivar (CCRI-45) was higher than the control, however, following the six-day 45% SRWC drought treatments, the yield of the drought-sensitive cultivar (CCRI-60) was lower than the control. The soluble sugar content, proline content, superoxide dismutase (SOD) activity, and peroxidase (POD) activity of the roots increased under drought stress and then decreased after re-watering, although the values remained higher than those of the controls for a short period. These physiological measures may represent stress reactions and thus may not indicate factors that result in compensation effects. However, catalase (CAT) activity and gibberellic acid (GA) content of the roots decreased under drought stress. After re-watering, the CAT activity and the GA content increased and were significantly higher than those of the controls under the six-day 60% SRWC and 45% SRWC drought treatments. The abscisic acid (ABA) content of the roots increased under drought stress. After re-watering, the ABA content decreased to a lower level under the three and six-day 60% SRWC and 45% SRWC drought treatments than in the controls. According to an analysis of various indicators, the interaction between ABA and GA signals may play an important role in root growth compensatory effects. In summary, the results demonstrate that moderate drought stress is beneficial to root growth and yield. This conclusion is of great significance to improving our understanding of the maximum utilization of limited water resources. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. System robustness analysis for drought risk management in South Florida

    NASA Astrophysics Data System (ADS)

    Eilander, D.; Bouwer, L.; Barnes, J.; Mens, M.; Obeysekera, J.

    2015-12-01

    Drought is a frequently returning natural hazard in Florida, with at least one severe drought to be expected every decade. These droughts have had many impacts such as loss of agricultural products, inadequate public water supply and salt water intrusion into freshwater aquifers. Furthermore, climate change projections for South Florida suggest that dry spells are likely to be more frequent and prolonged, with negative impacts on water supply management for all users. In this study a System Robustness Analysis was conducted in order to analyse the effectiveness of strategies to limit the socio-economic impact of droughts under climate change. System Robustness Analysis (SRA) aims to support decision making by quantifying how well a system, with and without additional measures, can remain functioning under a range of external disturbances. Two system characteristics add up to system robustness: Resistance is the ability to withstand disturbances without responding (zero impact), and resilience is the ability to recover from the response to a disturbance. SRA can help to provide insight into the sensitivity of a system to changing magnitudes of extreme weather events. A regional-scale hydrologic and water management model is used to simulate the effect of changing precipitation and evaporation forcing on agricultural and urban water supply and demand in South Florida. The complex water management operational rules including water use restrictions are simulated in the model. Based on model runs with a various climate scenarios, drought events with a wide range of severity are identified and for each event the socio-economic impacts are determined. Here, a drought is defined as a reduced streamflow in the upstream Kissimmee basin, which contributes most to Lake Okeechobee, the major surface water storage in the system. The drought severity is characterized by the maximum drought deficit volume. Drought impacts are analyzed for several users in Miami Dade County. From the relation between drought severity and drought impact the resistance and resilience of the system for hydrological droughts are found. This relation is investigated for an array of adaptation measures and strategies in order to find strategies that will effectively increase the system's ability to deal with future drought events.

  2. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation.

    PubMed

    Yin, Xiao-Han; Sterck, Frank; Hao, Guang-You

    2018-04-23

    Some temperate tree species mitigate the negative impacts of frost-induced xylem cavitation by restoring impaired hydraulic function via positive pressures, and may therefore be more resistant to frost fatigue (the phenomenon that post-freezing xylem becomes more susceptible to hydraulic dysfunction) than nonpressure-generating species. We test this hypothesis and investigate underlying anatomical/physiological mechanisms. Using a common garden experiment, we studied key hydraulic traits and detailed xylem anatomical characteristics of 18 sympatric tree species. These species belong to three functional groups, that is, one generating both root and stem pressures (RSP), one generating only root pressure (RP), and one unable to generate such pressures (NP). The three functional groups diverged substantially in hydraulic efficiency, resistance to drought-induced cavitation, and frost fatigue resistance. Most notably, RSP and RP were more resistant to frost fatigue than NP, but this was at the cost of reduced hydraulic conductivity for RSP and reduced resistance to drought-induced cavitation for RP. Our results show that, in environments with strong frost stress: these groups diverge in hydraulic functioning following multiple trade-offs between hydraulic efficiency, resistance to drought and resistance to frost fatigue; and how differences in anatomical characteristics drive such divergence across species. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  3. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions

    PubMed Central

    Muscolo, A.; Junker, A.; Klukas, C.; Weigelt-Fischer, K.; Riewe, D.; Altmann, T.

    2015-01-01

    Drought and salinity are among the major abiotic stresses which, often inter-relatedly, adversely affect plant growth and productivity. Plant stress responses depend on the type of stress, on its intensity, on the species, and also on the genotype. Different accessions of a species may have evolved different mechanisms to cope with stress and to complete their life cycles. This study is focused on lentil, an important Mediterranean legume with high quality protein for the human diet. The effects of salinity and drought on germination and early growth of Castelluccio di Norcia (CAST), Pantelleria (PAN), Ustica (UST), and Eston (EST) accessions were evaluated to identify metabolic and phenotypic traits related to drought and/or salinity stress tolerance. The results showed a relationship between imposed stresses and performance of the cultivars. According to germination frequencies, the accession ranking was as follows: NaCl resistant > susceptible, PAN > UST > CAST > EST; polyethylene glycol (PEG) resistant > susceptible, CAST > UST > EST > PAN. Seedling tolerance rankings were: NaCl resistant > susceptible, CAST ≈ UST > PAN ≈ EST; PEG resistant > susceptible, CAST > EST ≈ UST > PAN. Changes in the metabolite profiles, mainly quantitative rather than qualitative, were observed in the same cultivar in respect to the treatments, and among the cultivars under the same treatment. Metabolic differences in the stress tolerance of the different genotypes were related to a reduction in the levels of tricarboxylic acid (TCA) cycle intermediates. The relevant differences, between the most NaCl-tolerant genotype (PAN) and the most sensitive one (EST) were related to the decrease in the threonic acid level. Stress-specific metabolite indicators were also identified: ornithine and asparagine as markers of drought stress and alanine and homoserine as markers of salinity stress. PMID:25969553

  4. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    PubMed

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study

    PubMed Central

    Li, Xiaokai; Guo, Zilong; Lv, Yan; Cen, Xiang; Ding, Xipeng; Wu, Hua; Li, Xianghua; Huang, Jianping

    2017-01-01

    A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance. PMID:28686596

  6. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.

    Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less

  7. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe

    DOE PAGES

    De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.; ...

    2015-12-21

    Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less

  8. Identification of microRNAs in Response to Drought in Common Wild Rice (Oryza rufipogon Griff.) Shoots and Roots.

    PubMed

    Zhang, Jing-Wen; Long, Yan; Xue, Man-de; Xiao, Xing-Guo; Pei, Xin-Wu

    2017-01-01

    Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where 'R' indicates the root tissue and 'L' indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.

  9. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery.

    PubMed

    Brossa, Ricard; Pintó-Marijuan, Marta; Francisco, Rita; López-Carbonell, Marta; Chaves, Maria Manuela; Alegre, Leonor

    2015-04-01

    The interaction between enzymatic and non-enzymatic antioxidants, endogenous levels of ABA and ABA-GE, the rapid recuperation of photosynthetic proteins under re-watering as well the high level of antioxidant proteins in previously drought-stressed plants under re-watering conditions, will contribute to drought resistance in plants subjected to a long-term drought stress under Mediterranean field conditions. This work provides an overview of the mechanisms of Cistus albidus acclimation to long-term summer drought followed by re-watering in Mediterranean field conditions. To better understand the molecular mechanisms of drought resistance in these plants, a proteomic study using 2-DE and MALDI-TOF/TOF MS/MS was performed on leaves from these shrubs. The analysis identified 57 differentially expressed proteins in water-stressed plants when contrasted to well watered. Water-stressed plants showed an increase, both qualitatively and quantitatively, in HSPs, and downregulation of photosynthesis and carbon metabolism enzymes. Under drought conditions, there was considerable upregulation of enzymes related to redox homeostasis, DHA reductase, Glyoxalase, SOD and isoflavone reductase. However, upregulation of catalase was not observed until after re-watering was carried out. Drought treatment caused an enhancement in antioxidant defense responses that can be modulated by ABA, and its catabolites, ABA-GE, as well as JA. Furthermore, quantification of protein carbonylation was shown to be a useful marker of the relationship between water and oxidative stress, and showed that there was only moderate oxidative stress in C. albidus plants subjected to water stress. After re-watering plants recovered although the levels of ABA-GE and antioxidant enzymes still remain higher than in well-watered plants. We expect that our results will provide new data on summer acclimation to drought stress in Mediterranean shrubs.

  10. Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae).

    PubMed

    Li, Haiyan; Li, Xiaoshuang; Zhang, Daoyuan; Liu, Huiliang; Guan, Kaiyun

    2013-01-01

    Eremosparton songoricum (Litv.) Vass. is an endemic and extremely drought-resistant desert plant with populations that are gradually declining due to the failure of sexual recruitment. The effects of drought stress on the seed germination and physiological characteristics of seeds and seedlings were investigated. The results showed that the germination percentage decreased with an increase of polyethylene glycol 6000 (PEG) concentration: -0.3 MPa (5 % PEG) had a promoting effect on seed germination, -0.9 MPa (15 % PEG) dramatically reduced germination, and -1.8 MPa (30 % PEG) was the threshold for E. songoricum germination. However, the contents of proline and soluble sugars and the activity of CAT increased with increasing PEG concentrations. At the young seedling stage, the proline content and CAT, SOD and POD activities all increased at 2 h and then decreased; except for a decrease at 2 h, the MDA content also increased compared to the control (0 h). These results indicated that 2 h may be a key response time point for E. songoricum to resist drought stress. The above results demonstrate that drought stress can suppress and delay the germination of E. songoricum and that the seeds accumulate osmolytes and augment the activity of antioxidative enzymes to cope with drought injury. E. songoricum seedlings are sensitive to water stress and can quickly respond to drought but cannot tolerate drought for an extended period. Although such physiological and biochemical changes are important strategies for E. songoricum to adapt to a drought-prone environment, they may be, at least partially, responsible for the failure of sexual reproduction under natural conditions.

  11. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Caprio, Anthony C.; Stephenson, Nathan L.; Das, Adrian J.

    2016-01-01

    Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs).  It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought.  Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed fire may help forests adapt to a future of more frequent and severe drought.During the third year of drought, in 2014, we surveyed 9950 trees in 38 burned and 18 unburned mixed conifer forest plots at low elevation (<2100 m a.s.l.) in Kings Canyon, Sequoia, and Yosemite national parks in California, USA.  Fire had occurred in the burned plots from 6 yr to 28 yr before our survey.  After accounting for differences in individual tree diameter, common conifer species found in the burned plots had significantly reduced probability of mortality compared to unburned plots during the drought.  Stand density (stems ha-1) was significantly lower in burned versus unburned sites, supporting the idea that reduced competition may be responsible for the differential drought mortality response.  At the time of writing, we are not sure if burned stands will maintain lower tree mortality probabilities in the face of the continued, severe drought of 2015.  Future work should aim to better identify drought response mechanisms and how these may vary across other forest types and regions, particularly in other areas experiencing severe drought in the Sierra Nevada and on the Colorado Plateau.

  12. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    PubMed

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants

    PubMed Central

    Cao, Minjie; Liu, Xue; Zhang, Yan; Xue, Xiaoqian; Zhou, X Edward; Melcher, Karsten; Gao, Pan; Wang, Fuxing; Zeng, Liang; Zhao, Yang; Zhao, Yang; Deng, Pan; Zhong, Dafang; Zhu, Jian-Kang; Xu, H Eric; Xu, Yong

    2013-01-01

    Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules. PMID:23835477

  14. How to help woody plants to overcome drought stress?-a control study of four tree species in Northwest China.

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Zhang, Shuoxin

    2010-05-01

    Water is essential for plants and involves most physical and chemical processes within their lifecycles. Drought stress is a crucial limiting factor for plant growth and production. 48% of the land in China is arid and semi-arid, and non-irrigated land occupies approximately 51.9% of the total cultivated areas. Therefore, studies on plant drought resistant mechanisms have great significance for improving water use efficiency and thus increasing productivity of economical plants. Prior research has shown that the application of nitrogenous fertilizer affects the drought-resistant characteristics of plants. This study aimed to reveal the effect of nitrogenous fertilizer on physiological aspects and its impact on the drought resistance of four tree species (Robinia pseudoacacia L., Ligustrum lucidum Ait., Acer truncatum Bge. and Ulmus pumila L. ) in northwest China. Three levels of nitrogen fertilization (46% N based of urea adjusted to: 5g/15g soil, 15g/15g soil and 25g/15g soil) and an additional control study were applied to 2-year-old well-grown seedlings under drought conditions (30% field moisture capacity). Stomatal conductance, transpiration rate and net photosynthetic rate were measured by a LI-6400 photosynthesis system, while water use efficiency was calculated from net photosynthesis rate and transpiration rate. The results revealed that as the amount of urea applied was raised, stomatal conductance, transpiration rate and net photosynthetic rate decreased significantly, and thus water use efficiency significantly increased. It is therefore concluded that the application of nitrogenous fertilizer regulated physiological parameters by reducing stomata conductance to improve water use efficiency. In addition, among the four tree species, U. pumila had the maximum value of water use efficiency under the same drought condition. The outcome of this study provides a guided option for forest management in arid and semi-arid areas of northwest China.

  15. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    PubMed Central

    Bouskill, Nicholas J; Lim, Hsiao Chien; Borglin, Sharon; Salve, Rohit; Wood, Tana E; Silver, Whendee L; Brodie, Eoin L

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance to subsequent perturbation? Here we reduced the quantity of precipitation throughfall to tropical forest soils in the Luquillo Mountains, Puerto Rico. Treatments included newly established throughfall exclusion plots (de novo excluded), plots undergoing reduction for a second time (pre-excluded) and ambient control plots. Ten months of throughfall exclusion led to a small but statistically significant decline in soil water potential and bacterial populations clearly adapted to increased osmotic stress. Although the water potential decline was small and microbial biomass did not change, phylogenetic diversity in the de novo-excluded plots decreased by ∼40% compared with the control plots, yet pre-excluded plots showed no significant change. On the other hand, the relative abundances of bacterial taxa in both the de novo-excluded and pre-excluded plots changed significantly with throughfall exclusion compared with control plots. Changes in bacterial community structure could be explained by changes in soil pore water chemistry and suggested changes in soil redox. Soluble iron declined in treatment plots and was correlated with decreased soluble phosphorus concentrations, which may have significant implications for microbial productivity in these P-limited systems. PMID:23151641

  16. Leaf Hydraulic Vulnerability Triggers the Decline in Stomatal and Mesophyll Conductance during drought in Rice (Oryza sativa).

    PubMed

    Wang, Xiaoxiao; Du, Tingting; Huang, Jianliang; Peng, Shaobing; Xiong, Dongliang

    2018-05-18

    Understanding the physiological responses of crops to drought is important for ensuring sustained crop productivity under climate change, which is expected to exacerbate drought frequencies and intensities. Drought responses involve multiple traits, but the correlations between these traits are poorly understood. Using a variety of techniques, we estimated the changes in gas exchange, leaf hydraulic conductance (Kleaf), and leaf turgor in rice (Oryza sativa) in response to both short- and long-term soil drought and performed a photosynthetic limitation analysis to quantify the contributions of each limiting factor to the resultant overall decrease in photosynthesis during drought. Biomass, leaf area and leaf width significantly decreased during the two-week drought treatment, but leaf mass per area and leaf vein density increased. Light-saturated photosynthetic rate (A) declined dramatically during soil drought, mainly due to the decrease in stomatal conductance (gs) and mesophyll conductance (gm). Stomatal modeling suggested that the decline in Kleaf explained most of the decrease in stomatal closure during the drought treatment, and may also trigger the drought-related decrease of gs and gm. The results of this study provide insight into the regulation of carbon assimilation under drought conditions.

  17. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.

    PubMed

    Eller, Allyson S D; Young, Lindsay L; Trowbridge, Amy M; Monson, Russell K

    2016-02-01

    Drought has the potential to influence the emission of biogenic volatile organic compounds (BVOCs) from forests and thus affect the oxidative capacity of the atmosphere. Our understanding of these influences is limited, in part, by a lack of field observations on mature trees and the small number of BVOCs monitored. We studied 50- to 60-year-old Pinus ponderosa trees in a semi-arid forest that experience early summer drought followed by late-summer monsoon rains, and observed emissions for five BVOCs-monoterpenes, methylbutenol, methanol, acetaldehyde and acetone. We also constructed a throughfall-interception experiment to create "wetter" and "drier" plots. Generally, trees in drier plots exhibited reduced sap flow, photosynthesis, and stomatal conductances, while BVOC emission rates were unaffected by the artificial drought treatments. During the natural, early summer drought, a physiological threshold appeared to be crossed when photosynthesis ≅2 μmol m(-2) s(-1) and conductance ≅0.02 mol m(-2) s(-1). Below this threshold, BVOC emissions are correlated with leaf physiology (photosynthesis and conductance) while BVOC emissions are not correlated with other physicochemical factors (e.g., compound volatility and tissue BVOC concentration) that have been shown in past studies to influence emissions. The proportional loss of C to BVOC emission was highest during the drought primarily due to reduced CO2 assimilation. It appears that seasonal drought changes the relations among BVOC emissions, photosynthesis and conductance. When drought is relaxed, BVOC emission rates are explained mostly by seasonal temperature, but when seasonal drought is maximal, photosynthesis and conductance-the physiological processes which best explain BVOC emission rates-decline, possibly indicating a more direct role of physiology in controlling BVOC emission.

  18. Development-specific responses to drought stress in Aleppo pine (Pinus halepensis Mill.) seedlings.

    PubMed

    Alexou, Maria

    2013-10-01

    Aleppo pine (Pinus halepensis Mill.) is a pioneer species, highly competitive due to exceptional resistance to drought. To investigate the stress resistance in the first and second year of development, a steady-state drought experiment was implemented. Photosynthesis (A(net)), stomatal conductance and transpiration (E) were measured on three different sampling dates together with phloem soluble sugars, amino acids and non-structural proteins. Needle ascorbic acid (AsA) and reactive oxygen species were measured to evaluate the seedlings' drought stress condition in the final sampling. Drought impaired A(net) and E by 35 and 31%, respectively, and increased AsA levels up to 10-fold, without significant impact on the phloem metabolites. Phloem sugars related to temperature fluctuations rather than soil moisture and did not relate closely to A(net) levels. Sugars and proteins decreased between the second and third sampling date by 56 and 61%, respectively, and the ratio of sugars to amino acids decreased between the first and third sampling by 81%, while A(net) and water-use efficiency (A(net)/E) decreased only in the older seedlings. Although gas exchange was higher in the older seedlings, ascorbic acid and phloem metabolites were higher in the younger seedlings. It was concluded that the drought stress responses depended significantly on developmental stage, and research on the physiology of Aleppo pine regeneration should focus more on temperature conditions and the duration of drought than its severity.

  19. Associations of multi-decadal sea-surface temperature variability with US drought

    USGS Publications Warehouse

    McCabe, G.J.; Betancourt, J.L.; Gray, S.T.; Palecki, M.A.; Hidalgo, H.G.

    2008-01-01

    Recent research suggests a link between drought occurrence in the conterminous United States (US) and sea surface temperature (SST) variability in both the tropical Pacific and North Atlantic Oceans on decadal to multidecadal (D2M) time scales. Results show that the Atlantic Multidecadal Oscillation (AMO) is the most consistent indicator of D2M drought variability in the conterminous US during the 20th century, but during the 19th century the tropical Pacific is a more consistent indicator of D2 M drought. The interaction between El Nin??o-Southern Oscillation (ENSO) and the AMO explain a large part of the D2M drought variability in the conterminous US. More modeling studies are needed to reveal possible mechanisms linking low-frequency ENSO variability and the AMO with drought in the conterminous US. ?? 2007 Elsevier Ltd and INQUA.

  20. Plant functional types define magnitude of drought response in peatland CO2 exchange.

    PubMed

    Kuiper, Jan J; Mooij, Wolf M; Bragazza, Luca; Robroek, Bjorn J M

    2014-01-01

    Peatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant-removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during (i.e., resistance) and after (i.e., recovery) an experimental drought. The removal of PFTs caused a decrease of NEE, but the rate differed between microhabitats (i.e., hummocks and lawns) and the type of PFTs. Ericoid removal had a large effect on NEE in hummocks, while the graminoids played a major role in the lawns. The removal of PFTs did not affect the resistance or the recovery after the experimental drought. We argue that the response of Sphagnum mosses (the only PFT present in all treatments) to drought is dominant over that of coexisting PFTs. However, we observed that the moment in time when the system switched from C sink to C source during the drought was controlled by the vascular PFTs. In the light of climate change, the shifts in species composition or even the loss of certain PFTs are expected to strongly affect the future C dynamics in response to environmental stress.

  1. Influence of Drought on Mesophyll Resistance to CO2 Diffusion and its Impact on Water-Use Efficiency in Trees

    NASA Astrophysics Data System (ADS)

    Guo, J.; Beverly, D.; Cook, C.; Ewers, B. E.; Williams, D. G.

    2015-12-01

    The resistance to CO2 diffusion inside leaves (mesophyll resistance; rm) during photosynthesis is often comparable in magnitude to stomatal diffusion resistance, and varies among species and across environmental conditions. Consequently, photosynthesis is strongly limited by rm at low internal CO2 partial pressures, such that its variation may determine patterns of leaf water-use efficiency (WUE). Reduction in stomatal conductance with drought typically increases WUE, but also decreases photosynthesis. In theory, the decrease in photosynthesis could be countered by reduction in rm while maintaining high WUE. It is still uncertain how drought-related changes in rm affect short- and long-term WUE strategies of different tree species. We conducted field observations of instantaneous WUE and 13C discrimination in two dominant conifer species (Pinus contorta and Picea engelmannii) in SE Wyoming over the seasonal dry-down period in the summer of 2015. rm was examined by on-line 13C discrimination using isotope laser spectroscopy. Controlled environment studies on three conifer species (P. contorta, P. engelmannii, and Abies lasiocarpa) and one angiosperm (Populus tremuloides) are in progress. We hypothesize that the plasticity of rm in response to drought accounts for significant adjustments in photosynthetic capacity and WUE. Needle leaf conifers are known to have relatively high rm, and we expect them to show greater improvements in photosynthesis and WUE when rm is decreased compared to angiosperm tree species.

  2. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  3. [Spatio-temporal characteristics of agricultural drought in Shaanxi Province, China based on integrated disaster risk index].

    PubMed

    He, Bin; Wang, Quan Jiu; Wu, Di; Zhou, Bei Bei

    2016-10-01

    With the change of climate, agricultural drought has directly threatened the food security. Based on the natural disaster risk theory, we analyzed the spatial and temporal characteristics of agricultural drought in Shanxi Province from 2009 to 2013. Four risk factors (hazard, exposure, vulnerability, and drought resistance ability) were selected with the consideration of influence factors of drought disasters. Subsequently, the index weight was determined by the analytic hierarchy process (AHP) and the aggregative indicator of natural disaster risk was established. The results showed that during the study period, the agricultural drought risk slightly declined in the northern Shaanxi, but increased sharply in the southern Shaanxi, especially in Shangluo City. While for the central part of Shaanxi Province, it maintained good stability, which was the highest in Xianyang City and the lowest in Xi'an City. Generally, the agricultural drought risk in Shaanxi Province gradually increased from south to north.

  4. A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters.

    PubMed

    Nilsen, Erik T; Freeman, Joshua; Grene, Ruth; Tokuhisa, James

    2014-01-01

    The development of water stress resistant lines of commercial tomato by breeding or genetic engineering is possible, but will take considerable time before commercial varieties are available for production. However, grafting commercial tomato lines on drought resistant rootstock may produce drought tolerant commercial tomato lines much more rapidly. Due to changing climates and the need for commercial production of vegetables in low quality fields there is an urgent need for stress tolerant commercial lines of vegetables such as tomato. In previous observations we identified a scion root stock combination ('BHN 602' scion grafted onto 'Jjak Kkung' rootstock hereafter identified as 602/Jjak) that had a qualitative drought-tolerance phenotype when compared to the non-grafted line. Based on this initial observation, we studied photosynthesis and vegetative above-ground growth during mild-drought for the 602/Jjak compared with another scion-rootstock combination ('BHN 602' scion grafted onto 'Cheong Gang' rootstock hereafter identified as 602/Cheong) and a non-grafted control. Overall above ground vegetative growth was significantly lower for 602/Jjak in comparison to the other plant lines. Moreover, water potential reduction in response to mild drought was significantly less for 602/Jjak, yet stomatal conductance of all plant-lines were equally inhibited by mild-drought. Light saturated photosynthesis of 602/Jjak was less affected by low water potential than the other two lines as was the % reduction in mesophyll conductance. Therefore, the Jjak Kkung rootstock caused aboveground growth reduction, water conservation and increased photosynthetic tolerance of mild drought. These data show that different rootstocks can change the photosynthetic responses to drought of a high yielding, commercial tomato line. Also, this rapid discovery of one scion-rootstock combination that provided mild-drought tolerance suggests that screening more scion-rootstock combination for stress tolerance may rapidly yield commercially viable, stress tolerant lines of tomato.

  5. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress

    PubMed Central

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-01-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter aphid fecundity in water stresses plants. PMID:26546578

  6. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Gupta, Divya; Suryavanshi, Shakti; Adamowski, Jan; Madramootoo, Chandra A.

    2016-12-01

    In this study, seasonal trends as well as dominant and significant periods of variability of drought variables were analyzed for 30 rainfall subdivisions in India over 141 years (1871-2012). Standardized precipitation index (SPI) was used as a meteorological drought indicator, and various drought variables (monsoon SPI, non-monsoon SPI, yearly SPI, annual drought duration, annual drought severity and annual drought peak) were analyzed. Discrete wavelet transform was used in conjunction with the Mann-Kendall test to analyze trends and dominant periodicities associated with the drought variables. Furthermore, continuous wavelet transform (CWT) based global wavelet spectrum was used to analyze significant periods of variability associated with the drought variables. From the trend analysis, we observed that over the second half of the 20th century, drought occurrences increased significantly in subdivisions of Northeast and Central India. In both short-term (2-8 years) and decadal (16-32 years) periodicities, the drought variables were found to influence the trend. However, CWT analysis indicated that the dominant periodic components were not significant for most of the geographical subdivisions. Although inter-annual and inter-decadal periodic components play an important role, they may not completely explain the variability associated with the drought variables across the country.

  7. Herbivory and drought generate short-term stochasticity and long-term stability in a savanna understory community.

    PubMed

    Riginos, Corinna; Porensky, Lauren M; Veblen, Kari E; Young, Truman P

    2018-03-01

    Rainfall and herbivory are fundamental drivers of grassland plant dynamics, yet few studies have examined long-term interactions between these factors in an experimental setting. Understanding such interactions is important, as rainfall is becoming increasingly erratic and native wild herbivores are being replaced by livestock. Livestock grazing and episodic low rainfall are thought to interact, leading to greater community change than either factor alone. We examined patterns of change and stability in herbaceous community composition through four dry periods, or droughts, over 15 years of the Kenya Long-term Exclosure Experiment (KLEE), which consists of six different combinations of cattle, native wild herbivores (e.g., zebras, gazelles), and mega-herbivores (giraffes, elephants). We used principal response curves to analyze the trajectory of change in each herbivore treatment relative to a common initial community and asked how droughts contributed to community change in these treatments. We examined three measures of stability (resistance, variability, and turnover) that correspond to different temporal scales and found that each had a different response to grazing. Treatments that included both cattle and wild herbivores had higher resistance (less net change over 15 years) but were more variable on shorter time scales; in contrast, the more lightly grazed treatments (no herbivores or wild herbivores only) showed lower resistance due to the accumulation of consistent, linear, short-term change. Community change was greatest during and immediately after droughts in all herbivore treatments. But, while drought contributed to directional change in the less grazed treatments, it contributed to both higher variability and resistance in the more heavily grazed treatments. Much of the community change in lightly grazed treatments (especially after droughts) was due to substantial increases in cover of the palatable grass Brachiaria lachnantha. These results illustrate how herbivory and drought can act together to cause change in grassland communities at the moderate to low end of a grazing intensity continuum. Livestock grazing at a moderate intensity in a system with a long evolutionary history of grazing contributed to long-term stability. This runs counter to often-held assumptions that livestock grazing leads to directional, destabilizing shifts in grassland systems. © 2017 by the Ecological Society of America.

  8. Tolerance or avoidance: drought frequency determines the response of an N2 -fixing tree.

    PubMed

    Minucci, Jeffrey M; Miniat, Chelcy Ford; Teskey, Robert O; Wurzburger, Nina

    2017-07-01

    Climate change is increasing drought frequency, which may affect symbiotic N 2 fixation (SNF), a process that facilitates ecosystem recovery from disturbance. Here, we assessed the effect of drought frequency on the ecophysiology and SNF rate of a common N 2 -fixing tree in eastern US forests. We grew Robinia pseudoacacia seedlings under the same mean soil moisture, but with different drought frequency caused by wet-dry cycles of varying periodicity. We found no effect of drought frequency on final biomass or mean SNF rate. However, seedlings responded differently to wet and dry phases depending on drought frequency. Under low-frequency droughts, plants fixed carbon (C) and nitrogen (N) at similar rates during wet and dry phases. Conversely, under high-frequency droughts, plants fixed C and N at low rates during dry phases and at high rates during wet phases. Our findings suggest that R. pseudoacacia growth is resistant to increased drought frequency because it employs two strategies - drought tolerance or drought avoidance, followed by compensation. SNF may play a role in both by supplying N to leaf tissues for acclimation and by facilitating compensatory growth following drought. Our findings point to SNF as a mechanism for plants and ecosystems to cope with drought. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought.

    PubMed

    Cherif, Hanene; Marasco, Ramona; Rolli, Eleonora; Ferjani, Raoudha; Fusi, Marco; Soussi, Asma; Mapelli, Francesca; Blilou, Ikram; Borin, Sara; Boudabous, Abdellatif; Cherif, Ameur; Daffonchio, Daniele; Ouzari, Hadda

    2015-08-01

    Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactylifera L.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Explaining abrupt spatial transitions in agro-ecosystem responses to periods of extended drought

    USDA-ARS?s Scientific Manuscript database

    During the 1930’s, the North American central grassland region (CGR) experienced an extreme multi-year drought that resulted in broad scale plant mortality, massive dust storms and losses of soil and nutrients. Southern mixed grasslands were among the worst affected and experienced severe broad scal...

  11. A belowground perspective on the drought sensitivity of forests: Towards improved understanding and simulation

    DOE PAGES

    Phillips, Richard P.; Ibanez, Ines; D’Orangeville, Loic; ...

    2016-09-13

    Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses; however, less is known regarding the dynamic interactions that occur below ground between roots and soil physical and biological factors. Hence, there is a need to better understand how and why processes occurring below ground influence forest sensitivity to drought. Here, we review what is known about tree species’ belowmore » ground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Then, we highlight how a below ground perspective of drought can be used in models to reduce uncertainty in predicting the ecosystem consequences of droughts in forests. Lastly, we describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity, and explain how a below ground perspective on drought may facilitate improved forest management.« less

  12. A belowground perspective on the drought sensitivity of forests: Towards improved understanding and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Richard P.; Ibanez, Ines; D’Orangeville, Loic

    Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses; however, less is known regarding the dynamic interactions that occur below ground between roots and soil physical and biological factors. Hence, there is a need to better understand how and why processes occurring below ground influence forest sensitivity to drought. Here, we review what is known about tree species’ belowmore » ground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Then, we highlight how a below ground perspective of drought can be used in models to reduce uncertainty in predicting the ecosystem consequences of droughts in forests. Lastly, we describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity, and explain how a below ground perspective on drought may facilitate improved forest management.« less

  13. Effect of Charcoal Rot on Selected Putative Drought Resistant Soybean Genotypes and Yield.

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot (CR), caused by the fungus Macrophomina phaseolina (Tassi) Goid. is a pervasive disease of economic significance on soybeans ([(Glycine max (L.) Merr.) that is exacerbated when plants are under stress, especially under heat and drought condition. Thus, the objective of this research was...

  14. Phenotyping a RIL Population for Middle-Season Drought Resistance in Cultivated Peanut

    USDA-ARS?s Scientific Manuscript database

    A RIL population of 150 genotypes, resulting from the cross of “Tifrunner” and “C76-16,” was examined for middle-season drought tolerance over two different growing seasons, using an augmented experimental design. Plants were grown in environmentally-controlled rainout shelters and phenotyped using...

  15. Molecular breeding for developing drought tolerant and disease resistant maize in sub Saharan Africa

    USDA-ARS?s Scientific Manuscript database

    The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with public and private partners, is working on developing and disseminating drought tolerant maize for sub Saharan Africa (SSA) using pedigree selection and molecular breeding. In this paper, we provide an overview of ...

  16. Biophysical responses of young pomegranate tree to different irrigation and nitrogen treatments

    USDA-ARS?s Scientific Manuscript database

    Due to recurrent water shortages in California, many farmers are looking for crops that have some degree of drought resistance and higher economic value. Pomegranate has been identified as a crop with drought and salinity tolerance, and nutritional benefits. There are currently approximately 6,000 h...

  17. Size matters a lot: tree height and prior growth predict drought-induced tree death in Italian oak forests

    NASA Astrophysics Data System (ADS)

    Ripullone, F.; Colangelo, M.; Camarero, J. J.; Gazol, A.; Borghetti, M.; Gentilesca, T.

    2016-12-01

    Climate warming is expected to amplify drought stress resulting in the occurrence of more widespread dieback episodes and increasing mortality rates. This has pushed the search of reliable and robust early-warning indicators of impending drought-triggered tree death. Recent studies highlight how level of defoliation or age of trees strictly coact with drought in leading to forest decline. In addition, tree size and the tree-to-tree competition for water could also contribute to tree death in drought-prone sites. In this regard, it has been predicted that tall trees with isohydric stomatal regulation are most likely to die due to drought stress. Here, we test this hypothesis by analyzing size, age, competition and growth data in a Mediterranean oak species characterized by anisohydric behaviour, showing recent drought-induced mortality in two Italian forest sites. At both study sites, tree height was associated to the probability of dying. However, this association was opposite to published predictions because living trees were taller than dead trees at both sites. Neither age nor competition intensity played significant roles as drivers of tree mortality. Regarding growth data, trends in basal area increment were significantly smaller in dead than in living trees. Differences were most marked at mid (15 years prior to death) than at short (10 years) or long-term (35 year) scales. This is probably not related to intrinsic growth features of the study species but it can be explained because the most severe drought since 1950 occurred in 2000 at the study area, i.e. 15 years prior to the increase of tree mortality and when growth of living and dead trees started diverging. Lastly, we discuss potential factors which may explain why smaller individuals of anisohydric tree species such as Mediterranean oaks are prone to drought-induced tree death.

  18. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.

    PubMed

    Dong, Bin; Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang

    2017-01-01

    The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI 'nr' (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant.

  19. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes

    PubMed Central

    Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang

    2017-01-01

    Background The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. Results In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI ‘nr’ (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. Conclusions In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant. PMID:28759610

  20. Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers

    PubMed Central

    Pittermann, Jarmila; Stuart, Stephanie A.; Dawson, Todd E.; Moreau, Astrid

    2012-01-01

    The Cupressaceae clade has the broadest diversity in habitat and morphology of any conifer family. This clade is characterized by highly divergent physiological strategies, with deciduous swamp-adapted genera-like Taxodium at one extreme, and evergreen desert genera-like Cupressus at the other. The size disparity within the Cupressaceae is equally impressive, with members ranging from 5-m-tall juniper shrubs to 100-m-tall redwood trees. Phylogenetic studies demonstrate that despite this variation, these taxa all share a single common ancestor; by extension, they also share a common ancestral habitat. Here, we use a common-garden approach to compare xylem and leaf-level physiology in this family. We then apply comparative phylogenetic methods to infer how Cenozoic climatic change shaped the morphological and physiological differences between modern-day members of the Cupressaceae. Our data show that drought-resistant crown clades (the Cupressoid and Callitroid clades) most likely evolved from drought-intolerant Mesozoic ancestors, and that this pattern is consistent with proposed shifts in post-Eocene paleoclimates. We also provide evidence that within the Cupressaceae, the evolution of drought-resistant xylem is coupled to increased carbon investment in xylem tissue, reduced xylem transport efficiency, and at the leaf level, reduced photosynthetic capacity. Phylogenetically based analyses suggest that the ancestors of the Cupressaceae were dependent upon moist habitats, and that drought-resistant physiology developed along with increasing habitat aridity from the Oligocene onward. We conclude that the modern biogeography of the Cupressaceae conifers was shaped in large part by their capacity to adapt to drought. PMID:22628565

  1. Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers.

    PubMed

    Pittermann, Jarmila; Stuart, Stephanie A; Dawson, Todd E; Moreau, Astrid

    2012-06-12

    The Cupressaceae clade has the broadest diversity in habitat and morphology of any conifer family. This clade is characterized by highly divergent physiological strategies, with deciduous swamp-adapted genera-like Taxodium at one extreme, and evergreen desert genera-like Cupressus at the other. The size disparity within the Cupressaceae is equally impressive, with members ranging from 5-m-tall juniper shrubs to 100-m-tall redwood trees. Phylogenetic studies demonstrate that despite this variation, these taxa all share a single common ancestor; by extension, they also share a common ancestral habitat. Here, we use a common-garden approach to compare xylem and leaf-level physiology in this family. We then apply comparative phylogenetic methods to infer how Cenozoic climatic change shaped the morphological and physiological differences between modern-day members of the Cupressaceae. Our data show that drought-resistant crown clades (the Cupressoid and Callitroid clades) most likely evolved from drought-intolerant Mesozoic ancestors, and that this pattern is consistent with proposed shifts in post-Eocene paleoclimates. We also provide evidence that within the Cupressaceae, the evolution of drought-resistant xylem is coupled to increased carbon investment in xylem tissue, reduced xylem transport efficiency, and at the leaf level, reduced photosynthetic capacity. Phylogenetically based analyses suggest that the ancestors of the Cupressaceae were dependent upon moist habitats, and that drought-resistant physiology developed along with increasing habitat aridity from the Oligocene onward. We conclude that the modern biogeography of the Cupressaceae conifers was shaped in large part by their capacity to adapt to drought.

  2. Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST.

    PubMed

    Erfanian, Amir; Wang, Guiling; Fomenko, Lori

    2017-07-19

    Tropical and sub-tropical South America are highly susceptible to extreme droughts. Recent events include two droughts (2005 and 2010) exceeding the 100-year return value in the Amazon and recurrent extreme droughts in the Nordeste region, with profound eco-hydrological and socioeconomic impacts. In 2015-2016, both regions were hit by another drought. Here, we show that the severity of the 2015-2016 drought ("2016 drought" hereafter) is unprecedented based on multiple precipitation products (since 1900), satellite-derived data on terrestrial water storage (since 2002) and two vegetation indices (since 2004). The ecohydrological consequences from the 2016 drought are more severe and extensive than the 2005 and 2010 droughts. Empirical relationships between rainfall and sea surface temperatures (SSTs) over the tropical Pacific and Atlantic are used to assess the role of tropical oceanic variability in the observed precipitation anomalies. Our results indicate that warmer-than-usual SSTs in the Tropical Pacific (including El Niño events) and Atlantic were the main drivers of extreme droughts in South America, but are unable to explain the severity of the 2016 observed rainfall deficits for a substantial portion of the Amazonia and Nordeste regions. This strongly suggests potential contribution of non-oceanic factors (e.g., land cover change and CO2-induced warming) to the 2016 drought.

  3. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    PubMed

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  4. Columbia River flow and drought since 1750.

    Treesearch

    Ze' ev Gedalof; David L. Peterson; Nathan J. Mantua

    2004-01-01

    A network of 32 drought sensitive tree-ring chronologies is used to reconstruct mean water year flow on the Columbia River at The Dalles, Oregon, since 1750. The reconstruction explains 30 percent of the variability in mean water year (October to September) flow, with a large portion of unexplained variance caused by underestimates of the most severe low flow events....

  5. Market Anatomy of a Drought: Modeling Barge and Corn Market Adaptation to Reduced Rainfall and Low Mississippi River Water Levels During the 2012 Midwestern U.S. Drought

    NASA Astrophysics Data System (ADS)

    Foster, B.; Characklis, G. W.; Thurman, W. N.

    2015-12-01

    In mid 2012, a severe drought swept across the Midwest, the heartland of corn production in the U.S. When the drought persisted into late Fall, corn markets were affected in two distinct ways: (1) reduced rainfall led to projected and actual corn yields that were lower than expected and (2) navigation restrictions, a result of low water levels on the Mississippi River, disrupted barge transportation, the most common and inexpensive mode for moving corn to many markets. Both (1) and (2) led to significant financial losses, but due to the complexity of the economic system and the coincidence of two different market impacts, the size of the role that low water levels played wass unclear. This is important, as losses related to low water levels are used to justify substantial investments in dredging activities on the Mississippi River. An "engineering" model of the system, suggests that low water levels should drive large increases in barge and corn prices, while some econometric models suggest that water levels explain very little of the changes in barge rates and corn prices. Employing a model that integrates both the engineering and economic elements of the system indicates that corn prices and barge rates during the drought display spatial and temporal behavior that is difficult to explain using either the engineering or econometric models alone. This integrated model accounts for geographic and temporal variations in drought impacts and identifies unique market responses to four different sets of conditions over the drought's length. Results illustrate that corn and barge price responses during the drought were a product of comingled, but distinct, reactions to both supply changes and navigation disruptions. Results also provide a more structured description of how the economic system that governs corn allocation interacts with the Mississippi River system during drought. As both public and private parties discuss potential managerial or infrastructural methods for keeping shipping channels open during drought, the results of this work should help them to decide how different interventions might benefit or hurt barge operators and/or corn sellers.

  6. Cloning and function analysis of a drought-inducible gene associated with resistance to Curvularia leaf spot in maize.

    PubMed

    Zhu, Jiewei; Huang, Xiuli; Liu, Tong; Gao, Shigang; Chen, Jie

    2012-08-01

    ZmDIP was cloned and its function against Curvularia lunata was analyzed, according to a previous finding on a drought-inducible protein in resistant maize identified through MALDI-TOF-MS/MS. The ZmDIP expression varied in roots, leaf sheaths, and young, as well as old, leaves of different maize inbred lines. The ZmDIP transcript level changed in leaves over the course of time after inoculation with C. lunata. A prokaryotic expression analysis demonstrated that the gene can regulate the salt stress tolerance of Escherichia coli. The ZmDIP transient expression in the maize leaf showed that the gene was also linked to leaf resistance against the C. lunata infection. ZmDIP-mediated ROS and ABA signaling pathways were inferred to be closely associated with maize leaf resistance to the pathogen infection.

  7. Interactive effects of altitude and management on resistance and resilience of permanent grasslands to drought: combining agronomic, functional and ecophysiological approaches Buttler, A., Deleglise, C., Signarbieux, C., Meisser, M., Mosimann, E., Mills, R.

    NASA Astrophysics Data System (ADS)

    Buttler, A.; Deléglise, C.; Signarbieux, C.; Meisser, M.; Mosimann, E.; Mills, R.; Risch, A.; Vitra, A.; Delzon, S.

    2015-12-01

    The expected increase in extreme climatic events will cause significant constraints on grassland systems and, as a result, farmers must adapt grassland management. Identifying potential interactive effects of factors such as altitude and management, with different water availability scenarios is therefore a major challenge to anticipate the performance of mountain grasslands. Using rain shelters across grassland systems in the Swiss Jura, we simulated the effects of severe droughts in spring and summer periods, at different altitudes, and compared realistic management types such as grazing by sheep, and intensive and extensive mowing. When comparing grazing and mowing management under an extreme drought event at a similar altitude, minor short-term changes of species composition, and almost no persistent effects were observed. However, significant changes were observed in plant functional traits, reflecting a strong decline in plant growth during the drought, and a partial recovery two months later. Forage yields, and its nutritive value, thus declined during the drought period, and both were still affected in the following months, but had recovered in the following spring. Negative drought effects were stronger in the grazing management, although recovery was slightly improved in this management. Concerning soil biogeochemistry, we compared microbial biomass C and N, as well as the activity of extracellular enzymes at peak drought, and during the rewet phase. Both indices remained comparable to control treatments under drought. During the rewet phase, some enzymes were stimulated in the grazed-control, but microbial biomass remained comparable. These systems showed considerable resistance to extreme drought, with only minor short term impacts due to management. However, cascading effects from the aboveground to belowground function may be observed if such events increase in frequency and these processes are expected to be different at the various altitudes.

  8. Differential sensitivity of total and active soil microbial communities to drought and forest management.

    PubMed

    Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico

    2017-10-01

    Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change. © 2017 John Wiley & Sons Ltd.

  9. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

    Treesearch

    Anthony W. D' Amato; John B. Bradford; Shawn Fraver; Brian J. Palik

    2013-01-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 years) replicated thinning experiment to determine if density reductions conferred greater...

  10. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    USDA-ARS?s Scientific Manuscript database

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  11. Climate-related genetic variation in drought-resistance of Douglas-fir ( Pseudotsuga menziesii )

    Treesearch

    Sheel Bansal; Constance A. Harrington; Peter J. Gould; J. Bradley St.Clair

    2014-01-01

    There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits...

  12. Biophysical response of young pomegranate trees to surface and sub-surface drip irrigation and deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Due to recurring agricultural water shortages, many farmers are looking for crops that have both some degree of drought resistance and a higher economic value. Pomegranate has been identified as a crop with potential drought tolerance, and high economic values. To manage limited water effectively, i...

  13. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    DOE PAGES

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; ...

    2015-08-08

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less

  14. Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides.

    PubMed

    He, Cai Y; Zhang, Guo Y; Zhang, Jian G; Duan, Ai G; Luo, Hong M

    2016-10-01

    The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought-resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought-resistant species and may benefit future agricultural production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less

  16. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability.

    PubMed

    Zhang, Guangqiang; Zhang, Meng; Zhao, Zhongxian; Ren, Yuanqing; Li, Qinxue; Wang, Wei

    2017-08-08

    E3 ligases play significant roles in plant stress tolerance by targeting specific substrate proteins for post-translational modification. In a previous study, we cloned TaPUB1 from Triticum aestivum L., which encodes a U-box E3 ligase. Real-time polymerase chain reaction revealed that the gene was up-regulated under drought stress. To investigate the function of TaPUB1 in the response of plants to drought, we generated transgenic Nicotiana benthamiana (N. benthamiana) plants constitutively expressing TaPUB1 under the CaMV35S promoter. Compared to wild type (WT), the transgenic plants had higher germination and seedling survival rates as well as higher photosynthetic rate and water retention, suggesting that the overexpression of TaPUB1 enhanced the drought tolerance of the TaPUB1 overexpressing (OE) plants. Moreover, less accumulation of reactive oxygen species (ROS) and stronger antioxidant capacity were detected in the OE plants than in the WT plants. To characterize the mechanisms involved, methyl viologen (MV) was used to induce oxidative stress conditions and we identified the functions of this gene in the plant tolerance to oxidative stress. Our results suggest that TaPUB1 positively modulates plant drought stress resistance potential by improving their antioxidant capacity.

  17. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns.

    PubMed

    Pittermann, Jarmila; Limm, Emily; Rico, Christopher; Christman, Mairgareth A

    2011-10-01

    The ferns comprise one of the most ancient tracheophytic plant lineages, and occupy habitats ranging from tundra to deserts and the equatorial tropics. Like their nearest relatives the conifers, modern ferns possess tracheid-based xylem but the structure-function relationships of fern xylem are poorly understood. Here, we sampled the fronds (megaphylls) of 16 species across the fern phylogeny, and examined the relationships among hydraulic transport, drought-induced cavitation resistance, the xylem anatomy of the stipe, and the gas-exchange response of the pinnae. For comparison, the results are presented alongside a similar suite of conifer data. Fern xylem is as resistant to cavitation as conifer xylem, but exhibits none of the hydraulic or structural trade-offs associated with resistance to cavitation. On a conduit diameter basis, fern xylem can exhibit greater hydraulic efficiency than conifer and angiosperm xylem. In ferns, wide and long tracheids compensate in part for the lack of secondary xylem and allow ferns to exhibit transport rates on a par with those of conifers. We suspect that it is the arrangement of the primary xylem, in addition to the intrinsic traits of the conduits themselves, that may help explain the broad range of cavitation resistance in ferns. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  19. Institutional adaptation to drought: the case of Fars Agricultural Organization.

    PubMed

    Keshavarz, Marzieh; Karami, Ezatollah

    2013-09-30

    Recurrent droughts in arid and semi-arid regions are already rendering agricultural production, mainstay of subsistence livelihoods, uncertain. In order to mitigate the impact of drought, agricultural organizations must increase their capacity to adapt. Institutional adaptation refers to the creation of an effective, long-term government institution or set of institutions in charge of planning and policy, and its capacity to develop, revise, and execute drought policies. Using the Fars Agricultural Organization in Iran, as a case study, this paper explores the institutional capacities and capabilities, necessary to adapt to the drought conditions. The STAIR model was used as a conceptual tool, and the Bayesian network and Partial Least Squares (PLS) path modeling was applied to explain the mechanisms by which organizational capacities influence drought management. A survey of 309 randomly selected managers and specialists indicated serious weaknesses in the ability of the organization to apply adaptation strategies effectively. Analysis of the causal models illustrated that organizational culture and resources and infrastructure significantly influenced drought management performance. Moreover, managers and specialists perceived human resources and strategy, goals, and action plan, respectively, as the main drivers of institutional adaptation to drought conditions. Recommendations and implications for drought management policy are offered to increase organizational adaptation to drought and reduce the subsequent sufferings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty.

    PubMed

    Gao, Yong; Wu, Meiqin; Zhang, Menjiao; Jiang, Wei; Liang, Enxing; Zhang, Dongping; Zhang, Changquan; Xiao, Ning; Chen, Jianmin

    2018-06-05

    ZmPIF3 plays an important role in ABA-mediated regulation of stomatal closure in the control of water loss, and can improve both drought tolerance and did not affect the grain yield in the transgenic rice. Phytochrome-interacting factors (PIFs) are a subfamily of basic helix-loop-helix (bHLH) transcription factors and play important roles in regulating plant growth and development. In our previous study, overexpression of a maize PIFs family gene, ZmPIF3, improved drought tolerance in transgenic rice. In this study, measurement of water loss rate, transpiration rate, stomatal conductance, guard cell aperture, density and length of ZmPIF3 transgenic plants showed that ZmPIF3 can enhance water-saving and drought-resistance by decreasing stomatal aperture and reducing transpiration in both transgenic rice and transgenic Arabidopsis. Scrutiny of sensitivity to ABA showed that ZmPIF3 transgenic rice was hypersensitive to ABA, while the endogenous ABA level was not significantly changed. These results indicate that ZmPIF3 plays a major role in the ABA signaling pathway. In addition, DGE results further suggest that ZmPIF3 participates in the ABA signaling pathway and regulates stomatal aperture in rice. Comparison analysis of the phenotype, physiology, and transcriptome of ZmPIF3 transgenic rice compared to control plants further suggests that ZmPIF3 is a positive regulator of ABA signaling and enhances water-saving and drought-resistance traits by reducing stomatal openings to control water loss. Moreover, investigation of the agronomic traits of ZmPIF3 transgenic rice from four cultivating seasons showed that ZmPIF3 expression increased the tiller and panicle number and did not affect the grain yield in the transgenic rice. These results demonstrate that ZmPIF3 is a promising candidate gene in the transgenic breeding of water-saving and drought-resistant rice plants and crop improvement.

  1. Assessing the impacts of droughts on net primary productivity in China.

    PubMed

    Pei, Fengsong; Li, Xia; Liu, Xiaoping; Lao, Chunhua

    2013-01-15

    Frequency and severity of droughts were projected to increase in many regions. However, their effects of temporal dynamics on the terrestrial carbon cycle remain uncertain, and hence deserve further investigation. In this paper, the droughts that occurred in China during 2001-2010 were identified by using the standardized precipitation index (SPI). Standardized anomaly index (SAI), which has been widely employed in reflecting precipitation, was extended to evaluate the anomalies of net primary productivity (NPP). In addition, influences of the droughts on vegetation were explored by examining the temporal dynamics of SAI-NPP along with area-weighted drought intensity at different time scales (1, 3, 6, 9 and 12 months). Year-to-year variability of NPP with several factors, including droughts, NDVI, radiation and temperature, was analyzed as well. Consequently, the droughts in the years 2001, 2006 and 2009 were well reconstructed. This indicates that SPI could be applied to the monitoring of the droughts in China during the past decade (2001-2010) effectively. Moreover, strongest correlations between droughts and NPP anomalies were found during or after the drought intensities reached their peak values. In addition, some droughts substantially reduced the countrywide NPP, whereas the others did not. These phenomena can be explained by the regional diversities of drought intensity, drought duration, areal extents of the droughts, as well as the cumulative and lag responses of vegetation to the precipitation deficits. Besides the drought conditions, normalized difference vegetation index (NDVI), radiation and temperature also contribute to the interannual variability of NPP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Avoiding Drought Risks and Social Conflict Under Climate Change

    NASA Astrophysics Data System (ADS)

    Towler, E.; Lazrus, H.; Paimazumder, D.

    2014-12-01

    Traditional drought research has mainly focused on physical drought risks and less on the cultural processes that also contribute to how drought risks are perceived and managed. However, as society becomes more vulnerable to drought and climate change threatens to increase water scarcity, it is clear that drought research would benefit from a more interdisciplinary approach. To assess avoided drought impacts from reduced climate change, drought risks need to be assessed in the context of both climate prediction as well as improved understanding of socio-cultural processes. To this end, this study explores a risk-based framework to combine physical drought likelihoods with perceived risks from stakeholder interviews. Results are presented from a case study on how stakeholders in south-central Oklahoma perceive drought risks given diverse cultural beliefs, water uses, and uncertainties in future drought prediction. Stakeholder interviews (n=38) were conducted in 2012 to understand drought risks to various uses of water, as well as to measure worldviews from the cultural theory of risk - a theory that explains why people perceive risks differently, potentially leading to conflict over management decisions. For physical drought risk, drought projections are derived from a large ensemble of future climates generated from two RCPs that represent higher and lower emissions trajectories (i.e., RCP8.5 and RCP4.5). These are used to develop a Combined Drought Risk Matrix (CDRM) that characterizes drought risks for different water uses as the products of both physical likelihood (from the climate ensemble) and risk perception (from the interviews). We use the CRDM to explore the avoided drought risks posed to various water uses, as well as to investigate the potential for reduction of conflict over water management.

  3. Drought-tolerant QTL qVDT11 leads to stable tiller formation under drought stress conditions in rice.

    PubMed

    Kim, Tae-Heon; Hur, Yeon-Jae; Han, Sang-Ik; Cho, Jun-Hyun; Kim, Kyung-Min; Lee, Jong-Hee; Song, You-Chun; Kwon, Yeong-Up; Shin, Dongjin

    2017-03-01

    Drought is an important limiting factor for rice production, but the genetic mechanisms of drought tolerance is poorly understood. Here, we screened 218 rice varieties to identify 32 drought-tolerant varieties. The variety Samgang exhibited strong drought tolerance and stable yield in rain-fed conditions and was selected for further study. To identify QTLs for drought tolerance, we examined visual drought tolerance (VDT) and relative water content (RWC) phenotypes in a doubled haploid (DH) population of 101 individuals derived from a cross between Samgang and Nagdong (a drought-sensitive variety). Three QTLs from Samgang were identified for VDT and explained 41.8% of the phenotypic variance. In particular, qVDT11 contributed 20.3% of the phenotypic variance for RWC. To determine QTL effects on drought tolerance in rain-fed paddy conditions, seven DH lines were selected according to the number of QTLs they contained. Of the drought-tolerance-associated QTLs, qVDT2 and qVDT6 did not affect tiller formation, but qVDT11 increased tiller number. Tiller formation was most stable when qVDT2 and qVDT11 were combined. DH lines with both of these drought-tolerance-associated QTLs exhibited the most stable tiller formation. Together, these results suggest that qVDT11 is important for drought tolerance and stable tiller formation in rain-fed paddy fields. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Material and methods to increase plant growth and yield

    DOEpatents

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  5. Materials and methods to increase plant growth and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirst, Matias

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  6. Recovery of turgor by wilted, excised cabbage leaves in the absence of water uptake : a new factor in drought acclimation.

    PubMed

    Levitt, J

    1986-09-01

    Cabbage leaves excised from a fully turgid plant wilt within 20 minutes to 2 hours (depending on plant age) with a loss of about 10% relative water content (RWC). If droughted for 2 to 4 days in a high relative humidity leaf chamber, they may acclimate, recovering their turgor without the absorption of water, in fact at a loss of 15 to 25% RWC. This turgor recovery in the absence of water uptake occurs only if (a) the rate of water loss is slow enough (about 1-5% RWC per day after the first 24 hours drought loss of about 15% RWC), (b) if the leaves are no longer growing actively. Osmotic adjustment accompanies the turgor adjustment, but cannot be the cause in the absence of water uptake. The recovery of turgor by wilted cabbage leaves in the absence of water uptake cannot be explained by (a) transfer of reserve water from apoplast to symplast either from the cell walls or from the vessel lumens by cavitation or (b) metabolic loss of dry matter and gain of water. It can be explained by a contraction of the cell walls around the partially dehydrated protoplasts, until they regain their elastic extensibility. These proposed cell wall changes during drought acclimation are therefore the opposite of those occurring during growth. This hypothesis therefore explains the long recognized inverse relation between growth and acclimation. Two predictions of this hypothesis were tested and substantiated.

  7. Performance index: An expeditious tool to screen for improved drought resistance in the Lathyrus genus.

    PubMed

    Silvestre, Susana; Araújo, Susana de Sousa; Vaz Patto, Maria Carlota; Marques da Silva, Jorge

    2014-07-01

    Some species of the Lathyrus genus are among the most promising crops for marginal lands, with high resilience to drought, flood, and fungal diseases, combined with high yields and seed nutritional value. However, lack of knowledge on the mechanisms underlying its outstanding performance and methodologies to identify elite genotypes has hampered its proper use in breeding. Chlorophyll a fast fluorescence transient (JIP test), was used to evaluate water deficit (WD) resistance in Lathyrus genus. Our results reveal unaltered photochemical values for all studied genotypes showing resistance to mild WD. Under severe WD, two Lathyrus sativus genotypes showed remarkable resilience maintaining the photochemical efficiency, contrary to other genotypes studied. Performance index (PIABS) is the best parameter to screen genotypes with improved performance and grain production under WD. Moreover, we found that JIP indices are good indicators of genotypic grain production under WD. Quantum yield of electron transport (ϕEo) and efficiency with which trapped excitons can move electrons further than QA (ψ0) revealed as important traits related to improved photosynthetic performance and should be exploited in future Lathyrus germplasm improvements. The JIP test herein described showed to be an expeditious tool to screen and to identify elite genotypes with improved drought resistance.

  8. The complex influence of ENSO on droughts in Ecuador

    NASA Astrophysics Data System (ADS)

    Vicente-Serrano, S. M.; Aguilar, E.; Martínez, R.; Martín-Hernández, N.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; El Kenawy, A.; Tomás-Burguera, M.; Moran-Tejeda, E.; López-Moreno, J. I.; Revuelto, J.; Beguería, S.; Nieto, J. J.; Drumond, A.; Gimeno, L.; Nieto, R.

    2017-01-01

    In this study, we analyzed the influence of El Niño-Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965-2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Niño 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Niño 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Niño and La Niña phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador.

  9. Empirical analysis of farmers' drought risk perception: objective factors, personal circumstances, and social influence.

    PubMed

    Duinen, Rianne van; Filatova, Tatiana; Geurts, Peter; Veen, Anne van der

    2015-04-01

    Drought-induced water shortage and salinization are a global threat to agricultural production. With climate change, drought risk is expected to increase as drought events are assumed to occur more frequently and to become more severe. The agricultural sector's adaptive capacity largely depends on farmers' drought risk perceptions. Understanding the formation of farmers' drought risk perceptions is a prerequisite to designing effective and efficient public drought risk management strategies. Various strands of literature point at different factors shaping individual risk perceptions. Economic theory points at objective risk variables, whereas psychology and sociology identify subjective risk variables. This study investigates and compares the contribution of objective and subjective factors in explaining farmers' drought risk perception by means of survey data analysis. Data on risk perceptions, farm characteristics, and various other personality traits were collected from farmers located in the southwest Netherlands. From comparing the explanatory power of objective and subjective risk factors in separate models and a full model of risk perception, it can be concluded that farmers' risk perceptions are shaped by both rational and emotional factors. In a full risk perception model, being located in an area with external water supply, owning fields with salinization issues, cultivating drought-/salt-sensitive crops, farm revenue, drought risk experience, and perceived control are significant explanatory variables of farmers' drought risk perceptions. © 2014 Society for Risk Analysis.

  10. Identification of Juglans wild relatives resistant to crown gall caused by Agrobacterium tumefaciens

    USDA-ARS?s Scientific Manuscript database

    Wild species are a source of useful agronomic traits for crop plants including but not limited to pathogen resistance, drought tolerance, and salt tolerance (Aradhya and Kluepfel 2012). To exploit this natural diversity of disease resistance, we are conducting the first systematic exploration of th...

  11. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter aphid fecundity in water stresses plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Diverging drought resistance of Scots pine provenances revealed by infrared thermography and mortality

    NASA Astrophysics Data System (ADS)

    Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette

    2016-04-01

    Climate warming and more frequent and severe drought events will alter the adaptedness and fitness of tree species. Especially, Scots pine forests have been affected above average by die-off events during the last decades. Assisted migration of adapted provenances might help alleviating impacts by recent climate change and successfully regenerating forests. However, the identification of suitable provenances based on established ecophysiological methods is time consuming, sometimes invasive, and data on provenance-specific mortality are lacking. We studied the performance, stress and survival of potted Scots pine seedlings from 12 European provenances grown in a greenhouse experiment with multiple drought and warming treatments. In this paper, we will present results of drought stress impacts monitored with four different thermal indices derived from infrared thermography imaging as well as an ample mortality study. Percent soil water deficit (PSWD) was shown to be the main driver of drought stress response in all thermal indices. In spite of wet and dry reference surfaces, however, fluctuating environmental conditions, mainly in terms of air temperature and humidity, altered the measured stress response. In linear mixed-effects models, besides PSWD and meteorological covariates, the factors provenance and provenance - PSWD interactions were included. The explanatory power of the models (R2) ranged between 0.51 to 0.83 and thus, provenance-specific responses to strong and moderate drought and subsequent recovery were revealed. However, obvious differences in the response magnitude of provenances to drought were difficult to explicitly link to general features such Mediterranean - continental type or climate at the provenances' origin. We conclude that seedlings' drought resistance may be linked to summer precipitation and their experienced stress levels are a.o. dependent on their above ground dimensions under given water supply. In respect to mortality, previous drought stress experience lowered the current risk and obvious provenance effects were largely related to different growth traits (dimensions). Our experimental results suggest besides evidence for abiotic stress hardening provenance-specific variation in drought resilience. Thus, there is room for provenance-based assisted migration as tool for climate change adaptation in forestry.

  13. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    PubMed

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia , drought-deciduous Terminthia paniculata , and winter-deciduous Lannea coromandelica , to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50 leaf-stem ) was positive in P. weinmanniifolia and L. coromandelica , whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies.

  14. Comparative genomics analysis of field isolates of Aspergillus flavus and A. parasiticus to explain phenotypic variation in oxidative stress tolerance and host preference

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of peanut and other crops is a major concern for producers globally, and has been shown to be exacerbated by drought stress. Previous transcriptomic and proteomic examination of the responses of isolates of Aspergillus flavus to drought-related oxidative stress in vitro have ...

  15. Targeting carbon for crop yield and drought resilience

    PubMed Central

    Griffiths, Cara A

    2017-01-01

    Abstract Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step‐change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28653336

  16. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    PubMed Central

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  17. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  18. Responses of Reactive Oxygen Scavenging Enzymes, Proline and Malondialdehyde to Water Deficits among Six Secondary Successional Seral Species in Loess Plateau

    PubMed Central

    Du, Feng; Shi, Huijun; Zhang, Xingchang; Xu, Xuexuan

    2014-01-01

    Drought can impact local vegetation dynamics in a long term. In order to predict the possible successional pathway of local community under drought, the responses of some drought resistance indices of six successional seral species in the semi-arid Loss Hilly Region of China were illustrated and compared on three levels of soil water deficits along three growing months (7, 8 and 9). The results showed that: 1) the six species had significant differences in SOD, POD activities and MDA content. The rank correlations between SOD, POD activities and the successional niche positions of the six species were positive, and the correlation between MDA content and the niche positions was negative; 2) activities of SOD, CAT and POD, and content of proline and MDA had significant differences among the three months; 3) there existed significant interactions of SOD, CAT, POD activities and MDA content between months and species. With an exception, no interaction of proline was found. Proline in leaves had a general decline in reproductive month; 4) SOD, CAT, POD activities and proline content had negative correlations with MDA content. Among which, the correlation between SOD activity and MDA content was significant. The results implied that, in arid or semiarid region, the species at later successional stage tend to have strong drought resistance than those at early stage. Anti-drought indices can partially interpret the pathway of community succession in the drought impacted area. SOD activity is more distinct and important on the scope of protecting membrane damage through the scavenging of ROS on exposure to drought. PMID:24914928

  19. Effect of Zinc and Copper Nanoparticles on Drought Resistance of Wheat Seedlings

    NASA Astrophysics Data System (ADS)

    Taran, Nataliya; Storozhenko, Volodymyr; Svietlova, Nataliia; Batsmanova, Ludmila; Shvartau, Viktor; Kovalenko, Mariia

    2017-01-01

    The effect of a colloidal solution of Cu,Zn-nanoparticles on pro-oxidative/antioxidative balance and content of photosynthetic pigments and leaf area of winter wheat plants of steppe (Acveduc) and forest-steppe (Stolichna) ecotypes was investigated in drought conditions. It has been shown that Cu,Zn-nanoparticles decreased the negative effect of drought action upon plants of steppe ecotype Acveduc. In particular, increased activity of antioxidative enzymes reduced the level of accumulation of thiobarbituric acid reactive substances (TBARS) and stabilized the content of photosynthetic pigments and increased relative water content in leaves. Colloidal solution of Cu,Zn-nanoparticles had less significant influence on these indexes in seedlings of the Stolichna variety under drought.

  20. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.

    PubMed

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko

    2012-11-01

    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.

  1. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts

    Treesearch

    Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko Noormets

    2015-01-01

    Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...

  2. Lettuce breeding

    USDA-ARS?s Scientific Manuscript database

    In the 2016-2017 period, major efforts targeted resistance to lettuce drop caused by Sclerotinia species, Verticillium wilt, Fusarium wilt, bacterial leaf spot, corky root, downy mildew, drought tolerance, lettuce aphid, tipburn, shelf-life of salad-cut lettuce, and multiple disease resistance. Resi...

  3. Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers.

    PubMed

    Briñez, Boris; Perseguini, Juliana Morini Küpper Cardoso; Rosa, Juliana Santa; Bassi, Denis; Gonçalves, João Guilherme Ribeiro; Almeida, Caléo; Paulino, Jean Fausto de Carvalho; Blair, Matthew Ward; Chioratto, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Valdisser, Paula Arielle Mendes Ribeiro; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2017-01-01

    The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.

  4. Long-term climate and competition explain forest mortality patterns under extreme drought.

    PubMed

    Young, Derek J N; Stevens, Jens T; Earles, J Mason; Moore, Jeffrey; Ellis, Adam; Jirka, Amy L; Latimer, Andrew M

    2017-01-01

    Rising temperatures are amplifying drought-induced stress and mortality in forests globally. It remains uncertain, however, whether tree mortality across drought-stricken landscapes will be concentrated in particular climatic and competitive environments. We investigated the effects of long-term average climate [i.e. 35-year mean annual climatic water deficit (CWD)] and competition (i.e. tree basal area) on tree mortality patterns, using extensive aerial mortality surveys conducted throughout the forests of California during a 4-year statewide extreme drought lasting from 2012 to 2015. During this period, tree mortality increased by an order of magnitude, typically from tens to hundreds of dead trees per km 2 , rising dramatically during the fourth year of drought. Mortality rates increased independently with average CWD and with basal area, and they increased disproportionately in areas that were both dry and dense. These results can assist forest managers and policy-makers in identifying the most drought-vulnerable forests across broad geographic areas. © 2016 John Wiley & Sons Ltd/CNRS.

  5. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato.

    PubMed

    Zhai, Hong; Wang, Feibing; Si, Zengzhi; Huo, Jinxi; Xing, Lei; An, Yanyan; He, Shaozhen; Liu, Qingchang

    2016-02-01

    Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3 ), phosphatidic acid (PA), Ca(2+) , ABA, K(+) , proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na(+) and H2 O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3 , PA, Ca(2+) , ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2 O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    USDA-ARS?s Scientific Manuscript database

    It remains unclear whether biodiversity buffers ecosystems against extreme climate events, which are becoming increasingly frequent worldwide. Although early results suggested that biodiversity might provide both resistance and resilience (sensu rapid recovery) of ecosystem productivity to drought, ...

  7. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE PAGES

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; ...

    2017-02-03

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  8. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  9. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    NASA Astrophysics Data System (ADS)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; Hulshof, Catherine; Medvigy, David; Pizano, Camila; Salgado-Negret, Beatriz; Smith, Christina M.; Trierweiler, Annette; Van Bloem, Skip J.; Waring, Bonnie G.; Xu, Xiangtao; Powers, Jennifer S.

    2017-02-01

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are already limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.

  10. Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes.

    PubMed

    Limousin, Jean-Marc; Bickford, Christopher P; Dickman, Lee T; Pangle, Robert E; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Osuna, Jessica L; Pockman, William T; McDowell, Nate G

    2013-10-01

    Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA. © 2013 John Wiley & Sons Ltd.

  11. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area

    USGS Publications Warehouse

    Greenwood, Sarah; Ruiz-Benito, Paloma; Martinez-Vilalta, Jordi; Lloret, Francisco; Kitzberger, Thomas; Allen, Craig D.; Fensham, Rod; Laughlin, Daniel C.; Kattge, Jens; Bönisch, Gerhard; Kraft, Nathan J. B.; Jump, Alistair S.

    2017-01-01

    Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees−1 year−1) increased 0.46 (95% CI = 0.2–0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future.

  12. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area.

    PubMed

    Greenwood, Sarah; Ruiz-Benito, Paloma; Martínez-Vilalta, Jordi; Lloret, Francisco; Kitzberger, Thomas; Allen, Craig D; Fensham, Rod; Laughlin, Daniel C; Kattge, Jens; Bönisch, Gerhard; Kraft, Nathan J B; Jump, Alistair S

    2017-04-01

    Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees -1  year -1 ) increased 0.46 (95% CI = 0.2-0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future. © 2017 John Wiley & Sons Ltd/CNRS.

  13. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE PAGES

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; ...

    2017-02-10

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  14. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes1[OPEN

    PubMed Central

    Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang

    2016-01-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  15. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole-plant water use efficiency and resistance to drought.

    PubMed

    Domec, Jean-Christophe; Smith, Duncan D; McCulloh, Kate A

    2017-06-01

    Here, we summarize studies on the effects of elevated [CO 2 ] (CO 2 e ) on the structure and function of plant hydraulic architecture and explore the implications of those changes using a model. Changes in conduit diameter and hydraulic conductance due to CO 2 e vary among species. Ring-porous species tend towards an increase in conduit size and consequently conductivity. The effect in diffuse-porous species is much more limited. In conifers, the results are mixed, some species show minor changes in xylem structure, while other studies found increases in tracheid density and diameter. Non-woody plants generally exhibited the reverse pattern with narrower conduits and lower hydraulic conductivity under CO 2 e . Further, changes in drought-resistance traits suggest that non-woody plants were the most affected by CO 2 e , which may permit them to better resist drought-induced embolism under future conditions. Due to their complexity, acclimation in hydraulic traits in response to CO 2 e is difficult to interpret when relying solely on measurements. When we examined how the observed tissues-specific trends might alter plant function, our modelling results suggest that these hydraulic changes would lead to reduced conductance and more frequent drought stress in trees that develop under CO 2 e with a more pronounced effect in isohydric than in anisohydric species. © 2016 John Wiley & Sons Ltd.

  16. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  17. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    PubMed

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The drought risk of maize in the farming-pastoral ecotone in Northern China based on physical vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Jiang, Jingyi; Ma, Qing

    2016-12-01

    Climate change is affecting every aspect of human activities, especially the agriculture. In China, extreme drought events caused by climate change have posed a great threat to food safety. In this work we aimed to study the drought risk of maize in the farming-pastoral ecotone in Northern China based on physical vulnerability assessment. The physical vulnerability curve was constructed from the relationship between drought hazard intensity index and yield loss rate. The risk assessment of agricultural drought was conducted from the drought hazard intensity index and physical vulnerability curve. The probability distribution of drought hazard intensity index decreased from south-west to north-east and increased from south-east to north-west along the rainfall isoline. The physical vulnerability curve had a reduction effect in three parts of the farming-pastoral ecotone in Northern China, which helped to reduce drought hazard vulnerability on spring maize. The risk of yield loss ratio calculated based on physical vulnerability curve was lower compared with the drought hazard intensity index, which suggested that the capacity of spring maize to resist and adapt to drought is increasing. In conclusion, the farming-pastoral ecotone in Northern China is greatly sensitive to climate change and has a high probability of severe drought hazard. Risk assessment of physical vulnerability can help better understand the physical vulnerability to agricultural drought and can also promote measurements to adapt to climate change.

  19. Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping

    USDA-ARS?s Scientific Manuscript database

    Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental stress factors such as drought and other stresses. Developing drought resistance alfalfa is an important breed...

  20. Leaf-traits and growth allometry explain competition and differences in response to climatic change in a temperate forest landscape: a simulation study

    PubMed Central

    Yu, Mei; Gao, Qiong

    2011-01-01

    Background and Aims The ability to simulate plant competition accurately is essential for plant functional type (PFT)-based models used in climate-change studies, yet gaps and uncertainties remain in our understanding of the details of the competition mechanisms and in ecosystem responses at a landscape level. This study examines secondary succession in a temperate deciduous forest in eastern China with the aim of determining if competition between tree types can be explained by differences in leaf ecophysiological traits and growth allometry, and whether ecophysiological traits and habitat spatial configurations among PFTs differentiate their responses to climate change. Methods A temperate deciduous broadleaved forest in eastern China was studied, containing two major vegetation types dominated by Quercus liaotungensis (OAK) and by birch/poplar (Betula platyphylla and Populus davidiana; BIP), respectively. The Terrestrial Ecosystem Simulator (TESim) suite of models was used to examine carbon and water dynamics using parameters measured at the site, and the model was evaluated against long-term data collected at the site. Key Results Simulations indicated that a higher assimilation rate for the BIP vegetation than OAK led to the former's dominance during early successional stages with relatively low competition. In middle/late succession with intensive competition for below-ground resources, BIP, with its lower drought tolerance/resistance and smaller allocation to leaves/roots, gave way to OAK. At landscape scale, predictions with increased temperature extrapolated from existing weather records resulted in increased average net primary productivity (NPP; +19 %), heterotrophic respiration (+23 %) and net ecosystem carbon balance (+17 %). The BIP vegetation in higher and cooler habitats showed 14 % greater sensitivity to increased temperature than the OAK at lower and warmer locations. Conclusions Drought tolerance/resistance and morphology-related allocation strategy (i.e. more allocation to leaves/roots) played key roles in the competition between the vegetation types. The overall site-average impacts of increased temperature on NPP and carbon stored in plants were found to be positive, despite negative effects of increased respiration and soil water stress, with such impacts being more significant for BIP located in higher and cooler habitats. PMID:21835816

  1. Do water-limiting conditions predispose Norway spruce to bark beetle attack?

    PubMed Central

    Netherer, Sigrid; Matthews, Bradley; Katzensteiner, Klaus; Blackwell, Emma; Henschke, Patrick; Hietz, Peter; Pennerstorfer, Josef; Rosner, Sabine; Kikuta, Silvia; Schume, Helmut; Schopf, Axel

    2015-01-01

    Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel ‘attack box’ method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance byI. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials. PMID:25417785

  2. [Impact of priming on seed germination and seedling growth of Oldenlandia diffusa under drought stress].

    PubMed

    Zhu, Zai-Biao; Lu, Wei-Wei; Guo, Qiao-Sheng; Cao, Ya-Yue; Feng, Shan; Ning, Zi-Jun

    2014-04-01

    Current study was carried out to optimize the priming condition of Oldenlandia diffusa seeds, and improve germination rate and seed vigor of 0. diffusa seeds under drought conditions. Uniform design was used to optimize the concentration and priming time of three priming materials (PEG, KNO3, GA3). Different concentrations of polyethylene glycol (PEG) was used to simulate drought stress. The seedling was cultured in 1/4 Hoagland medium for 30 d. The results showed that seed priming treatment with 366 mg x kg(-1) GA3 for 1h resulted in significant increase in germination rate, germination index, vigor, root length, plant height and biomass of O. diffusa seeds under drought stress (15% PEG), while seed priming with 3.0% KNO3 for 1 h showed little effect on germination and growth of O. diffusa seeds under drought stress. Seed priming treatment with appropriate GA3 concentration and priming time could enhance seed germination and drought resistance of O. diffusa in seedling stage.

  3. Involvement of Activated Oxygen in Nitrate-Induced Senescence of Pea Root Nodules.

    PubMed Central

    Escuredo, P. R.; Minchin, F. R.; Gogorcena, Y.; Iturbe-Ormaetxe, I.; Klucas, R. V.; Becana, M.

    1996-01-01

    The effect of short-term nitrate application (10 mM, 0-4 d) on nitrogenase (N2ase) activity, antioxidant defenses, and related parameters was investigated in pea (Pisum sativum L. cv Frilene) nodules. The response of nodules to nitrate comprised two stages. In the first stage (0-2 d), there were major decreases in N2ase activity and N2ase-linked respiration and concomitant increases in carbon cost of N2ase and oxygen diffusion resistance of nodules. There was no apparent oxidative damage, and the decline in N2ase activity was, to a certain extent, reversible. The second stage (>2 d) was typical of a senescent, essentially irreversible process. It was characterized by moderate increases in oxidized proteins and catalytic Fe and by major decreases in antioxidant enzymes and metabolites. The restriction in oxygen supply to bacteroids may explain the initial decline in N2ase activity. The decrease in antioxidant protection is not involved in this process and is not specifically caused by nitrate, since it also occurs with drought stress. However, comparison of nitrate- and drought-induced senescence shows an important difference: there is no lipid degradation or lipid peroxide accumulation with nitrate, indicating that lipid peroxidation is not necessarily involved in nodule senescence. PMID:12226252

  4. Spring Soil Temperature Anomalies over Northwest U.S. and later Spring-Summer Droughts/Floods over Southern Plains and Adjacent Areas

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Diallo, I.; Li, W.; Neelin, J. D.; Chu, P. C.; Vasic, R.; Zhu, Y.; LI, Q.; Robinson, D. A.

    2017-12-01

    Recurrent droughts/floods are high-impact meteorological events. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST). However, studies have consistently shown that SST along is unable to fully explain the extreme climate events. Remote effects of large-scale spring land surface temperature (LST) and subsurface temperature (SUBT) variability in Northwest U.S. over the Rocky Mountain area on later spring-summer droughts/floods over the Southern Plains and adjacent areas, however, have been largely ignored. In this study, evidence from climate observations and model simulations addresses these effects. The Maximum Covariance Analysis of observational data identifies that a pronounce spring LST anomaly pattern over Northwest U.S. is closely associated with summer precipitation anomalies in Southern Plains: negative/positive spring LST anomaly is associated with the summer drought/flood over the Southern Plains. The global and regional weather forecast models were used to demonstrate a causal relationship. The modeling study suggests that the observed LST and SUBT anomalies produced about 29% and 31% of observed May 2015 heavy precipitation and June 2011 precipitation deficit, respectively. The analyses discovered that the LST/SUBT's downstream effects are associated with a large-scale atmospheric stationary wave extending eastward from the LST/SUBT anomaly region. For comparison, the SST effect was also tested and produced about 31% and 45% of the May 2015 heavy precipitation and June 2011 drought conditions, respectively. This study suggests that consideration of both SST and LST/SUBT anomalies are able to explain a substantial amount of variance in precipitation at sub-seasonal scale and inclusion of the LST/SUBT effect is essential to make reliable sub-seasonal and seasonal North American drought/flood predictions.

  5. Differences in Proteins Synthesized in Needles of Unshaded and Shaded Pinus ponderosa var Scopulorum Seedlings during Prolonged Drought 1

    PubMed Central

    Vance, Nan C.; Copes, Donald O.; Zaerr, Joe B.

    1990-01-01

    Proteins were radiolabeled and extracted from needles of Pinus ponderosa var scopulorum (Dougl. ex Laws.) seedlings progressively drought-stressed for about 1 month. A set of novel, low molecular weight proteins was detected in fluorographs of two-dimensional gels when relative water content of needles fell below 70%. Their synthesis was undetectable in the fully recovered seedlings within 48 hours after rewatering. In similarly stressed seedlings that were shaded to 10% full light, the low molecular weight polypeptides were not detected or appeared at very low levels. The shaded seedlings, in which drought tolerance was reduced, did not recover upon termination of the drought. The results suggest that protein synthesis induced by water deficit in drought-tolerant seedlings may contribute to resisting the effects of cellular dehydration. Images Figure 1 Figure 2 PMID:16667397

  6. Plant responses to extreme climatic events: a field test of resilience capacity at the southern range edge.

    PubMed

    Herrero, Asier; Zamora, Regino

    2014-01-01

    The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions.

  7. Plant Responses to Extreme Climatic Events: A Field Test of Resilience Capacity at the Southern Range Edge

    PubMed Central

    Herrero, Asier; Zamora, Regino

    2014-01-01

    The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions. PMID:24489971

  8. Expression of Multiple Resistance Genes Enhances Tolerance to Environmental Stressors in Transgenic Poplar (Populus × euramericana ‘Guariento’)

    PubMed Central

    Su, Xiaohua; Chu, Yanguang; Li, Huan; Hou, Yingjie; Zhang, Bingyu; Huang, Qinjun; Hu, Zanmin; Huang, Rongfeng; Tian, Yingchuan

    2011-01-01

    Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana ‘Guariento’) harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants. PMID:21931776

  9. Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers

    PubMed Central

    Briñez, Boris; Perseguini, Juliana Morini Küpper Cardoso; Rosa, Juliana Santa; Bassi, Denis; Gonçalves, João Guilherme Ribeiro; Almeida, Caléo; Paulino, Jean Fausto de Carvalho; Blair, Matthew Ward; Chioratto, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Valdisser, Paula Arielle Mendes Ribeiro; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Abstract The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean. PMID:29064511

  10. Does crop rotational diversity increase soil microbial resistance and resilience to drought and flooding?

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Calderon, Francisco; Cavigelli, Michel; Lehman, Michael; Tiemann, Lisa; Grandy, Stuart

    2017-04-01

    Future climate scenarios indicate more frequent and stronger extreme weather events. This includes more severe droughts but also an increase in heavy rain events and flooding. Agricultural systems are of special interest in this context because of their role in food security but also because of their potentially changing role in global carbon and nutrient cycling under these extreme conditions. Plant diversification strategies like more complex crop rotations which support more diverse soil microbial communities with higher functional redundancy might be more resistant to drought and flooding and could help to reduce impacts on microbial carbon and nutrient cycling. To test how crop diversification affects the response of soil microbial processes to drought and flooding and reoccurring drought and flooding, we manipulated water regimes in lab incubation experiments using soils from four long term rotation experiments across the USA, including a low (one or two crops) vs. high (>3 crops) diversity rotations at each site. The sites range from low precipitation (Colorado), over intermediate precipitation (Michigan and South Dakota) to high precipitation in Maryland. Replicate sets of samples were either allowed to dry out, were gradually flooded or kept at a constant water content (control). We monitored CO2 production during five stress cycles. Additionally, we determined microbial biomass, enzyme activities and N pools during the first and last stress cycle in soils from the precipitation extremes. After a total incubation length of 165 days and five stress cycles only the soils from short rotations in Maryland and South Dakota that had been subjected to reoccurring drought showed significantly less cumulative CO2 loss compared to their respective controls. All the other sites and rotation length did not significantly differ from control when subjected to reoccurring drought or flooding. A Principal component analysis using all measured parameters of Colorado and Maryland soils showed a clear clustering of samples by site and in case of Maryland also by rotation length before the first stress. During the stress, samples were significantly separated by the treatment (drought and flooding). Immediately after the stress, samples again clustered by site and rotation length. After four stress cycles, soils from the long rotation in Colorado were the only samples that did not show a significant response to the laboratory treatments anymore. Our results indicate that agricultural soils, irrespective of the climatic region they are from and the rotation regime, are highly susceptible to changes in water content, especially drought. We did however also found that all tested soils were quickly recovering from the applied stress treatment and that plant diversification might help to increase the microbial resistance to water stress in certain soil systems.

  11. A deeper look at the response of oxygenated and non oxygenated VOC to mid-term drought over the seasonal cycle: the case study of a drought-resistant species

    NASA Astrophysics Data System (ADS)

    Saunier, Amelie; Ormeño Lafuente, Elena; Wortham, Henri; Temime-Roussel, Brice; Fernandez, Catherine

    2015-04-01

    At the end of this century, climatic models plan an intensification of summer drought in the Mediterranean area due to a 30% rain reduction and a temperature rise of 3.4 °C. Plants respond to drought by modifying their primary (growth) and their secondary metabolism, the later being partly represented by volatile organic compound (VOC) emissions, such as terpenes. With drought, oxygenated and non oxygenated terpene emissions have been observed to increase, decrease or remain unchanged according to drought severity and vegetal model. By contrast, the response of non-terpenic oxygenated compounds to drought has been poorly studied. The aim of this study is to determine the potential impact of a two-year drought period on the full screen of VOC released by Q. pubescens, with a focus on both isoprene and methanol, issued from plant anabolism , and the numerous highly volatile oxygenated VOC, issued from plant catabolism (i.e. issued from oxidation of isoprene or methanol). A 70 years-old Downy oak forest (Quercus pubescens), highly resistant to drought stress, was selected as model ecosystem since it is well widespread in Southern France occupying 321 000 ha. Downy oak also represents the major source of isoprene emissions in the Mediterranean area and, unlike the other major Quercus sp. of the region (i.e. Quercus ilex, a monoterpene emitter) the impact of watering withholding over years has never been tackled. The study was performed at the experimental platform of O3HP (Oak Observatory at Observatoire de Haute Provence) in Southern France which is equipped with both a rain exclusion (by 30 %) and a rain addition structure (simulating the rainiest years of the region), allowing for comparison with naturally watered trees. Using dynamic enclosure chambers at the branch level and PTR-MS-Q-ToF, we screened the anabolic VOC (isoprene, methanol) and the catabolic VOC (e.g. methacrolein, methyl vinyl ketone, C6 aldehydes and carboxylic acids) of trees located under the three watering treatments during the three seasons of the vegetation period (spring, summer and autumn). Concomitantly, water stress was characterized by monitoring the ecophysiological plant parameters such as predawn leaf water potential, photosynthesis, stomatal conductance as well as VOCanabolic/VOCCcatabolic ratios indicators of oxidation within the cell. Differences among the three watering treatments were slight or absent depending on the season and the compound. This response was attributed to Downy Oak resistance to rain exclusion as reflected by the maintenance of the photosynthetic machinery activity and leaf water levels.

  12. Experimental droughts: Are precipitation variability and methodological trends hindering our understanding of ecological sensitivities to drought?

    NASA Astrophysics Data System (ADS)

    Hoover, D. L.; Wilcox, K.; Young, K. E.

    2017-12-01

    Droughts are projected to increase in frequency and intensity with climate change, which may have dramatic and prolonged effects on ecosystem structure and function. There are currently hundreds of published, ongoing, and new drought experiments worldwide aimed to assess ecosystem sensitivities to drought and identify the mechanisms governing ecological resistance and resilience. However, to date, the results from these experiments have varied widely, and thus patterns of drought sensitivities have been difficult to discern. This lack of consensus at the field scale, limits the abilities of experiments to help improve land surface models, which often fail to realistically simulate ecological responses to extreme events. This is unfortunate because models offer an alternative, yet complementary approach to increase the spatial and temporal assessment of ecological sensitivities to drought that are not possible in the field due to logistical and financial constraints. Here we examined 89 published drought experiments, along with their associated historical precipitation records to (1) identify where and how drought experiments have been imposed, (2) determine the extremity of drought treatments in the context of historical climate, and (3) assess the influence of precipitation variability on drought experiments. We found an overall bias in drought experiments towards short-term, extreme experiments in water-limited ecosystems. When placed in the context of local historical precipitation, most experimental droughts were extreme, with 61% below the 5th, and 43% below the 1st percentile. Furthermore, we found that interannual precipitation variability had a large and potentially underappreciated effect on drought experiments due to the co-varying nature of control and drought treatments. Thus detecting ecological effects in experimental droughts is strongly influenced by the interaction between drought treatment magnitude, precipitation variability, and key physiological thresholds. The results from this study have important implication for the design and interpretation of drought experiments as well as integrating field results with land surface models.

  13. The interaction of drought and habitat explain space-time patterns of establishment in saguaro (Carnegiea gigantea).

    PubMed

    Winkler, Daniel E; Conver, Joshua L; Huxman, Travis E; Swann, Don E

    2018-03-01

    The long-lived columnar saguaro cactus (Carnegiea gigantea) is among the most studied plants in the world. Long-term studies have shown saguaro establishment to be generally episodic and strongly influenced by precipitation and temperature. Water limitation through lower-than-average seasonal rainfall and elevated temperatures increasing evaporative loss can reduce survivorship of recent germinates. Thus, multi-year, extended drought could cause populations to decline as older saguaros die without replacement. Previous studies have related establishment to temporal variation in rainfall, but most studies have been on non-randomized plots in ideal habitat and thus might not have captured the full variability within the local area. We studied how saguaro establishment varied in space and which habitat features may buffer responses to drought on 36 4-ha plots located randomly across an elevation gradient, including substantial replication in landscape position (bajada, foothills, and slopes) in the two disjunct districts of Saguaro National Park in southern Arizona, USA. Recent, severe drought coincided with drastic declines in saguaro establishment across this ~25,000-ha area. Establishment patterns derived from the park-wide data set was strongly correlated with drought, but the Park's two districts and diversity of plots demonstrated substantially different population outcomes. Saguaro establishment was best explained by the interaction of drought and habitat type; establishment in bajada and foothill plots dropped to near-zero under the most severe periods of water limitation but remained higher in slope plots during the same time span. Combined with saguaro density estimates, these data suggest that the most suitable habitat type for saguaro establishment shifted to higher elevations during the time span of the recent drought. These results place into context the extent to which historical patterns of demography provide insight into future population dynamics in a changing climate and reveal the importance of understanding dynamics across the distribution of possible local habitat types with response to variation in weather. © 2017 by the Ecological Society of America.

  14. High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period

    NASA Astrophysics Data System (ADS)

    Medina-Elizalde, Martín; Burns, Stephen J.; Lea, David W.; Asmerom, Yemane; von Gunten, Lucien; Polyak, Victor; Vuille, Mathias; Karmalkar, Ambarish

    2010-09-01

    The decline of the Classic Maya civilization was complex and geographically variable, and occurred over a ~ 150-year interval, known as the Terminal Classic Period (TCP, C.E. 800-950). Paleoclimate studies based on lake sediments from the Yucatán Peninsula lowlands suggested that drought prevailed during the TCP and was likely an important factor in the disintegration of the Classic Maya civilization. The lacustrine evidence for decades of severe drought in the Yucatán Peninsula, however, does not readily explain the long 150-year socio-political decline of the Classic Maya civilization. Here we present a new, absolute-dated, high-resolution stalagmite δ18O record from the northwest Yucatán Peninsula that provides a much more detailed picture of climate variability during the last 1500 years. Direct calibration between stalagmite δ18O and rainfall amount offers the first quantitative estimation of rainfall variability during the Terminal Classic Period. Our results show that eight severe droughts, lasting from 3 to 18 years, occurred during major depopulation events of Classic Maya city-states. During these droughts, rainfall was reduced by 52% to 36%. The number and short duration of the dry intervals help explain why the TCP collapse of the Mayan civilization occurred over 150 years.

  15. Ecotype-specific improvement of nitrogen status in European grasses after drought combined with rewetting

    NASA Astrophysics Data System (ADS)

    Arfin Khan, Mohammed A. S.; Kreyling, Juergen; Beierkuhnlein, Carl; Jentsch, Anke

    2016-11-01

    Drought stress and associated low soil moisture can decrease N status of forage plants by reducing nitrogen (N) uptake. Conversely, rainfall and associated favorable soil moisture can improve plant N status. Yet, it is unclear to which degree drought combined with rewetting can buffer negative effects of drought on N status of forage plants and their populations. Here, we compared shoot N status (N concentration, total N uptake and C/N ratio) of four temperate grass species. Particularly, we investigated ecotypes (populations) grown from seeds from four to six European provenances/species after a drought treatment combined with rewetting (10 day harvest delay) versus continuously watered conditions for control. The experimental combination of drought and rewetting significantly increased shoot N concentration (+96%), N uptake (+31%); and decreased C/N ratio (-46%), biomass production (-29%) and C concentration (-1.4%) compared to control. Shoot N status was found to be different between target grass species and also within their populations under drought combined with rewetting treatment. Presumably drought-adapted populations did not perform better than populations from moist sites indicating no evidence of local adaptation. The drought combined with rewetting event could buffer the negative effects of drought. Shoot N status of grasses after drought and rewetting even exceeded control plants. This surprising finding can potentially be explained by higher N uptake, lack of growth dilution effects or delayed plant maturation. Furthermore, within-species shoot N status responses to drought combined with rewetting event were ecotype-specific, hinting at diverse responses of different population. For rangeland management, we recommend that if a drought event occurs during the growing season, harvesting should be delayed beyond a following rain event.

  16. Changes in grassland plant composition explain 2011 drought-triggered legacy effects

    NASA Astrophysics Data System (ADS)

    Xu, X.; Polley, W.; Hofmockel, K. S.; Wilsey, B. J.

    2016-12-01

    There is widespread recognition that extreme droughts can have profound direct consequences for terrestrial ecosystems, but it is poorly known how common drought legacies are and what ecological factors are associated with them. Legacies are found when ecosystem functioning is below what is expected based on precipitation levels in the time period after a perturbation has ended. Here, we tested for legacies after an extreme drought in pure native and exotic experimental communities in central Texas in a long-term experiment. An extreme drought in 2011 decreased aboveground biomass (AGB) by 92 % and triggered species reorganization that led to a drought legacy in rain-use efficiency (RUE, biomass production per unit of rainfall) that lasted an average of 20 months and 48 months in exotic and native communities, respectively. Across plots within community types, reductions in RUE (DRUE) were smallest in native communities with a high proportion of C3 forb biomass and in exotic communities with a low proportion of short grass biomass. Our results indicate that the 2011 drought exerted differential impacts on plant functional groups and altered plant community composition to the extent that, RUE, an ecosystem function, shifted with possible long-term repercussions.

  17. Mechanisms Underlying Early Medieval Droughts in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Chiang, J. C. H.

    2015-12-01

    Multidecadal drought during the early Medieval Climate Anomaly (MCA, 800-1200 CE) in Mesoamerica has been implicated in the demise of many pre-Columbian societies, including the Maya. The mechanisms behind these droughts, however, are poorly understood. Researchers most often interpret these records as tracking the mean position of the ITCZ, with a southward shifted ITCZ resulting in Mesoamerican drought. This is puzzling, however, because our dynamical understanding of the ITCZ and its role in interhemispheric heat transport would suggest a more northward shifted ITCZ during the MCA. Here, we evaluate two hypotheses to reconcile existing proxies and dynamics. First, we assess whether evidence for dry conditions during the MCA is robust across multiple Mesoamerican proxy records, focusing on the influence of radiometric dating uncertainty on estimates of drought timing. Second, we use control simulations of CCSM4 and HadCM3, as well as a broader synthesis of oceanic and terrestrial proxies, to explore the mechanisms responsible for long-term drought in Mesoamerica. Ultimately, we suggest that a temporary slowdown of the AMOC, either internally or externally forced, combined with local and regional land surface feedbacks can explain these droughts in Mesoamerica.

  18. Understanding the Central Equatorial African long-term drought using AMIP-type simulations

    NASA Astrophysics Data System (ADS)

    Hua, Wenjian; Zhou, Liming; Chen, Haishan; Nicholson, Sharon E.; Jiang, Yan; Raghavendra, Ajay

    2018-02-01

    Previous studies show that Indo-Pacific sea surface temperature (SST) variations may help to explain the observed long-term drought during April-May-June (AMJ) since the 1990s over Central equatorial Africa (CEA). However, the underlying physical mechanisms for this drought are still not clear due to observation limitations. Here we use the AMIP-type simulations with 24 ensemble members forced by observed SSTs from the ECHAM4.5 model to explore the likely physical processes that determine the rainfall variations over CEA. We not only examine the ensemble mean (EM), but also compare the "good" and "poor" ensemble members to understand the intra-ensemble variability. In general, EM and the "good" ensemble member can simulate the drought and associated reduced vertical velocity and anomalous anti-cyclonic circulation in the lower troposphere. However, the "poor" ensemble members cannot simulate the drought and associated circulation patterns. These contrasts indicate that the drought is tightly associated with the tropical Walker circulation and atmospheric teleconnection patterns. If the observational circulation patterns cannot be reproduced, the CEA drought will not be captured. Despite the large intra-ensemble spread, the model simulations indicate an essential role of SST forcing in causing the drought. These results suggest that the long-term drought may result from tropical Indo-Pacific SST variations associated with the enhanced and westward extended tropical Walker circulation.

  19. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna

    PubMed Central

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2017-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a “safety valve” to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf−stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies. PMID:28149302

  20. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation.

    PubMed

    Pretzsch, H; Schütze, G; Uhl, E

    2013-05-01

    While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far-reaching implications that these differences in stress response under intra- and inter-specific environments have for forest ecosystem dynamics and management under climate change. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Drought causes reduced growth of trembling aspen in western Canada.

    PubMed

    Chen, Lei; Huang, Jian-Guo; Alam, Syed Ashraful; Zhai, Lihong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G

    2017-07-01

    Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests. © 2017 John Wiley & Sons Ltd.

  2. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    PubMed

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  3. Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize.

    PubMed

    Parsons, M W; Munkvold, G P

    2010-05-01

    Fusarium ear rot, caused by Fusarium verticillioides, is one of the most common diseases of maize, causing yield and quality reductions and contamination of grain by fumonisins and other mycotoxins. Drought stress and various insects have been implicated as factors affecting disease severity. Field studies were conducted to evaluate the interactions and relative influences of drought stress, insect infestation, and planting date upon Fusarium ear rot severity and fumonisin B1 contamination. Three hybrids varying in partial resistance to Fusarium ear rot were sown on three planting dates and subjected to four irrigation regimes to induce differing levels of drought stress. A foliar-spray insecticide treatment was imposed to induce differing levels of insect injury. Populations of thrips (Frankliniella spp.), damage by corn earworm (Helicoverpa zeae), Fusarium ear rot symptoms, and fumonisin B1 levels were assessed. There were significant effects of hybrid, planting date, insecticide treatment, and drought stress on Fusarium ear rot symptoms and fumonisin B1 contamination, and these factors also had significant interacting effects. The most influential factors were hybrid and insecticide treatment, but their effects were influenced by planting date and drought stress. The more resistant hybrids and the insecticide-treated plots consistently had lower Fusarium ear rot severity and fumonisin B1 contamination. Later planting dates typically had higher thrips populations, more Fusarium ear rot, and higher levels of fumonisin B1. Insect activity was significantly correlated with disease severity and fumonisin contamination, and the correlations were strongest for thrips. The results of this study confirm the influence of thrips on Fusarium ear rot severity in California, USA, and also establish a strong association between thrips and fumonisin B1 levels.

  4. Functional analysis of overexpressed PtDRS1 involved in abiotic stresses enhances growth in transgenic poplar.

    PubMed

    Mohammadi, Kourosh; Movahedi, Ali; Maleki, Samaneh Sadat; Sun, Weibo; Zhang, Jiaxin; Almasi Zadeh Yaghuti, Amir; Nourmohammadi, Saeed; Zhuge, Qiang

    2018-05-01

    Drought and salinity are two main abiotic stressors that can disrupt plant growth and survival. Various biotechnological approaches have been used to alleviate the problem of drought stress by improving water stress resistance in forestry and agriculture. The drought sensitive 1 (DRS1) gene acts as a regulator of drought stress, identified in human, yeast and some model plants, such as Arabidopsis thaliana, but there have been no reports of DRS1 transformation in poplar plants to date. In this study, we transformed the DRS1 gene from Populus trichocarpa into Populus deltoides × Populus euramericana 'Nanlin895' using Agrobacterium tumefaciens-mediated transformation. We confirmed that the DRS1 gene was transformed into 'Nanlin895' poplar genomes using reverse transcription polymerase chain reaction (PCR), multiplex PCR, real-time PCR, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All transformed and wild-type (WT) plants were then transferred into a greenhouse for complementary experiments. We analyzed the physiological and biochemical responses of transgenic plants under drought and salt stresses in the greenhouse, and the results were compared with control WT plants. Responses to abiotic stress were greater in transgenic plants compared with WT. Based on our results, introduction of the DRS1 gene into poplar 'Nanlin895' plants significantly enhanced the resistance of those plants to water deficit and high salinity, allowing higher growth rates of roots and shoots in those plants. Additionally, the clawed root rate increased in transformed poplars grown in culture media or in soil, and improved survival under drought and salt stress conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. USING RESISTANCE AND RESILIENCE MEASUREMENTS FOR 'FITNESS' TESTS IN ECOSYSTEM HEALTH

    EPA Science Inventory

    The resistance and resilience of perennial grasses and a small shrub to a natural disturbance (drought)were measured on stress gradients that were produced by domestic livestock in desert grassland ecosystems in the northern Chihuahuan Desert of New Mexico, USA. Both survivorship...

  6. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.

    PubMed

    Roatti, Benedetta; Perazzolli, Michele; Gessler, Cesare; Pertot, Ilaria

    2013-12-01

    Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field.

  7. Risk to Drought in Mexico

    NASA Astrophysics Data System (ADS)

    Magana, V.

    2016-12-01

    Drought is one of the major meteorological hazards in Mexico given the semiarid and arid conditions in most of its territory. The recent drought event between 2011 and 2013 led to one of the major socioeconomic and environmental crisis in recent years in relation to water deficit mainly in northern Mexico. But the impacts of meteorological droughts are not only related to precipitation deficit, but to the water crisis context in which the climatic anomaly occurs. In other words, the drought hazard occurs in a vulnerability context that results in risks at levels that translate into hydrological, agricultural and socioeconomic droughts. The dynamics of prolonged droughts in Mexico has been studied in relation to low frequency oscillations in the Pacific and Atlantic oceans (Méndez and Magaña 2010). On the other hand, the vulnerability to drought has been characterized by means of socioeconomic and physical indicators that reflect the dynamical and multifactorial characteristics of this element (Neri and Magaña 2016). The combination of hazard and vulnerability led to an estimate of risk to drought that explains the drought impacts in recent years. The Mexican government has developed a national strategy to prevent or at least ameliorate the impacts of droughts by establishing the National Program against Drought (PRONACOSE) for each one of the thirteen hydrologic administrative regions that compose the Mexican territory. The main idea behind PRONACOSE is to respond to drought as it reaches a higher level of intensity. Some of the protocols in PRONACOSE are based on a risk analysis and proposals by water stakeholders. It is found that PRONACOSE could better work if a risk management preventive scheme is implemented making use of the knowledge on the predictability of drought in Mexico on various time scales. The examples of potential risk to drought management schemes in Mexico for some of the hydrologic administrative regions are presented.

  8. Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought.

    PubMed

    Frolking, Steve; Hagen, Stephen; Braswell, Bobby; Milliman, Tom; Herrick, Christina; Peterson, Seth; Roberts, Dar; Keller, Michael; Palace, Michael

    2017-01-01

    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon's vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999-2009, and low morning backscatter persisted for 2006-2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts.

  9. Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought

    PubMed Central

    Hagen, Stephen; Braswell, Bobby; Milliman, Tom; Herrick, Christina; Peterson, Seth; Roberts, Dar; Keller, Michael; Palace, Michael

    2017-01-01

    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon’s vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999–2009, and low morning backscatter persisted for 2006–2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts. PMID:28873422

  10. Targeting carbon for crop yield and drought resilience.

    PubMed

    Griffiths, Cara A; Paul, Matthew J

    2017-11-01

    Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. Physiological and Proteomic Adaptation of the Alpine Grass Stipa purpurea to a Drought Gradient

    PubMed Central

    Yang, Yunqiang; Dong, Chao; Yang, Shihai; Li, Xiong; Sun, Xudong; Yang, Yongping

    2015-01-01

    Stipa purpurea, an endemic forage species on the Tibetan Plateau, is highly resistant to cold and drought, but the mechanisms underlying its responses to drought stress remain elusive. An understanding of such mechanisms may be useful for developing cultivars that are adaptable to water deficit. In this study, we analyzed the physiological and proteomic responses of S. purpurea under increasing drought stress. Seedlings of S. purpurea were subjected to a drought gradient in a controlled experiment, and proteins showing changes in abundance under these conditions were identified by two-dimensional electrophoresis followed by mass spectrometry analysis. A western blotting analysis was conducted to confirm the increased abundance of a heat-shock protein, NCED2, and a dehydrin in S. purpurea seedlings under drought conditions. We detected carbonylated proteins to identify oxidation-sensitive proteins in S. purpurea seedlings, and found that ribulose-1, 5-bisphosphate carboxylase oxygenase (RuBisCO) was one of the oxidation-sensitive proteins under drought. Together, these results indicated drought stress might inhibit photosynthesis in S. purpurea by oxidizing RuBisCO, but the plants were able to maintain photosynthetic efficiency by a compensatory upregulation of unoxidized RuBisCO and other photosynthesis-related proteins. Further analyses confirmed that increased abundance of antioxidant enzymes could balance the redox status of the plants to mitigate drought-induced oxidative damage. PMID:25646623

  12. Comparative analysis of DNA methylation polymorphism in drought sensitive (HPKC2) and tolerant (HPK4) genotypes of horse Gram (Macrotyloma uniflorum).

    PubMed

    Bhardwaj, Jyoti; Mahajan, Monika; Yadav, Sudesh Kumar

    2013-08-01

    DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.) genotypes, HPKC2 (drought-sensitive) and HPK4 (drought-tolerant). The methylation pattern in both genotypes was studied through methylation-sensitive amplified polymorphism. The results revealed that methylation was higher in HPKC2 (10.1%) than in HPK4 (8.6%). Sequencing demonstrated sequence homology with the DRE binding factor (cbf1), the POZ/BTB protein, and the Ty1-copia retrotransposon among some of the polymorphic fragments showing alteration in methylation behavior. Differences in DNA methylation patterns could explain the differential drought tolerance and the epigenetic signature of these two horse gram genotypes.

  13. Solar forcing of drought frequency in the Maya lowlands.

    PubMed

    Hodell, D A; Brenner, M; Curtis, J H; Guilderson, T

    2001-05-18

    We analyzed lake-sediment cores from the Yucatan Peninsula, Mexico, to reconstruct the climate history of the region over the past 2600 years. Time series analysis of sediment proxies, which are sensitive to the changing ratio of evaporation to precipitation (oxygen isotopes and gypsum precipitation), reveal a recurrent pattern of drought with a dominant periodicity of 208 years. This cycle is similar to the documented 206-year period in records of cosmogenic nuclide production (carbon-14 and beryllium-10) that is thought to reflect variations in solar activity. We conclude that a significant component of century-scale variability in Yucatan droughts is explained by solar forcing. Furthermore, some of the maxima in the 208-year drought cycle correspond with discontinuities in Maya cultural evolution, suggesting that the Maya were affected by these bicentennial oscillations in precipitation.

  14. Host resistance to emerald ash borer: development of novel ash hybrids

    Treesearch

    Jennifer L. Koch; David W. Carey; Richard Larson

    2007-01-01

    In contrast to the rapid destruction of ash trees in the United States by emerald ash borer (EAB, Agrilus planipennis Fairmaire), outbreaks of EAB in Asia appear to be isolated responses to stress, such as drought, and do not devastate the ash population. This indicates that in Asia, ash trees may have a level of inherent resistance. This resistance...

  15. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits.

    PubMed

    Yoshimura, Kazuya; Masuda, Akiko; Kuwano, Masayoshi; Yokota, Akiho; Akashi, Kinya

    2008-02-01

    Water availability is a critical determinant for the growth and ecological distribution of terrestrial plants. Although some xerophytes are unique regarding their highly developed root architecture and the successful adaptation to arid environments, virtually nothing is known about the molecular mechanisms underlying this adaptation. Here, we report physiological and molecular responses of wild watermelon (Citrullus lanatus sp.), which exhibits extraordinarily high drought resistance. At the early stage of drought stress, root development of wild watermelon was significantly enhanced compared with that of the irrigated plants, indicating the activation of a drought avoidance mechanism for absorbing water from deep soil layers. Consistent with this observation, comparative proteome analysis revealed that many proteins induced in the early stage of drought stress are involved in root morphogenesis and carbon/nitrogen metabolism, which may contribute to the drought avoidance via the enhancement of root growth. On the other hand, lignin synthesis-related proteins and molecular chaperones, which may function in the enhancement of physical desiccation tolerance and maintenance of protein integrity, respectively, were induced mostly at the later stage of drought stress. Our findings suggest that this xerophyte switches survival strategies from drought avoidance to drought tolerance during the progression of drought stress, by regulating its root proteome in a temporally programmed manner. This study provides new insights into the complex molecular networks within plant roots involved in the adaptation to adverse environments.

  16. Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz).

    PubMed

    Ou, Wenjun; Mao, Xiang; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Wu, Chunlai; Xia, Zhiqiang; Wang, Wenquan; Zhou, Shiyi; Li, Kaimian; Hu, Wei

    2018-01-01

    KT/HAK/KUP (KUP) family is responsible for potassium ion (K + ) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava ( Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes ( MeKUPs ) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H 2 O 2 , and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP -mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.

  17. On-farm production and utilization of arbusclar mycorrhizal fungus inoculum

    USDA-ARS?s Scientific Manuscript database

    Arbuscular mycorrhizal [AM] fungi are naturally occuring soil fungi that form a mutualistic symbiosis with the majority of crop plants. Among the benefits to the plant that are accredited to living in this symbiosis are: increased mineral nutrient uptake, drought resistance, and disease resistance....

  18. Take advantage of mycorrhizal fungi for improved soil fertility and plant health

    USDA-ARS?s Scientific Manuscript database

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a beneficial symbiosis with the roots of most crops. The plants benefit because the symbiosis increases mineral nutrient uptake, drought resistance, and disease resistance. These characteristics make utilization of AM f...

  19. Reliability of reservoir firm yield determined from the historical drought of record

    USGS Publications Warehouse

    Archfield, S.A.; Vogel, R.M.

    2005-01-01

    The firm yield of a reservoir is typically defined as the maximum yield that could have been delivered without failure during the historical drought of record. In the future, reservoirs will experience droughts that are either more or less severe than the historical drought of record. The question addressed here is what the reliability of such systems will be when operated at the firm yield. To address this question, we examine the reliability of 25 hypothetical reservoirs sited across five locations in the central and western United States. These locations provided a continuous 756-month streamflow record spanning the same time interval. The firm yield of each reservoir was estimated from the historical drought of record at each location. To determine the steady-state monthly reliability of each firm-yield estimate, 12,000-month synthetic records were generated using the moving-blocks bootstrap method. Bootstrapping was repeated 100 times for each reservoir to obtain an average steady-state monthly reliability R, the number of months the reservoir did not fail divided by the total months. Values of R were greater than 0.99 for 60 percent of the study reservoirs; the other 40 percent ranged from 0.95 to 0.98. Estimates of R were highly correlated with both the level of development (ratio of firm yield to average streamflow) and average lag-1 monthly autocorrelation. Together these two predictors explained 92 percent of the variability in R, with the level of development alone explaining 85 percent of the variability. Copyright ASCE 2005.

  20. Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests.

    PubMed

    Lloret, F; Lobo, A; Estevan, H; Maisongrande, P; Vayreda, J; Terradas, J

    2007-09-01

    The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal-temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex, drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity-stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in more moist localities we hypothesize that the proportion of drought-sensitive species would increase in richer localities, due to a higher likelihood of co-occurrence of species that share moist climatic requirements. The study points to the convenience of considering the causes of disturbance in relation to current environmental gradients and historical environmental constraints on the community.

  1. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    PubMed

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  2. Effect of Ar Ion Beam Implantation on Morphological and Physiological Characteristics of Liquorice (Glycyrrhiza uralensis Fisch) Under Short-Term Artificial Drought Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangsheng; Wu, Lijun; Yu, Lixiang; Wei, Shenglin; Liu, Jingnan; Yu, Zengliang

    2007-04-01

    Ar+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 1013) ions/cm2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, anti-oxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.

  3. Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery.

    PubMed

    Wang, Yu; Fan, Kai; Wang, Jing; Ding, Zhao-Tang; Wang, Hui; Bi, Cai-Hong; Zhang, Yun-Wei; Sun, Hai-Wei

    2017-12-01

    Drought is a crucial limiting factor for tea yield and quality. To systematically characterize the molecular response of tea plants to drought stress and its capacity to recover, we used iTRAQ-based comparative proteomic approach to investigate the effects of drought on protein expression profiles in tea seedlings subjected to different drought treatments. A total of 3274 proteins were identified, of which 2169 and 2300 showed differential expressions during drought and recovery, respectively. Functional annotation showed that multiple biological processes were regulated, suggesting that tea plants probably employed multiple and synergistic resistance mechanisms in dealing with drought stress. Hierarchical clustering showed that chlorophyll a/b-binding proteins were up-regulated in DB and RE, suggesting that tea plants might regulate expression of chlorophyll a/b-binding proteins to maintain the photosystem II function during drought stress. Abundant proteins involved in sulfur-containing metabolite pathways, such as glutathione, taurine, hypotaurine, methionine, and cysteine, changed significantly during drought stress. Among them, TL29 interacted with LHCb6 to connect S-containing metabolites with chlorophyll a/b-binding proteins. This suggests that sulfur-containing compounds play important roles in the response to drought stress in tea plants. In addition, the expression of PAL was up-regulated in DA and down-regulated in DB. Cinnamyl alcohol dehydrogenase, caffeic acid O-methyltransferase, and 4-coumarate-CoA ligase also showed significant changes in expression levels, which regulated the biosynthesis of polyphenols. The results indicate that slight drought stress might promote polyphenol biosynthesis, while serious drought stress leads to inhibition. The expression of lipoxygenase and short-chain dehydrogenase increased during slight drought stress and some volatile metabolite pathways were enriched, indicating that drought stress might affect the tea aroma. The study provides valuable information that will lay the foundation for studies investigating the functions of drought response genes in tea leaves. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Drought monitoring of Shandong province in late 2010 using data acquired by Terra MODIS

    NASA Astrophysics Data System (ADS)

    Wang, Mingzhi; Huang, He; Liu, Suihua; Yan, Lei

    2011-12-01

    Drought has been a frequently happened type of disaster in China, and it has caused massive losses to people's lives. Especially the drought happened in Shandong province in the late 2010, which was recognized as the severest in the past five hundred years in some areas. Evaluation must be done in order to make proper rescue plans. Instead of collecting data site by site, remote sensing is an efficient way to acquire data in a large area, which is very helpful for drought identification. Some normal ways in remote sensing for drought analysis are explained and compared in this paper, and then the VSWI method is chosen to evaluation the drought in Shandong province. Because of its free data policy and wide availability, the data sets acquired by Terra-MODIS are chosen to identify the drought severity in Shandong province. From the drought severity level images we can see that almost the whole area of Shandong province was lack of water except the Weishan Lake and eastern coastline regions where large area of water exists. The southwest region, including Heze and Jining, is in moderate drought condition, where it is used to be an important grain-producing area. This drought condition will inevitably put a negative effect on its grain production. The central and southern areas were in severe drought condition, but fortunately these areas are of hills and mountains, so the drought will only affect the lives of residents. The northern parts, including Dezhou and Bingzhou areas, were also in severe drought condition, and these regions are also important for grain-producing, so the severe drought disaster will lead to a sharp grain output cut. This analysis results will not only shed light on the rescue process, but also give the government some clues on how to maintain the grain supply safety.

  5. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress.

    PubMed

    Hein, Jordan A; Sherrard, Mark E; Manfredi, Kirk P; Abebe, Tilahun

    2016-11-09

    Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψ s ), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψ s in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψ s in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.

  6. A meta-analysis of leaf gas exchange and water status responses to drought.

    PubMed

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2016-02-12

    Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought.

  7. A meta-analysis of leaf gas exchange and water status responses to drought

    PubMed Central

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2016-01-01

    Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought. PMID:26868055

  8. Evaluation of the expression genes associated with resistance to Aspergillus flavus colonization and aflatoxin production in different maize lines.

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...

  9. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    PubMed

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  10. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress

    PubMed Central

    2014-01-01

    Background Drought is one of the most important abiotic stresses that cause drastic reduction in rice grain yield (GY) in rainfed environments. The identification and introgression of QTL leading to high GY under drought have been advocated to be the preferred breeding strategy to improve drought tolerance of popular rice varieties. Genetic control of GY under reproductive-stage drought stress (RS) was studied in two BC1F4 mapping populations derived from crosses of Kali Aus, a drought-tolerant aus cultivar, with high-yielding popular varieties MTU1010 and IR64. The aim was to identify QTL for GY under RS that show a large and consistent effect for the trait. Bulk segregant analysis (BSA) was used to identify significant markers putatively linked with high GY under drought. Results QTL analysis revealed major-effect GY QTL: qDTY 1.2 , qDTY 2.2 and qDTY 1.3 , qDTY 2.3 (DTY; Drought grain yield) under drought consistently over two seasons in Kali Aus/2*MTU1010 and Kali Aus/2*IR64 populations, respectively. qDTY 1.2 and qDTY 2.2 explained an additive effect of 288 kg ha−1 and 567 kg ha−1 in Kali Aus/2*MTU1010, whereas qDTY 1.3 and qDTY 2.3 explained an additive effect of 198 kg ha−1 and 147 kg ha−1 in Kali Aus/2*IR64 populations, respectively. Epistatic interaction was observed for DTF (days to flowering) between regions on chromosome 2 flanked by markers RM154–RM324 and RM263–RM573 and major epistatic QTL for GY showing interaction between genomic locations on chromosome 1 at marker interval RM488–RM315 and chromosome 2 at RM324–RM263 in 2012 DS and 2013 DS RS in Kali Aus/2*IR64 mapping populations. Conclusion The QTL, qDTY 1.2 , qDTY 1.3 , qDTY 2.2 , and qDTY 2.3, identified in this study can be used to improve GY of mega varieties MTU1010 and IR64 under different degrees of severity of drought stress through marker-aided backcrossing and provide farmers with improved varieties that effectively combine high yield potential with good yield under drought. The observed epistatic interaction for GY and DTF will contribute to our understanding of the genetic basis of agronomically important traits and enhance predictive ability at an individualized level in agriculture. PMID:24885990

  11. Resistance to toxin-mediated fungal infection: role of lignins, isoflavones, other seed phenolics, sugars and boron in the mechanism of resistance to charcoal rot disease in soybean

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to investigate the combined effects of charcoal rot and drought on total seed phenol, isoflavones, sugars, and boron in susceptible (S) and moderately resistant (MR) soybean genotypes to charcoal rot pathogen. A field experiment was conducted for two years under ir...

  12. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks

    PubMed Central

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875

  13. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.

    PubMed

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.

  14. Impacts of Climate Change on the Collapse of Lowland Maya Civilization

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Demarest, Arthur A.; Brenner, Mark; Canuto, Marcello A.

    2016-06-01

    Paleoclimatologists have discovered abundant evidence that droughts coincided with collapse of the Lowland Classic Maya civilization, and some argue that climate change contributed to societal disintegration. Many archaeologists, however, maintain that drought cannot explain the timing or complex nature of societal changes at the end of the Classic Period, between the eighth and eleventh centuries ce. This review presents a compilation of climate proxy data indicating that droughts in the ninth to eleventh century were the most severe and frequent in Maya prehistory. Comparison with recent archaeological evidence, however, indicates an earlier beginning for complex economic and political processes that led to the disintegration of states in the southern region of the Maya lowlands that precedes major droughts. Nonetheless, drought clearly contributed to the unusual severity of the Classic Maya collapse, and helped to inhibit the type of recovery seen in earlier periods of Maya prehistory. In the drier northern Maya Lowlands, a later political collapse at ca. 1000 ce appears to be related to ongoing extreme drought. Future interdisciplinary research should use more refined climatological and archaeological data to examine the relationship between climate and social processes throughout the entirety of Maya prehistory.

  15. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage.

    PubMed

    Chugh, Vishal; Kaur, Narinder; Grewal, M S; Gupta, Anil K

    2013-04-01

    The role of oxidative stress management was evaluated in two maize (Zea mays L.) genotypes - Parkash (drought-resistant) and Paras (drought-sensitive), subjected to drought stress during reproductive stage. Alterations in their antioxidant pools - glutathione (GSH) and ascorbic acid (AsA) combined with activities of enzymes glutathione reductase (GR), ascorbate peroxidase (APX), peroxidase (POX) and catalase (CAT) involved in defense against oxidative stress and stress parameters, namely chlorophyll (Chl), hydrogen peroxide (H2O2) and malondialdehyde (MDA) were investigated in flag leaves from silk emergence till maturity. The drought caused transient increase in GR, APX, POX and CAT activities in drought-tolerant genotype (Parkash) which decreased at later stages with the extended period of drought stress. However, in Paras, drought stress caused decrease in activities of GR and CAT from initial period of stress till the end of experiment, except for POX which showed slight increase in activity. A significant increase in GSH content was observed in Parkash till 35 days after silking (DAS), whereas in Paras, GSH content remained lower than irrigated till maturity. Parkash which had higher AsA and Chl contents, also showed lower H2O2 and MDA levels than Paras under drought stress conditions. However, at the later stages, decline in antioxidant enzyme activities in Parkash due to severe drought stress led to enhanced membrane damage, as revealed by the accumulation of MDA. Our data indicated that significant activation of antioxidant system in Parkash might be responsible for its drought-tolerant behavior under drought stress and helped it to cope with the stress up to a definite period. Thus, the results indicate that antioxidant status and lipid peroxidation in flag leaves can be used as indices of drought tolerance in maize plants and also as potential biochemical targets for the crop improvement programmes to develop drought-tolerant cultivars.

  16. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less

  17. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE PAGES

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.; ...

    2018-02-15

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less

  18. The relative influence of climate and catchment properties on hydrological drought

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a high elevation, steep slopes, a high percentage of crystalline rock, bare rock and glacier. The conclusion of our research is that it is not straightforward to separate the effects of climate and catchment properties on drought, since they are interrelated. This is especially true for mountainous regions where temperature and precipitation are strongly dependent on altitude. We did however see that the duration of drought is more related to catchment storage (catchment properties) and the severity of drought (represented by the drought deficit) is more related to catchment wetness (climate). Van Loon, A.F., and Van Lanen, H.A.J.: A process-based typology of hydrological drought, Hydrology and Earth System Science, 16, p. 1915-1946, doi: 10.5194/hess-16-1915-2012, 2012

  19. Silicon improves photosynthesis and strengthens enzyme activities in the C3 succulent xerophyte Zygophyllum xanthoxylum under drought stress.

    PubMed

    Kang, Jianjun; Zhao, Wenzhi; Zhu, Xi

    2016-07-20

    One main strategic adaptive mechanism adopted by succulent xerophyte species, resistance to drought stress is absorbing and accumulating large amounts of sodium (Na + ) from poor and dry soil which was stored in photosynthesizing branches as well as leaves as major osmoregulators, while still accumulating and storing a great deal of silicon (Si) in roots to resist to arid environments. To understand the possible adaptive strategies underlying how Si accumulation stimulates growth and ameliorates the adverse environmental impacts of drought stress on the C 3 succulent xerophyte Zygophyllum xanthoxylum, plants grown for 3 weeks were suffered different K 2 SiO 3 concentrations (1.5-7.5mM) (3-15mM KCl as control) treatments in sand culture experiments. Plants were also treated with different osmotic stresses caused by polyethylene glycol (PEG 6000) and drought stress (maintain water content about 30% of field water capacity) (30% of FWC) with or without additional 2.5mMK 2 SiO 3 (5mMKCl as control) treatment in sand culture and pot experiments, respectively. We found that 2.5mMK 2 SiO 3 (5mMKCl as control) resulted in optimal plant growth and alleviated adverse influences of drought stress on Z. xanthoxylum, by strengthening the activities of superoxide dismutase, peroxidase and catalase, reducing membrane lipid peroxidation and decreasing soluble sugar and free proline concentrations, concomitantly, increasing tissue water content, leaf area and chlorophyll a concentration. The result of ion analysis indicated that the Si absorption of Z. xanthoxylum was markedly induced by drought stress and that the 2.5mMK 2 SiO 3 (5mMKCl as control) treatment significantly increased the aboveground and root Si concentration under different osmotic stresses and 30% of field water capacity compared with the drought and drought with 5mMKCl treatments. Although the K + concentration in root in the drought with 2.5mMK 2 SiO 3 treatment was no significant changes compared with the drought treatment, K + concentration in aboveground and root in drought with 2.5mMK 2 SiO 3 treatment were significantly decreased by 42% and 65.2% compared with drought with 5mMKCl treatment under 30% of FWC, indicating that Si replaced the function of K + , thus stimulating the growth and mitigating adverse effects of Z. xanthoxylum under water deficit. These findings showed that the positive roles of Si in the drought tolerance of Z. xanthoxylum might be due to the ability of plant to accumulate a great quantity of Si and utilize it as an osmoregulator to copy with water deficit, which was coupled with an obvious improvement in photosynthetic activity and anti-oxidative enzyme activities. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars.

    PubMed

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Ashraf, Umair; Hussain, Saddam; Shahzad, Babar; Khan, Imran; Wang, Longchang

    2016-09-01

    Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize cultivars (Rung Nong 35 and Dong Dan 80) were examined to explicate the growth, yield, leaf gas exchange, leaf water contents, osmolyte accumulation, membrane lipid peroxidation, and antioxidant activity under progressive drought stress. Maize cultivars were subjected to varying field capacities (FC) viz., well-watered (80 % FC) and drought-stressed (35 % FC) at 45 days after sowing. The effects of drought stress were analyzed at 5, 10, 15, 20, ad 25 days after drought stress (DAS) imposition. Under prolonged drought stress, Rung Nong 35 exhibited higher reduction in growth and yield as compared to Dong Dan 80. Maize cultivar Dong Dan 80 showed higher leaf relative water content (RWC), free proline, and total carbohydrate accumulation than Run Nong 35. Malondialdehyde (MDA) and superoxide anion were increased with prolongation of drought stress, with higher rates in cultivar Run Nong 35 than cultivar Dong Dan 80. Higher production of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and glutathione reductase (GR) resulted in improved growth and yield in Dong Dan 80. Overall, the cultivar Dong Dan 80 was better able to resist the detrimental effects of progressive drought stress as indicated by better growth and yield due to higher antioxidant enzymes, reduced lipid peroxidation, better accumulation of osmolytes, and maintenance of tissue water contents.

  1. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics

    NASA Astrophysics Data System (ADS)

    Martínez-Vilalta, Jordi; Lloret, Francisco

    2016-09-01

    Ongoing climate change is modifying climatic conditions worldwide, with a trend towards drier conditions in most regions. Vegetation will respond to these changes, eventually adjusting to the new climate. It is unclear, however, how close different ecosystems are to climate-related tipping points and, thus, how dramatic these vegetation changes will be in the short- to mid-term, given the existence of strong stabilizing processes. Here, we review the published evidence for recent drought-induced vegetation shifts worldwide, addressing the following questions: (i) what are the necessary conditions for vegetation shifts to occur? (ii) How much evidence of drought-induced vegetation shifts do we have at present and where are they occurring? (iii) What are the main processes that favor/oppose the occurrence of shifts at different ecological scales? (iv) What are the complications in detecting and attributing drought-induced vegetation shifts? (v) What ecological factors can interact with drought to promote shifts or stability? We propose a demographic framework to classify the likely outcome of instances of drought-induced mortality, based upon the survival of adults of potential replacement species and the regeneration of both formerly dominant affected species and potential replacement species. Out of 35 selected case studies only eight were clearly consistent with the occurrence of a vegetation shift (species or biome shift), whereas three corresponded to self-replacements in which the affected, formerly dominant species was able to regenerate after suffering drought-induced mortality. The other 24 cases were classified as uncertain, either due to lack of information or, more commonly, because the initially affected and potential replacement species all showed similar levels of regeneration after the mortality event. Overall, potential vegetation transitions were consistent with more drought-resistant species replacing less resistant ones. However, almost half (44%) of the vegetation trajectories associated to the 35 case studies implied no change in the functional type of vegetation. Of those cases implying a functional type change, the most common one was a transition from tree- to shrub-dominated communities. Overall, evidence for drought-induced vegetation shifts is still limited. In this context, we stress the need for improved, long-term monitoring programs with sufficient temporal resolution. We also highlight the critical importance of regeneration in determining the outcome of drought-induced mortality events, and the crucial role of co-drivers, particularly management. Finally, we illustrate how placing vegetation shifts in a biogeographical and successional context may support progress in our understanding of the underlying processes and the ecosystem-level implications.

  2. Synthesized Attributes of Water Use by Regional Vegetation: A Key to Cognition of “Water Pump” Viewpoint

    PubMed Central

    Huang, Xin-hui; Yu, Fu-ke; Li, Xiao-ying; Zheng, Yuan; Yuan, Hua; Ma, Jian-gang; Wang, Yan-xia; Qi, Dan-hui; Shao, Hong-bo

    2014-01-01

    Recently, the frequent seasonal drought in Southwest China has brought considerable concerns and continuous heated arguments on the “water pump” viewpoint (i.e., the water demand from Hevea spp. and Eucalyptus spp. can be treated as a water pump) once again. However, such viewpoint just focused on water consumption from vegetation transpiration and its ecoenvironment impacts, which had not considered other attributes of vegetation, namely, water saving and drought resistance, and hydrological regulation (water conservation) into consideration. Thus, in this paper, the synthesized attributes of regional vegetation water use had been mainly discussed. The results showed that the study on such aspects as the characters of water consumption from vegetation transpiration, the potential of water saving and drought resistance, and the effects of hydrological regulation in Southwest China lagged far behind, let alone the report on synthesized attributes of water utilization with the organic combination of the three aspects above or the paralleled analysis. Accordingly, in this paper, the study on the synthesized attributes of water use by regional vegetation in Southwest China was suggested, and the objectives of such a special study were clarified, targeting the following aspects: (i) characters of water consumption from transpiration of regional typical artificial vegetation; (ii) potential of water saving and drought resistance of regional typical artificial vegetation; (iii) effects of hydrological regulation of regional typical artificial vegetation; (iv) synthesized attributes of water use by regional typical artificial vegetation. It is expected to provide a new idea for the scientific assessment on the regional vegetation ecoenvironment effects and theoretical guidance for the regional vegetation reconstruction and ecological restoration. PMID:25302337

  3. Synthesized attributes of water use by regional vegetation: a key to cognition of "water pump" viewpoint.

    PubMed

    Huang, Xin-hui; Yu, Fu-ke; Li, Xiao-ying; Zheng, Yuan; Yuan, Hua; Ma, Jian-gang; Wang, Yan-xia; Qi, Dan-hui; Shao, Hong-bo

    2014-01-01

    Recently, the frequent seasonal drought in Southwest China has brought considerable concerns and continuous heated arguments on the "water pump" viewpoint (i.e., the water demand from Hevea spp. and Eucalyptus spp. can be treated as a water pump) once again. However, such viewpoint just focused on water consumption from vegetation transpiration and its ecoenvironment impacts, which had not considered other attributes of vegetation, namely, water saving and drought resistance, and hydrological regulation (water conservation) into consideration. Thus, in this paper, the synthesized attributes of regional vegetation water use had been mainly discussed. The results showed that the study on such aspects as the characters of water consumption from vegetation transpiration, the potential of water saving and drought resistance, and the effects of hydrological regulation in Southwest China lagged far behind, let alone the report on synthesized attributes of water utilization with the organic combination of the three aspects above or the paralleled analysis. Accordingly, in this paper, the study on the synthesized attributes of water use by regional vegetation in Southwest China was suggested, and the objectives of such a special study were clarified, targeting the following aspects: (i) characters of water consumption from transpiration of regional typical artificial vegetation; (ii) potential of water saving and drought resistance of regional typical artificial vegetation; (iii) effects of hydrological regulation of regional typical artificial vegetation; (iv) synthesized attributes of water use by regional typical artificial vegetation. It is expected to provide a new idea for the scientific assessment on the regional vegetation ecoenvironment effects and theoretical guidance for the regional vegetation reconstruction and ecological restoration.

  4. Plant xylem hydraulics: What we understand, current research, and future challenges.

    PubMed

    Venturas, Martin D; Sperry, John S; Hacke, Uwe G

    2017-06-01

    Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality. © 2017 Institute of Botany, Chinese Academy of Sciences.

  5. Global Synthesis of Drought Effects on Food Legume Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  6. Adjustments in CAM and enzymatic scavenging of H2O2 in juvenile plants of the epiphytic bromeliad Guzmania monostachia as affected by drought and rewatering.

    PubMed

    Carvalho, Victória; Abreu, Maria E; Mercier, Helenice; Nievola, Catarina C

    2017-04-01

    Juvenile plants of epiphytes such as bromeliads are highly prone to dehydration under drought conditions. It is likely that young epiphytes evolved mostly metabolic strategies to resist drought, which may include the plastic modulation of the enzymatic antioxidant system and crassulacean acid metabolism (CAM). Few studies have investigated such strategies in juvenile epiphytes, although such research is important to understand how these plants might face drought intensification derived from potential climatic alterations. The epiphytic CAM bromeliad Guzmania monostachia (L.) Rusby ex Mez var. monostachia is known to have plastic responses to drought, but no reports have focused on the metabolism of juvenile plants to drought and recovery. Hence, we aimed to verify how juvenile G. monostachia plants adjust malate (indicative of CAM), H 2 O 2 content and enzymatic scavenging in response to drought (eight days without irrigation) and rewatering (six days of irrigation post-drought). Interestingly, drought decreased H 2 O 2 content and activities of superoxide dismutase, catalase (CAT) and ascorbate peroxidase (APX) in the pre-dusk period, although glutathione reductase (GR) and CAM activity increased. Rewatering restored H 2 O 2 , but activities of APX, CAT and GR exceeded pre-stress levels in the pre-dusk and/or pre-dawn periods. Results suggest that recovery from a first drought redefines the homeostatic balance of H 2 O 2 scavenging, in which rewatered plants stimulate the enzymatic antioxidant system while drought-exposed plants intensify CAM activity to regulate H 2 O 2 content, a photosynthetic pathway known to prevent oxidative stress. Such data show that young G. monostachia plants adjust CAM and H 2 O 2 scavenging to adapt to water availability. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2 O2 signalling in rice.

    PubMed

    Li, Jinjie; Li, Yang; Yin, Zhigang; Jiang, Jihong; Zhang, Minghui; Guo, Xiao; Ye, Zhujia; Zhao, Yan; Xiong, Haiyan; Zhang, Zhanying; Shao, Yujie; Jiang, Conghui; Zhang, Hongliang; An, Gynheung; Paek, Nam-Chon; Ali, Jauhar; Li, Zichao

    2017-02-01

    Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H 2 O 2 , a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss-of-function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone-like protein and interacted with stress-related HSP40 and 2OG-Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone-like protein that possibly prevents drought stress-related proteins from inactivation. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum).

    PubMed

    Percival, Glynn C; Noviss, Kelly

    2008-11-01

    We determined the influence of the triazole derivatives paclobutrazol, penconazole, epixiconazole, propiconazole and myclobutanil on the drought tolerance and post drought recovery of container-grown horse chestnut (Aesculus hippocastanum L.) saplings. Myclobutanil neither conferred drought resistance, as assessed by its effects on a number of physiological and biochemical parameters, nor affected growth parameters measured after recovery from drought. Chlorophyll fluorescence (F(v)/F(m)), photosynthetic rates, total foliar chlorophyll and carotenoid concentrations, foliar proline concentration and superoxide dismutase and catalase activities were consistently higher and leaf necrosis and cellular electrolyte leakage was lower at the end of a 3-week drought in trees treated with paclobutrazol, penconazole, epixiconazole or propiconazole than in control trees. Twelve weeks after drought treatment, leaf area and shoot, root and total plant dry masses were greater in triazole-treated trees than in control trees with the exception of those treated with myclobutanil. In a separate study, trees were subjected to a 2-week drought and then sprayed with paclobutrazol, penconazole, epixiconazole, propiconazole or myclobutanil. Chlorophyll fluorescence, photosynthetic rate, foliar chlorophyll concentration and catalase activity over the following 12 weeks were 20 to 50% higher in triazole-treated trees than in control trees. At the end of the 12-week recovery period, leaf area and shoot, root and total plant dry masses were higher in triazole-treated trees than in control trees, with the exception of trees treated with myclobutanil. Application of triazole derivatives, with the exception of myclobutanil, enhanced tolerance to prolonged drought and, when applied after a 2-week drought, hastened recovery from drought. The magnitude of treatment effects was in the order epixiconazole approximately propiconazole > penconazole > paclobutrazol > myclobutanil.

  9. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.).

    PubMed

    Shi, Weiping; Cheng, Jingye; Wen, Xiaojie; Wang, Jixiang; Shi, Guanyan; Yao, Jiayan; Hou, Liyuan; Sun, Qian; Xiang, Peng; Yuan, Xiangyang; Dong, Shuqi; Guo, Pingyi; Guo, Jie

    2018-01-01

    Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet ( Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F 1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.

  10. Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions.

    PubMed

    Paetsch, Lydia; Mueller, Carsten W; Kögel-Knabner, Ingrid; von Lützow, Margit; Girardin, Cyril; Rumpel, Cornelia

    2018-05-01

    Biochar (BC) amendments may be suitable to increase the ecosystems resistance to drought due to their positive effects on soil water retention and availability. We investigated the effect of BC in situ ageing on water availability and microbial parameters of a grassland soil. We used soil containing 13 C labeled BC and determined its water holding capacity, microbial biomass and activity during a 3 months incubation under optimum and drought conditions. Our incubation experiment comprised three treatments: soil without BC (Control), soil containing aged BC (BC aged ) and soil containing fresh BC (BC fresh ), under optimum soil water (pF 1.8) and drought conditions (pF 3.5). Under optimum water as well as drought conditions, soils containing BC showed higher soil organic carbon (SOC) mineralization as compared to control soil. Moreover, BC effects on the soil water regime increase upon in situ aging. Native SOC mineralization increased most for soils containing BC aged . The BC aged led to improved C use under drought as compared to the other treatments. We conclude that BC addition to soils can ameliorate their water regime, especially under drought conditions. This beneficial effect of BC increases upon its aging, which also improved native substrate availability.

  11. The SPEIbase: a new gridded product for the analysis of drought variability and drought impacts

    NASA Astrophysics Data System (ADS)

    Begueria-Portugues, S.; Vicente-Serrano, S. M.; López-Moreno, J. I.; Angulo-Martínez, M.; El Kenawy, A.

    2010-09-01

    Recently a new drought indicator, the Standardised Precipitation-Evapotranspiration Index (SPEI), has been proposed to quantify the drought condition over a given area. The SPEI considers not only precipitation but also evapotranspiration (PET) data on its calculation, allowing for a more complete approach to explore the effects of climate change on drought conditions. The SPEI can be calculated at several time scales to adapt to the characteristic times of response to drought of target natural and economic systems, allowing determining their resistance to drought. Following the formulation of the SPEI a global dataset, the SPEIbase, has been made available to the scientific community. The dataset covers the period 1901-2006 with a monthly frequency, and offers global coverage at a 0.5 degrees resolution. The dataset consists on the monthly values of the SPEI at the time scales from 1 to 48 months. A description of the data and metadata, and links to download the files, are provided at http://sac.csic.es/spei. On this communication we will detail the methodology for computing the SPEI and the characteristics of the SPEIbase. A thorough discussion of the SPEI index, and some examples of use, will be provided in a companion comunication.

  12. Molecular and systems approaches towards drought-tolerant canola crops.

    PubMed

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Asian droughts in the last millennium: a search for robust impacts of Pacific Ocean surface temperature variabilities

    NASA Astrophysics Data System (ADS)

    Yu, Entao; King, Martin P.; Sobolowski, Stefan; Otterå, Odd Helge; Gao, Yongqi

    2018-06-01

    This study investigates the robustness of hydroclimate impacts in Asia due to major drivers of climate variability in the Pacific Ocean, namely the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Composite analyses are carried out on a tree ring-based Palmer Drought Severity Index as well as on a long coupled global climate model control experiment. El Niño (La Niña) has a robust impact on wet (dry) conditions in West Asia and dry (wet) conditions in South Asia. For the PDO, impacts are found throughout the Asia domain. However, identifying the robust signals due to PDO from these analyses is more challenging due to the limited lengths of the data. Results indicate that West Asia (South and Southeast Asia) experiences wet (dry) conditions during periods of positive PDO. For East Asia, there is indication that positive (negative) PDO is associated with wet (dry) conditions around and southward of 30°N and dry (wet) conditions north of this latitude. This result is consistent with the current understanding of the role of PDO in the "southern-flood northern-drought" phenomenon in China. We suggest that specific extreme events or periods have regional impacts with strong intensities that cannot be fully explained through the composite analysis of ENSO, PDO, or any combination thereof. Two such examples are shown to illustrate this: the Strange Parallel Drought (1756-1768 CE) and the Great Drought (1876-1878 CE). Additionally, during these climate events, ENSO and PDO can be in phases which are not consistent with the required phases of these drivers that explain the concurrent drought and pluvial conditions in Asia. Therefore, not all historical drought and pluvial events in Northeast Asia and northern China can be related back to ENSO or PDO. Finally, we also examine the dynamical characteristics of the reported hydroclimatic impacts in the global climate model experiment. There is moisture transport into (out of) regions that exhibit wet (dry) conditions in a manner consistent with the various ENSO and PDO composites, thereby providing physical explanation of the index-based results.

  14. [Seed vigor evaluation based on adversity resistance index of wheat seed germination under stress conditions.

    PubMed

    Chen, Lei Tai; Sun, Ai Qing; Yang, Min; Chen, Lu Lu; Ma, Xue Li; Li, Mei Ling; Yin, Yan Ping

    2016-09-01

    A total of 16 wheat cultivars were selected to detect seed vigor of different genotypes using standard germination test, seed germination test under stress conditions and field emergence test. The adversity resistance indices of seed vigor indices and field emergence percentage under different germination conditions were used as the indices to evaluate adversity resistance. Principal component analysis and cluster analysis were used for the comprehensive evaluation of seed vigor. Results showed that drought stress, artificial aging and cold soaking treatments affected seed vigor to some extent. The adversity resistance indices of the artificial aging and cold soaking tests were significantly positively correlated with the field emergence percentage, while the adversity resistance index of drought stress test had no significant correlation with the field emergence percentage. 16 wheat cultivars were classified as three groups based on the principal component analysis and cluster analysis. Yunong 949, Yumai 49-198, Luyuan 502, Zhengyumai 9987, Shimai 21, Shannong 23, and Shixin 828 belonged to high vigor seeds. Xunong 5, Yunong 982, Tangmai 8, Jimai 20, Jimai 22, Jinan 17, and Shannong 20 belonged to medium vigor seeds. The other two cultivars, Chang 4738 and Lunxuan 061, belonged to low vigor seeds.

  15. Causes of the 2011-14 California Drought

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Hoerling, Martin; Schubert, Siegfried; Wang, Hailan; Lyon, Bradfield; Kumar, Arun; Nakamura, Jennifer; Henderson, Naomi

    2015-01-01

    The causes of the California drought during November-April winters of 2011/12-2013/14 are analyzed using observations and ensemble simulations with seven atmosphere models forced by observed SSTs. Historically, dry California winters are most commonly associated with a ridge off the west coast but no obvious SST forcing. Wet winters are most commonly associated with a trough off the west coast and an El Nino event. These attributes of dry and wet winters are captured by many of the seven models. According to the models, SST forcing can explain up to a third of California winter precipitation variance. SST forcing was key to sustaining a high pressure ridge over the west coast and suppressing precipitation during the three winters. In 2011/12 this was a response to a La Nina event, whereas in 2012/13 and 2013/14 it appears related to a warm west-cool east tropical Pacific SST pattern. All models contain a mode of variability linking such tropical Pacific SST anomalies to a wave train with a ridge off the North American west coast. This mode explains less variance than ENSO and Pacific decadal variability, and its importance in 2012/13 and 2013/14 was unusual. The models from phase 5 of CMIP (CMIP5) project rising greenhouse gases to cause changes in California all-winter precipitation that are very small compared to recent drought anomalies. However, a long-term warming trend likely contributed to surface moisture deficits during the drought. As such, the precipitation deficit during the drought was dominated by natural variability, a conclusion framed by discussion of differences between observed and modeled tropical SST trends.

  16. Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L.

    PubMed

    Berger, J D; Ludwig, C

    2014-11-01

    Our understanding of within-species annual plant adaptation to rainfall gradients is fragmented. Broad-scale ecological applications of Grime's C-S-R triangle are often superficial, while detailed drought physiology tends to be narrow, focusing on elite cultivars. The former lack the detail to explain how plants respond, while the latter provide little context to investigate trade-offs among traits, to explain where/why these might be adaptive. Ecophysiology, combining the breadth of the former with the detail of the latter, can resolve this disconnect and is applied here to describe adaptive strategies in the Mediterranean legume Lupinus luteus. Wild and domesticated material from low- and high-rainfall environments was evaluated under contrasting terminal drought. These opposing environments have selected for contrasting, integrated, adaptive strategies. Long-season, high-rainfall habitats select for competitive (C) traits: delayed phenology, high above- and below-ground biomass, productivity, and fecundity, leading to high water-use and early stress onset. Terminal drought-prone environments select for the opposite: ruderal (R) traits that facilitate drought escape/avoidance but limit reproductive potential. Surprisingly, high-rainfall ecotypes generate lower critical leaf water potentials under water deficit, maintaining higher relative water content than the latter. Given that L. luteus evolved in sandy, low-water-holding capacity soils, this represents a bet-hedging response to intermittent self-imposed water-deficits associated with a strongly C-selected adaptive strategy that is therefore redundant in R-selected low-rainfall ecotypes. Domesticated L. luteus is even more R-selected, reflecting ongoing selection for early maturity. Introgression of appropriate C-selected adaptive traits from wild germplasm may widen the crop production range. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L.

    PubMed Central

    Berger, J. D.; Ludwig, C.

    2014-01-01

    Our understanding of within-species annual plant adaptation to rainfall gradients is fragmented. Broad-scale ecological applications of Grime’s C-S-R triangle are often superficial, while detailed drought physiology tends to be narrow, focusing on elite cultivars. The former lack the detail to explain how plants respond, while the latter provide little context to investigate trade-offs among traits, to explain where/why these might be adaptive. Ecophysiology, combining the breadth of the former with the detail of the latter, can resolve this disconnect and is applied here to describe adaptive strategies in the Mediterranean legume Lupinus luteus. Wild and domesticated material from low- and high-rainfall environments was evaluated under contrasting terminal drought. These opposing environments have selected for contrasting, integrated, adaptive strategies. Long-season, high-rainfall habitats select for competitive (C) traits: delayed phenology, high above- and below-ground biomass, productivity, and fecundity, leading to high water-use and early stress onset. Terminal drought-prone environments select for the opposite: ruderal (R) traits that facilitate drought escape/avoidance but limit reproductive potential. Surprisingly, high-rainfall ecotypes generate lower critical leaf water potentials under water deficit, maintaining higher relative water content than the latter. Given that L. luteus evolved in sandy, low-water-holding capacity soils, this represents a bet-hedging response to intermittent self-imposed water-deficits associated with a strongly C-selected adaptive strategy that is therefore redundant in R-selected low-rainfall ecotypes. Domesticated L. luteus is even more R-selected, reflecting ongoing selection for early maturity. Introgression of appropriate C-selected adaptive traits from wild germplasm may widen the crop production range. PMID:24591050

  18. Evaluation of the expression of genes associated with resistance to Aspergillus flavus colonization and aflatoxin production in different maize lines

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...

  19. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress

    PubMed Central

    Bai, Shulan; Gao, Xiaomin; Liu, Min; Yan, Wei

    2015-01-01

    Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the understanding of how P. mongolica responds to drought stress at the transcriptome level, which may help to elucidate molecular mechanisms associated with the drought response of almond plants. PMID:25893685

  20. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    PubMed Central

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  1. Increased Ratio of Electron Transport to Net Assimilation Rate Supports Elevated Isoprenoid Emission Rate in Eucalypts under Drought1[W][OPEN

    PubMed Central

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-01-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r2 > 0.8) and photorespiratory stress (r2 > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission. PMID:25139160

  2. Effects of external potassium (k) supply on drought tolerances of two contrasting winter wheat cultivars.

    PubMed

    Wei, Jiguang; Li, Caihong; Li, Yong; Jiang, Gaoming; Cheng, Guanglei; Zheng, Yanhai

    2013-01-01

    Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM) and two levels of PEG6000 (0, 20%) for 7 days. External K2CO3 significantly increased shoot K(+) content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL) and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.

  3. Temperature as a potent driver of regional forest drought stress and tree mortality

    USGS Publications Warehouse

    Williams, A. Park; Allen, Craig D.; Macalady, Alison K.; Griffin, Daniel; Woodhouse, Connie A.; Meko, David M.; Swetnam, Thomas W.; Rauscher, Sara A.; Seager, Richard; Grissino-Mayer, Henri D.; Dean, Jeffrey S.; Cook, Edward R.; Gangodagamage, Chandana; Cai, Michael; McDowell, Nathan G.

    2012-01-01

    s the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000-2007. The FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps water-limited forests globally, towards distributions unfamiliar to modern civilization.

  4. Transcriptional Basis of Drought-Induced Susceptibility to the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Bidzinski, Przemyslaw; Ballini, Elsa; Ducasse, Aurélie; Michel, Corinne; Zuluaga, Paola; Genga, Annamaria; Chiozzotto, Remo; Morel, Jean-Benoit

    2016-01-01

    Plants are often facing several stresses simultaneously. Understanding how they react and the way pathogens adapt to such combinational stresses is poorly documented. Here, we developed an experimental system mimicking field intermittent drought on rice followed by inoculation by the pathogenic fungus Magnaporthe oryzae. This experimental system triggers an enhancement of susceptibility that could be correlated with the dampening of several aspects of plant immunity, namely the oxidative burst and the transcription of several pathogenesis-related genes. Quite strikingly, the analysis of fungal transcription by RNASeq analysis under drought reveals that the fungus is greatly modifying its virulence program: genes coding for small secreted proteins were massively repressed in droughted plants compared to unstressed ones whereas genes coding for enzymes involved in degradation of cell-wall were induced. We also show that drought can lead to the partial breakdown of several major resistance genes by affecting R plant gene and/or pathogen effector expression. We propose a model where a yet unknown plant signal can trigger a change in the virulence program of the pathogen to adapt to a plant host that was affected by drought prior to infection. PMID:27833621

  5. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana.

    PubMed

    Chen, Qian; Zheng, Yan; Luo, Landi; Yang, Yongping; Hu, Xiangyang; Kong, Xiangxiang

    2018-01-01

    Flowering at the right time is important for the reproductive success of plants and their response to environmental stress. In Arabidopsis, a major determinant of natural variation in flowering time is FRIGIDA (FRI). In the present study, we show that overexpression of the functional FRIGIDA gene in wild-type Col background (ColFRI) positively enhances the drought tolerance by activating P5CS1 expression and promoting proline accumulation during water stress. Furthermore, no significant changes in FRI gene and protein expression levels were observed with drought treatment, whereas P5CS1 protein expression significantly increased. In contrast, vernalization treatment efficiently reduced P5CS1 expression levels and resulted in a decrease in drought tolerance in the ColFRI plants. The flc mutants with a functional FRI background also relieved FRI-mediated activation of P5CS1 during drought tolerance. Taken together, our findings reveal the novel function of FRI in enhancing drought resistance through its downstream P5CS1 pathway during water-deficit stress, which is dependent on its target, the FLC gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The impact of drought on ozone dry deposition over eastern Texas

    NASA Astrophysics Data System (ADS)

    Huang, Ling; McDonald-Buller, Elena C.; McGaughey, Gary; Kimura, Yosuke; Allen, David T.

    2016-02-01

    Dry deposition represents a critical pathway through which ground-level ozone is removed from the atmosphere. Understanding the effects of drought on ozone dry deposition is essential for air quality modeling and management in regions of the world with recurring droughts. This work applied the widely used Zhang dry deposition algorithm to examine seasonal and interannual changes in estimated ozone dry deposition velocities and component resistances/conductances over eastern Texas during years with drought (2006 and 2011) as well as a year with slightly cooler temperatures and above average rainfall (2007). Simulated area-averaged daytime ozone dry deposition velocities ranged between 0.26 and 0.47 cm/s. Seasonal patterns reflected the combined seasonal variations in non-stomatal and stomatal deposition pathways. Daytime ozone dry deposition velocities during the growing season were consistently larger during 2007 compared to 2006 and 2011. These differences were associated with differences in stomatal conductances and were most pronounced in forested areas. Reductions in stomatal conductances under drought conditions were highly sensitive to increases in vapor pressure deficit and warmer temperatures in Zhang's algorithm. Reductions in daytime ozone deposition velocities and deposition mass during drought years were associated with estimates of higher surface ozone concentrations.

  7. Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency.

    PubMed

    Du, Ling; Mikle, Nathaniel; Zou, Zhenhua; Huang, Yuanyuan; Shi, Zheng; Jiang, Lifen; McCarthy, Heather R; Liang, Junyi; Luo, Yiqi

    2018-07-01

    Quantifying the ecological patterns of loss of ecosystem function in extreme drought is important to understand the carbon exchange between the land and atmosphere. Rain-use efficiency [RUE; gross primary production (GPP)/precipitation] acts as a typical indicator of ecosystem function. In this study, a novel method based on maximum rain-use efficiency (RUE max ) was developed to detect losses of ecosystem function globally. Three global GPP datasets from the MODIS remote sensing data (MOD17), ground upscaling FLUXNET observations (MPI-BGC), and process-based model simulations (BESS), and a global gridded precipitation product (CRU) were used to develop annual global RUE datasets for 2001-2011. Large, well-known extreme drought events were detected, e.g. 2003 drought in Europe, 2002 and 2011 drought in the U.S., and 2010 drought in Russia. Our results show that extreme drought-induced loss of ecosystem function could impact 0.9% ± 0.1% of earth's vegetated land per year and was mainly distributed in semi-arid regions. The reduced carbon uptake caused by functional loss (0.14 ± 0.03 PgC/yr) could explain >70% of the interannual variation in GPP in drought-affected areas (p ≤ 0.001). Our results highlight the impact of ecosystem function loss in semi-arid regions with increasing precipitation variability and dry land expansion expected in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought.

    PubMed

    Zhang, Y; Xie, J-B; Li, Y

    2017-03-01

    Tree mortality induced by drought is one of the most complex processes in ecology. Although two mechanisms associated with water and carbon balance are proposed to explain tree mortality, outstanding problems still exist. Here, in order to test how the root system benefits survival and resprouting of Haloxylon ammodendron seedlings, we examined the various water- and carbon-related physiological indicators (shoot water potential, photosynthesis, dark respiration, hydraulic conductance and non-structural carbohydrates [NSC]) of H. ammodendron seedlings, which were grown in drought and control conditions throughout a grow season in greenhouse. The survival time of the seedling root system (died 70 days after drought) doubled the survival time of the shoot (died at 35 days). Difference in survival time between shoot and root resulted from sustained root respiration supported by increased NSC in roots under drought. Furthermore, investment into the root contributed to resprouting following drought. Based on these results, a death criterion is proposed for this species. The time sequence of major events indicated that drought shifted carbon allocation between shoot and root and altered the flux among different sinks (growth, respiration or storage). The interaction of water and carbon processes determined death or survival of droughted H. ammodendron seedlings. These findings revealed that the 'root protection' strategy is critical in determining survival and resprouting of this species, and provided insights into the effects of carbon and water dynamics on tree mortality. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance.

    PubMed

    Barghetti, Andrea; Sjögren, Lars; Floris, Maïna; Paredes, Esther Botterweg; Wenkel, Stephan; Brodersen, Peter

    2017-11-15

    Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor-heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes-is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants. © 2017 Barghetti et al.; Published by Cold Spring Harbor Laboratory Press.

  10. A multi-species model to assess the effect of refugia on worm control and anthelmintic resistance in sheep grazing systems.

    PubMed

    Dobson, R J; Barnes, E H; Tyrrell, K L; Hosking, B C; Larsen, J W A; Besier, R B; Love, S; Rolfe, P F; Bailey, J N

    2011-06-01

    Develop a computer simulation model that uses daily meteorological data and farm management practices to predict populations of Trichostrongylus colubriformis, Haemonchus contortus and Teladorsagia (Ostertagia) circumcincta and the evolution of anthelmintic resistance within a sheep flock. Use the model to explore if increased refugia, provided by leaving some adult sheep untreated, would delay development of anthelmintic resistance without compromising nematode control. Compare model predictions with field observations from a breeding flock in Armidale, NSW. Simulate the impact of leaving 1-10% of adult sheep untreated in diverse sheep-grazing systems. Predicted populations of Tr. colubriformis and T. circumcincta were less than those observed in the field, attributed to nutritional stress experienced by the sheep during drought and not accounted for by the model. Observed variation in faecal egg counts explained by the model (R(2) ) for these species was 40-50%. The H. contortus populations and R(2) were both low. Leaving some sheep untreated worked best in situations where animals were already grazing or were moved onto pastures with low populations of infective larvae. In those cases, anthelmintic resistance was delayed and nematode control was maintained when 1-4% of adult stock remained untreated. In general, the model predicted that leaving more than 4% of adults untreated did not sufficiently delay the development of anthelmintic resistance to justify the increased production risk from such a strategy. The choice of a drug rotation strategy had an equal or larger effect on nematode control, and selection for resistance, than leaving 1-10% of adults untreated. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  11. The physiology mechanisms on drought tolerance and adaptation of biological soil crust moss Bryum argenteum and Didymodon vinealis in Tenger Desert

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Shi, Y.; Chen, C.; Jia, R.; Li, X.

    2012-04-01

    Bryum argenteum Hedw. and Didymodon vinealis Brid are two dominant moss species in the restored vegetation area in Tenger Desert, which sampled from biological soil crusts and where is an extreme drought regions. We found that they resorted to different osmotic adjustment strategies to mitigate osmotic stress. Under the gradual drought stress, both Bryum argenteum and Didymodon vinealis accumulated K+ and soluble sugar such as sucrose and trehalose. Their glycine betaine contents both decreased, while their proline content had no significant change. With enhanced drought stress, Bryum argenteum's Na+ content was low and decreased significantly, whereas Didymodon vinealis's Na+ content increased sharply and reached to a high level. We found the different of the mechanism of between active oxygen scavenging on Enzymatic and non - enzymatic system in two species moss of Bryum argenteum Hedw and Didymodon vinealis Brid under extreme drought stress. The result showed that two species of Moss of SOD activity gradually enhanced, and they have the material basis for effectively eliminates in vivo of Superoxide free radical. POD in Didymodon nigrescen and CAT in Bryum argeneum are major resistance o oxidative stress effects. The content of GSH rise with the stress also enhanced. The mechanism of finding Bryum argenteum Hedw and Didymodon vinealis Brid tolerance of dehydration ability were focus on different direction, but they are all given positive response to stress and enhance resistance. We investigated the responses of signal transduction substances to gradual drought stress in Didymodon vinealis and Bryum argenteum. The results suggested that: under gradual drought stress, the activities of TP H+-ATPase and PM H+-ATPase of Didymodon vinealis and Bryum argenteum both increased, resulting in their increase of K+ contents and turgor pressures, and triggered biosynthesis of signal transduction substances. ABA had no obvious effect in signal transduction of Bryum argenteum and Didymodon vinealis. NO involved in the signal transduction mechanisms of Bryum argenteum but not in Didymodon vinealis. Ca2+ played an important role in the signal transduction of Didymodon vinealis while it was not important in Bryum argenteum.

  12. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    NASA Astrophysics Data System (ADS)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T. Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N.; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A.; Polley, H. Wayne; Reich, Peter B.; Roscher, Christiane; Seabloom, Eric W.; Smith, Melinda D.; Thakur, Madhav P.; Tilman, David; Tracy, Benjamin F.; van der Putten, Wim H.; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W.; Wilsey, Brian; Eisenhauer, Nico

    2015-10-01

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  13. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  14. Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress1[C][W][OPEN

    PubMed Central

    Seiler, Christiane; Harshavardhan, Vokkaliga T.; Reddy, Palakolanu S.; Hensel, Götz; Kumlehn, Jochen; Eschen-Lippold, Lennart; Rajesh, Kalladan; Korzun, Viktor; Wobus, Ulrich; Lee, Justin; Selvaraj, Gopalan; Sreenivasulu, Nese

    2014-01-01

    Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase (AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8′-hydroxylase under the control of a drought-inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In transgenic barley, drought-inducible AtNCED expression afforded temporal control in ABA levels such that the ABA levels rose sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment due to down-regulation of endogenous HvNCED genes. Suppressing of ABA catabolism with the RNA interference approach of ABA 8′-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN RESISTANCE1-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-fermenting1-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members that could potentially impact ABA metabolism and stress adaptation in barley. PMID:24610749

  15. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea)

    PubMed Central

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V.

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  16. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine1[OPEN

    PubMed Central

    Vitali, Marco; Vitulo, Nicola; Incarbone, Marco

    2017-01-01

    Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR. Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought. PMID:28235889

  17. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves.

    PubMed

    Li, Hua; Li, Min; Wei, Xingliang; Zhang, Xia; Xue, Ruili; Zhao, Yidan; Zhao, Huijie

    2017-10-01

    Drought is an environmental factor that deeply impacts wheat yield and quality. Hydrogen sulfide (H 2 S) is a known regulator of drought resistance in plants. To preliminarily elucidate the regulatory mechanisms of H 2 S on drought tolerance, the effects of H 2 S on drought-responsive genes were investigated by transcriptome analysis. As a result, a total of 7552 transcripts not only responded to drought stress but also exhibited differential expression relative to the polyethylene glycol (PEG) treatment (P) and the NaHS pretreatment with PEG treatment (SP). GO categories of 'transport' were especially enriched under the SP treatment and ion transport categories (especially 'iron ion transport') were more significantly enriched among up-regulated transcripts in SP versus P treatments (SP.vs.P). Indeed, a higher translocation of iron from root to shoot and iron availability in shoots was detected in SP compared to P. The KEGG pathway of 'ribosome biogenesis in eukaryotes', 'protein processing in endoplasmic reticulum', 'fatty acid degradation', and 'cyanoamino acid metabolism' was induced by H 2 S under drought stress. Further, H 2 S was involved in plant hormones signal transduction, and drought-induced transcription factors, protein kinases, and functional genes exhibited higher expression levels under SP relative to P. Additionally, several effectors or master regulatory genes of H 2 S were identified genome-wide. Summarily, these results showed that H 2 S alleviated drought damage probably related to transport systems, plant hormones signal transduction, protein processing pathway, fatty acids and amino acids metabolism, which provides a guide for future experimentation to analyze hydrogen sulfide-dependent drought tolerance mechanisms in wheat.

  18. Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana.

    PubMed

    Beikircher, Barbara; Mayr, Stefan

    2009-06-01

    An adequate general drought tolerance and the ability to acclimate to changing hydraulic conditions are important features for long-lived woody plants. In this study, we compared hydraulic safety (water potential at 50% loss of conductivity, Psi(50)), hydraulic efficiency (specific conductivity, k(s)), xylem anatomy (mean tracheid diameter, d(mean), mean hydraulic diameter, d(h), conduit wall thickness, t, conduit wall reinforcement, (t/b)(h)(2)) and stomatal conductance, g(s), of forest plants as well as irrigated and drought-treated garden plants of Ligustrum vulgare L. and Viburnum lantana L. Forest plants of L. vulgare and V. lantana were significantly less resistant to drought-induced cavitation (Psi(50) at -2.82 +/- 0.13 MPa and -2.79 +/- 0.17 MPa) than drought-treated garden plants (- 4.58 +/- 0.26 MPa and -3.57 +/- 0.15 MPa). When previously irrigated garden plants were subjected to drought, a significant decrease in d(mean) and d(h) and an increase in t and (t/b)(h)(2) were observed in L. vulgare. In contrast, in V. lantana conduit diameters increased significantly but no change in t and (t/b)(h)(2) was found. Stomatal closure occurred at similar water potentials (Psi(sc)) in forest plants and drought-treated garden plants, leading to higher safety margins (Psi(sc) - Psi(50)) of the latter (L. vulgare 1.63 MPa and V. lantana 0.43 MPa). These plants also showed higher g(s) at moderate Psi, more abrupt stomatal closure and lower cuticular conductivity. Data indicate that the development of drought-tolerant xylem as well as stomatal regulation play an important role in drought acclimation, whereby structural and physiological responses to drought are species-specific and depend on the plant's hydraulic strategy.

  19. Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology.

    PubMed

    Edwards, Christine E; Ewers, Brent E; Weinig, Cynthia

    2016-08-24

    Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.

  20. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.

    PubMed

    Liang, Junjun; Chen, Xin; Deng, Guangbing; Pan, Zhifen; Zhang, Haili; Li, Qiao; Yang, Kaijun; Long, Hai; Yu, Maoqun

    2017-10-11

    The harsh environment on the Qinghai-Tibetan Plateau gives Tibetan hulless barley (Hordeum vulgare var. nudum) great ability to resist adversities such as drought, salinity, and low temperature, and makes it a good subject for the analysis of drought tolerance mechanism. To elucidate the specific gene networks and pathways that contribute to its drought tolerance, and for identifying new candidate genes for breeding purposes, we performed a transcriptomic analysis using two accessions of Tibetan hulless barley, namely Z772 (drought-tolerant) and Z013 (drought-sensitive). There were more up-regulated genes of Z772 than Z013 under both mild (5439-VS-2604) and severe (7203-VS-3359) dehydration treatments. Under mild dehydration stress, the pathways exclusively enriched in drought-tolerance genotype Z772 included Protein processing in endoplasmic reticulum, tricarboxylic acid (TCA) cycle, Wax biosynthesis, and Spliceosome. Under severe dehydration stress, the pathways that were mainly enriched in Z772 included Carbon fixation in photosynthetic organisms, Pyruvate metabolism, Porphyrin and chlorophyll metabolism. The main differentially expressed genes (DEGs) in response to dehydration stress and genes whose expression was different between tolerant and sensitive genotypes were presented in this study, respectively. The candidate genes for drought tolerance were selected based on their expression patterns. The RNA-Seq data obtained in this study provided an initial overview on global gene expression patterns and networks that related to dehydration shock in Tibetan hulless barley. Furthermore, these data provided pathways and a targeted set of candidate genes that might be essential for deep analyzing the molecular mechanisms of plant tolerance to drought stress.

  1. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    PubMed

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershkovitz, N.; Oren, A.; Cohen, Y.

    The drought-resistant cyanobacteria Phormidium autumnale, strain LPP{sub 4}, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 {mu}g of trehalose per {mu}g of chlorophyll in P. autumnale, 6.9 {mu}g of sucrose per {mu}g of chlorophyll in LPP{sub 4}, and 4.1 {mu}g of sucrose and 3.2 {mu}g of trehalose per {mu}g of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum andmore » Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.« less

  3. A study of 2014 record drought in India with CFSv2 model: role of water vapor transport

    NASA Astrophysics Data System (ADS)

    Ramakrishna, S. S. V. S.; Brahmananda Rao, V.; Srinivasa Rao, B. R.; Hari Prasad, D.; Nanaji Rao, N.; Panda, Roshmitha

    2017-07-01

    The Indian summer monsoon season of 2014 was erratic and ended up with a seasonal rainfall deficit of 12 % and a record drought in June. In this study we analyze the moisture transport characteristics for the monsoon season of 2014 using both NCEP FNL reanalysis (FNL) and CFSv2 (CFS) model data. In FNL, in June 2014 there was a large area of divergence of moisture flux. In other months also there was lesser flux. This probably is the cause of 2014 drought. The CFS model overestimated the drought and it reproduces poorly the observed rainfall over central India (65E-95E; 5N-35N). The correlation coefficient (CC) between the IMD observed rainfall and CFS model rainfall is only 0.1 while the CC between rainfall and moisture flux convergence in CFS model is only 0.20 and with FNL data -0.78. This clearly shows that the CFS model has serious difficulty in reproducing the moisture flux convergence and rainfall. We found that the rainfall variations are strongly related to the moisture convergence or divergence. The hypothesis of Krishnamurti et al. (J Atmos Sci 67:3423-3441, 2010) namely the intrusion of west African desert air and the associated low convective available potential energy inhibiting convection and rainfall shows some promise to explain dry spells in Indian summer monsoon. However, the rainfall or lack of it is mainly explained by convergence or divergence of moisture flux.

  4. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species.

    PubMed

    Liu, Daijun; Ogaya, Romà; Barbeta, Adrià; Yang, Xiaohong; Peñuelas, Josep

    2015-11-01

    Climate change is predicted to increase the aridity in the Mediterranean Basin and severely affect forest productivity and composition. The responses of forests to different timescales of drought, however, are still poorly understood because extreme and persistent moderate droughts can produce nonlinear responses in plants. We conducted a rainfall-manipulation experiment in a Mediterranean forest dominated by Quercus ilex, Phillyrea latifolia, and Arbutus unedo in the Prades Mountains in southern Catalonia from 1999 to 2014. The experimental drought significantly decreased forest aboveground-biomass increment (ABI), tended to increase the litterfall, and decreased aboveground net primary production throughout the 15 years of the study. The responses to the experimental drought were highly species-specific. A. unedo suffered a significant reduction in ABI, Q. ilex experienced a decrease during the early experiment (1999-2003) and in the extreme droughts of 2005-2006 and 2011-2012, and P. latifolia was unaffected by the treatment. The drought treatment significantly increased branch litterfall, especially in the extremely dry year of 2011, and also increased overall leaf litterfall. The drought treatment reduced the fruit production of Q. ilex, which affected seedling recruitment. The ABIs of all species were highly correlated with SPEI in early spring, whereas the branch litterfalls were better correlated with summer SPEIs and the leaf and fruit litterfalls were better correlated with autumn SPEIs. These species-specific responses indicated that the dominant species (Q. ilex) could be partially replaced by the drought-resistant species (P. latifolia). However, the results of this long-term study also suggest that the effect of drought treatment has been dampened over time, probably due to a combination of demographic compensation, morphological and physiological acclimation, and epigenetic changes. However, the structure of community (e.g., species composition, dominance, and stand density) may be reordered when a certain drought threshold is reached. © 2015 John Wiley & Sons Ltd.

  5. Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.).

    PubMed

    Liu, Changyou; Wu, Jing; Wang, Lanfen; Fan, Baojie; Cao, Zhimin; Su, Qiuzhu; Zhang, Zhixiao; Wang, Yan; Tian, Jing; Wang, Shumin

    2017-11-01

    A novel genetic linkage map was constructed using SSR markers and stable QTLs were identified for six drought tolerance related-traits using single-environment analysis under irrigation and drought treatments. Mungbean (Vigna radiata L.) is one of the most important leguminous food crops. However, mungbean production is seriously constrained by drought. Isolation of drought-responsive genetic elements and marker-assisted selection breeding will benefit from the detection of quantitative trait locus (QTLs) for traits related to drought tolerance. In this study, we developed a full-coverage genetic linkage map based on simple sequence repeat (SSR) markers using a recombinant inbred line (RIL) population derived from an intra-specific cross between two drought-resistant varieties. This novel map was anchored with 313 markers. The total map length was 1010.18 cM across 11 linkage groups, covering the entire genome of mungbean with a saturation of one marker every 3.23 cM. We subsequently detected 58 QTLs for plant height (PH), maximum leaf area (MLA), biomass (BM), relative water content, days to first flowering, and seed yield (Yield) and 5 for the drought tolerance index of 3 traits in irrigated and drought environments at 2 locations. Thirty-eight of these QTLs were consistently detected two or more times at similar linkage positions. Notably, qPH5A and qMLA2A were consistently identified in marker intervals from GMES5773 to MUS128 in LG05 and from Mchr11-34 to the HAAS_VR_1812 region in LG02 in four environments, contributing 6.40-20.06% and 6.97-7.94% of the observed phenotypic variation, respectively. None of these QTLs shared loci with previously identified drought-related loci from mungbean. The results of these analyses might facilitate the isolation of drought-related genes and help to clarify the mechanism of drought tolerance in mungbean.

  6. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance.

    PubMed

    Killi, Dilek; Bussotti, Filippo; Raschi, Antonio; Haworth, Matthew

    2017-02-01

    Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (P N ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on P N was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (G s ), we observed no change or a reduction in G s with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on P N was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions. © 2016 Scandinavian Plant Physiology Society.

  7. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy

    PubMed Central

    Wang, Yu; Cai, Shuyu; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie

    2015-01-01

    Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomato tolerance to drought stress, in part through its positive role in induction of autophagy under drought stress. HsfA1a expression was induced by drought stress. Virus-induced HsfA1a gene silencing reduced while its overexpression increased plant drought tolerance based on both symptoms and membrane integrity. HsfA1a-silenced plants were more sensitive to endogenous ABA-mediated stomatal closure, while its overexpression lines were resistant under drought stress, indicating that phytohormone ABA did not play a major role in HsfA1a-induced drought tolerance. On the other hand, HsfA1a-silenced plants increased while its overexpression decreased the levels of insoluble proteins which were highly ubiquitinated under drought stress. Furthermore, drought stress induced numerous ATGs expression and autophagosome formation in wild-type plants. The expression of ATG10 and ATG18f, and the formation of autophagosomes were compromised in HsfA1a-silenced plants but were enhanced in HsfA1a-overexpressing plants. Both electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a bound to ATG10 and ATG18f gene promoters. Silencing of ATG10 and ATG18f reduced HsfA1a-induced drought tolerance and autophagosome formation in plants overexpressing HsfA1a. These results demonstrate that HsfA1a induces drought tolerance by activating ATG genes and inducing autophagy, which may promote plant survival by degrading ubiquitinated protein aggregates under drought stress. PMID:26649940

  8. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota

    USGS Publications Warehouse

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.

    2017-01-01

    Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.

  9. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.).

    PubMed

    Zhou, C; Ma, Z Y; Zhu, L; Guo, J S; Zhu, J; Wang, J F

    2015-12-17

    The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants' adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment. Alfalfa plants that overexpressed EsMcsu1 had a higher ABA content than wild-type (WT) plants under drought stress conditions. Furthermore, levels of reactive oxygen species (ROS), ion leakage, and malondialdehyde were lower in the transgenic plants than in the WT plants after drought treatment, suggesting that the transgenic plants experienced less ROS-mediated damage. However, the expression of several stress-responsive genes, antioxidant enzyme activity, and osmolyte (proline and total soluble sugar) levels in the transgenic plants were higher than those in the WT plants after drought treatment. Therefore, EsMcsu1 overexpression improved drought tolerance in alfalfa plants by activating a series of ABA-mediated stress responses.

  10. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology.

    PubMed

    Kolenc, Zala; Vodnik, Dominik; Mandelc, Stanislav; Javornik, Branka; Kastelec, Damijana; Čerenak, Andreja

    2016-08-01

    Drought is one of the major environmental devastating stressors that impair the growth and productivity of crop plants. Despite the relevance of drought stress, changes in physiology and resistance mechanisms are not completely understood for certain crops, including hop (Humulus lupulus L.). In this research the drought response of hop was studied using a conventional physiological approach (gas exchange techniques, fluorescence, relative water content measurements) and proteomic analysis (2D-DIGE). Plants of two cultivars (Aurora and Savinjski golding) were exposed to progressive drought in a pot experiment and analysed at different stress stages (mild, moderate and severe). Measurements of relative water content revealed a hydrostable water balance of hop. Photosynthesis was decreased due to stomatal and non-stomatal limitation to the same extent in both cultivars. Of 28 identified differentially abundant proteins, the majority were down regulated and included in photosynthetic (41%) and sugar metabolism (33%). Fifteen % of identified proteins were classified into the nitrogen metabolism, 4% were related to a ROS related pathway and 7% to other functions. Copyright © 2016. Published by Elsevier Masson SAS.

  11. Drought impacts on vegetation dynamics in the Mediterranean based on remote sensing and multi-scale drought indices

    NASA Astrophysics Data System (ADS)

    Trigo, Ricardo; Gouveia, Celia M.; Beguería, Santiago; Vicente-Serrano, Sergio

    2015-04-01

    A number of recent studies have identified a significant increase in the frequency of drought events in the Mediterranean basin (e.g. Trigo et al., 2013, Vicente-Serrano et al., 2014). In the Mediterranean region, large drought episodes are responsible for the most negative impacts on the vegetation including significant losses of crop yield, increasing risk of forest fires (e.g. Gouveia et al., 2012) and even forest decline. The aim of the present work is to analyze in detail the impacts of drought episodes on vegetation in the Mediterranean basin behavior using NDVI data from (from GIMMS) for entire Mediterranean basin (1982-2006) and the multi-scale drought index (the Standardised Precipitation-Evapotranspiration Index (SPEI). Correlation maps between fields of monthly NDVI and SPEI for at different time scales (1-24 months) were computed in order to identify the regions and seasons most affected by droughts. Affected vegetation presents high spatial and seasonal variability, with a maximum in summer and a minimum in winter. During February 50% of the affected pixels corresponded to a time scale of 6 months, while in November the most frequent time scale corresponded to 3 months, representing more than 40% of the affected region. Around 20% of grid points corresponded to the longer time scales (18 and 24 months), persisting fairly constant along the year. In all seasons the wetter clusters present higher NDVI values which indicates that aridity holds a key role to explain the spatial differences in the NDVI values along the year. Despite the localization of these clusters in areas with higher values of monthly water balance, the strongest control of drought on vegetation activity are observed for the drier classes located over regions with smaller absolute values of water balance. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C. (2012) "Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards and Earth System Sciences, 12, 3123-3137, 2012. Trigo R.M., Añel J., Barriopedro D., García-Herrera R., Gimeno L., Nieto R., Castillo R., Allen M.R., Massey N. (2013), The record Winter drought of 2011-12 in the Iberian Peninsula [in "Explaining Extreme Events of 2012 from a Climate Perspective". [Peterson, T. C., M. P. Hoerling, P.A. Stott and S. Herring, Eds.] Bulletin of the American Meteorological Society, 94 (9), S41-S45. Vicente-Serrano S.M., López-Moreno J.I., Beguería S., Lorenzo-Lacruz J., Sanchez-Lorenzo A., García-Ruiz J.M., Azorin-Molina C., Móran-Tejeda E., Revuelto J., Trigo R., Coelho F., Espejo F.: Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9, 044001, 2014. Acknowledgements: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAGGLO/4155/2012).

  12. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees

    PubMed Central

    Yoshimura, Kenichi; Saiki, Shin-Taro; Yazaki, Kenichi; Ogasa, Mayumi Y.; Shirai, Makoto; Nakano, Takashi; Yoshimura, Jin; Ishida, Atsushi

    2016-01-01

    Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the current understanding of the physiological mechanisms for tree die-offs is still controversial. However, the simultaneous examination of water and carbon uses throughout dehydration and rehydration processes in adult trees will contribute to clarify the roles of hydraulic failure and carbon starvation in tree wilting. Here we show the processes of the percent loss of hydraulic conductivity (PLC) and the content of nonstructural carbohydrates (NSCs) of distal branches in woody plants with contrasting water use strategy. Starch was converted to soluble sugar during PLC progression under drought, and the hydraulic conductivity recovered following water supply. The conversion of NSCs is strongly associated with PLC variations during dehydration and rehydration processes, indicating that stored carbon contributes to tree survival under drought; further carbon starvation can advance hydraulic failure. We predict that even slow-progressing drought degrades forest ecosystems via carbon starvation, causing more frequent catastrophic forest die-offs than the present projection. PMID:27079677

  13. The collapse of the Maya: Effects of natural and human-induced drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Robert J; Erickson III, David J

    2010-02-01

    The collapse of the Maya civilization during the ninth century A.D. is a major conundrum in the history of mankind. This civilization reached a spectacular peak but then almost completely collapsed in the space of a few decades. While numerous explanations have been put forth to explain this collapse, in recent years, drought has gained favor. This is because water resources were a key for the Maya, especially to ensure their survival during the lengthy dry season that occurs where they lived. Natural drought is a known, recurring feature of this region, as evidenced by observational data, reconstructions of pastmore » times, and global climate model output. Results from simulations with a regional climate model demonstrate that deforestation by the Maya also likely induced warmer, drier, drought-like conditions. It is therefore hypothesized that the drought conditions devastating the Maya resulted from a combination of natural variability and human activities. Neither the natural drought or the human-induced effects alone were sufficient to cause the collapse, but the combination created a situation the Maya could not recover from. These results may have sobering implications for the present and future state of climate and water resources in Mesoamerica as ongoing massive deforestation is again occurring.« less

  14. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenichi; Saiki, Shin-Taro; Yazaki, Kenichi; Ogasa, Mayumi Y.; Shirai, Makoto; Nakano, Takashi; Yoshimura, Jin; Ishida, Atsushi

    2016-04-01

    Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the current understanding of the physiological mechanisms for tree die-offs is still controversial. However, the simultaneous examination of water and carbon uses throughout dehydration and rehydration processes in adult trees will contribute to clarify the roles of hydraulic failure and carbon starvation in tree wilting. Here we show the processes of the percent loss of hydraulic conductivity (PLC) and the content of nonstructural carbohydrates (NSCs) of distal branches in woody plants with contrasting water use strategy. Starch was converted to soluble sugar during PLC progression under drought, and the hydraulic conductivity recovered following water supply. The conversion of NSCs is strongly associated with PLC variations during dehydration and rehydration processes, indicating that stored carbon contributes to tree survival under drought; further carbon starvation can advance hydraulic failure. We predict that even slow-progressing drought degrades forest ecosystems via carbon starvation, causing more frequent catastrophic forest die-offs than the present projection.

  15. Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield.

    PubMed

    Goufo, Piebiep; Moutinho-Pereira, José M; Jorge, Tiago F; Correia, Carlos M; Oliveira, Manuela R; Rosa, Eduardo A S; António, Carla; Trindade, Henrique

    2017-01-01

    Plants usually tolerate drought by producing organic solutes, which can either act as compatible osmolytes for maintaining turgor, or radical scavengers for protecting cellular functions. However, these two properties of organic solutes are often indistinguishable during stress progression. This study looked at individualizing properties of osmotic adjustment vs. osmoprotection in plants, using cowpea as the model species. Two cultivars were grown in well-watered soil, drought conditions, or drought followed by rewatering through fruit formation. Osmoadaptation was investigated in leaves and roots using photosynthetic traits, water homoeostasis, inorganic ions, and primary and secondary metabolites. Multifactorial analyses indicated allocation of high quantities of amino acids, sugars, and proanthocyanidins into roots, presumably linked to their role in growth and initial stress perception. Physiological and metabolic changes developed in parallel and drought/recovery responses showed a progressive acclimation of the cowpea plant to stress. Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects. These metabolites accumulated differently in roots, but similarly in leaves, suggesting a more conservative strategy to cope with drought in the aerial parts. Changes in these compounds roughly reflected energy investment in protective mechanisms, although the ability of plants to adjust osmotically through inorganic ions uptake could not be discounted.

  16. Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield

    PubMed Central

    Goufo, Piebiep; Moutinho-Pereira, José M.; Jorge, Tiago F.; Correia, Carlos M.; Oliveira, Manuela R.; Rosa, Eduardo A. S.; António, Carla; Trindade, Henrique

    2017-01-01

    Plants usually tolerate drought by producing organic solutes, which can either act as compatible osmolytes for maintaining turgor, or radical scavengers for protecting cellular functions. However, these two properties of organic solutes are often indistinguishable during stress progression. This study looked at individualizing properties of osmotic adjustment vs. osmoprotection in plants, using cowpea as the model species. Two cultivars were grown in well-watered soil, drought conditions, or drought followed by rewatering through fruit formation. Osmoadaptation was investigated in leaves and roots using photosynthetic traits, water homoeostasis, inorganic ions, and primary and secondary metabolites. Multifactorial analyses indicated allocation of high quantities of amino acids, sugars, and proanthocyanidins into roots, presumably linked to their role in growth and initial stress perception. Physiological and metabolic changes developed in parallel and drought/recovery responses showed a progressive acclimation of the cowpea plant to stress. Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects. These metabolites accumulated differently in roots, but similarly in leaves, suggesting a more conservative strategy to cope with drought in the aerial parts. Changes in these compounds roughly reflected energy investment in protective mechanisms, although the ability of plants to adjust osmotically through inorganic ions uptake could not be discounted. PMID:28473840

  17. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought.

    PubMed

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio

    2016-07-01

    The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    PubMed Central

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass. PMID:28559903

  19. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    PubMed

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  20. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species

    PubMed Central

    Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  1. An Evaluation of Historical Fire Occurrence, Drought and the El Niño Southern Oscillation in the Southcentral United States

    NASA Astrophysics Data System (ADS)

    Rooney, M.; Stambaugh, M. C.

    2016-12-01

    Wildfire occurrence in the forested ecosystems of the southcentral United States is driven by conditions of drought. Historically, fire intervals varied temporally and spatially - forced by climate, humans, and environmental conditions. Thus, proxy records are required to assess the relationships between fire occurrence, drought, and the El Niño Southern Oscillation (ENSO). Fire scar data from tree-rings are well-suited to assess historical fire regimes in this region, paired with reconstructions of drought and ENSO that have been developed from networks of ring-width chronologies across the United States. This study combines fire-scar data from twelve different sites in the southcentral United States, including two new fire-history reconstructions. Fire data incorporates 665 fires across Eastern Oklahoma and Northern Texas from 1637-2014. These robust reconstructions of post oak (Quercus stellata) evaluate the variability in fire activity and its association to drought and ENSO. Climate-explained growth variance in post-oak chronologies is strong in this region, providing powerful proxy information in the derived chronologies. In general, most fires occur during the La Niña portion of the ENSO cycle. Many severe fires correspond with drought, and results from super-posed epoch analysis suggest a significant relationship between fire event years and drought conditions in the full period of record. Analysis reveals differences in the relationships of fire, drought and ENSO through time, corresponding to changes in human settlement in the region. Understanding the spatial and temporal relationships that exist between fire occurrence, drought, and ENSO aid in quantifying disturbance characteristics and their associations to climate in the forested ecosystems of the southcentral United States.

  2. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    PubMed

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  3. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees.

    PubMed

    Powell, Thomas L; Wheeler, James K; de Oliveira, Alex A R; da Costa, Antonio Carlos Lola; Saleska, Scott R; Meir, Patrick; Moorcroft, Paul R

    2017-10-01

    Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P 50 ), leaf turgor loss point (TLP), cellular osmotic potential (π o ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P 50 , TLP, and π o , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests. © 2017 John Wiley & Sons Ltd.

  4. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    PubMed Central

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J.; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L.; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato. PMID:27066027

  5. Different radial growth responses of co-occurring coniferous forest trees in the Alps to drought

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter; Mennel, Julia

    2010-05-01

    Species-specific drought resistance will effect the development of forest ecosystems under a warmer and drier climate by changing species composition and inducing shifts in forest distribution. Therefore, we applied dendroclimatological techniques to determine drought sensitivity of three native coniferous tree species (Norway spruce, Picea abies; European larch, Larix decidua; Scots pine, Pinus sylvestris), which differ in phenological and successional traits and grow intermixed at dry-mesic sites within an inner-Alpine dry valley (750 m a.s.l., Tyrol, Austria). Ring-width chronologies (resolution 1 µm) of each species were developed by extracting two core samples from ≥ 80 mature trees (mean tree age 135 yr). To identify the climatic factors most closely associated with variations in radial tree growth, we calculated response and correlation functions for the common interval from 1911-2007 using yearly tree-ring indices and monthly and seasonal climate variables (precipitation, air temperature) and evaluated growth response to extreme hot and/or dry conditions during the growing season. Additionally, the impact of climate warming on long-term variability of climate-growth relationships was analysed by means of moving response functions. Major finding of our study were: (i) current April through June precipitation was the environmental factor most strongly associated with growth of all three species (r = 0.484, 0.458, and 0.546 for Pinus sylvestris, Larix decidua and Picea abies, respectively; all P < 0.001), whereby Picea abies showed higher correlation coefficients with precipitation from May through June (r = 0.585, P < 0.001). (ii) Annual increment of Picea abies was most strongly limited by May through June temperature (r = -0.500, P < 0.001). (iii) Continuously increasing moving response function coefficients of monthly precipitation variables since the mid-20th century revealed increasing drought sensitivity of all species. During recent decades a significant inverse relationship between radial growth and early summer temperature was only detected for Picea abies. (iv) Analysis of distinct below-average growth in several years (1952, 1976, 1984, 1992 and 2005) indicated species-specific response to climate extremes, whereby Pinus sylvestris was the least drought sensitive species of the comparison. Results demonstrate that within the study area different growth responses of coniferous species to climate exist, which might be explained by temporal shifts in cambial activity and wood formation. Furthermore, our study shows that high temperature and limited water availability has the strongest impact on the growth performance of Picea abies, which will likely lead to increased tree mortality. Instable climate-growth relationships during recent decades, which occur coincidently with the recent warming trend, indicate increasing drought stress of all species, whereby within mixed coniferous stands Pinus sylvestris may benefit from adapting better to drier conditions in the future. High mortality rates of Pinus sylvestris, which have been observed in recent years at more xeric sites, support our findings that drought initiates changes of forest structure and species composition within this dry inner-Alpine valley.

  6. West Pacific Forcing of Atmospheric River Events in the North Pacific and the End of California's Recent Drought

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Ding, Q.

    2017-12-01

    The prolonged drought in California has by now largely subsided due to the large number of land-falling atmospheric rivers in the 2016-2017 winter season. Here we explore intraseasonal, interannual and decadal variabilities in winter AR activity along the California coast, especially in Southern California, with a special focus on the leading modes of covariance between tropical SSTs and the 200-hPa geopotential height in the Northern Hemisphere and an understanding of how the tropical related teleconnections modulate the AR activity in the North Pacific. This new approach explores a path towards improved intra-seasonal to seasonal predictions of climate variability in Southern California and may help explain how the most recent winter, which is not the anomalously strong el Niño as that in the last winter, brought California out of drought. Finally, we will suggest a way forward to better understand the causes of the recent drought over Southern California and how we may improve projections of its future change.

  7. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity.

    PubMed

    Swann, Abigail L S; Hoffman, Forrest M; Koven, Charles D; Randerson, James T

    2016-09-06

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

  8. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    PubMed Central

    Koven, Charles D.; Randerson, James T.

    2016-01-01

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment. PMID:27573831

  9. The Millennium Drought in southeast Australia (2001-2009): Natural and human causes and implications for water resources, ecosystems, economy, and society

    NASA Astrophysics Data System (ADS)

    van Dijk, Albert I. J. M.; Beck, Hylke E.; Crosbie, Russell S.; de Jeu, Richard A. M.; Liu, Yi Y.; Podger, Geoff M.; Timbal, Bertrand; Viney, Neil R.

    2013-02-01

    The "Millennium Drought" (2001-2009) can be described as the worst drought on record for southeast Australia. Adaptation to future severe droughts requires insight into the drivers of the drought and its impacts. These were analyzed using climate, water, economic, and remote sensing data combined with biophysical modeling. Prevailing El Niño conditions explained about two thirds of rainfall deficit in east Australia. Results for south Australia were inconclusive; a contribution from global climate change remains plausible but unproven. Natural processes changed the timing and magnitude of soil moisture, streamflow, and groundwater deficits by up to several years, and caused the amplification of rainfall declines in streamflow to be greater than in normal dry years. By design, river management avoided impacts on some categories of water users, but did so by exacerbating the impacts on annual irrigation agriculture and, in particular, river ecosystems. Relative rainfall reductions were amplified 1.5-1.7 times in dryland wheat yields, but the impact was offset by steady increases in cropping area and crop water use efficiency (perhaps partly due to CO2 fertilization). Impacts beyond the agricultural sector occurred (e.g., forestry, tourism, utilities) but were often diffuse and not well quantified. Key causative pathways from physical drought to the degradation of ecological, economic, and social health remain poorly understood and quantified. Combined with the multiple dimensions of multiyear droughts and the specter of climate change, this means future droughts may well break records in ever new ways and not necessarily be managed better than past ones.

  10. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing.

    PubMed

    Liu, Minmin; Yu, Huiyang; Zhao, Gangjun; Huang, Qiufeng; Lu, Yongen; Ouyang, Bo

    2017-06-26

    Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H 2 O 2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.

  11. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  12. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  13. Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms.

    PubMed

    Villari, Caterina; Herms, Daniel A; Whitehill, Justin G A; Cipollini, Don; Bonello, Pierluigi

    2016-01-01

    We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Discovery and Analysis of MicroRNAs in Leymus chinensis under Saline-Alkali and Drought Stress Using High-Throughput Sequencing

    PubMed Central

    Wang, Qi; Wang, Nan; Wang, Fawei; Liu, Weican; Li, Xiaowei; Chen, Huan; Yao, Na; Guan, Lili; Chen, Kai; Cui, Xiyan; Yang, Meiying; Li, Haiyan

    2014-01-01

    Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental processes, pathogen responses, and abiotic stress in plants. In this study, we used Solexa sequencing technology to generate high-quality small RNA data from three L. chinensis groups: a control group, a saline-alkaline stress group (100 mM NaCl and 200 mM NaHCO3), and a drought stress group (20% polyethylene glycol 2000). From these data we identified 132 known miRNAs and 16 novel miRNAs candidates. For these miRNAs we also identified target genes that encode a broad range of proteins that may be correlated with abiotic stress regulation. This is the first study to demonstrate differentially expressed miRNAs in L. chinensis under saline-alkali and drought stress. These findings may help explain the saline-alkaline and drought stress responses in L. chinensis. PMID:25369004

  15. Collapse of the Maya: Could deforestation have contributed?

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Sever, Thomas L.; Saturno, William; Erickson, David J.; Srikishen, Jayanthi

    2010-06-01

    The collapse of the Maya civilization during the ninth century A.D. is a major conundrum in the history of mankind. This civilization reached a spectacular peak but then almost completely collapsed in the space of a few decades. While numerous explanations have been put forth to explain this collapse, in recent years, drought has gained favor. This is because water resources were a key for the Maya, especially to ensure their survival during the lengthy dry season that occurs where they lived. Natural drought is a known, recurring feature of this region, as evidenced by observational data, reconstructions of past times, and global climate model output. Results from simulations with a regional climate model demonstrate that deforestation by the Maya also likely induced warmer, drier, drought-like conditions. It is therefore hypothesized that the drought conditions devastating the Maya resulted from a combination of natural variability and human activities. Neither the natural drought or the human-induced effects alone were sufficient to cause the collapse, but the combination created a situation the Maya could not recover from. These results may have sobering implications for the present and future state of climate and water resources in Mesoamerica as ongoing massive deforestation is again occurring.

  16. Discovery and analysis of microRNAs in Leymus chinensis under saline-alkali and drought stress using high-throughput sequencing.

    PubMed

    Zhai, Junfeng; Dong, Yuanyuan; Sun, Yepeng; Wang, Qi; Wang, Nan; Wang, Fawei; Liu, Weican; Li, Xiaowei; Chen, Huan; Yao, Na; Guan, Lili; Chen, Kai; Cui, Xiyan; Yang, Meiying; Li, Haiyan

    2014-01-01

    Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental processes, pathogen responses, and abiotic stress in plants. In this study, we used Solexa sequencing technology to generate high-quality small RNA data from three L. chinensis groups: a control group, a saline-alkaline stress group (100 mM NaCl and 200 mM NaHCO3), and a drought stress group (20% polyethylene glycol 2000). From these data we identified 132 known miRNAs and 16 novel miRNAs candidates. For these miRNAs we also identified target genes that encode a broad range of proteins that may be correlated with abiotic stress regulation. This is the first study to demonstrate differentially expressed miRNAs in L. chinensis under saline-alkali and drought stress. These findings may help explain the saline-alkaline and drought stress responses in L. chinensis.

  17. Global warming accelerates drought-induced forest death

    ScienceCinema

    McDowell, Nathan; Pockman, William

    2018-05-16

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it with much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.

  18. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.].

    PubMed

    Muchero, Wellington; Ehlers, Jeffrey D; Roberts, Philip A

    2010-02-01

    Quantitative trait loci (QTL) studies provide insight into the complexity of drought tolerance mechanisms. Molecular markers used in these studies also allow for marker-assisted selection (MAS) in breeding programs, enabling transfer of genetic factors between breeding lines without complete knowledge of their exact nature. However, potential for recombination between markers and target genes limit the utility of MAS-based strategies. Candidate gene mapping offers an alternative solution to identify trait determinants underlying QTL of interest. Here, we used restriction site polymorphisms to investigate co-location of candidate genes with QTL for seedling drought stress-induced premature senescence identified previously in cowpea. Genomic DNA isolated from 113 F(2:8) RILs of drought-tolerant IT93K503-1 and drought susceptible CB46 genotypes was digested with combinations of EcoR1 and HpaII, Mse1, or Msp1 restriction enzymes and amplified with primers designed from 13 drought-responsive cDNAs. JoinMap 3.0 and MapQTL 4.0 software were used to incorporate polymorphic markers onto the AFLP map and to analyze their association with the drought response QTL. Seven markers co-located with peaks of previously identified QTL. Isolation, sequencing, and blast analysis of these markers confirmed their significant homology with drought or other abiotic stress-induced expressed sequence tags (EST) from cowpea and other plant systems. Further, homology with coding sequences for a multidrug resistance protein 3 and a photosystem I assembly protein ycf3 was revealed in two of these candidates. These results provide a platform for the identification and characterization of genetic trait determinants underlying seedling drought tolerance in cowpea.

  19. Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissue Revealed by RNA-Seq1[W][OA

    PubMed Central

    Kakumanu, Akshay; Ambavaram, Madana M.R.; Klumas, Curtis; Krishnan, Arjun; Batlang, Utlwang; Myers, Elijah; Grene, Ruth; Pereira, Andy

    2012-01-01

    Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an “unstressed” level, and at lower ABA levels, which was correlated with successful resistance to drought stress. PMID:22837360

  20. Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo.

    PubMed

    Linares, Juan Carlos; Camarero, Jesús Julio; Bowker, Matthew A; Ochoa, Victoria; Carreira, José Antonio

    2010-12-01

    Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.

  1. Flow variations and macroinvertebrate community responses in a small groundwater-dominated stream in south east England

    USGS Publications Warehouse

    Bendix, J.; Hupp, C.R.

    2000-01-01

    Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community The results are discussed in relation to the role of flow variability in shaping instream communities and management implications. Copyright ?? 2000 John Wiley & Sons, Ltd.Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community. The results are discussed in relation to the role of flow variability in shaping instream communities and management implications.

  2. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  3. Differentiation in the water-use strategies among oak species from central Mexico.

    PubMed

    Aguilar-Romero, Rafael; Pineda-Garcia, Fernando; Paz, Horacio; González-Rodríguez, Antonio; Oyama, Ken

    2017-07-01

    Oak species (Fagaceae: Quercus) differ in their distribution at the landscape scale, specializing to a certain portion of environmental gradients. This suggests that functional differentiation favors habitat partitioning among closely related species. To elucidate the mechanisms of species coexistence in oak forests, we explored patterns of interspecific variation in functional traits involved in water-use strategies. We tested the hypothesis that oak species segregate along key trade-offs between xylem hydraulic efficiency and safety, and between hydraulic safety and drought avoidance capacity, leading to species niche partitioning across a gradient of aridity. To do so, we quantified biophysical and physiological traits in four red and five white oak species (sections Lobatae and Quercus, respectively) across an aridity gradient in central Mexico. We also explored the trade-offs guiding species differentiation, particularly between the drought tolerance versus water acquisition capacity, and determined whether the water-use strategy was associated with the portion of the environmental gradient that the species occupy. In a trait-by-trait analysis, we detected differences between white and red oak species. However, a larger part of the variation was explained at the species rather than at the section level. We detected two primary axes of trait covariation. The first exhibited differences between species with dense tissues and species with soft tissues (the tissue construction cost axis); however, the oak sections did not constitute separate groups, while the second suggested a trade-off between xylem resistance to cavitation and tree deciduousness. As expected, the water-use strategies of the species were related to the environment; oak species from arid areas had more deciduousness and a higher instantaneous water-use efficiency. In contrast, their humid counterparts had less deciduousness and had a xylem that was more resistant to embolisms. Altogether, these results suggest that aridity filters closely related species, resulting in habitat partitioning and niche divergence. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Role of large-scale atmospheric processes in variability of droughts in Ukraine

    NASA Astrophysics Data System (ADS)

    Khokhlov, Valeriy; Yermolenko, Nataliia

    2015-04-01

    We used the multiscalar drought index - standardized precipitation evapotranspiration index (SPEI) - to investigate the variability of droughts during the period of 1951-2010. The index allows considering the meteorological, agriculture and hydrological droughts. In this study, SPEI was calculated using the 0.5 degree grid data on the temperature and precipitation. The analysis was performed for the time series of four sites that are characteristic for the different parts of Ukraine - Chernihiv (Northern Ukraine), Odessa (Southern Ukraine), Uzhhorod (Western Ukraine), and Luhansk (Eastern Ukraine). The analysis revealed the periods with moistest and driest conditions. For the all sites, the moistest years were registered in the end of 1970s - start of 1980s. Moreover, both the number and intensity of droughts increase significantly since 1980, especially for the Southern Ukraine. During the 2006-2009, the most extreme and long drought was observed in the Odessa region. The analysis also showed that hydrological droughts begin with some delay from the meteorological ones, and have maximal duration. We used CUSUM method in order to detect specific years, when the significant change points occurred in the time series of droughts. This method also detected the start of 1980s as the years of transition from the moist to the dry conditions. The cross-wavelet transform was applied to reveal a connection between the droughts in Ukraine and teleconnection patterns in the North Atlantics. The analysis showed that the North Atlantic Oscillation (NAO) has a maximal effect on the droughts in Ukraine. The anti-phase relation is registered for the joint fluctuations with the periods 2-3 years and is most prominent in the Southern Ukraine. On the contrary, the NAO has a small impact on the Northern Ukraine. This fact can be explained by the orientation of main storm tracks for positive and negative phases of the NAO. The importance of long term planning of water management activities, varying from yearly reservoir rule curve determination to advice on crop selection given expected drought or flooding, increases as water becomes more scarce and event become more extreme. This work examines potential predictors for droughts in Ukriane to be used in optimization of long term planning.

  5. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared withmore » the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.« less

  6. How useful are meteorological drought indicators to assess agricultural drought impacts across Europe?

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Tanguy, Maliko; Hannaford, Jamie; Stahl, Kerstin

    2016-04-01

    Drought monitoring and early warning (M&EW) is an important component of agricultural and silvicultural risk management. Meteorological indicators such as the Standardized Precipitation Index (SPI) are widely used in operational M&EW systems and for drought hazard assessment. Meteorological drought yet does not necessarily equate to agricultural drought given differences in drought susceptibility, e.g. crop-specific vulnerability, soil water holding capacity, irrigation and other management practices. How useful are meteorological indicators such as SPI to assess agricultural drought? Would the inclusion of vegetation indicators into drought M&EW systems add value for the agricultural sector? To answer these questions, it is necessary to investigate the link between meteorological indicators and agricultural impacts of drought. Crop yield or loss data is one source of information for drought impacts, yet mostly available as aggregated data at the annual scale. Remotely sensed vegetation stress data offer another possibility to directly assess agricultural impacts with high spatial and temporal resolution and are already used by some M&EW systems. At the same time, reduced crop yield and satellite-based vegetation stress potentially suffer from multi-causality. The aim of this study is therefore to investigate the relation between meteorological drought indicators and agricultural drought impacts for Europe, and to intercompare different agricultural impact variables. As drought indicators we used SPI and the Standardized Precipitation Evaporation Index (SPEI) for different accumulation periods. The focus regarding drought impact variables was on remotely sensed vegetation stress derived from MODIS NDVI (Normalized Difference Vegetation Index) and LST (Land Surface Temperature) data, but the analysis was complemented with crop yield data and text-based information from the European Drought Impact report Inventory (EDII) for selected countries. A correlation analysis between meteorological drought indicators and remotely sensed vegetation stress at the EU NUTS3 region level revealed a high correlation between the two types of indicators for many regions; however some spatial variability was observed in (i) strength of correlation, (ii) performance of SPI versus SPEI, and (iii) best linked SPI/SPEI time scale. We additionally explored whether geographic properties like climate, soil texture, land use, and location explain the observed spatial patterns. Our study revealed that climatically dryer areas (water limited) showed high correlations between SPI/SPEI and vegetation stress, whereas the wettest parts of Europe (radiation limited regions) showed negative correlations especially for short accumulation periods, suggesting that for these regions, short droughts could actually be beneficial for vegetation growth. These findings suggest that relying solely on meteorological indicators for agricultural risk assessment in some regions might be inadequate. Overall, such information may help to tailor agricultural drought M&EW systems to specific regions.

  7. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

    PubMed

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L

    2014-08-01

    Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China.

    PubMed

    Xu, Ying; Ge, Junzhu; Tian, Shaoyang; Li, Shuya; Nguy-Robertson, Anthony L; Zhan, Ming; Cao, Cougui

    2015-02-01

    As pressure on water resources increases, alternative practices to conserve water in paddies have been developed. Few studies have simultaneously examined the effectiveness of different water regimes on conserving water, mitigating greenhouse gases (GHG), and maintaining yields in rice production. This study, which was conducted during the drought of 2013, examined all three factors using a split-plot experiment with two rice varieties in a no-till paddy managed under three different water regimes: 1) continuous flooding (CF), 2) flooded and wet intermittent irrigation (FWI), and 3) flooded and dry intermittent irrigation (FDI). The Methane (CH₄) and nitrous oxide (N₂O) emissions were measured using static chamber-gas measurements, and the carbon dioxide (CO₂) emissions were monitored using a soil CO₂ flux system (LI-8100). Compared with CF, FWI and FDI irrigation strategies reduced CH₄ emissions by 60% and 83%, respectively. In contrast, CO₂ and N₂O fluxes increased by 65% and 9%, respectively, under FWI watering regime and by 104% and 11%, respectively, under FDI managed plots. Although CO₂ and N₂O emissions increased, the global warming potential (GWP) and greenhouse gas intensity (GHGI) of all three GHG decreased by up to 25% and 29% (p<0.01), respectively, using water-saving irrigation strategies. The rice variety also affected yields and GHG emissions in response to different water regimes. The drought-resistance rice variety (HY3) was observed to maintain yields, conserve water, and reduce GHG under the FWI irrigation management compared with the typical variety (FYY299) planted in the region. The FYY299 only had significantly lower GWP and GHGI when the yield was reduced under FDI water regime. In conclusion, FWI irrigation strategy could be an effective option for simultaneously saving water and mitigating GWP without reducing rice yields using drought-resistant rice varieties, such as HY3. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Embolism and mechanical resistances play a key role in dehydration tolerance of a perennial grass Dactylis glomerata L.

    PubMed

    Volaire, Florence; Lens, Frederic; Cochard, Hervé; Xu, Hueng; Chacon-Doria, Larissa; Bristiel, Pauline; Balachowski, Jennifer; Rowe, Nick; Violle, Cyrille; Picon-Cochard, Catherine

    2018-05-17

    More intense droughts under climate change threaten species resilience. Hydraulic strategies determine drought survival in woody plants but have been hardly studied in herbaceous species. We explored the intraspecific variability of hydraulic and morphological traits as indicators of dehydration tolerance in a perennial grass, cocksfoot (Dactylis glomerata), which has a large biogeographical distribution in Europe. Twelve populations of cocksfoot originating from Mediterranean, Temperate and Northern European areas were grown in a controlled environment in pots. Dehydration tolerance, leaf and stem anatomical traits and xylem pressure associated with 88 or 50 % loss of xylem conductance (P88, P50) were measured. Across the 12 populations of cocksfoot, P50 ranged from -3.06 to - 6.36 MPa, while P88 ranged from -5.06 to -11.6 MPa. This large intraspecific variability of embolism thresholds corresponded with the biogeographical distribution and some key traits of the populations. In particular, P88 was correlated with dehydration tolerance (r = -0.79). The dehydration-sensitive Temperate populations exhibited the highest P88 (-6.1 MPa). The most dehydration-tolerant Mediterranean populations had the greatest leaf dry matter content and leaf fracture toughness, and the lowest P88 (-10.4 MPa). The Northern populations displayed intermediate trait values, potentially attributable to frost resistance. The thickness of metaxylem vessel walls in stems was highly correlated with P50 (r = -0.92), but no trade-off with stem lignification was observed. The relevance of the linkage between hydraulic and stomatal traits is discussed for drought survival in perennial grasses. Compared with woody species, the large intraspecific variability in dehydration tolerance and embolism resistance within cocksfoot has consequences for its sensitivity to climate change. To better understand adaptive strategies of herbaceous species to increasing drought and frost requires further exploration of the role of hydraulic and mechanical traits using a larger inter- and intraspecific range of species.

  10. Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit Membranes1[W][OPEN

    PubMed Central

    Brodersen, Craig; Jansen, Steven; Choat, Brendan; Rico, Christopher; Pittermann, Jarmila

    2014-01-01

    Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes. PMID:24777347

  11. Misfortunes never come singly: Structural change, multiple shocks and child malnutrition in rural Senegal.

    PubMed

    Lazzaroni, Sara; Wagner, Natascha

    2016-12-01

    This study considers the two most pronounced shocks Senegalese subsistence farmers struggle with, namely increasing purchase prices and droughts. We assess the relationship of these self-reported shocks with child health in a multi-shock approach to account for concomitance of adverse events from the natural, biological, economic and health sphere. We employ a unique farming household panel dataset containing information on children living in poor, rural households in eight regions of Senegal in 2009 and 2011 and account for structural changes occurring between survey periods due to the large scale, national Nutrition Enhancement Program. By zooming in to the micro level we demonstrate that Senegal as a Sahelian country, mainly reliant on subsistence agriculture, is very vulnerable to climate variability and international price developments: According to our conservative estimates, the occurrence of a drought explains 25% of the pooled weight-for-age standard deviation, income losses 31%. Our multi-shock analysis reveals that the shocks are perceived as more severe in 2011 with droughts explaining up to 44% of the standard deviation of child health, increased prices up to 21%. Yet, the concomitance of droughts and increased prices after the structural change, i.e. the Nutrition Enhancement Program, indicates that the health of children experiencing both shocks in 2011 has improved. We argue that these results are driven by the increase in rural household income as theoretically outlined in the agricultural household model. Thus, adequate policy responses to shocks do not only depend on the nature but also on the concomitance of hazardous events. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Interannual variation in rainfall, drought stress and seedling mortality may mediate monodominance in tropical flooded forests.

    PubMed

    Lopez, Omar R; Kursar, Thomas A

    2007-11-01

    Flood tolerance is commonly regarded as the main factor explaining low diversity and monodominance in tropical swamps. In this study we examined seedling mortality in relation to seasonality, i.e., flooding versus drought, of the dominant tree species (Prioria copaifera), and three associated species (Pterocarpus officinalis, Carapa guianensis and Pentaclethra macroloba), in seasonally flooded forests (SFF) in Darien, Panama. Seedling mortality differed among species, years and seasons. Prioria seedlings experienced the lowest overall mortality, and after 3 years many more Prioria seedlings remained alive than those of any of the associated species. In general, within species, larger seedlings had greater survival. Seed size, which can vary by close to 2 orders of magnitude in Prioria, had a confounding effect with that of topography. Large-seeded Prioria seedlings experienced 1.5 times greater mortality than small-seeded seedlings, as large-seeded Prioria seedlings were more likely to be located in depressions. This finding suggests that seed size, plant size and topography are important in understanding SFF regeneration. For all species, seedling mortality was consistently greater during the dry season than during flooding. For Prioria, dry season seedling mortality was correlated with drought stress, that is, high mortality during the long El Niño dry season of 1998 and the normal dry season of 2000, but very low dry season mortality during the mild dry season of 1999. Prioria's ability to dominate in seasonally flooded forest of Central America is partly explained by its low drought-related mortality in comparison to associated species.

  13. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest.

    PubMed

    Sperlich, D; Chang, C T; Peñuelas, J; Gracia, C; Sabaté, S

    2015-05-01

    The Mediterranean region is a hot spot of climate change vulnerable to increased droughts and heat waves. Scaling carbon fluxes from leaf to landscape levels is particularly challenging under drought conditions. We aimed to improve the mechanistic understanding of the seasonal acclimation of photosynthesis and morphology in sunlit and shaded leaves of four Mediterranean trees (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.) under natural conditions. Vc,max and Jmax were not constant, and mesophyll conductance was not infinite, as assumed in most terrestrial biosphere models, but varied significantly between seasons, tree species and leaf position. Favourable conditions in winter led to photosynthetic recovery and growth in the evergreens. Under moderate drought, adjustments in the photo/biochemistry and stomatal/mesophyllic diffusion behaviour effectively protected the photosynthetic machineries. Severe drought, however, induced early leaf senescence mostly in A. unedo and Q. pubescens, and significantly increased leaf mass per area in Q. ilex and P. halepensis. Shaded leaves had lower photosynthetic potentials but cushioned negative effects during stress periods. Species-specificity, seasonal variations and leaf position are key factors to explain vegetation responses to abiotic stress and hold great potential to reduce uncertainties in terrestrial biosphere models especially under drought conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings.

    PubMed

    Turtola, Satu; Manninen, Anne-Marja; Rikala, Risto; Kainulainen, Pirjo

    2003-09-01

    Drought is known to have an impact on the resistance of conifers to various pests, for example, by affecting resin flow in trees. Little is known, however, about the quantitative and qualitative changes in resin when trees are growing in low moisture conditions. We exposed Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings to medium and severe drought stress for two growing seasons and analyzed the monoterpenes and resin acids in the main stem wood after two years of treatment. In addition to secondary chemistry, we measured the level of nutrients in the needles and the growth response of seedlings. After the first year of treatment, drought stress did not affect the growth of seedlings, but in the second year, shoot growth was retarded, especially in Scots pine. In both conifer species, severe drought increased the concentrations of several individual monoterpenes and resin acids. Total monoterpenes and resin acids were 39 and 32% higher in severe drought-treated Scots pine seedlings than in the controls, and 35 and 45% higher in Norway spruce seedlings. In Scots pine needles, the concentrations of nitrogen and phosphorus increased, while magnesium and calcium decreased compared to controls. In Norway spruce needles, nutrient concentrations were not affected. The results suggest that drought stress substantially affects both the growth of conifers and the chemical quality of the wood. We discuss the potential trade-off in growth and defense of small conifer seedlings.

  15. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    PubMed

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses

    PubMed Central

    Chen, Jiani; Nolan, Trevor M.; Zhang, Mingcai; Tong, Hongning; Xin, Peiyong; Chu, Jinfang; Li, Zhaohu

    2017-01-01

    Plant steroid hormones, brassinosteroids (BRs), play important roles in growth and development. BR signaling controls the activities of BRASSINOSTERIOD INSENSITIVE1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 (BES1/BZR1) family transcription factors. Besides the role in promoting growth, BRs are also implicated in plant responses to drought stress. However, the molecular mechanisms by which BRs regulate drought response have just begun to be revealed. The functions of WRKY transcription factors in BR-regulated plant growth have not been established, although their roles in stress responses are well documented. Here, we found that three Arabidopsis thaliana group III WRKY transcription factors, WRKY46, WRKY54, and WRKY70, are involved in both BR-regulated plant growth and drought response as the wrky46 wrky54 wrky70 triple mutant has defects in BR-regulated growth and is more tolerant to drought stress. RNA-sequencing analysis revealed global roles of WRKY46, WRKY54, and WRKY70 in promoting BR-mediated gene expression and inhibiting drought responsive genes. WRKY54 directly interacts with BES1 to cooperatively regulate the expression of target genes. In addition, WRKY54 is phosphorylated and destabilized by GSK3-like kinase BR-INSENSITIVE2, a negative regulator in the BR pathway. Our results therefore establish WRKY46/54/70 as important signaling components that are positively involved in BR-regulated growth and negatively involved in drought responses. PMID:28576847

  17. Comparative Proteome Analysis of Wheat Flag Leaves and Developing Grains Under Water Deficit

    PubMed Central

    Deng, Xiong; Liu, Yue; Xu, Xuexin; Liu, Dongmiao; Zhu, Genrui; Yan, Xing; Wang, Zhimin; Yan, Yueming

    2018-01-01

    In this study, we performed the first comparative proteomic analysis of wheat flag leaves and developing grains in response to drought stress. Drought stress caused a significant decrease in several important physiological and biochemical parameters and grain yield traits, particularly those related to photosynthesis and starch biosynthesis. In contrast, some key indicators related to drought stress were significantly increased, including malondialdehyde, soluble sugar, proline, glycine betaine, abscisic acid content, and peroxidase activity. Two-dimensional difference gel electrophoresis (2D-DIGE) identified 87 and 132 differentially accumulated protein (DAP) spots representing 66 and 105 unique proteins following exposure to drought stress in flag leaves and developing grains, respectively. The proteomes of the two organs varied markedly, and most DAPS were related to the oxidative stress response, photosynthesis and energy metabolism, and starch biosynthesis. In particular, DAPs in flag leaves mainly participated in photosynthesis while those in developing grains were primarily involved in carbon metabolism and the drought stress response. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) further validated some key DAPs such as rubisco large subunit (RBSCL), ADP glucose pyrophosphorylase (AGPase), chaperonin 60 subunit alpha (CPN-60 alpha) and oxalate oxidase 2 (OxO 2). The potential functions of the identified DAPs revealed that a complex network synergistically regulates drought resistance during grain development. Our results from proteome perspective provide new insight into the molecular regulatory mechanisms used by different wheat organs to respond to drought stress. PMID:29692790

  18. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment.

    PubMed

    Richter, Sarah; Kipfer, Tabea; Wohlgemuth, Thomas; Calderón Guerrero, Carlos; Ghazoul, Jaboury; Moser, Barbara

    2012-05-01

    Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.

  19. Deconstructing Demand: The Anthropogenic and Climatic Drivers of Urban Water Consumption.

    PubMed

    Hemati, Azadeh; Rippy, Megan A; Grant, Stanley B; Davis, Kristen; Feldman, David

    2016-12-06

    Cities in drought prone regions of the world such as South East Australia are faced with escalating water scarcity and security challenges. Here we use 72 years of urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 year "Millennium Drought", to evaluate (1) the relative importance of climatic and anthropogenic drivers of urban water demand (using wavelet-based approaches) and (2) the relative contribution of various water saving strategies to demand reduction during the Millennium Drought. Our analysis points to conservation as a dominant driver of urban water savings (69%), followed by nonrevenue water reduction (e.g., reduced meter error and leaks in the potable distribution system; 29%), and potable substitution with alternative sources like rain or recycled water (3%). Per-capita consumption exhibited both climatic and anthropogenic signatures, with rainfall and temperature explaining approximately 55% of the variance. Anthropogenic controls were also strong (up to 45% variance explained). These controls were nonstationary and frequency-specific, with conservation measures like outdoor water restrictions impacting seasonal water use and technological innovation/changing social norms impacting lower frequency (baseline) use. The above-noted nonstationarity implies that wavelets, which do not assume stationarity, show promise for use in future predictive models of demand.

  20. Plant responses to increasing CO 2 reduce estimates of climate impacts on drought severity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.

    Rising atmospheric CO 2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO 2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO 2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area.more » This area drops to 37% with the use of precipitation minus evapo-transpiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO 2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO 2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.« less

  1. Plant responses to increasing CO 2 reduce estimates of climate impacts on drought severity

    DOE PAGES

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.; ...

    2016-08-29

    Rising atmospheric CO 2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO 2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO 2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area.more » This area drops to 37% with the use of precipitation minus evapo-transpiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO 2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO 2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.« less

  2. A Standardized Precipitation Evapotranspiration Index Reconstruction in the Taihe Mountains Using Tree-Ring Widths for the Last 283 Years.

    PubMed

    Ma, Yongyong; Liu, Yu; Song, Huiming; Sun, Junyan; Lei, Ying; Wang, Yanchao

    2015-01-01

    Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) that were collected in the Taihe Mountains on the western Loess Plateau, China, were used to analyze the effects of climate and drought on radial growth and to reconstruct the mean April-June Standardized Precipitation Evapotranspiration Index (SPEI) during the period 1730-2012 AD. Precipitation positively affected tree growth primarily during wet seasons, while temperature negatively affected tree growth during dry seasons. Tree growth responded positively to SPEI at long time scales most likely because the trees were able to withstand water deficits but lacked a rapid response to drought. The 10-month scale SPEI was chosen for further drought reconstruction. A calibration model for the period 1951-2011 explained 51% of the variance in the modeled SPEI data. Our SPEI reconstruction revealed long-term patterns of drought variability and captured some significant drought events, including the severe drought of 1928-1930 and the clear drying trend since the 1950s which were widespread across northern China. The reconstruction was also consistent with two other reconstructions on the western Loess Plateau at both interannual and decadal scales. The reconstructed SPEI series showed synchronous variations with the drought/wetness indices and spatial correlation analyses indicated that this reconstruction could be representative of large-scale SPEI variability in northern China. Period analysis discovered 128-year, 25-year, 2.62-year, 2.36-year, and 2.04-year cycles in this reconstruction. The time-dependency of the growth response to drought should be considered in further studies of the community dynamics. The SPEI reconstruction improves the sparse network of long-term climate records for an enhanced understanding of climatic variability on the western Loess Plateau, China.

  3. A Standardized Precipitation Evapotranspiration Index Reconstruction in the Taihe Mountains Using Tree-Ring Widths for the Last 283 Years

    PubMed Central

    Ma, Yongyong; Liu, Yu; Song, Huiming; Sun, Junyan; Lei, Ying; Wang, Yanchao

    2015-01-01

    Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) that were collected in the Taihe Mountains on the western Loess Plateau, China, were used to analyze the effects of climate and drought on radial growth and to reconstruct the mean April-June Standardized Precipitation Evapotranspiration Index (SPEI) during the period 1730–2012 AD. Precipitation positively affected tree growth primarily during wet seasons, while temperature negatively affected tree growth during dry seasons. Tree growth responded positively to SPEI at long time scales most likely because the trees were able to withstand water deficits but lacked a rapid response to drought. The 10-month scale SPEI was chosen for further drought reconstruction. A calibration model for the period 1951–2011 explained 51% of the variance in the modeled SPEI data. Our SPEI reconstruction revealed long-term patterns of drought variability and captured some significant drought events, including the severe drought of 1928–1930 and the clear drying trend since the 1950s which were widespread across northern China. The reconstruction was also consistent with two other reconstructions on the western Loess Plateau at both interannual and decadal scales. The reconstructed SPEI series showed synchronous variations with the drought/wetness indices and spatial correlation analyses indicated that this reconstruction could be representative of large-scale SPEI variability in northern China. Period analysis discovered 128-year, 25-year, 2.62-year, 2.36-year, and 2.04-year cycles in this reconstruction. The time-dependency of the growth response to drought should be considered in further studies of the community dynamics. The SPEI reconstruction improves the sparse network of long-term climate records for an enhanced understanding of climatic variability on the western Loess Plateau, China. PMID:26207621

  4. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model.

    PubMed

    Wang, Qianfeng; Wu, Jianjun; Li, Xiaohan; Zhou, Hongkui; Yang, Jianhua; Geng, Guangpo; An, Xueli; Liu, Leizhen; Tang, Zhenghong

    2017-04-01

    The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEI G90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our understanding why the adoption of counter measures against drought is important and direct farmers to choose drought-resistant crops.

  5. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava.

    PubMed

    Ren, Meng Yun; Feng, Ren Jun; Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5' upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars.

  6. Expression patterns of members of the ethylene signaling–related gene families in response to dehydration stresses in cassava

    PubMed Central

    Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5’ upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars. PMID:28542282

  7. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest.

    PubMed

    Barbeta, Adrià; Ogaya, Romà; Peñuelas, Josep

    2013-10-01

    Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long-term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species-specific responses to drought, what may eventually lead to a partial community shift favoring the more drought-resistant species. However, we also report a dampening of the treatment effect on the two drought-sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation. © 2013 John Wiley & Sons Ltd.

  8. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)

    PubMed Central

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (Nase) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and Nase activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by Nase activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with Nase inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψs). At the nodule level, drought had an inhibitory effect on Nase activity. This decrease in Nase activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation in the nodule could also be associated with an osmoregulatory response to drought and might function as a protective agent against ROS. In droughted nodules, the decrease in N2 fixation was caused by an increase in oxygen resistance that was induced in the nodule. This was a mechanism to avoid oxidative damage associated with reduced respiration activity and the consequent increase in oxygen content. This study highlighted that even though drought had a direct effect on leaves, the deleterious effects of drought on nodules also conditioned leaf responsiveness. PMID:20797998

  9. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease.

    PubMed

    Wu, Yunqi; Mirzaei, Mehdi; Pascovici, Dana; Chick, Joel M; Atwell, Brian J; Haynes, Paul A

    2016-06-30

    Rice is the major staple food for more than half of world's population. As global climate changes, we are observing more floods, droughts and severe heat waves. Two rice cultivars with contrasting genetic backgrounds and levels of tolerance to drought, Nipponbare and IAC1131, were used in this study. Four-week-old seedlings of both cultivars were grown in large soil volumes and then exposed to moderate and extreme drought for 7days, followed by 3days of re-watering. Mature leaves were harvested from plants from each treatment for protein extraction and subsequent shotgun proteomic analysis, with validation of selected proteins by western blotting. Gene Ontology (GO) annotations of differentially expressed proteins provide insights into the metabolic pathways that are involved in drought stress resistance. Our data indicate that IAC1131 appears to be better able to cope with stressful conditions by upregulating a suite of stress and defence response related proteins. Nipponbare, in contrast, lacks the range of stress responses shown by the more stress tolerant variety, and responds to drought stress by initiating a partial shutdown of chlorophyll biosynthesis in an apparent attempt to preserve resources. In this study, two rice genotypes with contrasting drought tolerance were exposed to soil water deficits, and proteomic changes were observed in mature leaf laminae. Plants were well watered and then switched to conditions of either moderate drought or extreme drought followed by three days of recovery. Proteins were identified and quantified using both label-free and Tandem Mass Tag multiplexing approaches. Several biochemical pathways were significantly altered in response to water deficit. Most notably, the up-regulation of ClpD1 protease responded strongly in the drought-tolerant landrace; this protein is typically involved in heat and osmotic stress response. In contrast, porphyrin and chlorophyll biosynthesis pathways were down-regulated, indicating suppression of the photosynthetic machinery. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    PubMed

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological resilience. In the context of predicted climate change, such adjustments are key factors in sustaining forested catchments in water-limited regions. © 2016 John Wiley & Sons Ltd.

  11. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range-limit context, helps elucidate a mechanistic understanding of range constraints. © 2015 John Wiley & Sons Ltd.

  12. Evidence for xylem adaptations to drought in ancient Cordaites of the Carboniferous

    NASA Astrophysics Data System (ADS)

    Medeiros, J. S.; Hewins, C.; Serbet, R.; Taylor, T. N.; Taylor, E. L.; Ward, J. K.

    2013-12-01

    Ancient land plants faced the same challenges to growth and survival as modern land plants, including the need to resist xylem embolisms imposed by drought in order to main water supply to leaves. Cordaites, considered to be ancestors of the conifers, were some of the first trees on Earth and are often described as the most drought resistant plants in the North American landscape from the Late Missisipian (~320 MYA) to the early Permian (~250 MYA). Cordaites were common in both mires and dry uplands, however, suggesting considerable variation in drought tolerance, but neither the extent of this variation nor the particular xylem features associated with dryland habitats have been previously examined. We measured xylem anatomical traits including tracheid diameter (D) and wall thickness (t), for Cordaites roots and stems from three sites in Central North America: What Cheer IA, Sahara IL and Lewis Creek KY. From these data we calculated mechanical strength (t/b), which was used to estimate vulnerability to drought embolism (P50) based on comparisons with modern plants. In addition, we used the model of Wilson et al. (2008) to calculate the specific conductivity (Ksp), a measure of xylem water transport capacity. D and Ksp of Cordaites stems were similar to that typical of modern conifers but t/b tended to be lower. However, Cordaites exhibited significant variation in D, t, Ksp and t/b across sites. Stem P50 estimated from comparisons with modern plants ranged from approximately -4 at Lewis Creek to as low as -7 MPa at Sahara. We also found differences between stems and roots for Cordaites. Compared to stems, roots had larger D and higher Ksp, but lower t and t/b, resulting in a P50 ranging from approximately -2 to -4 MPa. In the roots of Sahara Cordaites, lower t/b in roots was a result of both significantly larger conduits and significantly thinner conduit walls compared to stems. Thus, hydraulic segmentation in Cordaites could have facilitated their survival in drier upland habitats, as root embolisms early on during drought could have hydraulically isolated the plant from drying soil. Our data suggest that Cordaites were similar in water transport properties but with low to moderate drought tolerance compared to modern conifers. Observation that Cordaites water transport properties varied across sites supports the idea that they were an ecological diverse plant group. Furthermore, Cordaites from Sahara exhibited a suite of traits typical of modern drought adapted plants, including: low D and Ksp combined with greater t, higher t/b and greater differentiation in t/b between roots and stems. Thus, we provide evidence from fossilized plants that associations between xylem features and habitat, as well as some modern drought adaptations, may be nearly as old as trees themselves.

  13. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  14. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance.

    PubMed

    Bocchini, Marika; D'Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C; Palmerini, Carlo A; Beone, Gian M; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize ( Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance.

  15. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance

    PubMed Central

    Bocchini, Marika; D’Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C.; Palmerini, Carlo A.; Beone, Gian M.; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance. PMID:29636765

  16. Patterns and correlates of giant sequoia foliage dieback during California’s 2012–2016 hotter drought

    USGS Publications Warehouse

    Stephenson, Nathan L.; Das, Adrian J.; Ampersee, Nicholas J.; Cahill, Kathleen G.; Caprio, Anthony C.; Sanders, John E.; Williams, A. Park

    2018-01-01

    Hotter droughts – droughts in which unusually high temperatures exacerbate the effects of low precipitation – are expected to increase in frequency and severity in coming decades, challenging scientists and managers to identify which parts of forested landscapes may be most vulnerable. In 2014, in the middle of California’s historically unprecedented 2012–2016 hotter drought, we noticed apparently drought-induced foliage dieback in giant sequoias (Sequoiadendron giganteum Lindl. [Buchholz]) in Sequoia and Kings Canyon national parks, California. Characteristics of the dieback were consistent with a controlled process of drought-induced senescence: younger (distal) shoots remained green while older (proximal) shoots were preferentially shed. As part of an ongoing interdisciplinary effort to understand and map sequoia vulnerability to hotter droughts, we reviewed historical records for evidence of previous foliage dieback events, surveyed dieback along trail corridors in eight sequoia groves, and analyzed tree-ring data from a high- and a low-foliage-dieback area. In sharp contrast to the greatly elevated mortality of other coniferous species found at low and middle elevations, we estimate that <1% of sequoias died during the drought. Foliage dieback was notably elevated in 2014 – the most severe single drought year in our 122-year record – but much lower in subsequent years. We found no historical records of similar foliage dieback during previous droughts. Dieback in 2014 was highly variable both within and among groves, ranging from virtually no dieback in some areas to nearly 50% in others. Dieback was highest (1) at low elevations, probably due to higher temperatures, reduced snowpack, and earlier snowmelt; (2) in areas of low adult sequoia densities, which likely reflect intrinsically more stressful sites; and (3) on steep slopes, probably reflecting reduced water availability. Average sequoia ring widths were narrower at the high-dieback than the low-dieback tree-ring site, but for reasons that remain unclear the sites did not differ in their proportional ring-width responses to past droughts. Collectively, our results suggest that giant sequoia vulnerability to hotter droughts may be spatially quite variable, and that at least some of that variability can be explained by metrics related to site water balance. Future research will focus on integrating our results with physiological and remote-sensing data, including tracking sequoias as they recover from the drought.

  17. Anatomy of Human Interventions on the Alteration of Drought Risk over the Conterminous US

    NASA Astrophysics Data System (ADS)

    He, X.; Wada, Y.; Wanders, N.; Sheffield, J.

    2017-12-01

    Drought attribution focusing on anthropogenic climate change has received wide attentions. However, human interventions (HIs), such as irrigation, reservoir operation, and water use, are less well known. In this study, using the large-scale water resources model PCR-GLOBWB, we perform a suite of high-resolution ( 10 km) simulations over the conterminous US (CONUS) in order to disentangle the fingerprints of individual HI elements on changes of hydrological drought. The results show significant trend differences between scenarios with and without HIs in certain regions of the CONUS. HIs cause increased trends in drought severity for the High Plains, California and Mid-Atlantic region, whereas decreased trend emerges in the California Central Valley, lower Mississippi basin and Pacific Northwest. The mechanism of altered drought severity can be broken down into three individual parts, with irrigation increasing the trend in the High Plains and Central Valley, reservoir operation decreasing the trend in Western US and water use amplifying the trend in the urban areas. Besides the trend analysis, we show the relative contribution of water abstraction and return flows to explain how each HI contributes to enhancing or mitigating drought. Results demonstrate that return flows from agricultural irrigation increase recharge and therefore can alleviate hydrological drought (e.g., by 60-80% in Mississippi embayment). Further examination of the water sources indicates that in these drought alleviation hotspots, non-fossil groundwater dominates the total water abstraction. However, for the hotspots of drought intensification (e.g., southern High Plains), extensive irrigational pumping causes severe depletion of fossil groundwater, which reduces the interaction between baseflow and channel flow, and therefore reduces the total streamflow. Return level analysis is further applied to quantify how different types of HIs could alter the probability of occurrence of recent major drought events. This integrated hydrological modeling framework enables attribution of different HI impacts to probabilistic risk assessment, which in turn helps policy-makers better evaluate their long-term policy development for assessing potential water infrastructure investments in mitigating drought.

  18. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions.

    PubMed

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5-17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.

  19. Extreme Water Deficit in Brazil Detected from Space

    NASA Technical Reports Server (NTRS)

    Vieira Getirana

    2016-01-01

    Extreme droughts have caused significant socioeconomic and environmental damage worldwide. In Brazil, ineffective energy development and water management policies have magnified the impacts of recent severe droughts, which include massive agricultural losses, water supply restrictions, and energy rationing. Spaceborne remote sensing data advance our understanding of the spatiotemporal variability of large-scale droughts and enhance the detection and monitoring of extreme water-related events. In this study, data derived from the Gravity Recovery and Climate Experiment (GRACE) mission are used to detect and quantify an extended major drought over eastern Brazil and provide estimates of impacted areas and region-specific water deficits. Two structural breakpoint detection methods were applied to time series of GRACE-based terrestrial water storage anomalies (TWSA), determining when two abrupt changes occurred. One, in particular, defines the beginning of the current drought. Using TWSA, a water loss rate of 26.1 cmyr21 over southeastern Brazil was detected from 2012 to 2015. Based on analysis of Global Land Data Assimilation System(GLDAS) outputs, the extreme drought is mostly related to lower-than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotranspiration. A reduction of 2023 of precipitation over an extended period of 3 years is enough to raise serious water scarcity conditions in the country. Correlations between monthly time series of both grid-based TWSA and ground-based water storage measurements at 16 reservoirs located within southeastern Brazil varied from 0.42 to 0.82. Differences are mainly explained by reservoir sizes and proximity to the drought nucleus.

  20. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora

    PubMed Central

    Marraccini, Pierre; Vinecky, Felipe; Alves, Gabriel S.C.; Ramos, Humberto J.O.; Elbelt, Sonia; Vieira, Natalia G.; Carneiro, Fernanda A.; Sujii, Patricia S.; Alekcevetch, Jean C.; Silva, Vânia A.; DaMatta, Fábio M.; Ferrão, Maria A.G.; Leroy, Thierry; Pot, David; Vieira, Luiz G.E.; da Silva, Felipe R.; Andrade, Alan C.

    2012-01-01

    The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora. PMID:22511801

  1. Increased germination and growth rates of pea and Zucchini seed by FSG plasma

    NASA Astrophysics Data System (ADS)

    Khatami, Shohreh; Ahmadinia, Arash

    2018-04-01

    Recently, cold atmospheric plasma (CAP) with the unique bio-disinfection features is used in various fields of industry, medicine, and agriculture. The main objectives of this work were to design FSG plasma (a semi-automatic device) and investigate the effect of the cold plasma in the enhancement of the Pea and Zucchini seed germination. Plasma irradiation time was studied to obtain a proper condition for the germination enhancement of seeds. The growth rate was calculated by measuring length of root and stem and dry weight of plants treated by plasma. To investigate drought resistance of plants, all treated and untreated samples were kept in darkness without water for 48 h. From the experimental results, it could be confirmed both drought resistance and germination of seedlings increased after plasma was applied to seeds at 30 s, while seeds treated whiten 60 s showed a decrease in both germination rate and seedling growth.

  2. Hydraulics of high-yield orchard trees: a case study of three Malus domestica cultivars.

    PubMed

    Beikircher, Barbara; De Cesare, Chiara; Mayr, Stefan

    2013-12-01

    The drought tolerance of three economically important apple cultivars, Golden Delicious, Braeburn and Red Delicious, was analysed. The work offers insights into the hydraulics of these high-yield trees and indicates a possible hydraulic limitation of carbon gain. The hydraulic safety and efficiency of branch xylem and leaves were quantified, drought tolerance of living tissues was measured and stomatal regulation, turgor-loss point and osmotic potential at full turgor were analysed. Physiological measurements were correlated with anatomical parameters, such as conduit diameter, cell-wall reinforcement, stomatal density and stomatal pore length. Hydraulic safety differed considerably between the three cultivars with Golden Delicious being significantly less vulnerable to drought-induced embolism than Braeburn and Red Delicious. In Golden Delicious, leaves were less resistant than branch xylem, while in the other cultivars leaves were more resistant than branch xylem. Hydraulic efficiency and xylem anatomical measurements indicate differences in pit properties, which may also be responsible for variations in hydraulic safety. In all three cultivars, full stomatal closure occurred at water potentials where turgor had already been lost and severe loss of hydraulic conductivity as well as damage to living cells had been induced. The consequential negative safety margins pose a risk for hydraulic failure but facilitate carbon gain, which is further improved by the observed high stomatal conductance. Maximal stomatal conductance was clearly seen to be related to stomatal density and size. Based on our results, these three high-yield Malus domestica Borkh. cultivars span a wide range of drought tolerances, appear optimized for maximal carbon gain and, thus, all perform best under well-managed growing conditions.

  3. Drought Effects on Agricultural Yield: Comparison Across Regions and Crop Types

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2014-12-01

    Global agricultural production is dominated by rainfed agriculture, and is therefore prone to disruption from climate extreme weathers. These uncertainties become more problematic when considering the projection of increased drought frequency suggested by several climate models for various world regions. Curiously, few regional analyses of drought impact of food production have been attempted. We collated and analyzed data from the last 25 years to disentangle the effects of drought (i.e. timing, intensity and duration) on agricultural production in different eco-regions and with varying crop types. Our preliminary results suggested greater yield reduction in annual (-21.5%) than perennial plants (-16%), in C4 (-21%) compared to C3 crops (-17%), and when drought occurred during generative (i.e. flowering until maturity; -16.5%) than vegetative stage (-15.5%). Although drought caused similar amounts of yield reduction in both tropical and subtropical regions (i.e. -17%), it carries a greater food security risk in the tropics due to inherently low productivity (i.e. less than half than in the subtropical regions). Consequently, cultivating drought-resistant C3 perennial plants (e.g. sweet potato and cassava) in the tropics could prove a viable adaptive strategy to mitigate the effects of climate variability. In addition, these crops have limited input requirements, are well adapted to nutrient-poor Oxisols and Ultisols of the tropics, and generally outyield cereal crops in the region. Our analysis is ongoing and needs to take into account agronomic traits (e.g. water requirement), as well as the energy and nutritional values (e.g. protein, minerals) of alternative crops. Our results could inform the selection and development of new cultivars for the drought-prone regions of the world.

  4. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants.

    PubMed

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A M; Sudhakar, Chinta

    2018-01-01

    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram ( Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY 3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut ( Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H 2 O 2 ), and superoxide anion (O 2 ∙- ), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD , and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  5. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants

    PubMed Central

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A. M.; Sudhakar, Chinta

    2018-01-01

    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion (O2∙-), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants. PMID:29616059

  6. Global warming accelerates drought-induced forest death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Nathan; Pockman, William

    2013-07-09

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it withmore » much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.« less

  7. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought.

    PubMed

    Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2016-02-01

    Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.

  8. Lack of genetic variation in tree ring delta13C suggests a uniform, stomatally-driven response to drought stress across Pinus radiata genotypes.

    PubMed

    Rowell, Douglas M; Ades, Peter K; Tausz, Michael; Arndt, Stefan K; Adams, Mark A

    2009-02-01

    We assessed the variation in delta(13)C signatures of Pinus radiata D. Don stemwood taken from three genetic trials in southern Australia. We sought to determine the potential of using delta(13)C signatures as selection criteria for drought tolerance. Increment cores were taken from P. radiata and were used to determine the basal area increment and the delta(13)C signature of extracted cellulose. Both growth increment and cellulose delta(13)C were affected by water availability. Growth increment and delta(13)C were negatively correlated suggesting that growth was water-limited. While there was significant genetic variation in growth, there was no significant genetic variation in cellulose delta(13)C of tree rings. This suggests that different genotypes of P. radiata display significant differences in growth and yet respond similarly to drought stress. The delta(13)C response to drought stress was more due to changes in stomatal conductance than to the variation in photosynthetic capacity, and this may explain the lack of genetic variation in delta(13)C. The lack of genetic variation in cellulose delta(13)C of tree rings precludes its use as a selection criterion for drought tolerance among P. radiata genotypes.

  9. Cloning and characterization of a SnRK2 gene from Jatropha curcas L.

    PubMed

    Chun, J; Li, F-S; Ma, Y; Wang, S-H; Chen, F

    2014-12-19

    Although the SnRK2 class of Ser/Thr protein kinases is critical for signal transduction and abiotic stress resistance in plants, there have been no studies to examine SnRK2 in Jatropha curcas L. In the present study, JcSnRK2 was cloned from J. curcas using the rapid amplification of cDNA end technique and characterized. The JcSnRK2 genomic sequence is 2578 base pairs (bp), includes 10 exons and 9 introns, and the 1017-bp open reading frame encodes 338 amino acids. JcSnRK2 was transcribed in all examined tissues, with the highest transcription rate observed in the roots, followed by the leaves and stalks; the lowest rate was observed in flowers and seeds. JcSnRK2 expression increased following abscisic acid treatment, salinity, and drought stress. During a 48-h stress period, the expression of JcSnRK2 showed 2 peaks and periodic up- and downregulation. JcSnRK2 was rapidly activated within 1 h under salt and drought stress, but not under cold stress. Because of the gene sequence and expression similarity of JcSnRK2 to AtSnRK2.8, primarily in the roots, an eukaryotic expression vector containing the JcSnRK2 gene (pBI121-JcSnRK2) was constructed and introduced to the Arabidopsis AtSnRK2.8 mutant snf2.8. JcSnRK2-overexpressing plants exhibited higher salt and drought tolerance, further demonstrating the function of JcSnRK2 in the osmotic stress response. J. curcas is highly resistant to extreme salt and drought conditions and JcSnRK2 was found to be activated under these conditions. Thus, JcSnRK2 is potential candidate for improving crop tolerance to salt and drought stress.

  10. Conifer species adapt to low-rainfall climates by following one of two divergent pathways.

    PubMed

    Brodribb, Timothy J; McAdam, Scott A M; Jordan, Gregory J; Martins, Samuel C V

    2014-10-07

    Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.

  11. An Update on Genetic Modification of Chickpea for Increased Yield and Stress Tolerance.

    PubMed

    Kumar, Manoj; Yusuf, Mohd Aslam; Nigam, Manisha; Kumar, Manoj

    2018-06-26

    Chickpea is a highly nutritious grain legume crop, widely appreciated as a health food, especially in the Indian subcontinent. The major constraints on chickpea production are biotic (Helicoverpa, bruchid, aphid, ascochyta) and abiotic (drought, heat, salt, cold) stresses, which reduce the yield by up to 90%. Various strategies like conventional breeding, molecular breeding, and modern plant breeding have been used to overcome these problems. Conventionally, breeding programs aim at development of varieties that combine maximum number of traits through inter-specific hybridization, wide hybridization, and hybridization involving more than two parents. Breeding is difficult in this crop because of its self-pollinating nature and limited genetic variation. Recent advances in in vitro culture and gene technologies offer unique opportunities to realize the full potential of chickpea production. However, as of date, no transgenic chickpea variety has been approved for cultivation in the world. In this review, we provide an update on the development of genetically modified chickpea plants, including those resistant to Helicoverpa armigera, Callosobruchus maculatus, Aphis craccivora, as well as to drought and salt stress. The genes utilized for development of resistance against pod borer, bruchid, aphid, drought, and salt tolerance, namely, Bt, alpha amylase inhibitor, ASAL, P5CSF129A, and P5CS, respectively, are discussed.

  12. What Will Be the Benefits of Biotech Wheat for European Agriculture?

    PubMed

    Ricroch, Agnès E

    2017-01-01

    In European countries, wheat occupies the largest crop area with high yielding production. France, a major producer and exporter in Europe, ranks the fifth producer worldwide. Biotic stresses are European farmers' major challenges (fungal and viral diseases, and insect pests) followed by abiotic ones such as drought and grain protein composition. During the last 40 years, 1136 scientific articles on biotech wheat were published by USA followed by China, Australia, Canada, and European Union with the UK. European research focuses on pests and diseases resistances using widely marker-assisted selection (MAS). Transgenesis is used in basic research to develop resistance against some fungi (Fusarium head blight) while RNA interference (RNAi) silencing is used against some fungi and virus. Transgenic plants were also transformed with genes from various species for drought tolerance. The UK (mostly with transgenesis and site-specific nucleases) and France (with no transgenic tools but with MAS and site-specific nucleases) are the main countries carrying out research programs for both biotic stress and drought tolerance. Thus, few European countries used transgenesis for gluten protein composition and RNAi-mediated silencing in celiac disease. Because of vandalism field trials of transgenics dropped since 2000. No transgenic wheat is cultivated in Europe for political reasons.

  13. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation

    PubMed Central

    Lambhod, Chanderkala; Pathak, Ankita; Munjal, Ashok K.

    2017-01-01

    ABSTRACT Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors. PMID:29141954

  14. Phosphorous Application Improves Drought Tolerance of Phoebe zhennan.

    PubMed

    Tariq, Akash; Pan, Kaiwen; Olatunji, Olusanya A; Graciano, Corina; Li, Zilong; Sun, Feng; Sun, Xiaoming; Song, Dagang; Chen, Wenkai; Zhang, Aiping; Wu, Xiaogang; Zhang, Lin; Mingrui, Deng; Xiong, Qinli; Liu, Chenggang

    2017-01-01

    Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan . Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.

  15. [Responses of photosynthetic characteristics in leaves of Physocarpus amurensis and P opulifolius to drought stress].

    PubMed

    Xu, Nan; Meng, Xiang Xin-Yue; Zhao, Xi Ming; Ai, Chang; Sun, Jia Qi; Zhang, Si Yu; Zhang, Cong Yang; Zhang, Hui Hui

    2017-06-18

    This experiment was conducted to study the responses of photosynthetic gas exchange parameters and the chlorophyll fluorescence parameters in leaves to soil drought. Furthermore, the drought resistance abilities of the endangered native Physocarpus amurensis and the introduced P. opulifolius as well as their differences were studied. The results showed that the leaves of P. opulifolius wilted significantly, while the leaf water content and water use efficiency of the native P. amurensis were higher on the 7th day after soil drought. Soil drought reduced the net photosynthetic rate, stomatal conductance, and transpiration rate in the leaves of the two Physocarpus species, while the observed decrease of P. opulifolius was significantly higher than that of P. amurensis. On the 7th day after soil drought, the intercellular CO 2 concentration (C i ) of P. opulifolius was higher than that without drought treatment, while the C i of P. amurensis was lower than that without drought treatment. The electron transfer rate (ETR) and photochemical quenching coefficient (q P ) in leaves of P. amurensis were clearly decreased, while differences of the light energy capture efficiency (F v '/F m ') in the PS2 reaction center were non-significant. However, F v '/F m ', ETR, and q P in the lea-ves of P. opulifolius were all significantly decreased to greater extents compared to those in P. amurensis. On the 7th day after soil drought, a non-significant change was observed on the relative variable fluorescence (V J ) at site J of the OJIP curve of P. amurensis leaves, while V J in leaves of P. opuli-folius was increased. The carbon assimilation ability of P. opulifolius leaves and the sensibility of PS2 function to soil drought were significantly higher than those of P. amurensis. The reduction in the photosynthetic capacity induced by soil drought was mainly due to the limitation of the stomatal factors for P. amurensis, but mainly due to the limitation of the non-stomatal factors for P. opulifolius.

  16. Severe Drought Constrains Seedling and Sapling Growth in a Puerto Rican Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    Alonso-Rodríguez, A. M.; Reed, S.; Cavaleri, M. A.; Uriarte, M.; Carter, K.; Bachelot, B.; Wood, T. E.

    2016-12-01

    Global climate change is expected to cause a significant increase in the frequency and severity of extreme climatic events such as droughts and floods. Nevertheless, the potential impacts of these events are poorly understood for tropical forest ecosystems. For Puerto Rico, 2015 was the 6th driest year on record with below average precipitation from April through September, with peak drought conditions occurring in July. Associated reductions in soil moisture persisted for several months after rain resumed. Given that water availability is known to be an important factor regulating the success of tropical seedlings, we evaluated the effects of this drought on the mortality, growth and species composition of woody understory vegetation in a wet tropical forest in Puerto Rico. Seedlings and saplings were monitored within six 12m2 plots, which are part of a field warming experiment (Tropical Responses to Altered Climate Experiment [TRACE]) designed to warm understory plants and soils by 4°C above ambient temperatures. For this study, all plots were considered replicates since measurements were made during the pre-treatment phase of the experiment. The first census was conducted during the drought (May-June 2015), and the individuals were reassessed in November 2015 and June 2016. Comparisons between the two time periods, drought (Jun2015-Nov2015) and post-drought (Nov2015-Jun2016), revealed significant differences for overall growth rates, which were lower during the drought period, but no differences in mortality, abundance, diversity or species composition. Further analyses were conducted for the most dominant species to elucidate their particular responses to drought and if these responses were related to functional traits. Our results suggest that tropical forest seedlings and saplings may limit their growth during drought conditions, and then quickly recover when conditions return to normal. This relatively rapid recovery suggests that Puerto Rican rainforest seedlings may possess a greater resistance to drought than what has been documented for other tropical regions. Future research in these plots will assess the role of experimental warming on the success, growth, and resilience of tropical forest seedlings in the context of a changing climate.

  17. Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass

    PubMed Central

    Jespersen, David; Yu, Jingjin; Huang, Bingru

    2017-01-01

    Acibenzolar-S-methyl (ASM) is a synthetic functional analog of salicylic acid which can induce systemic acquired resistance in plants, but its effects on abiotic stress tolerance is not well known. The objectives of this study were to examine effects of acibenzolar-S-methyl on heat or drought tolerance in creeping bentgrass (Agrostis stolonifera) and to determine major ASM-responsive metabolites and proteins associated with enhanced abiotic stress tolerance. Creeping bentgrass plants (cv. ‘Penncross’) were foliarly sprayed with ASM and were exposed to non-stress (20/15°C day/night), heat stress (35/30°C), or drought conditions (by withholding irrigation) in controlled-environment growth chambers. Exogenous ASM treatment resulted in improved heat or drought tolerance, as demonstrated by higher overall turf quality, relative water content, and chlorophyll content compared to the untreated control. Western blotting revealed that ASM application resulted in up-regulation of ATP synthase, HSP-20, PR-3, and Rubisco in plants exposed to heat stress, and greater accumulation of dehydrin in plants exposed to drought stress. Metabolite profiling identified a number of amino acids, organic acids, and sugars which were differentially accumulated between ASM treated and untreated plants under heat or drought stress, including aspartic acid, glycine, citric acid, malic acid, and the sugars glucose, and fructose. Our results suggested that ASM was effective in improving heat or drought tolerance in creeping bentgrass, mainly through enhancing protein synthesis and metabolite accumulation involved in osmotic adjustment, energy metabolism, and stress signaling. PMID:28744300

  18. Leaf oxygen and Carbon Isotopic Signatures Reflect Drought Resistance and Water Use Efficiency in the C4 Grass, Setaria viridis

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.; Cousins, A. B.

    2014-12-01

    Low water availability is a major constraint in crop production, especially as agriculture is pushed to marginal lands. Therefore, improving drought resistance such as increasing water use efficiency (WUE) through plant breeding is needed to expand the range of soil water availability adequate for food production. With the goal of finding the genomic basis for WUE in C4 grasses, Setaria viridis makes an ideal model species because of its small size, short lifespan, and sequenced genome. Also it is part of the panicoid grass clade, which is one of the most important clades for food and biofuel production. In plant breeding programs, large numbers of genotypes must be quickly screened for drought resistance traits, but there is no well-defined method of screening for WUE in C4 grasses. However, bulk leaf oxygen (Δ18OBL) and carbon (δ13C) isotopic signatures have shown potential as recorders of transpiration rate (E) and stomatal conductance (gs), and combined with biomass production potentially serve as a measure of WUE. Values of Δ18OBL record differences in transpiration rate because leaf water becomes more enriched as transpiration rate decreases, and leaf tissue records the isotopic composition of leaf water in which it is synthesized. Additionally, in C4 plants δ13C values decrease as gs decreases but the change in δ13C in response to gs may not be adequate to tease apart differences in WUE. In this study, we grew S. viridis plants under well-watered and water-limited conditions to determine if Δ18OBL and δ13C could be used as proxies for E and gs, and be used to screen S. viridis for differences in WUE in breeding programs. The Δ18OBL and δ13C were significantly different between well-watered and water-limited plants and correlated with each other and with E, gs, and instantaneous water use efficiency (Anet/gs). Therefore, Δ18OBL and δ13C can be useful proxies to screen genotypes for drought resistance by recording differences in E, gs, and WUE. Measuring Δ18OBL and δ13C are relatively simple and quick, requiring the collection of a single leaf sample from each genotype instead of making laborious gas exchange measurements of E and gs.

  19. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy Y.; Hutyra, Lucy R.; Wofsy, Steven C.; Munger, J. William; Saleska, Scott R.; de Oliveira, Raimundo C., Jr.; de Camargo, Plínio B.

    2012-12-01

    Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajós National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented.

  20. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Combined role of heat and water stresses on wheat, maize and rice inter-annual variability and trend from 1980 to 2010.

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Ceglar, A., , Dr; Dentener, F., , Dr; van den Berg, M., , Dr; Toreti, A., , Dr

    2017-12-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat and maize. In this study, based on data derived from observations, we characterize and attribute the effects of these climate extremes on wheat and maize yield anomalies (at global and national scales) with respect to the mean trend from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (i.e. the Heat Magnitude Day, HMD, and the Standardized Precipitation Evapotranspiration Index, SPEI), we have developed a composite indicator (i.e. the Combined Stress Index, CSI) that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains the 42% and the 50% of the inter-annual wheat and maize production variabilities, respectively. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Compared to maize, and in contrast to common perception, water excess affects wheat production more than drought in several countries. The index definition can be modified in order to quantify the role of combined heat and water stress events occurrence in determining the recorded yield trends as well. Climate change is increasingly limiting maize yields in several countries, especially in Europe and China. A comparable opposite signal, albeit less statistically significant, is found for the USA, which is the main world producer. As for rice, we provide a statistical evidence pointing out to the importance of considering the interactions with the horizontal surface waters fluxes carried out by the rivers. In fact, compared to wheat and maize, the CSI statistical skills in explaining rice production variability are quite reduced. This issue is particularly relevant in paddy fields and flooded lowlands where rice is mainly grown. Therefore, we have modified the procedure including a proxy for the surface freshwater availability i.e. the Standardized River Discharge Index (SRDI), defined in this study. The modified CSI explains the 35% of the global rice production inter-annual anomalies.

  2. Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis.

    PubMed

    Lizana, Carolina; Wentworth, Mark; Martinez, Juan P; Villegas, Daniel; Meneses, Rodrigo; Murchie, Erik H; Pastenes, Claudio; Lercari, Bartolomeo; Vernieri, Paulo; Horton, Peter; Pinto, Manuel

    2006-01-01

    The yield of 24 commercial varieties and accessions of common bean (Phaseolus vulgaris) has been determined at different sites in Chile and Bolivia. Statistical analysis was performed in order to characterize whether a particular variety was more or less stable in yield under different environmental conditions. Amongst these, two varieties have been identified for more detailed study: one variety has a higher than average yield under unstressed conditions but is strongly affected by stress, and another has a reduced yield under unstressed conditions but is less affected by stress. The contrasting rate of abscission of the reproductive organs under drought stress was clearly consistent with these differences. The more tolerant genotype shows a great deal of plasticity at the biochemical and cellular level when exposed to drought stress, in terms of stomatal conductance, photosynthetic rate, abscisic acid synthesis, and resistance to photoinhibition. By contrast, the former lacks such plasticity, but shows an enhanced tendency for a morphological response, the movement of leaves, which appears to be its principal response to drought stress.

  3. Simulated heat waves affected alpine grassland only in combination with drought.

    PubMed

    De Boeck, Hans J; Bassin, Seraina; Verlinden, Maya; Zeiter, Michaela; Hiltbrunner, Erika

    2016-01-01

    The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440-660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv /Fm , a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon.

    PubMed

    Sanda, Satoko; Yoshida, Kazuo; Kuwano, Masayoshi; Kawamura, Tadayuki; Munekage, Yuri Nakajima; Akashi, Kinya; Yokota, Akiho

    2011-07-01

    In plants, drought stress coupled with high levels of illumination causes not only dehydration of tissues, but also oxidative damage resulting from excess absorbed light energy. In this study, we analyzed the regulation of electron transport under drought/high-light stress conditions in wild watermelon, a xerophyte that shows strong resistance to this type of stress. Under drought/high-light conditions that completely suppressed CO(2) fixation, the linear electron flow was diminished between photosystem (PS) II and PS I, there was no photoinhibitory damage to PS II and PS I and no decrease in the abundance of the two PSs. Proteome analyses revealed changes in the abundance of protein spots representing the Rieske-type iron-sulfur protein (ISP) and I and K subunits of NAD(P)H dehydrogenase in response to drought stress. Two-dimensional electrophoresis and immunoblot analyses revealed new ISP protein spots with more acidic isoelectric points in plants under drought stress. Our findings suggest that the modified ISPs depress the linear electron transport activity under stress conditions to protect PS I from photoinhibition. The qualitative changes in photosynthetic proteins may switch the photosynthetic electron transport from normal photosynthesis mode to stress-tolerance mode. Copyright © Physiologia Plantarum 2011.

  5. Impacts of Pacific SSTs on California Winter Precipitation

    NASA Astrophysics Data System (ADS)

    Myoung, B.; Kafatos, M.

    2017-12-01

    Consecutive below-normal precipitation years and resulted multi-year droughts are critical issues as the recent 2012-2015 drought of California caused tremendous socio-economic damages. However, studies on the causes of the multi-year droughts lack. In this study, focusing on the three multi-year droughts (1999-2002, 2007-2009, and 2012-2015) in California during the last two decades, we investigated the atmospheric and oceanic characteristics of the three drought events for winter (December-February, DJF) in order to understand large-scale circulations that are responsible for initiation, maintenance, and termination of the droughts. It was found that abnormally developed upper-tropospheric ridges over the North Pacific are primarily responsible for precipitation deficits and then droughts. These ridges developed when negative sea surface temperature anomalies (SSTs) including La Niña events are pervasive in the tropical Pacific. After 3 or 4 years, the droughts ended under the opposite conditions; upper-tropospheric troughs in the North Pacific with El Niño events in the tropics. Results of Empirical Orthogonal Function (EOF) analysis for the 41-year (1974/75-2014/15) 500 hPa geopotential height in DJF revealed that, during the drought periods, the positive phases of the first and second EOF mode (EOF1+ and EOF2+, respectively) were active one by one, positioning upper-tropospheric ridges over the North Pacific. While EOF1+ is associated with cold tropical central Pacific and negative Pacific Decadal Oscillation (PDO), EOF2+ is associated with the tropical east-west SST dipole pattern (i.e., warm western tropical Pacific and cool eastern tropical Pacific near the southern Peru). Based on these results, we developed a regression model for winter precipitation. While dominant SST factors differ by decades, for the recent two decades (1994/1995-2014/2015), 56% variability of DJF precipitation is explained by the tropical east-west SST dipole pattern and PDO (NINO3.4 signal removed) together. These results suggest that SST variability not only in the western/eastern tropical Pacific but also in the North Pacific independently contribute to precipitation variability and long-term droughts in California.

  6. Temperature is a potent driver of regional forest drought stress, disturbance, and tree mortality (Invited)

    NASA Astrophysics Data System (ADS)

    Williams, P.; Allen, C. D.; Macalady, A.; Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Swetnam, T. W.; Rauscher, S.; Seager, R.; Grissino-Mayer, H.; Dean, J.; Cook, E. R.; Gangodagamage, C.; Cai, M.; McDowell, N. G.

    2013-12-01

    I present a forest drought-stress index (FDSI) for the Southwestern United States using a comprehensive set of regional tree-ring records for AD 1000-2007. Comparing the last century of FDSI data to observed climate records, regional FDSI appears approximately equally influenced by warm-season atmospheric moisture demand (mostly controlled by temperature) and cold-season precipitation, together explaining an astounding 82% of southwestern FDSI variability. When atmospheric moisture demand intensifies, so does forest drought stress. Importantly, intensified moisture demand is not only associated with decreased tree growth; it is also associated with increased mortality. In particular, among a suite of drought-related climate variables, warm-season moisture demand has been the best predictor of annual forest area burned by stand-replacing wildfires since at least 1984. Further, the relationship between moisture demand and burned area is exponential, where incremental increases in moisture demand correspond to increasingly large influences on area burned. Using climate observations to update FDSI through 2013, I show that the current Southwestern drought-stress event, which began in 2000, is the most severe in over 400 years, but not as severe as those that occurred during the infamous 'Megadroughts' of AD 1000-1600. Like the Megadroughts of the past, the current drought will come to an end, but unlike the Megadroughts of the past, the current drought and those that will follow will be superimposed upon a warming-induced trend toward increased moisture demand and intensified forest drought stress, disturbance, and mortality. If atmospheric moisture demand continues increasing as projected by climate models, then mean annual Southwestern US climate by the 2050s will be less suitable for forest growth and survival than it was during the worst years of last millennium's Megadroughts. An intense La-Niña driven drought anomaly superimposed upon mean conditions in the 2050s would lead to forest drought stress, mortality, and wildfire conditions that are far more disastrous than those observed thusfar. These results foreshadow 21st-century transitions of Southwestern forests, and probably forests elsewhere, toward distributions unfamiliar to modern civilization.

  7. Multienvironment Quantitative Trait Loci Analysis for Photosynthate Acquisition, Accumulation, and Remobilization Traits in Common Bean Under Drought Stress

    PubMed Central

    Asfaw, Asrat; Blair, Matthew W.; Struik, Paul C.

    2012-01-01

    Many of the world’s common bean (Phaseolus vulgaris L.) growing regions are prone to either intermittent or terminal drought stress, making drought the primary cause of yield loss under farmers’ field conditions. Improved photosynthate acquisition, accumulation, and then remobilization have been observed as important mechanisms for adaptation to drought stress. The objective of this study was to tag quantitative trait loci (QTL) for photosynthate acquisition, accumulation, and remobilization to grain by using a recombinant inbred line population developed from the Mesoamerican intragenepool cross of drought-susceptible DOR364 and drought-tolerant BAT477 grown under eight environments differing in drought stress across two continents: Africa and South America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for 11 traits associated with drought tolerance. QTL were detected by both a mixed multienvironment model and by composite interval mapping for each environment using a linkage map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. In the multienvironment, mixed model, nine QTL were detected for 10 drought stress tolerance mechanism traits found on six of the 11 linkage groups. Significant QTL × environment interaction was observed for six of the nine QTL. QTL × environment interaction was of the cross-over type for three of the six significant QTL with contrasting effect of the parental alleles across different environments. In the composite interval mapping, we found 69 QTL in total. The majority of these were found for Palmira (47) or Awassa (18), with fewer in Malawi (4). Phenotypic variation explained by QTL in single environments ranged up to 37%, and the most consistent QTL were for Soil Plant Analysis Development (SPAD) leaf chlorophyll reading and pod partitioning traits. QTL alignment between the two detection methods showed that yield QTL on b08 and stem carbohydrate QTL on b05 were most consistent between the multilocation model and the single environment detection. Our results indicate the relevance of QTL detection in the sites in which bean breeding will be undertaken and the importance of photosynthate accumulation as a trait for common bean drought tolerance. PMID:22670228

  8. Impact of Climate Variability on Forest Dynamics in Eastern Amazon: the Role of Large-Scale Droughts, Local Droughts, and Other Disturbances

    NASA Astrophysics Data System (ADS)

    Longo, M.; Hayek, M.; Alves, L. F.; Bonal, D.; Camargo, P. B.; Restrepo-Coupe, N.; Fitzjarrald, D. R.; Knox, R. G.; Saleska, S. R.; da Silva, R.; Stark, S.; Tapajos, R.; Wiedemann, K. T.; Moorcroft, P. R.; Wofsy, S. C.

    2012-12-01

    Droughts in the Amazon - especially in the southern and eastern regions - are likely to become more frequent and severe with climate change, potentially resulting in significant losses of biomass. Therefore, understanding the ecosystem response to past events, such as the major Amazonian drought of 2005, is fundamental to forecast the ecosystem resilience to extreme droughts in case they become more frequent. In this study we evaluate whether and how large-scale droughts affected the forest dynamics both in terms of productivity and in mortality, and what is the relative contribution of other factors, such as windthrow and smaller local droughts, to explain the observed dynamics. We focus on two sites in Eastern Amazon: Tapajos National Forest near Santarem, Brazil (S67), and Guyaflux tower at Paracou Field Station in French Guiana (GYF). We analyzed site-level observations from eddy flux towers, biometric measurements, and simulated the environment with the Ecosystem Demography Model, version 2 (ED2). This model has the advantage to represent the forest structure in size and functional type, and also biophysical processes within and above canopy, making comparisons with observations more direct. Preliminary results indicate that while the large-scale 2005 drought influenced productivity at both sites, local droughts and windthrow had also a significant contribution to the variation in productivity and mortality rates. Mortality in S67 increased significantly between 2005 and 2007, and was slightly higher in GYF between 2006 and 2008. In both cases, however, higher incidence of uprooted and broken trees suggests a significant contribution from windthrow to mortality. In S67, preliminary simulations using ED2 indicate that water stress reduced productivity during a local but severe drought at the end of 2006, followed by an increase in mortality particularly among trees with diameter at breast height less than 35 cm and early successional trees. In GYF, both ED2 and observations show decline in productivity late in the 2008 dry season, which was longer and drier than average, although the impact on mortality was negligible.

  9. Multienvironment quantitative trait Loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress.

    PubMed

    Asfaw, Asrat; Blair, Matthew W; Struik, Paul C

    2012-05-01

    Many of the world's common bean (Phaseolus vulgaris L.) growing regions are prone to either intermittent or terminal drought stress, making drought the primary cause of yield loss under farmers' field conditions. Improved photosynthate acquisition, accumulation, and then remobilization have been observed as important mechanisms for adaptation to drought stress. The objective of this study was to tag quantitative trait loci (QTL) for photosynthate acquisition, accumulation, and remobilization to grain by using a recombinant inbred line population developed from the Mesoamerican intragenepool cross of drought-susceptible DOR364 and drought-tolerant BAT477 grown under eight environments differing in drought stress across two continents: Africa and South America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for 11 traits associated with drought tolerance. QTL were detected by both a mixed multienvironment model and by composite interval mapping for each environment using a linkage map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. In the multienvironment, mixed model, nine QTL were detected for 10 drought stress tolerance mechanism traits found on six of the 11 linkage groups. Significant QTL × environment interaction was observed for six of the nine QTL. QTL × environment interaction was of the cross-over type for three of the six significant QTL with contrasting effect of the parental alleles across different environments. In the composite interval mapping, we found 69 QTL in total. The majority of these were found for Palmira (47) or Awassa (18), with fewer in Malawi (4). Phenotypic variation explained by QTL in single environments ranged up to 37%, and the most consistent QTL were for Soil Plant Analysis Development (SPAD) leaf chlorophyll reading and pod partitioning traits. QTL alignment between the two detection methods showed that yield QTL on b08 and stem carbohydrate QTL on b05 were most consistent between the multilocation model and the single environment detection. Our results indicate the relevance of QTL detection in the sites in which bean breeding will be undertaken and the importance of photosynthate accumulation as a trait for common bean drought tolerance.

  10. Leaf transpiration efficiency of some drought-resistant maize lines

    USDA-ARS?s Scientific Manuscript database

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  11. Identification of Quantitative Trait Loci Controlling Root and Shoot Traits Associated with Drought Tolerance in a Lentil (Lens culinaris Medik.) Recombinant Inbred Line Population

    PubMed Central

    Idrissi, Omar; Udupa, Sripada M.; De Keyser, Ellen; McGee, Rebecca J.; Coyne, Clarice J.; Saha, Gopesh C.; Muehlbauer, Fred J.; Van Damme, Patrick; De Riek, Jan

    2016-01-01

    Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL) analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL (QRSratioIX-2.30) related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 and 28.9% for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL (QLRNIII-98.64) related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL (QSRLIV-61.63) associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labor-intensive conventional breeding methods. PMID:27602034

  12. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions

    PubMed Central

    Gu, Junfei; Yin, Xinyou; Struik, Paul C.; Stomph, Tjeerd Jan; Wang, Huaqi

    2012-01-01

    Photosynthesis is fundamental to biomass production, but sensitive to drought. To understand the genetics of leaf photosynthesis, especially under drought, upland rice cv. Haogelao, lowland rice cv. Shennong265, and 94 of their introgression lines (ILs) were studied at flowering and grain filling under drought and well-watered field conditions. Gas exchange and chlorophyll fluorescence measurements were conducted to evaluate eight photosynthetic traits. Since these traits are very sensitive to fluctuations in microclimate during measurements under field conditions, observations were adjusted for microclimatic differences through both a statistical covariant model and a physiological approach. Both approaches identified leaf-to-air vapour pressure difference as the variable influencing the traits most. Using the simple sequence repeat (SSR) linkage map for the IL population, 1–3 quantitative trait loci (QTLs) were detected per trait–stage–treatment combination, which explained between 7.0% and 30.4% of the phenotypic variance of each trait. The clustered QTLs near marker RM410 (the interval from 57.3 cM to 68.4 cM on chromosome 9) were consistent over both development stages and both drought and well-watered conditions. This QTL consistency was verified by a greenhouse experiment under a controlled environment. The alleles from the upland rice at this interval had positive effects on net photosynthetic rate, stomatal conductance, transpiration rate, quantum yield of photosystem II (PSII), and the maximum efficiency of light-adapted open PSII. However, the allele of another main QTL from upland rice was associated with increased drought sensitivity of photosynthesis. These results could potentially be used in breeding programmes through marker-assisted selection to improve drought tolerance and photosynthesis simultaneously. PMID:21984650

  13. Observed evolution of drought episodes assessed with the Standardized Precipitation Evapotranspiration Index (SPEI) over the Czech Republic

    NASA Astrophysics Data System (ADS)

    Potop, V.; Boroneana, C.; Mozny, M.; Stepanek, P.; Skalak, P.

    2012-04-01

    This paper investigates the spatial and temporal evolution of drought episodes assessed with the Standardized Precipitation Evapotranspiration Index (SPEI) over the Czech Republic. The SPEI were calculated from monthly records of mean temperature and precipitation totals using a dense network of 183 climatological stations for the period 1961-2010. The SPEI were calculated with various lags, 1, 3, 6, 12 and 24 months. The drought at these time scales is relevant for agricultural, hydrological and socio-economic impact, respectively. The study refers at the warm season of the year (April to September). The principal modes of variability of these five time scale SPEI were identified using the analysis of Empirical Orthogonal Functions (EOF). The explained variance of the leading EOF ranges between 71 and 61% as the time scale for calculating the SPEI increases from 1 month to 24 months. The explained variance of EOF2 and EOF3 ranges between 5 to 9% and 4 to 6%, respectively, as the SPEI is calculated for 1 to 24 months. Based on the spatial distribution of the EOF2 and EOF3 for all time scales of SPEI, which correspond to some extend to a regionalization previously used in other studies, we identified three climatically homogeneous regions, corresponding to the altitudes below 400 m, between 401 and 700 m and, above 700 m. These regions correspond to different land use types with mostly intensive agriculture, less intensive agriculture and limited agricultural production and mostly forested, respectively. For these three regions the frequency distribution of the SPEI values in 7 classes of drought category (%) were calculated based on station records in each region. The normal conditions represent around 65% out of the total values of SPEI for all times scales, in all three regions, while moderate drought and moderate wet conditions are almost equally distributed around 10.5 %. Differences in extremely dry conditions (5%) compared to extremely wet conditions (1.5 %) were observed when increasing the SPEI timescales. The drought is classified as local when covers up to 10% of the territory of the Czech Republic, widespread when covers 11-30% of the territory, very widespread when covers 31-50% of the territory and most extended when covers more than 50% of the country territory. We gratefully acknowledge the support of the Ministry of Education, Youth and Sports for projects OC10010.

  14. Ecosystems resilience to drought: indicators derived from time-series of Earth Observation data

    NASA Astrophysics Data System (ADS)

    Garcia, Monica; Fernández, Nestor; Delibes, Miguel

    2013-04-01

    Increasing our understanding of how ecosystems differ in their vulnerability to extreme climatic events such as drought is critical. Resilient ecosystems are capable to cope with climatic perturbations retaining the same essential function, structure and feedbacks. However, if the effect of a perturbation is amplified, abrupt shifts can occur such as in desertification processes. Empirical indicators of robustness and resilience to drought events could be developed from time series of Earth Observation (EO) data. So far, the information content of EO time series for monitoring ecosystem resilience has been underutilized, being mostly limited to detection of greening or rainfall use efficiency (RUE) trends at interannual time-scales. Detection of thresholds, shifts, extremes, and hysteresis processes is still in its infancy using EO data. Only recently some studies are starting to utilize this avenue of research using vegetation indices with some controversy due to the substitution of time by space. In drylands, where ecosystem functioning is largely controlled by rainfall, a key variable for monitoring is evapotranspiration as it connects the energy, water and carbon cycles. It can be estimated using EO data using a surface energy balance approach. In this work we propose the use of new empirical indicators of resilience to drought derived from EO time series. They are extracted from analyses of lagged cross-correlations between rainfall and evapotranspiration anomalies at several time-steps. This allows elucidating as well if an observed extreme ecological response can be attributed to a climate extreme. Additionally, increases in autocorrelation have been proposed to detect losses of resilience or changes in recovery capacity from a perturbation. Our objective was to compare rates of recovery from drought of different ecosystems in the natural park of Doñana (Spain) composed of wetlands, pine forest, shrublands with and without access to groundwater. The recovery was characterized by (i) the duration of -effects (ii) resistance to change and (iii) autocorrelation of the time-series. Time series of 2000-2008 from the satellite MODIS and meteorological stations were used. Evapotranspiration was estimated using a surface energy balance contextual or triangle approach using EO data. Analyses were performed at time-steps from 1 month up to 1 year. Among the four ecosystems, wetlands were the most resilient with a faster rate of recovery from drought but at the same time greater transient responses. Perennial vegetation types showed more resistance to drought but higher persistence of effects into the following year, especially shrublands without access to groundwater. Drought effects in pine forests were minimum as they access groundwater during dry periods. Our results suggest that in a future context of higher rainfall extremes, the long-term success in the case of vegetation types with access to the water table might depend on their capability to balance groundwater extractions and rainfall recharge. In the vegetation types without access to the water table their success will depend on their recovery potential after a drought sequence of several years.

  15. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions

    PubMed Central

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5–17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations. PMID:27379105

  16. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    PubMed Central

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  18. Climate not to blame for African civil wars

    PubMed Central

    Buhaug, Halvard

    2010-01-01

    Vocal actors within policy and practice contend that environmental variability and shocks, such as drought and prolonged heat waves, drive civil wars in Africa. Recently, a widely publicized scientific article appears to substantiate this claim. This paper investigates the empirical foundation for the claimed relationship in detail. Using a host of different model specifications and alternative measures of drought, heat, and civil war, the paper concludes that climate variability is a poor predictor of armed conflict. Instead, African civil wars can be explained by generic structural and contextual conditions: prevalent ethno-political exclusion, poor national economy, and the collapse of the Cold War system. PMID:20823241

  19. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species

    DOE PAGES

    Johnson, Daniel M.; Wortemann, Remi; McCulloh, Katherine A.; ...

    2016-05-04

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are non-redundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf andmore » xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. As a result, this study also highlights the necessity for more research of whole-plant hydraulic physiology to better understand strategies of plant drought tolerance and the critical control points within the hydraulic pathway.« less

  20. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Daniel M.; Wortemann, Remi; McCulloh, Katherine A.

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are non-redundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf andmore » xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. As a result, this study also highlights the necessity for more research of whole-plant hydraulic physiology to better understand strategies of plant drought tolerance and the critical control points within the hydraulic pathway.« less

Top