Sample records for drought-trigger water levels

  1. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak.

    PubMed

    Sebastiana, Mónica; da Silva, Anabela Bernardes; Matos, Ana Rita; Alcântara, André; Silvestre, Susana; Malhó, Rui

    2018-04-01

    We investigated whether the performance of cork oak under drought could be improved by colonization with the ectomycorrhizal fungus Pisolithus tinctorius. Results show that inoculation alone had a positive effect on plant height, shoot biomass, shoot basal diameter, and root growth. Under drought, root growth of mycorrhizal plants was significantly increased showing that inoculation was effective in increasing tolerance to drought. In accordance, mycorrhizal plants subjected to drought showed less symptoms of stress when compared to non-mycorrhizal plants, such as lower concentration of soluble sugars and starch, increased ability to maintain fatty acid content and composition, and increased unsaturation level of membrane lipids. After testing some of the mechanisms suggested to contribute to the enhanced tolerance of mycorrhizal plants to drought, we could not find any by which Pisolithus tinctorius could benefit cork oak, at least under the drought conditions imposed in our experiment. Inoculation did not increase photosynthesis under drought, suggesting no effect in sustaining stomatal opening at low soil water content. Similarly, plant water status was not affected by inoculation suggesting that P. tinctorius does not contribute to an increased plant water uptake during drought. Inoculation did increase nitrogen concentration in plants but it was independent of the water status. Furthermore, no significant mycorrhizal effect on drought-induced ROS production or osmotic adjustment was detected, suggesting that these factors are not important for the improved drought tolerance triggered by P. tinctorius.

  2. Drought characteristics' role in widespread aspen forest mortality across Colorado, USA.

    PubMed

    Anderegg, Leander D L; Anderegg, William R L; Abatzoglou, John; Hausladen, Alexandra M; Berry, Joseph A

    2013-05-01

    Globally documented widespread drought-induced forest mortality has important ramifications for plant community structure, ecosystem function, and the ecosystem services provided by forests. Yet the characteristics of drought seasonality, severity, and duration that trigger mortality events have received little attention despite evidence of changing precipitation regimes, shifting snow melt timing, and increasing temperature stress. This study draws upon stand level ecohydrology and statewide climate and spatial analysis to examine the drought characteristics implicated in the recent widespread mortality of trembling aspen (Populus tremuloides Michx.). We used isotopic observations of aspen xylem sap to determine water source use during natural and experimental drought in a region that experienced high tree mortality. We then drew upon multiple sources of climate data to characterize the drought that triggered aspen mortality. Finally, regression analysis was used to examine the drought characteristics most associated with the spatial patterns of aspen mortality across Colorado. Isotopic analysis indicated that aspens generally utilize shallow soil moisture with little plasticity during drought stress. Climate analysis showed that the mortality-inciting drought was unprecedented in the observational record, especially in 2002 growing season temperature and evaporative deficit, resulting in record low shallow soil moisture reserves. High 2002 summer temperature and low shallow soil moisture were most associated with the spatial patterns of aspen mortality. These results suggest that the 2002 drought subjected Colorado aspens to the most extreme growing season water stress of the past century by creating high atmospheric moisture demand and depleting the shallow soil moisture upon which aspens rely. Our findings highlight the important role of drought characteristics in mediating widespread aspen forest mortality, link this aspen die-off to regional climate change trends, and provide insight into future climate vulnerability of these forests. © 2013 Blackwell Publishing Ltd.

  3. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress

    PubMed Central

    Galmés, Jeroni; Ribas-Carbó, Miquel; Medrano, Hipólito; Flexas, Jaume

    2011-01-01

    Water stress decreases the availability of the gaseous substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by decreasing leaf conductance to CO2. In spite of limiting photosynthetic carbon assimilation, especially in those environments where drought is the predominant factor affecting plant growth and yield, the effects of water deprivation on the mechanisms that control Rubisco activity are unclear. In the present study, 11 Mediterranean species, representing different growth forms, were subject to increasing levels of drought stress, the most severe one followed by rewatering. The results confirmed species-specific patterns in the decrease in the initial activity and activation state of Rubisco as drought stress and leaf dehydration intensified. Nevertheless, all species followed roughly the same trend when Rubisco activity was related to stomatal conductance (gs) and chloroplastic CO2 concentration (Cc), suggesting that deactivation of Rubisco sites could be induced by low Cc, as a result of water stress. The threshold level of Cc that triggered Rubisco deactivation was dependent on leaf characteristics and was related to the maximum attained for each species under non-stressing conditions. Those species adapted to low Cc were more capable of maintaining active Rubisco as drought stress intensified. PMID:21115663

  4. Isoprene production in transgenic tobacco alters isoprenoid, non-structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress.

    PubMed

    Tattini, Massimiliano; Velikova, Violeta; Vickers, Claudia; Brunetti, Cecilia; Di Ferdinando, Martina; Trivellini, Alice; Fineschi, Silvia; Agati, Giovanni; Ferrini, Francesco; Loreto, Francesco

    2014-08-01

    Isoprene strengthens thylakoid membranes and scavenges stress-induced oxidative species. The idea that isoprene production might also influence isoprenoid and phenylpropanoid pathways under stress conditions was tested. We used transgenic tobacco to compare physiological and biochemical traits of isoprene-emitting (IE) and non-emitting (NE) plants exposed to severe drought and subsequent re-watering. Photosynthesis was less affected by drought in IE than in NE plants, and higher rates were also observed in IE than in NE plants recovering from drought. Isoprene emission was stimulated by mild drought. Under severe drought, isoprene emission declined, and levels of non-volatile isoprenoids, specifically de-epoxidated xanthophylls and abscisic acid (ABA), were higher in IE than in NE plants. Soluble sugars and phenylpropanoids were also higher in IE plants. After re-watering, IE plants maintained higher levels of metabolites, but isoprene emission was again higher than in unstressed plants. We suggest that isoprene production in transgenic tobacco triggered different responses, depending upon drought severity. Under drought, the observed trade-off between isoprene and non-volatile isoprenoids suggests that in IE plants isoprene acts as a short-term protectant, whereas non-volatile isoprenoids protect against severe, long-term damage. After drought, it is suggested that the capacity to emit isoprene might up-regulate production of non-volatile isoprenoids and phenylpropanoids, which may further protect IE leaves. © 2014 John Wiley & Sons Ltd.

  5. Effects of climate change on water abstraction restrictions for irrigation during droughts - The UK case

    NASA Astrophysics Data System (ADS)

    Rey Vicario, D.; Holman, I.

    2016-12-01

    The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to more water abstraction restrictions, increasing the need for irrigators to adapt their businesses to increase drought resilience and hence food security.

  6. Death from drought in tropical forests is triggered by hydraulics not carbon starvation

    NASA Astrophysics Data System (ADS)

    Rowland, L.; da Costa, A. C. L.; Galbraith, D. R.; Oliveira, R. S.; Binks, O. J.; Oliveira, A. A. R.; Pullen, A. M.; Doughty, C. E.; Metcalfe, D. B.; Vasconcelos, S. S.; Ferreira, L. V.; Malhi, Y.; Grace, J.; Mencuccini, M.; Meir, P.

    2015-12-01

    Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism (‘carbon starvation’). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world’s longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.

  7. Death from drought in tropical forests is triggered by hydraulics not carbon starvation.

    PubMed

    Rowland, L; da Costa, A C L; Galbraith, D R; Oliveira, R S; Binks, O J; Oliveira, A A R; Pullen, A M; Doughty, C E; Metcalfe, D B; Vasconcelos, S S; Ferreira, L V; Malhi, Y; Grace, J; Mencuccini, M; Meir, P

    2015-12-03

    Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.

  8. Drought events in the Czech Republic: past, present, future

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Trnka, Miroslav; Mikšovský, Jiří; Tolasz, Radim; Dobrovolný, Petr; Řezníčková, Ladislava; Dolák, Lukáš

    2017-04-01

    Droughts are, together with floods, the most important natural extremes in the Czech Republic. In the last c. 20 years even some irregular alternations of years with severe droughts on the one hand (2000, 2003, 2007, 2011-2012, 2014-2015) and severe floods on the other (1997, 1998, 2002, 2005, 2009, 2010, 2013), reflecting greater variability of the water cycle, can be observed. Great attention devoted to the study of past, present and future of droughts in the Czech Republic in a few last years allowed to obtain basic knowledge related to long-term spatial-temporal variability of droughts, combining dendrochronological, documentary and instrumental data, synoptic causes and climate forcings of droughts, case studies of important drought anomalies with significant social-economic consequences (like drought of 1947), impacts of droughts in agriculture, forestry or water management, and future droughts according to model estimates. Basic results obtained are summarised and documented by several typical examples. Such level of drought knowledge became a basis for formulation of the new research project, trying to analyse the climate forcings and triggers involved in the occurrence, course and severity of drought events in the Czech Republic in the context of Central Europe and explanations of their physical mechanisms, based on a 515-year series of drought indices reconstructed from documentary and instrumental data. Presentation of this new project for 2017-2019 is included in the second part of the paper. (This work was supported by Czech Science Foundation, project no. 17-10026S "Drought events in the Czech Republic and their causes".)

  9. Drought induced changes of leaf-to-root relationships in two tomato genotypes.

    PubMed

    Moles, Tommaso Michele; Mariotti, Lorenzo; De Pedro, Leandro Federico; Guglielminetti, Lorenzo; Picciarelli, Piero; Scartazza, Andrea

    2018-07-01

    Water deficit triggers a dynamic and integrated cross-talk between leaves and roots. Tolerant plants have developed several physiological and molecular mechanisms to establish new cell metabolism homeostasis, avoiding and/or escaping from permanent impairments triggered by drought. Two tomato genotypes (a Southern Italy landrace called Ciettaicale and the well-known commercial cultivar Moneymaker) were investigated at vegetative stage to assess leaf and root metabolic strategies under 20 days of water deficit. Physiological and metabolic changes, in terms of ABA, IAA, proline, soluble sugars and phenols contents, occurred in both tomato genotypes under water stress. Overall, our results pointed out the higher plasticity of Ciettaicale to manage plant water status under drought in order to preserve the source-sink relationships. This aim was achieved by maintaining a more efficient leaf photosystem II (PSII) photochemistry, as suggested by chlorophyll fluorescence parameters, associated with a major investment towards root growth and activity to improve water uptake. On the contrary, the higher accumulation of carbon compounds, resulting from reduced PSII photochemistry and enhanced starch reserve mobilization, in leaves and roots of Moneymaker under drought could play a key role in the osmotic adjustment, although causing a feedback disruption of the source-sink relations. This hypothesis was also supported by the different drought-induced redox unbalance, as suggested by H 2 O 2 and MDA contents. This could affect both PSII photochemistry and root activity, leading to a major involvement of NPQ and antioxidant system in response to drought in Moneymaker than Ciettaicale. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Robust Water Supply Infrastructure Development Pathways: What, When and Where Matters the Most? (INVITED)

    NASA Astrophysics Data System (ADS)

    Reed, Patrick; Zeff, Harrison; Characklis, Gregory

    2017-04-01

    Water supply adaptation frameworks that seek robustness must adaptively trigger actions that are contextually appropriate to emerging system observations and avoid long term high regret lock-ins. As an example, emerging water scarcity concerns in southeastern United States are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify regionally coordinated, scarcity-mitigating infrastructure development pathways that trigger time appropriate actions. Mistakes can lead to water shortages, overbuilt stranded assets and possibly financial failures. This presentation uses the Research Triangle area of North Carolina to illustrate the key concerns and challenges that emerged when helping Raleigh, Durham, Cary and Chapel Hill develop their long term water supply infrastructure pathways through 2060. This example shows how the region's water utilities' long term infrastructure pathways are strongly shaped by their short term conservation policies (i.e., reacting to evolving demands) and their ability to consider regional water transfers (i.e., reacting to supply imbalances). Cooperatively developed, shared investments across the four municipalities expand their capacity to use short term transfers to better manage severe droughts with fewer investments in irreversible infrastructure options. Cooperative pathways are also important for avoiding regional robustness conflicts, where one party benefits strongly at the expense of one or more the others. A significant innovation of this work is the exploitation of weekly and annual dynamic risk-of-failure action triggers that exploit evolving feedbacks between co-evolving human demands and regional supplies. These dynamic action triggers provide high levels of adaptivity, tailor actions to their specific context, and motivate the value of joint human—natural system observation systems. The insights from this work have general merit globally for urban regions where adjacent municipalities can benefit from cooperative planning.

  11. Tipping point of a conifer forest ecosystem under severe drought

    NASA Astrophysics Data System (ADS)

    Huang, Kaicheng; Yi, Chuixiang; Wu, Donghai; Zhou, Tao; Zhao, Xiang; Blanford, William J.; Wei, Suhua; Wu, Hao; Ling, Du; Li, Zheng

    2015-02-01

    Drought-induced tree mortality has recently received considerable attention. Questions have arisen over the necessary intensity and duration thresholds of droughts that are sufficient to trigger rapid forest declines. The values of such tipping points leading to forest declines due to drought are presently unknown. In this study, we have evaluated the potential relationship between the level of tree growth and concurrent drought conditions with data of the tree growth-related ring width index (RWI) of the two dominant conifer species (Pinus edulis and Pinus ponderosa) in the Southwestern United States (SWUS) and the meteorological drought-related standardized precipitation evapotranspiration index (SPEI). In this effort, we determined the binned averages of RWI and the 11 month SPEI within the month of July within each bin of 30 of RWI in the range of 0-3000. We found a significant correlation between the binned averages of RWI and SPEI at the regional-scale under dryer conditions. The tipping point of forest declines to drought is predicted by the regression model as SPEItp = -1.64 and RWItp = 0, that is, persistence of the water deficit (11 month) with intensity of -1.64 leading to negligible growth for the conifer species. When climate conditions are wetter, the correlation between the binned averages of RWI and SPEI is weaker which we believe is most likely due to soil water and atmospheric moisture levels no longer being the dominant factor limiting tree growth. We also illustrate a potential application of the derived tipping point (SPEItp = -1.64) through an examination of the 2002 extreme drought event in the SWUS conifer forest regions. Distinguished differences in remote-sensing based NDVI anomalies were found between the two regions partitioned by the derived tipping point.

  12. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants.

    PubMed

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P; McManus, Michael T

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover ( Trifolium repens L.) Kunitz Proteinase Inhibitor ( Tr-KPI ) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1 , Tr-KPI2 , and Tr-KPI5 , was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1 , a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs , particularly Tr-KPI5 , have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  13. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants

    PubMed Central

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P.; McManus, Michael T.

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L.) Kunitz Proteinase Inhibitor (Tr-KPI) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress. PMID:29046678

  14. Asia’s glaciers are a regionally important buffer against drought

    NASA Astrophysics Data System (ADS)

    Pritchard, Hamish D.

    2017-05-01

    The high mountains of Asia—encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains—have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.

  15. Asia's glaciers are a regionally important buffer against drought.

    PubMed

    Pritchard, Hamish D

    2017-05-10

    The high mountains of Asia-encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains-have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.

  16. Drought-Stressed Tomato Plants Trigger Bottom–Up Effects on the Invasive Tetranychus evansi

    PubMed Central

    Ximénez-Embún, Miguel G.; Ortego, Félix; Castañera, Pedro

    2016-01-01

    Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation) have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants (≥1.5 fold for both drought scenarios). Mite performance was also enhanced, as revealed by significant increases of eggs laid (≥2 fold) at 4 days post infestation (dpi), and of mobile forms (≥2 fold and 1.5 fold for moderate and mild drought, respectively) at 10 dpi. The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine) and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales. PMID:26735490

  17. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways.

    PubMed

    Vargas, Lívia; Santa Brígida, Ailton B; Mota Filho, José P; de Carvalho, Thais G; Rojas, Cristian A; Vaneechoutte, Dries; Van Bel, Michiel; Farrinelli, Laurent; Ferreira, Paulo C G; Vandepoele, Klaas; Hemerly, Adriana S

    2014-01-01

    Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant.

  18. Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways

    PubMed Central

    Vargas, Lívia; Santa Brígida, Ailton B.; Mota Filho, José P.; de Carvalho, Thais G.; Rojas, Cristian A.; Vaneechoutte, Dries; Van Bel, Michiel; Farrinelli, Laurent; Ferreira, Paulo C. G.; Vandepoele, Klaas; Hemerly, Adriana S.

    2014-01-01

    Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant. PMID:25489849

  19. Measures of Groundwater Drought from the Long-term Monitoring Data in Korea

    NASA Astrophysics Data System (ADS)

    Chung, E.; Park, J.; Woo, N. C.

    2017-12-01

    Recently, drought has been increased in its severity and frequency along the climate change in Korea. There are several criteria for alarming drought, for instance, based on the no-rainfall days, the amount of stream discharge, and the water levels of reservoirs. However, farmers depending on groundwater still have been suffered in preparing drought especially in the Spring. No-rainfall days continue, groundwater exploitation increases, water table declines, stream discharge decreases, and then the effects of drought become serious. Thus, the drought index based on the groundwater level is needed for the preparedness of drought disaster. Palmer et al.(1965, USGS) has proposed a method to set the threshold for the decline of the groundwater level in 5 stages based on the daily water-level data over the last 30 years. In this study, according to Peters et al.(2003), the threshold of groundwater level was estimated using the daily water-level data at five sites with significant drought experiences in Korea. Water levels and precipitations data were obtained from the national groundwater monitoring wells and the automatic weather stations, respectively, for 10 years from 2005 to 2014. From the water-level changes, the threshold was calculated when the value of the drought criterion (c), the ratio of the deficit below the threshold to the deficit below the average, is 0.3. As a result, the monthly drought days were high in 2009 and 2011 in Uiryeong, and from 2005 to 2008 in Boeun. The validity of the approach and the threshold can be evaluated by comparing calculated monthly drought days with recorded drought in the past. Through groundwater drought research, it is expected that not only surface water also groundwater resource management should be implemented more efficiently to overcome drought disaster.

  20. Using Satellite Data to Build Climate Resilience: A Novel East Africa Drought Monitor

    NASA Astrophysics Data System (ADS)

    Slinski, K.; Hogue, T. S.; McCray, J. E.

    2016-12-01

    East Africa is affected by recurrent drought. The 2015-2016 El Niño triggered a severe drought across East Africa causing serious impacts to regional water security, health, and livelihoods. Ethiopia was the hardest hit, with the United Nations Office for the Coordination of Humanitarian Affairs calling the recent drought the worst in 50 years. Resources to monitor the severity and progression of droughts are a critical component to disaster risk reduction, but are challenging to implement in regions with sparse data collection networks such as East Africa. Satellite data is used by the United Nations Food and Agriculture Organization Global Information and Early Warning System, the USAID Famine Early Warning System, and the Africa Drought and Flood Monitor. These systems use remotely sensed vegetation, soil moisture, and meteorological data to develop drought indices. However, they do not directly monitor impacts to water resources, which is necessary to appropriately target drought mitigation efforts. The current study combines new radar data from the European Space Agency's Sentinel-1 mission with satellite imagery to perform a retrospective analysis of the impact of the 2015-2016 drought in East Africa on regional surface water. Inland water body extents during the drought are compared to historical trends to identify the most severely impacted areas. The developed tool has the potential to support on-the-ground humanitarian relief efforts and to refine predictions of water scarcity and crop impacts from existing hydrologic models and famine early warning systems.

  1. Evaluation of groundwater droughts in Austria

    NASA Astrophysics Data System (ADS)

    Haas, Johannes Christoph; Birk, Steffen

    2015-04-01

    Droughts are abnormally dry periods that affect various aspects of human life on earth, ranging from negative impacts on agriculture or industry, to being the cause for conflict and loss of human life. The changing climate reinforces the importance of investigations into this phenomenon. Various methods to analyze and classify droughts have been developed. These include drought indices such as the Standard Precipitation Index SPI, the Palmer Drought Severity Index PDSI or the Crop Moisture Index CMI. These and other indices consider meteorological parameters and/or their effects on soil moisture. A depletion of soil moisture triggered by low precipitation and high evapotranspiration may also cause reduced groundwater recharge and thus decreasing groundwater levels and reduced groundwater flow to springs, streams, and wetlands. However, the existing indices were generally not designed to address such drought effects on groundwater. Thus, a Standardized Groundwater level Index has recently been proposed by Bloomfied and Marchant (2013). Yet, to our knowledge, this approach has only been applied to consolidated aquifers in the UK. This work analyzes time series of groundwater levels from various, mostly unconsolidated aquifers in Austria in order to characterize the effects of droughts on aquifers in different hydrogeologic and climatic settings as well as under different usage scenarios. In particular, comparisons are made between the water rich Alpine parts of Austria, and the dryer parts situated in the East. The time series of groundwater levels are compared to other data, such as meteorological time series and written weather records about generally accepted phenomena, such as the 2003 European drought and heat wave. Thus, valuable insight is gained into the propagation of meteorological droughts through the soil and the aquifer in different types of hydrogeologic and climatic settings, which provides a prerequisite for the assessment of the aquifers' drought susceptibility in a changing climate. References: Bloomfield, J. P. & Marchant, B. P. Analysis of groundwater drought building on the standardised precipitation index approach Hydrology and Earth System Sciences, 2013, 17, 4769-4787

  2. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  3. Past and future water conflicts in the Upper Klamath Basin: An economic appraisal

    NASA Astrophysics Data System (ADS)

    Boehlert, Brent B.; Jaeger, William K.

    2010-10-01

    The water conflict in the Upper Klamath Basin typifies the growing competition between agricultural and environmental water uses. In 2001, drought conditions triggered Endangered Species Act-related requirements that curtailed irrigation diversions to the Klamath Reclamation Project, costing irrigators tens of millions of dollars. Although this event has significantly elevated the perceived risk of future economic catastrophe in the basin (and therefore the level of conflict among water users), several key changes related to water availability have occurred since 2001. These changes include reduced ESA requirements and increased groundwater pumping capacity, which have lowered the actual risk and severity of future water shortages. In this paper, we use a mathematical programming model to evaluate how these changes alter the likelihood and economic consequences of future shortages. We also consider the effect of more flexible transfers among irrigators via water markets. Our analysis indicates that future drought conditions like those seen in 2001 would have more modest economic impacts than in 2001 and that when combined with contingent groundwater supplementation and water transfer mechanisms such as water markets, both the likelihood and magnitude of economic losses among irrigators would be greatly reduced.

  4. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    NASA Astrophysics Data System (ADS)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  5. High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought.

    PubMed

    Valliere, Justin M; Irvine, Irina C; Santiago, Louis; Allen, Edith B

    2017-10-01

    Hotter, longer, and more frequent global change-type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought-induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean-type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multiyear drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water-use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation-type conversion. © 2017 John Wiley & Sons Ltd.

  6. Tree die-off in response to global change-type drought: Mortality insights from a decade of plant water potential measurements

    USGS Publications Warehouse

    Breshears, D.D.; Myers, O.B.; Meyer, Clifton W.; Barnes, F.J.; Zou, C.B.; Allen, Craig D.; McDowell, N.G.; Pockman, W. T.

    2009-01-01

    Global climate change is projected to produce warmer, longer, and more frequent droughts, referred to here as “global change-type droughts”, which have the potential to trigger widespread tree die-off. However, drought-induced tree mortality cannot be predicted with confidence, because long-term field observations of plant water stress prior to, and culminating in, mortality are rare, precluding the development and testing of mechanisms. Here, we document plant water stress in two widely distributed, co-occurring species, piñon pine (Pinus edulis) and juniper (Juniperus monosperma), over more than a decade, leading up to regional-scale die-off of piñon pine trees in response to global change-related drought. Piñon leaf water potentials remained substantially below their zero carbon assimilation point for at least 10 months prior to dying, in contrast to those of juniper, which rarely dropped below their zero-assimilation point. These data suggest that piñon mortality was driven by protracted water stress, leading to carbon starvation and associated increases in susceptibility to other disturbances (eg bark beetles), a finding that should help to improve predictions of mortality during drought.

  7. Joining forces for food security - Linking earth observation and crowd-sourcing for improved decision-support to aid organizations

    NASA Astrophysics Data System (ADS)

    Enenkel, M.; Dorigo, W.; See, L. M.; Vinck, P.; Pham, P.

    2013-12-01

    Droughts statistically exceed all other natural disasters in spatio-temporal extent, number of people affected or financial loss. Triggered by crop failure, food insecurity is a major manifestation of agricultural drought and water scarcity. However, other socio-economic precursors, such as chronically low levels of disaster preparedness, hampered access to food security or a lack of social safety nets are equally important factors. Consequently, this study is focused on two complementary developments - a new satellite-derived agricultural drought index and a mobile phone application. The Combined Drought Index (CDI) is enhanced by replacing field measurements of temperature and rainfall modelled/assimilated data. The vegetation component is replaced by a smoothed NDVI dataset. A soil moisture component is introduced to close the gap between rainfall deficiencies and the first visible impacts of atmospheric anomalies on vegetation. The mobile phone application enables the validation of drought index outputs and gives aid organizations an opportunity to increase the speed of socio-economic vulnerability assessments. Supported by Doctors without Borders (MSF) this approach aims at decreasing uncertainties in decision-making via a more holistic risk framework.

  8. Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S.: Hydrological Drought in the Anthropocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Wenhua; Zhao, Jianshi; Li, Hong-Yi

    Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation, and use the Standardized Streamflow Index (SSI) to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous US in a warming climate with and without emissions mitigation. Despite themore » uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.« less

  9. 1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets

    PubMed Central

    Maucourt, Mickaël; Deborde, Catherine; Moing, Annick; Gibon, Yves; Goldbach, Heiner E.; Wimmer, Monika A.

    2018-01-01

    Yield formation in regions with intermittent drought periods depends on the plant’s ability to recover after cessation of the stress. The present work assessed differences in metabolic recovery of leaves and roots of drought-stressed sugar beets with high temporal resolution. Plants were subjected to drought for 13 days, and rewatered for 12 days. At one to two-day intervals, plant material was harvested for untargeted 1H-NMR metabolomic profiling, targeted analyses of hexose-phosphates, starch, amino acids, nitrate and proteins, and physiological measurements including relative water content, osmotic potential, electrolyte leakage and malondialdehyde concentrations. Drought triggered changes in primary metabolism, especially increases in amino acids in both organs, but leaves and roots responded with different dynamics to rewatering. After a transient normalization of most metabolites within 8 days, a second accumulation of amino acids in leaves might indicate a stress imprint beneficial in upcoming drought events. Repair mechanisms seemed important during initial recovery and occurred at the expense of growth for at least 12 days. These results indicate that organ specific metabolic recovery responses might be related to distinct functions and concomitant disparate stress levels in above- and belowground organs. With respect to metabolism, recovery was not simply a reversal of the stress responses. PMID:29738573

  10. Tafilalet OASIS System: Water Resources Management and Investigation by GIS and Groundwater Flow Model

    NASA Astrophysics Data System (ADS)

    Bouaamlat, I.; Larabi, A.; Faouzi, M.

    2014-12-01

    The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the TOS, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 28 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a "buffer" during the drought periods.

  11. Regional vegetation die-off in response to global-change-type drought

    USGS Publications Warehouse

    Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, Craig D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M. Lisa; Belnap, J.; Anderson, J.J.; Myers, O.B.; Meyer, Clifton W.

    2005-01-01

    Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.

  12. Regional vegetation die-off in response to global-change-type drought

    PubMed Central

    Breshears, David D.; Cobb, Neil S.; Rich, Paul M.; Price, Kevin P.; Allen, Craig D.; Balice, Randy G.; Romme, William H.; Kastens, Jude H.; Floyd, M. Lisa; Belnap, Jayne; Anderson, Jesse J.; Myers, Orrin B.; Meyer, Clifton W.

    2005-01-01

    Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions. PMID:16217022

  13. Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S.

    NASA Astrophysics Data System (ADS)

    Wan, Wenhua; Zhao, Jianshi; Li, Hong-Yi; Mishra, Ashok; Ruby Leung, L.; Hejazi, Mohamad; Wang, Wei; Lu, Hui; Deng, Zhiqun; Demissisie, Yonas; Wang, Hao

    2017-11-01

    Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation and use the Standardized Streamflow Index to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous U.S. in a warming climate with and without emissions mitigation. Despite the uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.

  14. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying.

    PubMed

    Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C; Wang, Tao; Li, Feng-Min

    2012-08-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.

  15. Introduction of Drought Monitoring and Forecasting System based on Real-time Water Information Using ICT

    NASA Astrophysics Data System (ADS)

    Lee, Y., II; Kim, H. S.; Chun, G.

    2016-12-01

    There were severe damages such as restriction on water supply caused by continuous drought from 2014 to 2015 in South Korea. Through this drought event, government of South Korea decided to establish National Drought Information Analysis Center in K-water(Korea Water Resources Corporation) and introduce a national drought monitoring and early warning system to mitigate those damages. Drought index such as SPI(Standard Precipitation Index), PDSI(Palmer Drought Severity Index) and SMI(Soil Moisture Index) etc. have been developed and are widely used to provide drought information in many countries. However, drought indexes are not appropriate for drought monitoring and early warning in civilized countries with high population density such as South Korea because it could not consider complicated water supply network. For the national drought monitoring and forecasting of South Korea, `Drought Information Analysis System' (D.I.A.S) which is based on the real time data(storage, flowrate, waterlevel etc.) was developed. Based on its advanced methodology, `DIAS' is changing the paradigm of drought monitoring and early warning systems. Because `D.I.A.S' contains the information of water supply network from water sources to the people across the nation and provides drought information considering the real-time hydrological conditions of each and every water source. For instance, in case the water level of a specific dam declines to predetermined level of caution, `D.I.A.S' will notify people who uses the dam as a source of residential or industrial water. It is expected to provide credible drought monitoring and forecasting information with a strong relationship between drought information and the feelings of people rely on water users by `D.I.A.S'.

  16. Changes in grassland plant composition explain 2011 drought-triggered legacy effects

    NASA Astrophysics Data System (ADS)

    Xu, X.; Polley, W.; Hofmockel, K. S.; Wilsey, B. J.

    2016-12-01

    There is widespread recognition that extreme droughts can have profound direct consequences for terrestrial ecosystems, but it is poorly known how common drought legacies are and what ecological factors are associated with them. Legacies are found when ecosystem functioning is below what is expected based on precipitation levels in the time period after a perturbation has ended. Here, we tested for legacies after an extreme drought in pure native and exotic experimental communities in central Texas in a long-term experiment. An extreme drought in 2011 decreased aboveground biomass (AGB) by 92 % and triggered species reorganization that led to a drought legacy in rain-use efficiency (RUE, biomass production per unit of rainfall) that lasted an average of 20 months and 48 months in exotic and native communities, respectively. Across plots within community types, reductions in RUE (DRUE) were smallest in native communities with a high proportion of C3 forb biomass and in exotic communities with a low proportion of short grass biomass. Our results indicate that the 2011 drought exerted differential impacts on plant functional groups and altered plant community composition to the extent that, RUE, an ecosystem function, shifted with possible long-term repercussions.

  17. Evolution of China's water issues as framed in Chinese mainstream media

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Xiong, Y.; Zhang, Z.

    2016-12-01

    There is an urgent need globally to trigger fundamental societal changes in water use away from existing unsustainable paradigms. This paper attempts to understand the evolution of newspaper coverage of water issues in China by analyzing water-related articles in a major national newspaper People's Daily during 1946-2012 using a content analysis approach. The major findings include: 1) water issues have been in relatively important positions in the newspaper; 2) water issues reporting in China has experienced three stages: 1946- the middle of 1980s: flood and drought control and water for food; the middle of 1980s to 1997: water for economic development; and 1998 to the present: water for the environmental sustainability and economic development; 3) water issue reporting in the People's Daily clearly reflected China's top-down water resources management system, no "real" public opinions on water were reported during the study period; 4) The People's Daily is just a wind vane of Chinese mainstream values and policies on water. These findings supported the realist assumption that the societal changes on water issues in China were triggered by a multitude of factors including the biophysical pressure (floods and droughts), political campaign (the Cultural Revolution), macro-economic reform (Reform and Opening-up), water institutional arrangement (the Water Law) and water management reform (the No. 1 Central Document on water reform).

  18. GROUND WATER QUALITY SURROUNDING LAKE TEXOMA DURING SHORT-TERM DROUGHT CONDITIONS

    EPA Science Inventory

    Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three ...

  19. Drought alters timing, quantity, and quality of wood formation in Scots pine.

    PubMed

    Eilmann, Britta; Zweifel, Roman; Buchmann, Nina; Graf Pannatier, Elisabeth; Rigling, Andreas

    2011-05-01

    Drought has been frequently discussed as a trigger for forest decline. Today, large-scale Scots pine decline is observed in many dry inner-Alpine valleys, with drought discussed as the main causative factor. This study aimed to analyse the impact of drought on wood formation and wood structure. To study tree growth under contrasting water supply, an irrigation experiment was installed in a mature Scots pine (Pinus sylvestris L.) forest at a xeric site in a dry inner-Alpine valley. Inter- and intra-annual radial increments as well as intra-annual variations in wood structure of pine trees were studied. It was found that non-irrigated trees had a noticeably shorter period of wood formation and showed a significantly lower increment. The water conduction cells were significantly enlarged and had significantly thinner cell walls compared with irrigated trees. It is concluded that pine trees under drought stress build a more effective water-conducting system (larger tracheids) at the cost of a probably higher vulnerability to cavitation (larger tracheids with thinner cell walls) but without losing their capability to recover. The significant shortening of the growth period in control trees indicated that the period where wood formation actually takes place can be much shorter under drought than the 'potential' period, meaning the phenological growth period.

  20. Use of plant trait data in the ISBA-A-gs model

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe

    2014-05-01

    ISBA-A-gs is a CO2-responsive LSM (Calvet et al., 1998; Gibelin et al., 2006), able to simulate the diurnal cycle of carbon and water vapour fluxes, together with LAI and soil moisture evolution. The various components of ISBA-A-gs are based to a large extent on meta-analyses of trait data. (1) Photosynthesis: ISBA-A-gs uses the model of Goudriaan et al. (1985) modified by Jacobs (1994) and Jacobs et al. (1996). The main parameter is mesophyll conductance (gm). Leaf-level photosynthesis observations were used together with canopy level flux observations to derive gm together with other key parameters of the Jacobs model, including in drought conditions. This permitted implementing detailed representations of the soil moisture stress. Two different types of drought responses are distinguished for both herbaceous vegetation (Calvet, 2000) and forests (Calvet et al., 2004), depending on the evolution of the water use efficiency (WUE) under moderate stress: WUE increases in the early soil water stress stages in the case of the drought-avoiding response, whereas WUE decreases or remains stable in the case of the drought-tolerant response. (2) Plant growth: the leaf biomass is provided by a growth model (Calvet et al., 1998; Calvet and Soussana, 2001) driven by photosynthesis. In contrast to other land surface models, no GDD-based phenology model is used in ISBA-A-gs, as the vegetation growth and senescence are entirely driven by photosynthesis. The leaf biomass is supplied with the carbon assimilated by photosynthesis, and decreased by a turnover and a respiration term. Turnover is increased by a deficit in photosynthesis. The leaf onset is triggered by sufficient photosynthesis levels and a minimum LAI value is prescribed. The maximum annual value of LAI is prognostic, i.e. it can be predicted by the model. LAI is derived from leaf biomass using SLA values. The latter are derived from the leaf nitrogen concentration using plasticity parameters. (3) CO2 effect: the photosynthesis model is able to represent the antitranspirant effect of CO2. The plant growth model represents the fertilization effect of CO2. However, the nitrogen dilution triggered by the CO2 increase has to be represented. A pragmatic solution consists in decreasing the leaf nitrogen concentration parameter in response to CO2, using existing meta-analyses of this parameter (Calvet et al., 2008). The TRY database could be used to improve the current parameterizations, together with the mapping of the model parameters.

  1. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings.

    PubMed

    Duan, Honglang; Duursma, Remko A; Huang, Guomin; Smith, Renee A; Choat, Brendan; O'Grady, Anthony P; Tissue, David T

    2014-07-01

    It has been reported that elevated temperature accelerates the time-to-mortality in plants exposed to prolonged drought, while elevated [CO(2)] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO(2)] and temperature on the inter-dependent carbon and hydraulic characteristics associated with drought-induced mortality in Eucalyptus radiata seedlings grown in two [CO(2)] (400 and 640 μL L(-1)) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO(2)] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO(2)], may be the primary contributors to drought-induced seedling mortality under future climates. © 2013 John Wiley & Sons Ltd.

  2. Exploring the temporal effects of seasonal water availability on the snail kite of Florida: Part III

    USGS Publications Warehouse

    Mooij, Wolf M.; Martin, Julien; Kitchens, Wiley M.; DeAngelis, Donald L.

    2007-01-01

    The Florida snail kite (Rostrhamus sociabilis) is an endangered raptor that occurs as an isolated population, currently of about 2,000 birds, in the wetlands of southern and central Florida, USA. Its exclusive prey species, the apple snail (Pomacea paludosa) is strongly influenced by seasonal changes in water abundance. Droughts during the snail kite breeding season have a direct negative effect on snail kite survival and reproduction, but droughts are also needed to maintain aquatic vegetation types favorable to snail kite foraging for snails. We used a spatially explicit matrix model to explore the effects of temporal variation in water levels on the viability of the snail kite population under different temporal drought regimes in its wetland breeding habitat. We focused on three aspects of variations in water levels that were likely to affect kites: (1) drought frequency; (2) drought duration; and (3) drought timing within the year. We modeled a 31-year historical scenario using four different scenarios in which the average water level was maintained constant, but the amplitude of water level fluctuations was modified. Our results reveal the complexity of the effects of temporal variation in water levels on snail kite population dynamics. Management implications of these results are discussed. In particular, management decisions should not be based on annual mean water levels alone, but must consider the intra-annual variability.

  3. Reducing regional drought vulnerabilities and multi-city robustness conflicts using many-objective optimization under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Trindade, B. C.; Reed, P. M.; Herman, J. D.; Zeff, H. B.; Characklis, G. W.

    2017-06-01

    Emerging water scarcity concerns in many urban regions are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify coordinated, scarcity-mitigating strategies that trigger the appropriate actions needed to avoid water shortages and financial instabilities. This research focuses on the Research Triangle area of North Carolina, seeking to engage the water utilities within Raleigh, Durham, Cary and Chapel Hill in cooperative and robust regional water portfolio planning. Prior analysis of this region through the year 2025 has identified significant regional vulnerabilities to volumetric shortfalls and financial losses. Moreover, efforts to maximize the individual robustness of any of the mentioned utilities also have the potential to strongly degrade the robustness of the others. This research advances a multi-stakeholder Many-Objective Robust Decision Making (MORDM) framework to better account for deeply uncertain factors when identifying cooperative drought management strategies. Our results show that appropriately designing adaptive risk-of-failure action triggers required stressing them with a comprehensive sample of deeply uncertain factors in the computational search phase of MORDM. Search under the new ensemble of states-of-the-world is shown to fundamentally change perceived performance tradeoffs and substantially improve the robustness of individual utilities as well as the overall region to water scarcity. Search under deep uncertainty enhanced the discovery of how cooperative water transfers, financial risk mitigation tools, and coordinated regional demand management must be employed jointly to improve regional robustness and decrease robustness conflicts between the utilities. Insights from this work have general merit for regions where adjacent municipalities can benefit from cooperative regional water portfolio planning.

  4. Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions.

    PubMed

    Battipaglia, Giovanna; De Micco, Veronica; Brand, Willi A; Linke, Petra; Aronne, Giovanna; Saurer, Matthias; Cherubini, Paolo

    2010-12-01

    Woody species in Mediterranean ecosystems form intra-annual density fluctuations (IADFs) in tree rings in response to changes in environmental conditions, especially water availability. Dendrochronology, quantitative wood anatomy and high-resolution isotopic analysis (using a laser ablation technique) were used to characterize IADFs in Arbutus unedo shrubs grown on two sites with different water availability on the island of Elba (Italy). Our findings show that IADF characterization can provide information about the relationship between environmental factors and tree growth at the seasonal level. At the more xeric site, IADFs mainly located in the early and middle parts of the annual ring, showed a decrease in vessel size and an increase in δ(13) C as a result of drought deficit. Opposite trends were found at the more mesic site, with IADFs located at the end of the ring and associated with a lower δ(13) C. Moreover, at the first site, IADFs are induced by drought deficit, while at the second site IADFs are linked with the regrowth in the last part of the growing season triggered by favourable wet conditions. This combined approach is a promising way for dating problematic wood samples and interpreting the phenomena that trigger the formation of IADFs in the Mediterranean environment. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  5. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought

    PubMed Central

    Sosa-Valencia, Guadalupe; Palomar, Miguel; Covarrubias, Alejandra A.

    2017-01-01

    Abstract Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit. PMID:28338719

  6. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery.

    PubMed

    Brossa, Ricard; Pintó-Marijuan, Marta; Francisco, Rita; López-Carbonell, Marta; Chaves, Maria Manuela; Alegre, Leonor

    2015-04-01

    The interaction between enzymatic and non-enzymatic antioxidants, endogenous levels of ABA and ABA-GE, the rapid recuperation of photosynthetic proteins under re-watering as well the high level of antioxidant proteins in previously drought-stressed plants under re-watering conditions, will contribute to drought resistance in plants subjected to a long-term drought stress under Mediterranean field conditions. This work provides an overview of the mechanisms of Cistus albidus acclimation to long-term summer drought followed by re-watering in Mediterranean field conditions. To better understand the molecular mechanisms of drought resistance in these plants, a proteomic study using 2-DE and MALDI-TOF/TOF MS/MS was performed on leaves from these shrubs. The analysis identified 57 differentially expressed proteins in water-stressed plants when contrasted to well watered. Water-stressed plants showed an increase, both qualitatively and quantitatively, in HSPs, and downregulation of photosynthesis and carbon metabolism enzymes. Under drought conditions, there was considerable upregulation of enzymes related to redox homeostasis, DHA reductase, Glyoxalase, SOD and isoflavone reductase. However, upregulation of catalase was not observed until after re-watering was carried out. Drought treatment caused an enhancement in antioxidant defense responses that can be modulated by ABA, and its catabolites, ABA-GE, as well as JA. Furthermore, quantification of protein carbonylation was shown to be a useful marker of the relationship between water and oxidative stress, and showed that there was only moderate oxidative stress in C. albidus plants subjected to water stress. After re-watering plants recovered although the levels of ABA-GE and antioxidant enzymes still remain higher than in well-watered plants. We expect that our results will provide new data on summer acclimation to drought stress in Mediterranean shrubs.

  7. From drought indicators to impacts: developing improved tools for monitoring and early warning with decision-makers in mind

    NASA Astrophysics Data System (ADS)

    Hannaford, Jamie; Barker, Lucy; Svensson, Cecilia; Tanguy, Maliko; Laize, Cedric; Bachmair, Sophie; Tijdeman, Erik; Stahl, Kerstin; Collins, Kevin

    2016-04-01

    Droughts pose a threat to water security in most climate zones and water use sectors. With projections suggesting that droughts will intensify in many parts of the globe, the magnitude of this threat is likely to increase in the future and thus vulnerability of society to drought must be reduced through better preparedness. While the occurrence of drought cannot be prevented in the short term, a number of actions can be taken to reduce vulnerability. Monitoring and early warning (M&EW) systems are often central to drought management strategies aimed at reducing vulnerability, but they are generally less developed than for other hazards. There are many drought indicators available for characterising the hazard but they have only rarely been tested for their ability to capture observed impacts on society or the environment. There is a pressing need to better integrate the physical and social vulnerability elements of drought to improve M&EW systems. The Belmont Forum project DrIVER (Drought Impacts: Vulnerability thresholds in monitoring and Early-warning Research, 2014 - 2016) aims to fill this gap by strengthening the link between natural (hydrometeorological) drought characterisation and ecological and socio-economic impacts on three continents (North America, Europe and Australia). The UK is a key DrIVER case study area. The UK has a well-developed hydrological monitoring programme, but there is currently no national drought focused M&EW system; different actors (water companies, regulators, farmers or industry) typically conduct M&EW for their own particular purposes. In this paper we present the early outcomes of an extensive programme of research designed to provide a scientific foundation for improved M&EW systems for the UK in future. The UK is used here as an example, and the findings could prove useful for other localities seeking to develop M&EW systems. Firstly, we present the results of stakeholder engagement exercises designed to ascertain current use of M&EW and future aspirations. Different stakeholders clearly have different goals for M&EW, but there are a number of common themes, including a desire to better understand the links between the outputs of large-scale M&EW systems (rainfall, river flow, etc), localised triggers used by decision-makers during drought episodes, and actual impacts of drought. Secondly, we present analyses designed to test the utility of a wide range of drought indicators for their use in UK applications. We demonstrate the suitability of standardised indicators (like the SPI) for use in the UK, addressing the suitability of statistical distributions and using these indicators for drought severity quantification and for understanding propagation from meteorological to hydrological drought; all of which are currently poorly understood aspects that are vital for future monitoring. We then address the extent to which these indicators can be used to predict drought impacts, focusing on several sectors (water supply, agriculture and ecosystems). These analyses test which indicators perform best at predicting drought impacts, and seek to identify indicator thresholds that trigger impact occurrence. Unsurprisingly, we found that no single indicator best predicts impacts, and results are domain, sector and season specific. However, we reveal important linkages between indicators and impacts that could enhance the design and delivery of monitoring and forecasting information and its uptake by decision-makers concerned with drought.

  8. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in the model could also affect ground-water levels in the southern Lihue Basin in the future.

  9. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought.

    PubMed

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio

    2016-07-01

    The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Drought of 1980-82 in southeast Florida with comparison to the 1961-62 and 1970-71 droughts

    USGS Publications Warehouse

    Waller, B.G.

    1985-01-01

    South-central Florida (the Kissimmee Basin) experienced a severe drought during 1980-82, causing Lake Okeechobee--the largest surface-water storage area in south Florida--to reach the lowest stage ever recorded, 9.75 feet above sea level, on July 29, 1981. A prolonged period of deficient rainfall extended from June 1980 to March 1982. On the southeast coast, drought conditions were mitigated on August 16, 1981, when rainfall from Tropical Storm Dennis replenished the coastal aquifers and filled the water conservation areas to near scheduled levels. South Dade County was the only area in south Florida not affected by the drought. Rainfall in the southeast coastal areas had a statistical recurrence ranging from 5 to 20 years whereas the recurrence intervals from some stations in south-central Florida were in excess of 100 years. The 1980-81 drought in southeast Flrodia was not as severe as the 1961-62 or the 1970-71 droughts in terms of rainfall conditions or the effect on water levels. The effects of the drought were less severe because of a combination of water-management practices and periodic rainfall during the otherwise rain-deficient period. (USGS)

  11. Extreme drought causes distinct water acidification and eutrophication in the Lower Lakes (Lakes Alexandrina and Albert), Australia

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.; Mao, Rong; Xiong, Lihua; Ye, Chen

    2017-01-01

    Droughts are set to increase in frequency and magnitude with climate change and water extraction, and understanding their influence on ecosystems is urgent in the Holocene. Low rainfall across the Murray-Darling Basin (MDB) of Australia resulted in an unprecedented water level decline in the Lower Lakes (Lakes Alexandrina and Albert) at the downstream end of the river system. A comprehensive data covering pre-drought (2004-2006), drought (2007-2010) and post-drought (2010-2013) was firstly used to unravel drought effects on water quality in the contrasting main parts and margins of the two Lakes, particularly following water acidification resulting from acid sulfate soil oxidation. Salinity, nutrients and Chl-a significantly increased during the drought in the Lake main waterbody, while pH remained stable or showed minor shifts. In contrast to the Lake Alexandrina, total dissolved solid (TDS) and electrical conductivity (EC) during the post-drought more than doubled the pre-drought period in the Lake Albert as being a terminal lake system with narrow and shallow entrance. Rewetting of the exposed pyrite-containing sediment resulted in very low pH (below 3) in Lake margins, which positively contributed to salinity increases via SO42- release and limestone dissolution. Very acidic water (pH 2-3) was neutralised naturally by lake refill, but aerial limestone dosing was required for neutralisation of water acidity during the drought period. The Lower Lakes are characterized as hypereutrophic with much higher salinity, nutrient and algae concentrations than guideline levels for aquatic ecosystem. These results suggest that, in the Lower Lakes, drought could cause water quality deterioration through water acidification and increased nutrient and Chl-a concentrations, more effective water management in the lake catchment is thus crucial to prevent the similar water quality deterioration since the projected intensification of droughts. A comparative assessment on lake resilience and recovering processes should be undertaken with a post-drought monitoring program.

  12. Water stress as a trigger of demand change: exploring the implications for drought planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.; Portney, K. E.

    2015-12-01

    Drought in the Anthropocene is a function of both supply and demand. Despite its importance, demand is typically incorporated into planning models exogenously using a single scenario of demand change over time. Alternatively, demand is incorporated endogenously in hydro-economic models based on the assumption of rationality. However, actors are constrained by limited information and information processing capabilities, casting doubt on the rationality assumption. Though the risk of water shortage changes incrementally with demand growth and hydrologic change, significant shifts in management are punctuated and often linked to periods of stress. The observation of lasting decreases in per capita demands in a number of cities during periods of water stress prompts an alternate hypothesis: the occurrence of water stress increases the tendency of cities to promote and enforce efficient technologies and behaviors and the tendency of users to adopt them. We show the relevance of this hypothesis by building a model of a hypothetical surface water system to answer the following question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? The model links the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). Under SOP, demand is fulfilled unless available supply drops below demand; under HP, water releases are reduced in anticipation of a deficit to decrease the risk of a large shortfall. The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decrease during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies.

  13. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions.

    PubMed

    Shi, Huili; Ma, Wenjun; Song, Junyu; Lu, Mei; Rahman, Siddiq Ur; Bui, Thi Tuyet Xuan; Vu, Dinh Duy; Zheng, Huifang; Wang, Junhui; Zhang, Yi

    2017-11-01

    Many semi-arid ecosystems are simultaneously limited by soil water and nitrogen (N). We conducted a greenhouse experiment to address how N availability impacts drought-resistant traits of Catalpa bungei C. A. Mey at the physiological and molecular level. A factorial design was used, consisting of sufficient-N and deficient-N combined with moderate drought and well-watered conditions. Seedling biomass and major root parameters were significantly suppressed by drought under the deficient-N condition, whereas N application mitigated the inhibiting effects of drought on root growth, particularly that of fine roots with a diameter <0.2 mm. Intrinsic water-use efficiency was promoted by N addition under both water conditions, whereas stable carbon isotope compositions (δ13C) was promoted by N addition only under the well-watered condition. Nitrogen application positively impacted drought adaptive responses including osmotic adjustment and homeostasis of reactive oxygen species, the content of free proline, soluble sugar and superoxide dismutase activity: all were increased upon drought under sufficient-N conditions but not under deficient-N conditions. The extent of abscisic acid (ABA) inducement upon drought was elevated by N application. Furthermore, an N-dependent crosstalk between ABA, jasmonic acid and indole acetic acid at the biosynthesis level contributed to better drought acclimation. Moreover, the transcriptional level of most genes responsible for the ABA signal transduction pathway, and genes encoding the antioxidant enzymes and plasma membrane intrinsic proteins, are elevated upon drought only under sufficient-N addition. These observations confirmed at the molecular level that major adaptive responses to drought are dependent on sufficient N nutrition. Although N uptake was decreased under drought, N-use efficiency and transcription of most genes encoding N metabolism enzymes were elevated, demonstrating that active N metabolism positively contributed drought resistance and growth of C. bungei under sufficient-N conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.

  15. Cooperative drought adaptation: Integrating infrastructure development, conservation, and water transfers into adaptive policy pathways

    NASA Astrophysics Data System (ADS)

    Zeff, Harrison B.; Herman, Jonathan D.; Reed, Patrick M.; Characklis, Gregory W.

    2016-09-01

    A considerable fraction of urban water supply capacity serves primarily as a hedge against drought. Water utilities can reduce their dependence on firm capacity and forestall the development of new supplies using short-term drought management actions, such as conservation and transfers. Nevertheless, new supplies will often be needed, especially as demands rise due to population growth and economic development. Planning decisions regarding when and how to integrate new supply projects are fundamentally shaped by the way in which short-term adaptive drought management strategies are employed. To date, the challenges posed by long-term infrastructure sequencing and adaptive short-term drought management are treated independently, neglecting important feedbacks between planning and management actions. This work contributes a risk-based framework that uses continuously updating risk-of-failure (ROF) triggers to capture the feedbacks between short-term drought management actions (e.g., conservation and water transfers) and the selection and sequencing of a set of regional supply infrastructure options over the long term. Probabilistic regional water supply pathways are discovered for four water utilities in the "Research Triangle" region of North Carolina. Furthermore, this study distinguishes the status-quo planning path of independent action (encompassing utility-specific conservation and new supply infrastructure only) from two cooperative formulations: "weak" cooperation, which combines utility-specific conservation and infrastructure development with regional transfers, and "strong" cooperation, which also includes jointly developed regional infrastructure to support transfers. Results suggest that strong cooperation aids utilities in meeting their individual objectives at substantially lower costs and with less overall development. These benefits demonstrate how an adaptive, rule-based decision framework can coordinate integrated solutions that would not be identified using more traditional optimization methods.

  16. Statistical analysis of long-term hydrologic records for selection of drought-monitoring sites on Long Island, New York

    USGS Publications Warehouse

    Busciolano, Ronald J.

    2005-01-01

    Ground water is the sole source of water supply for more than 3 million people on Long Island, New York. Large-scale ground-water pumpage, sewering systems, and prolonged periods of below-normal precipitation have lowered ground-water levels and decreased stream-discharge in western and central Long Island. No method is currently (2004) available on Long Island that can assess data from the ground-water-monitoring network to enable water managers and suppliers with the ability to give timely warning of severe water-level declines.This report (1) quantifies past drought- and human-induced changes in the ground-water system underlying Long Island by applying statistical and graphical methods to precipitation, stream-discharge, and ground-water-level data from selected monitoring sites; (2) evaluates the relation between water levels in the upper glacial aquifer and those in the underlying Magothy aquifer; (3) defines trends in stream discharge and ground-water levels that might indicate the onset of drought conditions or the effects of excessive pumping; and (4) discusses the long-term records that were used to select sites for a Long Island drought-monitoring network.Long Island’s long-term hydrologic records indicated that the available data provide a basis for development of a drought-monitoring network. The data from 36 stations that were selected as possible drought-monitoring sites—8 precipitation-monitoring stations, 8 streamflow-gaging (discharge) stations, 15 monitoring wells screened in the upper glacial aquifer under water-table (unconfined) conditions, and 5 monitoring wells screened in the underlying Magothy aquifer under semi-confined conditions—indicate that water levels in western parts of Long Island have fallen and risen markedly (more than 15 ft) in response to fluctuations in pumpage, and have declined from the increased use of sanitary- and storm-sewer systems. Water levels in the central and eastern parts, in contrast, remain relatively unaffected compared to the western parts, although the effects of human activity are discernible in the records.The value of each site as a drought-monitoring indicator was assessed through an analysis of trends in the records. Fifty-year annual and monthly data sets were created and combined into three composite-average hydrographs—precipitation, stream discharge, and ground-water levels. Three zones representing the range of human effect on ground-water levels were delineated to help evaluate islandwide hydrologic conditions and to quantify the indices. Data from the three indices can be used to assess current conditions in the ground-water system underlying Long Island and evaluate water-level declines during periods of drought.

  17. Spatio-temporal drought characteristics of the tropical Paraiba do Sul River Basin and responses to the Mega Drought in 2014-2016

    NASA Astrophysics Data System (ADS)

    Nauditt, Alexandra; Metzke, Daniel; Ribbe, Lars

    2017-04-01

    The Paraiba do Sul River Basin (56.000 km2) supplies water to the Brazilian states Sao Paulo and Rio de Janeiro. Their large metropolitan areas were strongly affected by a Mega drought during the years 2014 and 2015 with severe implications for domestic water supply, the hydropower sector as well as for rural agricultural downstream regions. Longer drought periods are expected to become more frequent in the future. However, drought characteristics, low flow hydrology and the reasons for the recurrent water scarcity in this water abundant tropical region are still poorly understood. In order to separate the impact of human abstractions from hydro-climatic and catchment storage related hydrological drought propagation, we assessed the spatio-temporal distribution of drought severity and duration establishing relationships between SPI, SRI and discharge threshold drought anomalies for all subcatchments of the PdS based on a comprehensive hydro-meteorological data set of the Brazilian National Water Agency ANA. The water allocation model "Water Evaluation and Planning System (WEAP)" was established on a monthly basis for the entire Paraiba do Sul river basin incorporating human modifications of the hydrological system as major (hydropower) reservoirs and their operational rules, water diversions and major abstractions. It simulates reasonable discharges and reservoir levels comparable to the observed values. To evaluate the role of climate variability and drought responses for hydrological drought events, scenarios were developed to simulate discharge and reservoir level the impact of 1. Varying meteorological drought frequencies and durations and 2. Implementing operational rules as a response to drought. Uncertainties related to the drought assessment, modelling, parameter and input data were assessed. The outcome of this study for the first time provides an overview on the heterogeneous spatio-temporal drought characteristics of the Paraiba do Sul river basin and useful tools to support decision making and stakeholders as the River Basin Authority AGEVAP (Water Management Agency for the Paraiba do Sul).

  18. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought.

    PubMed

    Yi, Koong; Dragoni, Danilo; Phillips, Richard P; Roman, D Tyler; Novick, Kimberly A

    2017-10-01

    Predicting the impact of drought on forest ecosystem processes requires an understanding of trees' species-specific responses to drought, especially in the Eastern USA, where species composition is highly dynamic due to historical changes in land use and fire regime. Here, we adapted a framework that classifies trees' water-use strategy along the spectrum of isohydric to anisohydric behavior to determine the responses of three canopy-dominant species to drought. We used a collection of leaf-level gas exchange, tree-level sap flux and stand-level eddy covariance data collected in south-central Indiana from 2011 to 2013, which included an unusually severe drought in the summer of 2012. Our goal was to assess how patterns in the radial profile of sap flux and reliance on hydraulic capacitance differed among species of contrasting water-use strategies. In isohydric species, which included sugar maple (Acer saccharum Marsh.) and tulip poplar (Liriodendron tulipifera L.), we found that the sap flux in the outer xylem experienced dramatic declines during drought, but sap flux at inner xylem was buffered from reductions in water availability. In contrast, for anisohydric oak species (Quercus alba L. and Quercus rubra L.), we observed relatively smaller variations in sap flux during drought in both inner and outer xylem, and higher nighttime refilling when compared with isohydric species. This reliance on nocturnal refilling, which occurred coincident with a decoupling between leaf- and tree-level water-use dynamics, suggests that anisohydric species may benefit from a reliance on hydraulic capacitance to mitigate the risk of hydraulic failure associated with maintaining high transpiration rates during drought. In the case of both isohydric and anisohydric species, our work demonstrates that failure to account for shifts in the radial profile of sap flux during drought could introduce substantial bias in estimates of tree water use during both drought and non-drought periods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Drought assessment in the Dongliao River basin: traditional approaches vs. generalized drought assessment index based on water resources systems

    NASA Astrophysics Data System (ADS)

    Weng, B. S.; Yan, D. H.; Wang, H.; Liu, J. H.; Yang, Z. Y.; Qin, T. L.; Yin, J.

    2015-08-01

    Drought is firstly a resource issue, and with its development it evolves into a disaster issue. Drought events usually occur in a determinate but a random manner. Drought has become one of the major factors to affect sustainable socioeconomic development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources systems for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao River basin in northeastern China. The results simulated by the GDAI are compared to observed drought disaster records in the Dongliao River basin. In addition, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approaches in general (i.e., standard precipitation index, Palmer drought severity index and rate of water deficit index). Then, generalized drought times, generalized drought duration, and generalized drought severity were calculated by theory of runs. Application of said runs at various drought levels (i.e., mild drought, moderate drought, severe drought, and extreme drought) during the period 1960-2010 shows that the centers of gravity of them all distribute in the middle reaches of Dongliao River basin, and change with time. The proposed methodology may help water managers in water-stressed regions to quantify the impact of drought, and consequently, to make decisions for coping with drought.

  20. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance.

    PubMed

    Shi, Haitao; Wang, Yanping; Cheng, Zhangmin; Ye, Tiantian; Chan, Zhulong

    2012-01-01

    Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H₂O₂ content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system.

  1. Hydrologic and human aspects of the 1976-77 drought

    USGS Publications Warehouse

    Matthai, Howard F.

    1979-01-01

    The drought of 1976-77 was the most severe in at least 50 years in many parts of the United States. Record low amounts of rainfall, snowfall, and runoff, and increased withdrawals of ground water were prevalent. The use of carry-over storage in reservoirs during 1976 maintained streamflow at near normal levels, but some reservoirs went dry or dropped below the outlet works in 1977. Carry-over storage in the fall of 1977 was very low. Ground-water levels were at or near record low levels in many aquifers, hundreds of wells went dry, and thousands of wells were drilled. Yet no wide-spread deterioration of ground-water quality was reported. Water-quality problems arose in some streams and lakes, but most were localized and of short duration. Water rationing became a way of life in numerous areas , and water was hauled in many rural areas and to a few towns. Water use was affected by legal agreements or decisions, some of which were modified for the duration of the drought, and by the inability of water managers to efficiently manage surface and ground waters as one resource under existing law. There are still many drought related problems to solve and many challenges to be met before the next drought occurs. The advancement of techniques in many fields of endeavor in recent years plus ongoing, planned, and proposed research on drought and the risks involved are promising thrusts that should make it easier to cope with the next drought. (Kosco-USGS)

  2. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner

    PubMed Central

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death. PMID:29449858

  3. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    PubMed

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  4. Perception of drought by surface and groundwater farmers: a perspective from Júcar river basin, Spain

    NASA Astrophysics Data System (ADS)

    Urquijo, Julia; De Stefano, Lucia

    2015-04-01

    Irrigation farmers play a key role in water management at all levels and their role becomes even more relevant during droughts, when water systems are under increased pressure. The analysis of farmers' drought perception and of their strategies to reduce vulnerability can contribute to better understand their behavior and concerns, and to better inform decision-making regarding drought management at different scales. This study focuses on the analysis of perception of and response to drought of surface and groundwater irrigation farmers in two areas of the Jucar River Basin (Spain). The results show that the dependence on surface water or groundwater for irrigation highly influences farmers' perception of drought. For surface water farmers, non-climatic factors (e.g. level of reservoirs or impacts on production) are used to describe drought situations more often that precipitation shortfalls, while groundwater irrigators barely feel affected by rainfall variability. Local strategies are highly adapted to local conditions and usually require collective agreements to coordinate individual actions and make them effective. The vulnerability factors differ depending on the source of water used to support irrigation, e.g. being water quality and the cost of water reasons of concern for groundwater farmers while irrigators using surface water are concerned with temporal water shortages and the economic viability of their agricultural activity. The analysis of how farmers relate to and face drought appears also to catch the main water management issues in the River Basin. The results of the study highlight that local knowledge can inform policy makers on the way farmers cope with drought and it can also support decision-making in enhancing drought and water resource management.

  5. Species-specific intrinsic water use efficiency and its mediation of carbon assimilation during the drought

    NASA Astrophysics Data System (ADS)

    Yi, K.; Wenzel, M. K.; Maxwell, J. T.; Novick, K. A.; Gray, A.; Roman, D. T.

    2015-12-01

    Drought is expected to occur more frequently and intensely in the future, and many studies have suggested frequent and intense droughts can significantly alter carbon and water cycling in forest ecosystems, consequently decreasing the ability of forests to assimilate carbon. Predicting the impact of drought on forest ecosystem processes requires an understanding of species-specific responses to drought, especially in eastern US where species composition is highly dynamic. An emerging approach for describing species-specific drought response is to classify the plant water use strategy into isohydric and anisohydric behaviors. Trees utilizing isohydric behavior regulate water potential by closing stomata to reduce water loss during drought conditions, while anisohydric trees allow water potential to drop by sustaining stomatal conductance, but with the risk of hydraulic failure caused by cavitation of xylem tissues. Since catastrophic cavitation occurs infrequently in the relatively wet eastern U.S., we hypothesize that 1) tree growth of isohydric trees will be more limited during the drought than the anisohydric trees due to decreased stomatal conductance, but 2) variation in intrinsic water use efficient (iWUE) during drought in isohydric trees will mediate the effects of drought on carbon assimilation. We will test these hypotheses by 1) analyzing tree-ring chronologies and dendrometer data on productivity, and 2) estimating intrinsic water use efficiency (iWUE) at multiple scales by analyzing gas exchange data for the leaf-level, inter-annual variability of d13C in tree stem cores for the tree-level, and eddy covariance technique for the stand-level. Our study site is the Morgan-Monroe State Forest (Indiana, USA). A 46 m flux tower has been continuously recording the carbon, water and energy fluxes, and tree diameter has been measured every 2 weeks using dendrometers, since 1998. Additional research, including gas exchange measurements performed during the growing seasons of 2011-2013 and tree-ring chronologies collected in 2014 and 2015, enable us to assess the long-term impact of climate on the ecosystem processes at multiple scales. Finally, the severe drought experienced in this region in 2012 will help us evaluate how productivity and iWUE respond to an especially severe drought event.

  6. 13 CFR 123.3 - How are disaster declarations made?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...

  7. 13 CFR 123.3 - How are disaster declarations made?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...

  8. 13 CFR 123.3 - How are disaster declarations made?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...

  9. 13 CFR 123.3 - How are disaster declarations made?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...

  10. 13 CFR 123.3 - How are disaster declarations made?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...

  11. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  12. Current and future droughts in the Southeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Törnros, Tobias; Menzel, Lucas

    2016-04-01

    The southeastern Mediterranean region (i.e., Israel, Palestine, Jordan and neighboring countries) increasingly suffers significant water stress. The semi-arid to arid conditions with low precipitation amounts, high temperatures and strong interannual climate variability recurrently trigger drought conditions. However, the complex political situation, showing a low degree of mutual cooperation, favors an unsustainable use of water resources and no long-term, cross-boundary water management plan exists. In order to address the drought conditions under current and future climates in this region, the Standardized Precipitation-Evaporation Index (SPEI) was applied. In the first step, the SPEI was derived from spatially interpolated monthly precipitation and temperature data at multiple timescales: accumulated precipitation and monthly mean temperature were considered over a different number of consecutive months. To investigate the performance of the drought index, correlation analyses were conducted with simulated soil moisture and the Normalized Difference Vegetation Index (NDVI) obtained from remote sensing. A comparison with the Standardized Precipitation Index (SPI), i.e., a drought index that does not incorporate temperature, was also conducted. The results show that the choice of the SPEI/SPI timescale is crucial. In our study, the 6-month SPEI has the highest correlation with simulated soil moisture and best explains the interannual variation of the monthly NDVI. Although not extensively addressed, the SPI performs almost just as well and could be applied if temperature data are not available. In the second step, the 6-month SPEI was derived from three climate projections based on the IPCC emission scenario A1B. When comparing the period 2031-2060 with 1961-1990, it is shown that the percentage of time with moderate, severe and extreme drought conditions is projected to strongly increase for all scenarios. Since agriculture is by far the most water demanding sector in the region, the impact of drought on agriculture was addressed. For this, the irrigation water demand during certain drought years was simulated with a hydrological model on a spatial resolution of 1 km. A large increase in the demand for irrigation water was simulated, showing that the agricultural sector is expected to become even more vulnerable to drought in the future.

  13. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    PubMed

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  14. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply

    PubMed Central

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root–shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root–shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency. PMID:27802318

  15. Market Anatomy of a Drought: Modeling Barge and Corn Market Adaptation to Reduced Rainfall and Low Mississippi River Water Levels During the 2012 Midwestern U.S. Drought

    NASA Astrophysics Data System (ADS)

    Foster, B.; Characklis, G. W.; Thurman, W. N.

    2015-12-01

    In mid 2012, a severe drought swept across the Midwest, the heartland of corn production in the U.S. When the drought persisted into late Fall, corn markets were affected in two distinct ways: (1) reduced rainfall led to projected and actual corn yields that were lower than expected and (2) navigation restrictions, a result of low water levels on the Mississippi River, disrupted barge transportation, the most common and inexpensive mode for moving corn to many markets. Both (1) and (2) led to significant financial losses, but due to the complexity of the economic system and the coincidence of two different market impacts, the size of the role that low water levels played wass unclear. This is important, as losses related to low water levels are used to justify substantial investments in dredging activities on the Mississippi River. An "engineering" model of the system, suggests that low water levels should drive large increases in barge and corn prices, while some econometric models suggest that water levels explain very little of the changes in barge rates and corn prices. Employing a model that integrates both the engineering and economic elements of the system indicates that corn prices and barge rates during the drought display spatial and temporal behavior that is difficult to explain using either the engineering or econometric models alone. This integrated model accounts for geographic and temporal variations in drought impacts and identifies unique market responses to four different sets of conditions over the drought's length. Results illustrate that corn and barge price responses during the drought were a product of comingled, but distinct, reactions to both supply changes and navigation disruptions. Results also provide a more structured description of how the economic system that governs corn allocation interacts with the Mississippi River system during drought. As both public and private parties discuss potential managerial or infrastructural methods for keeping shipping channels open during drought, the results of this work should help them to decide how different interventions might benefit or hurt barge operators and/or corn sellers.

  16. POTENTIAL DROUGHT IMPACTS ON ELECTRICITY GENERATION IN TEXAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Y. Eugene; Demissie, Yonas K.; Wigmosta, Mark S.

    2013-09-30

    Many power plants in the Electric Reliability Council of Texas (ERCOT) region require a large amount of water for system cooling. To improve the understanding of potential risks of electricity generation curtailment due to drought, an assessment of water availability and its potential impacts on generation during drought was performed. For this impact analysis, we identified three drought scenarios based on historical drought records and projected climate data from the Geophysical Fluid Dynamics Laboratory global climate model, for greenhouse gas emission scenario A2 defined by the Intergovernmental Panel on Climate Change . The three drought scenarios are (1) 2011 droughtmore » conditions (the worst drought in history), with the current level of water use; (2) a single-year drought (2022) projected for the period of 2020-2030, with the assumed projected water use level for 2030; and (3) a multiple-year drought constructed with climate data for 1950-1957 and water demand projected for 2030. The projected drought scenario in 2022 and the historical droughts in 2011 and 1950-1957 represent two different precipitation patterns in the Texas-Gulf river basin. The hydrologic model constructed for the Texas-Gulf river basin covers most of the ERCOT region. The model incorporates climate and water use data that correspond to three drought scenarios, respectively, to estimate evapotranspiration, water yield from watersheds, stream flow and water storage in reservoirs. Using criteria based on observed (< 50% storage) and predicted (< 55% storage) reservoir data, we identified 15 low-storage reservoirs in 2011, 10 in 2022, and 20 in 1956 (the last year of the multiple-year drought). The power plants that are supported by these reservoirs would be potentially at risk of being derated for thermoelectric cooling because of a lack of water supply. These power plants are located mainly in watersheds near and between Houston and Austin, as well as surrounding Dallas.« less

  17. Water availability as dominant control of heat stress responses in two contrasting tree species.

    PubMed

    Ruehr, Nadine K; Gast, Andreas; Weber, Christina; Daub, Baerbel; Arneth, Almut

    2016-02-01

    Heat waves that trigger severe droughts are predicted to increase globally; however, we lack an understanding of how trees respond to the combined change of extreme temperatures and water availability. Here, we studied the impacts of two consecutive heat waves as well as post-stress recovery in young Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and Robinia pseudoacacia L. (black locust) growing under controlled conditions. Responses were compared under water supply close to the long-term average and under reduced irrigation to represent drought. Exposure to high temperatures (+10 °C above ambient) and vapour pressure deficit strongly affected the trees in terms of water relations, photosynthesis and growth. Douglas-fir used water resources conservatively, and transpiration decreased in response to mild soil water limitation. In black locust, heat stress led to pronounced tree water deficits (stem diameter shrinkage), accompanied by leaf shedding to alleviate stress on the hydraulic system. The importance of water availability during the heat waves became further apparent by a concurrent decline in photosynthesis and stomatal conductance with increasing leaf temperatures in both species, reaching the lowest rates in the heat-drought treatments. Stress severity determined both the speed and the amount of recovery. Upon release of stress, photosynthesis recovered rapidly in drought-treated black locust, while it remained below control rates in heat (t = -2.4, P < 0.05) and heat-drought stressed trees (t = 2.96, P < 0.05). In Douglas-fir, photosynthesis recovered quickly, while water-use efficiency increased in heat-drought trees because stomatal conductance remained reduced (t = -2.92, P < 0.05). Moreover, Douglas-fir was able to compensate for stem-growth reductions following heat (-40%) and heat-drought stress (-68%), but most likely at the expense of storage and other growth processes. Our results highlight the importance of studying heat waves alongside changes in water availability. They further suggest that we should look beyond the actual stress event to identify lagged effects and acclimation processes that may determine tree resilience in the long term. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Hydrologic aspects of the 1998-99 drought in the Delaware River basin

    USGS Publications Warehouse

    Paulachok, Gary N.; Krejmas, Bruce E.; Soden, Heidi L.

    2000-01-01

    A notable drought in the Delaware River Basin during late 1998 and most of 1999 had a major effect on surface and subsurface components of the hydrologic system. The drought conditions resulted from anomalous patterns in the general atmospheric circulation that diverted Gulf and subtropical Atlantic moisture away from the basin. From September 1998 to August 1999, the accumulated precipitation deficiency was greater than 12 inches in the part of the basin above Trenton, N.J. Flows in some streams, mainly in the middle and lower parts of the basin, decreased to levels near or less than those measured during the drought of the 1960's, the most severe drought of record in the basin. On several dates in August 1999, combined storage in three New York City water-supply reservoirs in the upper Delaware River Basin decreased by more than 2 billion gallons per day. The drought had a pronounced effect on ground-water levels, as the combination of below-normal recharge and elevated rates of evapotranspiration produced abnormal water-level declines and record low water levels in much of the basin. The drought was broken in mid-September 1999 when the remnants of Tropical Storm Floyd delivered drenching rains throughout the basin.

  19. Monitoring and Characterizing Seasonal Drought, Water Supply Pattern and Their Impact on Vegetation Growth Using Satellite Soil Moisture Data, GRACE Water Storage and In-situ Observations.

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2015-12-01

    We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE, in-situ groundwater measurements and atmospheric moisture data to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depth in relation to satellite based vegetation metrics, including vegetation greenness (NDVI) measures from MODIS and related higher order productivity (GPP) before, during and following the major drought events observed in the continental US for the past 14 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, NDVI and GPP. We study how changes in atmosphere moisture stress and coupling of water storage components at different depth impact on the spatial and temporal correlation between TWS, SM and vegetation metrics. In Texas, we find that surface SM and GRACE TWS agree with each other in general, and both capture the underlying water supply constraints to vegetation growth. Triggered by a transit increase in precipitation following the 2011 hydrological drought, vegetation productivity in Texas shows more sensitivity to surface SM than TWS. In the Great Plains, the correspondence between TWS and vegetation productivity is modulated by temperature-induced atmosphere moisture stress and by the coupling between surface soil moisture and groundwater through irrigation.

  20. A new index for identifying socioeconomic drought events under climate change over the East River basin in China

    NASA Astrophysics Data System (ADS)

    Shi, H.; Chen, J.; Wang, K.; Niu, J.

    2017-12-01

    Drought, which means severe water deficiencies, is a complex natural hazard that may have destructive damages on societal properties and lives. Generally, socioeconomic drought occurs when the water resources systems cannot meet the water demands due to a weather-related shortfall in water supply to societies. This paper aims to propose a new index (i.e., socioeconomic drought index (SEDI)) for identifying socioeconomic drought events on different levels (i.e., slight, moderate, severe and extreme) under climate change through considering the gap between water supply and demand. First, the minimum in-stream water requirement (MWR) is determined through comprehensively considering the requirements of water quality, ecology, navigation and water supply. Second, according to the monthly water deficit calculated as the monthly streamflow data minus the MWR, drought month can be identified. Third, according to the cumulative water deficit derived from the monthly water deficit, drought duration (i.e., the number of continuous drought months) can be detected. Fourth, the SEDI of each socioeconomic drought event can be calculated through integrating the impacts of the cumulative water deficit and drought duration. The study area is the East River basin in South China, and the impact of a multi-year reservoir (i.e., the Xinfengjiang Reservoir) on drought is also analyzed. For historical and future drought analysis, it is concluded that the proposed SEDI is feasible to identify socioeconomic drought events. The results show that a number of socioeconomic drought events (including some extreme ones) may occur during 2020-2099, and the appropriate reservoir operation can significantly ease such situation.

  1. Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses

    Treesearch

    Henry D. Adams; Charles H. Luce; David D. Breshears; Craig D. Allen; Markus Weiler; V. Cody Hale; Alistair M. S. Smith; Travis E. Huxman

    2012-01-01

    Widespread, rapid, drought-, and infestation-triggered tree mortality is emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. The ecohydrological consequences of forest die-off have been little studied and remain highly uncertain. To explore this knowledge gap, we apply the extensive...

  2. Exploring Tradeoffs in Demand-side and Supply-side Management of Urban Water Resources using Agent-based Modeling and Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.

    2015-12-01

    Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.

  3. Multi-year predictability of climate, drought, and wildfire in southwestern North America.

    PubMed

    Chikamoto, Yoshimitsu; Timmermann, Axel; Widlansky, Matthew J; Balmaseda, Magdalena A; Stott, Lowell

    2017-07-26

    Past severe droughts over North America have led to massive water shortages and increases in wildfire frequency. Triggering sources for multi-year droughts in this region include randomly occurring atmospheric blocking patterns, ocean impacts on atmospheric circulation, and climate's response to anthropogenic radiative forcings. A combination of these sources translates into a difficulty to predict the onset and length of such droughts on multi-year timescales. Here we present results from a new multi-year dynamical prediction system that exhibits a high degree of skill in forecasting wildfire probabilities and drought for 10-23 and 10-45 months lead time, which extends far beyond the current seasonal prediction activities for southwestern North America. Using a state-of-the-art earth system model along with 3-dimensional ocean data assimilation and by prescribing the external radiative forcings, this system simulates the observed low-frequency variability of precipitation, soil water, and wildfire probabilities in close agreement with observational records and reanalysis data. The underlying source of multi-year predictability can be traced back to variations of the Atlantic/Pacific sea surface temperature gradient, external radiative forcings, and the low-pass filtering characteristics of soils.

  4. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    PubMed

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome may respond with different extent to individual stress components. Their contrasting behavior in response to temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress. Disentangling the complex relationships between transcriptome and metabolome in response to stress is an enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for future mechanistic analyses.

  5. Droughts, dry spells, low water levels and their environmental-social consequences in late medieval Hungary (and Croatia)

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea; Nikolic, Zrinka

    2016-04-01

    Based on medieval, contemporary evidence, in the presentation 14th-15th-century droughts, dry spells and documented low water-level events of large rivers (e.g. Danube, Tisza) and their detected environmental and social consequences are discussed in more detail, with special emphasis on the years of 1361-1364, 1393-1394, 1440, the early 1540s, 1474, 1479-1480 and 1494. The poster presentation is centred around the following topics: - magnitude, intensity and frequency of droughts and dry spells (in comparison with famous 18th-19th-century drought periods); - provide information (and a comparison) on Central European parallels; - other natural hazards combined with drought and dry spells (e.g. convective events); - the relationship of multiannual water-deficits and locust invasions, their intensity and documented further impacts; - the consequences of droughts, dry spells and low water levels on society, with special emphasis on food production (e.g. bad harvests, grazing permissions, high prices, threatening food shortage), transportation problems (esp. salt transportation), military defence (Ottoman Turkish attacks) and their further social effects (e.g. land-ownership debates; royal intervention and export prohibition).

  6. Analysis of Natural Variation in Bermudagrass (Cynodon dactylon) Reveals Physiological Responses Underlying Drought Tolerance

    PubMed Central

    Cheng, Zhangmin; Ye, Tiantian; Chan, Zhulong

    2012-01-01

    Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H2O2 content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system. PMID:23285294

  7. Isohydric species are not necessarily more carbon limited than anisohydric species during drought.

    PubMed

    Garcia-Forner, N; Biel, C; Savé, R; Martínez-Vilalta, J

    2017-04-01

    Isohydry (i.e., strong regulation of leaf water potential, Ψl) is commonly associated with strict stomatal regulation of transpiration under drought, which in turn is believed to minimize hydraulic risk at the expense of reduced carbon assimilation. Hence, the iso/anisohydric classification has been widely used to assess drought resistance and mortality mechanisms across species, with isohydric species being hypothetically more prone to carbon starvation and anisohydric species more vulnerable to hydraulic failure. These hypotheses and their underlying assumptions, however, have rarely been tested under controlled, experimental conditions. Our objective is to assess the physiological mechanisms underlying drought resistance differences between two co-occurring Mediterranean forest species with contrasting drought responses: Phillyrea latifolia L. (anisohydric and more resistant to drought) and Quercus ilex L. (isohydric and less drought resistant). A total of 100 large saplings (50 per species) were subjected to repeated drought treatments for a period of 3 years, after which Q. ilex showed 18% mortality whereas no mortality was detected in P. latifolia. Relatively isohydric behavior was confirmed for Q. ilex, but higher vulnerability to cavitation in this species implied that estimated embolism levels were similar across species (12-52% in Q. ilex vs ~30% in P. latifolia). We also found similar seasonal patterns of stomatal conductance and assimilation between species. If anything, the anisohydric P. latifolia tended to show lower assimilation rates than Q. ilex under extreme drought. Similar growth rates and carbon reserves dynamics in both species also suggests that P. latifolia was as carbon-constrained as Q. ilex. Increasing carbon reserves under extreme drought stress in both species, concurrent with Q. ilex mortality, suggests that mortality in our study was not triggered by carbon starvation. Our results warn against making direct connections between Ψl regulation, stomatal behavior and the mechanisms of drought-induced mortality in plants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation.

    PubMed

    Leitman, S; Pine, W E; Kiker, G

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  9. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation

    NASA Astrophysics Data System (ADS)

    Leitman, S.; Pine, W. E.; Kiker, G.

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  10. Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Linlin; Wang, Hongrui; Wang, Cheng

    Drought risk analysis is essential for regional water resource management. In this study, the probabilistic relationship between precipitation and meteorological drought in Beijing, China, was calculated under three different precipitation conditions (precipitation equal to, greater than, or less than a threshold) based on copulas. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated based on monthly total precipitation and monthly mean temperature data. The trends and variations in the SPEI were analysed using Hilbert-Huang Transform (HHT) and Mann-Kendall (MK) trend tests with a running approach. The results of the HHT and MK test indicated a significant decreasing trend in the SPEI.more » The copula-based conditional probability indicated that the probability of meteorological drought decreased as monthly precipitation increased and that 10 mm can be regarded as the threshold for triggering extreme drought. From a quantitative perspective, when R ≤ mm, the probabilities of moderate drought, severe drought, and extreme drought were 22.1%, 18%, and 13.6%, respectively. This conditional probability distribution not only revealed the occurrence of meteorological drought in Beijing but also provided a quantitative way to analyse the probability of drought under different precipitation conditions. Furthermore, the results provide a useful reference for future drought prediction.« less

  11. Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China

    DOE PAGES

    Fan, Linlin; Wang, Hongrui; Wang, Cheng; ...

    2017-05-16

    Drought risk analysis is essential for regional water resource management. In this study, the probabilistic relationship between precipitation and meteorological drought in Beijing, China, was calculated under three different precipitation conditions (precipitation equal to, greater than, or less than a threshold) based on copulas. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated based on monthly total precipitation and monthly mean temperature data. The trends and variations in the SPEI were analysed using Hilbert-Huang Transform (HHT) and Mann-Kendall (MK) trend tests with a running approach. The results of the HHT and MK test indicated a significant decreasing trend in the SPEI.more » The copula-based conditional probability indicated that the probability of meteorological drought decreased as monthly precipitation increased and that 10 mm can be regarded as the threshold for triggering extreme drought. From a quantitative perspective, when R ≤ mm, the probabilities of moderate drought, severe drought, and extreme drought were 22.1%, 18%, and 13.6%, respectively. This conditional probability distribution not only revealed the occurrence of meteorological drought in Beijing but also provided a quantitative way to analyse the probability of drought under different precipitation conditions. Furthermore, the results provide a useful reference for future drought prediction.« less

  12. Socio-hydrologic perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    NASA Astrophysics Data System (ADS)

    Han, S.; Tian, F.; Liu, Y.

    2017-12-01

    This study presents a historical analysis from socio-hydrologic perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain. The history of the "pendulum swing" for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to the balance). The system evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced the community sensitivity of humans toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural condition to groundwater exploiting. The drought from 1997 to 2002 resulted a pulse in further groundwater abstraction and dramatic aquifer deterioration, and the community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system is returning the balance through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restorations of groundwater environment would be implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid the irreversible change of the system.

  13. Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tian, Fuqiang; Liu, Ye; Duan, Xianhui

    2017-07-01

    This paper presents a historical analysis from socio-hydrological perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain (NCP). The history of the pendulum swing for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to equilibrium). The system's evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion, and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced community sensitivity toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural conditions to groundwater exploiting. The drought from 1997 to 2002 resulted in a surge in further groundwater abstraction and dramatic aquifer deterioration, and community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system returns to equilibrium through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restoration of groundwater environment was implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid irreversible change in the system.

  14. Civil-Military Collaboration to Address Adaptation to Climate Change in South America

    DTIC Science & Technology

    2011-03-01

    drought, water scarcity and soil degradation, intensify land use conflicts (especially in the Andean and Amazon Regions) and trigger environmentally...of the territories , climatic variability, and food scarcity are common problems for many of the countries of the region, which are in dire need to...resource conflicts. Because climate change can further affect such environmental issues as water, forests , soil fertility, hunger, disease, health, and

  15. Water Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis thaliana (L.)

    PubMed Central

    Mewis, Inga; Khan, Mohammed A. M.; Glawischnig, Erich; Schreiner, Monika; Ulrichs, Christian

    2012-01-01

    Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne brassicae (L.). Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid. PMID:23144921

  16. Impact of artificial recharge and drought in Tafilalet Oasis system: First investigation by GIS and groundwater modeling

    NASA Astrophysics Data System (ADS)

    Bouaamlat, I.; Larabi, A.; Faouzi, M.

    2013-12-01

    The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Because of this situation, the region has one of the largest palms of North Africa. Thus there is an agricultural activity that is practiced in a 21 irrigation areas whose size rarely exceeds 2,000 hectare. Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the Tafilalet oasis system aquifer, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought, using for the first time the Modflow code. This study takes into account the most possible real hydrogeological conditions and using the geographical information system (GIS) for the organisation and treatment of data and applying a multidisciplinary approach combining geostatistical and hydrogeological modeling. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 14 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a 'buffer' during the drought periods.

  17. Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach

    NASA Astrophysics Data System (ADS)

    Ruehr, N. K.; Law, B. E.; Quandt, D.; Williams, M.

    2014-01-01

    Increasing summer temperatures and a reduction in precipitation will enhance drought stress in Mediterranean and semi-arid ecosystems. Predicting the net effects on forests' carbon and water balance will depend on our ability to disentangle the sensitivity of component fluxes responding to increasing soil and atmospheric drought. Here we studied carbon and water dynamics in a semi-arid regenerating ponderosa pine forest using field observations and process based modeling. Field observations of two summer dry seasons were used to calibrate a soil-plant-atmosphere (SPA) model. In addition, the ecosystem's response to reduced soil drought was quantified based on a field watering experiment and evaluated with the model. Further, the SPA model was used to estimate the relative effects of increasing soil and atmospheric drought over time, by simulating temperature and precipitation scenarios for 2040 and 2080. The seasonality and drought response of ecosystem fluxes was well captured by the calibrated SPA model. Dramatic increases in summer water availability during seasonal drought had a small effect on pine physiology in both the watering experiment and the model. This clearly demonstrates that atmospheric drought induced a strong limitation on carbon uptake in young ponderosa pine due to tight regulation of stomatal conductance. Moreover, simulations showed that net ecosystem exchange (NEE) and gross primary productivity (GPP) were about three times more affected by summer heat and increased evaporative demand than by reductions in summer precipitation. Annual NEE decreased by 38% in response to extreme summer conditions as predicted to occur in 2080 (June-August: +4.5 °C), because of a strong decline in GPP (-17%) while heterotrophic respiration was relatively unaffected (-1%). Considering warming trends across all seasons (September-May: +3 °C and June-August: +4.5 °C), the negative drought effects were largely compensated by an earlier initiation of favorable growing conditions and bud break, enhancing early season GPP and needle biomass. An adverse effect, triggered by changes in early season allocation patterns, was the decline of wood and root biomass. This imbalance may increase water stress over the long-term to a threshold at which ponderosa pine may not survive, and highlights the need for an integrated process understanding of the combined effects of trends and extremes.

  18. Drought and the water-energy nexus in Texas

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Duncan, Ian; Reedy, Robert C.

    2013-12-01

    Texas experienced the most extreme drought on record in 2011 with up to 100 days of triple digit temperatures resulting in record electricity demand and historically low reservoir levels. We quantified water and electricity demand and supply for each power plant during the drought relative to 2010 (baseline). Drought raised electricity demands/generation by 6%, increasing water demands/consumption for electricity by 9%. Reductions in monitored reservoir storage <50% of capacity in 2011 would suggest drought vulnerability, but data show that the power plants were flexible enough at the plant level to adapt by switching to less water-intensive technologies. Natural gas, now ˜50% of power generation in Texas, enhances drought resilience by increasing the flexibility of power plant generators, including gas combustion turbines to complement increasing wind generation and combined cycle generators with ˜30% of cooling water requirements of traditional steam turbine plants. These reductions in water use are projected to continue to 2030 with increased use of natural gas and renewables. Although water use for gas production is controversial, these data show that water saved by using natural gas combined cycle plants relative to coal steam turbine plants is 25-50 times greater than the amount of water used in hydraulic fracturing to extract the gas.

  19. Human water consumption intensifies hydrological drought worldwide

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Van Beek, L. P.; Wanders, N.; Bierkens, M. F.

    2012-12-01

    Over the past decades, human water consumption has more than doubled, and reduced streamflow over various regions of the world. However, it remains unclear to what degree human water consumption intensifies hydrological droughts, i.e. the occurrence of anomalously low streamflow. Here, we quantify over the period 1960-2010 the impact of human water consumption on the intensity and frequency of hydrological droughts worldwide. We simulated streamflow by the global hydrological and water resources model PCR-GLOBWB at a 0.5 degree spatial resolution, and reduced the amount of streamflow with different levels of human water consumption over the period 1960-2010. We applied the commonly used variable threshold level method to identify below-normal water availability as the onset of hydrological droughts. We then standardized the deficit volume dividing relative to the threshold level to express the intensity of drought conditions to normal streamflow conditions. The results show that human water consumption substantially reduced local and downstream streamflow in many regions of the world. This subsequently intensified hydrological droughts regionally by 10-500%. Irrigation is responsible for the intensification of hydrological droughts over western and central U.S., southern Europe, Asia, and southeastern Australia, whereas the impact of industrial and households' consumption on the intensification is considerably larger over eastern U.S., and western and central Europe. The results also show that drought frequency increased by more than 27% compared to pristine or natural condition as a result of human water consumption. The intensification of drought frequency is most severe over Asia, but also substantial over North America and Europe. Importantly, global population under severe hydrological droughts considerably increased from 0.7 billion in 1960 to 2.2 billion in 2010 due to rapid population growth. As a limited validation exercise, we compared simulated deficit volumes to those derived from observed river discharges for some important basins of the world. The comparison shows generally good agreement, but large discrepancies occurred when simulated river discharge failed to reproduce well the peak discharge and the mean amplitude in seasonal discharges, regardless of high correlation obtained from comparison of monthly discharges.

  20. Impacts of drought on the quality of surface water of the basin

    NASA Astrophysics Data System (ADS)

    Huang, B. B.; Yan, D. H.; Wang, H.; Cheng, B. F.; Cui, X. H.

    2013-11-01

    Under the background of climate change and human's activities, there has been presenting an increase both in the frequency of droughts and the range of their impacts. Droughts may give rise to a series of resources, environmental and ecological effects, i.e. water shortage, water quality deterioration as well as the decrease in the diversity of aquatic organisms. This paper, above all, identifies the impact mechanism of drought on the surface water quality of the basin, and then systematically studies the laws of generation, transfer, transformation and degradation of pollutants during the drought, finding out that the alternating droughts and floods stage is the critical period during which the surface water quality is affected. Secondly, through employing indoor orthogonality experiments, serving drought degree, rainfall intensity and rainfall duration as the main elements and designing various scenario models, the study inspects the effects of various factors on the nitrogen loss in soil as well as the loss of non-point sources pollution and the leaching rate of nitrogen under the different alternating scenarios of drought and flood. It comes to the conclusion that the various factors and the loss of non-point source pollution are positively correlated, and under the alternating scenarios of drought and flood, there is an exacerbation in the loss of ammonium nitrogen and nitrate nitrogen in soil, which generates the transfer and transformation mechanisms of non-point source pollution from a micro level. Finally, by employing the data of Nenjiang river basin, the paper assesses the impacts of drought on the surface water quality from a macro level.

  1. Incorporation of GRACE Data into a Bayesian Model for Groundwater Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Slinski, K.; Hogue, T. S.; McCray, J. E.; Porter, A.

    2015-12-01

    Groundwater drought, defined as the sustained occurrence of below average availability of groundwater, is marked by below average water levels in aquifers and reduced flows to groundwater-fed rivers and wetlands. The impact of groundwater drought on ecosystems, agriculture, municipal water supply, and the energy sector is an increasingly important global issue. However, current drought monitors heavily rely on precipitation and vegetative stress indices to characterize the timing, duration, and severity of drought events. The paucity of in situ observations of aquifer levels is a substantial obstacle to the development of systems to monitor groundwater drought in drought-prone areas, particularly in developing countries. Observations from the NASA/German Space Agency's Gravity Recovery and Climate Experiment (GRACE) have been used to estimate changes in groundwater storage over areas with sparse point measurements. This study incorporates GRACE total water storage observations into a Bayesian framework to assess the performance of a probabilistic model for monitoring groundwater drought based on remote sensing data. Overall, it is hoped that these methods will improve global drought preparedness and risk reduction by providing information on groundwater drought necessary to manage its impacts on ecosystems, as well as on the agricultural, municipal, and energy sectors.

  2. Limitations on gas exchange recovery following natural drought in Californian oak woodlands.

    NASA Astrophysics Data System (ADS)

    Ackerly, D.; Skelton, R. P.; Dawson, T.; Thompson, S.; Feng, X.; Weitz, A.; McLaughlin, B.

    2017-12-01

    Abstract Background/Question/Methods Drought can cause major damage to plant communities, but species damage thresholds and post-drought recovery of forest productivity are not yet predictable. We asked the question how should forest net primary productivity recover following exposure to severe drought? We used a natural drought period to investigate whether drought responses and post-drought recovery of canopy health could be predicted by properties of the water transport system. We aimed to test the hypothesis that recovery of gas exchange and canopy health would be most severely limited by xylem embolism in stems. To do this we monitored leaf level gas exchange and water status for multiple individuals of two deciduous and two evergreen species for four years spanning a severe drought event and following subsequent rehydration. Results/Discussion Severe drought caused major declines in leaf water potential, reduced stomatal conductance and assimilation rates and increased canopy bareness in our four canopy species. Water potential surpassed levels associated with incipient embolism in leaves of most trees. In contrast, due to hydraulic segmentation, water potential only rarely surpassed critical thresholds in the stems of the study trees. Individuals that surpassed critical thresholds of embolism in the stem displayed significant canopy dieback and mortality. Thus, recovery of plant gas exchange and canopy health was predicted by xylem safety margin in stems, but not leaves, providing strong support for stem cavitation vulnerability as an index of damage under natural drought conditions.

  3. Modeling the Soil Water and Energy Balance of a Mixed Grass Rangeland and Evaluating a Soil Water Based Drought Index in Wyoming

    NASA Astrophysics Data System (ADS)

    Engda, T. A.; Kelleners, T. J.; Paige, G. B.

    2013-12-01

    Soil water content plays an important role in the complex interaction between terrestrial ecosystems and the atmosphere. Automated soil water content sensing is increasingly being used to assess agricultural drought conditions. A one-dimensional vertical model that calculates incoming solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow-soil heat exchange is applied to calculate water flow and heat transport in a Rangeland soil located near Lingel, Wyoming. The model is calibrated and validated using three years of measured soil water content data. Long-term average soil water content dynamics are calculated using a 30 year historical data record. The difference between long-term average soil water content and observed soil water content is compared with plant biomass to evaluate the usefulness of soil water content as a drought indicator. Strong correlation between soil moisture surplus/deficit and plant biomass may prove our hypothesis that soil water content is a good indicator of drought conditions. Soil moisture based drought index is calculated using modeled and measured soil water data input and is compared with measured plant biomass data. A drought index that captures local drought conditions proves the importance of a soil water monitoring network for Wyoming Rangelands to fill the gap between large scale drought indices, which are not detailed enough to assess conditions at local level, and local drought conditions. Results from a combined soil moisture monitoring and computer modeling, and soil water based drought index soil are presented to quantify vertical soil water flow, heat transport, historical soil water variations and drought conditions in the study area.

  4. Evolution of China's water issues as framed in Chinese mainstream newspaper.

    PubMed

    Xiong, Yonglan; Wei, Yongping; Zhang, Zhiqiang; Wei, Jing

    2016-03-01

    There is an urgent need globally to trigger fundamental societal changes in water management away from existing unsustainable paradigms. This paper attempts to understand the evolution of newspaper coverage of water issues in China by analyzing water-related articles in a major national newspaper, the People's Daily, over the period 1946-2012 using a content analysis approach. The major findings include the following: (1) water issues were in relatively prominent positions in the newspaper; (2) the reporting of water issues in China experienced three stages: 1946 to the middle of 1980s-flood and drought control and water for food production, the middle of 1980s to 1997-water for economic development, and 1998 to the present-water for the environmental sustainability and economic development; (3) the reporting of water issues in the People's Daily clearly reflected China's top-down water resources management system, and no "real" public opinions on water were reported during the study period; and (4) the People's Daily is just a wind vane of Chinese mainstream values and policies on water. The findings supported the realist assumption that the societal value changes on water issues in China were triggered by a range of factors including biophysical pressure (floods and droughts), political campaign (the Cultural Revolution), macro-economic reform (Reform and Opening-up), water institutional arrangement (the Water Law), and water management reform (the No. 1 Central Document on water reform). While there are similarities and differences between this study and other studies, important implications for more sustainable water management are a need to strengthen academic specialists' and NGO's voices in the newspaper to create a better informed public, and to stimulate practices toward sustainable water use.

  5. Joining Forces for Food Security - Linking Earth Observation and Crowd-sourcing for improved Decision-support

    NASA Astrophysics Data System (ADS)

    Enenkel, M.; Dorigo, W.; See, L. M.; Vinck, P.; Papp, A.

    2014-12-01

    Droughts statistically exceed all other natural disasters in complexity, spatio-temporal extent and number of people affected. Triggered by crop failure, food insecurity is a major manifestation of agricultural drought and water scarcity. However, other socio-economic precursors, such as chronically low levels of disaster preparedness, hampered access to food security or a lack of social safety nets are equally important factors. We will present the first results of the SATIDA (Satellite Technologies for Improved Drought-Risk Assessment) project, which advances three complementary developments. First, an existing drought indicator is enhanced by replacing in-situ measurements on rainfall and surface air temperature with satellite-derived datasets. We identify the vegetation status via a new noise-corrected and gap-filled vegetation index. In addition, we introduce a soil moisture component to close the gap between rainfall deficiencies, extreme temperature and the first visible impacts of atmospheric anomalies on vegetation. Second, once calibrated, the index is forced with seasonal forecasts to quantify their uncertainty and added value in the regions of interest. Third, a mobile application is developed to disseminate relevant visualizations to decision-makers in affected areas, to collect additional information about socio-economic conditions and to validate the output of the drought index in real conditions. Involving Doctors without Borders (MSF) as a key user, SATIDA aims at decreasing uncertainties in decision-making via a more holistic risk framework, resulting in longer lead times for disaster logistics in the preparedness phase.

  6. Remote Sensing of Ground Deformation for Monitoring Groundwater Management Practices: Application to the Santa Clara Valley During the 2012-2015 California Drought

    NASA Astrophysics Data System (ADS)

    Chaussard, Estelle; Milillo, Pietro; Bürgmann, Roland; Perissin, Daniele; Fielding, Eric J.; Baker, Brett

    2017-10-01

    Groundwater management typically relies on water-level data and spatially limited deformation measurements. While interferometric synthetic aperture radar has been used to study hydrological deformation, its limited temporal sampling can lead to biases in rapidly changing systems. Here we use 2011-2017 COSMO-SkyMed data with revisit intervals as short as 1 day to study the response of the Santa Clara Valley (SCV) aquifer in California to the unprecedented 2012-2015 drought. Cross-correlation and independent component analyses of deformation time series enable tracking water through the aquifer system. The aquifer properties are derived prior to and during the drought to assess the success of water-resource management practices. Subsidence due to groundwater withdrawal dominates during 2011-2017, limited to the confined aquifer and west of the Silver Creek Fault, similar to predrought summer periods. Minimum water levels and elevations were reached in mid-2014, but thanks to intensive groundwater management efforts the basin started to rebound in late 2014, during the deepening drought. By 2017, water levels were back to their predrought levels, while elevations had not yet fully rebounded due to the delayed poroelastic response of aquitards and their large elastic compressibility. As water levels did not reach a new lowstand, the drought led to only elastic and recoverable changes in the SCV. The SCV lost 0.09 km3 during the drought while seasonal variations amount to 0.02 km3. Analysis of surface loads due to water mass changes in the aquifer system suggests that groundwater drawdowns could influence the stress on nearby faults.

  7. Droughts in Georgia

    USGS Publications Warehouse

    Barber, Nancy L.; Stamey, Timothy C.

    2000-01-01

    Droughts do not have the immediate effects of floods, but sustained droughts can cause economic stress throughout the State. The word 'drought' has various meanings, depending on a person's perspective. To a farmer, a drought is a period of moisture deficiency that affects the crops under cultivation - even two weeks without rainfall can stress many crops during certain periods of the growing cycle. To a meteorologist, a drought is a prolonged period when precipitation is less than normal. To a water manager, a drought is a deficiency in water supply that affects water availability and water quality. To a hydrologist, a drought is an extended period of decreased precipitation and streamflow. Droughts in Georgia have severely affected municipal and industrial water supplies, agriculture, stream water quality, recreation at major reservoirs, hydropower generation, navigation, and forest resources. In Georgia, droughts have been documented at U.S. Geological Survey (USGS) streamflow gaging stations since the 1890's. From 1910 to 1940, about 20 streamflow gaging stations were in operation. Since the early 1950's through the late 1980's, about 100 streamflow gaging stations were in operation. Currently (2000), the USGS streamflow gaging network consists of more than 135 continuous-recording gages. Ground-water levels are currently monitored at 165 wells equipped with continuous recorders.

  8. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas.

    PubMed

    Huang, Xiaohui; Liu, Yun; Li, Jiaxing; Xiong, Xingzheng; Chen, Yang; Yin, Xiaohua; Feng, Dalan

    2013-10-01

    Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.

  9. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions.

    PubMed

    Ruíz-Sánchez, Michel; Armada, Elisabet; Muñoz, Yaumara; García de Salamone, Inés E; Aroca, Ricardo; Ruíz-Lozano, Juan Manuel; Azcón, Rosario

    2011-07-01

    The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants. The results showed that AM colonization significantly enhanced rice growth under both water conditions, although the greatest rice development was reached in plants dually inoculated under well-watered conditions. Water level did not affect the efficiency of photosystem II, but both AM and A. brasilense inoculations increased this value. AM colonization increased stomatal conductance, particularly when associated with A. brasilense, which enhanced this parameter by 80% under drought conditions and by 35% under well-watered conditions as compared to single AM plants. Exposure of AM rice to drought stress decreased the high levels of glutathione that AM plants exhibited under well-watered conditions, while drought had no effect on the ascorbate content. The decrease of glutathione content in AM plants under drought stress conditions led to enhance lipid peroxidation. On the other hand, inoculation with the AM fungus itself increased ascorbate and proline as protective compounds to cope with the harmful effects of water limitation. Inoculation with A. brasilense also enhanced ascorbate accumulation, reaching a similar level as in AM plants. These results showed that, in spite of the fact that drought stress imposed by AM treatments was considerably more severe than non-AM treatments, rice plants benefited not only from the AM symbiosis but also from A. brasilense root colonization, regardless of the watering level. However, the beneficial effects of A. brasilense on most of the physiological and biochemical traits of rice plants were only clearly visible when the plants were mycorrhized. This microbial consortium was effective for rice plants as an acceptable and ecofriendly technology to improve plant performance and development. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Water and Forest Health: Drought Stress as a Core Driver of Forest Disturbances and Tree Mortality in Western North America

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; Williams, P.

    2012-12-01

    Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.

  11. Drought Contingency Planning on Fixed Army Installations.

    DTIC Science & Technology

    1987-04-01

    U’- ’w w w w w~w u U u ~~u.~.~ kJb " " a, USA-CERL TECHNICAL REPORT N-87/14S. T~FL~U April 1987 Closed-Loop Water Conservation/ C4~ US Army Corps...These reservoirs constitute a major water management system, and are operated together to maximize benefits. As shown, relatively low levels of water ...lowered water level. Thus, valley-floor water levels lower than those of record probably indicate drought emergency or disaster. 24 Piezometric surface

  12. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species

    PubMed Central

    Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  13. Groundwater quality surrounding Lake Texoma during short-term drought conditions

    USGS Publications Warehouse

    Kampbell, D.H.; An, Y.-J.; Jewell, K.P.; Masoner, J.R.

    2003-01-01

    Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three feet (0.9 m) lower compared with several months earlier under predrought climate conditions. Detection frequencies of nitrate (> 0.1 mg/l), orthophosphates (> 0.1 mg/l), chlorides (> MCL), and sulfates (> MCL) all increased during drought. Orthophosphate level was higher during drought. Largest increases in concentration were nitrate under both agriculture lands and in septic tank areas. An increase in ammonium-nitrogen was only detected in the septic tank area. The study showed that stressors such as nitrate and total salts could potentially become a health or environmental problem during drought.

  14. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    PubMed

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Automatic design of basin-specific drought indexes for highly regulated water systems

    NASA Astrophysics Data System (ADS)

    Zaniolo, Marta; Giuliani, Matteo; Castelletti, Andrea Francesco; Pulido-Velazquez, Manuel

    2018-04-01

    Socio-economic costs of drought are progressively increasing worldwide due to undergoing alterations of hydro-meteorological regimes induced by climate change. Although drought management is largely studied in the literature, traditional drought indexes often fail at detecting critical events in highly regulated systems, where natural water availability is conditioned by the operation of water infrastructures such as dams, diversions, and pumping wells. Here, ad hoc index formulations are usually adopted based on empirical combinations of several, supposed-to-be significant, hydro-meteorological variables. These customized formulations, however, while effective in the design basin, can hardly be generalized and transferred to different contexts. In this study, we contribute FRIDA (FRamework for Index-based Drought Analysis), a novel framework for the automatic design of basin-customized drought indexes. In contrast to ad hoc empirical approaches, FRIDA is fully automated, generalizable, and portable across different basins. FRIDA builds an index representing a surrogate of the drought conditions of the basin, computed by combining all the relevant available information about the water circulating in the system identified by means of a feature extraction algorithm. We used the Wrapper for Quasi-Equally Informative Subset Selection (W-QEISS), which features a multi-objective evolutionary algorithm to find Pareto-efficient subsets of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and optimizing relevance and redundancy of the subset. The preferred variable subset is selected among the efficient solutions and used to formulate the final index according to alternative model structures. We apply FRIDA to the case study of the Jucar river basin (Spain), a drought-prone and highly regulated Mediterranean water resource system, where an advanced drought management plan relying on the formulation of an ad hoc state index is used for triggering drought management measures. The state index was constructed empirically with a trial-and-error process begun in the 1980s and finalized in 2007, guided by the experts from the Confederación Hidrográfica del Júcar (CHJ). Our results show that the automated variable selection outcomes align with CHJ's 25-year-long empirical refinement. In addition, the resultant FRIDA index outperforms the official State Index in terms of accuracy in reproducing the target variable and cardinality of the selected inputs set.

  16. Impacts of climate change on abstraction reliability for irrigation during droughts - Policy implications for England

    NASA Astrophysics Data System (ADS)

    Rey, Dolores; Holman, Ian; Rio, Marlene; Prudhomme, Christel

    2017-04-01

    In humid climates around the world, supplemental irrigation is critical to buffer the effects of rainfall variability and to assure crop yield and quality. In England, abstraction for irrigation is limited by: i) a maximum volumetric limit specified in the abstraction licence and ii) restrictions on abstraction imposed by the water regulator during droughts. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. The aim of this study is to assess the impact that climate change may have on agricultural abstraction reliability in England within the context of the abstraction and drought management regimes currently in place, and how the water abstraction reform being developed by the Government could reduce the pressure on more and more limited water resources. Firstly, explanatory relationships were derived between an annual agroclimatic aridity index and actual irrigation abstraction. Secondly, the probability of annual abstraction being close to the maximum limit was calculated for each licence for the baseline (1961-90) and future (2071-2098) period. Finally, the current water resource availability triggers for mandatory abstractions restrictions on spray irrigation licences were used to assess the probability of being under restrictions during drought in each period. The results indicate a significant increase in the proportion of the licence being used in all catchments, representing the greatest risk for abstractors in the future, mainly in the most productive agricultural areas located in eastern and southern regions. In contrast, the likelihood of mandatory drought restrictions increases significantly in central and western England due to the lower buffering capacity of groundwater. Based on our findings, this paper discusses how the reform of the water abstraction licensing system being currently designed could help farmers to reduce their water availability risks. For instance, our analysis shows that a huge percentage of licenses in the country are hardly ever used, and hence the potential for reallocation (through water trading or other mechanisms) is worth exploring. Our results highlight the increasing water availability risks for irrigators in this country, and the need of the farming community and the regulator to adapt and collaborate to reduce the impacts and to increase drought resilience and hence food security.

  17. Size matters a lot: tree height and prior growth predict drought-induced tree death in Italian oak forests

    NASA Astrophysics Data System (ADS)

    Ripullone, F.; Colangelo, M.; Camarero, J. J.; Gazol, A.; Borghetti, M.; Gentilesca, T.

    2016-12-01

    Climate warming is expected to amplify drought stress resulting in the occurrence of more widespread dieback episodes and increasing mortality rates. This has pushed the search of reliable and robust early-warning indicators of impending drought-triggered tree death. Recent studies highlight how level of defoliation or age of trees strictly coact with drought in leading to forest decline. In addition, tree size and the tree-to-tree competition for water could also contribute to tree death in drought-prone sites. In this regard, it has been predicted that tall trees with isohydric stomatal regulation are most likely to die due to drought stress. Here, we test this hypothesis by analyzing size, age, competition and growth data in a Mediterranean oak species characterized by anisohydric behaviour, showing recent drought-induced mortality in two Italian forest sites. At both study sites, tree height was associated to the probability of dying. However, this association was opposite to published predictions because living trees were taller than dead trees at both sites. Neither age nor competition intensity played significant roles as drivers of tree mortality. Regarding growth data, trends in basal area increment were significantly smaller in dead than in living trees. Differences were most marked at mid (15 years prior to death) than at short (10 years) or long-term (35 year) scales. This is probably not related to intrinsic growth features of the study species but it can be explained because the most severe drought since 1950 occurred in 2000 at the study area, i.e. 15 years prior to the increase of tree mortality and when growth of living and dead trees started diverging. Lastly, we discuss potential factors which may explain why smaller individuals of anisohydric tree species such as Mediterranean oaks are prone to drought-induced tree death.

  18. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Ines, Amor V. M.; Das, Narendra N.; Prakash Khedun, C.; Singh, Vijay P.; Sivakumar, Bellie; Hansen, James W.

    2015-07-01

    Drought is of global concern for society but it originates as a local problem. It has a significant impact on water quantity and quality and influences food, water, and energy security. The consequences of drought vary in space and time, from the local scale (e.g. county level) to regional scale (e.g. state or country level) to global scale. Within the regional scale, there are multiple socio-economic impacts (i.e., agriculture, drinking water supply, and stream health) occurring individually or in combination at local scales, either in clusters or scattered. Even though the application of aggregated drought information at the regional level has been useful in drought management, the latter can be further improved by evaluating the structure and evolution of a drought at the local scale. This study addresses a local-scale agricultural drought anatomy in Story County in Iowa, USA. This complex problem was evaluated using assimilated AMSR-E soil moisture and MODIS-LAI data into a crop model to generate surface and sub-surface drought indices to explore the anatomy of an agricultural drought. Quantification of moisture supply in the root zone remains a gray area in research community, this challenge can be partly overcome by incorporating assimilation of soil moisture and leaf area index into crop modeling framework for agricultural drought quantification, as it performs better in simulating crop yield. It was noted that the persistence of subsurface droughts is in general higher than surface droughts, which can potentially improve forecast accuracy. It was found that both surface and subsurface droughts have an impact on crop yields, albeit with different magnitudes, however, the total water available in the soil profile seemed to have a greater impact on the yield. Further, agricultural drought should not be treated equal for all crops, and it should be calculated based on the root zone depth rather than a fixed soil layer depth. We envisaged that the results of this study will enhance our understanding of agricultural droughts in different parts of the world.

  19. Drought planning and water allocation: an assessment of local capacity in Minnesota.

    PubMed

    Pirie, Rebecca L; de Loë, Rob C; Kreutzwiser, Reid

    2004-10-01

    Water allocation systems are challenged by hydrologic droughts, which reduce available water supplies and can adversely affect human and environmental systems. To address this problem, drought management mechanisms have been instituted in jurisdictions around the world. Historically, these mechanisms have involved a crisis management or reactive approach. An important trend during the past decade in places such as the United States has been a shift to a more proactive approach, emphasizing drought preparedness and local involvement. Unfortunately, local capacity for drought planning is highly variable, with some local governments and organizations proving to be more capable than others of taking on new responsibilities. This paper reports on a study of drought planning and water allocation in the State of Minnesota. Factors facilitating and constraining local capacity for drought planning were identified using in-depth key informant interviews with state officials and members of two small Minnesota cities, combined with an analysis of pertinent documentation. A key factor contributing to the effectiveness of Minnesota's system is a water allocation system with explicit priorities during shortages, and provisions for restrictions. At the same time, the requirement that water suppliers create Public Water Supply Emergency Conservation Plans (PWSECP) clarifies the roles and responsibilities of key local actors. Unfortunately, the research revealed that mandated PWSECP are not always implemented, and that awareness of drought and drought planning measures in general may be poor at the local level. From the perspective of the two cities evaluated, factors that contributed to local capacity included sound financial and human resources, and (in some cases) effective vertical and horizontal linkages. This analysis of experiences in Minnesota highlights problems that can occur when senior governments establish policy frameworks that increase responsibilities at the local level without also addressing local capacity.

  20. The Hunger Stones: a new source for more objective identification of historical droughts

    NASA Astrophysics Data System (ADS)

    Elleder, Libor

    2016-04-01

    Extreme droughts recorded recently more frequently in different parts of the world represent the most serious environmental problem. Our contribution identifies periods of hydrological drought. The extreme drought period in summer 2015 enabled the levelling of historical watermarks on the „Hunger Stone" (Hungerstein) in the Elbe in Czech town of Děčín. The comparison of the obtained levels of earlier palaeographic records with systematic measurements in the Děčín profile confirmed the hypothesis that the old watermarks represent the minimal water levels. Moreover, we present a review of so far known Hunger Stones in the Elbe River with their low-level watermarks. For identification of the drought period duration we used the oldest water level records from the Czech Hydrometeorological Institute (CHMI) database archive: Magdeburg (since 1727), Dresden (since 1801), Prague (since 1825) and Decin (since 1851) time-series. We obtained more objective and complex information on all historical droughts between 1727 and 2015. The low water-marks on Hunger Stones give us a possibility for augmentation of systematic records and extended our knowledge's back to 1616. The Hunger Stones in the Elbe River with old watermarks are unique testimony for studying of hydrological extremes, and last but not least also of anthropogenic changes in the riverbed of the Elbe.

  1. Development Of Index To Assess Drought Conditions Using Geospatial Data A Case Study Of Jaisalmer District, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Chhajer, Vaidehi; Prabhakar, Sumati; Rama Chandra Prasad, P.

    2015-12-01

    The Jaisalmer district of Rajasthan province of India was known to suffer with frequent drought due to poor and delayed monsoon, abnormally high summer-temperature and insufficient water resources. However flood-like situation prevails in the drought prone Jaisalmer district of Rajasthan as torrential rains are seen to affect the region in the recent years. In the present study, detailed analysis of meteorological, hydrological and satellite data of the Jaisalmer district has been carried out for the years 2006-2008. Standardized Precipitation Index (SPI), Consecutive Dry Days (CDD) and Effective Drought Index (EDI) have been used to quantify the precipitation deficit. Standardized Water-Level Index (SWI) has been developed to assess ground-water recharge-deficit. Vegetative drought indices like Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Difference Vegetation Index (NDVI) and Modified Soil-Adjusted Vegetation Index 2 have been calculated. We also introduce two new indices Soil based Vegetation Condition Index (SVCI) and Composite Drought Index (CDI) specifically for regions like Jaisalmer where aridity in soil and affects vegetation and water-level.

  2. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

    PubMed Central

    Turyagyenda, Laban F.; Kizito, Elizabeth B.; Ferguson, Morag; Baguma, Yona; Agaba, Morris; Harvey, Jagger J. W.; Osiru, David S. O.

    2013-01-01

    Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of drought stress in cassava. One drought-tolerant (improved variety) and one drought-susceptible (farmer-preferred) cassava landrace were grown in the glasshouse under well-watered and water-stressed conditions. Their morphological, physiological and molecular responses to drought were characterized. Morphological and physiological measurements indicate that the tolerance of the improved variety is based on drought avoidance, through reduction of water loss via partial stomatal closure. Ten genes that have previously been biologically validated as conferring or being associated with drought tolerance in other plant species were confirmed as being drought responsive in cassava. Four genes (MeALDH, MeZFP, MeMSD and MeRD28) were identified as candidate cassava drought-tolerance genes, as they were exclusively up-regulated in the drought-tolerant genotype to comparable levels known to confer drought tolerance in other species. Based on these genes, we hypothesize that the basis of the tolerance at the cellular level is probably through mitigation of the oxidative burst and osmotic adjustment. This study provides an initial characterization of the molecular response of cassava to drought stress resembling field conditions. The drought-responsive genes can now be used as expression-based markers of drought stress tolerance in cassava, and the candidate tolerance genes tested in the context of breeding (as possible quantitative trait loci) and engineering drought tolerance in transgenics. PMID:23519782

  3. A multi-proxy assessment of dieback causes in a Mediterranean oak species.

    PubMed

    Colangelo, Michele; Camarero, J Julio; Battipaglia, Giovanna; Borghetti, Marco; De Micco, Veronica; Gentilesca, Tiziana; Ripullone, Francesco

    2017-05-01

    Drought stress causes forest dieback that is often explained by two interrelated mechanisms, namely hydraulic failure and carbon starvation. However, it is still unclear which functional and structural alterations, related to these mechanisms, predispose to dieback. Here we apply a multi-proxy approach for the characterization of tree structure (radial growth, wood anatomy) and functioning (δ13C, δ18O and non-structural carbohydrates (NSCs)) in tree rings before and after drought-induced dieback. We aim to discriminate which is the main mechanism and to assess which variables can act as early-warning proxies of drought-triggered damage. The study was tailored in southern Italy in two forests (i.e., San Paolo (SP) and Oriolo (OR)) where declining and non-declining trees of a ring-porous tree species (Quercus frainetto Ten.) showing anisohydric behavior coexist. Both stands showed growth decline in response to warm and dry spring conditions, although the onset of dieback was shifted between them (2002 in SP and 2009 in OR). Declining trees displayed a sharp growth drop after this onset with reductions of 49% and 44% at SP and OR sites, respectively. Further, contrary to what we expected, declining trees showed a lower intrinsic water-use efficiency compared with non-declining trees after the dieback onset (with reductions of 9.7% and 5.6% at sites SP and OR, respectively), due to enhanced water loss through transpiration, as indicated by the lower δ18O values. This was more noticeable at the most drought-affected SP stand. Sapwood NSCs did not differ between declining and non-declining trees, indicating no carbon starvation in affected trees. Thus, the characterized structural and functional alterations partially support the hydraulic failure mechanism of dieback. Finally, we show that growth data are reliable early-warning proxies of drought-triggered dieback. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Testing the apparent resistance of three dominant plants to chronic drought on the Colorado Plateau

    USGS Publications Warehouse

    Hoover, David L.; Duniway, Michael C.; Belnap, Jayne

    2016-01-01

    Many drylands, including the south-western United States, are projected to become more water-limited as these regions become warmer and drier with climate change. Such chronic drought may push individual species or plant functional types beyond key thresholds leading to reduced growth or even mortality. Indeed, recent observational and experimental evidence from the Colorado Plateau suggests that C3 grasses are the most vulnerable to chronic drought, while C4 grasses and C3 shrubs appear to have greater resistance.The effects of chronic, or press-drought are predicted to begin at the physiological level and translate up to higher hierarchical levels. To date, the drought resistance of C4grasses and C3 shrubs in this region has been only evaluated at the community level and thus we lack information on whether there are sensitivities to drought at lower hierarchical levels. In this study, we tested the apparent drought resistance of three dominant species (Pleuraphis jamesii, a C4 rhizomatous grass; Coleogyne ramosissima, a C3 drought-deciduous shrub; and Ephedra viridis, a C3 evergreen shrub) to an ongoing experimental press-drought (-35% precipitation) by comparing individual-level responses (ecophysiology and growth dynamics) to community-level responses (plant cover).For all three species, we observed consistent responses across all hierarchical levels:P. jamesii was sensitive to drought across all measured variables, while the shrubsC. ramosissima and E. viridis had little to no responses to the experimental press-drought at any given level.Synthesis. Our findings suggest that the apparent drought resistance at higher hierarchical levels, such as cover, may serve as good proxies for lower-level responses. Furthermore, it appears the shrubs are avoiding drought, possibly by utilizing moisture at deeper soil layers, while the grasses are limited to shallower layers and must endure the drought conditions. Give this differential sensitivity to drought, a future with less precipitation and higher temperatures may increase the dominance of shrubs on the Colorado Plateau, as grasses succumb to chronic water stress.

  5. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have drastic and lasting impacts on these unique ecosystems.

  6. Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state

    NASA Astrophysics Data System (ADS)

    Udmale, Parmeshwar; Ichikawa, Yutaka; Nakamura, Takashi; Shaowei, Ning; Ishidaira, Hiroshi; Kazama, Futaba

    2016-07-01

    Obtaining sufficient drinking water with acceptable quality under circumstances of lack, such as droughts, is a challenge in drought-prone areas of India. This study examined rural drinking water availability issues during a recent drought (2012) through 22 focus group discussions (FGDs) in a drought-prone catchment of India. Also, a small chemical water quality study was undertaken to evaluate the suitability of water for drinking purpose based on Bureau of Indian Standards (BIS). The drought that began in 2011 and further deteriorated water supplies in 2012 caused a rapid decline in reservoir storages and groundwater levels that led, in turn, to the failure of the public water supply systems in the Upper Bhima Catchment. Dried up and low-yield dug wells and borewells, tanker water deliveries from remote sources, untimely water deliveries, and degraded water quality were the major problems identified in the FGDs. In addition to severe drinking water scarcity during drought, the quality of the drinking water was found to be a major problem, and it apparently was neglected by local governments and users. Severe contamination of the drinking water with nitrate-nitrogen, ammonium-nitrogen, and chlorides was found in the analyzed drinking water samples. Hence, in addition to the water scarcity, the results of this study point to an immediate need to investigate the problem of contaminated drinking water sources while designing relief measures for drought-prone areas of India.

  7. Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake.

    PubMed

    Batanero, Gema L; León-Palmero, Elizabeth; Li, Linlin; Green, Andy J; Rendón-Martos, Manuel; Suttle, Curtis A; Reche, Isabel

    2017-09-22

    Waterbird aggregations and droughts affect nutrient and microbial dynamics in wetlands. We analysed the effects of high densities of flamingos on nutrients and microbial dynamics in a saline lake during a wet and a dry hydrological year, and explored the effects of guano on prokaryotic growth. Concentrations of dissolved organic carbon, total phosphorus and total nitrogen in the surface waters were 2-3 fold higher during the drought and were correlated with salinity. Flamingos stimulated prokaryotic heterotrophic production and triggered cascading effects on prokaryotic abundance, viruses and dissolved nitrogen. This stimulus of heterotrophic prokaryotes was associated with soluble phosphorus inputs from guano, and also from sediments. In the experiments, the specific growth rate and the carrying capacity were almost twice as high after guano addition than in the control treatments, and were coupled with soluble phosphorus assimilation. Flamingo guano was also rich in nitrogen. Dissolved N in lake water lagged behind the abundance of flamingos, but the causes of this lag are unclear. This study demonstrates that intense droughts could lead to increases in total nutrients in wetlands; however, microbial activity is likely constrained by the availability of soluble phosphorus, which appears to be more dependent on the abundance of waterbirds.

  8. Response of antioxidant system to drought stress and re-watering in Alfalfa during branching

    NASA Astrophysics Data System (ADS)

    Tina, R. R.; Shan, X. R.; Wang, Y.; Guo, S. Y.; Mao, B.; Wang, W.; Wu, H. Y.; Zhao, T. H.

    2017-11-01

    This paper aimed to reveal the response mechanism of active oxygen metabolism and antioxidant enzyme activities in Alfalfa under drought stress and re-watering, and the pot experiment was used, to explore the changes of H2O2, O2·-, electrolyte leakage conductivity and MDA, SOD, POD, CAT activity in Golden Empress (tolerant cultivar) and Sanditi (non-tolerant cultivar) under drought stress and re-watering during branching stage. Three water gradients were set up: CK (Maximum field capacity of 75%±5%), T1 (Maximum field capacity of 45%±5%), T2 (Maximum field capacity of 35%±5%) to compare, and the drought rehydration was also studied. Results: the results indicated that H2O2 content, O2·-production rate, relative conductivity and MDA content were higher than the control, and the increase extent of Golden Empress was higher than the Sanditi under drought stress and after re-watering the recovery capability of Golden Empress was also higher than the Sanditi. After 7 days of re-watering, all indexes were restored to the control level, indicating that the re-watering have compensation effect after drought. After drought stress, to weaken the damage of active oxygen Golden Empress was mainly by increasing the activity of POD and SOD, but Sanditi was mainly through the POD and CAT activity increased to effectively remove ROS. Under drought stress, active oxygen in leaves of Alfalfa increased, and thus the membrane system was damaged which lead to the increase of MDA content and relative electric conductivity. Plants play a defensive role by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. After re-watering, the stress effect was reduced, and the physiological indexes of plants were restored to the control level. In general, tolerant cultivar has stronger antioxidant properties under drought and re-watering.

  9. Impacts of the 2014 Drought on Vegetation Processes in the Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Loik, M. E.; Wade, C. E.; Reed, C. C.

    2014-12-01

    Sierra Nevada snowpack provides over 60 percent of California's freshwater supplies. The drought of 2014 has been unprecedented in the state's history, and followed below-average precipitation for the hydrologic years 2012 and 2013. Record-low precipitation has resulted in minimal Sierra Nevada snow pack and runoff, and massive reductions in reservoir storage, which has triggered widespread drought adaptation measures for one of the world's largest economies. We assessed the impacts of the 2014 drought on vegetation processes in the headwaters of the Owens River, which is one of the main watersheds for the city of Los Angeles. We monitored water relations, photosynthesis, growth and Leaf Area Index of tree, shrub, herb, and grass species. In order to better understand the effects of drought, we examined responses to watering manipulations, long-term snow fences, elevation gradient analysis, and comparisons to previous wetter years. 1 April 2014 snow pack depth was 330 mm (average for 1928 - 2012 = 1344 mm, CV = 49%). Despite widespread mortality of Pinus jeffreyi saplings (mean 1.5 m tall) at 2300 m, older trees as well as saplings of Pinus contorta showed new growth. There were no significant differences in water potential (Ψ) for the two conifer species in a wet year (2006, 1 April snow depth = 2240 mm) vs. 2014. Water potential for P. contorta in 2014 was higher at 2900 m than at 2300 m but photosynthetic CO2 assimilation (A) and stomatal conductance (gs), were not different. By contrast, Ψ, A, gs, Vcmax and Jmax for the widespread shrub Artemisia tridentata increased along a gradient from 2100 m to 2900 m in 2014. Watering only significantly increased these photosynthetic parameters at the lowest, driest elevation. At the middle elevation, Leaf Area Index in 2014 was about 20% of the 2006 value for the N-fixing shrub Purshia tridentata. Results show reductions in photosynthesis and growth for some species but not others in response to the severe drought conditions of 2014. The ability to tolerate drought may be due to utilization of deep water for some species, or an ability to survive and grow on very little precipitation for other species. Incorporation of functional group survival, photosynthesis and growth responses to severe, ongoing drought stress should help to improve global models of carbon cycling.

  10. Quantifying water storage anomaly in the 2009/10 drought across North China

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Xie, X.; Zhang, K.

    2017-12-01

    Global climate change is expected to have widespread impacts on the terrestrial hydrological cycle, leading to a variety of extreme disasters such as flood and drought. Drought occurs frequently in North China and it ranks the most damaging disaster in this region due to its large-scale impact on hydrology and ecosystem. Quantifying water deficit in drought is beneficial for water management including water transfer from other basins (e.g., the South-to-North Water Diversion (SNWD) project). During 2009/2010, a mega drought swept across the North China, causing a serious water deficit in industry and agriculture as well as restrictions on vegetation growth. However, little is known about the regime of water deficit during this drought at regional scale. In this study, we attempt to detect the water storage changes in response to the 2009/10 drought event. Satellite remote-sensing data from the Gravity Recovery and Climate Experiment (GRACE) were used and validated with ground measurements and land surface modeling data. As comparing with different land surface modeling data sets, the results indicate that GRACE can successfully capture the temporal variation of total water storage. The total water storage shows decline trend, and it reaches the low point during the 2009/10 drought with water storage deficit up to 25 km3 ( 22 mm). The groundwater storage shows similar pattern with the trend of -4.68 mm/yr estimated by GRACE data, while the Hai River (HR) basin has a larger trend of -14.8 mm/yr and a less trend of -1.29 mm/yr over the Liao River (LR) basin. Therefore this drought event has led to damaging hydrological effects in North China. To ease this situation, water management practice, such as the SNWD project, should make relevant response to this level of drought.

  11. Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress.

    PubMed

    Curá, José Alfredo; Franz, Diego Reinaldo; Filosofía, Julián Ezequiel; Balestrasse, Karina Beatríz; Burgueño, Lautaro Exequiel

    2017-07-26

    Stress drought is an important abiotic factor that leads to immense losses in crop yields around the world. Strategies are urgently needed to help plants adapt to drought in order to mitigate crop losses. Here we investigated the bioprotective effects of inoculating corn grown under drought conditions with two types of plant growth-promoting rhizobacteria (PGPR), A. brasilense , strain SP-7, and H. seropedicae , strain Z-152. Plants inoculated with the bacteria were grown in a greenhouse with perlite as a substrate. Two hydric conditions were tested: normal well-watered conditions and drought conditions. Compared to control non-inoculated plants, those that were inoculated with PGPR bacteria showed a higher tolerance to the negative effects of water stress in drought conditions, with higher biomass production; higher carbon, nitrogen, and chlorophyll levels; and lower levels of abscisic acid and ethylene, which are plant hormones that affect the stress response. The oxidative stress levels of these plants were similar to those of non-inoculated plants grown in well-watered conditions, showing fewer injuries to the cell membrane. We also noted higher relative water content in the vegetal tissue and better osmoregulation in drought conditions in inoculated plants, as reflected by significantly lower proline content. Finally, we observed lower gene expression of ZmVP14 in the inoculated plants; notably, ZmVP14 is involved in the biosynthesis of abscisic acid. Taken together, these results demonstrate that these bacteria could be used to help plants cope with the negative effects of drought stress conditions.

  12. Groundwater vulnerability to drought in agricultural watersheds, S. Korea

    NASA Astrophysics Data System (ADS)

    Song, Sung-Ho; Kim, Jin-Sung; Lee, Byungsun

    2017-04-01

    Drought can be generally defined by a considerable decrease in water availability due to a deficit in precipitation during a significant period over a large area. In South Korea, the severe drought occurred over late spring to early summer during from 2012 to 2015. In this period, precipitation decreased up to 10-40% compared with a normal one, resulting in reduction of stream flow and reservoir water over the country. It led to a shortage of irrigation water that caused great damage to grow rice plants on early stage. Furthermore, drought resulted in a negative effect on groundwater system with decline of its level. Change of the levels significantly reflects intrinsic characteristics of aquifer system. Identifying drought effects on groundwater system is very difficult because change of groundwater level after hydrological events tends to be delayed. Therefore, quantitative assessment on decline of groundwater level in agricultural watersheds plays an essential role to make customized policies for water shortage since groundwater system is directly affected by drought. Furthermore, it is common to analyze the time-series groundwater data from monitoring wells including hydrogeological characteristics in company with meteorological data because drought effects on groundwater system is site-specific. Currently, a total of 364 groundwater monitoring wells including 210 wells for rural groundwater management network(RGMN) and 154 wells for seawater intrusion monitoring network (SIMN) have been operating in agricultural watersheds in S. Korea. To estimate the effect of drought on groundwater system, monthly mean groundwater level data were obtained from RGMN and SIMN during the periods of 2012 to 2015. These data were compared to their past data in company with rainfall data obtained from adjacent weather stations. In 2012 and 2014, mean groundwater level data in the northern part of the country during irrigation season(April to June), when precipitation was recorded to 10% and 30% of an average one during the past 30 years, decreased up to 1.32 m and 0.71 m compared to that of the normal year, respectively. In 2015, mean groundwater level in the same area with 40% of a normal precipitation decreased up to 0.51-0.77 m. Consequently, total amounts of groundwater in aquifer have decreased due to the effect of periodic drought events during irrigation season. Effective policies should be required to manage groundwater vulnerability by drought in rural areas, South Korea.

  13. Phloem Girdling of Norway Spruce Alters Quantity and Quality of Wood Formation in Roots Particularly Under Drought

    PubMed Central

    Rainer-Lethaus, Gina; Oberhuber, Walter

    2018-01-01

    Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus drought conditions) and root C status was manipulated by physically blocking phloem transport in the stem at three girdling dates (GDs). Stem girdling was done before the onset of bud break [day of the year (doy) 77], during vigorous aboveground shoot and radial stem growth (GD doy 138), and after cessation of shoot growth (GD doy 190). The effect of blockage of C transport on root growth, root phenology, and wood anatomical traits [cell lumen diameter (CLD) and cell wall thickness (CWT)] in earlywood (EW) and latewood (LW) was determined. To evaluate changes in belowground C status caused by girdling, non-structural carbohydrates (soluble sugars and starch) in coarse roots were determined at the time of girdling and after the growing season. Although fine root mass significantly decreased in response to blockage of phloem C transport, the phenology of root elongation growth was not affected. Surprisingly, radial root growth and CLD of EW tracheids in coarse roots were strikingly increased in drought-stressed trees, when girdling occurred before bud break or during aboveground stem growth. In watered trees, the growth response to girdling was less distinct, but the CWT of EW significantly increased. Starch reserves in the roots of girdled trees significantly decreased in both soil moisture treatments and at all GDs. We conclude that (i) radial growth and wood development in coarse roots of P. abies saplings are not only dependent on current photosynthates, and (ii) blockage of phloem transport induces physiological changes that outweigh drought effects imposed on root cambial activity and cell differentiation. PMID:29636766

  14. Satellite-based characterization of climatic conditions before large-scale general flowering events in Peninsular Malaysia

    PubMed Central

    Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine

    2016-01-01

    General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon. PMID:27561887

  15. Satellite-based characterization of climatic conditions before large-scale general flowering events in Peninsular Malaysia.

    PubMed

    Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine

    2016-08-26

    General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon.

  16. Operationalising resilience to drought: Multi-layered safety for flooding applied to droughts

    NASA Astrophysics Data System (ADS)

    Rijke, Jeroen; Smith, Jennifer Vessels; Gersonius, Berry; van Herk, Sebastiaan; Pathirana, Assela; Ashley, Richard; Wong, Tony; Zevenbergen, Chris

    2014-11-01

    This paper sets out a way of thinking about how to prepare for and respond to droughts in a holistic way using a framework developed for managing floods. It shows how the multi-layered safety (MLS) approach for flood resilience can be utilised in the context of drought in a way that three layers of intervention can be distinguished for operationalising drought resilience: (1) protection against water shortage through augmentation and diversification of water supplies; (2) prevention of damage in case of water shortage through increased efficiency of water use and timely asset maintenance; (3) preparedness for future water shortages through mechanisms to reduce the use of water and adopt innovative water technologies. Application of MLS to the cities of Adelaide, Melbourne and Sydney shows that recent water reforms in these cities were primarily focused on protection measures that aim to reduce the hazard source or exposure to insufficient water supplies. Prevention and preparedness measures could be considered in defining interventions that aim to further increase the drought resilience of these cities. Although further research is needed, the application suggests that MLS can be applied to the context of drought risk management. The MLS framework can be used to classify the suite of plans deployed by a city to manage future drought risks and can be considered a planning tool to identify opportunities for increasing the level of redundancy and hence resilience of the drought risk management system.

  17. Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential.

    PubMed

    Tariq, Akash; Pan, Kaiwen; Olatunji, Olusanya Abiodun; Graciano, Corina; Li, Zilong; Sun, Feng; Zhang, Lin; Wu, Xiaogang; Chen, Wenkai; Song, Dagang; Huang, Dan; Xue, Tan; Zhang, Aiping

    2018-04-04

    Alnus cremastogyne, a broad-leaved tree endemic to south-western China, has both commercial and restoration importance. However, little is known of its morphological, physiological and biochemical responses to drought and phosphorous (P) application. A randomized experimental design was used to investigate how drought affected A. cremastogyne seedlings, and the role that P applications play in these responses. Drought had significant negative effects on A. cremastogyne growth and metabolism, as revealed by reduced biomass (leaf, shoot and root), leaf area, stem diameter, plant height, photosynthetic rate, leaf relative water content, and photosynthetic pigments, and a weakened antioxidative defence mechanism and high lipid peroxidation level. However, the reduced leaf area and enhanced osmolyte (proline and soluble sugars) accumulation suggests drought avoidance and tolerance strategies in this tree. Applying P significantly improved the leaf relative water content and photosynthetic rate of drought-stressed seedlings, which may reflect increased anti-oxidative enzyme (superoxide dismutase, catalase and peroxidase) activities, osmolyte accumulation, soluble proteins, and decreased lipid peroxidation levels. However, P had only a slight or negligible effect on the well-watered plants. A. cremastogyne is sensitive to drought stress, but P facilitates and improves its metabolism primarily via biochemical and physiological rather than morphological adjustments, regardless of water availability.

  18. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress.

    PubMed

    Augé, R M; Schekel, K A; Wample, R L

    1986-11-01

    Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Psi(pi)) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Psi(pi) at the turgor loss point, the active Psi(pi) depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.

  19. Ground water level, Water storage, Soil moisture, Precipitation Variability Using Multi Satellite Data during 2003-2016 Associated with California Drought

    NASA Astrophysics Data System (ADS)

    Li, J. W.; Singh, R. P.

    2017-12-01

    The agricultural market of California is a multi-billion-dollar industry, however in the recent years, the state is facing severe drought. It is important to have a deeper understanding of how the agriculture is affected by the amount of rainfall as well as the ground conditions in California. We have considered 5 regions (each 2 degree by 2 degree) covering whole of California. Multi satellite (MODIS Terra, GRACE, GLDAS) data through NASA Giovanni portal were used to study long period variability 2003 - 2016 of ground water level and storage, soil moisture, root zone moisture level, precipitation and normalized vegetation index (NDVI) in these 5 regions. Our detailed analysis of these parameters show a strong correlation between the NDVI and some of these parameters. NDVI represents greenness showing strong drought conditions during the period 2011-2016 due to poor rainfall and recharge of ground water in the mid and southern parts of California. Effect of ground water level and underground storage will be also discussed on the frequency of earthquakes in five regions of California. The mid and southern parts of California show increasing frequency of small earthquakes during drought periods.

  20. Advancements in satellite remote sensing for drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Drought monitoring is a key component for effective drought preparedness strategies, providing critical information on current conditions that can be used to trigger mitigation actions to lessen the impact of this natural hazard. However, drought can be both complex and challenging to monitor becau...

  1. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars.

    PubMed

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Liu, Yang; Cui, Yakun; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-09-01

    Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat. Copyright © 2016. Published by Elsevier Masson SAS.

  2. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  3. Development of a Strategic Framework for Drought Management

    NASA Astrophysics Data System (ADS)

    Kang, Jaewon; Kim, Sooyoung; Suh, Aesook; Cho, Younghyun

    2017-04-01

    A drought starts with lack of precipitation; as the deficit of precipitation is prolonged, the loss of water influences on the amount of soil water because of evapotranspiration. In addition, the decreased runoff of surface and underground water also reduces discharge in rivers and storage in reservoirs; these reductions then lead to the decline in the supply capability of water resources supply facilities. Therefore, individuals may experience a given drought differently depending on their circumstances. In an area with a metropolitan water supply network that draws water from a multipurpose dam, residents might not realize that a meteorological drought is present since they are provided with sufficient water. Similar situation might occur in farmlands for which an irrigation system supplies water from an agricultural reservoir. In Korea, several institutions adopt each drought indices in their roles. Since March 2016, the Ministry of Public Safety and Security, via inter-ministerial cooperation, has been classifying and announcing drought situations in each administrative district of Korea into three types, meteorological, agricultural, or hydrological droughts, with three levels such as 'caution,' 'serious,' or 'very serious.' Deriving the drought index considering storage facilities and other factors and expressing them in three categories are valid as methods. However, the current method that represent the drought situation in an administrative district as a whole should be improved to recognize the drought situation more realistically and to make appropriate strategic responses. This study designs and implements a pilot model of a framework that re-establishes zones for drought situation representation, taking water usage and water supply infrastructure into account based on land use maps. In addition, each resulting district is provided with statistical indices that can assist in the application of appropriate drought indices and the understanding of situations. In the framework, different areas classified as forest/grassland, paddy fields with an irrigation system, paddy/dry fields relying on rainwater, areas with a metropolitan or provincial water supply, or areas with other residential/industrial water supply, in a single administrative district have different values for meteorological, agricultural, or hydrological droughts. And the situation can be analyzed on a daily basis to take into account areas with a possibility that the drought may be relieved by a short-term downpour or similar event. Keywords: drought management, strategic framework, drought indices

  4. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    PubMed Central

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  5. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less

  6. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Morillas, L.; Pangle, R. E.; Maurer, G. E.; Pockman, W. T.; McDowell, N.; Huang, C.-W.; Krofcheck, D. J.; Fox, A. M.; Sinsabaugh, R. L.; Rahn, T. A.; Litvak, M. E.

    2017-12-01

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by 65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contribution of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This postgirdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.

  7. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    DOE PAGES

    Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.; ...

    2017-11-17

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less

  8. Leaf Hydraulic Vulnerability Triggers the Decline in Stomatal and Mesophyll Conductance during drought in Rice (Oryza sativa).

    PubMed

    Wang, Xiaoxiao; Du, Tingting; Huang, Jianliang; Peng, Shaobing; Xiong, Dongliang

    2018-05-18

    Understanding the physiological responses of crops to drought is important for ensuring sustained crop productivity under climate change, which is expected to exacerbate drought frequencies and intensities. Drought responses involve multiple traits, but the correlations between these traits are poorly understood. Using a variety of techniques, we estimated the changes in gas exchange, leaf hydraulic conductance (Kleaf), and leaf turgor in rice (Oryza sativa) in response to both short- and long-term soil drought and performed a photosynthetic limitation analysis to quantify the contributions of each limiting factor to the resultant overall decrease in photosynthesis during drought. Biomass, leaf area and leaf width significantly decreased during the two-week drought treatment, but leaf mass per area and leaf vein density increased. Light-saturated photosynthetic rate (A) declined dramatically during soil drought, mainly due to the decrease in stomatal conductance (gs) and mesophyll conductance (gm). Stomatal modeling suggested that the decline in Kleaf explained most of the decrease in stomatal closure during the drought treatment, and may also trigger the drought-related decrease of gs and gm. The results of this study provide insight into the regulation of carbon assimilation under drought conditions.

  9. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    PubMed

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  10. Synthetic drought event sets: thousands of meteorological drought events for risk-based management under present and future conditions

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Massey, Neil; Otto, Friederike E. L.; Allen, Myles R.; Jones, Richard; Hall, Jim W.

    2016-04-01

    Droughts and related water scarcity can have large impacts on societies and consist of interactions between a number of natural and human factors. Meteorological conditions are usually the first natural trigger of droughts, and climate change is expected to impact these and thereby the frequency and intensity of the events. However, extreme events such as droughts are, by definition, rare, and accurately quantifying the risk related to such events is therefore difficult. The MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) aims at quantifying the risks associated with droughts in the UK under present and future conditions. To do so, a large number of drought events, from climate model simulations downscaled at 25km over Europe, are being fed into hydrological models of various complexity and used for the estimation of drought risk associated with human and natural systems, including impacts on the economy, industry, agriculture, terrestrial and aquatic ecosystems, and socio-cultural aspects. Here, we present the hydro-meteorological drought event set that has been produced by weather@home [1] for MaRIUS. Using idle processor time on volunteers' computers around the world, we have run a very large number (10'000s) of Global Climate Model (GCM) simulations, downscaled at 25km over Europe by a nested Regional Climate Model (RCM). Simulations include the past 100 years as well as two future horizons (2030s and 2080s), and provide a large number of sequences of spatio-temporally consistent weather, which are consistent with the boundary forcing such as the ocean, greenhouse gases and solar forcing. The drought event set for use in impact studies is constructed by extracting sequences of dry conditions from these model runs, leading to several thousand drought events. In addition to describing methodological and validation aspects of the synthetic drought event sets, we provide insights into drought risk in the UK, its meteorological drivers, and how it can be expected to change in the future. Finally, we assess the applicability of this methodology to other regions. [1] Massey, N. et al., 2014, Q. J. R. Meteorol. Soc.

  11. Prospects for Groundwater Drought Termination in the UK in 2017-18

    NASA Astrophysics Data System (ADS)

    Parry, S.; McKenzie, A.; Prudhomme, C.; Wilby, R.; Wood, P.

    2017-12-01

    The recovery of groundwater levels towards the end of a drought can lag behind surface water stores such as reservoirs or snowpack - as was the case for California in 2016/17. Groundwater replenishment is an important precursor to the ending of water restrictions, and an improved understanding of the range of plausible groundwater recovery scenarios would be useful for a range of stakeholders, including water managers, farmers and businesses. A method for characterising drought termination in hydrological data is applied systematically here to long time series of groundwater levels (some from the mid-1800s) for the UK. This analysis capitalises on the comprehensive perspective of post-drought recovery in the historical record to provide various outlooks of recovery in groundwater levels over seasonal to multi-year timeframes and to better understand how present conditions are likely to evolve. Rainfall deficiencies in the UK since summer 2016 limited replenishment during the 2016/17 winter recharge season. As a consequence, groundwater levels in south-east England were notably below normal in summer 2017. The possibility of an abrupt termination as occurred in 2012 can already be excluded, and extrapolating recent patterns suggests that very gradual recoveries may be underway. At many sites, normal conditions are not expected to return during 2017, and later still for sites in less responsive aquifers. This is supported by the multi-year drought durations typically found in the historical record, much more prolonged than those observed during the currently developing event. The rainfall rates that have driven historical drought termination events are also assessed for their likelihood across a range of timeframes and start months. Overall results underline the importance of the typical recharge season during the wetter winter half-year in averting multi-year groundwater drought events that would threaten water resources in the populous south-east of the UK. The approach adopted in this study could complement existing operational tools which provide outlooks for groundwater levels over seasonal to annual timescales, such as the UK Hydrological Outlook. The drought termination metrics are also applicable to surface water and hydrological contexts beyond the UK.

  12. Impact of Drought on Groundwater and Soil Moisture - A Geospatial Tool for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    For many decades, recurring droughts in different regions in the US have been negatively impacting ecosystems and economic sectors. Oklahoma and Texas have been suffering from exceptional and extreme droughts in 2011-2014, with almost 95% of the state areas being affected (Drought Monitor, 2015). Accordingly, in 2011 alone, around 1.6 billion were lost in the agricultural sector alone as a result of drought in Oklahoma (Stotts 2011), and 7.6 billion in Texas agriculture (Fannin 2012). While surface water is among the instant indicators of drought conditions, it does not translate directly to groundwater resources that are the main source of irrigation water. Both surface water and groundwater are susceptible to drought, while groundwater depletion is a long-term process and might not show immediately. However, understanding groundwater availability is crucial for designing water management strategies and sustainable water use in the agricultural sector and other economic sectors. This paper presents an interactive geospatially weighted evaluation model and a tool at the same time to analyze groundwater resources that can be used for decision support in water management. The tool combines both groundwater and soil moisture changes in Oklahoma and Texas in 2003-2014, thus representing the most important indicators of agricultural and hydrological drought. The model allows for analyzing temporal and geospatial long-term drought at the county level. It can be expanded to other regions in the US and the world. The model has been validated with the Palmer Drought Index Severity Index to account for other indicators of meteorological drought. It can serve as a basis for an upcoming socio-economic and environmental analysis of drought events in the short and long-term in different geographic regions.

  13. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    PubMed

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  14. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down.

    PubMed

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  15. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down

    PubMed Central

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum. PMID:28620409

  16. Increasing atmospheric [CO2] from glacial through future levels affects drought tolerance via impacts on leaves, xylem and their integrated function

    PubMed Central

    Medeiros, Juliana S.; Ward, Joy K.

    2013-01-01

    Summary Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water trade-offs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood.We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris.Elevated [CO2] decreased vessel implosion strength, reduced conduit specific hydraulic conductance, and compromised leaf specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit specific and leaf specific hydraulic conductance in association with increased vessel implosion strength.Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that under glacial conditions changes in leaf and xylem properties could increase drought tolerance, while under future conditions greater productivity may only occur when higher water use can be accommodated. PMID:23668237

  17. Limnological study of Shasta Lake, Shasta County, California, with emphasis on the effects of the 1977 drought

    USGS Publications Warehouse

    Rettig, S.A.; Bortleson, Gilbert C.

    1983-01-01

    An intensive limnological study of Shasta Lake was made in conjunction with the California Department of Water Resources during the 1977 drought. Water-quality data were collected from March 1977 through September 1978 at six lake stations and four lake tributary stations. Data collected during and after the drought were compared. Lake water quality is described as a function of lake morphometry, climate, hydrology, and reservoir hydraulics. Results indicate Shasta Lake is a warm monomictic lake. Tributary inflow to the lake and outflow through the dam generate density currents which promote mixing at depth and the development of an extensive metalimnion. During the drought, record low lake levels resulted in the exposure of an extensive nearshore sediment zone. Resuspended sediments caused a deterioration of water quality. The most notable effects, in comparison with post-drought conditions, were decreased light penetration, increased dissolved-solids concentration and specific conductance, decreased dissolved-oxygen concentrations, and elevated nutrient levels. A hypolimnetic anoxic condition was observed at the upstream stations of the lake. (USGS)

  18. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    NASA Astrophysics Data System (ADS)

    Nijp, Jelmer; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd; Berendse, Frank; Robroek, Bjorn

    2014-05-01

    Northern peatlands represent one of the largest global carbon stores that can potentially be released by water table drawdown during extreme summer droughts. Small precipitation events may moderate negative impacts of deep water levels on carbon uptake by sustaining photosynthesis of peatmoss (Sphagnum spp.), the key species in these ecosystems. We experimentally assessed the importance of the temporal distribution of precipitation for Sphagnum water supply and carbon uptake during a stepwise decrease in water levels in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species representative of three contrasting habitats in northern peatlands (Sphagnum fuscum, S. balticum and S. majus). For shallow water levels, capillary rise was the most important source of water for peatmoss photosynthesis and precipitation did not promote carbon uptake irrespective of peatmoss species. For deep water levels, however, precipitation dominated over capillary rise and moderated adverse effects of drought on carbon uptake by peat mosses. The ability to use the transient water supply by precipitation was species-specific: carbon uptake of S. fuscum increased linearly with precipitation frequency for deep water levels, whereas S. balticum and S. majus showed depressed carbon uptake at intermediate precipitation frequencies. Our results highlight the importance of precipitation for carbon uptake by peatmosses. The potential of precipitation to moderate drought impact, however, is species specific and depends on the temporal distribution of precipitation and water level. These results also suggest that modelling approaches in which water level depth is used as the only state variable determining water availability in the living moss layer and (in)directly linked to Sphagnum carbon uptake may have serious drawbacks. The predictive power of peatland ecosystem models may be reduced when deep water levels prevail, as precipitation frequency and quantity are likely the main variables controlling carbon uptake.

  19. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants.

    PubMed

    Chandra Rai, Avinash; Singh, Major; Shah, Kavita

    2012-12-01

    Water stress often leads to the accumulation of reactive oxygen species (ROS) and their excessive production alters the activities of enzymes involved in their removal. ZAT12 is a member of stress-responsive C(2)H(2) type Zinc Finger Protein (ZFP) reported to control the expression of several stress-activated genes in plants through ROS signaling. The ZAT12-transformed tomato lines (cv. H-86 variety Kashi Vishesh) when subjected to water withdrawal for 7, 14 and 21 days revealed significant and consistent changes in activities of enzymes SOD, CAT, APX, GR and POD paralleled with an increased proline levels. Unlike that in wild-type tomato, the leaf superoxide anion and hydrogen peroxide concentrations in the transformed tomato plants did not alter much, suggesting a well regulated formation of free radicals suppressing oxidative stress in the latter. Results suggest BcZAT12-transformed tomato lines ZT1, ZT2 and ZT6 to be better adapted to drought stress tolerance by accumulation of osmolyte proline and increased antioxidant response triggered by the ZAT12 gene. Therefore, the ZAT12-transformed tomato cv. H-86 lines will prove useful for higher yield of tomato crop in regions affected with severe drought stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Towards risk-based drought management in the Netherlands: quantifying the welfare effects of water shortage

    NASA Astrophysics Data System (ADS)

    van der Vat, Marnix; Femke, Schasfoort; Rhee Gigi, Van; Manfred, Wienhoven; Nico, Polman; Joost, Delsman; den Hoek Paul, Van; Maat Judith, Ter; Marjolein, Mens

    2016-04-01

    It is widely acknowledged that drought management should move from a crisis to a risk-based approach. A risk-based approach to managing water resources requires a sound drought risk analysis, quantifying the probability and impacts of water shortage due to droughts. Impacts of droughts are for example crop yield losses, hydropower production losses, and water shortage for municipal and industrial use. Many studies analyse the balance between supply and demand, but there is little experience in translating this into economic metrics that can be used in a decision-making process on investments to reduce drought risk. We will present a drought risk analysis method for the Netherlands, with a focus on the underlying economic method to quantify the welfare effects of water shortage for different water users. Both the risk-based approach as well as the economic valuation of water shortage for various water users was explored in a study for the Dutch Government. First, an historic analysis of the effects of droughts on revenues and prices in agriculture as well as on shipping and nature was carried out. Second, a drought risk analysis method was developed that combines drought hazard and drought impact analysis in a probabilistic way for various sectors. This consists of a stepwise approach, from water availability through water shortage to economic impact, for a range of drought events with a certain return period. Finally, a local case study was conducted to test the applicability of the drought risk analysis method. Through the study, experience was gained into integrating hydrological and economic analyses, which is a prerequisite for drought risk analysis. Results indicate that the risk analysis method is promising and applicable for various sectors. However, it was also found that quantification of economic impacts from droughts is time-consuming, because location- and sector-specific data is needed, which is not always readily available. Furthermore, for some sectors hydrological data was lacking to make a reliable estimate of drought return periods. By 2021, the Netherlands Government aims to agree on the water supply service levels, which should describe water availability and quality that can be delivered with a certain return period. The Netherlands' Ministry of Infrastructure and the Environment, representatives of the regional water boards and Rijkswaterstaat (operating the main water system) as well as several consultants and research institutes are important stakeholders for further development of the method, evaluation of cases and the development of a quantitative risk-informed decision-making tool.

  1. Implications of leaf ontogeny on drought-induced gradients of CAM expression and ABA levels in rosettes of the epiphytic tank bromeliad Guzmania monostachia.

    PubMed

    Rodrigues, Maria Aurineide; Hamachi, Leonardo; Mioto, Paulo Tamaso; Purgatto, Eduardo; Mercier, Helenice

    2016-11-01

    Guzmania monostachia is an epiphytic heteroblastic bromeliad that exhibits rosette leaves forming water-holding tanks at maturity. Different portions along its leaf blades can display variable degrees of crassulacean acid metabolism (CAM) up-regulation under drought. Since abscisic acid (ABA) can act as an important long-distance signal, we conducted a joint investigation of ontogenetic and drought impacts on CAM intensity and ABA levels in different leaf groups within the G. monostachia rosette. For this, three groups of leaves were analysed according to their position within the mature-tank rosette (i.e., younger, intermediate, and older leaves) to characterize the general growth patterns and magnitude of drought-modulated CAM expression. CAM activity was evaluated by analysing key molecules in the biochemical machinery of this photosynthetic pathway, while endogenous ABA content was comparatively measured in different portions of each leaf group after seven days under well-watered (control) or drought treatment. The results revealed that G. monostachia shows more uniform morphological characteristics along the leaves when in the atmospheric stage. The drought treatment of mature-tank rosettes generally induced in older leaves a more severe water loss, followed by the lowest CAM activity and a higher increase in ABA levels, while younger leaves showed an opposite response. Therefore, leaf groups at distinct ontogenetic stages within the tank rosette of G. monostachia responded to drought with variable degrees of water loss and CAM expression. ABA seems to participate in this tissue-compartmented response as a long-distance signalling molecule, transmitting the drought-induced signals originated in older leaves towards the younger ones. Copyright © 2016. Published by Elsevier Masson SAS.

  2. Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Mussá, F. E. F.; Zhou, Y.; Maskey, S.; Masih, I.; Uhlenbrook, S.

    2015-02-01

    Global climate change has received much attention worldwide in the scientific as well as in the political community, indicating that changes in precipitation, extreme droughts and floods may increasingly threaten many regions. Drought is a natural phenomenon that causes social, economical and environmental damage to society. In this study, we assess the drought intensity and severity and the groundwater potential to be used as a supplementary source of water to mitigate drought impacts in the Crocodile River catchment, a water-stressed sub-catchment of the Incomati River catchment in South Africa. The research methodology consists of three parts. First, the spatial and temporal variation of the meteorological and hydrological drought severity and intensity over the catchment were evaluated. The Standardized Precipitation Index (SPI) was used to analyse the meteorological drought and the Standardized Runoff Index (SRI) was used for the hydrological drought. Second, the water deficit in the catchment during the drought period was computed using a simple water balance method. Finally, a groundwater model was constructed in order to assess the feasibility of using groundwater as an emergency source for drought impact mitigation. Results show that the low-rainfall areas are more vulnerable to severe meteorological droughts (lower and upper crocodile). Moreover, the most water stressed sub-catchments with high level of water uses but limited storage, such as the Kaap located in the middle catchment and the Lower Crocodile sub-catchments, are more vulnerable to severe hydrological droughts. The analysis of the potential groundwater use during droughts showed that a deficit of 97 Mm3 yr-1 could be supplied from groundwater without considerable adverse impacts on the river base flow and groundwater storage. Abstraction simulations for different scenarios of extremely severe droughts reveal that it is possible to use groundwater to cope with the droughts in the catchment. However, local groundwater exploitation in Nelspruit and White River sub-catchment will cause large drawdowns (> 10 m) and high base flow reduction (> 20%). This case study shows that conjunctive water management of groundwater and surface water resources is necessary to mitigate the impacts of droughts.

  3. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    PubMed

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  4. Effects of human water management on California drought risk

    NASA Astrophysics Data System (ADS)

    He, Xiaogang; Wada, Yoshihide; Wanders, Niko; Sheffield, Justin

    2017-04-01

    Contribution of human water management to the intensification or mitigation of hydrological drought over California is investigated using the PCR-GLOBWB hydrological model at 0.5˚ resolution for the period 1979-2014. We demonstrate that including water management in the modeling framework results in more accurate discharge representation. During the severe 2014 drought, water management alleviated the drought deficit by ˜50% in Southern California through reservoir operation during low flow periods. However, human water consumption (mostly irrigation) in the Central Valley increased drought duration and deficit by 50% and 50-100%, respectively. Return level analysis indicates that there is more than 50% chance that the probability of occurrence of an extreme 2014-magnitude drought event was at least doubled under the influence of human activities compared to natural variability. This impact is most significant over the San Joaquin Drainage basin with a 50% and 75% likelihood that the return period is more than 3.5 and 1.5 times larger, respectively, because of the human impact on drought. A detailed study of the relative attribution of different types of human activities (e.g., groundwater pumping, reservoir operation and irrigation) on changes in drought risk over California is conducted through a higher 10 km resolution simulation. This hydrological modeling, attribution and risk assessment framework is further extended to other drought-prone areas and major drought events in the contiguous U.S., including the 2006/2007 southeastern U.S. drought, the 2011 Texas-northern Mexico drought over the southern plains and the 2012 drought over the central Great Plains.

  5. A web-based tool for groundwater mapping and drought analysis

    NASA Astrophysics Data System (ADS)

    Christensen, S.; Burns, M.; Jones, N.; Strassberg, G.

    2012-12-01

    In 2011-2012, the state of Texas saw the worst one-year drought on record. Fluctuations in gravity measured by GRACE satellites indicate that as much as 100 cubic kilometers of water was lost during this period. Much of this came from reservoirs and shallow soil moisture, but a significant amount came from aquifers. In response to this crisis, a Texas Drought Technology Steering Committee (TDTSC) consisting of academics and water managers was formed to develop new tools and strategies to assist the state in monitoring, predicting, and responding to drought events. In this presentation, we describe one of the tools that was developed as part of this effort. When analyzing the impact of drought on groundwater levels, it is fairly common to examine time series data at selected monitoring wells. However, accurately assessing impacts and trends requires both spatial and temporal analysis involving the development of detailed water level maps at various scales. Creating such maps in a flexible and rapid fashion is critical for effective drought analysis, but can be challenging due to the massive amounts of data involved and the processing required to generate such maps. Furthermore, wells are typically not sampled at the same points in time, and so developing a water table map for a particular date requires both spatial and temporal interpolation of water elevations. To address this challenge, a Cloud-based water level mapping system was developed for the state of Texas. The system is based on the Texas Water Development Board (TWDB) groundwater database, but can be adapted to use other databases as well. The system involves a set of ArcGIS workflows running on a server with a web-based front end and a Google Earth plug-in. A temporal interpolation geoprocessing tool was developed to estimate the piezometric heads for all wells in a given region at a specific date using a regression analysis. This interpolation tool is coupled with other geoprocessing tools to filter data and interpolate point elevations spatially to produce water level, drawdown, and depth to groundwater maps. The web interface allows for users to generate these maps at locations and times of interest. A sequence of maps can be generated over a period of time and animated to visualize how water levels are changing. The time series regression analysis can also be used to do short-term predictions of future water levels.

  6. Contrasting drought-response strategies in California redwoods.

    PubMed

    Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Næsborg, Rikke R; Williams, Cameron B; Dawson, Todd E

    2015-05-01

    We compared the physiology and growth of seedlings originating from different Sequoia sempervirens (D. Don.) Endl. (coast redwood) and Sequoiadendron giganteum (Lindl.) Buchh. (giant sequoia) populations subjected to progressive drought followed by a recovery period in a controlled greenhouse experiment. Our objective was to examine how multiple plant traits interact to influence the response of seedlings of each species and seed population to a single drought and recovery cycle. We measured soil and plant water status, leaf gas exchange, stem embolism and growth of control (well-watered) and drought-stressed (water withheld) seedlings from each population at the beginning, middle and end of a 6-week drought period and again 2 weeks after re-watering. The drought had a significant effect on many aspects of seedling performance, but water-stressed seedlings regained most physiological functioning by the end of the recovery period. Sequoiadendron seedlings exhibited a greater degree of isohydry (water status regulation), lower levels of stem embolism, higher biomass allocation to roots and lower sensitivity of growth to drought compared with Sequoia. Only minor intra-specific differences were observed among populations. Our results show that seedlings of the two redwood species exhibit contrasting drought-response strategies that align with the environmental conditions these trees experience in their native habitats, and demonstrate trade-offs and coordination among traits affecting plant water use, carbon gain and growth under drought. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Towards developing drought impact functions to advance drought monitoring and early warning

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Stahl, Kerstin; Hannaford, Jamie; Svoboda, Mark

    2015-04-01

    In natural hazard analysis, damage functions (also referred to as vulnerability or susceptibility functions) relate hazard intensity to the negative effects of the hazard event, often expressed as damage ratio or monetary loss. While damage functions for floods and seismic hazards have gained considerable attention, there is little knowledge on how drought intensity translates into ecological and socioeconomic impacts. One reason for this is the multifaceted nature of drought affecting different domains of the hydrological cycle and different sectors of human activity (for example, recognizing meteorological - agricultural - hydrological - socioeconomic drought) leading to a wide range of drought impacts. Moreover, drought impacts are often non-structural and hard to quantify or monetarize (e.g. impaired navigability of streams, bans on domestic water use, increased mortality of aquatic species). Knowledge on the relationship between drought intensity and drought impacts, i.e. negative environmental, economic or social effects experienced under drought conditions, however, is vital to identify critical thresholds for drought impact occurrence. Such information may help to improve drought monitoring and early warning (M&EW), one goal of the international DrIVER project (Drought Impacts: Vulnerability thresholds in monitoring and Early-warning Research). The aim of this study is to test the feasibility of designing "drought impact functions" for case study areas in Europe (Germany and UK) and the United States to derive thresholds meaningful for drought impact occurrence; to account for the multidimensionality of drought impacts, we use the broader term "drought impact function" over "damage function". First steps towards developing empirical drought impact functions are (1) to identify meaningful indicators characterizing the hazard intensity (e.g. indicators expressing a precipitation or streamflow deficit), (2) to identify suitable variables representing impacts, damage, or loss due to drought, and (3) to test different statistical models to link drought intensity with drought impact information to derive meaningful thresholds. While the focus regarding drought impact variables lies on text-based impact reports from the European Drought Impact report Inventory (EDII) and the US Drought Impact Reporter (DIR), the information gain through exploiting other variables such as agricultural yield statistics and remotely sensed vegetation indices is explored. First results reveal interesting insights into the complex relationship between drought indicators and impacts and highlight differences among drought impact variables and geographies. Although a simple intensity threshold evoking specific drought impacts cannot be identified, developing drought impact functions helps to elucidate how drought conditions relate to ecological or socioeconomic impacts. Such knowledge may provide guidance for inferring meaningful triggers for drought M&EW and could have potential for a wide range of drought management applications (for example, building drought scenarios for testing the resilience of drought plans or water supply systems).

  8. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less

  9. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE PAGES

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.; ...

    2018-02-15

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less

  10. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery.

    PubMed

    Sengupta, Debashree; Guha, Anirban; Reddy, Attipalli Ramachandra

    2013-10-05

    The present study investigates the interdependence of plant water status with foliar and root responses in Vigna radiata L.Wilczek under progressive drought. Vegetatively-mature V. radiata plants were subjected to water withdrawal for 3 and 6days (D3 and D6, respectively) and then re-watered subsequently for 6days (6R) for stress-recovery. Changes in plant water status were expressed in terms of leaf and root moisture contents (LMC and RMC, respectively) and leaf relative water content (LRWC). Progressive drought caused apparent decrease in LRWC, LMC and RMC depicting significant level of dehydration of leaf and root tissues. Stomatal limitation alone could not account for the observed decrease in net CO2 assimilation rates (Pn) due to comparatively less decrease in sub-stomatal CO2 (Ci) concentrations with respect to other gas exchange parameters indicating possible involvement of non-stomatal limitations. Analysis of polyphasic chl a fluorescence kinetics during progressive drought showed decreased energy connectivity among PSII units as defined by a positive L-band with highest amplitude during D6. Efficiency of electron flux from OEC towards PSII acceptor side was not significantly affected during drought conditions as evidenced by the absence of a positive K-band. Increasing root-level water-limitation enforced a gradual oxidative stress through H2O2 accumulation and membrane lipid peroxidation in V. radiata roots exhibiting drastic enhancement of proline content and a significant but gradual increase in ascorbic acid content as well as guaiacol peroxidase activity under progressive drought. Expression analysis of Δ(1) pyrroline-5-carboxylate synthetase (P5CS) through real time PCR and enzyme activity studies showed a strong positive correlation between VrP5CS gene expression, enzyme activity and proline accumulation in the roots of V. radiata under progressive drought and recovery. Drought-induced changes in root moisture content (RMC) showed positive linear correlations with leaf water content, stomatal conductance as well as transpirational water loss dynamics and a significant negative correlation with the corresponding drought-induced expression patterns of ascorbate, guaiacol peroxidase and proline in roots of V. radiata. The study provides new insights into the plant water status-dependent interrelationship between photosynthetic performance and major root defense responses of V. radiata under progressive drought conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Estimating Leaf Water Potential of Giant Sequoia Trees from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2015-12-01

    Recent drought-induced forest dieback events have motivated research on the mechanisms of tree survival and mortality during drought. Leaf water potential, a measure of the force exerted by the evaporation of water from the leaf surface, is an indicator of plant water stress and can help predict tree mortality in response to drought. Scientists have traditionally measured water potentials on a tree-by-tree basis, but have not been able to produce maps of tree water potential at the scale of a whole forest, leaving forest managers unaware of forest drought stress patterns and their ecosystem-level consequences. Imaging spectroscopy, a technique for remote measurement of chemical properties, has been used to successfully estimate leaf water potentials in wheat and maize crops and pinyon-pine and juniper trees, but these estimates have never been scaled to the canopy level. We used hyperspectral reflectance data collected by the Carnegie Airborne Observatory (CAO) to map leaf water potentials of giant sequoia trees (Sequoiadendron giganteum) in an 800-hectare grove in Sequoia National Park. During the current severe drought in California, we measured predawn and midday leaf water potentials of 48 giant sequoia trees, using the pressure bomb method on treetop foliage samples collected with tree-climbing techniques. The CAO collected hyperspectral reflectance data at 1-meter resolution from the same grove within 1-2 weeks of the tree-level measurements. A partial least squares regression was used to correlate reflectance data extracted from the 48 focal trees with their water potentials, producing a model that predicts water potential of giant sequoia trees. Results show that giant sequoia trees can be mapped in the imagery with a classification accuracy of 0.94, and we predicted the water potential of the mapped trees to assess 1) similarities and differences between a leaf water potential map and a canopy water content map produced from airborne hyperspectral data, 2) spatial variability in leaf water potentials and, 3) relationships between water potential and tree leaf area, topography, and surrounding tree density. These results will help forest managers plan prescribed burns to maintain the health of giant sequoia trees during drought.

  12. Advancing drought monitoring using a Small Unmanned Aerial System (sUAS) in a changing climate

    NASA Astrophysics Data System (ADS)

    Ryu, J.

    2016-12-01

    Drought as a natural hazard, increasingly threatens the sustainability of regional water resources around the world. Given current trends in climate variability and change, droughts are likely to continue and increase. One of the effective ways to mitigate drought impacts may be to use a Small Unmanned Aerial System (sUAS) to improve understanding of the factors that drive the onset and development of drought conditions at local levels would enable planners and end users to more effectively manage and meter out limited water resources. During the presentation, the author will propose a methodological approach to apply sUAS for drought monitoring along with federal regulations and policies.

  13. Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan.

    PubMed

    Liu, Jian-Xiang; Bennett, John

    2011-01-01

    Crop yield is most sensitive to water deficit during the reproductive stage. For rice, the most sensitive yield component is spikelet fertility and the most sensitive stage is immediately before heading. Here, we examined the effect of drought on the anther proteome of two rice genotypes: Moroberekan and IR64. Water was withheld for 3 d before heading (3DBH) in well watered controls for 5 d until the flag leaf relative water content (RWC) had declined to 45-50%. Plants were then re-watered and heading occurred 2-3 d later, representing a delay of 4-5 d relative to controls. The anther proteins were separated at 3 DBH, at the end of the stress period, and at heading in stressed/re-watered plants and controls by two-dimensional (2-D) gel electrophoresis, and 93 protein spots were affected reproducibly in abundance by drought during the experiment across two rice genotypes. After drought stress, upon re-watering, expressions of 24 protein spots were irreversible in both genotypes, 60 protein spots were irreversible in IR64 but reversible in Moroberekan, only nine protein spots were irreversible in Moroberekan while reversible in IR64. Among them, there were 14 newly drought-induced protein spots in IR64; none of them was reversible on re-watering. However, there were 13 newly drought-induced protein spots in Moroberekan, 10 of them were reversible on re-watering, including six drought-induced protein spots that were not reversed in IR64. Taken together, our proteomics data reveal that drought-tolerant genotype Moroberekan possessed better recovery capability following drought and re-watering at the anther proteome level than the drought-sensitive genotype IR64. The disruptions of drought to rice anther development and pollen cell functions are also discussed in the paper.

  14. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    NASA Astrophysics Data System (ADS)

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.

    2017-12-01

    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence are limited in scale, chlorophyll fluorescence comprises an indicator of drought stress across multiple spatial scales, from leaf to ecosystem level.

  15. Phosphorous Application Improves Drought Tolerance of Phoebe zhennan.

    PubMed

    Tariq, Akash; Pan, Kaiwen; Olatunji, Olusanya A; Graciano, Corina; Li, Zilong; Sun, Feng; Sun, Xiaoming; Song, Dagang; Chen, Wenkai; Zhang, Aiping; Wu, Xiaogang; Zhang, Lin; Mingrui, Deng; Xiong, Qinli; Liu, Chenggang

    2017-01-01

    Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan . Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.

  16. Groundwater Drought and Recovery: a Case Study from the United Kingdom

    NASA Astrophysics Data System (ADS)

    Peach, D.; McKenzie, A. A.; Bloomfield, J.

    2012-12-01

    An understanding of the processes leading to the onset, duration and end of hydrological droughts is necessary to help improve the management of stressed or scarce water resources during such periods. In particular, the role and use of groundwater during episodes of drought is crucially important, since groundwater can provide relatively resilient water supplies during early stages of drought but maybe highly susceptible to relatively persistent or sustained droughts. Nevertheless, groundwater is seldom considered in drought analyses, and compared with other types of hydrological drought there have been few studies to date. The few previous studies of groundwater droughts at catchment- and regional-scale have shown that catchment and aquifer characteristics exert a strong influence on the spatio-temporal development of groundwater droughts as water deficit propagates through the terrestrial water cycle. In this context, the relationships between hydrogeological heterogeneity, catchment engineering infrastructure (storage), and decisions related to water resource management during drought events all shape the evolution and consequences of groundwater droughts. Here we examine the evolution of a recent regionally significant two-year drought across the United Kingdom (UK) and use it to investigate these relationships. We identify the drivers, characterise the development and spatio-temporal extent of the groundwater drought. In particular, we focus on the unusually rapid end and recovery from drought during what would normally be a period of groundwater recession. The UK, and in particular southern England, relies extensively on groundwater for public water supply, agricultural and industrial use, as well as for sustaining river flows that are essential to ecosystem health. In normal years relatively consistent rainfall patterns prevail, recharging aquifers over winter when evapotranspiration is minimal. However, by March 2012 large parts of the southern UK had experienced accumulated rainfall deficiencies over 24 months or more. Such rainfall deficiencies could, on aver¬age, only be expected around once every 20 to 30 years. The rainfall deficiencies were disproportionately concentrated in the winter/spring periods leading to significant reductions in groundwater recharge over the winters of 2010-11 and particularly 2011-12. At it's height in March 2012 groundwater levels were at historically low levels with estimated overall storage in the Chalk aquifer, the principal aquifer in the UK, lower than at the same time in 1976, the previous benchmark drought for the UK. Natural base levels had been reached or closely approached at a number of index wells early in the hydrometric year and groundwater recession was expected to continue with the prospect of overall groundwater resources being comparable with, or below, the lowest in the last 100 years by the autumn of 2012. However, a significant change in weather in spring 2012 led to three months (April to June) of exceptional rainfall, mitigating the drought and leading to anomalous groundwater recharge at a time of year when soil moisture deficits are normally significant.

  17. How Much Water Trees Access and How It Determines Forest Response to Drought

    NASA Astrophysics Data System (ADS)

    Berdanier, A. B.; Clark, J. S.

    2015-12-01

    Forests are transformed by drought as water availability drops below levels where trees of different sizes and species can maintain productivity and survive. Physiological studies have provided detailed understanding of how species differences affect drought vulnerability but they offer almost no insights about the amount of water different trees can access beyond general statements about rooting depth. While canopy architecture provides strong evidence for light availability aboveground, belowground moisture availability remains essentially unknown. For example, do larger trees always have greater access to soil moisture? In temperate mixed forests, the ability to access a large soil moisture pool could minimize damage during drought events and facilitate post-drought recovery, potentially at the expense of neighboring trees. We show that the pool of accessible soil moisture can be estimated for trees with data on whole-plant transpiration and that this data can be used to predict water availability for forest stands. We estimate soil water availability with a Bayesian state-space model based on a simple water balance, where cumulative depressions in water use below potential transpiration indicate soil resource depletion. We compare trees of different sizes and species, extend these findings to the entire stand, and connect them to our recent research showing that tree survival after drought depends on post-drought growth recovery and local moisture availability. These results can be used to predict competitive abilities for soil water, understand ecohydrological variation within stands, and identify trees that are at risk of damage from future drought events.

  18. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

    NASA Astrophysics Data System (ADS)

    Mustafa, Syed Md. Touhidul; Abdollahi, Khodayar; Verbeiren, Boud; Huysmans, Marijke

    2017-08-01

    Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

  19. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress.

    PubMed

    Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim

    2013-07-01

    Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.

  20. Response of maize hybrids with and without rootworm-and drought-tolerance to rootworm infestation under well-watered and drought conditions

    USDA-ARS?s Scientific Manuscript database

    Anecdotal data have suggested that the effect of the western corn rootworm, Diabrotica virgifera virgifera LeConte, is greater under drought and the effect of drought is greater under rootworm infestations, but few experiments have controlled both moisture and rootworm levels. Field studies were con...

  1. Surface and groundwater drought evaluation with respect to aquatic habitat quality in the upper Nitra River Basin in Slovakia

    NASA Astrophysics Data System (ADS)

    Fendekova, M.; Fendek, M.; Macura, V.; Kralova, J.

    2012-04-01

    Hydrological drought is being broadly studied within last decades in many countries. It is because of increasing frequency of drought periods occurrence also in mild climate conditions, leading to unexpected and undesired consequences for environment and various spheres of the state economy. Drought affects water availability for plants, animals and human society. Natural conditions of drought occurrence are often combined with human activities strengthening drought consequences. Lack of water in the nature, connected to meteorological and hydrological drought occurrence, increases at the same time needs for surface and groundwater in many types of human activities (agriculture, industrial production, electric power generation…). Drought can be identified within the low flow phase of the flow regime. Flow regime is considered for one of the most important conditions influencing quality of the river ecosystems. Occurrence of meteorological, surface and groundwater droughts was analyzed for the upper part of the Nitra River catchment in Slovakia. Drought occurrence was studied in two gauging profiles on the Nitra River - in Klacno and Nedozery, both representing the headwater profiles. The threshold level method was used for groundwater drought analysis. Base flow values were separated from the discharge hydrograms using the HydroOffice 2010 statistical program package. The influence of surface water drought on groundwater level was analyzed. Habitat suitability curves derived according to IFIM methodology were constructed for different fish species at Nedozery profile. The influence of different low flow values from 600 to 150 L/s on fish amount, size and species variability was studied. In the end, the minimum flow, bellow which unfavourable life conditions occur, was estimated. The results showed the necessity of taking into account the ecological parameters when estimating the ecological status of surface water bodies. Such an approach is fully compatible with the requirements of the Directive 2000/60/EC and with the integrated water resources management strategy. Acknowledgment: The research was done with the financial support of the VEGA project grant No. 1/1327/12.

  2. Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Mussá, F. E. F.; Zhou, Y.; Maskey, S.; Masih, I.; Uhlenbrook, S.

    2014-03-01

    Global climate change has received much attention worldwide in the scientific as well as in the political community, indicating that changes in precipitation, extreme droughts and floods may threaten increasingly many regions. Drought is a natural phenomenon that may cause social, economical and environmental damages to the society. In this study, we assess the drought intensity and severity and the groundwater potential to be used as a supplement source of water to mitigate drought impacts in the Crocodile River catchment, a water-stressed sub-catchment of the Incomati River catchment in South Africa. The research methodology consists mainly of three parts. First, the spatial and temporal variation of the meteorological and hydrological drought severity and intensity over the catchment were evaluated. The Standardized Precipitation Index (SPI) was used to analyse the meteorological drought and the Standardized Runoff Index (SRI) was used for the hydrological drought. Second, the water deficit in the catchment during the drought period was computed using a simple water balance method. Finally, a groundwater model was constructed in order to assess the feasibility of using groundwater as an emergency source for drought impact mitigation. Results show that the meteorological drought severity varies accordingly with the precipitation; the low rainfall areas are more vulnerable to severe meteorological droughts (lower and upper crocodile). Moreover, the most water stressed sub-catchments with high level of water uses but limited storage, such as the Kaap located in the middle catchment and the Lower Crocodile sub-catchments are those which are more vulnerable to severe hydrological droughts. The analysis of the potential groundwater use during droughts showed that a deficit of 97 Mm3 yr-1 could be supplied from groundwater without considerable adverse impacts on the river base flow and groundwater storage. Abstraction simulations for different scenarios of extremely severe droughts reveal that it is possible to use groundwater to cope with the droughts in the catchment. However, local groundwater exploitation in Nelspruit and White River sub-catchment will cause large drawdowns (> 10 m) and high base flow reduction (> 20%). This case study shows that conjunctive water management of groundwater and surface water resources is the necessary to mitigate the impacts of droughts.

  3. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought

    PubMed Central

    Santos, Tiago Benedito Dos; de Lima, Rogério Barbosa; Nagashima, Getúlio Takashi; Petkowicz, Carmen Lucia de Oliveira; Carpentieri-Pípolo, Valéria; Pereira, Luiz Filipe Protasio; Domingues, Douglas Silva; Vieira, Luiz Gonzaga Esteves

    2015-01-01

    Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop. PMID:26273221

  4. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought.

    PubMed

    Santos, Tiago Benedito Dos; de Lima, Rogério Barbosa; Nagashima, Getúlio Takashi; Petkowicz, Carmen Lucia de Oliveira; Carpentieri-Pípolo, Valéria; Pereira, Luiz Filipe Protasio; Domingues, Douglas Silva; Vieira, Luiz Gonzaga Esteves

    2015-05-01

    Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.

  5. A Drought Early Warning System Using System Dynamics Model and Seasonal Climate Forecasts: a case study in Hsinchu, Taiwan.

    NASA Astrophysics Data System (ADS)

    Tien, Yu-Chuan; Tung, Ching-Ping; Liu, Tzu-Ming; Lin, Chia-Yu

    2016-04-01

    In the last twenty years, Hsinchu, a county of Taiwan, has experienced a tremendous growth in water demand due to the development of Hsinchu Science Park. In order to fulfill the water demand, the government has built the new reservoir, Baoshan second reservoir. However, short term droughts still happen. One of the reasons is that the water level of the reservoirs in Hsinchu cannot be reasonably forecasted, which sometimes even underestimates the severity of drought. The purpose of this study is to build a drought early warning system that projects the water levels of two important reservoirs, Baoshan and Baoshan second reservoir, and also the spatial distribution of water shortagewith the lead time of three months. Furthermore, this study also attempts to assist the government to improve water resources management. Hence, a system dynamics model of Touchien River, which is the most important river for public water supply in Hsinchu, is developed. The model consists of several important subsystems, including two reservoirs, water treatment plants and agricultural irrigation districts. Using the upstream flow generated by seasonal weather forecasting data, the model is able to simulate the storage of the two reservoirs and the distribution of water shortage. Moreover, the model can also provide the information under certain emergency scenarios, such as the accident or failure of a water treatment plant. At last, the performance of the proposed method and the original water resource management method that the government used were also compared. Keyword: Water Resource Management, Hydrology, Seasonal Climate Forecast, Reservoir, Early Warning, Drought

  6. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.: Tree Mortality in Semiarid Biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morillas, L.; Pangle, R. E.; Maurer, G. E.

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semi-arid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while non-canopy ET increased. We attributed the elevated non-canopy ET in the girdled site each year to winter increases in sublimation, and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This post-girdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites, and potentially more vulnerable to drought.« less

  7. Extreme drought decouples silicon and carbon geochemical linkages in lakes.

    PubMed

    Li, Tianyang; Li, Siyue; Bush, Richard T; Liang, Chuan

    2018-09-01

    Silicon and carbon geochemical linkages were usually regulated by chemical weathering and organism activity, but had not been investigated under the drought condition, and the magnitude and extent of drought effects remain poorly understood. We collected a comprehensive data set from a total of 13 sampling sites covering the main water body of the largest freshwater lake system in Australia, the Lower Lakes. Changes to water quality during drought (April 2008-September 2010) and post-drought (October 2010-October 2013) were compared to reveal the effects of drought on dissolved silica (DSi) and bicarbonate (HCO 3 - ) and other environmental factors, including sodium (Na + ), pH, electrical conductivity (EC), chlorophyll a (Chl-a), total dissolved solids (TDS), dissolved inorganic nitrogen (DIN), total nitrogen (TN), total phosphorus (TP) and water levels. Among the key observations, concentrations of DSi and DIN were markedly lower in drought than in post-drought period while pH, EC and concentrations of HCO 3 - , Na + , Chl-a, TDS, TN, TP and the ratio TN:TP had inverse trends. Stoichiometric ratios of DSi:HCO 3 - , DSi:Na + and HCO 3 - :Na + were significantly lower in the drought period. DSi exhibited significantly negative relationships with HCO 3 - , and DSi:Na + was strongly correlated with HCO 3 - :Na + in both drought and post-drought periods. The backward stepwise regression analysis that could avoid multicollinearity suggested that DSi:HCO 3 - ratio in drought period had significant relationships with fewer variables when compared to the post-drought, and was better predictable using nutrient variables during post-drought. Our results highlight the drought effects on variations of water constituents and point to the decoupling of silicon and carbon geochemical linkages in the Lower Lakes under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Changes of microbial activities and soil aggregation in rhizosphere soil of lettuce plants by drought and the possible influence of inoculation with AM fungi and/or PGPR

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Caravaca, F.; Roldán, A.

    2009-04-01

    The effect of different arbuscular mycorrhizal (AM) fungi, Glomus intraradices (Schenk & Smith) or Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and plant growth-promoting rhizobacteria (PGPR) (Pseudomonas mendocina Palleroni), alone or in combination, on structural stability and microbial activity in the rhizosphere soil of Lactuca sativa L. was assessed under well-watered conditions and two levels of drought. Desiccation caused an increase in aggregate stability and water-soluble and total carbohydrates but there were no significant differences among treated soils and the control soil. The glomalin-related soil protein (GRSP) levels in both the <2 mm and 0.2-4 mm soil fractions increased with medium water stress, whereas under severe water stress they did not differ with respect to those of well-watered soils. The values of GRSP in soils inoculated with PGPR and AM fungi were higher than in the control or fertilised soil under well-watered and severe-drought conditions, while under medium-drought conditions all soils showed similar GRSP values. Soils inoculated with AM fungi and PGPR generally presented higher dehydrogenase and phosphatase activities than the control soil, independent of the water regime.

  9. Molecular responses to recurrent drought in two contrasting rice genotypes.

    PubMed

    Auler, Priscila Ariane; do Amaral, Marcelo Nogueira; Rodrigues, Gabriela Dos Santos; Benitez, Letícia Carvalho; da Maia, Luciano Carlos; Souza, Gustavo Maia; Braga, Eugenia Jacira Bolacel

    2017-11-01

    The set of variables analyzed as integrated by multivariate analysis of principal components consistently showed a memory effect induced by the drought pre-treatment in AN Cambará plants. The effects of drought can vary ddepending on many factors. Among these the occurrence of a previous water stress may leave a residual effect (memory), influencing the future performance of a plant in response to a new drought event. This study tested the hypothesis that plants experiencing recurrent drought would show more active mechanisms of water deficit tolerance, mainly plants of the genotype that is cultivated often experiencing water shortages periods. Additionally, all the plants subjected to water deficit were rehydrated by 24 h and the expression of transcription factors related to drought responses was re-evaluated. To this end, the water status of two rice genotypes, BRS Querência (flooded) and AN Cambará (dryland), was evaluated to identify molecular alterations likely underpinning drought-memory. In growth stage V5, some plants were exposed to water stress (10% VWC soil moisture-pre-treatment). Thereafter, the pots were rehydrated at the same level as the control pots and maintained under this condition until drought was reapplied (10% VWC) at the reproductive stage (R1-R2). Then, the plants were rehydrated and maintained at pot capacity for 24 h. Overall, the set of variables analyzed integrally by multivariate analysis of principal components consistently showed a memory effect induced by the drought pre-treatment in AN Cambará plants (the dryland genotype). This conclusion, based on data of the biochemical and molecular analyses, was supported by the greater capacity of maintenance of the water status by stomatal regulation of the pre-treated and rehydrated plants after the second drought stimulus.

  10. The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Gómez, María C; Chan, Raquel L

    2017-09-10

    Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom; members of subfamily I are known to be involved in abiotic stress responses. HaHB11 belongs to this subfamily and it was previously shown that it is able to confer improved yield and tolerance to flooding via a quiescent strategy. Here we show that HaHB11 expression is induced by ABA, NaCl and water deficit in sunflower seedlings and leaves. Arabidopsis transgenic plants expressing HaHB11, controlled either by its own promoter or by the constitutive 35S CaMV, presented rolled leaves and longer roots than WT when grown under standard conditions. In addition, these plants showed wider stems and more vascular bundles. To deal with drought, HaHB11 transgenic plants closed their stomata faster and lost less water than controls, triggering an enhanced tolerance to such stress condition and also to salinity stress. Concomitantly, ABA-synthesis and sensing related genes were differentially regulated in HaHB11 transgenic plants. Either under long-term salinity stress or mild drought stress, HaHB11 transgenic plants did not exhibit yield penalties. Moreover, alfalfa transgenic plants were generated which also showed enhanced drought tolerance. Altogether, the results indicated that HaHB11 was able to confer drought and salinity tolerance via a complex mechanism which involves morphological, physiological and molecular changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine.

    PubMed

    Voltas, Jordi; Camarero, Jesús Julio; Carulla, David; Aguilera, Mònica; Ortiz, Araceli; Ferrio, Juan Pedro

    2013-08-01

    Winter-drought induced forest diebacks in the low-latitude margins of species' distribution ranges can provide new insights into the mechanisms (carbon starvation, hydraulic failure) underlying contrasting tree reactions. We analysed a winter-drought induced dieback at the Scots pine's southern edge through a dual-isotope approach (Δ(13) C and δ(18) O in tree-ring cellulose). We hypothesized that a differential long-term performance, mediated by the interaction between CO(2) and climate, determined the fates of individuals during dieback. Declining trees showed a stronger coupling between climate, growth and intrinsic water-use efficiency (WUEi) than non-declining individuals that was noticeable for 25 years prior to dieback. The rising stomatal control of water losses with time in declining trees, indicated by negative Δ(13) C-δ(18) O relationships, was likely associated with their native aptitude to grow more and take up more water (suggested by larger tracheid lumen widths) than non-declining trees and, therefore, to exhibit a greater cavitation risk. Freeze-thaw episodes occurring in winter 2001 unveiled such physiological differences by triggering dieback in those trees more vulnerable to hydraulic failure. Thus, WUEi tightly modulated growth responses to long-term warming in declining trees, indicating that co-occurring individuals were differentially predisposed to winter-drought mortality. These different performances were unconnected to the depletion of stored carbohydrates. © 2013 John Wiley & Sons Ltd.

  12. Risk to Drought in Mexico

    NASA Astrophysics Data System (ADS)

    Magana, V.

    2016-12-01

    Drought is one of the major meteorological hazards in Mexico given the semiarid and arid conditions in most of its territory. The recent drought event between 2011 and 2013 led to one of the major socioeconomic and environmental crisis in recent years in relation to water deficit mainly in northern Mexico. But the impacts of meteorological droughts are not only related to precipitation deficit, but to the water crisis context in which the climatic anomaly occurs. In other words, the drought hazard occurs in a vulnerability context that results in risks at levels that translate into hydrological, agricultural and socioeconomic droughts. The dynamics of prolonged droughts in Mexico has been studied in relation to low frequency oscillations in the Pacific and Atlantic oceans (Méndez and Magaña 2010). On the other hand, the vulnerability to drought has been characterized by means of socioeconomic and physical indicators that reflect the dynamical and multifactorial characteristics of this element (Neri and Magaña 2016). The combination of hazard and vulnerability led to an estimate of risk to drought that explains the drought impacts in recent years. The Mexican government has developed a national strategy to prevent or at least ameliorate the impacts of droughts by establishing the National Program against Drought (PRONACOSE) for each one of the thirteen hydrologic administrative regions that compose the Mexican territory. The main idea behind PRONACOSE is to respond to drought as it reaches a higher level of intensity. Some of the protocols in PRONACOSE are based on a risk analysis and proposals by water stakeholders. It is found that PRONACOSE could better work if a risk management preventive scheme is implemented making use of the knowledge on the predictability of drought in Mexico on various time scales. The examples of potential risk to drought management schemes in Mexico for some of the hydrologic administrative regions are presented.

  13. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance.

    PubMed

    Hu, Longxing; Wang, Zhaolong; Du, Hongmei; Huang, Bingru

    2010-01-15

    Expression of dehydrin proteins may be induced or enhanced by environmental stresses that lead to cell dehydration. The objective of the this study was to investigate genetic variation in dehydrin protein accumulation in response to drought stress of whole-plants or dehydration of detached leaves and to identify dehydrins differentially expressed in bermudagrass (Cynodon spp.) genotypes differing in drought tolerance. Plants of four hybrid bermudagrass (Cynodondactylon L. xCynodontransvaalensis L.) ('Tifway', 'Tifdwarf', 'Tifeagle', 'Kan1') and four common bermudagrass (Cynodon dactylon) ('C299', 'Sportbermuda', 'H10', and 'H19') genotypes were subjected to 14d of drought stress and detached leaves of two genotypes were exposed to dehydration in growth chambers. Turf quality and leaf relative water content (RWC) decreased while electrolyte leakage (EL) increased during whole-plant drought stress for all genotypes, with more pronounced changes in each parameter for 'C299' and 'Tifeagle' than those for other genotypes ('Tifway', 'Kan 1', 'Sportbermuda', 'H10', and H19'), suggesting that the former two genotypes were more sensitive to drought stress than the other genotypes. During dehydration of detached leaves, relative water loss rate (RWL) was significantly lower in drought-tolerant 'Tifway' than in drought-sensitive 'C299'. Immunoblotting analysis indicated that no dehydrin polypeptides were detected in all genotypes under well-watered conditions. A 24-kDa polypeptide was detected in 'C299' at 6 d of drought, but not in the other genotypes. The dehydrin polypeptides of about 14-74kDa accumulated at 10d of drought stress and in a range of RWL for detached leaves, and two dehydrins (31 and 40kDa) exhibited differential accumulation in the drought-sensitive 'C299' and tolerant 'Tifway', as demonstrated by the whole-plant drought responses. The 31-kDa dehydrin polypeptide was present only in 'Tifway' and 'H19' at 10d of drought stress, and accumulated with the increasing RWL in detached leaves of 'Tifway'. The expression level of 40-kDa dehydrin polypeptides was greater in 'Tifway'' than in 'C299' at the same level of water deficit (from 10% to 65% RWL). These results indicated that the accumulation of 31- and 40-kDa dehydrins may contribute to drought or dehydration tolerance in warm-season bermudagrass.

  14. Assessing existing drought monitoring and forecasting capacities, mitigation and adaptation practices in Africa

    NASA Astrophysics Data System (ADS)

    Nyabeze, W. R.; Dlamini, L.; Lahlou, O.; Imani, Y.; Alaoui, S. B.; Vermooten, J. S. A.

    2012-04-01

    Drought is one of the major natural hazards in many parts of the world, including Africa and some regions in Europe. Drought events have resulted in extensive damages to livelihoods, environment and economy. In 2011, a consortium consisting of 19 organisations from both Africa and Europe started a project (DEWFORA) aimed at developing a framework for the provision of early warning and response through drought impact mitigation for Africa. This framework covers the whole chain from monitoring and vulnerability assessment to forecasting, warning, response and knowledge dissemination. This paper presents the first results of the capacity assessment of drought monitoring and forecasting systems in Africa, the existing institutional frameworks and drought mitigation and adaptation practices. Its focus is particularly on the historical drought mitigation and adaptation actions identified in the North Africa - Maghreb Region (Morocco, Algeria and Tunisia) and in the Southern Africa - Limpopo Basin. This is based on an extensive review of historical drought experiences. From the 1920's to 2009, the study identified 37 drought seasons in the North African - Maghreb Region and 33 drought seasons in the Southern Africa - Limpopo Basin. Existing literature tends to capture the spatial extent of drought at national and administrative scale in great detail. This is driven by the need to map drought impacts (food shortage, communities affected) in order to inform drought relief efforts (short-term drought mitigation measures). However, the mapping of drought at catchment scale (hydrological unit), required for longer-term measures, is not well documented. At regional level, both in North Africa and Southern Africa, two organisations are involved in drought monitoring and forecasting, while at national level 22 organisations are involved in North Africa and 37 in Southern Africa. Regarding drought related mitigation actions, the inventory shows that the most common actions implemented in Africa in the past include food aid, drought relief programs, growing of drought tolerate crops, saving livestock, water efficiency and construction or rehabilitation of boreholes, wells and small dams. In the North Africa - Maghreb Region and in the Southern Africa - Limpopo Basin, respectively 73 and 39 organisations involved in drought mitigation, are identified, dealing with agriculture extension services (28), food aid (11), policy (11), advocacy (10) and water supply (3). The most common adaptation actions identified are water harvesting, construction of water infrastructure, rehabilitation of traditional/cultural practices or implementation of technologies, water conservation, crop monitoring and crop diversification. Regarding involvement of organisations in drought adaptation, 18 organisations in the North Africa - Maghreb Region and 20 in Southern Africa - Limpopo Basin are identified. These organisations are involved in water infrastructure development or management (7), agriculture extension services (7) and policy development (13). The paper clearly shows that there is need to improve the existing monitoring and early warning systems at continental, regional, national and local scales. It also shows that a lot of organisations emerge when there is a drought and are involved in drought mitigation but only a few are involved in drought adaptation.

  15. Dynamic equilibrium strategy for drought emergency temporary water transfer and allocation management

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Ma, Ning; Lv, Chengwei

    2016-08-01

    Efficient water transfer and allocation are critical for disaster mitigation in drought emergencies. This is especially important when the different interests of the multiple decision makers and the fluctuating water resource supply and demand simultaneously cause space and time conflicts. To achieve more effective and efficient water transfers and allocations, this paper proposes a novel optimization method with an integrated bi-level structure and a dynamic strategy, in which the bi-level structure works to deal with space dimension conflicts in drought emergencies, and the dynamic strategy is used to deal with time dimension conflicts. Combining these two optimization methods, however, makes calculation complex, so an integrated interactive fuzzy program and a PSO-POA are combined to develop a hybrid-heuristic algorithm. The successful application of the proposed model in a real world case region demonstrates its practicality and efficiency. Dynamic cooperation between multiple reservoirs under the coordination of a global regulator reflects the model's efficiency and effectiveness in drought emergency water transfer and allocation, especially in a fluctuating environment. On this basis, some corresponding management recommendations are proposed to improve practical operations.

  16. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi

    PubMed Central

    Asrar, Abdul-Wasea A.; Elhindi, Khalid M.

    2010-01-01

    The effect of an arbuscular mycorrhizal fungus “AMF” (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding. PMID:23961109

  17. ERTS-B applications to Minnesota resource management

    NASA Technical Reports Server (NTRS)

    Sizer, J. E. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The shape, pattern, and extent of surface water (e.g. lakes) can be readily mapped. Comparing detailed maps of several lakes in Itasca County with the areas classified as water by the LANDSAT data shows that some lakes have changed considerably since they were mapped. Due to several droughts this year (1976), the water level in most lakes has dropped. At this time, it seems feasible that LANDSAT digital tape data estimate lake water level change, due to the 1976 drought conditions.

  18. Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants.

    PubMed

    Ryan, Annette C; Hewitt, C Nicholas; Possell, Malcolm; Vickers, Claudia E; Purnell, Anna; Mullineaux, Philip M; Davies, William J; Dodd, Ian C

    2014-01-01

    Isoprene protects the photosynthetic apparatus of isoprene-emitting plants from oxidative stress. The role of isoprene in the response of plants to drought is less clear. Water was withheld from transgenic isoprene-emitting and non-emitting tobacco (Nicotiana tabacum) plants, to examine: the response of isoprene emission to plant water deficit; a possible relationship between concentrations of the drought-induced phytohormone abscisic acid (ABA) and isoprene; and whether isoprene affected foliar reactive oxygen species (ROS) and lipid peroxidation levels. Isoprene emission did not affect whole-plant water use, foliar ABA concentration or leaf water potential under water deficit. Compared with well-watered controls, droughted non-emitting plants significantly increased ROS content (31-46%) and lipid peroxidation (30-47%), concomitant with decreased operating and maximum efficiencies of photosystem II photochemistry and lower leaf and whole-plant water use efficiency (WUE). Droughted isoprene-emitting plants showed no increase in ROS content or lipid peroxidation relative to well-watered controls, despite isoprene emission decreasing before leaf wilting. Although isoprene emission protected the photosynthetic apparatus and enhanced leaf and whole-plant WUE, non-emitting plants had 8-24% more biomass under drought, implying that isoprene emission incurred a yield penalty. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress.

    PubMed

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress 'Red Robin') or fast (Eugenia uniflora L. 'Etna Fire') adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters.

  20. Inter-genotypic differences in drought tolerance of maritime pine are modified by elevated [CO2].

    PubMed

    Sánchez-Gómez, David; Mancha, José A; Cervera, M Teresa; Aranda, Ismael

    2017-10-17

    Despite the importance of growth [CO 2 ] and water availability for tree growth and survival, little information is available on how the interplay of these two factors can shape intraspecific patterns of functional variation in tree species, particularly for conifers. The main objective of the study was to test whether the range of realized drought tolerance within the species can be affected by elevated [CO 2 ]. Intraspecific variability in leaf gas exchange, growth rate and other leaf functional traits were studied in clones of maritime pine. A factorial experiment including water availability, growth [CO 2 ] and four different genotypes was conducted in growth rooms. A 'water deficit' treatment was imposed by applying a cycle of progressive soil water depletion and recovery at two levels of growth [CO 2 ]: 'ambient [CO 2 ]' (aCO 2 400 μmol mol -1 ) and 'elevated [CO 2 ]' (eCO 2 800 μmol mol -1 ). eCO2 had a neutral effect on the impact of drought on growth and leaf gas exchange of the most drought-sensitive genotypes while it aggravated the impact of drought on the most drought-tolerant genotypes at aCO2. Thus, eCO2 attenuated genotypic differences in drought tolerance as compared with those observed at aCO2. Genotypic variation at both levels of growth [CO2] was found in specific leaf area and leaf nitrogen content but not in other physiological leaf traits such as intrinsic water use efficiency and leaf osmotic potential. eCO2 increased Δ 13 C but had no significant effect on δ 18 O. This effect did not interact with the impact of drought, which increased δ 18 O and decreased Δ 13 C. Nevertheless, correlations between Δ 13 C and δ 18 O indicated the non-stomatal component of water use efficiency in this species can be particularly sensitive to drought. Evidence from this study suggests elevated [CO 2 ] can modify current ranges of drought tolerance within tree species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa

    USGS Publications Warehouse

    Tadesse, T.; Haile, M.; Senay, G.; Wardlow, B.D.; Knutson, C.L.

    2008-01-01

    Reducing the impact of drought and famine remains a challenge in sub-Saharan Africa despite ongoing drought relief assistance in recent decades. This is because drought and famine are primarily addressed through a crisis management approach when a disaster occurs, rather than stressing preparedness and risk management. Moreover, drought planning and food security efforts have been hampered by a lack of integrated drought monitoring tools, inadequate early warning systems (EWS), and insufficient information flow within and between levels of government in many sub-Saharan countries. The integration of existing drought monitoring tools for sub-Saharan Africa is essential for improving food security systems to reduce the impacts of drought and famine on society in this region. A proactive approach emphasizing integration requires the collective use of multiple tools, which can be used to detect trends in food availability and provide early indicators at local, national, and regional scales on the likely occurrence of food crises. In addition, improving the ability to monitor and disseminate critical drought-related information using available modern technologies (e.g., satellites, computers, and modern communication techniques) may help trigger timely and appropriate preventive responses and, ultimately, contribute to food security and sustainable development in sub-Saharan Africa. ?? 2008 United Nations.

  2. Effects of the Structure of Water Rights on Agricultural Production During Drought: A Spatiotemporal Analysis of California's Central Valley

    NASA Astrophysics Data System (ADS)

    Nelson, K. S.; Burchfield, E. K.

    2017-10-01

    California's Central Valley region has been called the "bread-basket" of the United States. The region is home to one of the most productive agricultural systems on the planet. Such high levels of agricultural productivity require large amounts of fresh water for irrigation. However, the long-term availability of water required to sustain high levels of agricultural production is being called into question following the latest drought in California. In this paper, we use Bayesian multilevel spatiotemporal modeling techniques to examine the influence of the structure of surface water rights in the Central Valley on agricultural production during the recent drought. California is an important place to study these dynamics as it is the only state to recognize the two dominant approaches to surface water management in the United States: riparian and appropriative rights. In this study, Bayesian spatiotemporal modeling is employed to account for spatial processes that have the potential to influence the effects of water right structures on agricultural production. Results suggest that, after accounting for spatiotemporal dependencies in the data, seniority in surface water access significantly improves crop health and productivity on cultivated lands but does not independently affect the ability to maintain cultivated extent. In addition, agricultural productivity in watersheds with more junior surface water rights shows less sensitivity to cumulative drought exposure than other watersheds, however the extent of cultivation in these same watersheds is relatively more sensitive to cumulative drought exposure.

  3. Severe Droughts Reduce Estuarine Primary Productivity with Cascading Effects on Higher Trophic Levels

    EPA Science Inventory

    Using a 10 year time-series dataset, we analyzed the effects of two severe droughts on water quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 4...

  4. Testing the sensitivity of trade linkages in Europe to compound drought events

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Koks, Elco; Thissen, Mark; Wahl, Thomas; Haigh, Ivan; Muis, Sanne; Ward, Philip

    2017-04-01

    Droughts can be defined as spatially extensive events that are characterized by temporal deficits in precipitation, soil moisture or streamflow, and have the potential to cause large direct and indirect economic losses. Many European countries face drought as an economically important hazard, with agriculture, livestock, forestry, energy, industry, and water sectors particularly at risk, causing economic losses of 139 billion US over the past 30 years. Apart from these direct impacts, business production and the flow of goods and services can be affected indirectly by droughts. With consequences that can propagate through the economic system affecting regions not directly hit by the drought event itself, or in time-periods long after the original drought event occurred. In this study, we evaluate the sensitivity of existing trade linkages between the different NUTS-2 regions in Europe to the coupled occurrence of hydro-meteorological drought events, and their associated production losses. Using a multi-regional supply-use model for Europe, we have, on a product level, insight in the existing trade linkages between NUTS-2 regions. Using this information in combination with historical drought data, we assessed and identified for a selection of water related products: 1) the dependency-structures of the NUTS-2 regions within Europe for the import and export of products (and therein water); 2) the coupled nature of drought events occurring in regions that are linked via these trade-patterns; 3) the probability of not meeting demands (on a product level) due to drought events and the associated (indirect economic) impacts; and 4) regions that lose or benefit from their selection of trade-partners given the coupled nature of drought events, as well as the net effects for Europe as a whole.

  5. Towards Remotely Sensed Composite Global Drought Risk Modelling

    NASA Astrophysics Data System (ADS)

    Dercas, Nicholas; Dalezios, Nicolas

    2015-04-01

    Drought is a multi-faceted issue and requires a multi-faceted assessment. Droughts may have the origin on precipitation deficits, which sequentially and by considering different time and space scales may impact soil moisture, plant wilting, stream flow, wildfire, ground water levels, famine and social impacts. There is a need to monitor drought even at a global scale. Key variables for monitoring drought include climate data, soil moisture, stream flow, ground water, reservoir and lake levels, snow pack, short-medium-long range forecasts, vegetation health and fire danger. However, there is no single definition of drought and there are different drought indicators and indices even for each drought type. There are already four operational global drought risk monitoring systems, namely the U.S. Drought Monitor, the European Drought Observatory (EDO), the African and the Australian systems, respectively. These systems require further research to improve the level of accuracy, the time and space scales, to consider all types of drought and to achieve operational efficiency, eventually. This paper attempts to contribute to the above mentioned objectives. Based on a similar general methodology, the multi-indicator approach is considered. This has resulted from previous research in the Mediterranean region, an agriculturally vulnerable region, using several drought indices separately, namely RDI and VHI. The proposed scheme attempts to consider different space scaling based on agroclimatic zoning through remotely sensed techniques and several indices. Needless to say, the agroclimatic potential of agricultural areas has to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production maximization. Similarly, the time scale is also considered by addressing drought-related impacts affected by precipitation deficits on time scales ranging from a few days to a few months, such as non-irrigated agriculture, topsoil moisture, wildfire danger, range and pasture conditions and unregulated stream flows. Keywords Remote sensing; Composite Drought Indicators; Global Drought Risk Monitoring.

  6. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    PubMed

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  7. Improving Multi-Sensor Drought Monitoring, Prediction and Recovery Assessment Using Gravimetry Information

    NASA Astrophysics Data System (ADS)

    Aghakouchak, Amir; Tourian, Mohammad J.

    2015-04-01

    Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014 California Drought will be presented. Further Reading: Hao Z., AghaKouchak A., Nakhjiri N., Farahmand A., 2014, Global Integrated Drought Monitoring and Prediction System, Scientific Data, 1:140001, 1-10, doi: 10.1038/sdata.2014.1.

  8. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response.

  9. Plant Water Content is the Best Predictor of Drought-induced Mortality

    NASA Astrophysics Data System (ADS)

    Sapes, G.; Roskilly, B.; Dobrowski, S.; Sala, A.

    2017-12-01

    Predicting drought-induced forest mortality remains extremely challenging. Recent research has shown that both plant hydraulics and stored non-structural carbohydrates (NSC) interact during drought-induced mortality. The strong interaction between these two variables and the fact that they are both difficult to measure render drought-induced plant mortality extremely difficult to monitor and predict. A variable that is easier to measure and that integrates hydraulic transport and carbohydrate dynamics may, therefore, improve our ability to monitor and predict mortality. Here, we tested whether plant water content is such an integrator variable and, therefore, a better predictor of mortality under drought. We subjected 250 two-year-old ponderosa pine seedlings to drought until they died in a greenhouse experiment. Periodically during the dry down, we measured percent loss of hydraulic conductivity (PLC), NSC concentration (starch and soluble sugars), and tissue volumetric water content (VWC) in roots, stems and leaves. At each measurement time, a separate set of seedlings were re-watered to estimate the probability of mortality at the population level. Linear models were used to explore whether PLC and NSC were linked to VWC and to determine which of the three variables predicted mortality the best. As expected, plants lost hydraulic conductivity in stems and roots during the dry down. Starch concentrations also decreased in all organs as the drought proceeded. In contrast, soluble sugars increased in stems and roots, consistent with the conversion of stored NSCs into osmotically active compounds. Models containing both PLC and NSC concentrations as predictors of VWC were highly significant in all organs and at the whole plant level, indicating that water content is influenced by both PLC and NSCs. PLC, NSC, and VWC explained mortality across organs and at the whole plant level, but VWC was the best predictor (R2 = 0.99). Our results indicate that plant water content integrates plant hydraulics and carbohydrate availability, two factors commonly interacting and difficult to tease apart. An important advantage of water content is that it is very easy to measure across scales, from leaves to entire ecosystems through remote sensing.

  10. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    PubMed

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest leaf ranks. At this stage, a number of drought-induced changes in nodule metabolites were observed but no metabolite or transcript markers of senescence could be detected. It is concluded that stress-induced senescence in the lowest leaf ranks precedes nodule senescence, suggesting that leaves of low photosynthetic capacity are sacrificed in favour of nodule nitrogen metabolism. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Modelling drought-induced dieback of Aleppo pine at the arid timberline

    NASA Astrophysics Data System (ADS)

    Wingate, Lisa; Preisler, Yakir; Bert, Didier; Rotenberg, Eyal; Yakir, Dan; Maseyk, Kadmiel; Ogee, Jerome

    2016-04-01

    During the mid 1960's an ambitious afforestation programme was initiated in the Negev desert of Israel. After five decades enduring harsh growing conditions, the Aleppo pine forest of Yatir is now exhibiting signs of 'drought-induced' dieback. Since 2010, 5-10% of the entire Yatir population have died, however the pattern of mortality is extremely patchy with some areas exhibiting >80% mortality whilst others display none. In this presentation, we reflect on historic climatic and edaphic conditions that have triggered this landscape mosaic of survival and mortality and how physiological and hydraulic traits vary within this patchwork. In addition, we explore how these pine trees have responded physiologically over recent years (1996-2010) to a series of severe drought events using a combined approach that brings together micrometeorological, dendro-isotopic and dendro-climatological datasets alongside process-based modelling. In particular the dataset trends were investigated with the isotope-enabled ecosystem model MuSICA to explore the consequences of subsequent droughts and embolism on modelled carbohydrate and water pool dynamics and their impact on carbon allocation and ecosystem function.

  12. [Effects of drought stress and subsequent rewatering on major physiological parameters of spring maize during the key growth periods].

    PubMed

    Cai, Fu; Mi, Na; Ji, Rui Peng; Zhao, Xian Li; Shi, Kui Qiao; Yang, Yang; Zhang, Hui; Zhang, Yu Shu

    2017-11-01

    For deeply understanding water consumption characteristics and disaster-causing mechanism of spring maize under drought stress, continuous no-water complementing for 40 days and subsequent rewatering treatments were conducted in jointing (T 1 ) and tasseling (T 2 ) stages of spring maize 'Danyu 39'. In the meantime, leaf and root water potential, main variables associated with photosynthesis including net photosynthetic rate (P n ), transpiration rate (T r ), stomatal conduc-tance (g s ), intercellular CO 2 concentration(C i ) and stem flow rate (SF) were dynamically observed and the characteristics of their responses to drought and subsequent rehydration were investigated. The results indicated that leaf and root water potential, both presenting logarithm relationships with soil water content, decreased due to suffering from drought stress in different growth stages and the response of the former lagged behind that of the latter. At the same time, the response of leaf (root) water potential to drought stress in tasseling stage was earlier (later) than in jointing stage. For the response of rewatering, leaf water potential for the treatment T 1 (T 2 ) was (not) able to recover to a certain extent, and could not reach the normal condition, while water potential of root was more responsive and closer to the normal level than that of leaf for the treatment T 1 . Furthermore, P n and T r responded more quickly to the treatment T 2 than to the treatment T 1 . For subsequent rewatering after the treatment T 1 (T 2 ), both P n and T r restored rapidly (slowly) with the former exceeding (returning) and the later being (not) able to reach normal level. Meanwhile, the response of T r was faster than that of P n to the treatment T 1 and they responded simultaneously to the treatment T 2 . The response of g s agreed with P n to drought stress. Change trend of C i for the treatment T 1 (T 2 ) was consistent (opposite) with that of P n . In addition, SFs for various drought treatments and their daily maximums decreased and appeared ahead of time to different extents, respectively. At the same time, the response of SF to drought stress was more sensitive for the treatment T 2 than for T 1 and on a clear day than on a cloudy day, but the sensibility of SF declined after drought reached a certain level. Besides, SFs for both the treatment T 1 and T 2 increased as a result of rewatering after drought and the increase for the treatment T 1 was larger than that for the treatment T 2 .

  13. Ecosystem productivity and water stress in tropical East Africa: A Case Study of the 2010-11 drought

    NASA Astrophysics Data System (ADS)

    Robinson, E. S.; Yang, X.; Lee, J. E.

    2015-12-01

    The characterization of changes in ecosystem productivity as a consequence of water stress and changing precipitation regimes is critical in defining the response of tropical ecosystems to water stress and projecting future land cover transitions in the East African tropics. Through the analysis of solar-induced chlorophyll fluorescence (SIF), soil moisture, rainfall and reanalysis data, this paper characterizes the 2010-11 drought in tropical East Africa. We demonstrated that SIF, a proxy of ecosystem productivity, varied with water availability during the 2010-11 drought. A comparison of the 2010-11 drought to previous regional droughts revealed that the consecutive failure of rainy seasons in fall 2010 and spring 2011 yielded a drought that is distinguished not only in intensity, but also in spatial and temporal extent as compared to an average of previous regional droughts: the 2010-11 event extended further east and with greater intensity in the southern hemisphere. Anomalously low SIF values during the 2010-11 drought are strongly correlated with those of soil moisture and precipitation. SIF also demonstrated a stronger temporal sensitivity to accumulated water deficit as compared to the conventional Normalized Difference Vegetation Index (NDVI), which approximates photosynthetic potential (chlorophyll content and leaf mass), from the Moderate Resolution Imaging Spectroradiometer (MODIS). Anomalously high rainfall during the dry seasons preceding failed rainy seasons suggest that the seasonality of East African rainfall may be transitioning from a regime characterized by biannual monsoons to one with increasing convective rainfall. Rising boundary layer height during the dry season further substantiates this conclusion by suggesting a transition towards increased deep convection during the summers. This work demonstrated the unique characteristics of the 2010-11 East African drought, and the ability of SIF to track the levels of water stress during the drought.

  14. Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology.

    PubMed

    Edwards, Christine E; Ewers, Brent E; Weinig, Cynthia

    2016-08-24

    Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.

  15. Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress.

    PubMed

    Fábián, Attila; Jäger, Katalin; Rakszegi, Mariann; Barnabás, Beáta

    2011-04-01

    The aim of the present work was to reveal the histological alterations triggered in developing wheat kernels by soil drought stress during early seed development resulting in yield losses at harvest. For this purpose, observations were made on the effect of drought stress, applied in a controlled environment from the 5th to the 9th day after pollination, on the kernel morphology, starch content and grain yield of the drought-sensitive Cappelle Desprez and drought-tolerant Plainsman V winter wheat (Triticum aestivum L.) varieties. As a consequence of water withdrawal, there was a decrease in the size of the embryos and the number of A-type starch granules deposited in the endosperm, while the development of aleurone cells and the degradation of the cell layers surrounding the ovule were significantly accelerated in both genotypes. In addition, the number of B-type starch granules per cell was significantly reduced. Drought stress affected the rate of grain filling shortened the grain-filling and ripening period and severely reduced the yield. With respect to the recovery of vegetative tissues, seed set and yield, the drought-tolerant Plainsman V responded significantly better to drought stress than Cappelle Desprez. The reduction in the size of the mature embryos was significantly greater in the sensitive genotype. Compared to Plainsman V, the endosperm cells of Cappelle Desprez accumulated significantly fewer B-type starch granules. In stressed kernels of the tolerant genotype, the accumulation of protein bodies occurred significantly earlier than in the sensitive variety.

  16. DROUGHT IN THE ANTHROPOCENE: what/who causes abnormally dry conditions? (Invited)

    NASA Astrophysics Data System (ADS)

    Van Loon, A.; Van Lanen, H.

    2013-12-01

    Deforestation for agriculture, reservoir construction for hydropower, groundwater abstraction for irrigation, river diversion for navigation. These are only some examples of human interventions in river basins. The consequences of these interventions can be far-reaching, but are often difficult to distinguish from natural influences on the water system, such as meteorological droughts. River basin managers in water-stressed regions need to quantify both human and natural effects on the water system to adapt their water management accordingly. ';Drought' is a natural hazard, which is caused by climatic processes and their intrinsic variability, and cannot be prevented by short-term, local water management. ';Water scarcity' refers to the long-term unsustainable use of water resources and is a process that water managers and policy makers can influence. Water scarcity and drought are keywords for river basin managers in water-stressed regions, like Australia, California, China and the Mediterranean Basin. The interrelationship between drought and water scarcity, however, is complex. In regions with low water availability and high human pressures, water scarcity situations are common and can be exacerbated by drought events. The worst situation is a multi-year drought in a (semi )arid region with high demand for water. In monitoring the hydrological system for water management purposes, it is difficult (but essential) to determine which part of the temporal variation in a hydrological variable is caused by water scarcity (human induced) and which part by drought (natural). So the urgent question of many water managers is: how to distinguish between water scarcity and drought? Here, we present a new quantitative approach to distinguish, namely the observation-modelling framework proposed by Van Loon and Van Lanen (2013) to separate natural (drought) and human (water scarcity) effects on the hydrological system. The basis of the framework is simulation of the situation that would have occurred without human influence, i.e. the ';naturalised' situation, using a hydrological model. The resulting time series of naturalised state variables and fluxes can then be compared to observed time series. Additionally, anomalies (i.e. deviations from a threshold) are determined from both time series and compared. This analysis allows for quantification of the relative effect of drought and water scarcity. To show the general applicability of the framework, we investigated case study areas with contrasting climate and catchment properties in Spain, Czech Republic and the Netherlands. Using these case study areas we could analyse the effect of groundwater abstraction and water transfer on groundwater levels and streamflow. The proposed observation-modelling framework is rather generic. We demonstrate the range of methods that can be used and the range of human influences the framework can be applied to. The observation-modelling framework can help water managers, policy makers and stakeholders in water-stressed regions to combat water scarcity, and to better adapt to drought by decreasing their vulnerability. A clear distinction between drought and water scarcity is needed in the anthropocene.

  17. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    PubMed Central

    Taïbi, Khaled; del Campo, Antonio D.; Vilagrosa, Alberto; Bellés, José M.; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J.; López-Nicolás, José M.; Mulet, José M.

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis. Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas. PMID:28791030

  18. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers.

    PubMed

    Taïbi, Khaled; Del Campo, Antonio D; Vilagrosa, Alberto; Bellés, José M; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J; López-Nicolás, José M; Mulet, José M

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis . Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  19. Leaf to landscape responses of giant sequoia to hotter drought: An introduction and synthesis for the special section

    USGS Publications Warehouse

    Nydick, Koren R.; Stephenson, Nathan L.; Ambrose, Anthony R.; Asner, Gregory P.; Baxter, Wendy L.; Das, Adrian J.; Dawson, Todd E.; Martin, Roberta E.; Paz-Kagan, Tarin

    2018-01-01

    Hotter droughts are becoming more common as climate change progresses, and they may already have caused instances of forest dieback on all forested continents. Learning from hotter droughts, including where on the landscape forests are more or less vulnerable to these events, is critical to help resource managers proactively prepare for the future. As part of our Leaf to Landscape Project, we measured the response of giant sequoia, the world’s largest tree species, to the extreme 2012–2016 hotter drought in California. The project integrated leaf-level physiology measurements, crown-level foliage dieback surveys, and remotely sensed canopy water content (CWC) to shed light on mechanisms and spatial patterns in drought response. Here we summarize initial findings, present a conceptual model of drought response, and discuss management implications; details are presented in the other four articles of the special section on Giant Sequoias and Drought. Giant sequoias exhibited both leaf- and canopy-level responses that were effective in protecting whole-tree hydraulic integrity for the vast majority of individual sequoias. Very few giant sequoias died during the drought compared to other mixed conifer tree species; however, the magnitude of sequoia drought response varied across the landscape. This variability was partially explained by local site characteristics, including variables related to site water balance. We found that low CWC is an indicator of recent foliage dieback, which occurs when stress levels are high enough that leaf-level adjustments alone are insufficient for giant sequoias to maintain hydraulic integrity. CWC or change in CWC may be useful indicators of drought stress that reveal patterns of vulnerability to future hotter droughts. Future work will measure recovery from the drought and strengthen our ability to interpret CWC maps. Our ultimate goal is to produce giant sequoia vulnerability maps to help target management actions, such as reducing other stressors, increasing resistance to hotter drought through prescribed fire or mechanical thinning, and planting sequoias in projected future suitable habitat, which may occur outside current grove distributions. We suggest that managers compare different types of vulnerability assessments and combine vulnerability maps with other sources of information to inform decisions.

  20. Assessment of Drought Severity Using Normal Precipitation Index (Case Study: Sistan and Baluchistan Province)

    NASA Astrophysics Data System (ADS)

    Rahimi, D.; Movahedi, S.

    2009-04-01

    In the last decades, water crisis is one of the most important critical phenomenons in the environment planning and human society's management which affecting on development aspects in the international, national and regional levels. In this research, have been considered the Drought as the main parameter in water rare serious. For drought assessment, can treat the different methods, such as statistical model, meteorological and hydrological methods. In this research, have been used the Normal Precipitation index to meteorological analysis of drought severity in Sistan and Baluchistan province with high drought severity during recent years. According to the obtained result, the annual precipitation of studied area was between 36 to 52 percent more than mean precipitation of province. 10%-23 percent of precipitation amount involved the drought threshold border, 3%-13 percent of precipitations contain the weakness drought, 6.7% -23 percent were considered for moderate drought, 6%-20 percent involved the severe drought and ultimately, 6.7% to 23 percent of precipitations were considered as very severe drought. Keywords: Drought, Normal index, precipitation, Sistan and Baluchistan

  1. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine.

    PubMed

    Poyatos, Rafael; Aguadé, David; Galiano, Lucía; Mencuccini, Maurizio; Martínez-Vilalta, Jordi

    2013-10-01

    Drought-induced defoliation has recently been associated with the depletion of carbon reserves and increased mortality risk in Scots pine (Pinus sylvestris). We hypothesize that defoliated individuals are more sensitive to drought, implying that potentially higher gas exchange (per unit of leaf area) during wet periods may not compensate for their reduced photosynthetic area. We measured sap flow, needle water potentials and whole-tree hydraulic conductance to analyse the drought responses of co-occurring defoliated and nondefoliated Scots pines in northeast Spain during typical (2010) and extreme (2011) drought conditions. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but were more sensitive to summer drought, relative to nondefoliated pines. This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance with drought and an enhanced sensitivity of canopy conductance to soil water availability. Near-homeostasis in midday water potentials was observed across years and defoliation classes, with minimum values of -2.5 MPa. Enhanced sensitivity to drought and prolonged periods of near-zero gas exchange were consistent with low levels of carbohydrate reserves in defoliated trees. Our results support the critical links between defoliation, water and carbon availability, and their key roles in determining tree survival and recovery under drought. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    PubMed

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  3. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants

    PubMed Central

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  4. Measured and modelled leaf and stand-scale productivity across a soil moisture gradient and a severe drought.

    PubMed

    Wright, J K; Williams, M; Starr, G; McGee, J; Mitchell, R J

    2013-02-01

    Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil-plant-atmosphere (SPA) model to leaf and stand-scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. V(cmax) and J(max)) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ∼23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co-limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought-tolerant behaviour that contrasted with mesic trees' drought-avoidance behaviour. © 2012 Blackwell Publishing Ltd.

  5. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2016-05-03

    Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants.

  6. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress.

    PubMed

    Hu, Ling; Xie, Yan; Fan, Shoujin; Wang, Zongshuai; Wang, Fahong; Zhang, Bin; Li, Haosheng; Song, Jie; Kong, Lingan

    2018-07-01

    Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period.

    PubMed

    Wang, Rui; Gao, Min; Ji, Shu; Wang, Shanshan; Meng, Yali; Zhou, Zhiguo

    2016-10-01

    Responses of plant to drought largely depend on the intensity, duration and developmental stage at which water stress occurs. The purpose of this study was to analyze the dynamic of cotton physiology response to different levels sustained soil water deficit during reproductive growth stage at leaf basis. Three levels of steady-state water regimes [soil relative water content (SRWC) maintained at (75 ± 5)%, (60 ± 5)% and (45 ± 5)%] were imposed when the white flowers had opened on the first fruiting position of the 6-7th fruiting branches (FB6-7), which was the first day post anthesis (i.e. 1 DPA) and lasted to 50 DPA. Results showed decreasing SRWC slowed cotton growth on the base of biomass and leaf area. However, carbon metabolites levels were globally increased under drought despite of notably inhibited photosynthesis throughout the treatment period. Clear diurnal pattern of sucrose and starch concentrations was obtained and sucrose levels were evaluated while starch concentration was reduced with decreasing soil water content during a 24-h cycle. Osmotic adjustment (OA) was observed at most of the sampling dates throughout the drought period. K(+) was the main contributor to osmotic adjustment (OA) at 10 and 24 DPA then turned out to be amino acid at 38 and 50 DPA. The stressed cotton gradually failed to scavenge reactive oxygen species (ROS) with increasing days post anthesis, primarily due to the permanent decrease in SOD activity. Elevated carbohydrates levels suggest cotton growth was more inhibited by other factors than carbon assimilation. OA and antioxidant could be important protective mechanisms against soil water deficit in this species, and transition of these mechanisms was observed with drought intensity and duration increased. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Effect of Experimentally Manipulated Fire Regimes on the Response of Forests to Drought

    NASA Astrophysics Data System (ADS)

    Refsland, T. K.; Knapp, B.; Fraterrigo, J.

    2017-12-01

    Climate change is expected to increase drought stress in many forests and alter fire regimes. Fire can reduce tree density and thus competition for limited water, but the effects of changing fire regimes on forest productivity during drought remain poorly understood. We measured the annual ring-widths of adult oak (Quercus spp.) trees in Mark Twain National Forest, Missouri USA that experienced unburned, annual or periodic (every 4 years) surface fire treatments from 1951 - 2015. Severe drought events were identified using the BILJOU water balance model. We determined the effect of fire treatment on stand-level annual growth rates as well as stand-level resistance and resilience to drought, defined as the drought-induced reduction in growth and post-drought recovery in growth, respectively. During favorable wet years, annual and periodic fire treatments reduced annual growth rates by approximately 10-15% relative to unburned controls (P < 0.001). Stand-level growth rates declined 22-40% during drought events (P < 0.001), but fire-driven changes to stand basal area had no effect on the resistance or resilience of trees to drought. The decline in annual growth rates of burned stands during favorable wet years was likely caused by increased nitrogen (N) limitation in burned plots. After 60 years of treatment, burned plots experienced 30% declines in total soil N relative to unburned plots. Our finding that drought resistance and resilience were similar across all treatments suggest that fire-driven reductions in stand density may have negligible effects on soil moisture availability during drought. Our results highlight that climate-fire interactions can have important long-term effects on forest productivity.

  9. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses.

    PubMed

    Carvalho, L C; Coito, J L; Gonçalves, E F; Chaves, M M; Amâncio, S

    2016-01-01

    Worldwide, extensive agricultural losses are attributed to drought, often in combination with heat in Mediterranean climate regions, where grapevine traditionally grows. The available scenarios for climate change suggest increases in aridity in these regions. Under natural conditions plants are affected by a combination of stresses, triggering synergistic or antagonistic physiological, metabolic or transcriptomic responses unique to the combination. However the study of such stresses in a controlled environment can elucidate important mechanisms by allowing the separation of the effects of individual stresses. To gather those effects, cuttings of two grapevine varieties, Touriga Nacional (TN) and Trincadeira (TR), were grown under controlled conditions and subjected to three abiotic stresses (drought - WS, heat - HS and high light - LS) individually and in combination two-by-two (WSHS, WSLS, HSLS) or all three (WSHSLS). Photosynthesis, water status, contents of H2 O2 , abscisic acid and metabolites of the ascorbate-glutathione cycle were measured in the leaves. Common and distinct response features were identified in the different stress combinations. Photosynthesis was not hindered in TN by LS, while even individual stresses severely affect photosynthesis in TR. Abscisic acid may be implicated in grapevine osmotic responses since it is correlated with tolerance parameters, especially in combined stresses involving drought. Overall, the responses to drought-including treatments were clearly distinct to those without drought. From the specific behaviours of the varieties, it can be concluded that TN shows a higher capacity for heat dissipation and for withstanding high light intensities, indicating better adjustment to warm conditions, provided that water supply is plentiful. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. A Global Perspective on Warmer Droughts as a Key Driver of Forest Disturbances and Tree Mortality (Invited)

    NASA Astrophysics Data System (ADS)

    Allen, C. D.

    2013-12-01

    Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress for many areas globally, the growing water-stress risks to forest health in such regions are becoming clearer. However, the effects of drought stress on forest dynamics are ameliorated through diverse compensatory and resilience-enhancing mechanisms and processes which operate at scales ranging from intracellular tree physiologies and individual tree developmental and morphological adjustments to species population-level demographic and genetic responses to forest stand-level structural and compositional responses up to landscape-scale tree host-insect pest outbreak dynamics and forest-climate ecohydrological feedbacks. In addition, significant uncertainties exist regarding how various other global atmospheric changes (e.g., CO2 enrichment, increased N deposition, and elevated surface-level ozone) will interact with the world's diverse spectrum of tree species to also affect global forest dynamics. Research efforts to address such core scientific uncertainties associated with modeling drought-induced tree mortality and resultant forest dynamics will be discussed.

  11. Precipitation thresholds and drought-induced tree die-off: Insights from patterns of Pinus edulis mortality along an environmental stress gradient

    Treesearch

    Michael J. Clifford; Patrick D. Royer; Neil S. Cobb; David D. Breshears; Paulette L. Ford

    2013-01-01

    Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed....

  12. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress

    PubMed Central

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress ‘Red Robin’) or fast (Eugenia uniflora L. ‘Etna Fire’) adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters. PMID:27242846

  13. Drought stress-induced compositional changes in tolerant transgenic rice and its wild type.

    PubMed

    Nam, Kyong-Hee; Kim, Do-Young; Shin, Hee Jae; Nam, Ki Jung; An, Joo Hee; Pack, In-Soon; Park, Jung-Ho; Jeong, Soon-Chun; Kim, Ho Bang; Kim, Chang-Gi

    2014-06-15

    Comparing well-watered versus deficit conditions, we evaluated the chemical composition of grains harvested from wild-type (WT) and drought-tolerant, transgenic rice (Oryza sativa L.). The latter had been developed by inserting AtCYP78A7, which encodes a cytochrome P450 protein. Two transgenic Lines, '10B-5' and '18A-4', and the 'Hwayoung' WT were grown under a rainout shelter. After the harvested grains were polished, their levels of key components, including proximates, amino acids, fatty acids, minerals and vitamins were analysed to determine the effect of watering system and genotype. Drought treatment significantly influenced the levels of some nutritional components in both transgenic and WT grains. In particular, the amounts of lignoceric acid and copper in the WT decreased by 12.6% and 39.5%, respectively, by drought stress, whereas those of copper and potassium in the transgenics rose by 88.1-113.3% and 10.4-11.9%, respectively, under water-deficit conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Adding the human dimension to drought: an example from Chile

    NASA Astrophysics Data System (ADS)

    Rangecroft, Sally; Van Loon, Anne; Maureira, Héctor; Rojas, Pablo; Alejandro Gutiérrez Valdés, Sergio; Verbist, Koen

    2016-04-01

    Drought and water scarcity are important hazards and can lead to severe socio-economic impacts in many regions of the world. Given the interlinked interactions and feedbacks of hydrological droughts and their impacts and management, we need tools to evaluate these complexities and effects on the availability of water resources. Here we use a real-world case study of the Huasco basin (Northern Chile) in which we quantify the influence of human activities on hydrological drought signals. In this arid region, Andean snowmelt provides water essential for users, with agriculture acting as the main water consumer (85% of total). An increasing water demand from different water sectors (agriculture, mining, and domestic water usage) has increased pressure on available water and its management. Consequently, the Santa Juana dam was built by 1995 to increase irrigation security for downstream users, and recent management and restrictions have been established with the objective to limit impacts of hydrological droughts across the basin. The feedbacks between water availability and water management are explored for this water stressed region in Chile. Hydro-meteorological (e.g. precipitation, temperature, streamflow, reservoir levels) variables have been analysed to assess trends and drought patterns. Data over the past three decades has indicated a decrease in surface water supply, with the basin entering a situation of water scarcity during the recent multiyear drought (2007 - to-date), partly caused by meteorological drought and partly by abstraction. During this period, water supply failed to meet the demands of water users, resulting in the implementation of water restrictions. As well as the necessary continuous hydro-meteorological data, here we used information on human water users and scenario modeling, allowing for the analysis and quantification of feedbacks. This work highlights the importance of local knowledge, especially in understanding water laws, rights, regulations and therefore interpretation of the data and results. We will repeat the analysis done in Chile in a diverse series of case studies across the world to reflect different natural and human influences on the water cycle. This will enable an increased understanding of our influence on water resources and the feedbacks involved, which may be both positive and negative. Ultimately, this research will develop a methodology for identifying and quantifying human activities and use this information in combination with water management modeling and forecasting for effective drought early warning and risk management.

  15. Hydrologic Droughts in Kansas - Are They Becoming Worse?

    USGS Publications Warehouse

    Putnam, James E.; Perry, Charles A.; Wolock, David M.

    2008-01-01

    Multi-year droughts have been a recurrent feature of the climate and hydrology of Kansas since at least the 1930s. Streamflow records collected by the U.S. Geological Survey (USGS) indicate that water years 2000 to 2006 (October 1, 1999, through September 30, 2006) represent the sixth hydrologic drought during the past eight decades, and that corresponding streamflow levels in some parts of Kansas were lower than those during historic droughts of the 1930s and 1950s, even though the precipitation deficit was not as severe. Record-low streamflows in water year 2006 were recorded at USGS streamgages on the Republican, Smoky Hill, Solomon, Saline, upper Kansas, middle Arkansas, and Little Arkansas Rivers, as well as many tributary sites, and one tributary site of the Neosho River (fig. 1, table 1). Low streamflows during the hydrologic drought also resulted in record low levels at three Federal reservoirs in Kansas (fig. 1, table 2). An unprecedented number of administrative decisions were made by the Division of Water Resources, Kansas Department of Agriculture to curtail water diversions from rivers to maintain minimum desirable streamflows, and low flows on the lower Republican River in Kansas created concerns that Colorado and Nebraska were not complying with the terms of the 1943 Republican River Compact.

  16. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil.

    PubMed

    Abbas, Tahir; Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Mahmood, Abid; Zia-Ur-Rehman, Muhammad; Ibrahim, Muhammad; Arshad, Muhammad; Qayyum, Muhammad Farooq

    2018-02-01

    Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has been accessed for the agricultural data at the county level. Preliminary analyses show that large parts of Midwest and Southern parts of Florida and California are prone to multiyear droughts. This can primarily be attributed to high agricultural and/or urban water demands coupled with high interannual variability in supply. We propose to develop season-ahead and monthly updated forecasts of the drought index for informing the drought management plans. Given the already customized (sector specific) nature of the proposed drought index and its ability to represent the variability in both supply and demand, the early warning or forecasting of the index would not only complement the drought early warning systems in place by the national integrated drought information system (NIDIS) but also help in prescribing the ameliorative measures for adaptation.

  18. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    PubMed

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.

  19. Organ-coordinated response of early post-germination mahogany seedlings to drought.

    PubMed

    Horta, Lívia P; Braga, Márcia R; Lemos-Filho, José P; Modolo, Luzia V

    2014-04-01

    Water deficit tolerance during post-germination stages is critical for seedling recruitment. In this work, we studied the effect of water deficit on morphological and biochemical responses in different organs of newly germinated mahogany (Swietenia macrophylla King) seedlings, a woody species that occurs in the Amazon rainforest. The root : shoot ratio increased under water deficit. The leaf number and water potential were not altered, although reductions in leaf area and stomatal conductance were observed. Osmotic potential became more negative in leaves of seedlings under severe stress. Water deficit increased fructose, glucose, sucrose and myo-inositol levels in leaves. Stems accumulated fructose, glucose and l-proline. Nitric oxide (NO) levels increased in the vascular cylinder of roots under severe stress while superoxide anion levels decreased due to augmented superoxide dismutase activity in this organ. Water deficit induced glutathione reductase activity in both roots and stems. Upon moderate or severe stress, catalase activity decreased in leaves and remained unaffected in the other seedling organs, allowing for an increase of hydrogen peroxide (H2O2) levels in leaves. Overall, the increase of signaling molecules in distinct organs-NO in roots, l-proline in stems and H2O2 and myo-inositol in leaves-contributed to the response of mahogany seedlings to water deficit by triggering biochemical processes that resulted in the attenuation of oxidative stress and the establishment of osmotic adjustment. Therefore, this body of evidence reveals that the development of newly germinated mahogany seedlings may occur in both natural habitats and crop fields even when water availability is greatly limited.

  20. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake.

    PubMed

    Hepworth, Christopher; Doheny-Adams, Timothy; Hunt, Lee; Cameron, Duncan D; Gray, Julie E

    2015-10-01

    Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 ((15) N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. High-resolution near real-time drought monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, Saran; Mishra, Vimal

    2017-10-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

  2. Enhanced agricultural drought monitoring using a soil water anomaly-based drought index in south-west India

    NASA Astrophysics Data System (ADS)

    Hochstöger, Simon; Pfeil, Isabella; Amarnath, Giriraj; Pani, Peejush; Enenkel, Markus; Wagner, Wolfgang

    2017-04-01

    In India, agriculture accounts for roughly 17% of the GDP and employs around 50% of the total workforce. Especially in the western part of India, most of the agricultural fields are non-irrigated. Hence, agriculture is highly dependent on the monsoon in these areas. However, the absence of rainfall during the monsoon season increases the occurrence of drought periods, which is the main environmental factor affecting agricultural productivity. Rainfall is often not accessible to plants due to runoff or increased rates of evapotranspiration. Therefore, knowledge of the soil moisture state in the root zone of the soil is of great interest in the field of agricultural drought monitoring and operational decision-support. By introducing soil moisture, retrieved via active or passive microwave remote sensors, the gap between rainfall and the subsequent response of vegetation can be closed. Agricultural droughts are strongly influenced by a lack of water availability in the root zone of the soil, making anomalies of the Advanced Scatterometer (ASCAT) soil water index (SWI), representing the water content in lower soil layers, a suitable measure to estimate the water deficit in the soil. These anomalies describe the difference of the actual soil moisture value to the long-term average calculated for the same period. The objective of the study is to investigate the usability of soil moisture anomalies for developing an indicator that is based on critical thresholds, which finally results in a classification with different drought severity levels. In order to evaluate the performance of the drought index, it is compared to the Integrated Drought Severity Index (IDSI), which is developed at the International Water Management Institute in Colombo, Sri Lanka and to rainfall data from the Indian Meteorological Department (IMD). Overall, first analyses show a high potential of using SWI anomalies for agricultural drought monitoring. Most of the drought events detected by negative SWI anomalies correspond to IDSI drought events and also to reduced precipitation during that time.

  3. Estimating drought induced tree mortality in the Amazon rainforest: A simulation study with a focus on plant hydraulic processes

    NASA Astrophysics Data System (ADS)

    Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.

    2017-12-01

    The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.

  4. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    NASA Astrophysics Data System (ADS)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by closer to 10-20% in the drought year. We then assess how assimilation capacity and leaf water potential relate to marginal water use efficiency across species and years. Given that this region is predicted to experience more water stress over the coming decades, these results will inform predictions as to how species composition will drive ecosystem responses to climate variability.

  5. More grain per drop of water: Screening rice genotype for physiological parameters of drought tolerance

    NASA Astrophysics Data System (ADS)

    Massanelli, J.; Meadows-McDonnell, M.; Konzelman, C.; Moon, J. B.; Kumar, A.; Thomas, J.; Pereira, A.; Naithani, K. J.

    2016-12-01

    Meeting agricultural water demands is becoming progressively difficult due to population growth and changes in climate. Breeding stress-resilient crops is a viable solution, as information about genetic variation and their role in stress tolerance is becoming available due to advancement in technology. In this study we screened eight diverse rice genotypes for photosynthetic capacity under greenhouse conditions. These include the Asian rice (Oryza sativa) genotypes, drought sensitive Nipponbare, and a transgenic line overexpressing the HYR gene in Nipponbare; six genotypes (Vandana, Bengal, Nagina-22, Glaberrima, Kaybonnet, Ai Chueh Ta Pai Ku) and an African rice O. glaberrima, all selected for varying levels of drought tolerance. We collected CO2 and light response curve data under well-watered and simulated drought conditions in greenhouse. From these curves we estimated photosynthesis model parameters, such as the maximum carboxylation rate (Vcmax), the maximum electron transport rate (Jmax), the maximum gross photosynthesis rate, daytime respiration (Rd), and quantum yield (f). Our results suggest that O. glaberrima and Nipponbare were the most sensitive to drought because Vcmax and Pgmax declined under drought conditions; other drought tolerant genotypes did not show significant changes in these model parameters. Our integrated approach, combining genetic information and photosynthesis modeling, shows promise to quantify drought response parameters and improve crop yield under drought stress conditions.

  6. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp.

    PubMed Central

    Rodrigues, Ana P.; Lidon, Fernando C.; Marques, Luís M. C.; Leitão, A. Eduardo; Fortunato, Ana S.; Pais, Isabel P.; Silva, Maria J.; Scotti-Campos, Paula; Lopes, António; Reboredo, F. H.; Ribeiro-Barros, Ana I.

    2018-01-01

    The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided. PMID:29870563

  7. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp.

    PubMed

    Ramalho, José C; Rodrigues, Ana P; Lidon, Fernando C; Marques, Luís M C; Leitão, A Eduardo; Fortunato, Ana S; Pais, Isabel P; Silva, Maria J; Scotti-Campos, Paula; Lopes, António; Reboredo, F H; Ribeiro-Barros, Ana I

    2018-01-01

    The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.

  8. Drought-influenced mortality of tree species with different predawn leaf water dynamics in a decade-long study of a central US forest

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Hosman, K. P.; ...

    2015-05-18

    Abstract. Using decade-long continuous observations of tree mortality and predawn leaf water potential (ψpd) at the Missouri Ozark AmeriFlux (MOFLUX) site, we studied how the mortality of important tree species varied and how such variations may be predicted. Water stress determined inter-annual variations in tree mortality with a time delay of 1 year or more, which was correlated fairly tightly with a number of quantitative predictors formulated based on ψpd and precipitation regimes. Predictors based on temperature and vapor pressure deficit anomalies worked reasonably well, particularly for moderate droughts. The exceptional drought of the year 2012 drastically increased the mortalitymore » of all species, including drought-tolerant oaks, in the subsequent year. The drought-influenced tree mortality was related to the species position along the spectrum of ψ pd regulation capacity with those in either ends of the spectrum being associated with elevated risk of death. Regardless of species and drought intensity, the ψpd of all species recovered rapidly after sufficiently intense rain events in all droughts. This result, together with a lack of immediate leaf and branch desiccation, suggests an absence of catastrophic hydraulic disconnection in the xylem and that tree death was caused by significant but indirect effects. Species differences in the capacity of regulating ψ pd and its temporal integral were magnified under moderate drought intensities but diminished towards wet and dry extremes. Severe droughts may overwhelm the capacity of even drought-tolerant species to maintain differential levels of water potential as the soil becomes exhausted of available water in the rooting zone, thus rendering them more susceptible to death if predisposed by other factors such as age.« less

  9. Drought-influenced mortality of tree species with different predawn leaf water dynamics in a decade-long study of a central US forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Pallardy, Stephen G.; Hosman, K. P.

    Abstract. Using decade-long continuous observations of tree mortality and predawn leaf water potential (ψpd) at the Missouri Ozark AmeriFlux (MOFLUX) site, we studied how the mortality of important tree species varied and how such variations may be predicted. Water stress determined inter-annual variations in tree mortality with a time delay of 1 year or more, which was correlated fairly tightly with a number of quantitative predictors formulated based on ψpd and precipitation regimes. Predictors based on temperature and vapor pressure deficit anomalies worked reasonably well, particularly for moderate droughts. The exceptional drought of the year 2012 drastically increased the mortalitymore » of all species, including drought-tolerant oaks, in the subsequent year. The drought-influenced tree mortality was related to the species position along the spectrum of ψ pd regulation capacity with those in either ends of the spectrum being associated with elevated risk of death. Regardless of species and drought intensity, the ψpd of all species recovered rapidly after sufficiently intense rain events in all droughts. This result, together with a lack of immediate leaf and branch desiccation, suggests an absence of catastrophic hydraulic disconnection in the xylem and that tree death was caused by significant but indirect effects. Species differences in the capacity of regulating ψ pd and its temporal integral were magnified under moderate drought intensities but diminished towards wet and dry extremes. Severe droughts may overwhelm the capacity of even drought-tolerant species to maintain differential levels of water potential as the soil becomes exhausted of available water in the rooting zone, thus rendering them more susceptible to death if predisposed by other factors such as age.« less

  10. Effects of external potassium (k) supply on drought tolerances of two contrasting winter wheat cultivars.

    PubMed

    Wei, Jiguang; Li, Caihong; Li, Yong; Jiang, Gaoming; Cheng, Guanglei; Zheng, Yanhai

    2013-01-01

    Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM) and two levels of PEG6000 (0, 20%) for 7 days. External K2CO3 significantly increased shoot K(+) content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL) and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.

  11. Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots.

    PubMed

    Cao, Yuan; Luo, Qiuxiang; Tian, Yan; Meng, Fanjuan

    2017-02-27

    Plants are oftentimes exposed to many types of abiotic stresses. Drought is one of the main environmental stresses which limits plant growth, distribution and crop yield worldwide. Amygdalus mira (Koehne) Yü et Lu is an important wild peach, and it is considered an ideal wild peach germplasm for improving cultivated peach plants. Because of the loss of genetic variation, cultivated peach plants are sensitive to biotic and abiotic stresses. Wild peach germplasm can offer many useful genes for peach improvement. Responses to drought by withholding water have been studied in Amygdalus mira (Koehne) Yü et Lu roots. In this study, plants were divided into well-watered (control) and water-stressed (treatment) groups, and the treatment group did not receive water until the recovery period (day 16). Several physiological parameters, including root water content and root length, were reduced by drought stress and recovered after rewatering. In addition, the relative conductivity, the levels of proline, MDA and H 2 O 2 , and the activities of ROS scavenging enzymes (POD, APX and CAT) were increased, and none of these factors, except the level of proline, recovered after rewatering. In total, 95 differentially expressed proteins were revealed after drought. The identified proteins refer to a extensive range of biological processes, molecular functions and cellular components, including cytoskeleton dynamics (3.16% of the total 95 proteins), carbohydrate and nitrogen metabolism (6.33% of the total 95 proteins), energy metabolism (7.37% of the total 95 proteins), transcription and translation (18.95% of the total 95 proteins), transport (4.21% of the total 95 proteins), inducers (3.16% of the total 95 proteins), stress and defense (26.31% of the total 95 proteins), molecular chaperones (9.47% of the total 95 proteins), protein degradation (3.16% of the total 95 proteins), signal transduction (7.37% of the total 95 proteins), other materials metabolism (5.26% of the total 95 proteins) and unknown functions (5.26% of the total 95 proteins). Proteins related to defense, stress, transcription and translation play an important role in drought response. In addition, we also examined the correlation between protein and transcript levels. The interaction between enzymatic and non-enzymatic antioxidants, the levels of proline, MDA, H 2 O 2 and the relative conductivity, and the expression level of proteins in drought-treated plants all contribute to drought resistance in Amygdalus mira (Koehne) Yü et Lu.

  12. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    NASA Astrophysics Data System (ADS)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  13. Mountains in the third millennium - a decade of droughts and water scarcity?

    NASA Astrophysics Data System (ADS)

    de Jong, C.; Shaban, A.; Belete, T.

    2012-04-01

    Droughts and water scarcity have touched the Alps, Mediterranean and East African mountain chains more intensively since the beginning of the third millennium and pose a major challenge for water management. The year 2011 has been no exception, with the lowest river levels on record over the past 50 years even for alpine rivers. Although considerable climate fluctuations and persistent droughts have occurred in the past, it is quite remarkable that the five hottest summers over the past 500 years in Europe and the Alps have all been concentrated after 2002, falling far outside their normal historical distribution. In most mountain chains drought phenomena are persistent over large areas and over a variety of scales. The hydrological consequences, such as decreased rain- and snowfall, drying of springs, decreased river and groundwater discharge, lowering of lake levels and excessive evaporation etc. are considerable. Seasonality has been considerably affected, with the summer extending well into the spring and autumn. Mountain-fed rivers have experienced unusually low discharge over the last 10 years, with a decreasing trend both in summer and winter discharge. These hydrological changes have multiple impacts on availability of drinking water and the energy sector, decreasing hydroelectric production and availability of cooling water for the nuclear industry and negatively effecting river navigation, irrigation agriculture as well as winter tourism in mountains. Despite these naturally-induced shortcomings, adaptation has not always been rational. In some cases, maladaptation has led to overexploitation of water resources during drought conditions, exasperating water scarcity. For example, for the tourism sector in the Alps, water demand for drinking water and artificial snow making lies far above the available resources during the winter season for numerous resorts. This has long term environmental and socio-economic impacts such as destruction of wetlands, desiccation of streams and drinking water conflicts. However, Environmental Impact Assessments still lack consideration of climate change. Data availability and measurements are so sparse in these environments that proper interdisciplinary modelling has still to be developed and most predictions are based on conceptual model approaches. Nevertheless, there is increasing necessity to adapt swiftly and rationally to droughts and increased climate irregularities in mountains. Some countries and regions have already adopted adaptation plans and strategies at the national level but they rarely consider mountain regions. Others have left it up to spontaneous adaptation at the local level. Even at the European level, there are few activities and policies yet dealing with adaptation to climate change under consideration of a combination of droughts, water scarcity or energy issues apart from the EU Strategy for Climate Change Adaptation planned for 2013. Under such conditions, it is essential to carry out scientific observations and modelling as well as develop innovative indicators, for example via climate change witnesses identified amongst the local stakeholders as well as local and regional think tanks.

  14. Use of Sequent Peak Algorithm Drought Severity Index and Hydroclimatic Reconstructions from Tree-Rings to Inform Water Supply Reliability Planning

    NASA Astrophysics Data System (ADS)

    Bray, B. S.; Palhegyi, G.

    2015-12-01

    California is in the midst of a severe drought with below average runoff since WY 2012. Within this context, many water resource managers are scrutinizing water supply reliability assumptions for planning studies. Severe droughts represent a relatively rare phenomenon, occurring only a handful of times within our limited 100-year period of watershed runoff records. Furthermore, droughts may have different runoff magnitudes and durations that inherently present a challenge for direct comparisons of one drought with another. We use the sequent peak algorithm as a drought severity index (SPADSI) that accounts for both drought magnitude and duration relative to an assumed minimum release policy and fixed level-of-development (LOD) demand modeling framework. The SPADSI allows direct, quantitative evaluation of different policy options for lessening drought severity where, for example, layering a customer rationing policy onto model results reduced the SPADSI for the historical 1976-77 drought from 520 to 450 thousand acre-feet (TAF) and 1987-92 drought from 650 to 415 TAF for 2015 LOD. A strong correlation (R2 = 0.96) between Mokelumne River watershed runoff and tree-ring hydroclimate reconstructions for neighboring American and Stanislaus watersheds from Meko et al. (2014) was the basis for an extended 1100-year historical reconstruction of Mokelumne Watershed annual runoff. The reconstructed runoff timeseries is used to investigate extended historical drought durations for the Mokelumne Watershed where shorter one- to three-year droughts are most probable durations (>90%) whereas longer duration droughts lasting as long as 10 years such as occurred in 1776-85 are also possible, though much less likely. Applying the SPADSI to the reconstructed runoff timeseries showed that recent droughts e.g. 1929-34, 1976-77, and 1987-92 are all relatively severe within this millennial context, falling on the distribution tail of the extended SPADSI dataset. These findings are consistent with Meko et al. (2014) in their analysis of other watersheds in the region. These findings and other insights from the reconstructed runoff timeseries along with the SPADSI provide valuable information for water resource managers evaluating water supply reliability assumptions for future drought planning efforts.

  15. An Integrated Hydrologic Model and Remote Sensing Synthesis Approach to Study Groundwater Extraction During a Historic Drought in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Thatch, L. M.; Maxwell, R. M.; Gilbert, J. M.

    2017-12-01

    Over the past century, groundwater levels in California's San Joaquin Valley have dropped more than 30 meters in some areas due to excessive groundwater extraction to irrigate agricultural lands and feed a growing population. Between 2012 and 2016 California experienced the worst drought in its recorded history, further exacerbating this groundwater depletion. Due to lack of groundwater regulation, exact quantities of extracted groundwater in California are unknown and hard to quantify. We use a synthesis of integrated hydrologic model simulations and remote sensing products to quantify the impact of drought and groundwater pumping on the Central Valley water tables. The Parflow-CLM model was used to evaluate groundwater depletion in the San Joaquin River basin under multiple groundwater extraction scenarios simulated from pre-drought through recent drought years. Extraction scenarios included pre-development conditions, with no groundwater pumping; historical conditions based on decreasing groundwater level measurements; and estimated groundwater extraction rates calculated from the deficit between the predicted crop water demand, based on county land use surveys, and available surface water supplies. Results were compared to NASA's Gravity Recover and Climate Experiment (GRACE) data products to constrain water table decline from groundwater extraction during severe drought. This approach untangles various factors leading to groundwater depletion within the San Joaquin Valley both during drought and years of normal recharge to help evaluate which areas are most susceptible to groundwater overdraft, as well as further evaluating the spatially and temporally variable sustainable yield. Recent efforts to improve water management and ensure reliable water supplies are highlighted by California's Sustainable Groundwater Management Act (SGMA) which mandates Groundwater Sustainability Agencies to determine the maximum quantity of groundwater that can be withdrawn through the course of a year without undesirable effects. We provide a path forward for how this concept may inform sustainable groundwater use under climate variations and land use changes.

  16. Compounded effects of heat waves and droughts over the Western Electricity Grid: spatio-temporal scales of impacts and predictability toward mitigation and adaptation.

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.

    2016-12-01

    Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.

  17. Development of a coastal drought index using salinity data

    USGS Publications Warehouse

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  18. Real-time monitoring and short-term forecasting of drought in Norway

    NASA Astrophysics Data System (ADS)

    Kwok Wong, Wai; Hisdal, Hege

    2013-04-01

    Drought is considered to be one of the most costly natural disasters. Drought monitoring and forecasting are thus important for sound water management. In this study hydrological drought characteristics applicable for real-time monitoring and short-term forecasting of drought in Norway were developed. A spatially distributed hydrological model (HBV) implemented in a Web-based GIS framework provides a platform for drought analyses and visualizations. A number of national drought maps can be produced, which is a simple and effective way to communicate drought conditions to decision makers and the public. The HBV model is driven by precipitation and air temperature data. On a daily time step it calculates the water balance for 1 x 1 km2 grid cells characterized by their elevation and land use. Drought duration and areal drought coverage for runoff and subsurface storage (sum of soil moisture and groundwater) were derived. The threshold level method was used to specify drought conditions on a grid cell basis. The daily 10th percentile thresholds were derived from seven-day windows centered on that calendar day from the reference period 1981-2010 (threshold not exceeded 10% of the time). Each individual grid cell was examined to determine if it was below its respective threshold level. Daily drought-stricken areas can then be easily identified when visualized on a map. The drought duration can also be tracked and calculated by a retrospective analysis. Real-time observations from synoptic stations interpolated to a regular grid of 1 km resolution constituted the forcing data for the current situation. 9-day meteorological forecasts were used as input to the HBV model to obtain short-term hydrological drought forecasts. Downscaled precipitation and temperature fields from two different atmospheric models were applied. The first two days of the forecast period adopted the forecasts from Unified Model (UM4) while the following seven days were based on the 9-day forecasts from ECMWF. The approach has been tested and is now available on the Web for operational water management.

  19. Photosynthetic Diffusional Constraints Affect Yield in Drought Stressed Rice Cultivars during Flowering

    PubMed Central

    Lauteri, Marco; Haworth, Matthew; Serraj, Rachid; Monteverdi, Maria Cristina; Centritto, Mauro

    2014-01-01

    Global production of rice (Oryza sativa) grain is limited by water availability and the low ‘leaf-level’ photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (g m) and not by stomatal conductance (g s). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained g m during water-deficit sustained A and yield to a greater extent. However, the variety with the highest g m and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high g m during optimal growth conditions and the capacity for g m to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer. PMID:25275452

  20. The predictability of reported drought events and impacts in the Ebro Basin using six different remote sensing data sets

    NASA Astrophysics Data System (ADS)

    Linés, Clara; Werner, Micha; Bastiaanssen, Wim

    2017-09-01

    The implementation of drought management plans contributes to reduce the wide range of adverse impacts caused by water shortage. A crucial element of the development of drought management plans is the selection of appropriate indicators and their associated thresholds to detect drought events and monitor the evolution. Drought indicators should be able to detect emerging drought processes that will lead to impacts with sufficient anticipation to allow measures to be undertaken effectively. However, in the selection of appropriate drought indicators, the connection to the final impacts is often disregarded. This paper explores the utility of remotely sensed data sets to detect early stages of drought at the river basin scale and determine how much time can be gained to inform operational land and water management practices. Six different remote sensing data sets with different spectral origins and measurement frequencies are considered, complemented by a group of classical in situ hydrologic indicators. Their predictive power to detect past drought events is tested in the Ebro Basin. Qualitative (binary information based on media records) and quantitative (crop yields) data of drought events and impacts spanning a period of 12 years are used as a benchmark in the analysis. Results show that early signs of drought impacts can be detected up to 6 months before impacts are reported in newspapers, with the best correlation-anticipation relationships for the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil moisture (SM) and land surface temperature (LST) offer also good anticipation but with weaker correlations, while gross primary production (GPP) presents moderate positive correlations only for some of the rain-fed areas. Although classical hydrological information from water levels and water flows provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rain-fed areas among the analysed years, with SPI, NDVI and ET providing again the stronger correlations. Overall, the results confirm remote sensing products' ability to anticipate reported drought impacts and therefore appear as a useful source of information to support drought management decisions.

  1. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees.

    PubMed

    Adams, Henry D; Collins, Adam D; Briggs, Samuel P; Vennetier, Michel; Dickman, L Turin; Sevanto, Sanna A; Garcia-Forner, Núria; Powers, Heath H; McDowell, Nate G

    2015-11-01

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change. © 2015 John Wiley & Sons Ltd.

  2. Spatiotemporal Variability of the Meteorological Drought in Romania using the Standardized Precipitation Index

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Busuioc, Aristita; Dumitrescu, Alexandru; Birsan, Marius-Victor

    2013-04-01

    Drought events occur over any geographical area, and may impact severely the environment and society. In terms of economic losses, droughts are one of the major natural hazards affecting Romania, so that the topic has been constantly approached. In general, the climatic projections over the 21st century display increasing temperatures and very likely declining summer precipitation (Busuioc et al., 2010), probably causing better drought conditions. This study examines the variability of the droughts in Romania, aiming to characterize the droughts intensity, durations and frequency (a), to identify spatial and temporal patterns (b), trends (c), and potential triggering factors (d). Besides, we consider comparing the performance of different instances of the Standardized Precipitation Index (SPI) (McKee et al., 1993), such as time scale and probability distribution functions (gamma and Pearson type III), for retrieving drought characteristics. Homogenous monthly precipitation amounts from 98 weather stations run by the Romanian Meteorological Administration covering the period 1961-2010 were the primary data for calculating 1, 3, 6, and 12-month time scale SPI. The Mann-Kendall statistics sustained the trend significance examination, while Empirical Orthogonal Function (EOF) analysis synthesizes the climate signal related to spatial and temporal characteristics of variability over Romania. The SPI variability over Romania is mainly influenced by the large-scale mechanisms (e.g. North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO)) accounting for more than 50% from the observed variance, on second place being the Carpathians accounting for the highest influence in winter (11%). Thus, the Carpathians separate Romania in two major regions in terms of drought characteristics, namely outside and inside the mountainous arch. Significant trends towards dry conditions are noted at very few stations in winter, spring and summer, while trend to precipitation surplus cover extended areas in autumn. Further, preliminary analysis has demonstrated that NAO and AMO influence the characteristics of the meteorological drought over Romania, and qualify as possible predictors in water deficit studies. However, a stronger connection was found between the time series associated to SPI EOF1 and sea level pressure EOF1 over the region 5°E-45°E, 30°N-55°N. The work has been financed by the research project Changes in climate extremes and associated impact in hydrological events in Romania (CLIMHYDEX), Cod PN II-ID-2011-2-0073, sponsored by the National Authority for Scientific Research.

  3. Verticillium Infection Triggers VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and Enhances Drought Tolerance in Arabidopsis[W

    PubMed Central

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-01-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant–fungus pathosystem has conditionally mutualistic features. PMID:23023171

  4. On Evaluating circulation and temperature stratification under changing water levels in Lake Mead with a 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Li, Y.; Acharya, K.; Chen, D.; Stone, M.; Yu, Z.; Young, M.; Zhu, J.; Shafer, D. S.; Warwick, J. J.

    2009-12-01

    Sustained drought in the western United States since 2000 has led to a significant drop (about 35 meters) in the water level of Lake Mead, the largest reservoir by volume in United States. The drought combined with rapid urban development in southern Nevada and emergence of invasive species has threatened the water quality and ecological processes in Lake Mead. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was applied to investigate lake circulation and temperature stratification in parts of Lake Mead (Las Vegas Bay and Boulder Basin) under changing water levels. Besides the inflow from Las Vegas Wash and the Colorado River, the model considered atmospheric changes as well as the boundary conditions restricted by the operation of Hoover Dam. The model was calibrated and verified by using observed data including water level, velocity, and temperature from 2003 and 2005. The model was applied to study the hydrodynamic processes at water level 366.8 m (year 2000) and at water level 338.2 m (year 2008). The high-stage simulation described the pre-drought lake hydrodynamic processes while the low-stage simulation highlighted the drawdown impact on such processes. The results showed that both inflow and wind-driven mixing process played major roles in the thermal stratification and lake circulation in both cases. However, the atmospheric boundary played a more important role than inflow temperature on thermal stratification of Lake Mead during water level decline. Further, the thermal stratification regime and flow circulation pattern in shallow lake regions (e.g.., the Boulder Basin area) were most impacted. The temperature of the lake at the high-stage was more sensitive to inflow temperatures than at low-stage. Furthermore, flow velocities decreased with the decreasing water level due to reduction in wind impacts, particularly in shallow areas of the lake. Such changes in temperature and lake current due to present drought have a strong influence on contaminant and nutrient dynamics and ecosystem of the lake.

  5. Influence of the Institutional Structure of Surface Water Rights on Agricultural Production in the Central Valley

    NASA Astrophysics Data System (ADS)

    Nelson, K.; Burchfield, E. K.

    2017-12-01

    California's Central Valley region is one of the most productive agricultural systems on the planet. The high levels of agricultural production in this region require large amounts of fresh water for irrigation. However, the long-term availability of water required to sustain such levels of agricultural production has been questioned following the latest drought in California. In this study, we use Bayesian multilevel spatiotemporal modeling techniques to examine the influence of the institutional structure of surface water rights in the Central Valley on agricultural production during the recent drought. The R-INLA package is employed to account for spatial processes that have the potential to influence the effects of water right structures on crop productivity as well as on extent of cultivation. Model results suggest that seniority in surface water access significantly improves crop productivity on cultivated lands, but does not directly affect the ability to maintain cultivated extent. In addition, results suggest that areas with more junior surface water rights tend to reduce extent of cultivation, but maintain crop productivity, as cumulative drought stress increases.

  6. Evaluation of availability of water from drift aquifers near the Pomme de Terre and Chippewa rivers, western Minnesota

    USGS Publications Warehouse

    Delin, G.N.

    1987-01-01

    The model was used to simulate the effects of below-normal precipitation (drought) and hypothetical increases in ground-water development. Model results indicate that reduced recharge and increased pumping during a three-year extended drought probably would lower water levels 2 to 6 feet regionally in the surficial aquifer and in the Appleton and Benson-middle aquifers and as much as 11 feet near aquifer boundaries. Ground-water discharge to the Pomme de Terre and Chippewa Rivers in the modeled area probably would be reduced during the simulated drought by 15.2 and 7.4 cubic feet per second, respectively, compared to 1982 conditions. The addition of 30 hypothetical wells in the Benson-middle aquifer near Benson, pumping a total of 810 million gallons per year, resulted in water-level declines of as much as 1.3 and 2.7 feet in the surficial and Benson-middle aquifers, respectively. The addition of 28 hypothetical wells in the Appleton aquifer east and southeast of Appleton, pumping a total of 756 million gallons per year, lowered water levels in the surficial and Appleton confined aquifers as much as 5 feet.

  7. Development of a Coastal Drought Index Using Salinity Data

    NASA Astrophysics Data System (ADS)

    Conrads, P. A.; Darby, L. S.

    2014-12-01

    The freshwater-saltwater interface in surface-water bodies along the coast is an important factor in the ecological and socio-economic dynamics of coastal communities. It influences community composition in freshwater and saltwater ecosystems, determines fisheries spawning habitat, and controls freshwater availability for municipal and industrial water intakes. These dynamics may be affected by coastal drought through changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. There are many definitions of drought, with most describing a decline in precipitation having negative impacts on water supply and agriculture. Four general types of drought are recognized: hydrological, agricultural, meteorological, and socio-economic. Indices have been developed for these drought types incorporating data such as rainfall, streamflow, soil moisture, groundwater levels, and snow pack. These indices were developed for upland areas and may not be appropriate for characterizing drought in coastal areas. Because of the uniqueness of drought impacts on coastal ecosystems, a need exists to develop a coastal drought index. The availability of real-time and historical salinity datasets provides an opportunity to develop a salinity-based coastal drought index. The challenge of characterizing salinity dynamics in response to drought is excluding responses attributable to occasional saltwater intrusion events. Our approach to develop a coastal drought index modified the Standardized Precipitation Index and applied it to sites in South Carolina and Georgia, USA. Coastal drought indices characterizing 1-, 3-, 6-, 9-, and12-month drought conditions were developed. Evaluation of the coastal drought index indicates that it can be used for different estuary types, for comparison between estuaries, and as an index for wet conditions (high freshwater inflow) in addition to drought conditions.

  8. Differential Responses of Polyamines and Antioxidants to Drought in a Centipedegrass Mutant in Comparison to Its Wild Type Plants

    PubMed Central

    Liu, Mingxi; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements. However, our knowledge on physiological adaptation of centipedegrass to drought stress is limited. Physiological responses to drought in a gamma-ray-induced mutant 22-1 as compared with two wild type (WT) lines were analyzed for understanding of drought tolerance mechanism of centipedegrass. The mutant showed an elevated drought tolerance with higher levels of relative water content, net photosynthetic rate (A) and stomatal conductance (gs) and lower levels of ion leakage and malondialdehyde (MDA) under drought stress as compared with WT plants. A showed significant correlation with gs and MDA. Higher levels of antioxidant enzymes activities, non-enzyme antioxidants, and polyamines including putrescine (Put), spermidine (Spd), and spermine (Spm) were maintained in 22-1 than in WT plants. Superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX), and glutathione reductase (GR) activities and ascorbic acid (AsA) content were significantly correlated with both Put and Spd levels, and reduced glutathione level was correlated with Put during drought stress. Exogenous application of Put, Spd, and Spm increased drought tolerance and activities of SOD, CAT, APX, and GR in WT plants. The results suggest that higher levels of polyamines and antioxidant defense system are associated with the elevated drought tolerance in 22-1, which may improve protection on photosynthesis against drought induced oxidative damage. PMID:28559909

  9. Point of no return: experimental determination of the lethal hydraulic threshold during drought for loblolly pine (Pinus taeda)

    NASA Astrophysics Data System (ADS)

    Hammond, W.; Yu, K.; Wilson, L. A.; Will, R.; Anderegg, W.; Adams, H. D.

    2017-12-01

    The strength of the terrestrial carbon sink—dominated by forests—remains one of the greatest uncertainties in climate change modelling. How forests will respond to increased variability in temperature and precipitation is poorly understood, and experimental study to better inform global vegetation models in this area is needed. Necessary for achieving­­­­ this goal is an understanding of how increased temperatures and drought will affect landscape level distributions of plant species. Quantifying physiological thresholds representing a point of no return from drought stress, including thresholds in hydraulic function, is critical to this end. Recent theoretical, observational, and modelling research has converged upon a threshold of 60 percent loss of hydraulic conductivity at mortality (PLClethal). However, direct experimental determination of lethal points in conductivity and cavitation during drought is lacking. We quantified thresholds in hydraulic function in Loblolly pine, Pinus taeda, a commercially important timber species. In a greenhouse experiment, we exposed saplings (n = 96 total) to drought and rewatered treatment groups at variable levels of increasing water stress determined by pre-selected targets in pre-dawn water potential. Treatments also included a watered control with no drought, and drought with no rewatering. We measured physiological responses to water stress, including hydraulic conductivity, native PLC, water potential, foliar color, canopy die-back, and dark-adapted chlorophyll fluorescence. Following the rewatering treatment, we observed saplings for at least two months to determine which survived and which died. Using these data we calculated lethal physiological thresholds in water potential, directly measured PLC, and PLC inferred from water potential using a hydraulic vulnerability curve. We found that PLClethal inferred from water potential agreed with the 60% threshold suggested by previous research. However, directly measured PLC supported a much higher threshold. Beyond PLClethal, some trees survived by basal and epicormic re-sprouting, despite complete top-kill of existing foliage. Additional empirical study of multiple species to represent functional groups is needed to provide lethal thresholds for models presently in development.

  10. Lake Mead and Drought

    NASA Image and Video Library

    2015-07-20

    Lake Mead supplies water for Arizona, California, Mexico, and other western states. On June 23, the water level fell to 1075 feet, a record low. In 2000, for comparison, the water level was at 1214 feet. A 15-year drought and increased demands for water are to blame for the critical status of the water supply. The difference in 15 years is seen in this pair of images of the western part of Lake Mead, acquired June 21, 2000 by Landsat 7, and June 21, 2015 by ASTER. The images cover an area of 22.5 x 28.5 km, and are located at 36.1 degrees north, 114.7 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19731

  11. Quantitative comparisons of three modeling approaches for characterizing drought response of a highly variable, widely grown crop species

    NASA Astrophysics Data System (ADS)

    Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B. E.; Wienig, C.

    2013-12-01

    Quantifying the drought tolerance of crop species and genotypes is essential in order to predict how water stress may impact agricultural productivity. As climate models predict an increase in both frequency and severity of drought corresponding plant hydraulic and biochemical models are needed to accurately predict crop drought tolerance. Drought can result in cavitation of xylem conduits and related loss of plant hydraulic conductivity. This study tested the hypothesis that a model incorporating a plants vulnerability to cavitation would best assess drought tolerance in Brassica rapa. Four Brassica genotypes were subjected to drought conditions at a field site in Laramie, WY. Concurrent leaf gas exchange, volumetric soil moisture content and xylem pressure measurements were made during the drought period. Three models were used to access genotype specific drought tolerance. All 3 models rely on the Farquhar biochemical/biophysical model of leaf level photosynthesis, which is integrated into the Terrestrial Regional Ecosystem Exchange Simulator (TREES). The models differ in how TREES applies the environmental driving data and plant physiological mechanisms; specifically how water availability at the site of photosynthesis is derived. Model 1 established leaf water availability from a modeled soil moisture content; Model 2 input soil moisture measurements directly to establish leaf water availability; Model 3 incorporated the Sperry soil-plant transport model, which calculates flows and pressure along the soil-plant water transport pathway to establish leaf water availability. This third model incorporated measured xylem pressures thus constraining leaf water availability via genotype specific vulnerability curves. A multi-model intercomparison was made using a Bayesian approach, which assessed the interaction between uncertainty in model results and data. The three models were further evaluated by assessing model accuracy and complexity via deviance information criteria (DIC). Results suggest that model 1 was unable to model soil moisture accurately and thus did not effectively characterize drought tolerance. Models 2 and 3 were both effective at characterizing drought tolerance; model 3 preformed best in genotypes with the highest vulnerability to cavitation. By identifying through both Bayesian and DIC analyses models that best characterize drought tolerance future investigations into the interaction between crop productivity and water use can be informed by hypothesis testing using models prior to experimentation.

  12. Anatomy of Human Interventions on the Alteration of Drought Risk over the Conterminous US

    NASA Astrophysics Data System (ADS)

    He, X.; Wada, Y.; Wanders, N.; Sheffield, J.

    2017-12-01

    Drought attribution focusing on anthropogenic climate change has received wide attentions. However, human interventions (HIs), such as irrigation, reservoir operation, and water use, are less well known. In this study, using the large-scale water resources model PCR-GLOBWB, we perform a suite of high-resolution ( 10 km) simulations over the conterminous US (CONUS) in order to disentangle the fingerprints of individual HI elements on changes of hydrological drought. The results show significant trend differences between scenarios with and without HIs in certain regions of the CONUS. HIs cause increased trends in drought severity for the High Plains, California and Mid-Atlantic region, whereas decreased trend emerges in the California Central Valley, lower Mississippi basin and Pacific Northwest. The mechanism of altered drought severity can be broken down into three individual parts, with irrigation increasing the trend in the High Plains and Central Valley, reservoir operation decreasing the trend in Western US and water use amplifying the trend in the urban areas. Besides the trend analysis, we show the relative contribution of water abstraction and return flows to explain how each HI contributes to enhancing or mitigating drought. Results demonstrate that return flows from agricultural irrigation increase recharge and therefore can alleviate hydrological drought (e.g., by 60-80% in Mississippi embayment). Further examination of the water sources indicates that in these drought alleviation hotspots, non-fossil groundwater dominates the total water abstraction. However, for the hotspots of drought intensification (e.g., southern High Plains), extensive irrigational pumping causes severe depletion of fossil groundwater, which reduces the interaction between baseflow and channel flow, and therefore reduces the total streamflow. Return level analysis is further applied to quantify how different types of HIs could alter the probability of occurrence of recent major drought events. This integrated hydrological modeling framework enables attribution of different HI impacts to probabilistic risk assessment, which in turn helps policy-makers better evaluate their long-term policy development for assessing potential water infrastructure investments in mitigating drought.

  13. Ecophysiological responses of three dominant species to experimental drought on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Duniway, M.; Hoover, D. L.; Belnap, J.

    2014-12-01

    Water limitations in dryland ecosystems are predicted to intensify with climate change due to the combination of decreased precipitation and increased warming. Plants in these ecosystems may be living at or near their tolerance limits, and thus subtle changes in water availability may have dramatic effects on their performance. To examine the impacts of subtle, but chronic reductions in water availability, we established a network of 40 rainfall removal shelters across a range of plant communities, soil types and elevations in the Colorado Plateau. Each site consisted of a control plot receiving ambient precipitation paired with a drought plot that received a 35% precipitation reduction. After three years, we observed a range of ecosystem-level responses to the treatments by key plant functional types. The experimental drought had dramatic effects on the C3 grasses (mortality and cover changes), but the treatment effects were relatively minor for the C4 grasses (cover change only) and C3 shrubs (no treatment effects on cover or mortality). We investigated the mechanisms behind the relative drought tolerances of the latter two plant functional types by measuring the ecophysiological responses of three dominant species on the Colorado Plateau: Pleuraphis jamensii (C4 grass), Coleogyne ramosissima (C3 shrub) and Ephedra viridis (C3 shrub). During the 2014 growing season, we measured mid-day leaf water potential and net photosynthesis monthly for these dominant species under the control and drought treatments (n=5). We analyzed the effects of treatment, month and their interaction on these measurements using a mixed effects model for each species separately. Overall, P. jamensii was the most sensitive to drought of the three focal species as evidenced by significant effects of drought on both leaf water potential and net photosynthesis (30% reduction). Neither of the C3 shrubs had significant treatment effects on either ecophysiolgoical variable. These results provide mechanistic evidence behind the ecosystem-level effects; the drought treatments are causing stress in C4 grasses but not C3 shrubs. These results suggest that subtle but chronic changes in water availability may alter the structure and function of the Colorado Plateau ecosystem by differentially impacting key plant functional types.

  14. Forest response to 1,000 years of drought variability in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Williams, A. P.; Meko, D. M.; Woodhouse, C. A.; Cook, E.; Swetnam, T. W.; Macalady, A. K.; Allen, C. D.; Rauscher, S. A.; Jiang, X.; Grissino-Mayer, H.; McDowell, N. G.; Cai, M.

    2011-12-01

    Droughts in the early 1950s and early 2000s significantly accelerated tree mortality rates in the Southwestern United States. During the early 2000s, forest inventory data indicate that the proportion of dead piñon pine, ponderosa pine, and Douglas-fir trees doubled in the Southwest. The 2000s drought peaked in 2002 and was the most severe drought in at least 100 years. In 2011, precipitation, dew-point, and wind data indicate the intensity of the 2002 drought has been surpassed in a number of ways. Measurements of water potential in piñon pine trees in northern New Mexico indicate that, at present, trees have less access to soil moisture than in 2002 when widespread mortality occurred. How do these recent droughts compare to those of the last 1000 years? We used records of annual tree-ring widths from 309 populations of piñon pine, ponderosa pine, and Douglas-fir throughout the Southwestern United States to reconstruct a single record of regional drought stress from 1000-2005 AD. This record indicates that the last Southwestern drought similar in intensity to one in the early 2000s occurred in the late 1600s. Both of these droughts, however, paled in comparison to a mega-drought that occurred from 1575-1595. The emergence from this mega-drought, around 1600 AD, appears to mark a transition period from a time when droughts similar the early 2000s drought were much more common. Tree-age studies indicate a scarcity of Southwestern trees with rings extending back beyond the mega-drought of the late 1500s. This suggests that (1) the late-1500s mega-drought triggered a massive die-off of forests and/or (2) the higher frequency of drought events prior to the mega-drought sustained a much more sparse forest population than the one that has thrived from the 1600s through present. Given this apparent plasticity of Southwestern forests, a change in the forest population should be underway if higher temperatures contribute to forest drought stress. The Southwestern tree-ring record indicates that this is the case. During the 20th century, tree-ring widths correlated very positively with total winter precipitation and very negatively with spring-summer maximum temperature. This indicates that Southwestern forest growth is significantly impacted by both the amount of water delivered before the growing season and temperature during the growing season. We conclude that in the absence of a significant increase in winter precipitation, continued warming should lead to a more sparsely populated Southwestern forest population, similar to the one that appears to have existed during 1000-1600 AD.

  15. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods.

    PubMed

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Cui, Yakun; Liu, Yang; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-01-01

    Efficient nitrogen (N) nutrition has the potential to alleviate drought stress in crops by maintaining metabolic activities even at low tissue water potential. This study was aimed to understand the potential of N to minimize the effects of drought stress applied/occur during tillering (Feekes stage 2) and jointing (Feekes stage 6) growth stages of wheat by observing the regulations and limitations of physiological activities, crop growth rate during drought periods as well as final grain yields at maturity. In present study, pot cultured plants of a wheat cultivar Yangmai-16 were exposed to three water levels [severe stress at 35-40% field capacity (FC), moderate stress at 55-60% FC and well-watered at 75-80% FC] under two N rates (0.24 g and 0.16 g/kg soil). The results showed that the plants under severe drought stress accompanied by low N exhibited highly downregulated photosynthesis, and chlorophyll (Chl) fluorescence during the drought stress periods, and showed an accelerated grain filling rate with shortened grain filling duration (GFD) at post-anthesis, and reduced grain yields. Severe drought-stressed plants especially at jointing, exhibited lower Chl and Rubisco contents, lower efficiency of photosystem II and greater grain yield reductions. In contrast, drought-stressed plants under higher N showed tolerance to drought stress by maintaining higher leaf water potential, Chl and Rubisco content; lower lipid peroxidation associated with higher superoxide dismutase and ascorbate peroxidase activities during drought periods. The plants under higher N showed delayed senescence, increased GFD and lower grain yield reductions. The results of the study suggested that higher N nutrition contributed to drought tolerance in wheat by maintaining higher photosynthetic activities and antioxidative defense system during vegetative growth periods.

  16. Urban adaptation to mega-drought: Anticipatory water modeling, policy, and planning in Phoenix

    NASA Astrophysics Data System (ADS)

    Gober, P.; Sampson, D. A.; Quay, R.; White, D. D.; Chow, W.

    2016-12-01

    There is increasing interest in using the results of water models for long-term planning and policy analysis. Achieving this goal requires more effective integration of human dimensions into water modeling and a paradigm shift in the way models are developed and used. A user-defined focus argues in favor of models that are designed to foster public debate and engagement about the difficult trade-offs that are inevitable in managing complex water systems. These models also emphasize decision making under uncertainty and anticipatory planning, and are developed through a collaborative and iterative process. This paper demonstrates the use of anticipatory modeling for long-term drought planning in Phoenix, one of the largest and fastest growing urban areas in the southwestern USA. WaterSim 5, an anticipatory water policy and planning model, was used to explore groundwater sustainability outcomes for mega-drought conditions across a range of policies, including population growth management, water conservation, water banking, direct reuse of RO reclaimed water, and water augmentation. Results revealed that business-as-usual population growth, per capita use trends, and management strategies may not be sustainable over the long term, even without mega-drought conditions as years of available groundwater supply decline over the simulation period from 2000 to 2060. Adding mega-drought increases the decline in aquifer levels and increases the variability in flows and uncertainty about future groundwater supplies. Simulations that combine drought management policies can return the region to sustainable. Results demonstrate the value of long-term planning and policy analysis for anticipating and adapting to environmental change.

  17. NASA Spacecraft Images Drought Impacts on the Mighty Mississippi

    NASA Image and Video Library

    2012-08-25

    NASA Terra spacecraft acquired this image on Aug. 24, 2012, 13 miles 20 kilometers north of Vicksburg, Miss., as drought continued to afflict the U.S. Midwest, water levels of the Mississippi River approached historic lows.

  18. Drought Monitoring with VegDRI

    USGS Publications Warehouse

    Brown, Jesslyn F.

    2010-01-01

    Drought strikes somewhere in the United States every year, turning green landscapes brown as precipitation falls below normal levels and water supplies dwindle. Drought is typically a temporary climatic aberration, but it is also an insidious natural hazard. It might last for weeks, months, or years and may have many negative effects. Drought can threaten crops, livestock, and livelihoods, stress wildlife and habitats, and increase wildfire risks and threats to human health. Drought conditions can vary tremendously from place to place and week to week. Accurate drought monitoring is essential to understand a drought's progression and potential effects, and to provide information necessary to support drought mitigation decisions. It is also crucial in light of climate change where droughts could become more frequent, severe, and persistent.

  19. The compensation effects of physiology and yield in cotton after drought stress.

    PubMed

    Niu, Jing; Zhang, Siping; Liu, Shaodong; Ma, Huijuan; Chen, Jing; Shen, Qian; Ge, Changwei; Zhang, Xiaomeng; Pang, Chaoyou; Zhao, Xinhua

    The objective of this study was to investigate the root growth compensatory effects and cotton yield under drought stress. The results indicate that the root dry weight, boll weight, and cotton yield increased in both the drought-resistant cultivar (CCRI-45) and the drought-sensitive cultivar (CCRI-60). Compensation effects were exhibited under the three-day drought stress treatment at a soil relative water content (SRWC) of 60% and 45% during the seedling stage, and flowering and boll-forming stage over two years. The yield of the drought-resistant cultivar (CCRI-45) was higher than the control, however, following the six-day 45% SRWC drought treatments, the yield of the drought-sensitive cultivar (CCRI-60) was lower than the control. The soluble sugar content, proline content, superoxide dismutase (SOD) activity, and peroxidase (POD) activity of the roots increased under drought stress and then decreased after re-watering, although the values remained higher than those of the controls for a short period. These physiological measures may represent stress reactions and thus may not indicate factors that result in compensation effects. However, catalase (CAT) activity and gibberellic acid (GA) content of the roots decreased under drought stress. After re-watering, the CAT activity and the GA content increased and were significantly higher than those of the controls under the six-day 60% SRWC and 45% SRWC drought treatments. The abscisic acid (ABA) content of the roots increased under drought stress. After re-watering, the ABA content decreased to a lower level under the three and six-day 60% SRWC and 45% SRWC drought treatments than in the controls. According to an analysis of various indicators, the interaction between ABA and GA signals may play an important role in root growth compensatory effects. In summary, the results demonstrate that moderate drought stress is beneficial to root growth and yield. This conclusion is of great significance to improving our understanding of the maximum utilization of limited water resources. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Applying a Dynamic Stomatal Optimization to Predict Shifts in the Functional Composition of Tropical Forests Under Increased Drought And CO2

    NASA Astrophysics Data System (ADS)

    Bartlett, M. K.; Detto, M.; Pacala, S. W.

    2017-12-01

    The accurate prediction of tropical forest carbon fluxes is key to forecasting global climate, but forest responses to projected increases in CO2 and drought are highly uncertain. Here we present a dynamic optimization that derives the trajectory of stomatal conductance (gs) during drought, a key source of model uncertainty, from plant and soil water relations and the carbon economy of the plant hydraulic system. This optimization scheme is novel in two ways. First, by accounting for the ability of capacitance (i.e., the release of water from plant storage tissue; C) to buffer evaporative water loss and maintain gs during drought, this optimization captures both drought tolerant and avoidant hydraulic strategies. Second, by determining the optimal trajectory of plant and soil water potentials, this optimization quantifies species' impacts on the water available to competing plants. These advances allowed us to apply this optimization across the range of physiology trait values observed in tropical species to evaluate shifts in the competitively optimal trait values, or evolutionarily stable hydraulic strategy (ESS), under increased drought and CO2. Increasing the length of the dry season shifted the ESS towards more drought tolerant, rather than avoidant, trait values, and these shifts were larger for longer individual drought periods (i.e., more consecutive days without rainfall), even if the total time spent in drought was the same. Concurrently doubling the CO2 level reduced the magnitude of these shifts and slightly favored drought avoidant strategies under wet conditions. Overall, these analyses predicted that short, frequent droughts would allow elevated CO2 to shift the functional composition in tropical forests towards more drought avoidant species, while infrequent but long drought periods would shift the ESS to more drought tolerant trait values, despite increased CO2. Overall, these analyses quantified the impact of physiology traits on plant performance and competitive ability, and provide a mechanistic, trait-based approach to predict shifts in the functional composition of tropical forests under projected climatic conditions.

  1. Using Derivative Contracts to Mitigate Water Utility Financial Risks

    NASA Astrophysics Data System (ADS)

    Characklis, G. W.; Zeff, H.

    2012-12-01

    As developing new supply capacity has become increasingly expensive and difficult to permit, utilities have become more reliant on temporary demand management programs, such as outdoor water use restrictions, for ensuring reliability during drought. However, a significant fraction of water utility income is often derived from the volumetric sale of water, and such restrictions can lead to substantial revenue losses. Given that many utilities set prices at levels commensurate with recovering costs, these revenue losses can leave them financially vulnerable to budgetary shortfalls during drought. This work explores approaches for mitigating drought-related revenue losses through the use of third-party financial insurance contracts based on weather derivatives. Two different types of contracts are developed, and their efficacy is compared against two more traditional forms of financial hedging used by water utilities: drought surcharges and contingency funds (i.e. self insurance). Strategies involving each of these approaches, as well as their use in combination, are applied under conditions facing the water utility serving Durham, North Carolina. A multi-reservoir model provides information on the scale and timing of droughts, with the financial effects of these events simulated using detailed data derived from utility billing records. Results suggest that third-party derivative contracts, either independently or in combination with more traditional hedging tools (i.e. surcharges, contingency funds), can provide an effective means of reducing a utility's financial vulnerability to drought.

  2. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment

    PubMed Central

    Woodward, Guy; Brown, Lee E.; Edwards, Francois K.; Hudson, Lawrence N.; Milner, Alexander M.; Reuman, Daniel C.; Ledger, Mark E.

    2012-01-01

    Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size–scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts. PMID:23007087

  3. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought.

    PubMed

    Lima Neto, M C; Cerqueira, J V A; da Cunha, J R; Ribeiro, R V; Silveira, J A G

    2017-07-01

    Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (V cmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (J max ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    PubMed

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. © 2015 John Wiley & Sons Ltd.

  5. Quantifying the Impact of the 2015-2016 El Niño Event on California's Historic Drought to Improve Water Resource Management

    NASA Astrophysics Data System (ADS)

    Zajic, B. N.; Lawrence, J.; Gutowski, L.; Rousseau, N. J.; Reager, J. T., II; Jackson, M. E.; Laber, J. L.; Dumas, J. L.

    2016-12-01

    2015 marked the arrival of the strongest El Niño ever recorded, surpassing the 1997-1998 event that brought significant precipitation to the southwestern United States. As sea surface temperatures in the Central Pacific increased, it was forecasted that the 2015 event may have similar effects and alleviate what the US Drought Monitor classified as "exceptional" drought across the majority of the state of California. However, the impacts of the drought, now in its fifth year, continue to strain California water supplies. This study utilized data from NASA's Gravity Recovery and Climate Experiment (GRACE) Earth Observation, meteorological ground observations from the National Oceanic and Atmospheric Administration (NOAA), reservoir levels from the California Department of Water Resources (DWR), and the Oceanic Niño Index (ONI) to better quantify impacts of the 2015-16 El Niño event in the state of California. Specifically, monthly measurements of terrestrial water storage (TWS) from GRACE allowed for a more complete estimate of drought recovery throughout the state over the course of the 2016 water year. TWS was correlated with NOAA precipitation data (nClimDiv) in order to quantify the total current water deficit across the state. This relationship also permits the projection of future drought in California under various possible ENSO-driven precipitation scenarios. While analysis shows that ONI is not a sufficient metric for forecasting precipitation on a statewide basis, the various scenarios provide insight into the potential future of California's aggregated water resources. With drought in the Southwestern US projected to increase in general intensity, frequency, and duration, quantitative assessments of statewide water resources are becoming increasingly important. NASA GRACE TWS hydrological data presents a uniquely integrated measure to inform resource managers and decision makers.

  6. Water use of three hardwood species under variable CO[sub 2] and soil water conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.; Tscaplinkski, T.J.; Stewart, D.B.

    1994-06-01

    The impacts of elevated CO[sub 2] and cyclic water stress on water use of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.) and sugar maple (Acer saccharum Marsh.) were evaluated. One-year-old seedlings were planted in 8-L pots and grown in four open-top chambers containing either ambient or ambient +3-- [mu]mol mol[sup [minus]1]CO[sub 2]. Soil moisture regimes were nested within each chamber. Well-watered plants were watered daily and water-stressed plants were exposed to drought cycles. Differences in plant leaf area and conductance between species altered the rate of water use, such that sycamore plants experienced 11 drought cycles whereas sweetgummore » and maple only had 5. Mean soil matric potentials at the depth of the drought cycles were [minus]1.5, [minus]0.7, and [minus]0.5 MPa for sycamore, sweetgum, and maple, respectively. Leaf-level gas exchange measures agreed with direct gravimetric observations not reduced under elevated CO[sub 2] because of increased leaf area production. Drought reduced total water use per plant and leaf, but did not preclude the CO[sub 2] effects on water use.« less

  7. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of each month of the year) excluding Greenland and Antarctica. The two figures show that 2010 was the driest year since 2003. The drought in the Amazon was largely responsible, but an excess of water in 2009 seems to have buffered that drought to some extent. The drying trend in the 25-55 deg S zone is a combination of Patagonian glacier melt and drought in parts of Australia.

  8. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  9. Drought effects on water quality in the South Platte River Basin, Colorado

    USGS Publications Warehouse

    Sprague, Lori A.

    2005-01-01

    Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.

  10. Investigating Drought Onset, Termination and Recovery According to Water Quality Indicators

    NASA Astrophysics Data System (ADS)

    Ahmadi, B.; Moradkhani, H.

    2016-12-01

    Frequency and severity of droughts are increasing globally. Reduced catchment runoff and river flows caused by the meteorological drivers leads to hydrological drought. Hydrological droughts have significant impacts not only on water quantity but also on water quality. In this study, first the onset of historical hydrological droughts is estimated using daily threshold-based indicators. Then drought termination and recovery period in terms of water quantity is analyzed. This is followed by examination of water quality during these detected hydrological droughts. Four water quality parameters, i.e., water temperature, dissolved oxygen, pH and turbidity are investigated over Willamette river basin located in northwestern Oregon in the United States. Drought vulnerability and resiliency are analyzed for the study period. Droughts and the recovery period are found to have significant impact on water quality parameters. Also, the results indicate a deterioration of water quality during droughts and longer drought recovery if water quality indicators are considered in the analysis.

  11. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    NASA Astrophysics Data System (ADS)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax, and gm values under well-watered conditions, while sclerophylls having a lower sensitivity of g1, apparent Vcmax, and gm to drought, and tending to maintain more open stomata and higher apparent Vcmax and gm under dry conditions. Besides the genus-level consistence on contrasting response patterns between species of different hydro-climates, apparent Vcmax was found almost universally to decrease with the same extent that could be explained by the reduction in gm, implying little change in Vcmax with increasing water stress. This novel founding was confirmed with Vcmax data fitted from net CO2 assimilation rate versus chloroplastic CO2 concentration (A-Cc) curves. This experimental study on two plant genera draws firm conclusions for modeling: (1) stomatal and non-stomatal limitations to photosynthesis must both be considered for the short-term response to drought, (2) species adapted to arid climate respond very differently from others, and (3) apparent Vcmax and gm respond consistent with each other, but very differently from Vcmax, which could barely change during short-term drought.

  12. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees

    DOE PAGES

    Adams, Henry D.; Collins, Adam D.; Briggs, Samuel P.; ...

    2015-09-22

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure (‘drought’), a ~4.8 °C temperature increase with open-top chambers (‘heat’), and a combination ofmore » both simultaneously (‘drought + heat’). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine ( Pinus edulis) by ≥39%, while juniper ( Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19–57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Furthermore, climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.« less

  13. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Collins, Adam D.; Briggs, Samuel P.

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure (‘drought’), a ~4.8 °C temperature increase with open-top chambers (‘heat’), and a combination ofmore » both simultaneously (‘drought + heat’). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine ( Pinus edulis) by ≥39%, while juniper ( Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19–57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Furthermore, climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.« less

  14. Application of multiobjective optimization to scheduling capacity expansion of urban water resource systems

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, Mohammad; Kuczera, George; Cui, Lijie

    2014-06-01

    Significant population increase in urban areas is likely to result in a deterioration of drought security and level of service provided by urban water resource systems. One way to cope with this is to optimally schedule the expansion of system resources. However, the high capital costs and environmental impacts associated with expanding or building major water infrastructure warrant the investigation of scheduling system operational options such as reservoir operating rules, demand reduction policies, and drought contingency plans, as a way of delaying or avoiding the expansion of water supply infrastructure. Traditionally, minimizing cost has been considered the primary objective in scheduling capacity expansion problems. In this paper, we consider some of the drawbacks of this approach. It is shown that there is no guarantee that the social burden of coping with drought emergencies is shared equitably across planning stages. In addition, it is shown that previous approaches do not adequately exploit the benefits of joint optimization of operational and infrastructure options and do not adequately address the need for the high level of drought security expected for urban systems. To address these shortcomings, a new multiobjective optimization approach to scheduling capacity expansion in an urban water resource system is presented and illustrated in a case study involving the bulk water supply system for Canberra. The results show that the multiobjective approach can address the temporal equity issue of sharing the burden of drought emergencies and that joint optimization of operational and infrastructure options can provide solutions superior to those just involving infrastructure options.

  15. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress.

    PubMed

    Kumar, Deepak; Datta, Riddhi; Sinha, Ragini; Ghosh, Aparupa; Chattopadhyay, Sharmila

    2014-01-01

    The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I.

  16. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress.

    PubMed

    Kumar, Deepak; Datta, Riddhi; Sinha, Ragini; Ghosh, Aparupa; Chattopadhyay, Sharmila

    2014-05-20

    The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp 11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp 11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp 11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp 11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I.

  17. High-Resolution Near Real-Time Drought Monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  18. Analysis of 20th century rainfall and streamflow to characterize drought and water resources in Puerto Rico

    USGS Publications Warehouse

    Larsen, Matthew C.

    2000-01-01

    During the period from 1990 to 1997, annual rainfall accumulation averaged 87% of normal at the 12 stations with the longest period of record in Puerto Rico, a Caribbean island with a 1999 population of 3.8 million. Streamflow in rivers supplying the La Plata and Loíza reservoirs, the principal water supply of the San Juan metropolitan area, was at or below the 10th flow percentile for 27% to 50% of the time between December 1993 and May 1996. Diminished reservoir levels in 1994 and 1995 affected more than 1 million people in the San Juan metropolitan area. Water rationing was implemented during this period and significant agricultural losses, valued at $165 million, were recorded in 1994. The public endured a year of mandatory water rationing in which sections of the city had their water-distribution networks shut off for 24 to 36 hours on alternate days. During the winter and spring of 1997–1998, water was rationed to more than 200,000 people in northwestern Puerto Rico because water level in the Guajataca reservoir was well below normal for two years because of rainfall deficits. The drought period of 1993–1996 was comparable in magnitude to a drought in 1966–1968, but water rationing was more severe during the 1993–1996 period, indicating that water management issues such as demand, storage capacity, water production and losses, and per capita consumption are increasingly important as population and development in Puerto Rico expand. [Key words: drought, streamflow, water resources, Caribbean, Puerto Rico, rainfall, water supply.

  19. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana.

    PubMed

    Chen, Qian; Zheng, Yan; Luo, Landi; Yang, Yongping; Hu, Xiangyang; Kong, Xiangxiang

    2018-01-01

    Flowering at the right time is important for the reproductive success of plants and their response to environmental stress. In Arabidopsis, a major determinant of natural variation in flowering time is FRIGIDA (FRI). In the present study, we show that overexpression of the functional FRIGIDA gene in wild-type Col background (ColFRI) positively enhances the drought tolerance by activating P5CS1 expression and promoting proline accumulation during water stress. Furthermore, no significant changes in FRI gene and protein expression levels were observed with drought treatment, whereas P5CS1 protein expression significantly increased. In contrast, vernalization treatment efficiently reduced P5CS1 expression levels and resulted in a decrease in drought tolerance in the ColFRI plants. The flc mutants with a functional FRI background also relieved FRI-mediated activation of P5CS1 during drought tolerance. Taken together, our findings reveal the novel function of FRI in enhancing drought resistance through its downstream P5CS1 pathway during water-deficit stress, which is dependent on its target, the FLC gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Pricing irrigation water for drought adaptation in Iran

    NASA Astrophysics Data System (ADS)

    Nikouei, Alireza; Ward, Frank A.

    2013-10-01

    This paper examines alternative water pricing arrangements that better manage and more accurately reflect conditions of increased water scarcity experienced during drought in Iran. A comprehensive water balance and crop use model compares the existing below cost water pricing model with an alternative two-tiered pricing approach. The tiers reflect two uses of irrigation water. The uses are (1) subsistence level crop production from farm household production of crops for food security and (2) discretionary cropping. Results of the study offer evidence for a reform of Iranian water pricing principles, subject to caveats described by the authors.

  1. Coping with drought: A High Resolution Drought Monitoring and Prediction System for the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Xiao, M.; Nijssen, B.; Shukla, S.; Lettenmaier, D. P.

    2013-12-01

    The Pacific Northwest (PNW) region in North America (defined here as the Columbia and Klamath River basins plus the coastal drainages) is a diverse geographic region with complex topography and a variety of climates. Agriculture (dryland and irrigated), forestry, fisheries, and hydropower provide significant economic benefit to the region and are directly dependent on the availability of sufficient water at the right time. Additional demands are made on water supplies by recreation, ecosystem services and emerging needs such as hydropower generation in support of wind energy integration. Several major droughts have occurred over the region in recent decades (notably 1977, 2001, and 2004), which have had significant consequences for the region's agricultural, hydropower production, and environment. An emerging need for the region is the coordination of existing regional climate activities, including a better awareness of the current water availability conditions across the region. The University of Washington has operated a surface water monitor for the continental United States since 2005, which provides near real-time estimates of surface water conditions at a spatial resolution of 1/2 degree in terms of soil moisture, snow water equivalent, and total moisture based on a suite of land surface models. A higher resolution Drought Monitoring and Prediction System (DMPS) for Washington State was originally implemented at 1/8 degree and later increased to 1/16 degree. This presentation describes the extension of this system to the entire PNW region at 1/16 degree. The expanded system provides daily updates of three primary drought-related indices based on near real-time station observations in the region: Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Soil Moisture Percentiles (SMP). To make the drought measures relevant to water managers, surface water conditions are not only reported on a gridded map, but watershed-level drought summary indices are reported for larger aggregates such as the Water Resource Inventory Areas (WRIAs) in Washington State and the Water Allocation Basins (WABs) within Oregon. We explore the ability of the system to reproduce historic droughts for the period since 1915 and analyze regional differences in drought dynamics within the PNW. We also evaluate the lead time that would have been provided by the system had it been available relative to official drought declarations.

  2. Impact of drought on vector-borne diseases--how does one manage the risk?

    PubMed

    Brown, L; Medlock, J; Murray, V

    2014-01-01

    This article aimed to review all literature on drought and vector-borne disease to enable an assessment of the possible impact of drought on the changing risk of vector-borne diseases in the UK. A systematic literature review was performed. Using a search strategy developed from a combination of terms for drought and selected outcomes, the authors systematically reviewed all available literature from 1990 to 2012 on the impact of drought on vector-borne diseases. The following databases were searched: PubMed, Web of Science, and EMBASE. After reviewing the abstracts, 38 articles were found to fit the inclusion and exclusion criteria. Evidence found drought followed by re-wetting can have a substantial effect on water table levels, vegetation, and aquatic predators; all factors which influence mosquito populations. Several studies found an association between a drought during the previous year and West Nile virus incidence. Urban mosquito vectors of dengue virus and chikungunya virus are adaptable by nature and are able to exploit a multitude of additional aquatic habitats created as a response to drought (i.e. water storage containers). Tick populations are likely to be negatively affected by drought as they are dependent upon high levels of humidity and soil moisture. Further research is needed to identify public health interventions and environmental control measures for an invasive mosquito problem or arthropod-borne disease outbreak in the UK. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  3. Contrasting water strategies of two Mediterranean shrubs of limited distribution: uncertain future under a drier climate.

    PubMed

    Lázaro-Nogal, Ana; Forner, Alicia; Traveset, Anna; Valladares, Fernando

    2013-12-01

    Plants have evolved different strategies to cope with drought, involving alternative ecophysiologies and different levels of plasticity. These strategies are critical for species of limited distribution, which are especially vulnerable to the current rates of rapid environmental change. The aim of this study was to assess the water strategy of two species with limited distribution, Cneorum tricoccon L. and Rhamnus ludovici-salvatoris Chodat., and evaluate their interpopulation variability along an aridity gradient to estimate their vulnerability to a drier climate. We measured different ecophysiological traits influenced by drought--stomatal conductance, maximum photochemical efficiency of photosynthesis II, carbon isotope ratio and chlorophyll concentration--in two climatically contrasting years, before and during summer drought. Both species were vulnerable to drought at the aridity limit of the gradient, but showed contrasting water strategies: while C. tricoccon was consistent in its water conservation strategy across the aridity gradient, R. ludovici-salvatoris was not, displaying higher and more variable stomatal conductances and being able to increase water-use efficiency at the most xeric sites. Changes in length and intensity of drought events may favor one species' strategy to the detriment of the other: C. tricoccon is more vulnerable to chronic and prolonged droughts, whereas short but acute droughts might have a stronger effect on R. ludovici-salvatoris. In those communities where these two species coexist, such different strategies might lead to changes in community structure under climate change scenarios, with unknown cascade effects on ecosystem functioning.

  4. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections

    PubMed Central

    Knepper, Caleb; Mou, Beiquan

    2015-01-01

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits. PMID:25938876

  5. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections.

    PubMed

    Knepper, Caleb; Mou, Beiquan

    2015-04-17

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.

  6. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat

    PubMed Central

    Li, Runzhi; Chang, Xiaoping; Jing, Ruilian

    2015-01-01

    Drought is a major environmental constraint to crop distribution and productivity. Stem water-soluble carbohydrates (WSC) buffer wheat grain yield against conditions unfavorable for photosynthesis during the grain filling stage. In this study, 262 winter wheat accessions and 209 genome-wide SSR markers were collected and used to undertake association analysis based on a mixed linear model (MLM). The WSC in different internodes at three growth stages and 1000-grain weight (TGW) were investigated under four environmental regimes (well-watered, drought stress during the whole growth period, and two levels of terminal drought stress imposed by chemical desiccation under the well-watered and drought stress during the whole growth period conditions). Under diverse drought stress conditions, WSC in lower internodes showed significant positive correlations with TGW, especially at the flowering stage under well-watered conditions and at grain filling under drought stress. Sixteen novel WSC-favorable alleles were identified, and five of them contributed to significantly higher TGW. In addition, pyramiding WSC favorable alleles was not only effective for obtaining accessions with higher WSC, but also for enhancing TGW under different water regimes. During the past fifty years of wheat breeding, WSC was selected incidentally. The average number of favorable WSC alleles increased from 1.13 in the pre-1960 period to 4.41 in the post-2000 period. The results indicate a high potential for using marker-assisted selection to pyramid WSC favorable alleles in improving WSC and TGW in wheat. PMID:25768726

  7. Drought impacts and resilience on crops via evapotranspiration estimations

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates for monitoring crop health during the severe drought events. The presentation will provide results of the investigation into Droughts using time series of coarse resolution daily evapotranspiration produced from the SEBS remote sensing model, on basis of MODIS data. The evapotranspiration will be converted into drought severity using the evapotranspiration deficit index (ETDI). Afterwards the disaggregation to plot scale will be investigated. This disaggregation will be performed as a weighted filtering on basis of crop-coefficient at high resolution. These growth stage of the vegeation (needed for the estimation of the crop coefficients) are estimated on basis of Normalized Difference Vegetation Index (NDVI) using Landsat 5,7 and 8 observations. The final result of the research provides good statistical information about drought resilience and crop health.

  8. Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought

    USGS Publications Warehouse

    Martin, Roberta E.; Asner, Gregory P.; Francis, Emily; Ambrose, Anthony; Baxter, Wendy; Das, Adrian J.; Vaughn, Nicolas R.; Paz-Kagan, Tarin; Dawson, Todd E.; Nydick, Koren R.; Stephenson, Nathan L.

    2018-01-01

    California experienced severe drought from 2012 to 2016, and there were visible changes in the forest canopy throughout the State. In 2014, unprecedented foliage dieback was recorded in giant sequoia (Sequoiadendron giganteum) trees in Sequoia National Park, in the southern California Sierra Nevada mountains. Although visible changes in sequoia canopies can be recorded, biochemical and physiological responses to drought stress in giant sequoia canopies are not well understood. Ground-based measurements provide insight into the mechanisms of drought responses in trees, but are often limited to few individuals, especially in trees of tall stature such as giant sequoia. Recent studies demonstrate that remotely measured forest canopy water content (CWC) is a general indicator of canopy response to drought, but the underpinning leaf- to canopy-level causes of observed variation in CWC remain poorly understood. We combined field and airborne remote sensing measurements taken in 2015 and 2016 to assess the biophysical responses of giant sequoias to drought. In 49 study trees, CWC was related to leaf water potential, but not to the other foliar traits, suggesting that changes in CWC were made at whole-canopy rather than leaf scales. We found a non-random, spatially varying pattern in mapped CWC, with lower CWC values at lower elevation and along the outer edges of the groves. This pattern was also observed in empirical measurements of foliage dieback from the ground, and in mapped CWC across multiple sequoia groves in this region, supporting the hypothesis that drought stress is expressed in canopy-level changes in giant sequoias. The fact that we can clearly detect a relationship between CWC and foliage dieback, even without taking into account prior variability or new leaf growth, strongly suggests that remotely sensed CWC, and changes in CWC, are a useful measure of water stress in giant sequoia, and valuable for assessing and managing these iconic forests in drought.

  9. The type of competition modulates the ecophysiological response of grassland species to elevated CO2 and drought.

    PubMed

    Miranda-Apodaca, J; Pérez-López, U; Lacuesta, M; Mena-Petite, A; Muñoz-Rueda, A

    2015-03-01

    The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well-watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non-stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species-specific and dependent on the type of competition. Thus, the response to elevated CO2 in well-watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species-level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions

    PubMed Central

    Vítámvás, Pavel; Urban, Milan O.; Škodáček, Zbynek; Kosová, Klára; Pitelková, Iva; Vítámvás, Jan; Renaut, Jenny; Prášil, Ilja T.

    2015-01-01

    Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, 13C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments. PMID:26175745

  11. Evaluation of the Performance of Multiple Drought Indices for Tunisia

    NASA Astrophysics Data System (ADS)

    Geli, H. M. E.; Jedd, T.; Svoboda, M.; Wardlow, B.; Hayes, M. J.; Neale, C. M. U.; Hain, C.; Anderson, M. C.

    2016-12-01

    The recent and frequent drought events in the Middle East and Northern Africa (MENA) create an urgent need for scientists, stakeholders, and decision makers to improve the understanding of drought in order to mitigate its effects. It is well documented that drought is not caused by meteorological or hydrological conditions alone; social, economic, and political governance factors play a large part in whether the components in a water supply system are balanced. In the MENA region, for example, agricultural production can place a significant burden on water supply systems. Understanding the connection between drought and agricultural production is an important first step in developing a sound drought monitoring and mitigation system that links physical indicators with on-the-ground impacts. Drought affect crop yield, livestock health, and water resources availability, among others. A clear depiction of drought onset, duration and severity is essential to provide valuable information to adapt and mitigate drought impact. Therefore, it is important that to be able to connect and evaluate scientific drought data and informational products with societal impact data to more effectively initiate mitigation actions. This approach will further the development of drought maps that are tailored and responsive to immediate and specific societal needs for a region or country. Within the context of developing and evaluating drought impacts maps for the MENA region, this analysis investigates the use of different drought indices and indicators including the Standardized Precipitation Index (SPI), Normalized Difference Vegetation Index (NDVI) anomaly, land surface temperature (LST), and Evaporative Stress Index (ESI) for their ability to characterize historic drought events in Tunisia. Evaluation of a "drought map" product is conducted using data at the county level including crop yield, precipitation, in-country interviews with drought monitoring experts and agricultural producers, and a questionnaire follow-up written survey to evaluate stakeholder perceptions of its effectiveness. This case study results indicate an urgent need to contextualize the meteorological, hydrological, and phenological indicators of drought within the larger socio-political context of the MENA region.

  12. Transcriptional Basis of Drought-Induced Susceptibility to the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Bidzinski, Przemyslaw; Ballini, Elsa; Ducasse, Aurélie; Michel, Corinne; Zuluaga, Paola; Genga, Annamaria; Chiozzotto, Remo; Morel, Jean-Benoit

    2016-01-01

    Plants are often facing several stresses simultaneously. Understanding how they react and the way pathogens adapt to such combinational stresses is poorly documented. Here, we developed an experimental system mimicking field intermittent drought on rice followed by inoculation by the pathogenic fungus Magnaporthe oryzae. This experimental system triggers an enhancement of susceptibility that could be correlated with the dampening of several aspects of plant immunity, namely the oxidative burst and the transcription of several pathogenesis-related genes. Quite strikingly, the analysis of fungal transcription by RNASeq analysis under drought reveals that the fungus is greatly modifying its virulence program: genes coding for small secreted proteins were massively repressed in droughted plants compared to unstressed ones whereas genes coding for enzymes involved in degradation of cell-wall were induced. We also show that drought can lead to the partial breakdown of several major resistance genes by affecting R plant gene and/or pathogen effector expression. We propose a model where a yet unknown plant signal can trigger a change in the virulence program of the pathogen to adapt to a plant host that was affected by drought prior to infection. PMID:27833621

  13. Plant responses to water stress

    PubMed Central

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  14. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less

  15. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    DOE PAGES

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; ...

    2016-09-19

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less

  16. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    PubMed Central

    Polania, Jose A.; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M.

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two groups, water savers and water spenders. Pod harvest index could be a useful selection criterion in breeding programs to select for drought resistance in common bean. PMID:27242861

  17. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol.

    PubMed

    Hatami, Mehrnaz; Hadian, Javad; Ghorbanpour, Mansour

    2017-02-15

    In this study, seeds of Hyoscyamus niger were exposed to different concentrations (50-800μgmL -1 ) of single-walled carbon nanotubes (SWCNTs) under different levels of drought stress (0.5-1.5MPa) for 14days. Germinated seeds were subsequently allowed to grow in the same culture media for 7 more days to test the further response of the seedlings in terms of biochemical changes to the employed treatments. Seeds subjected to drought showed reduction in germination percentage, vigor and lengths of roots and shoots. However, inclusion of SWCNTs at the two lowest concentrations significantly alleviated the drought stress (up to moderate levels only)-induced reduction in germination and growth attributes. This happened due to increased water uptake, up-regulation of mechanisms involved in starch hydrolysis, and reduction in oxidative injury indices including H 2 O 2 , malondialdehyde contents and electrolyte leakage. The improved plant performance under PEG-induced drought stress was a consequence of changes in the expression of various antioxidant enzymes including SOD, POD, CAT, and APX, and also biosynthesis of proteins, phenolics, and specific metabolites such as proline. Results demonstrate that treatment by low concentrations of SWCNTs can induce tolerance in seedlings against low to moderate levels of drought through enhancing water uptake and activating plant defense system. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.

    PubMed

    Skelton, Robert P; Brodribb, Timothy J; McAdam, Scott A M; Mitchell, Patrick J

    2017-09-01

    Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Condition factor variations over time and trophic position among four species of Characidae from Amazonian floodplain lakes: effects of an anomalous drought.

    PubMed

    Tribuzy-Neto, I A; Conceição, K G; Siqueira-Souza, F K; Hurd, L E; Freitas, C E C

    2018-05-01

    The effects of extreme droughts on freshwater fish remain unknown worldwide. In this paper, we estimated the condition factor, a measure of relative fitness based on the relationship of body weight to length, in four fish species representing two trophic levels (omnivores and piscivores) from Amazonian floodplain lakes for three consecutive years: 2004, 2005 (an anomalous drought year), and 2006. The two omnivores, Colossoma macropomum and Mylossoma duriventre, exhibited trends consistent with their life cycles in 2004 and 2006: high values during the hydrologic seasons of high water, receding water, and low water, with a drop following reproduction following the onset of rising water. However during the drought year of 2005 the condition factor was much lower than normal during receding and low water seasons, probably as a result of an abnormal reduction in resource availability in a reduced habitat. The two piscivorous piranhas, Serrasalmus spilopleura and S. elongatus, maintained relatively stable values of condition factor over the hydrologic cycles of all three years, with no apparent effect of the drought, probably because the reduction in habitat is counterbalanced by the resulting increase in relative prey density. We suggest that if predictions of increasing drought in the Amazon are correct, predatory species may benefit, at least in the short run, while omnivores may be negatively affected.

  20. Economic Drought Impact on Agriculture: analysis of all agricultural sectors affected

    NASA Astrophysics Data System (ADS)

    Gil, M.; Garrido, A.; Hernández-Mora, N.

    2012-04-01

    The analysis of drought impacts is essential to define efficient and sustainable management and mitigation. In this paper we present a detailed analysis of the impacts of the 2004-2008 drought in the agricultural sector in the Ebro river basin (Spain). An econometric model is applied in order to determine the magnitude of the economic loss attributable to water scarcity. Both the direct impacts of drought on agricultural productivity and the indirect impacts of drought on agricultural employment and agroindustry in the Ebro basin are evaluated. The econometric model measures losses in the economic value of irrigated and rainfed agricultural production, of agricultural employment and of Gross Value Added both from the agricultural sector and the agro-industrial sector. The explanatory variables include an index of water availability (reservoir storage levels for irrigated agriculture and accumulated rainfall for rainfed agriculture), a price index representative of the mix of crops grown in each region, and a time variable. The model allows for differentiating the impacts due to water scarcity from other sources of economic losses. Results show how the impacts diminish as we approach the macro-economic indicators from those directly dependent on water abstractions and precipitation. Sectors directly dependent on water are the most affected with identifiable economic losses resulting from the lack of water. From the management perspective implications of these findings are key to develop mitigation measures to reduce drought risk exposure. These results suggest that more open agricultural markets, and wider and more flexible procurement strategies of the agro-industry reduces the socio-economic exposure to drought cycles. This paper presents the results of research conducted under PREEMPT project (Policy relevant assessment of the socioeconomic effects of droughts and floods, ECHO - grant agreement # 070401/2010/579119/SUB/C4), which constitutes an effort to provide a comprehensive assessment of the socioeconomic impacts of the 2004-2008 drought in the Ebro river basin

  1. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to that of 1979-82 and a more severe drought similar to that of 1963-66, but with current (2002) pumping, were compared to results for average monthly recharge conditions (1949-2002). Simulated mild drought conditions showed a reduction of GSB Pond level of about 1.3 feet and a lower streamflow of about 1.7 percent in the nearby stream. Simulated severe drought conditions reduced the pond level at GSB Pond by almost 7 feet and lowered streamflow by about 37 percent. Varying cranberry-irrigation practices had little effect on simulated GSB Pond water levels, but may be important in other ponds. The model was most sensitive to changes in areal recharge. An increase and decrease of 22 percent in recharge produced changes in the GSB Pond water level of +1.4 feet and -2.4 feet, respectively. The accuracy of simulation results was best in the central portion of the study area in the immediate location of GSB Pond. The model was developed with the study-area boundary far enough away from the GSB Pond area that the boundary would have minimal effect on the water levels in GSB Pond, nearby ponds, and the underlying aquifer system. The model is best suited for use by local and State water managers to assess the effects of different withdrawal scenarios for wells and ponds near GSB Pond and for general delineation of areas contributing recharge to wells and ponds in the vicinity of GSB Pond. The model in its current form may not be well suited to detailed analyses of water budgets and flow patterns for parts of the study area farther from GSB Pond without further investigation, calibration, and data collection.

  2. Improved Drought Stress Response in Alfalfa Plants Nodulated by an IAA Over-producing Rhizobium Strain

    PubMed Central

    Defez, Roberto; Andreozzi, Anna; Dickinson, Michael; Charlton, Adrian; Tadini, Luca; Pesaresi, Paolo; Bianco, Carmen

    2017-01-01

    The drought–stress response in plant involves the cross-talk between abscisic acid (ABA) and other phytohormones, such as jasmonates and ethylene. The auxin indole-3-acetic acid (IAA) plays an integral part in plant adaptation to drought stress. Investigation was made to see how the main auxin IAA interacted with other plant hormones under water stress, applied through two different growth conditions (solid and hydroponic). Medicago sativa plants nodulated by the Ensifer meliloti wild type 1021 (Ms-1021) and its IAA-overproducing RD64 derivative strains (Ms-RD64) were subjected to drought stress, comparing their response. When the expression of nifH gene and the activity of the nitrogenase enzyme were measured after stress treatments, Ms-RD64 plants recorded a significantly weaker damage. These results were correlated with a lower biomass reduction, and a higher Rubisco protein level measured for the Ms-RD64-stressed plants as compared to the Ms-1021-stressed ones. It has been verified that the stress response observed for Ms-RD64-stressed plants was related to the production of greater amount of low-molecular-weight osmolytes, such as proline and pinitol, measured in these plants. For the Ms-RD64 plants the immunoblotting analysis of thylakoid membrane proteins showed that some of the photosystem proteins increased after the stress. An increased non-photochemical quenching after the stress was also observed for these plants. The reduced wilting signs observed for these plants were also connected to the significant down-regulation of the MtAA03 gene involved in the ABA biosynthesis, and with the unchanged expression of the two genes (Mt-2g006330 and Mt-8g095330) of ABA signaling. When the expression level of the ethylene-signaling genes was evaluated by qPCR analysis no significant alteration of the key positive regulators was recorded for Ms-RD64-stressed plants. Coherently, these plants accumulated 40% less ethylene as compared to Ms-1021-stressed ones. The results presented herein indicate that the variations in endogenous IAA levels, triggered by the overproduction of rhizobial IAA inside root nodules, positively affected drought stress response in nodulated alfalfa plants. PMID:29312178

  3. Climate Change, Drought and Human Health in Canada

    PubMed Central

    Yusa, Anna; Berry, Peter; Cheng, June J.; Ogden, Nicholas; Bonsal, Barrie; Stewart, Ronald; Waldick, Ruth

    2015-01-01

    Droughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate. A review of the Canadian, U.S. and international literature relevant to the Canadian context was conducted to better define these impacts and adaptations available to protect health. Drought can impact respiratory health, mental health, illnesses related to exposure to toxins, food/water security, rates of injury and infectious diseases (including food-, water- and vector-borne diseases). A range of direct and indirect adaptation (e.g., agricultural adaptation) options exist to cope with drought. Many have already been employed by public health officials, such as communicable disease monitoring and surveillance and public education and outreach. However, gaps exist in our understanding of the impacts of short-term vs. prolonged drought on the health of Canadians, projections of drought and its characteristics at the regional level and the effectiveness of current adaptations. Further research will be critical to inform adaptation planning to reduce future drought-related risks to health. PMID:26193300

  4. Climate Change, Drought and Human Health in Canada.

    PubMed

    Yusa, Anna; Berry, Peter; J Cheng, June; Ogden, Nicholas; Bonsal, Barrie; Stewart, Ronald; Waldick, Ruth

    2015-07-17

    Droughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate. A review of the Canadian, U.S. and international literature relevant to the Canadian context was conducted to better define these impacts and adaptations available to protect health. Drought can impact respiratory health, mental health, illnesses related to exposure to toxins, food/water security, rates of injury and infectious diseases (including food-, water- and vector-borne diseases). A range of direct and indirect adaptation (e.g., agricultural adaptation) options exist to cope with drought. Many have already been employed by public health officials, such as communicable disease monitoring and surveillance and public education and outreach. However, gaps exist in our understanding of the impacts of short-term vs. prolonged drought on the health of Canadians, projections of drought and its characteristics at the regional level and the effectiveness of current adaptations. Further research will be critical to inform adaptation planning to reduce future drought-related risks to health.

  5. Multiobjective optimization of urban water resources: Moving toward more practical solutions

    NASA Astrophysics Data System (ADS)

    Mortazavi, Mohammad; Kuczera, George; Cui, Lijie

    2012-03-01

    The issue of drought security is of paramount importance for cities located in regions subject to severe prolonged droughts. The prospect of "running out of water" for an extended period would threaten the very existence of the city. Managing drought security for an urban water supply is a complex task involving trade-offs between conflicting objectives. In this paper a multiobjective optimization approach for urban water resource planning and operation is developed to overcome practically significant shortcomings identified in previous work. A case study based on the headworks system for Sydney (Australia) demonstrates the approach and highlights the potentially serious shortcomings of Pareto optimal solutions conditioned on short climate records, incomplete decision spaces, and constraints to which system response is sensitive. Where high levels of drought security are required, optimal solutions conditioned on short climate records are flawed. Our approach addresses drought security explicitly by identifying approximate optimal solutions in which the system does not "run dry" in severe droughts with expected return periods up to a nominated (typically large) value. In addition, it is shown that failure to optimize the full mix of interacting operational and infrastructure decisions and to explore the trade-offs associated with sensitive constraints can lead to significantly more costly solutions.

  6. New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis)

    PubMed Central

    Zhao, Pincang; Liu, Panpan; Yuan, Guangxiao; Jia, Junting; Li, Xiaoxia; Qi, Dongmei; Chen, Shuangyan; Ma, Tian; Liu, Gongshe; Cheng, Liqin

    2016-01-01

    Water is a critical environmental factor that restricts the geographic distribution of plants. Sheepgrass [Leymus chinensis, (Trin.) Tzvel] is an important forage grass in the Eurasia Steppe and a close germplasm for wheat and barley. This native grass adapts well to adverse environments such as cold, salinity, alkalinity and drought, and it can survive when the soil moisture may be less than 6% in dry seasons. However, little is known about how sheepgrass tolerates water stress at the molecular level. Here, drought stress experiment and RNA-sequencing (RNA-seq) was performed in three pools of RNA samples (control, drought stress, and rewatering). We found that sheepgrass seedlings could still survive when the soil water content (SWC) was reduced to 14.09%. Differentially expressed genes (DEGs) analysis showed that 7320 genes exhibited significant responses to drought stress. Of these DEGs, 2671 presented opposite expression trends before and after rewatering. Furthermore, ~680 putative sheepgrass-specific water responsive genes were revealed that can be studied deeply. Gene ontology (GO) annotation revealed that stress-associated genes were activated extensively by drought treatment. Interestingly, cold stress-related genes were up-regulated greatly after drought stress. The DEGs of MAPK and calcium signal pathways, plant hormone ABA, jasmonate, ethylene, brassinosteroid signal pathways, cold response CBF pathway participated coordinatively in sheepgrass drought stress response. In addition, we identified 288 putative transcription factors (TFs) involved in drought response, among them, the WRKY, NAC, AP2/ERF, bHLH, bZIP, and MYB families were enriched, and might play crucial and significant roles in drought stress response of sheepgrass. Our research provided new and valuable information for understanding the mechanism of drought tolerance in sheepgrass. Moreover, the identification of genes involved in drought response can facilitate the genetic improvement of crops by molecular breeding. PMID:27446180

  7. The Effect of Drought on Stomatal Conductance in the Biosphere 2 Rainforest

    NASA Astrophysics Data System (ADS)

    Gay, J. D.; Van Haren, J. L. M.

    2015-12-01

    Drought is a major climate change concern for the Earth's rainforests; however little is currently known about how these forests and individual plants will respond to water stress. At the individual level, the ability of plants to regulate their stomatal conductance is an important preservation mechanism that helps to cool leaves, regulate water loss, and uptake carbon dioxide. At the ecosystem level, transpiration in rainforests is a major contributor to the positive feedback loop that returns moisture to the atmosphere for continued precipitation cycles. Nearly 60% of atmospheric moisture in the Amazon rain forests has been traced back to origins of transpiration from its plants. In relation to current climatic conditions, stomatal conductance rates are highly variable across rainforest species and environmental conditions. It is still unknown to what extent these rates will decrease at leaf and forest level in response to periods of drought. The University of Arizona's Biosphere 2 (B2) served as the study site for a simulated 4-week long drought because of its ability to mimic the micrometeorology of an Amazonian rainforest. Three species of plants were chosen at various levels in the canopy: Clitoria racemosa, Cissus sicyoides, and Hibiscus elatus. These plants were selected based on their relative abundance and distribution in the B2 forest. It was revealed that two out of the three species exhibited decreases in H20 efflux at each elevation, while one species (C. racemosa) proved much more resistant, at each elevation, to H20 loss. These results may be useful for future integrative modeling of how individual leaf level responses extend to entire ecosystem scales. It will be important to better understand how rainforests conserve, recycle, and lose water to gauge their response to warming climate, and increased periods of drought in the tropics.

  8. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.

    2017-06-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.

  9. Land subsidence in the San Joaquin Valley, California, as of 1980

    USGS Publications Warehouse

    Ireland, R.L.; Poland, J.F.; Riley, F.S.

    1982-01-01

    Land subsidence due to ground-water overdraft in the San Joaquin Valley began in the mid-1920 's and continued at alarming rates until surface was imported through major canals and aqueducts in the 1950 's and late 1960's. In areas where surface water replaced withdrawal of ground-water, water levels in the confined system rose sharply and subsidence slowed. In the late 1960 's and early 1970 's water levels in wells recovered to levels of the 1940 's and 1950 's throughout most of the western and southern parts of the Valley, in response to the importation of surface water through the California aqueduct. During the 1976-77 drought data collected at water-level and extensometer sites showed the effect of heavy demand on the ground-water resevoir. With the ' water of compaction ' gone, artesian head declined 10 to 20 times as fast as during the first cycle of long-term drawdown that ended in the late 1960's. In the 1978-79 water levels recovered to or above the 1976 pre-drought levels. The report suggests continued monitoring of land subsidence in the San Joaquin Valley. (USGS)

  10. Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective

    PubMed Central

    Fleta-Soriano, Eva; Munné-Bosch, Sergi

    2016-01-01

    Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other “omics” approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the “omics” level, to understand stress memory in plants better. PMID:26913046

  11. What happens to near-shore habitat when lake and reservoir water levels decline?

    EPA Science Inventory

    Water management and drought can lead to increased fluctuation and declines in lake and reservoir water levels. These changes can affect near-shore physical habitat and the biotic assemblages that depend upon it. Structural complexity at the land-water interface of lakes promote...

  12. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    PubMed

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation (>3500 mm) levels. By combining data on the ratios of precipitation to the amount of biomass produced in a year with how much less precipitation input occurs during a drought year, it is possible to estimate whether productivity levels are sufficient to support forest growth and forest dependent communities following a drought. In this study, the ratios of annual precipitation inputs required to produce 1 Mg ha(-1) yr(-1) biomass by soil texture class varied across the three soil textural classes. By using a conservative estimate of 20% of productivity collected or harvested by people and 30% precipitation reduction level as triggering a drought, it was possible to estimate a potential loss of annual productivity due to a drought. In this study, the total NPP unavailable due to drought and harvest by forest dependent communities per year was 10.2 Mg ha(-1) yr(-1) for the sandy textured soils (64% of NPP still available), 8.4 Mg ha(-1) yr(-1) for the sandy loam textured soils (60% available) and 12.7 Mg ha(-1) yr(-1) for the clay textured soils (29% available). Forests growing on clay textured soils would be most vulnerable to drought triggered reductions in productivity so NPP levels would be inadequate to maintain ecosystem functions and would potentially cause a forest-to-savanna shift. Further, these forests would not be able to provide sufficient NPP to satisfy the requirements of forest dependent communities. By predicting the productivity responses of different tropical forest ecosystems to changes in precipitation patterns coupled with edaphic data, it could be possible to spatially identify where tropical forests are most vulnerable to climate change impacts and where mitigation efforts should be concentrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  14. Agricultural drought risk monitoring and yield loss forecast with remote sensing data

    NASA Astrophysics Data System (ADS)

    Nagy, Attila; Tamás, János; Fehér, János

    2015-04-01

    The World Meteorological Organization (WMO) and Global Water Partnership (GWP) have launched a joint Integrated Drought Management Programme (IDMP) to improve monitoring and prevention of droughts. In the frame of this project this study focuses on identification of agricultural drought characteristics and elaborates a monitoring method (with application of remote sensing data), which could result in appropriate early warning of droughts before irreversible yield loss and/or quality degradation occur. The spatial decision supporting system to be developed will help the farmers in reducing drought risk of the different regions by plant specific calibrated drought indexes. The study area was the Tisza River Basin, which is located in Central Europe within the Carpathian Basin. For the investigations normalized difference vegetation index (NDVI) was used calculated from 16 day moving average chlorophyll intensity and biomass quantity data. The results offer concrete identification of remote sensing and GIS data tools for agricultural drought monitoring and forecast, which eventually provides information on physical implementation of drought risk levels. In the first step, we statistically normalized the crop yield maps and the MODIS satellite data. Then the drought-induced crop yield loss values were classified. The crop yield loss data were validated against the regional meteorological drought index values (SPI), the water management and soil physical data. The objective of this method was to determine the congruency of data derived from spectral data and from field measurements. As a result, five drought risk levels were developed to identify the effect of drought on yields: Watch, Early Warning, Warning, Alert and Catastrophe. In the frame of this innovation such a data link and integration, missing from decision process of IDMP, are established, which can facilitate the rapid spatial and temporal monitoring of meteorological, agricultural drought phenomena and its economic relations, increasing the time factors effectiveness of decision support system. This methodology will be extendable for other Central European countries when country specific data are available and entered into the system. This new drought risk monitoring and forecasting method is an improvement for hydrologists, meteorologists and farmers, allowing to set up a complex drought monitoring system, where for a given period and respective catchment area the expected yield loss can be predicted, and the role of vegetation in the hydrological cycle could be more precisely quantified. Based on the results more water-saving agricultural land use alternatives could be planned on drought areas.

  15. Making the best of climatic variability: options for upgrading rainfed farming in water scarce regions.

    PubMed

    Rockström, J

    2004-01-01

    Coping with climatic variability for livelihood security is part of everyday life for rural communities in semi-arid and dry sub-humid savannas. Water scarcity caused by rainfall fluctuations is common, causing meteorological droughts and dry spells. However, this paper indicates, based on experiences in sub-Saharan Africa and India, that the social impact on rural societies of climatically induced droughts is exaggerated. Instead, water scarcity causing food deficits is more often caused by management induced droughts and dry spells. A conceptual framework to distinguish between manageable and unmanageable droughts is presented. It is suggested that climatic droughts require focus on social resilience building instead of land and water resource management. Focus is then set on the manageable part of climatic variability, namely the almost annual occurrence of dry spells, short 2-4 week periods of no rainfall, affecting farmer yields. On-farm experiences in savannas of sub-Saharan Africa of water harvesting systems for dry spell mitigation are presented. It is shown that bridging dry spells combined with soil fertility management can double and even triple on-farm yield levels. Combined with innovative systems to ensure maximum plant water availability and water uptake capacity, through adoption of soil fertility improvement and conservation tillage systems, there is a clear opportunity to upgrade rainfed farming systems in vulnerable savanna environments, through appropriate local management of climatic variability.

  16. Risk across disciplines: An interdisciplinary examination of water and drought risk in South-Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Lazrus, H.; Paimazumder, D.; Towler, E.; McPherson, R. A.

    2013-12-01

    Drought is a challenge faced by communities across the United States, exacerbated by growing demands on water resources and climate variability and change. The Arbuckle-Simpson Aquifer (ASA) in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only free-flowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To examine this question, we are conducting an investigation of drought risk from multiple disciplines. Anthropological data comes from stakeholder interviews that were designed to investigate conflict over water management by understanding how people perceive risk differently based on different opinions about the structure of the resource, varying levels of trust in authorities, and unequal access to resources. . The Cultural Theory of Risk is used to explain how people view risks as part of their worldviews and why people who hold different worldviews disagree about risks associated with water availability. Meteorological analyses of longitudinal data indicate periods of drought that are noted in stakeholder interviews. Analysis of stream gauge data investigates the influence of climate variability on local hydrologic impacts, such as changing groundwater levels and streamflows, that are relevant to planning and management decisions in the ASA. Quantitative assessment of future drought risk and associated uncertainty and their effect on type and scale of future economic and social impacts are achieved by combining elements of statistical and dynamical downscaling to improve predictions of local impacts using Hybrid Statistical-Dynamical Downscaling Technique.

  17. Cytokinins: Their Impact on Molecular and Growth Responses to Drought Stress and Recovery in Arabidopsis

    PubMed Central

    Prerostova, Sylva; Dobrev, Petre I.; Gaudinova, Alena; Knirsch, Vojtech; Körber, Niklas; Pieruschka, Roland; Fiorani, Fabio; Brzobohatý, Břetislav; černý, Martin; Spichal, Lukas; Humplik, Jan; Vanek, Tomas; Schurr, Ulrich; Vankova, Radomira

    2018-01-01

    Our phenotyping and hormonal study has characterized the role of cytokinins (CK) in the drought and recovery responses of Arabidopsis thaliana. CK down-regulation was achieved by overexpression of the gene for CK deactivating enzyme cytokinin oxidase/dehydrogenase (CKX): constitutive (35S:CKX) or at the stress onset using a dexamethasone-inducible pOp/LhGR promoter (DEX:CKX). The 35S:CKX plants exhibited slow ontogenesis and higher expression levels of stress-associated genes, e.g., AtP5CS1, already at well-watered conditions. CK down-regulation resulted during drought in higher stress tolerance (indicated by relatively low up-regulation of the expression of drought stress marker gene AtRD29B) accompanied with lower leaf water loss. Nevertheless, these plants exhibited slow and delayed recovery after re-watering. CK levels were increased at the stress onset by stimulation of the expression of CK biosynthetic gene isopentenyl transferase (ipt) (DEX:IPT) or by application of exogenous CK meta-topolin. After water withdrawal, long-term CK elevation resulted in higher water loss in comparison with CKX transformants as well as with plants overexpressing ipt driven by senescence-inducible SAG12 promoter (SAG:IPT), which gradually enhanced CKs during the stress progression. In all cases, CK up-regulation resulted in fast and more vigorous recovery. All drought-stressed plants exhibited growth suppression associated with elevation of abscisic acid and decrease of auxins and active CKs (with the exception of SAG:IPT plants). Apart from the ipt overexpressers, also increase of jasmonic and salicylic acid was found. PMID:29872444

  18. Inter- and intrapopulation variation in the response of tree seedlings to drought: physiological adjustments based on geographical origin, water supply and species.

    PubMed

    Carevic, Felipe S; Delatorre-Herrera, José; Delatorre-Castillo, José

    2017-09-01

    Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (E c ), specific leaf area (SLA) and pressure-volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus.

  19. Inter- and intrapopulation variation in the response of tree seedlings to drought: physiological adjustments based on geographical origin, water supply and species

    PubMed Central

    Delatorre-Herrera, José; Delatorre-Castillo, José

    2017-01-01

    Abstract Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (Ec), specific leaf area (SLA) and pressure–volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus. PMID:28948009

  20. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13.

    PubMed

    Arshad, Muhammad; Feyissa, Biruk A; Amyot, Lisa; Aung, Banyar; Hannoufa, Abdelali

    2017-05-01

    Alfalfa (Medicago sativa) is an important forage crop that is often grown in areas that frequently experience drought and water shortage. MicroRNA156 (miR156) is an emerging tool for improving various traits in plants. We tested the role of miR156d in drought response of alfalfa, and observed a significant improvement in drought tolerance of miR156 overexpression (miR156OE) alfalfa genotypes compared to the wild type control (WT). In addition to higher survival and reduced water loss, miR156OE genotypes also maintained higher stomatal conductance compared to WT during drought stress. Furthermore, we observed an enhanced accumulation of compatible solute (proline) and increased levels of abscisic acid (ABA) and antioxidants in miR156OE genotypes. Similarly, alfalfa plants with reduced expression of miR156-targeted SPL13 showed reduced water loss and enhanced stomatal conductance, chlorophyll content and photosynthetic assimilation. Several genes known to be involved in drought tolerance were differentially expressed in leaf and root of miR156 overexpression plants. Taken together, our findings reveal that miR156 improves drought tolerance in alfalfa at least partially by silencing SPL13. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Physiological response to drought in radiata pine: phytohormone implication at leaf level.

    PubMed

    De Diego, N; Pérez-Alfocea, F; Cantero, E; Lacuesta, M; Moncaleán, P

    2012-04-01

    Pinus radiata D. Don is one of the most abundant species in the north of Spain. Knowledge of drought response mechanisms is essential to guarantee plantation survival under reduced water supply as predicted in the future. Tolerance mechanisms are being studied in breeding programs, because information on such mechanisms can be used for genotype selection. In this paper, we analyze the changes of leaf water potential, hydraulic conductance (K(leaf)), stomatal conductance and phytohormones under drought in P. radiata breeds (O1, O2, O3, O4, O5 and O6) from different climatology areas, hypothesizing that they could show variable drought tolerance. As a primary signal, drought decreased cytokinin (zeatin and zeatin riboside-Z + ZR) levels in needles parallel to K(leaf) and gas exchange. When Z + ZR decreased by 65%, indole-3-acetic acid (IAA) and abscisic acid (ABA) accumulation started as a second signal and increments were higher for IAA than for ABA. When plants decreased by 80%, Z + ZR and K(leaf) doubled their ABA and IAA levels, the photosystem II yield decreased and the electrolyte leakage increased. At the end of the drought period, less tolerant breeds increased IAA over 10-fold compared with controls. External damage also induced jasmonic acid accumulation in all breeds except in O5 (P. radiata var. radiata × var. cedrosensis), which accumulated salicylic acid as a defense mechanism. After rewatering, only the most tolerant plants recovered their K(leaf,) perhaps due to an IAA decrease and 1-aminocyclopropane-1-carboxylic acid maintenance. From all phytohormones, IAA was the most representative 'water deficit signal' in P. radiata.

  3. Hydrometeorological Hazards: Monitoring, Forecasting, Risk Assessment, and Socioeconomic Responses

    NASA Technical Reports Server (NTRS)

    Wu, Huan; Huang, Maoyi; Tang, Qiuhong; Kirschbaum, Dalia B.; Ward, Philip

    2017-01-01

    Hydrometeorological hazards are caused by extreme meteorological and climate events, such as floods, droughts, hurricanes,tornadoes, or landslides. They account for a dominant fraction of natural hazards and occur in all regions of the world, although the frequency and intensity of certain hazards and societies vulnerability to them differ between regions. Severe storms, strong winds, floods, and droughts develop at different spatial and temporal scales, but all can become disasters that cause significant infrastructure damage and claim hundreds of thousands of lives annually worldwide. Oftentimes, multiple hazards can occur simultaneously or trigger cascading impacts from one extreme weather event. For example, in addition to causing injuries, deaths, and material damage, a tropical storm can also result in flooding and mudslides, which can disrupt water purification and sewage disposal systems, cause overflow of toxic wastes, andincrease propagation of mosquito-borne diseases.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huan; Huang, Maoyi; Tang, Qiuhong

    Hydrometeorological hazards are caused by extreme meteorological and climate events, such as floods, droughts, hurricanes, tornadoes, or landslides. They account for a dominant fraction of natural hazards and occur in all regions of the world, although the frequency and intensity of certain hazards, and society’s vulnerability to them, differs between regions. Severe storms, strong winds, floods and droughts develop at different spatial and temporal scales, but all can become disasters that cause significant infrastructure damage and claim hundreds of thousands of lives annually worldwide. Oftentimes, multiple hazards can occur simultaneously or trigger cascading impacts from one extreme weather event. Formore » example, in addition to causing injuries, deaths and material damage, a tropical storm can also result in flooding and mudslides, which can disrupt water purification and sewage disposal systems, cause overflow of toxic wastes, and increase propagation of mosquito-borne diseases.« less

  5. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance?

    PubMed

    Zhang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (A n), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher A n, stomatal conductance (g s), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for A n and g s to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water uptake and storage, and by reducing water losses while P. albiflora employs a drought escape strategy by fixing more carbon during growing season and shedding leaves and roots at dry season, leaving a dormant pseudobulb to minimize transpiration. These findings may improve our understanding of the potential effects that climate change can have on the population dynamics of different epiphytic taxa.

  6. The Pepper WPP Domain Protein, CaWDP1, Acts as a Novel Negative Regulator of Drought Stress via ABA Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Baek, Woonhee; Kim, Jung-Hyun; Lim, Sohee; Kim, Sang Hyon; Kim, Kyung-Nam; Lee, Sung Chul

    2017-04-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone ABA regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we report the identification and characterization of a novel CaWDP1 (Capsicum annuum) protein. The expression of CaWDP1 in pepper leaves was induced by ABA, drought and NaCl treatments, suggesting its role in the abiotic stress response. CaWDP1 proteins show conserved sequence homology with other known WDP1 proteins, and they are localized in the nucleus and cytoplasm. We generated CaWDP1-silenced peppers via virus-induced gene silencing (VIGS). We evaluated the responses of these CaWDP1-silenced pepper plants and CaWDP1-overexpressing (OX) transgenic Arabidopsis plants to ABA and drought. CaWDP1-silenced pepper plants displayed enhanced tolerance to drought stress, and this was characterized by low levels of leaf water loss in the drought-treated leaves. In contrast to CaWDP1-silenced plants, CaWDP1-OX plants exhibited an ABA-hyposensitive and drought-susceptible phenotype, which was accompanied by high levels of leaf water loss, low leaf temperatures, increased stomatal pore size and low expression levels of stress-responsive genes. Our results indicate that CaWDP1, a novel pepper negative regulator of ABA, regulates the ABA-mediated defense response to drought stress. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    PubMed

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  8. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.

    PubMed

    Villar-Salvador, Pedro; Peñuelas, Juan L; Jacobs, Douglass F

    2013-02-01

    Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling performance under xeric outplanting conditions. However, fertilization increased growth under mesic conditions, whereas drought hardening decreased growth. We conclude that drought hardening and N fertilization applied under typical container nursery operational conditions exert opposite effects on the physiological stress tolerance of P. pinea seedlings. While drought hardening increases overall stress tolerance, N nutrition reduces it and yet has no effect on the drought acclimation capacity of seedlings.

  9. Groundwater potential for water supply during droughts in Korea

    NASA Astrophysics Data System (ADS)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water infrastructure and high groundwater use potential. For concrete conclusions, rigorous study on performance evaluation of water supply using groundwater is further needed.

  10. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity

    PubMed Central

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  11. Differential Expression Analysis of a Subset of Drought-Responsive GmNAC Genes in Two Soybean Cultivars Differing in Drought Tolerance

    PubMed Central

    Thao, Nguyen Phuong; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Van Ha, Chien; Tran, Lam-Son Phan

    2013-01-01

    The plant-specific NAC transcription factors play important roles in plant response to drought stress. Here, we have compared the expression levels of a subset of GmNAC genes in drought-tolerant DT51 and drought-sensitive MTD720 under both normal and drought stress conditions aimed at identifying correlation between GmNAC expression levels and drought tolerance degree, as well as potential GmNAC candidates for genetic engineering. The expression of 23 selected dehydration-responsive GmNACs was assessed in both stressed and unstressed root tissues of DT51 and MTD720 using real-time quantitative PCR. The results indicated that expression of GmNACs was genotype-dependent. Seven and 13 of 23 tested GmNACs showed higher expression levels in roots of DT51 in comparison with MTD720 under normal and drought stress conditions, respectively, whereas none of them displayed lower transcript levels under any conditions. This finding suggests that the higher drought tolerance of DT51 might be positively correlated with the higher induction of the GmNAC genes during water deficit. The drought-inducible GmNAC011 needs to be mentioned as its transcript accumulation was more than 76-fold higher in drought-stressed DT51 roots relative to MTD720 roots. Additionally, among the GmNAC genes examined, GmNAC085, 092, 095, 101 and 109 were not only drought-inducible but also more highly up-regulated in DT51 roots than in that of MTD720 under both treatment conditions. These data together suggest that GmNAC011, 085, 092, 095, 101 and 109 might be promising candidates for improvement of drought tolerance in soybean by biotechnological approaches. PMID:24322442

  12. Roles of Plasmalemma Aquaporin Gene StPIP1 in Enhancing Drought Tolerance in Potato

    PubMed Central

    Wang, Li; Liu, Yuhui; Feng, Shoujiang; Yang, Jiangwei; Li, Dan; Zhang, Junlian

    2017-01-01

    Survival and mortality of plants in response to severe drought may be related to carbon starvation, but little is known about how plasma membrane intrinsic proteins may help alleviate the drought-induced damage. Here, we determined the roles of plasmalemma aquaporin gene in improving plant water status, maintaining carbon accumulation, and thereby enhancing drought tolerance. Seven StPIP1 transformed potato (Solanum tuberosum L.) lines (namely T1, T2…T7) were compared with non-transgenic control plant at molecule and whole-plant levels. The relative expression of StPIP1 gene was found in leaves, stems and roots, with the most abundant expression being in the roots. The transgenic lines T6 and T7 had the highest StPIP1 expression, averaging 7.2 times that of the control and the greatest differences occurred 48 h after mannitol osmotic stress treatment. Using an evaluation index to quantifying the degree of drought tolerance, we found that the StPIP1 transgenic lines T6 and T7 had the highest drought tolerance, averaging 8.5 times that of the control. Measured at 30 days in drought stress treatment, the control plant decreased net photosynthetic rate by 33 and 56%, respectively, under moderate and severe stresses; also decreased stomatal conductance by 39 and 65%; and lowered transpiration rate by 49 and 69%, compared to the no-stress treatment, whereas the transgenic lines T6 and T7 maintained a relatively stable level with slight decreases in these properties. The constitutive overexpression of StPIP1 in potato improved plant water use efficiency and increased nonstructural carbohydrate concentration, which helped alleviate carbon starvation and minimized the loss of biomass and tuber yield due to drought stress. We conclude that the expression of StPIPs improves overall water relations in the plant and helps maintain photosynthesis and stomatal conductance; these help minimize carbon starvation and enhance the whole plant tolerance to drought stress. PMID:28487712

  13. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California’s Historic Drought of 2014

    PubMed Central

    MacKinnon, Evan D.; Dario, Hannah L.; Jacobsen, Anna L.; Pratt, R. Brandon; Davis, Stephen D.

    2016-01-01

    Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species. PMID:27391489

  14. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California's Historic Drought of 2014.

    PubMed

    Venturas, Martin D; MacKinnon, Evan D; Dario, Hannah L; Jacobsen, Anna L; Pratt, R Brandon; Davis, Stephen D

    2016-01-01

    Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species.

  15. Saltwater intrusion coupled with drought accelerates carbon loss from a brackish coastal wetland

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Troxler, T.

    2017-12-01

    Coastal wetlands, such as the Everglades, are critical ecosystems for blue carbon (C) storage, yet this storage capacity is vulnerable to environmental change, such as saltwater intrusion and altered hydrology. Saltwater intrusion can stress vegetation and bring new metabolites for microbial respiration, thereby altering the C cycle. Drought can reduce the depth of water covering the wetland soil, and, in extreme cases, lead to exposed soil surface. This increases oxygen levels, thus speeding up C decomposition and potentially leading to peat collapse. The combined effects of both saltwater intrusion and drought on coastal marshes, however, are still uncertain, but recent evidence suggests that saltwater intrusion accelerates C loss from wetlands when coupled with drought. Our objective was to determine the change in CO2 flux, decomposition, root and shoot production, and elevation in a brackish water marsh under conditions of drought and elevated salinity. During the onset of drought, soil CO2 efflux increased by 124% and 237% in the ambient and elevated salinity treatments, respectively, compared to the control. Within one month, elevated salinity decreased net ecosystem production (NEP) by 40%, while after 6 months it had decreased by 85%. During the onset of the drought, there was no difference in NEP with ambient salinity between the inundated and exposed monoliths (-3.4 ± 0.8 vs. -4.2 ± 2.0 μmol CO2 m-2 s-1, respectively). However, drought conditions in the elevated salinity treatment resulted in more CO2 release in the exposed monoliths than the inundated monoliths (1.5 ± 0.4 vs. -0.5 ± 0.3 μmol CO2 m-2 s-1, respectively). Elevation change collected at the end of the experiment will allow us to test if elevated salinity combined with drought contributes to peat collapse, and what mechanisms of ecosystem C cycling has the greatest influence. While the restoration of water flows to the southern Everglades is hypothesized to mitigate the periods of drought and slow down saltwater intrusion, this restoration has not occurred yet. Given accelerating sea level rise, increasing frequencies of saltwater intrusion coupled with drought could accelerate C loss from these coastal marshes.

  16. Drought Indicators Based on Model Assimilated GRACE Terrestrial Water Storage Observations

    NASA Technical Reports Server (NTRS)

    Houborg, Rasmus; Rodell, Matthew; Li, Bailing; Reichle, Rolf; Zaitchik, Benjamin F.

    2012-01-01

    The Gravity Recovery and Climate Experiment (GRACE) twin satellites observe time variations in Earth's gravity field which yield valuable information about changes in terrestrial water storage (TWS). GRACE is characterized by low spatial (greater than 150,000 square kilometers) and temporal (greater than 10 day) resolution but has the unique ability to sense water stored at all levels (including groundwater) systematically and continuously. The GRACE Data Assimilation System (GRACE-DAS), based on the Catchment Land Surface Model (CLSM) enhances the value of the GRACE water storage data by enabling spatial and temporal downscaling and vertical decomposition into moisture 39 components (i.e. groundwater, soil moisture, snow), which individually are more useful for scientific applications. In this study, GRACE-DAS was applied to North America and GRACE-based drought indicators were developed as part of a larger effort that investigates the possibility of more comprehensive and objective identification of drought conditions by integrating spatially, temporally and vertically disaggregated GRACE data into the U.S. and North American Drought Monitors. Previously, the Drought Monitors lacked objective information on deep soil moisture and groundwater conditions, which are useful indicators of drought. Extensive datasets of groundwater storage from USGS monitoring wells and soil moisture from the Soil Climate Analysis Network (SCAN) were used to assess improvements in the hydrological modeling skill resulting from the assimilation of GRACE TWS data. The results point toward modest, but statistically significant, improvements in the hydrological modeling skill across major parts of the United States, highlighting the potential value of GRACE assimilated water storage field for improving drought detection.

  17. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    PubMed

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Differences in Proteins Synthesized in Needles of Unshaded and Shaded Pinus ponderosa var Scopulorum Seedlings during Prolonged Drought 1

    PubMed Central

    Vance, Nan C.; Copes, Donald O.; Zaerr, Joe B.

    1990-01-01

    Proteins were radiolabeled and extracted from needles of Pinus ponderosa var scopulorum (Dougl. ex Laws.) seedlings progressively drought-stressed for about 1 month. A set of novel, low molecular weight proteins was detected in fluorographs of two-dimensional gels when relative water content of needles fell below 70%. Their synthesis was undetectable in the fully recovered seedlings within 48 hours after rewatering. In similarly stressed seedlings that were shaded to 10% full light, the low molecular weight polypeptides were not detected or appeared at very low levels. The shaded seedlings, in which drought tolerance was reduced, did not recover upon termination of the drought. The results suggest that protein synthesis induced by water deficit in drought-tolerant seedlings may contribute to resisting the effects of cellular dehydration. Images Figure 1 Figure 2 PMID:16667397

  19. Integrating Enhanced Grace Terrestrial Water Storage Data Into the U.S. and North American Drought Monitors

    NASA Technical Reports Server (NTRS)

    Housborg, Rasmus; Rodell, Matthew

    2010-01-01

    NASA's Gravity Recovery and Climate Experiment (GRACE) satellites measure time variations nf the Earth's gravity field enabling reliable detection of spatio-temporal variations in total terrestrial water storage (TWS), including ground water. The U.S. and North American Drought Monitors are two of the premier drought monitoring products available to decision-makers for assessing and minimizing drought impacts, but they rely heavily on precipitation indices and do not currently incorporate systematic observations of deep soil moisture and groundwater storage conditions. Thus GRACE has great potential to improve the Drought Monitors hy filling this observational gap. Horizontal, vertical and temporal disaggregation of the coarse-resolution GRACE TWS data has been accomplished by assimilating GRACE TWS anomalies into the Catchment Land Surface Model using ensemble Kalman smoother. The Drought Monitors combine several short-term and long-term drought indices and indicators expressed in percentiles as a reference to their historical frequency of occurrence for the location and time of year in question. To be consistent, we are in the process of generating a climatology of estimated soil moisture and ground water based on m 60-year Catchment model simulation which will subsequently be used to convert seven years of GRACE assimilated fields into soil moisture and groundwater percentiles. for systematic incorporation into the objective blends that constitute Drought Monitor baselines. At this stage we provide a preliminary evaluation of GRACE assimilated Catchment model output against independent datasets including soil moisture observations from Aqua AMSR-E and groundwater level observations from the U.S. Geological Survey's Groundwater Climate Response Network.

  20. Variations in lake and reservoir storage associated with Middle East droughts

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; Kim, J.; Khandelwal, A.; Karpatne, A.; Kumar, V.; Zhou, T.; Lettenmaier, D. P.

    2016-12-01

    The Middle East experienced severe drought conditions from 1998-2000 and again from 2007-2009; during both periods cumulative monthly precipitation averaged over the Fertile Crescent fell below the 10th percentile of the 1940-2009 climatology. The severity of the drought has been linked to rising greenhouse gas concentrations and may have contributed to the conflict in Syria. We use multiple sources of satellite data to examine how these droughts impacted surface water storage in Turkey, Syria, Iran, and Iraq. We first apply a MODIS-based classification algorithm to map variations in the areal extent of lakes and reservoirs from 2000-2015 at 500 m spatial resolution and nominal eight-day intervals. We combine this information with estimates of changes in water levels from several archives of radar altimetry products (Global Reservoir and Lake Monitor (G-REALM), Database for Hydrological Time Series of Inland Waters (DAHITI), and HydroWeb) for 16 lakes and reservoirs across the region at 10-day and/or 35-day intervals, and then estimate storage variations as far back as the 1990s. We find strong correlations between surface areal extent and water level variations, with preliminary results for reservoirs ranging from R=0.30-0.98 (median R=0.84). Taken together, we use this information to explore variations in temporal trends in water storage across the region.

  1. Influence of chilling and drought on water relations and abscisic acid accumulation in bean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernieri, P.; Pardossi, A.; Tognoni, F.

    Intact bean seedlings were subjected to either chilling (4{degree}C) or drought stress. Leaf water relations and abscisic acid (ABA) content were monitored throughout a stress-recovery cycle. Chilling at low relative humidity (RH) and drought caused similar water deficits, as indicated by the decline in relative water content and water potentials, but they had different effects on ABA accumulation. There was a rapid increase in ABA levels in the leaves of water-deprived plants while only slight ABA accumulation was observed after 48 h of chilling (4{degree}C). After 24 h cold treatment there were large changes in turgor but no change inmore » ABA content. Plants chilled for 24 h accumulated ABA only when transferred to recovery conditions (20{degree}C, 90-95% RH, in the dark) to an extent that was related to the rate of leaf rehydration. When the chilling treatment was performed in a water-saturated atmosphere, plants did not suffer any water stress and ABA levels did not increase over a period of 48 h. However, when the chilling treatment lasted for a longer period (72 h), a significant increase in ABA levels was found also in the absence of water deficit. Experiments performed with leaf discs incubated in a mannitol solution (osmotic potential {minus}1{center dot}6 MPa) at different temperatures indicated that low temperature markedly inhibits ABA synthesis and that water stress induces increases in ABA content only at non-limiting warm temperatures.« less

  2. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots.

    PubMed

    Ahmad, Nisar; Malagoli, Mario; Wirtz, Markus; Hell, Ruediger

    2016-11-09

    Drought is the most important environmental stress that limits crop yield in a global warming world. Despite the compelling evidence of an important role of oxidized and reduced sulfur-containing compounds during the response of plants to drought stress (e.g. sulfate for stomata closure or glutathione for scavenging of reactive oxygen species), the assimilatory sulfate reduction pathway is almost not investigated at the molecular or at the whole plant level during drought. In the present study, we elucidated the role of assimilatory sulfate reduction in roots and leaves of the staple crop maize after application of drought stress. The time-resolved dynamics of the adaption processes to the stress was analyzed in a physiological relevant situation -when prolonged drought caused significant oxidation stress but root growth should be maintained. The allocation of sulfate was significantly shifted to the roots upon drought and allowed for significant increase of thiols derived from sulfate assimilation in roots. This enabled roots to produce biomass, while leaf growth was stopped. Accumulation of harmful reactive oxygen species caused oxidation of the glutathione pool and decreased glutathione levels in leaves. Surprisingly, flux analysis using [ 35 S]-sulfate demonstrated a significant down-regulation of sulfate assimilation and cysteine synthesis in leaves due to the substantial decrease of serine acetyltransferase activity. The insufficient cysteine supply caused depletion of glutathione pool in spite of significant transcriptional induction of glutathione synthesis limiting GSH1. Furthermore, drought impinges on transcription of membrane-localized sulfate transport systems in leaves and roots, which provides a potential molecular mechanism for the reallocation of sulfur upon prolonged water withdrawal. The study demonstrated a significant and organ-specific impact of drought upon sulfate assimilation. The sulfur metabolism related alterations at the transcriptional, metabolic and enzyme activity level are consistent with a promotion of root growth to search for water at the expense of leaf growth. The results provide evidence for the importance of antagonistic regulation of sulfur metabolism in leaves and roots to enable successful drought stress response at the whole plant level.

  3. California's Drought - Stress test for the future

    NASA Astrophysics Data System (ADS)

    Lund, J. R.

    2014-12-01

    The current California drought is in its third dry years, with this year being the third driest years in a 106-year record. This drought occurs at a time when urban, agricultural, and environmental water demands have never been greater. This drought has revealed the importance of more quantitative evaluation and methods for water assessment and management. All areas of water and environmental management are likely to become increasingly stressed, and have essentially drought-like conditions, in the future, as California's urban, agricultural, and environmental demands continue to expand and as the climate changes. In the historical past, droughts have pre-viewed stresses developing in the future and helped focus policy-makers, the public, and stakeholders on preparing for these developing future conditions. Multi-decade water management strategies are often galvinized by drought. Irrigation was galvanized by California droughts in the 1800s, reservoir systems by the 1928-32 drought, urban water conservation by the 1976-77 drought, and water markets by the 1988-92 drought. With each drought, demands for tighter accounting, rights, and management have increased. This talk reviews the prospects and challenges for increased development and use of water data and systems analysis in the service of human and environmental water demands in California's highly decentralized water management system, and the prospects if these challenges are not more successfully addressed.

  4. The Lifecycles of Drought: Informing Responses Across Timescales

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.; Schubert, S. D.

    2014-12-01

    Drought is a slow-onset hazard that is a normal part of climate. Drought onset and demise are difficult to determine. Impacts are mostly nonstructural, spread over large geographical areas, and can persist long after precipitation deficits end. These factors hinder development of accurate, timely estimates of drought severity and resultant responses. Drivers of drought range from SST anomalies and global scale atmospheric response, through regional forcing and local land-surface feedbacks. Key climatological questions related to drought risk assessment, perception and management include, "Does a drought end by a return to normal precipitation; how much moisture is required and over what period; can the end of a drought be defined by the diminishing impacts e.g. soil moisture, reservoir volumes; will precipitation patterns on which management systems rely, change in the future?" Effective early warning systems inform strategic responses that anticipate crises and crisis evolution across climate timescales. While such "early information" is critical for defining event onset, it is even more critical for identifying the potential for increases in severity. Many social and economic systems have buffers in place to respond to onset (storage, transfers and purchase of grain) but lack response capabilities as drought intensifies, as buffers are depleted. Throughout the drought lifecycle (and between events), monitoring, research and risk assessments are required to: Map decision-making processes and resource capabilities including degradation of water and ecosystems Place multiple climate and land surface indicators within a consistent triggering framework (e.g. climate and vegetation mapping) before critical thresholds are reached Identify policies and practices that impede or enable the flow of information, through policy gaming and other exercises The presentation will outline the capabilities and framework needed to ensure improved scientific inputs to preparedness and adaptation. Lessons will be drawn from recent and ongoing events in California, the Midwest, and globally.

  5. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    USGS Publications Warehouse

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  6. A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.).

    PubMed

    Vinnakota, Rajesh; Ramakrishnan, Anantha Maharasi; Samdani, A; Venugopal, M Anjali; Ram, B Sri; Krishnan, S Navaneetha; Murugesan, Dhandapani; Sankaranarayanan, Kavitha

    2016-11-01

    Climate change drastically affects the cultivation of rice, and its production is affected significantly by water stress. Adaptation of a plant to water deficit conditions is orchestrated by efficient water uptake and a stringently regulated water loss. Transpiration remains the major means of water loss from plants and is mediated by microscopic pores called stomata. Stomatal aperture gating is facilitated by ion channels and aquaporins (AQPs) which regulate the turgidity of the guard cells. In a similar manner, efficient water uptake by the roots is regulated by the presence of AQPs in the plasma membrane of root cells. In this study, we compare the efficiency of transmembrane water permeability in guard cells and root protoplasts from drought-tolerant and sensitive varieties of Oryza sativa L. In this report, we studied the transmembrane osmotic water permeability (P os ) of guard cell and root protoplasts of drought-sensitive and tolerant cultivars. The guard cells isolated from the drought-sensitive lowland rice variety ADT-39 show significant low osmotic permeability than the drought-tolerant rice varieties of Anna (lowland) and Dodda Byra Nellu (DBN) (upland local land rice). There is no significant difference in relative gene expression patterns of PIPs (Plasma membrane Intrinsic Proteins "PIP1" and "PIP2" subfamilies) in guard cells isolated from ADT-39 and Anna. While the expression levels of AQP genes remain the same between ADT-39 and Anna, there is a drastic difference in their osmotic permeability in the guard cells in spite of a higher number of stomata in Anna and DBN, hinting at a more efficient gating mechanism of AQP in the stomata of the drought-tolerant varieties studied.

  7. Conifer species adapt to low-rainfall climates by following one of two divergent pathways.

    PubMed

    Brodribb, Timothy J; McAdam, Scott A M; Jordan, Gregory J; Martins, Samuel C V

    2014-10-07

    Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.

  8. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2016-01-01

    Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool. PMID:26834764

  9. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata.

    PubMed

    Gugger, Paul F; Peñaloza-Ramírez, Juan Manuel; Wright, Jessica W; Sork, Victoria L

    2017-05-01

    Reduced water availability during drought can create major stress for many plant species. Within a species, populations with a history of seasonal drought may have evolved the ability to tolerate drought more than those in areas of high precipitation and low seasonality. In this study, we assessed response to water stress in a California oak species, Quercus lobata Née, by measuring changes in gene expression profiles before and after a simulated drought stress treatment through water deprivation of seedlings in a greenhouse setting. Using whole-transcriptome sequencing from nine samples from three collection localities, we identified which genes are involved in response to drought stress and tested the hypothesis that seedlings sampled from climatically different regions of the species range respond to water stress differently. We observed a surprisingly massive transcriptional response to drought: 35,347 of 68,434 contigs (52%) were differentially expressed before versus after drought treatment, of which 18,111 were down-regulated and 17,236 were up-regulated. Genes functionally associated with abiotic stresses and death were enriched among the up-regulated genes, whereas metabolic and cell part-related genes were enriched among the down-regulated. We found 56 contigs that exhibited significantly different expression responses to the drought treatment among the three populations (treatment × population interaction), suggesting that those genes may be involved in local adaptation to drought stress. These genes have stress response (e.g., WRKY DNA-binding protein 51 and HSP20-like chaperones superfamily protein), metabolic (e.g., phosphoglycerate kinase and protein kinase superfamily protein), transport/transfer (e.g., cationic amino acid transporter 7 and K+ transporter) and regulatory functions (e.g., WRKY51 and Homeodomain-like transcriptional regulator). Baseline expression levels of 1310 unique contigs also differed among pairs of populations, and they were enriched for metabolic and cell part-related genes. Out of the large fraction of the transcriptome that was differentially expressed in response to our drought treatment, we identified several novel genes that are candidates for involvement in local adaptation to drought. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The effects of withdrawals and drought on groundwater availability in the Northern Guam Lens Aquifer, Guam

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2013-01-01

    Owing to population growth, freshwater demand on Guam has increased in the past and will likely increase in the future. During the early 1970s to 2010, groundwater withdrawals from the limestone Northern Guam Lens Aquifer, the main source of freshwater on the island, tripled from about 15 to 45 million gallons per day. Because of proposed military relocation to Guam and expected population growth, freshwater demand on Guam is projected to increase further. The expected increased demand for groundwater has led to concern over the long-term sustainability of withdrawals from existing and proposed wells. A three-dimensional numerical groundwater flow and transport model was developed to simulate the effects of hypothetical withdrawal and recharge scenarios on water levels and on the transition zone between freshwater and saltwater. The model was constructed by using average recharge during 1961–2005 and withdrawals from 2010. Hydraulic properties used to construct the model were initially based on published estimates but ultimately were adjusted to obtain better agreement between simulated and measured water levels and salinity profiles in the modeled area. Two hypothetical groundwater withdrawal scenarios were simulated: no withdrawal to simulate predevelopment conditions and withdrawal at 2010 rates under a 5-year drought. Simulation results indicate that prior to pumping; the fresh-water lens was 10 to 50 feet thicker in the Yigo-Tumon basin and more than 50 feet thicker in the Hagåtña basin. Results also indicate that continuing the 2010 withdrawal distribution during a 5-year drought would result in decreased water levels, a thinner freshwater lens, and increased salinity of water pumped from wells. The available water with an acceptable salinity (chloride concentration less than 200 milligrams per liter) would decrease from about 34 million gallons per day to 11.5 million gallons per day after 5 years but recover to pre-drought levels 5 years after the return of average recharge conditions. Five additional scenarios were simulated to assess groundwater demand projections and proposed new well sites for the Department of Defense and Guam Water Authority wells under average and drought conditions. Simulation results from these projected withdrawal scenarios indicate decreased water levels, a thinner freshwater lens, increased water salinity, and unacceptable salinity at several current withdrawal sites. However, for the scenario including projected U.S. Marine Corps demands (46.62 million gallons per day, including 10 proposed wells) more than 40 million gallons per day of the withdrawn groundwater remains in the acceptable category. During a 5-year drought, this same pumping distribution results in only about 15 million gallons per day of withdrawn groundwater having acceptable salinity. A scenario in which groundwater withdrawal was redistributed in an attempt to maximize withdrawal while maintaining acceptable salinities in the withdrawn water was simulated. The redistributed withdrawal simulates about 47 million gallons per day of withdrawal with more than 41 million gallons per day of withdrawal with acceptable salinity.

  11. Managing water utility financial risks through third-party index insurance contracts

    NASA Astrophysics Data System (ADS)

    Zeff, Harrison B.; Characklis, Gregory W.

    2013-08-01

    As developing new supply capacity has become increasingly expensive and difficult to permit (i.e., regulatory approval), utilities have become more reliant on temporary demand management programs, such as outdoor water use restrictions, for ensuring reliability during drought. However, a significant fraction of water utility income is often derived from the volumetric sale of water, and such restrictions can lead to substantial revenue losses. Given that many utilities set prices at levels commensurate with recovering costs, these revenue losses can leave them financially vulnerable to budgetary shortfalls. This work explores approaches for mitigating drought-related revenue losses through the use of third-party financial insurance contracts based on streamflow indices. Two different types of contracts are developed, and their efficacy is compared against two more traditional forms of financial hedging used by water utilities: Drought surcharges and contingency funds (i.e., self-insurance). Strategies involving each of these approaches, as well as their use in combination, are applied under conditions facing the water utility serving Durham, North Carolina. A multireservoir model provides information on the scale and timing of droughts, and the financial effects of these events are simulated using detailed data derived from utility billing records. Results suggest that third-party index insurance contracts, either independently or in combination with more traditional hedging tools, can provide an effective means of reducing a utility's financial vulnerability to drought.

  12. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    PubMed

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissue Revealed by RNA-Seq1[W][OA

    PubMed Central

    Kakumanu, Akshay; Ambavaram, Madana M.R.; Klumas, Curtis; Krishnan, Arjun; Batlang, Utlwang; Myers, Elijah; Grene, Ruth; Pereira, Andy

    2012-01-01

    Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an “unstressed” level, and at lower ABA levels, which was correlated with successful resistance to drought stress. PMID:22837360

  14. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane.

    PubMed

    Reis, Rafaela Ribeiro; da Cunha, Bárbara Andrade Dias Brito; Martins, Polyana Kelly; Martins, Maria Thereza Bazzo; Alekcevetch, Jean Carlos; Chalfun, Antônio; Andrade, Alan Carvalho; Ribeiro, Ana Paula; Qin, Feng; Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko; Nakashima, Kazuo; Carvalho, Josirley de Fátima Corrêa; de Sousa, Carlos Antônio Ferreira; Nepomuceno, Alexandre Lima; Kobayashi, Adilson Kenji; Molinari, Hugo Bruno Correa

    2014-05-01

    Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana. In the present study, we evaluated the effects of stress-inducible over-expression of AtDREB2A CA on gene expression, leaf water potential (ΨL), relative water content (RWC), sucrose content and gas exchanges of sugarcane plants submitted to a four-days water deficit treatment in a rhizotron-grown root system. The plants were also phenotyped by scanning the roots and measuring morphological parameters of the shoot. The stress-inducible expression of AtDREB2A CA in transgenic sugarcane led to the up-regulation of genes involved in plant response to drought stress. The transgenic plants maintained higher RWC and ΨL over 4 days after withholding water and had higher photosynthetic rates until the 3rd day of water-deficit. Induced expression of AtDREB2A CA in sugarcane increased sucrose levels and improved bud sprouting of the transgenic plants. Our results indicate that induced expression of AtDREB2A CA in sugarcane enhanced its drought tolerance without biomass penalty. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis.

    PubMed

    Pires, Marcel V; Pereira Júnior, Adilson A; Medeiros, David B; Daloso, Danilo M; Pham, Phuong Anh; Barros, Kallyne A; Engqvist, Martin K M; Florian, Alexandra; Krahnert, Ina; Maurino, Veronica G; Araújo, Wagner L; Fernie, Alisdair R

    2016-06-01

    During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response. © 2015 John Wiley & Sons Ltd.

  16. Plant water potential improves prediction of empirical stomatal models.

    PubMed

    Anderegg, William R L; Wolf, Adam; Arango-Velez, Adriana; Choat, Brendan; Chmura, Daniel J; Jansen, Steven; Kolb, Thomas; Li, Shan; Meinzer, Frederick; Pita, Pilar; Resco de Dios, Víctor; Sperry, John S; Wolfe, Brett T; Pacala, Stephen

    2017-01-01

    Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  17. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    PubMed

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    PubMed

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  19. Spider foraging strategy affects trophic cascades under natural and drought conditions

    PubMed Central

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  20. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.

    2015-12-01

    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy for overstory species especially when drought progresses in the presence of competing understory species.

  1. Impacts of extreme events of drought and flood on local communities of Amazon basin

    NASA Astrophysics Data System (ADS)

    Borma, L. D.; Roballo, S.; Zauner, M.; Nascimento, V. F.

    2013-05-01

    The analysis of drought events of 1997/98, 2005 and 2010 in terms of discharge anomalies in the Amazon region confirmed previous findings, such as: a) the influence of the El Niño in more than one hydrological year; b) the increase of the influence of the Atlantic Multidecadal Oscillation of 1998, 2005 and 2010 drought events; c) the low levels of discharge observed in the 2010 drought are attributed to the association of discharge anomalies of the northern and southern tributaries of the Amazon river, and d) the 2010 drought lasted around 1 month (August to November) more than the other drought events analized here. The riverine communities located along the river banks of Solimões/Amazonas suit their economic activities to the oscillation of the water level. In general, low water periods favor the access to important sources of food such as fish and livestock, still allowing crop cultivation on fertile agricultural areas of the floodplain. Conversely, periods of drought increases the difficulties of transport and drinking water supply. During the high water, access to the main food supply (described above) are greatly hampered. However, the floods are recognized as an importance process of natural fertilization. Thus, despite the political, social and economic shortcomings, the local community has, since the pre-colonial period, learned to get the best of each season, providing local, regional and national markets with varzea products. During periods of extreme weather, however, the advantages of each season appear to be reduced, and the drawbacks increased. In fact, during flooding extremes, the access to primary sources of food is hampered by a long period of time and families find themselves forced to leave their homes, eventually losing them. Analysis of flow data to the extreme flooding of 2009, indicate a period of about 6 months of positive anomalies discharge (occurring mainly during high water). At the same time, Civil Defense data points to a contingent of about 50% of rural homeless during this event. On the ther side, during the extreme droughts, crops and cattle are likely to perish due to drought. The prolonged dry season threatens local ichthyofauna, promoting an increase in fish mortality. In 1997/98 and 2005 episodes were recorded about 3 months of negative anomalies of discharge, while in 2010, there were about 4 months of negative anomalies during the low water period. According to the data obtained from the Civil Defense, flood events would be more impactful to the local community than the drought ones. However, the absence of quantitative indicators hinders a more precise analysis of the real impacts of drought and flood events in the region. In fact, during the dry season two aspects of extreme importance need to be better addressed: i) the fact that the population of one of the wettest regions of the planet does not have a good water supply for human being, and ii) what are the impacts of extreme drought on the cycle of reproduction of species of local fish fauna?

  2. Proteomic plasticity of two Eucalyptus genotypes under contrasted water regimes in the field.

    PubMed

    Bedon, Frank; Villar, Emilie; Vincent, Delphine; Dupuy, Jean-William; Lomenech, Anne-Marie; Mabialangoma, André; Chaumeil, Philippe; Barré, Aurélien; Plomion, Christophe; Gion, Jean-Marc

    2012-04-01

    Water deficit affects tree growth and limits wood production. In an attempt to identify the molecular triggers of adaptation mechanisms to water deficit in Eucalyptus, we investigated protein expression patterns of two ecophysiologically contrasted Eucalyptus genotypes. They were grown in the field in either natural conditions or irrigated for 7 weeks during the dry season in the Republic of Congo. At the phenotypic level, genotype (G), treatment (T) and/or G × T interaction effects were observed for above- and below-ground biomass-related traits. At the molecular level, changes in protein abundance were recorded in leaves (acidic pH 4-7, and basic pH 7-11, proteomes) and stems (acidic proteome) using two-dimensional gel electrophoresis (2-DE). One third of the detected protein spots displayed significant G, T and/or G × T effects, and 158 of them were identified by tandem mass spectrometry (LC-MS/MS) analysis. Thus, several proteins whose molecular plasticity was genetically controlled (i.e. G × T effect) were revealed, highlighting adaptive mechanisms to water deficit specific to each genotype, namely cell wall modification, cell detoxification and osmoregulation. Transcript abundances corresponding to G × T proteins were also investigated by quantitative RT-PCR. These proteins represent relevant targets to improve drought resistance in this ecologically and economically important forest tree genus. © 2011 Blackwell Publishing Ltd.

  3. Hydrology, water quality, and effects of drought in Monroe County, Michigan

    USGS Publications Warehouse

    Nicholas, J.R.; Rowe, Gary L.; Brannen, J.R.

    1996-01-01

    Monroe County relies heavily on its aquifers and streams for drinking water, irrigation, and other ~ses; however, increased water use, high concentrations of certain constituents in ground water, and droughts may limit the availability of water resources. Although the most densely populated parts of the county use water from the Great Lakes, large amounts of ground water are withdrawn for quarry dewatering, domestic supply, and irrigation.Unconsolidated deposits and bedrock of Silurian and Devonian age underlie Mon_roe County. The unconsolidated deposits are mostly clayey and less than 50 feet thick. Usable amounts of ground water generally are obtained from thin, discontinuous surficial sand deposits or, in the northwestern part of the county, from deep glaciofluvial deposits. In most of the county, however, ground water in unconsolidated deposits is highly susceptible to effects of droughts and to contamination.The bedrock is mostly carbonate rock, and usable quantities of ground water can be obtained from fractures and other secondary openings throughout the county. Transmissivities of the Silurian-Devonian aquifer range from 10 to 6,600 feet squared per day. Aquifer tests and historical informati.on indicate that the Silurian-Devonian aquifer is confmed throughout most of the county. The major recharge area for the Silurian-Devonian aquifer in Monroe County is in the southwest, and groundwater flow is mostly southeastward toward Lake Erie. In the northeastern and southeastern parts of the county, the potentiometric surface of the SilurianDevonian aquifers has been lowered by pumpage to below the elevation of Lake Erie.Streams and artificial drains in Monroe County are tributary to Lake Erie. Most streams are perennial because of sustained discharge from the sand aquifer and the Silurian-Devonian aquifer; however, the lower reaches of River Raisin and Plum Creek lost water to the Silurian-Devonian aquifer in July 1990.The quality of ground water and of streamwater at low flow is suitable for most domestic u~es, irrigation, and recreation. In ground water, dissolved solids and hydrogen sulfide are present at concentrations objectionable to some users. Indicators of ground-water contamination from agricultural activities-pesticides and nitrates-were not present at detectable concentrations or were below U.S. Environmental Protection Agency (USEPA) limits. In streamwater, some treatment to remove bacteria may be necessary in summer months; nitrate concentrations, however, were found to be below USEPA limits.Tritium concentrations indicative of recent recharge to the Silurian-Devonian aquifer are present in a southwest-to-northeast-trending band from Whiteford to Berlin Townships. Generally, where glacial deposits are thicker than 30 feet, rech~rge.takes more than 40 years. Carbon isotope data md1cate that some of the ground water in the Silurian-Devonian aquifer is more than 14,000 years old.Mild droughts are common in Michigan, but long severe droughts, such as those during 1930-37 and 1960-67, are infrequent. The most recent drought, during 1988, was severe but short. Ground-water levels declined throughout the county; the largest declines were probably in the southwest. Shallow bedrock wells completed in only the upper part of the Silurian-Devonian aquifer and near large uses of ground water were especially susceptible to the effects of drought. Deep bedrock wells continued to produce water through the drought of 1988.During droughts, streamflow is reduced because of low ground-water levels and high consumptive uses of surface water. In 1988, annual discharge on the River Raisin was near normal, but monthly averages were below normal from March through August. The quality of surface water during droughts is similar to that during normal lowflow conditions.

  4. Simulation of effects of ground-water development on water-levels in glacial-drift aquifers in the Brooten-Belgrade area, west-central Minnesota

    USGS Publications Warehouse

    Delin, G.N.

    1991-01-01

    The model was used to simulate the steady-state effects of below-normal precipitation (drought) and hypothetical increases in ground-water development. Model results indicate that reduced recharge and increased pumping during a hypothetical 3-year extended drought would lower regional water levels from 2 to 5 feet in each aquifer and as much as 20 feet in the lowermost aquifer zone; ground-water discharge to the East Branch Chippewa and North Fork Crow Rivers would be reduced by 38 percent. The addition of 10 to 20 hypothetical wells in confined aquifers, pumping 123 to 246 million gallons per year, would result in regional water-level declines of 0.1 to 0.5 feet. Simulated water-level declines in wells completed in the lower part of the system would be as much as 5.0 feet as a result of pumping 246 million gallons per year from 20 hypothetical wells. Water-level declines in overlying and underlying aquifers would range from 0.4 to 2.8 feet. Ground-water discharge to the East Branch Chippewa and North Fork Crow Rivers would be unaffected by the pumpage.

  5. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara.

    PubMed

    Nguyen, Duy; D'Agostino, Nunzio; Tytgat, Tom O G; Sun, Pulu; Lortzing, Tobias; Visser, Eric J W; Cristescu, Simona M; Steppuhn, Anke; Mariani, Celestina; van Dam, Nicole M; Rieu, Ivo

    2016-07-01

    In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants. © 2016 John Wiley & Sons Ltd.

  6. Drought responses by individual tree species are not often correlated with tree species diversity in European forests

    DOE PAGES

    Forrester, David I.; Bonal, Damien; Dawud, Seid; ...

    2016-07-26

    Drought frequency and intensity are predicted to increase in many parts of the Northern Hemisphere and the effects of such changes on forest growth and tree mortality are already evident in many regions around the world. Mixed-species forests and increasing tree species diversity have been put forward as important risk reduction and adaptation strategies in the face of climate change. But, little is known about whether the species interactions that occur in diverse forests will reduce drought susceptibility or water stress. In this study, we focused on the effect of drought on individual tree species (n = 16) within sixmore » regions of Europe and assessed whether this response was related to tree species diversity and stand density, and whether community-level responses resulted from many similar or contrasting species-level responses. For each species in each plot, we calculated the increase in carbon isotope composition of latewood from a wet to a dry year (Δδ13C) as an estimate of its drought stress level. Furthermore, when significant community-level relationships occurred (three of six regions), there was only one species within the given community that showed a significant relationship (three of 25 species–region combinations), showing that information about a single species can be a poor indicator of the response of other species or the whole community. There were many two-species mixtures in which both species were less water-stressed compared with their monocultures, but also many mixtures where both species were more stressed compared with their monocultures. Furthermore, a given species combination responded differently in different regions. Synthesis and applications. Our study shows that drought stress may sometimes be reduced in mixed-species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water-related climatic and edaphic features of the site, rather than species richness.« less

  7. Drought responses by individual tree species are not often correlated with tree species diversity in European forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrester, David I.; Bonal, Damien; Dawud, Seid

    Drought frequency and intensity are predicted to increase in many parts of the Northern Hemisphere and the effects of such changes on forest growth and tree mortality are already evident in many regions around the world. Mixed-species forests and increasing tree species diversity have been put forward as important risk reduction and adaptation strategies in the face of climate change. But, little is known about whether the species interactions that occur in diverse forests will reduce drought susceptibility or water stress. In this study, we focused on the effect of drought on individual tree species (n = 16) within sixmore » regions of Europe and assessed whether this response was related to tree species diversity and stand density, and whether community-level responses resulted from many similar or contrasting species-level responses. For each species in each plot, we calculated the increase in carbon isotope composition of latewood from a wet to a dry year (Δδ13C) as an estimate of its drought stress level. Furthermore, when significant community-level relationships occurred (three of six regions), there was only one species within the given community that showed a significant relationship (three of 25 species–region combinations), showing that information about a single species can be a poor indicator of the response of other species or the whole community. There were many two-species mixtures in which both species were less water-stressed compared with their monocultures, but also many mixtures where both species were more stressed compared with their monocultures. Furthermore, a given species combination responded differently in different regions. Synthesis and applications. Our study shows that drought stress may sometimes be reduced in mixed-species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water-related climatic and edaphic features of the site, rather than species richness.« less

  8. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions

    PubMed Central

    Oberhuber, Walter; Gruber, Andreas; Lethaus, Gina; Winkler, Andrea; Wieser, Gerhard

    2017-01-01

    The early culmination of maximum radial growth (RG) in late spring has been found in several coniferous species in a dry inner Alpine environment. We hypothesized that an early decrease in RG is an adaptation to cope with drought stress, which might require an early switch of carbon (C) allocation to belowground organs. To test this hypothesis, we experimentally subjected six-year-old Norway spruce saplings (tree height: 1.35 m; n = 80 trees) to two levels of soil water availability (watered versus drought conditions) and manipulated tree C status by physically blocking phloem transport at three girdling dates (GD). The influence of C availability and drought on tree growth (radial and shoot growth; root biomass) in response to girdling was analyzed in both treatments. Non-structural carbohydrates (NSCs, soluble sugars and starch) were measured in the stem, root and current leader to evaluate changes in tree C status due to girdling. The main finding was a significant increase in RG of the girdled trees compared to the controls above the girdling zone (UZ). At all girdling dates the RG increase was significantly more intense in the drought-stressed compared with watered trees (c. 3.3 and 1.9-fold higher compared with controls in the drought-stressed and watered trees, respectively), most likely indicating that an early switch of C allocation to belowground occurs as an adaptation to maintain tree water status under drought conditions. Reactivation of the cambium after the cessation of its regular activity was detected in UZ in drought-stressed trees, while below the girdling zone no xylem formation was found and the NSC content was strikingly reduced. Irrespective of water availability, girdling before growth onset significantly reduced the progression of bud break (P < 0.05) and the length of the current leader shoot by −47% (P < 0.01) indicating a reduction in xylem hydraulic conductance, which was corroborated by significantly reduced xylem sap flow (P < 0.001). Based on our findings, we conclude that during the growing season drought stress prioritizes an early switch of C allocation to the root system as an adaptation to maintain adequate tree water status in drought-prone environments. PMID:28392608

  9. Drought sensitivity changes over the last century at the North American savanna-forest boundary

    NASA Astrophysics Data System (ADS)

    Heilman, K.; McLachlan, J. S.

    2017-12-01

    Future environmental changes can affect the sensitivity of tree growth to climate. Theses changes are of particular concern at biome boundaries where tree distribution could shift as a result of changes in both drought and drought sensitivity. One such region is the North American savanna-forest boundary, where increased CO2 and droughts could alter savanna and forest ecosystem distributions in two contrasting ways: 1). More severe droughts may increase drought sensitivity, favoring open savanna ecosystems or, 2). Increases in water use efficiency resulting from higher atmospheric CO2 may decrease drought sensitivity, promoting forest expansion. This study sought to understand whether the past 100 years of climate and CO2 changes have impacted regional tree growth-climate sensitivity. To test for these climate sensitivity changes, we measured the sensitivity of Quercus spp. radial growth to Palmer Drought Severity Index (PDSI). Tree growth sensitivity to climate can vary according to many factors, including: stand structure, available moisture, and tree age. To control for these factors, we sampled tree growth-climate responses at sites in both open and closed forests, and at both low and high annual precipitation. Within each site, we compared growth responses to climate between trees established under high CO2 conditions after 1950 (high CO2 young), and tree established before 1950 under low CO2 levels (low CO2 young). At most sites, low CO2 young have a higher drought sensitivity than higher CO2 young. These changes in the sensitivity to drought are consistent with CO2 enhancement of water use efficiency. Furthermore, these differences in drought sensitivity are higher at sites with high temperature and low precipitation, suggesting that the alleviation of drought is more likely in hot and dry regions. Thus, if CO2 enhancement is indeed occurring in these systems, lower growth sensitivity to drought in hot and dry regions could favor increased forest growth. If changes in drought sensitivity scale to ecosystem level, decreased drought sensitivity may have helped promote regional forest expansion.

  10. Untangling the primary drivers of pinyon monoterpene production and emissions under predicted drought

    NASA Astrophysics Data System (ADS)

    Trowbridge, A. M.; Adams, H. D.; Breshears, D. D.; Monson, R. K.

    2012-04-01

    Climate and insect herbivory have important consequences for plant function, atmospheric composition, and the functioning of ecosystems and ecological communities. Within the last decade, pinyon-juniper woodlands throughout the southwestern U.S. have suffered large-scale mortality, especially of pinyon pine, due to drought and associated insect outbreaks. While much research has focused on the primary metabolic mechanisms underlying pinyon's sensitivity to drought, there remains a gap in our knowledge concerning how the resulting shift in carbon allocation toward plant secondary compounds, particularly monoterpenes, affects atmospheric process and ecological interactions. Monoterpenes are the principal constituents of pinyon resin. Because of their large global emission rates and effect on atmospheric chemistry, particularly ozone creation, identifying controls over emissions and sensitivities to environmental change is critical for global emission models. Furthermore, monoterpenes are known to impact insect behavior and act as defense compounds against herbivores, contributing to insect population fluctuations either directly through toxicity, or indirectly by influencing parasitism susceptibility. Pinyon mortality events are thought to be exacerbated by their susceptibility to herbivores resulting from weakened secondary chemical defenses, but the impact of current and predicted drought on the chemical defense status of pinyons and subsequent atmospheric and ecological consequences remain unknown. A field study was developed to examine the impact of seasonality and climate, particularly drought, on pinyon pine physiology and chemistry in the context of tiger moth (Lophocampa ingens) herbivory in pinyon-juniper woodlands. We demonstrate the importance of geography and seasonality, particularly mid-summer drought and late summer monsoons, in driving physiology and monoterpene concentrations and emissions. Emission rates significantly decreased throughout the summer and increased with a release from drought stress. Pinyons with past herbivore damage emitted significantly higher levels of monoterepenes (P<0.05), suggesting an interactive effect between herbivory and drought. Furthermore, neither temperature nor foliar monoterpene concentrations predicted emission rates, a result most likely due to the composite physiological response to both drought and insect herbivory. To tease apart the primary drivers of monoterpene emissions under drought stress, we developed a manipulative study by transplanting pinyons into a desert environment and increasing mean annual temperature by ~4 °C. We then measured pinyon physiology and monoterpene composition and emissions under different water and temperature regimes. Similar to our previous study, we saw that monoterpene emissions decreased with water availability across our treatments (P<0.05), with a 60% decrease in emissions from well-watered to drought stressed trees. While monoterpene emission rates early in the growing season in the native habitat were correlated with foliar concentrations and temperature, they were more constrained by water availability in transplanted trees as the growing season progressed. A possible explanation for these results could be that, unlike temperate species, semi-arid trees are physiologically more sensitive to water availability; therefore, we determined specific drought stress level and water potential thresholds at which this decoupling of temperature-dependent monoterpene emissions occurs. These results have led to the development of hypotheses about the consequences of future shifts in monoterpene concentrations and emissions due to drought affecting herbivore species interactions, outbreaks, and atmospheric processes.

  11. Drought-related tree mortality in drought-resistant semi-arid Aleppo pine forest

    NASA Astrophysics Data System (ADS)

    Preisler, Yakir; Grünzweig, José M.; Rotenberg, Eyal; Rohatyn, Shani; Yakir, Dan

    2014-05-01

    The frequency and intensity of drought events are expected to increase as part of global climate change. In fact, drought related tree mortality had become a widespread phenomenon in forests around the globe in the past decades. This study was conducted at the Yatir FLUXNET site, located in a 45 years old Pinus halepensis dominated forest that successfully sustained low mean annual precipitation (276mm) and extended seasonal droughts (up to 340 days between rain events). However, five recent non-consecutive drought years led to enhanced tree mortality in 2010 (5-10% of the forest population, which was not observed hitherto). The Tree mortality was characterized by patchiness, showing forest zones with either >80% mortality or no mortality at all. Areas of healthy trees were associated with deeper root distribution and increased stoniness (soil pockets & cracks). To help identify possible causes of the increased mortality and its patterns, four tree stress levels were identified based on visual appearance, and studied in more detail. This included examining from spring 2011 to summer 2013 the local trees density, root distribution, annual growth rings, needle length and chlorophyll content, rates of leaf gas exchange, and branch predawn water potential. Tree phenotypic stress level correlated with the leaf predawn water potential (-1.8 and -3.0 in healthy and stressed trees, respectively), which likely reflected tree-scale water availability. These below ground characteristics were also associated, in turn, with higher rate of assimilation (3.5 and 0.8 μmol CO2 m-2s1 in healthy and stress trees, respectively), longer needles (8.2cm and 3.4 cm in healthy and stressed trees, respectively). Annual ring widths showed differences between stress classes, with stressed trees showing 30% narrower rings on average than unstressed trees. Notably, decline in annual ring widths could be identified in currently dead or severely stressed trees 15-20 years prior to mortality or tree degradation. These results indicate, together with earlier results that showed a virtually close hydrological cycle (ET~P) for this forest, that mortality was dominated by conditions at the level of the single-tree or small group of trees. The dependency on belowground water availability of individual trees emphasizes the difficulties in drawing process-based conclusions from the mean response at the forest stand level and, alternatively, the need to investigate drought stress and survival processes at the patch scale. The capabilities of early identification, and of grading the stress level with simple tools, such as tree-rings and pre-dawn water potential, can facilitate partitioning forest stands into zones more relevant to the study and management of drought related mortality. Ultimately, an integrated approach considering both the stand and patch scales and which utilizes methodologies such as used in this study will be essential to reliably predict ecosystem response to changes in precipitation regimes and climate.

  12. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances.

    PubMed

    Maseda, Pablo H; Fernández, Roberto J

    2016-02-01

    Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. A Look into the National Drought Mitigation Center: Providing 15 Years of Drought Services (Invited)

    NASA Astrophysics Data System (ADS)

    Svoboda, M. D.; Hayes, M. J.; Knutson, C. L.; Wardlow, B. D.

    2009-12-01

    The National Drought Mitigation Center (NDMC) was formed in 1995 at the University of Nebraska-Lincoln. Over the past 15 years, the NDMC has made it a priority to work with various local, state, tribal and federal entities to provide a suite of drought/climate services, with a goal of bringing research to fruition through applications and operations. Through our research and outreach projects, the NDMC has worked to reduce risk to drought by developing several mitigation strategies, monitoring and decision making tools and other services aimed at enhancing our nation’s capacity to cope with drought. Two of the earliest NDMC activities were the creation of a website and assessing drought conditions around the United States. An electronic drought clearinghouse was built in 1995 at drought.unl.edu. The site was designed, and still concentrates, on the concepts of drought monitoring, planning, and mitigation and also serves as a repository of information from around the world. The NDMC’s electronic quarterly newsletter, DroughtScape, disseminates information about all things drought to people across the country. In addition, the NDMC has developed and is home to websites for the U.S. Drought Monitor (USDM), Drought Impact Reporter (DIR), and the Vegetation Drought Response Index (VegDRI). In an effort to inform decision makers, the NDMC continually pursues ways to raise the awareness and visibility of drought as one of the most costly hazards we face. This began in the mid-1990s with the creation of a state-based drought impact assessment map that would help lead to the formation of the USDM in 1999 and the DIR in 2005. The NDMC plays a key role in producing the weekly USDM and the monthly North American Drought Monitor (NADM). The USDM was created out of collaborations between the NDMC, United States Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) and has quickly become one of the most widely used products in assessing drought conditions across the United States. It has been used by policy makers to trigger relief programs, by states in their monitoring efforts, and by the media and public through coverage in newspapers and on TV. The DIR has been on-line at the NDMC since 2005; it has more than 14,000 reports and impacts of drought in six basic categories: agriculture, water/energy, environment, fire, social, and other. The most recent activity (currently underway through NOAA funding) is seen in our work with five pilot communities in Illinois, Nebraska, and Oklahoma to establish a new “Drought Ready Community” (DRC) program, developing a community-driven process for integrating place-based planning to reduce vulnerability to drought. Many of these tools have included an extensive iterative process with stakeholders around the country, through means such as workshops, listening sessions, forums, and evaluator networks. The NDMC also serves in an advisory capacity to policy makers and others by providing scientific and policy-relevant information on a variety of drought and water management issues. In moving forward toward a national climate service, the NDMC is well positioned and experienced in helping connect users globally with the latest in “drought services”.

  14. Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress.

    PubMed

    Islam, M Robiul; Hu, Yuegao; Mao, Sishuai; Jia, Pengfei; Eneji, A Egrinya; Xue, Xuzhang

    2011-03-30

    Drought is the most important abiotic stress factor limiting corn (Zea mays L.) growth and productivity. Therefore efficient management of soil moisture and study of metabolic changes in response to drought are important for improved production of corn. The objective of the present study was to gain a better understanding of drought tolerance mechanisms and improve soil water management strategies using a water-saving superabsorbent polymer (SAP) at 30 kg ha(-1) under three irrigation levels (adequate, moderate and deficit) using a new type of hydraulic pressure-controlled auto-irrigator. The results showed that relative water content and leaf water potential were much higher in corn treated with SAP. Although application of SAP reduced biomass accumulation by 11.1% under adequate irrigation, it increased the biomass markedly by 39.0% under moderate irrigation and 98.7% under deficit irrigation. Plants treated with SAP under deficit irrigation showed a significant decrease in superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase activities in leaves compared with control plants. The results of this study suggest that drought stress causes the production of oxygen radicals, leading to increased lipid peroxidation and oxidative stress in plants, and the application of a superabsorbent polymer could conserve soil water, making it available to plants for quenching oxidative stress and increasing biomass accumulation, especially under severe water stress. Copyright © 2010 Society of Chemical Industry.

  15. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought.

    PubMed

    Zegaoui, Zahia; Planchais, Séverine; Cabassa, Cécile; Djebbar, Reda; Abrous Belbachir, Ouzna; Carol, Pierre

    2017-11-01

    Many landraces of cowpea [Vigna unguiculata (L.) Walp.] are adapted to particular geographical and climatic conditions. Here we describe two landraces grown respectively in arid and temperate areas of Algeria and assess their physiological and molecular responses to drought stress. As expected, when deprived of water cowpea plants lose water over time with a gradual reduction in transpiration rate. The landraces differed in their relative water content (RWC) and whole plant transpiration rate. The landrace from Menia, an arid area, retained more water in adult leaves. Both landraces responded to drought stress at the molecular level by increasing expression of stress-related genes in aerial parts, including proline metabolism genes. Expression of gene(s) encoding proline synthesis enzyme P5CS was up regulated and gene expression of ProDH, a proline catabolism enzyme, was down regulated. Relatively low amounts of proline accumulated in adult leaves with slight differences between the two landraces. During drought stress the most apical part of plants stayed relatively turgid with a high RWC compared to distal parts that wilted. Expression of key stress genes was higher and more proline accumulated at the apex than in distal leaves indicating that cowpea has a non-uniform stress response at the whole plant level. Our study reveals a developmental control of water stress through preferential proline accumulation in the upper tier of the cowpea plant. We also conclude that cowpea landraces display physiological adaptations to water stress suited to the arid and temperate climates in which they are cultivated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Identification and Expression Analysis of Cytokinin Metabolic Genes in Soybean under Normal and Drought Conditions in Relation to Cytokinin Levels

    PubMed Central

    Le, Dung Tien; Nishiyama, Rie; Watanabe, Yasuko; Vankova, Radomira; Tanaka, Maho; Seki, Motoaki; Ham, Le Huy; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2012-01-01

    Cytokinins (CKs) mediate cellular responses to drought stress and targeted control of CK metabolism can be used to develop drought-tolerant plants. Aiming to manipulate CK levels to improve drought tolerance of soybean cultivars through genetic engineering of CK metabolic genes, we surveyed the soybean genome and identified 14 CK biosynthetic (isopentenyltransferase, GmIPT) and 17 CK degradative (CK dehydrogenase, GmCKX) genes. Comparative analyses of GmIPTs and GmCKXs with Arabidopsis counterparts revealed their similar architecture. The average numbers of abiotic stress-inducible cis-elements per promoter were 0.4 and 1.2 for GmIPT and GmCKX genes, respectively, suggesting that upregulation of GmCKXs, thereby reduction of CK levels, maybe the major events under abiotic stresses. Indeed, the expression of 12 GmCKX genes was upregulated by dehydration in R2 roots. Overall, the expressions of soybean CK metabolic genes in various tissues at various stages were highly responsive to drought. CK contents in various organs at the reproductive (R2) stage were also determined under well-watered and drought stress conditions. Although tRNA-type GmIPT genes were highly expressed in soybean, cis-zeatin and its derivatives were found at low concentrations. Moreover, reduction of total CK content in R2 leaves under drought was attributable to the decrease in dihydrozeatin levels, suggesting a role of this molecule in regulating soybean's responses to drought stress. Our systematic analysis of the GmIPT and GmCKX families has provided an insight into CK metabolism in soybean under drought stress and a solid foundation for in-depth characterization and future development of improved drought-tolerant soybean cultivars by manipulation of CK levels via biotechnological approach. PMID:22900018

  17. The European 2015 drought from a groundwater perspective

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Kumar, Rohini; Mishra, Vimal

    2017-04-01

    In 2015 central and eastern Europe were affected by severe drought. Impacts of the drought were felt across many sectors, incl. agriculture, drinking water supply, electricity production, navigation, fisheries, and recreation. This drought event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater drought has been performed. This is not surprising because real-time groundwater level observations often are not available. In this study we use previously established spatially-explicit relationships between meteorological drought and groundwater drought to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. We also tested the applicability of the Gravity Recovery Climate Experiment (GRACE) Terrestrial Water Storage (TWS) and GRACE-based groundwater anomalies to capture the spatial variability of the 2003 and 2015 drought events. We use the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardized Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.250 gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on these optimal accumulation periods, we found that in Germany a uniform severe groundwater drought persisted for several months (i.e. SGI below the drought threshold of 20th percentile for almost all grid cells in August, September and October 2015), whereas the Netherlands appeared to have relatively high groundwater levels (never below the drought threshold of 20th percentile). The differences between this event and the European 2003 benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany, with the regional averaged SGI above the 50th percentile. This is because slowly responding wells still were above average from the wet year of 2002-2003, which experienced severe flooding in central Europe. GRACE-TWS does show that both 2003 and 2015 were relatively dry, but the difference between Germany and the Netherlands in 2015 and the spatially-variable groundwater drought pattern in 2003 were not captured. This could be associated to the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. These are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. Our study shows that the relationship between meteorological drought and groundwater drought can be used to quantify groundwater drought and that the 2015 groundwater drought in southern Germany was more severe than the 2003 drought, because of preconditions in slowly responding groundwater wells. For sustainable groundwater drought management strategies the use of groundwater level monitoring is needed to study the spatial variability of local groundwater drought, which mostly coincides with drought impacts.

  18. A cost-effective and customizable automated irrigation system for precise high-throughput phenotyping in drought stress studies

    PubMed Central

    2018-01-01

    The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies. PMID:29870560

  19. A cost-effective and customizable automated irrigation system for precise high-throughput phenotyping in drought stress studies.

    PubMed

    Ortiz, Diego; Litvin, Alexander G; Salas Fernandez, Maria G

    2018-01-01

    The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies.

  20. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    USGS Publications Warehouse

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia; Pool, Donald R.; Uhlman, Kristine;

    2016-01-01

    Projected longer‐term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (Managed Aquifer Recharge, MAR). Unique multi‐decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ~44 km3 in the Central Valley and by ~100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3/yr, CU) or is used to recharge groundwater (MAR, ≤1.5 km3/yr) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water‐level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in Active Management Areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0 – 1.6 km3/yr, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi‐year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  1. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit

    PubMed Central

    Kholová, Jana; Hash, C. T.; Kumar, P. Lava; Yadav, Rattan S.; Kočová, Marie; Vadez, Vincent

    2010-01-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm−2 d−1) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40–1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines. PMID:20142425

  2. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.

    PubMed

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent

    2010-03-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  3. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease.

    PubMed

    Wu, Yunqi; Mirzaei, Mehdi; Pascovici, Dana; Chick, Joel M; Atwell, Brian J; Haynes, Paul A

    2016-06-30

    Rice is the major staple food for more than half of world's population. As global climate changes, we are observing more floods, droughts and severe heat waves. Two rice cultivars with contrasting genetic backgrounds and levels of tolerance to drought, Nipponbare and IAC1131, were used in this study. Four-week-old seedlings of both cultivars were grown in large soil volumes and then exposed to moderate and extreme drought for 7days, followed by 3days of re-watering. Mature leaves were harvested from plants from each treatment for protein extraction and subsequent shotgun proteomic analysis, with validation of selected proteins by western blotting. Gene Ontology (GO) annotations of differentially expressed proteins provide insights into the metabolic pathways that are involved in drought stress resistance. Our data indicate that IAC1131 appears to be better able to cope with stressful conditions by upregulating a suite of stress and defence response related proteins. Nipponbare, in contrast, lacks the range of stress responses shown by the more stress tolerant variety, and responds to drought stress by initiating a partial shutdown of chlorophyll biosynthesis in an apparent attempt to preserve resources. In this study, two rice genotypes with contrasting drought tolerance were exposed to soil water deficits, and proteomic changes were observed in mature leaf laminae. Plants were well watered and then switched to conditions of either moderate drought or extreme drought followed by three days of recovery. Proteins were identified and quantified using both label-free and Tandem Mass Tag multiplexing approaches. Several biochemical pathways were significantly altered in response to water deficit. Most notably, the up-regulation of ClpD1 protease responded strongly in the drought-tolerant landrace; this protein is typically involved in heat and osmotic stress response. In contrast, porphyrin and chlorophyll biosynthesis pathways were down-regulated, indicating suppression of the photosynthetic machinery. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Decadal-scale ecosystem memory reveals interactive effects of drought and insect defoliation on boreal forest productivity

    NASA Astrophysics Data System (ADS)

    Itter, M.; D'Orangeville, L.; Dawson, A.; Kneeshaw, D.; Finley, A. O.

    2017-12-01

    Drought and insect defoliation have lasting impacts on the dynamics of the boreal forest. Impacts are expected to worsen under global climate change as hotter, drier conditions forecast for much of the boreal increase the frequency and severity of drought and defoliation events. Contemporary ecological theory predicts physiological feedbacks in tree responses to drought and defoliation amplify impacts potentially causing large-scale productivity losses and forest mortality. Quantifying the interactive impacts of drought and insect defoliation on regional forest health is difficult given delayed and persistent responses to disturbance events. We developed a Bayesian hierarchical model to estimate forest growth responses to interactions between drought and insect defoliation by species and size class. Delayed and persistent responses to past drought and defoliation were quantified using empirical memory functions allowing for improved detection of interactions. The model was applied to tree-ring data from stands in Western (Alberta) and Eastern (Québec) regions of the Canadian boreal forest with different species compositions, disturbance regimes, and regional climates. Western stands experience chronic water deficit and forest tent caterpillar (FTC) defoliation; Eastern stands experience irregular water deficit and spruce budworm (SBW) defoliation. Ecosystem memory to past water deficit peaked in the year previous to growth and decayed to zero within 5 (West) to 8 (East) years; memory to past defoliation ranged from 8 (West) to 12 (East) years. The drier regional climate and faster FTC defoliation dynamics (compared to SBW) likely contribute to shorter ecosystem memory in the West. Drought and defoliation had the largest negative impact on large-diameter, host tree growth. Surprisingly, a positive interaction was observed between drought and defoliation for large-diameter, non-host trees likely due to reduced stand-level competition for water. Results highlight the temporal persistence of drought and defoliation stress on boreal forest growth dynamics and provide an empirical estimate of their interactive effects with explicit uncertainty.

  5. A deeper look at the response of oxygenated and non oxygenated VOC to mid-term drought over the seasonal cycle: the case study of a drought-resistant species

    NASA Astrophysics Data System (ADS)

    Saunier, Amelie; Ormeño Lafuente, Elena; Wortham, Henri; Temime-Roussel, Brice; Fernandez, Catherine

    2015-04-01

    At the end of this century, climatic models plan an intensification of summer drought in the Mediterranean area due to a 30% rain reduction and a temperature rise of 3.4 °C. Plants respond to drought by modifying their primary (growth) and their secondary metabolism, the later being partly represented by volatile organic compound (VOC) emissions, such as terpenes. With drought, oxygenated and non oxygenated terpene emissions have been observed to increase, decrease or remain unchanged according to drought severity and vegetal model. By contrast, the response of non-terpenic oxygenated compounds to drought has been poorly studied. The aim of this study is to determine the potential impact of a two-year drought period on the full screen of VOC released by Q. pubescens, with a focus on both isoprene and methanol, issued from plant anabolism , and the numerous highly volatile oxygenated VOC, issued from plant catabolism (i.e. issued from oxidation of isoprene or methanol). A 70 years-old Downy oak forest (Quercus pubescens), highly resistant to drought stress, was selected as model ecosystem since it is well widespread in Southern France occupying 321 000 ha. Downy oak also represents the major source of isoprene emissions in the Mediterranean area and, unlike the other major Quercus sp. of the region (i.e. Quercus ilex, a monoterpene emitter) the impact of watering withholding over years has never been tackled. The study was performed at the experimental platform of O3HP (Oak Observatory at Observatoire de Haute Provence) in Southern France which is equipped with both a rain exclusion (by 30 %) and a rain addition structure (simulating the rainiest years of the region), allowing for comparison with naturally watered trees. Using dynamic enclosure chambers at the branch level and PTR-MS-Q-ToF, we screened the anabolic VOC (isoprene, methanol) and the catabolic VOC (e.g. methacrolein, methyl vinyl ketone, C6 aldehydes and carboxylic acids) of trees located under the three watering treatments during the three seasons of the vegetation period (spring, summer and autumn). Concomitantly, water stress was characterized by monitoring the ecophysiological plant parameters such as predawn leaf water potential, photosynthesis, stomatal conductance as well as VOCanabolic/VOCCcatabolic ratios indicators of oxidation within the cell. Differences among the three watering treatments were slight or absent depending on the season and the compound. This response was attributed to Downy Oak resistance to rain exclusion as reflected by the maintenance of the photosynthetic machinery activity and leaf water levels.

  6. A Customized Drought Decision Support Tool for Hsinchu Science Park

    NASA Astrophysics Data System (ADS)

    Huang, Jung; Tien, Yu-Chuan; Lin, Hsuan-Te; Liu, Tzu-Ming; Tung, Ching-Pin

    2016-04-01

    Climate change creates more challenges for water resources management. Due to the lack of sufficient precipitation in Taiwan in fall of 2014, many cities and counties suffered from water shortage during early 2015. Many companies in Hsinchu Science Park were significantly influenced and realized that they need a decision support tool to help them managing water resources. Therefore, a customized computer program was developed, which is capable of predicting the future status of public water supply system and water storage of factories when the water rationing is announced by the government. This program presented in this study for drought decision support (DDSS) is a customized model for a semiconductor company in the Hsinchu Science Park. The DDSS is programmed in Java which is a platform-independent language. System requirements are any PC with the operating system above Windows XP and an installed Java SE Runtime Environment 7. The DDSS serves two main functions. First function is to predict the future storage of Baoshan Reservoir and Second Baoshan Reservoir, so to determine the time point of water use restriction in Hsinchu Science Park. Second function is to use the results to help the company to make decisions to trigger their response plans. The DDSS can conduct real-time scenario simulations calculating the possible storage of water tank for each factory with pre-implementation and post-implementation of those response plans. In addition, DDSS can create reports in Excel to help decision makers to compare results between different scenarios.

  7. Use of climate information for drought risk management in Mexico

    NASA Astrophysics Data System (ADS)

    Neri, C.; Magaña Rueda, V.

    2013-05-01

    The occurrence of meteorological droughts in Mexico has brought to light the large vulnerability of the central-northern part of the country to water shortages. This region is facing current and future water shortages due to the increased demand of water from urban growth in addition to droughts. Assessing droughts requires considering long-term losses and side effects. However, governments generally invest little resources in the creation of drought risk reduction programs, even in regions where droughts have been documented in historical records, such as in the northern region of Mexico. It is not clear until now, what is our capacity to predict droughts on seasonal time scale, and even the Drought Monitor for North America not always reflect the severity of the condition at the regional level. An analysis of strategies that focus on droughts show that one of the principal limits in the management of drought risks and preventive decision making is the use of inadequate definitions of drought predictability. In addition, the means to communicate confidence in seasonal climate forecasts has inhibited the use of climate information in the planning of various socioeconomic activities. Although some sectors such as agriculture have programs to reduce the impacts of drought, their efforts have focused in providing subsidies to get along with dry conditions. In other words, there are no actions to reduce the potential impacts of drought. The characterization of the vulnerability of water user groups, particularly in Sonora as case of study, has been useful to identifying what type of climate information decision makers needed. This information will be included in a proposal of a drought early warming for Mexico. A key element in a drought early warming for Mexico is the development of reliable climate information and the use of indicators to determine of the onset, maximum intensity and duration of the event. The occurrence and severity of drought may be estimated using climate diagnosis and forecast. A preventive response to drought may be defined if the severity and duration surpass a threshold value after which a decision action should be made. In order to establish the relevance of indicators for drought risk management, retroactive analyses have been developed considering Sonora case. The potential impact of such system is examined considering a number of actions that may be implemented in the water, agricultural and cattle ranching sectors. We conclude that there are great opportunities to reduce the negative impacts of drought if climate information is used. This proposal is part of a project to go from a response to the disaster practice to a prevention policy with the Mexican government and stakeholders. An early warning to face drought may alleviate the difficulties for several sectors in the semiarid regions of Mexico and prepare various socioeconomic sectors to face the potential impacts of climate change.

  8. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean

    PubMed Central

    Nachappa, Punya; Culkin, Christopher T.; Saya, Peter M.; Han, Jinlong; Nalam, Vamsi J.

    2016-01-01

    Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission. PMID:27200027

  9. Risk indicators for water supply systems for a drought Decision Support System in central Tuscany (Italy)

    NASA Astrophysics Data System (ADS)

    Rossi, Giuseppe; Garrote, Luis; Caporali, Enrica

    2010-05-01

    Identifying the occurrence, the extent and the magnitude of a drought can be delicate, requiring detection of depletions of supplies and increases in demand. Drought indices, particularly the meteorological ones, can describe the onset and the persistency of droughts, especially in natural systems. However they have to be used cautiously when applied to water supply systems. They show little correlation with water shortage situations, since water storage, as well as demand fluctuation, play an important role in water resources management. For that reason a more dynamic indicator relating supply and demand is required in order to identify situations when there is risk of water shortages. In water supply systems there is great variability on the natural water resources and also on the demands. These quantities can only be defined probabilistically. This great variability is faced defining some threshold values, expressed in probabilistic terms, that measure the hydrologic state of the system. They can identify specific actions in an operational context in different levels of severity, like the normal, pre-alert, alert and emergency scenarios. They can simplify the decision-making required during stressful periods and can help mitigate the impacts of drought by clearly defining the conditions requiring actions. The threshold values are defined considering the probability to satisfy a given fraction of the demand in a certain time horizon, and are calibrated through discussion with water managers. A simplified model of the water resources system is built to evaluate the threshold values and the management rules. The threshold values are validated with a long term simulation that takes into account the characteristics of the evaluated system. The levels and volumes in the different reservoirs are simulated using 20-30 years time series. The critical situations are assessed month by month in order to evaluate optimal management rules during the year and avoid conditions of total water shortage. The methodology is applied to the urban area Firenze-Prato-Pistoia in central Tuscany, in central Italy. The catchment of the investigated area has a surface of 1231 km2 and, accordingly to the census ISTAT 2001, 945˙972 inhabitants.

  10. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

    PubMed

    Moschen, Sebastián; Di Rienzo, Julio A; Higgins, Janet; Tohge, Takayuki; Watanabe, Mutsumi; González, Sergio; Rivarola, Máximo; García-García, Francisco; Dopazo, Joaquin; Hopp, H Esteban; Hoefgen, Rainer; Fernie, Alisdair R; Paniego, Norma; Fernández, Paula; Heinz, Ruth A

    2017-07-01

    By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

  11. Assessing the skill of seasonal meteorological forecast products for predicting droughts and water scarcity in highly regulated basins

    NASA Astrophysics Data System (ADS)

    Squeri, Marika; Giuliani, Matteo; Castelletti, Andrea; Pulido-Velazquez, Manuel; Marcos-Garcia, Patricia; Macian-Sorribes, Hector

    2017-04-01

    Drought and water scarcity are important issues in Southern Europe and many predictions suggest that their frequency and severity will increase over the next years, potentially leading to negative environmental and socio-economic impacts. This work focuses on the Jucar river basin, located in the hinterland of Valencia (Eastern Spain), which is historically affected by long and severe dry periods that negatively impact several economic sectors, with irrigated agriculture representing the main consumptive demand in the basin (79%). Monitoring drought and water scarcity is crucial to activate timely drought management strategies in the basin. However, most traditional drought indexes fail in detecting critical events due to the large presence of human regulation supporting the irrigated agriculture. Over the last 20 years, a sophisticated drought monitoring system has been set up to properly capture the status of the catchment by means of the state index, a weighted linear combination of twelve indicators that depends on observations of precipitation, streamflow, reservoirs' storages and groundwater levels in representative locations at the basin. In this work, we explore the possibility of predicting the state index, which is currently used only as a monitoring tool, in order to prompt anticipatory actions before the drought/water scarcity event starts. In particular, we test the forecasting skill of retrospective seasonal meteorological predictions from the European Centre for Medium-range Weather Forecasts (ECMWF) System 4. The 7-months lead time of these products allows predicting in February the values of the state index until September, thus covering the entire agricultural season. Preliminary results suggest that the Sys4-ECMWF products are skillful in predicting the state index, potentially supporting the design of anticipatory drought management actions.

  12. Drought and flood effects on macrobenthic communities in the estuary of Australia's largest river system

    NASA Astrophysics Data System (ADS)

    Dittmann, Sabine; Baring, Ryan; Baggalley, Stephanie; Cantin, Agnes; Earl, Jason; Gannon, Ruan; Keuning, Justine; Mayo, Angela; Navong, Nathavong; Nelson, Matt; Noble, Warwick; Ramsdale, Tanith

    2015-11-01

    Estuaries are prone to drought and flood events, which can vary in frequency and intensity depending on water management and climate change. We investigated effects of two different drought and flow situations, including a four year long drought (referred to as Millennium drought) and a major flood event, on the macrobenthic community in the estuary and coastal lagoon of the Murray Mouth and Coorong, where freshwater inflows are strictly regulated. The analysis is based on ten years of annual monitoring of benthic communities and environmental conditions in sediment and water. The objectives were to identify changes in diversity, abundance, biomass and distribution, as well as community shifts and environmental drivers for the respective responses. The Millennium drought led to decreased taxonomic richness, abundance and biomass of macrobenthos as hypersaline conditions developed and water levels dropped. More taxa were found under very high salinities than predicted from the Remane diagram. When a flood event broke the Millennium drought, recovery took longer than from a shorter drought followed by small flows. A flow index was developed to assess the biological response subject to the duration of the preceding drought and flow volumes. The index showed higher taxonomic richness, abundance and biomass at intermediate and more continuous flow conditions. Abundance increased quickly after flows were restored, but the benthic community was initially composed of small bodied organisms and biomass increased only after several years once larger organisms became more abundant. Individual densities and constancy of distribution dropped during the drought for almost all macrobenthic taxa, but recoveries after the flood were taxon specific. Distinct benthic communities were detected over time before and after the drought and flood events, and spatially, as the benthic community in the hypersaline Coorong was split off with a salinity threshold of 64 identified by LINKTREE analysis. Salinity, low dissolved oxygen saturation and sediment properties accounted for further community splits in the estuarine Murray Mouth. This long term monitoring revealed ecological benefits of intermediate and continuous flow and that resilience of estuarine macrobenthos to drought and flood events was affected by flow history. The index can be applied to other flow regulated estuaries and inform environmental watering targets.

  13. The hydroclimatology of UK droughts: evidence from newly recovered and reconstructed datasets from the late 19th century to present

    NASA Astrophysics Data System (ADS)

    Smith, K. A.; Hannaford, J.; Bloomfield, J.; McCarthy, M.; Parry, S.; Barker, L. J.; Svensson, C.; Tanguy, M.; Marchant, B.; McKenzie, A.; Legg, T.; Prudhomme, C.

    2017-12-01

    While the UK is regarded as a wet country, it has periodically suffered from major droughts which have caused serious environmental and societal impacts. Parts of the UK are water stressed and, in a warming world, changes to supply/demand balances could have major implications. There is a pressing need for improved tools for drought risk assessment, which is contingent on a proper understanding of past occurrence of droughts. However, our understanding of hydrological drought occurrence is grounded in the post-1960 period when most UK river flow and groundwater records commenced. As such, water resources planners would benefit from a more thorough assessment of historical drought characteristics and their variability. The multi-disciplinary `Historic Droughts' project thus aims to rigorously characterise droughts in the UK back to the 1890s to inform improved drought management. The foundation of this is a comprehensive characterisation of the hydroclimatology of UK droughts. Here, we present the results of this initiative, based on a hydrological reconstruction campaign of unparalleled scope and detail. Driven by rainfall and potential evapotranspiration data, extended in time using newly recovered observational records, hydro(geo)logical models are used to reconstruct, back to 1890, river flows for >300 catchments across the UK, and groundwater levels from >50 boreholes. The reconstructions are derived within a state-of-the-art modelling framework which allows a comprehensive assessment of uncertainty. A suite of indicators are then applied to these datasets to identify and characterise drought events, integrating precipitation, evapotranspiration, streamflow and groundwater. The work provides new insights into the spatial and temporal dynamics of hitherto poorly quantified late 19th and early 20th century droughts. Similarly, the assessment of temporal variability of drought characteristics benefits from the long timescale of the reconstructions, in turn allowing improved assessment of the large-scale climate drivers of UK droughts. The propagation of UK drought is analysed comprehensively for the first time, highlighting the differential spatio-temporal expression of meteorological, streamflow and groundwater droughts, with important implications for water resources management.

  14. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.

    PubMed

    Wang, Hongjun; Richardson, Curtis J; Ho, Mengchi; Flanagan, Neal

    2016-10-01

    Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Agricultural Groundwater Demands in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-12-01

    In the conterminous United States (CONUS), over 40% of water consumed for irrigation, livestock and domestic water is sourced from groundwater. The late 20th century and 21st century saw an expansion in irrigated agriculture across the CONUS that was accompanied by increased pumping of groundwater. Groundwater is typically used to mitigate impacts of drought on surface water supplies enabling water demands to be met as well as to augment sparse surface water resources in arid regions or where surface water availability is highly variable temporally and/or spatially. A Demand Sensitive Drought Index (DSDI) is used to examine the impacts of agricultural water needs on groundwater in the CONUS. The DSDI accounts for agricultural water deficits driven by low precipitation, high agricultural water demand, or a combination of both. Changes in groundwater levels relative to agricultural water deficits are characterized relative to precipitation during the growing season and winter precipitation. In several key irrigated agricultural regions in the CONUS, long-term trends in groundwater levels appear to reflect prolonged periods of surface water deficits resulting from land use and associated unsustainable water demands. These areas are subsequent unable to recover from persistent states of agricultural drought. Conversely, reductions in agricultural water demands for crops do not necessarily lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors. Calls to establish or reform groundwater policies have recently been made in an effort to achieve holistic groundwater management strategies that consider the human demands on both surface water and groundwater. There is a need for relevant groundwater policies to ensure that water demands are adequately managed across sectors without unsustainably depleting groundwater resources and to ensure efficient economic activity.

  16. Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs.

    PubMed

    Szota, Christopher; Farrell, Claire; Williams, Nicholas S G; Arndt, Stefan K; Fletcher, Tim D

    2017-12-15

    Green roofs are increasingly being used among the suite of tools designed to reduce the volume of surface water runoff generated by cities. Plants provide the primary mechanism for restoring the rainfall retention capacity of green roofs, but selecting plants with high water use is likely to increase drought stress. Using empirically-derived plant physiological parameters, we used a water balance model to assess the trade-off between rainfall retention and plant drought stress under a 30-year climate scenario. We compared high and low water users with either drought avoidance or drought tolerance strategies. Green roofs with low water-using, drought-avoiding species achieved high rainfall retention (66-81%) without experiencing significant drought stress. Roofs planted with other strategies showed high retention (72-90%), but they also experienced >50days of drought stress per year. However, not all species with the same strategy behaved similarly, therefore selecting plants based on water use and drought strategy alone does not guarantee survival in shallow substrates where drought stress can develop quickly. Despite this, it is more likely that green roofs will achieve high rainfall retention with minimal supplementary irrigation if planted with low water users with drought avoidance strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Changes in tree functional composition amplify the response of forest biomass to climate variability

    NASA Astrophysics Data System (ADS)

    Lichstein, Jeremy; Zhang, Tao; Niinemets, Ulo; Sheffield, Justin

    2017-04-01

    The response of forest carbon storage to climate change is highly uncertain, contributing substantially to the divergence among global climate model projections. Numerous studies have documented responses of forest ecosystems to climate change and variability, including drought-induced increases in tree mortality rates. However, the sensitivity of forests to climate variability - in terms of both biomass carbon storage and functional components of tree species composition - has yet to be quantified across a large region using systematically sampled data. Here, we combine systematic forest inventories across the eastern USA with a species-level drought-tolerance index, derived from a meta-analysis of published literature, to quantify changes in forest biomass and community-mean-drought-tolerance in one-degree grid cells from the 1980s to 2000s. We show that forest biomass responds to decadal-scale changes in water deficit and that this biomass response is amplified by concurrent changes in community-mean-drought-tolerance. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards more drought-tolerant but lower-biomass species. Multiple plant functional traits are correlated with the above species-level drought-tolerance index, and likely contribute to the decrease in biomass with increasing drought-tolerance. These traits include wood density and P50 (the xylem water potential at which a plant loses 50% of its hydraulic conductivity). Simulations with a trait- and competition-based dynamic global vegetation model suggest that species differences in plant carbon allocation to wood, leaves, and fine roots also likely contribute to the observed decrease in biomass with increasing drought-tolerance, because competition drives plants to over-invest in fine roots when water is limiting. Thus, the most competitive species under dry conditions have greater root allocation but lower total biomass than productivity-maximizing plants. Amplification of the biomass-climate response due to shifts in species functional composition (temporal beta diversity) contrasts with evidence that local (alpha) diversity increases ecosystem stability, including increased resistance to climate extremes. These contrasting effects of alpha and beta diversity highlight the need to better understand how different components of biodiversity, including changes in the functional traits of the dominant plant species, affect ecosystem functioning.

  18. California Groundwater Management During Drought: Existing and Future Regulatory Approaches

    NASA Astrophysics Data System (ADS)

    Ekdahl, E.; Boland-Brien, S.; Vanderburgh, B.; Landau, K.; Bean, J.; Peltier, T.

    2015-12-01

    Groundwater has served as an effective buffer to California's crippling drought of 2012-2015, allowing continued agricultural production in many areas where surface water deliveries have been curtailed. However, over-reliance on groundwater has caused plummeting groundwater levels in much of the state's heavily agricultural regions, with annual groundwater overdraft state-wide estimated in the millions of acre-feet per year. Prior to 2015, California water law did not allow for the effective monitoring or assessment of groundwater use; passage of new state regulations will require development of locally-managed plans that, for the first time, require comprehensive groundwater management and groundwater basin sustainability. Because these plans are not required to be implemented for another 25 years, groundwater levels will likely continue to decrease. Some communities that are 100-percent reliant on groundwater as a source of municipal supply may face shortages and supply issues, which may exacerbate known water quality concerns. Examination of community water systems that are reliant on groundwater, their existing water quality issues, and their response to the current drought (through existing mandatory conservation requirements imposed by California state regulators) can identify areas that are particularly susceptible to continued groundwater overdraft.

  19. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula

    2017-09-01

    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist mainly due to the lack of the limiting effect of increased VPD on stomatal conductance during the low soil moisture condition. Our study provides a deeper understanding of the coupling of carbon and water cycles in the boreal Scots pine forest ecosystem and suggests possible improvements to land surface models, which play an important role in the prediction of biosphere-atmosphere feedbacks in the climate system.

  20. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-08-01

    While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  1. Assessment of Meteorological and Agriculture Drought Severity in Barani Areas of Pakistan

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    Drought is a natural hazard and part of climatic condition for all regions of the world. It is the condition of moisture deficit caused by a certain climatic conditions occurring at a specific location for a specific duration. Stems from the lack of precipitation, precipitation deficiency for a season, a year or longer and is triggered, when water supplies become insufficient to meet the requirements. Pakistan predominantly consists of arid and semiarid regions with a diversified climate where Agriculture sector plays a vital role in countries economy, as it is the largest sector of Pakistan, accounting for over 20.9 percent of GDP. Nearly 62 percent of the country's rural population and is directly or indirectly linked with agriculture for their livelihood. (Pakistan Economic Survey, 2011). Thus, for such type of landscapes where agriculture mainly depends on the amount of precipitation and there is no use of canal irrigation system, so there is a need to make some immediate interventions in the area of drought hazard management & a proactive planning to mitigate its adverse impacts. In this study drought is assessed on its sequential stages, first of all meteorological conditions that include rainfall data and MODIS Satellite NDVI product, having good temporal resolution for drought assessment in order to identify dry spell period. This whole waterless season leads to agricultural drought as crops and vegetation begin to degrade with low production rate. Some more parameters such as Max. Temperature, Humidity, Solar Radiation, Evapotranspiration were incorporated by assigning suitable weights according to their sensitivity for drought. Severity of Agricultural drought was determine by using NDVI anomaly and crop anomaly pattern. Finally, the correlation regression analysis was performed to identify the effect of different dependent variables on their supporting parameters. The combined drought severity map was generated by overlying the agricultural and meteorological drought severity maps. Thee results shows that some areas are free from drought while other study area is under different type of drought. The area under severe to very severe drought conditions is 49.6% and 19.92% respectively of the total study area which indicate that almost 80% area is prone to drought. Although the drought frequency is very low in this area but its intensity effects major productive crops and therefore livelihood of local settlements.

  2. Life-history responses of insects to water-deficit stress: a case study with the aphid Sitobion avenae.

    PubMed

    Liu, Deguang; Dai, Peng; Li, Shirong; Ahmed, Syed Suhail; Shang, Zheming; Shi, Xiaoqin

    2018-05-29

    Drought may become one of the greatest challenges for cereal production under future warming scenarios, and its impact on insect pest outbreaks is still controversial. To address this issue, life-history responses of the English grain aphid, Sitobion avenae (Fabricius), from three areas of different drought levels were compared under three water treatments. Significant differences were identified in developmental time, fecundity and adult weight among S. avenae clones from moist, semiarid and arid areas under all the three water treatments. Semiarid and arid area clones tended to have higher heritability for test life-history traits than moist area clones. We identified significant selection of water-deficit on the developmental time of 1st instar nymphs and adult weight for both semiarid and arid area clones. The impact of intermediate and severe water-stress on S. avenae's fitness was neutral and negative (e.g., decreased fecundity and weight), respectively. Compared with arid-area clones, moist- and semiarid-area clones showed higher extents of adaptation to the water-deficit level of their respective source environment. Adult weight was identified as a good indicator for S. avenae's adaptation potential under different water-stress conditions. After their exposure to intermediate water-deficit stress for only five generations, adult weight and fecundity tended to decrease for moist- and semiarid-area clones, but increase for arid-area clones. It is evident from our study that S. avenae clones from moist, semiarid and arid areas have diverged under different water-deficit stress, and such divergence could have a genetic basis. The impact of drought on S. avenae's fitness showed a water-level dependent pattern. Clones of S. avenae were more likely to become adapted to intermediate water-deficit stress than severe water-deficit stress. After continuous water-deficit stress of only five generations, the adaptation potential of S. avenae tended to decrease for moist and semiarid area clones, but increase for arid area clones. The rapid shift of aphids' life-history traits and adaptation potential under drought could have significant implications for their evolutionary dynamics and outbreak risks in future climate change scenarios.

  3. Quantifying the transient carbon dynamics of ecosystem scale carbon cycle responses to piñon pine mortality using a large-scale experimental manipulation, remote sensing and model-data fusion

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Hilton, T. W.; Krofcheck, D. J.; Fox, A. M.; Robinson, E.; McDowell, N. G.; Rahn, T.; Sinsabaugh, R.

    2012-12-01

    The southwestern United States experienced an extended drought from 1999-2002 which led to widespread coniferous tree mortality throughout New Mexico, Arizona, Utah and Colorado. Piñon-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, proved to be extremely vulnerable to this drought, experiencing 40 to 95% mortality of piñon pine (Pinus edulis) and 2-25% mortality of juniper (Juniperus monosperma) in less than 3 years (Breshears et al., 2005). Understanding the response trajectories of these woodlands is crucial given that climate projections for the region suggest that episodic droughts, such as the one correlated with these recent conifer mortality, are likely to increase in frequency and severity and to expand northward. We are using a combination of eddy covariance, soil respiration, sap flow and biomass carbon pool measurements made at: (i) an undisturbed PJ woodland (control) in central New Mexico and at a manipulation site within 2 miles of the control where all piñon trees greater than 7 cm diameter at breast height within the 4 ha flux footprint were girdled (decreasing LAI by ~ 1/3) to quantify the response of ecosystem carbon and water dynamics in PJ woodlands to widespread piñon mortality. As expected, piñon mortality triggered an abrupt shift in carbon stocks from productive biomass to detritus, leading to a 25% decrease in gross primary production, and >50% decrease in net ecosystem production in the two years following mortality. Because litter and course woody debris are slow to decompose in these semiarid environments, ecosystem respiration initially decreased following mortality, and only increased two years post mortality following a large monsoon precipitation event. In the three years following mortality, reduced competition for water in these water limited ecosystems and increased light availability has triggered compensatory growth in understory vegetation observed in both remote sensing and ground measurements, but not in surviving coniferous trees. We discuss the rate of recovery of carbon dynamics in this woodland with respect to the plant functional responses to the severe drought of 2011 and 2012. In addition, we will use preliminary runs of the NCAR land surface model CLM (Community Land Model) run in point mode to examine how the response trajectory of these woodlands might change with increased CO2 and climate change.

  4. Water resources during drought conditions and postfire water quality in the upper Rio Hondo Basin, Lincoln County, New Mexico, 2010-13

    USGS Publications Warehouse

    Sherson, Lauren R.; Rice, Steven E.

    2015-07-16

    Changes in climate and increased groundwater and surface-water use are likely to affect the availability of water in the upper Rio Hondo Basin. Increased drought probably will increase the potential for wildfires, which can affect downstream water quality and increase flood potential. Climate-research predicted decreases in winter precipitation may have an adverse effect on the amount of groundwater recharge that occurs in the upper Rio Hondo Basin, given the predominance of winter precipitation recharge as indicated by the stable isotope results. Decreases in surface-water supplies because of persistent drought conditions and reductions in the quality of water because of the effects of wildfire may lead to a larger reliance on groundwater reserves in the upper Rio Hondo Basin. Decreasing water levels because of increasing groundwater withdrawal could reduce base flows in the Rio Bonito and Rio Ruidoso. Well organized and scientifically supported regional water-resources management will be necessary for dealing with the likely scenario of increases in demand coupled with decreases in supply in the upper Rio Hondo Basin.

  5. Representation of physiological drought at ecosystem level based on model and eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Novick, K. A.; Song, C.; Zhang, Q.; Hwang, T.

    2017-12-01

    Drought and heat waves are expected to increase both in frequency and amplitude, exhibiting a major disturbance to global carbon and water cycles under future climate change. However, how these climate anomalies translate into physiological drought, or ecosystem moisture stress are still not clear, especially under the co-limitations from soil moisture supply and atmospheric demand for water. In this study, we characterized the ecosystem-level moisture stress in a deciduous forest in the southeastern United States using the Coupled Carbon and Water (CCW) model and in-situ eddy covariance measurements. Physiologically, vapor pressure deficit (VPD) as an atmospheric water demand indicator largely controls the openness of leaf stomata, and regulates atmospheric carbon and water exchanges during periods of hydrological stress. Here, we tested three forms of VPD-related moisture scalars, i.e. exponent (K2), hyperbola (K3), and logarithm (K4) to quantify the sensitivity of light-use efficiency to VPD along different soil moisture conditions. The sensitivity indicators of K values were calibrated based on the framework of CCW using Monte Carlo simulations on the hourly scale, in which VPD and soil water content (SWC) are largely decoupled and the full carbon and water exchanging information are held. We found that three K values show similar performances in the predictions of ecosystem-level photosynthesis and transpiration after calibration. However, all K values show consistent gradient changes along SWC, indicating that this deciduous forest is less responsive to VPD as soil moisture decreases, a phenomena of isohydricity in which plants tend to close stomata to keep the leaf water potential constant and reduce the risk of hydraulic failure. Our study suggests that accounting for such isohydric information, or spectrum of moisture stress along different soil moisture conditions in models can significantly improve our ability to predict ecosystem responses to future drought.

  6. Global drought outlook by means of seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Ziese, Markus; Fröhlich, Kristina; Rustemeier, Elke; Becker, Andreas

    2017-04-01

    Droughts are naturally occurring phenomena which are caused by a shortage of available water due to lower than normal precipitation and/or above normal evaporation. Depending on the length of the droughts, several sectors are affected starting with agriculture, then river and ground water levels and finally socio-economic losses at the long end of the spectrum of drought persistence. Droughts are extreme events that affect much larger areas and last much longer than floods, but are less geared towards media than floods being more short-scale in persistence and impacts. Finally the slow onset of droughts make the detection and early warning of their beginning difficult and time is lost for preparatory measures. Drought indices are developed to detect and classify droughts based on (meteorological) observations and possible additional information tailored to specific user needs, e.g. in agriculture, hydrology and other sectors. Not all drought indices can be utilized for global applications as not all input parameters are available at this scale. Therefore the Global Precipitation Climatology Centre (GPCC) developed a drought index as combination of the Standardized Drought Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), the GPCC-DI. The GPCC-DI is applied to drought monitoring and retrospective analyses on a global scale. As the Deutscher Wetterdienst (DWD) operates a seasonal forecast system in cooperation with Max-Planck-Institute for Meteorology Hamburg and University of Hamburg, these data are also used for an outlook of drought conditions by means of the GPCC-DI. The reliability of seasonal precipitation forecasts is limited, so the drought outlook is available only for forecast months two to four. Based on the GPCC-DI, DWD provides a retrospective analysis, near-real-time monitoring and outlook of drought conditions on a global scale and regular basis.

  7. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition

    PubMed Central

    Molina-Montenegro, Marco A.; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought. PMID:27613875

  8. The olive tree: a paradigm for drought tolerance in Mediterranean climates

    NASA Astrophysics Data System (ADS)

    Sofo, A.; Manfreda, S.; Fiorentino, M.; Dichio, B.; Xiloyannis, C.

    2008-02-01

    Olive trees (Olea europaea L.) are commonly grown in the Mediterranean basin where prolonged droughts may occur during the vegetative period. This species has developed a series of physiological mechanisms, that can be observed in several plants of the Mediterranean macchia, to tolerate drought stress and grow under adverse climatic conditions. These mechanisms have been investigated through an experimental campaign carried out over both irrigated and drought-stressed plants in order to comprehend the plant response under stressed conditions and its ability to recover. Experimental results show that olive plants subjected to water deficit lower the water content and water potentials of their tissues, establishing a particularly high potential gradient between leaves and roots, and stop canopy growth but not photosynthetic activity and transpiration. This allows the continuous production of assimilates as well as their accumulation in the various plant parts, so creating a higher root/leaf ratio if compared to well-watered plants. Active and passive osmotic adjustment due to the accumulation of carbohydrates (in particular mannitol and glucose), proline and other osmolytes have key roles in maintaining cell turgor and leaf activities. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and a light-dependent inactivation of the photosystem II occurs. Finally, the activities of some antioxidant enzymes involved in the scavenging of activated oxygen species and in other biochemical pathways increase during a period of drought. The present paper provides an overview of the driving mechanisms adopted by olive trees to face drought stress with the aim of better understanding plant-soil interactions.

  9. The olive tree: a paradigm for drought tolerance in Mediterranean climates

    NASA Astrophysics Data System (ADS)

    Sofo, A.; Manfreda, S.; Dichio, B.; Fiorentino, M.; Xiloyannis, C.

    2007-09-01

    Olive tree (Olea europaea L.) is commonly grown in the Mediterranean basin where prolonged droughts may occur during the vegetative period. This species has developed a series of physiological mechanisms to tolerate drought stress and grow under adverse climatic conditions that can be observed in numerous plants of the Mediterranean macchia. These mechanisms have been investigated through an experimental campaign carried out over both irrigated and drought-stressed plants in order to comprehend the plant response under stressed conditions and its ability to recover. Experimental results show that olive plants subjected to water deficit lower the water content and water potentials of their tissues, establishing a particularly high potential gradient between leaves and roots, and stop canopy growth but not photosynthetic activity and transpiration. This allows the continuous production of assimilates as well as their accumulation in the various plant parts, so creating a higher root/leaf ratio if compared to well-watered plants. Active and passive osmotic adjustment due to the accumulation of sugars (in particular mannitol and glucose), proline and other osmolytes has a key role in maintaining cell turgor and leaf activities. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and a light-dependent inactivation of the photosystem II occurs. Finally, the activities of some antioxidant enzymes involved in the scavenging of activated oxygen species and in other biochemical pathways, increase during a period of drought. The present paper provides an overview of the driving mechanisms adopted by olive trees to face drought stress with the aim of better understand plant-soil interactions.

  10. Development of Water Resources Drought Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, B. P. T.; Chen, C. H.

    2017-12-01

    Signs of impending drought are often vague and result from hydrologic uncertainty. Because of this, determining the appropriate time to enforce water supply restrictions is difficult. This study proposes a drought early warning index (DEWI) that can help water resource managers to anticipate droughts so that preparations can be made to mitigate the impact of water shortages. This study employs the expected-deficit-rate of normal water supply conditions as the drought early warning index. An annual-use-reservoir-based water supply system in southern Taiwan was selected as the case study. The water supply simulation was based on reservoir storage at the evaluation time and the reservoir inflow series to cope with the actual water supply process until the end of the hydrologic year. A variety of deficits could be realized during different hydrologic years of records and assumptions of initial reservoir storage. These deficits are illustrated using the Average Shortage Rate (ASR) and the value of the ASR, namely the DEWI. The ASR is divided into 5 levels according to 5 deficit-tolerance combinations of each kind of annual demand. A linear regression model and a Neuro-Fuzzy Computing Technique model were employed to estimate the DEWI using selected factors deduced from supply-demand traits and available information, including: rainfall, reservoir inflow and storage data. The chosen methods mentioned above are used to explain a significant index is useful for both model development and decision making. Tests in the Tsengwen-Wushantou reservoir system showed this DEWI to perform very well in adopting the proper mitigation policy at the end of the wet season.

  11. Epidemiological Investigation of a Diarrhea Outbreak in the South Pacific Island Nation of Tuvalu During a Severe La Niña–Associated Drought Emergency in 2011

    PubMed Central

    Emont, Jordan P.; Ko, Albert I.; Homasi-Paelate, Avanoa; Ituaso-Conway, Nese; Nilles, Eric J.

    2017-01-01

    The association between heavy rainfall and an increased risk of diarrhea has been well established but less is known about the effect of drought on diarrhea transmission. In 2011, the Pacific island nation of Tuvalu experienced a concurrent severe La Niña–associated drought and large diarrhea outbreak. We conducted a field investigation in Tuvalu to identify factors that contributed to epidemic transmission in the context of a drought emergency. Peak case numbers coincided with the nadir of recorded monthly rainfall, the lowest recorded since 1930. Independent factors associated with increased risk of diarrhea were households with water tank levels below 20% (odds ratio [OR] = 2.31; 95% confidence interval = 1.16–4.60) and decreased handwashing frequency (OR = 3.00 [1.48–6.08]). The resolution of the outbreak occurred after implementation of a hygiene promotion campaign, despite persistent drought and limited water access. These findings are potentially important given projections that future climate change will cause more frequent and severe droughts. PMID:28138046

  12. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.

    2012-02-09

    Electricity generation relies heavily on water resources and their availability. To examine the interdependence of energy and water in the electricity context, the impacts of a severe drought to assess the risk posed by drought to electricity generation within the western and Texas interconnections has been examined. The historical drought patterns in the western United States were analyzed, and the risk posed by drought to electricity generation within the region was evaluated. The results of this effort will be used to develop scenarios for medium- and long-term transmission modeling and planning efforts by the Western Electricity Coordination Council (WECC) andmore » the Electric Reliability Council of Texas (ERCOT). The study was performed in response to a request developed by the Western Governors Association in conjunction with the transmission modeling teams at the participating interconnections. It is part of a U.S. Department of Energy-sponsored, national laboratory-led research effort to develop tools related to the interdependency of energy and water as part of a larger interconnection-wide transmission planning project funded under the American Recovery and Reinvestment Act. This study accomplished three main objectives. It provided a thorough literature review of recent studies of drought and the potential implications for electricity generation. It analyzed historical drought patterns in the western United States and used the results to develop three design drought scenarios. Finally, it quantified the risk to electricity generation for each of eight basins for each of the three drought scenarios and considered the implications for transmission planning. Literature on drought impacts on electricity generation describes a number of examples where hydroelectric generation capacity has been limited because of drought but only a few examples of impact on thermoelectric generation. In all documented cases, shortfalls of generation were met by purchasing power from the market, albeit at higher prices. However, sufficient excess generation and transmission must be available for this strategy to work. Although power purchase was the most commonly discussed drought mitigation strategy, a total of 12 response strategies were identified in the literature, falling into four main categories: electricity supply, electricity demand response, alternative water supplies, and water demand response. Three hydrological drought scenarios were developed based on a literature review and historical data analysis. The literature review helped to identify key drought parameters and data on drought frequency and severity. Historical hydrological drought data were analyzed for the western United States to identify potential drought correlations and estimate drought parameters. The first scenario was a West-wide drought occurring in 1977; it represented a severe drought in five of the eight basins in the study area. A second drought scenario was artificially defined by selecting the conditions from the 10th-percentile drought year for each individual basin; this drought was defined in this way to allow more consistent analysis of risk to electricity generation in each basin. The final scenario was based upon the current low-flow hydro modeling scenario defined by WECC, which uses conditions from the year 2001. These scenarios were then used to quantify the risk to electricity generation in each basin. The risk calculations represent a first-order estimate of the maximum amount of electricity generation that might be lost from both hydroelectric and thermoelectric sources under a worst-case scenario. Even with the conservative methodology used, the majority of basins showed a limited amount of risk under most scenarios. The level of risk in these basins is likely to be amenable to mitigation by known strategies, combined with existing reserve generation and transmission capacity. However, the risks to the Pacific Northwest and Texas Basins require further study. The Pacific Northwest is vulnerable because of its heavy reliance on hydroelectric generation. Texas, conversely, is vulnerable because of its heavy dependence on thermoelectric generation, which relies on surface water for cooling, along with the fact that this basin seems to experience more severe drought events on average. Further modeling analysis will be performed in conjunction with the modeling teams at the participating interconnections (WECC and ERCOT) to explore the transmission implications of the drought scenarios in more detail. Given the first-order nature of this analysis, more detailed study of the potential impacts of drought on electricity generation is recommended. Future analyses should attempt to model the potential impacts of drought at the power-plant level, including potential mitigation strategies; include the effects of drought duration; understand the impacts of climate change; and consider economic impacts.« less

  13. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan

    2016-04-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.

  14. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, A.; Laaha, G.; Van Lanen, H.; Parajka, J.; Fleig, A. K.; Ploum, S.

    2015-12-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.

  15. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    PubMed

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.

    2016-09-01

    Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.

  17. Exploring the link between meteorological drought and streamflow to inform water resource management

    NASA Astrophysics Data System (ADS)

    Lennard, Amy; Macdonald, Neil; Hooke, Janet

    2015-04-01

    Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.

  18. Large-scale drought-induced vegetation die-off: expanding the ecohydrological emphasis more explicitly on atmospheric demand. (Invited)

    NASA Astrophysics Data System (ADS)

    Breshears, D. D.; Adams, H. D.; Eamus, D.; McDowell, N. G.; Law, D. J.; Will, R. E.; Williams, P.; Zou, C.

    2013-12-01

    Ecohydrology focuses on the interactions of water availability, ecosystem productivity, and biogeochemical cycles via ecological-hydrological connections. These connections can be particularly pronounced and socially relevant when there are large-scale rapid changes in vegetation. One such key change, vegetation mortality, can be triggered by drought and is projected to become more frequent and/or extensive in the future under changing climate. Recent research on drought-induced vegetation die-off has focused primarily on direct drought effects, such as soil moisture deficit, and, to a much lesser degree, the potential for warmer temperatures to exacerbate stress and accelerate mortality. However, temperature is tightly interrelated with atmospheric demand (vapor pressure deficit, VPD) but the latter has rarely been considered explicitly relative to die-off events. Here we highlight the importance of VPD in addition to soil moisture deficit and warmer temperature as an important driver of future die-off. Recent examples highlighting the importance of VPD include mortality patterns corresponding to VPD drivers, a strong dependence of forest growth on VPD, patterns of observed mortality along an environmental gradient, an experimentally-determined climate envelope for mortality, and a suite of modeling simulations segregating the drought effects of VPD from those of temperature. The vast bulk of evidence suggests that atmospheric demand needs to be considered in addition to temperature and soil moisture deficit in predicting risk of future vegetation die-off and associated ecohydrological transformations.

  19. Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America.

    PubMed

    Hember, Robbie A; Kurz, Werner A; Coops, Nicholas C

    2017-04-01

    Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (P m ) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (W s,z ) and reference evapotranspiration (ET r,z ) at each field plot. The models additionally tested for interactions between the water-balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross-validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water-balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole-plant, leaf-specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr -1 in 1951 to 2.0% yr -1 in 2014 (a net change of 0.9 ± 0.3% yr -1 ). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak-to-moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This 'learn-as-we-go' approach - defined by sampling rare drought events as they continue to intensify - will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change. © 2016 John Wiley & Sons Ltd.

  20. Hydrologic drought of water year 2011 compared to four major drought periods of the 20th century in Oklahoma

    USGS Publications Warehouse

    Shivers, Molly J.; Andrews, William J.

    2013-01-01

    Water year 2011 (October 1, 2010, through September 30, 2011) was a year of hydrologic drought (based on streamflow) in Oklahoma and the second-driest year to date (based on precipitation) since 1925. Drought conditions worsened substantially in the summer, with the highest monthly average temperature record for all States being broken by Oklahoma in July (89.1 degrees Fahrenheit), June being the second hottest and August being the hottest on record for those months for the State since 1895. Drought conditions continued into the fall, with all of the State continuing to be in severe to exceptional drought through the end of September. In addition to effects on streamflow and reservoirs, the 2011 drought increased damage from wildfires, led to declarations of states of emergency, water-use restrictions, and outdoor burning bans; caused at least $2 billion of losses in the agricultural sector and higher prices for food and other agricultural products; caused losses of tourism and wildlife; reduced hydropower generation; and lowered groundwater levels in State aquifers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to compare the severity of the 2011 drought with four previous major hydrologic drought periods during the 20th century – water years 1929–41, 1952–56, 1961–72, and 1976–81. The period of water years 1925–2011 was selected as the period of record because few continuous record streamflow-gaging stations existed before 1925, and gaps in time existed where no streamflow-gaging stations were operated before 1925. In water year 2011, statewide annual precipitation was the 2d lowest, statewide annual streamflow was 16th lowest, and statewide annual runoff was 42d lowest of those 87 years of record. Annual area-averaged precipitation totals by the nine National Weather Service climate divisions from water year 2011 were compared to those during four previous major hydrologic drought periods to show how precipitation deficits in Oklahoma varied by region. The nine climate divisions in Oklahoma had precipitation in water year 2011 ranging from 43 to 76 percent of normal annual precipitation, with the Northeast Climate Division having the closest to normal precipitation and the Southwest Climate Division having the greatest percentage of annual deficit. Based on precipitation amounts, water year 2011 ranked as the second driest of the 1925–2011 period, being exceeded only in one year of the 1952 to 1956 drought period. Regional streamflow patterns for water year 2011 indicate that streamflow in the Arkansas-White-Red water resources region, which includes all of Oklahoma, was relatively large, being only the 26th lowest since 1930, primarily because of normal or above-normal streamflow in the northern part of the region. Twelve long-term streamflow-gaging stations with periods of record ranging from 67 to 83 years were selected to show how streamflow deficits varied by region in Oklahoma. Statewide, streamflow in water year 2011 was greater than streamflows measured in years during the drought periods of 1929–41, 1952–56, 1961–72, and 1976–81. The hydrologic drought worsened going from the northeast toward the southwest in Oklahoma, ranging from 140 percent (above normal streamflow) in the northeast, to 13 percent of normal streamflow in southwestern Oklahoma. The relatively low streamflow in 2011 resulted in 83.3 percent of the statewide conservation storage being available at the end of the water year in major reservoirs, similar to conservation storage in the preceding severe drought year of 2006. The ranking of streamflow as the 16th smallest for the 1925–2011 period, despite precipitation being ranked the 2d smallest, may have been caused, in part, by the relatively large streamflow in northeastern Oklahoma during water year 2011.

  1. Divergence in Eco-Physiological Responses to Drought Mirrors the Distinct Distribution of Chamerion angustifolium Cytotypes in the Himalaya–Hengduan Mountains Region

    PubMed Central

    Guo, Wen; Yang, Jie; Sun, Xu-Dong; Chen, Guang-Jie; Yang, Yong-Ping; Duan, Yuan-Wen

    2016-01-01

    Polyploid species generally occupy harsher habitats (characterized by cold, drought and/or high altitude) than diploids, but the converse was observed for Chamerion angustifolium, in which diploid plants generally inhabit higher altitudes than their polyploid derivatives. Plants at high altitudes may experience cold-induced water stress, and we therefore examined the physiological responses of diploid and hexaploid C. angustifolium to water stress to better understand the ecological differentiation of plants with different ploidy levels. We conducted a common garden experiment by subjecting seedlings of different ploidy levels to low, moderate, and severe water stress. Fourteen indicators of physiological fitness were measured, and the anatomical characteristics of the leaves of each cytotype were determined. Both cytotypes were influenced by drought, and diploids exhibited higher fitness in terms of constant root:shoot ratio (R:S ratio) and maximum quantum yield of PS II (Fv/Fm), less reduced maximal photosynthetic rate (Amax), transpiration rate (E), intercellular CO2 concentration (Ci) and stomatal conductance (gs), and higher long-term water use efficiency (WUEL) under severe water stress than did hexaploids. Analysis of leaf anatomy revealed morphological adjustments for tolerating water deficiency in diploids, in the form of closely packed mesophyll cells and small conduits in the midvein. Our results indicate that diploid C. angustifolium is more tolerant of drought than hexaploid plants, ensuring the successful survival of the diploid at high altitudes. This eco-physiological divergence may facilitate the species with different cytotypes to colonize new and large geographic ranges with heterogeneous environmental conditions. PMID:27630654

  2. Lumped parameter, isotopic model simulations of closed-basin lake response to drought in the Pacific Northwest and implications for lake sediment oxygen isotope records.

    NASA Astrophysics Data System (ADS)

    Steinman, B. A.; Rosenmeier, M.; Abbott, M.

    2008-12-01

    The economy of the Pacific Northwest relies heavily on water resources from the drought-prone Columbia River and its tributaries, as well as the many lakes and reservoirs of the region. Proper management of these water resources requires a thorough understanding of local drought histories that extends well beyond the instrumental record of the twentieth century, a time frame too short to capture the full range of drought variability in the Pacific Northwest. Here we present a lumped parameter, mass-balance model that provides insight into the influence of hydroclimatological changes on two small, closed-basin systems located in north- central Washington. Steady state model simulations of lake water oxygen isotope ratios using modern climate and catchment parameter datasets demonstrate a strong sensitivity to both the amount and timing of precipitation, and to changes in summertime relative humidity, particularly at annual and decadal time scales. Model tests also suggest that basin hypsography can have a significant impact on lake water oxygen isotope variations, largely through surface area to volume and consequent evaporative flux to volume ratio changes in response to drought and pluvial sequences. Additional simulations using input parameters derived from both on-site and National Climatic Data Center historical climate datasets accurately approximate three years of continuous lake observations (seasonal water sampling and continuous lake level monitoring) and twentieth century oxygen isotope ratios in sediment core authigenic carbonate recovered from the lakes. Results from these model simulations suggest that small, closed-basin lakes in north-central Washington are highly sensitive to changes in the drought-related climate variables, and that long (8000 year), high resolution records of quantitative changes in precipitation and evaporation are obtainable from sediment cores recovered from water bodies of the Pacific Northwest.

  3. Socioeconomic Drought in a Changing Climate: Modeling and Management

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Mehran, Ali; Mazdiyasni, Omid

    2016-04-01

    Drought is typically defined based on meteorological, hydrological and land surface conditions. However, in many parts of the world, anthropogenic changes and water management practices have significantly altered local water availability. Socioeconomic drought refers to conditions whereby the available water supply cannot satisfy the human and environmental water needs. Surface water reservoirs provide resilience against local climate variability (e.g., droughts), and play a major role in regional water management. This presentation focuses on a framework for describing socioeconomic drought based on both water supply and demand information. We present a multivariate approach as a measure of socioeconomic drought, termed Multivariate Standardized Reliability and Resilience Index (MSRRI; Mehran et al., 2015). This model links the information on inflow and surface reservoir storage to water demand. MSRRI integrates a "top-down" and a "bottom-up" approach for describing socioeconomic drought. The "top-down" component describes processes that cannot be simply controlled or altered by local decision-makers and managers (e.g., precipitation, climate variability, climate change), whereas the "bottom-up" component focuses on the local resilience, and societal capacity to respond to droughts. The two components (termed, Inflow-Demand Reliability (IDR) indicator and Water Storage Resilience (WSR) indicator) are integrated using a nonparametric multivariate approach. We use this framework to assess the socioeconomic drought during the Australian Millennium Drought (1998-2010) and the 2011-2014 California Droughts. MSRRI provides additional information on socioeconomic drought onset, development and termination based on local resilience and human demand that cannot be obtained from the commonly used drought indicators. We show that MSRRI can be used for water management scenario analysis (e.g., local water availability based on different human water demands scenarios). Finally, we provide examples of using the proposed modeling framework for analyzing water availability in a changing climate considering local conditions. Reference: Mehran A., Mazdiyasni O., AghaKouchak A., 2015, A Hybrid Framework for Assessing Socioeconomic Drought: Linking Climate Variability, Local Resilience, and Demand, Journal of Geophysical Research, 120 (15), 7520-7533, doi: 10.1002/2015JD023147

  4. Drought variability in six catchments in the UK

    NASA Astrophysics Data System (ADS)

    Kwok-Pan, Chun; Onof, Christian; Wheater, Howard

    2010-05-01

    Drought is fundamentally related to consistent low precipitation levels. Changes in global and regional drought patterns are suggested by numerous recent climate change studies. However, most of the climate change adaptation measures are at a catchment scale, and the development of a framework for studying persistence in precipitation is still at an early stage. Two stochastic approaches for modelling drought severity index (DSI) are proposed to investigate possible changes in droughts in six catchments in the UK. They are the autoregressive integrated moving average (ARIMA) and the generalised linear model (GLM) approach. Results of ARIMA modelling show that mean sea level pressure and possibly the North Atlantic Oscillation (NAO) index are important climate variables for short term drought forecasts, whereas relative humidity is not a significant climate variable despite its high correlation with the DSI series. By simulating rainfall series, the generalised linear model (GLM) approach can provide the probability density function of the DSI. GLM simulations indicate that the changes in the 10th and 50th quantiles of drought events are more noticeable than in the 90th extreme droughts. The possibility of extending the GLM approach to support risk-based water management is also discussed.

  5. Adverse effects of increasing drought on air quality via natural processes

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Xie, Yuanyu; Dong, Wenhao; Ming, Yi; Wang, Jun; Shen, Lu

    2017-10-01

    Drought is a recurring extreme of the climate system with well-documented impacts on agriculture and water resources. The strong perturbation of drought to the land biosphere and atmospheric water cycle will affect atmospheric composition, the nature and extent of which are not well understood. Here we present observational evidence that US air quality is significantly correlated with drought severity. Severe droughts during the period of 1990-2014 were found associated with growth-season (March-October) mean enhancements in surface ozone and PM2.5 of 3.5 ppbv (8 %) and 1.6 µg m-3 (17 %), respectively. The pollutant enhancements associated with droughts do not appear to be affected by the decreasing trend of US anthropogenic emissions, indicating natural processes as the primary cause. Elevated ozone and PM2.5 are attributed to the combined effects of drought on deposition, natural emissions (wildfires, biogenic volatile organic compounds (BVOCs), and dust), and chemistry. Most climate-chemistry models are not able to reproduce the observed correlations of ozone and PM2.5 to drought severity. The model deficiencies are partly attributed to the lack of drought-induced changes in land-atmosphere exchanges of reactive gases and particles and misrepresentation of cloud changes under drought conditions. By applying the observed relationships between drought and air pollutants to climate model projected drought occurrences, we estimate an increase of 1-6 % for ground-level O3 and 1-16 % for PM2.5 in the US by 2100 compared to the 2000s due to increasing drought alone. Drought thus poses an important aspect of climate change penalty on air quality, and a better prediction of such effects would require improvements in model processes.

  6. Characterizing the Recurrence of Hydrologic Droughts

    NASA Astrophysics Data System (ADS)

    Cancelliere, A.; Salas, J. D.

    2002-12-01

    Characterizing periods of deficit and drought has been an important aspect in planning and management of water resources systems for many decades. An extreme drought is a complex phenomenon that evolves through time and space in a random fashion. It may be characterized by its initiation, duration, severity (magnitude or intensity), spatial extent, and termination. These characteristics may be determined by comparing the water supply time series versus the corresponding water demand series in the area of consideration. Because the water supply quantities such as rainfall and streamflow are stochastic variables the ensuing drought characteristics are random and must be described in probabilistic terms. Let us consider a periodic stochastic water supply and a variable water demand series. A drought event is defined as a succession of consecutive periods (run) in which the water supply remains below the water demand. Thus, the drought length L (negative run length) is the number of consecutive time intervals (seasons) in which the water supply remains below the water demand, preceded and followed by (at least one season where) the water supply is equal or greater than the demand. Likewise, the difference between the water demand and the supply at time t is the magnitude of the deficit at time t so that the accumulated deficit D (drought magnitude) is the sum of the deficits over the drought duration L. In the study reported herein, the probability density functions (pdf) of drought length and drought magnitude and their low order moments are derived assuming that the underlying water supply series after is clipped by a constant or periodic water demand results in a periodic dependent binary series that is represented by a periodic two-state Markov chain. The derived pdfs allow estimating the occurrence probabilities of droughts of a given length where either the drought begins in a given season or regardless of the initial season. In addition, the return periods of droughts (based on length and magnitude) are determined. The applicability of the drought formulations is illustrated using several series of precipitation and streamflow in Sicily, Italy and Colorado, USA. The results obtained show an excellent agreement between the observed and theoretical results. In conclusion, the proposed methods appear to be a useful addition for drought analysis and characterization using stochastic methods.

  7. Drought Characterisation Using Ground and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Hore, Sudipta Kumar; Werner, Micha; Maskey, Shreedhar

    2016-04-01

    The North-West of Bangladesh is frequently affected by drought, which may have profound impacts to different water related sectors. The characterisation and identification of drought is, however, challenging. Despite several standard drought indices being available it is important that indicators proposed in support of an effective drought management are related to the impacts drought may have. In this study we present the characterisation of drought in the districts of Rajshahi and Rangpur in North-Western Bangladesh. Drought indicators were developed using available temperature, precipitation, river discharge and groundwater level data, as well as from remotely sensed NDVI data. We compare these indicators to records of drought impacts to agriculture, fisheries and migration collected from relevant organisations, as well as through interviews with key stakeholders, key informants, and community leaders. The analysis shows that droughts occur frequently, with nine occurrences in the last 42 years, as found using common meteorological drought indicators. NDVI data corroborated these events, despite being only available from 2001. The agricultural sector was adversely impacted in all events, with impacts correlated to drought severity. Impacts to the fisheries sector were, however, reported only three times, though impacts to fisheries are less well recorded. Interestingly, the good relationship between meteorological drought indicators and agricultural impacts weakens in the last decade. This appears to be due to the intensification of irrigation using groundwater, with the declining groundwater levels found in Rajshahi district suggesting overexploitation of the resource, and the increasing importance of groundwater drought indicators. The study reveals the drought indicators that are important to the agriculture and fisheries sectors, and also tentative threshold values at which drought start to impact these sectors. Such sector relevant drought indicators, as well as appropriate thresholds, can be useful in drought identification and management.

  8. Implications of the 2015 European drought on groundwater storage

    NASA Astrophysics Data System (ADS)

    Rangecroft, S.; Van Loon, A.; Kumar, R.; Mishra, V.

    2016-12-01

    In 2015 central and eastern Europe were affected by severe drought. Impacts of the drought were felt across many sectors, incl. agriculture, drinking water supply, electricity production, navigation, fisheries, and recreation. This drought event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater (GW) drought has been performed. This is not surprising because real-time GW level observations often are not available. In this study we use previously established spatially-explicit relationships between meteorological drought and GW drought to quantify the 2015 GW drought over two regions in southern Germany and eastern Netherlands. We use the monthly GW observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardized Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.250 gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in GW response time to meteorological input over the region. Based on these optimal accumulation periods, we found that in Germany a uniform severe GW drought persisted for several months (i.e. SGI below the drought threshold of 20th percentile for almost all grid cells in August, September and October 2015), whereas the Netherlands appeared to had relatively high GW levels (never below the drought threshold of 20th percentile). The differences between this event and the European 2003 benchmark drought are striking. The 2003 GW drought was less uniformly pronounced, both in the Netherlands and Germany, with the regional averaged SGI above the 50th percentile. This is because slowly responding wells still were above average from the wet year of 2002-2003, which experienced severe flooding in central Europe. Our study shows that the relationship between meteorological drought and GW drought can be used to quantify GW drought and that the 2015 GW drought in southern Germany was more severe than the 2003 drought, because of preconditions in slowly responding GW wells. For sustainable GW drought management strategies the use of GW level monitoring is needed to study the spatial variability of local GW drought, which mostly coincides with drought impacts.

  9. Linking ecosystem scale vegetation change to shifts in carbon and water cycling: the consequences of widespread piñon mortality in the Southwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvak, Marcy Ellen

    2012-10-01

    The southwestern United States experienced an extended drought from 1999-2002 which led to widespread coniferous tree mortality. Piñon-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, were extremely vulnerable to this drought. An abrupt die-off of 40 to 95% of piñon pine (Pinus edulis) and 2-25% of juniper (Juniperus monosperma) across 1.5 million ha triggered rapid and extensive changes in the structure of PJ woodlands with potentially large, yet unknown, consequences for ecosystem services and feedbacks between the carbon cycle and climate system. Given the spatial extent of PJ woodlands (3rd largest biome in the US) and climaticmore » predictions of increased frequency and intensity of drought in the region, it is crucial to understand the consequences of these disturbances on regional carbon and energy dynamics, biogeochemical processes and atmospheric CO2. The overall objective of our research was to quantify what impact widespread mortality of piñon trees has for carbon and water cycling in PJ woodlands. Our specific objectives for this proposal were: 1) Quantify the carbon, water and energy exchange trajectory after mortality in PJ woodlands; 2) Determine the mechanisms controlling the response and recovery of ecosystem production and respiration processes following large-scale piñon mortality; 3) Use the relationships we measure between ecosystem structure and function PJ woodlands recover from mortality to scale the results of our study up to the regional scale.« less

  10. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration

    NASA Astrophysics Data System (ADS)

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu

    2018-02-01

    Precipitation is a primary environmental factor in the semiarid grasslands of northern China. With increased concentrations of atmospheric greenhouse gases, precipitation regimes will change, and high-impact weather events may be more common. Currently, many ecophysiological indicators are known to reflect drought conditions, but these indicators vary greatly among species, and few studies focus on the applicability of these drought indicators under high CO2 conditions. In this study, five precipitation levels (- 30%, - 15%, control, + 15%, and + 30%) were used to simulate the effects of precipitation change on 18 ecophysiological characteristics in Stipa bungeana, including leaf area, plant height, leaf nitrogen (N), and chlorophyll content, among others. Two levels of CO2 concentration (ambient, 390 ppm; 550 ppm) were used to simulate the effects of elevated CO2 on these drought indicators. Using gray relational analysis and phenotypic plasticity analysis, we found that total leaf area or leaf number (morphology), leaf water potential or leaf water content (physiology), and aboveground biomass better reflected the water status of S. bungeana under ambient and elevated CO2 than the 13 other analyzed variables. The sensitivity of drought indicators changed under the elevated CO2 condition. By quantifying the relationship between precipitation and the five most sensitive indicators, we found that the thresholds of precipitation decreased under elevated CO2 concentration. These results will be useful for objective monitoring and assessment of the occurrence and development of drought events in S. bungeana grasslands.

  11. Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA).

    PubMed

    Meng, Lai-Sheng; Yao, Shun-Qiao

    2015-09-01

    One goal of modern agriculture is the improvement of plant drought tolerance and water-use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms and engineered alternations of this relationship are not yet fully understood. Moreover, YODA (YDA), which is a MAPKK kinase gene, negatively regulates stomatal development. BR-INSENSITIVE 2 interacts with phosphorylates and inhibits YDA. However, whether YDA is modulated in the transcriptional level is still unclear. Plants lacking ANGUSTIFOLIA3 (AN3) activity have high drought stress tolerance because of low stomatal densities and improved root architecture. Such plants also exhibit enhanced WUE through declining transpiration without a demonstrable reduction in biomass accumulation. AN3 negatively regulated YDA expression at the transcriptional level by target-gene analysis. Chromatin immunoprecipitation analysis indicated that AN3 was associated with a region of the YDA promoter in vivo. YDA mutation significantly decreased the stomatal density and root length of an3 mutant, thus proving the participation of YDA in an3 drought tolerance and WUE enhancement. These components form an AN3-YDA complex, which allows the integration of water deficit stress signalling into the production or spacing of stomata and cell proliferation, thus leading to drought tolerance and enhanced WUE. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Effects of meteorological droughts on agricultural water resources in southern China

    NASA Astrophysics Data System (ADS)

    Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang

    2017-05-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.

  13. Characterization of the Newly Developed Soybean Cultivar DT2008 in Relation to the Model Variety W82 Reveals a New Genetic Resource for Comparative and Functional Genomics for Improved Drought Tolerance

    PubMed Central

    Ha, Chien Van; Le, Dung Tien; Nishiyama, Rie; Watanabe, Yasuko; Tran, Uyen Thi; Dong, Nguyen Van; Tran, Lam-Son Phan

    2013-01-01

    Soybean (Glycine max) productivity is adversely affected by drought stress worldwide, including Vietnam. In the last few years, we have made a great effort in the development of drought-tolerant soybean cultivars by breeding and/or radiation-induced mutagenesis. One of the newly developed cultivars, the DT2008, showed enhanced drought tolerance and stable yield in the field conditions. The purpose of this study was to compare the drought-tolerant phenotype of DT2008 and Williams 82 (W82) by assessing their water loss and growth rate under dehydration and/or drought stress conditions as a means to provide genetic resources for further comparative and functional genomics. We found that DT2008 had reduced water loss under both dehydration and drought stresses in comparison with W82. The examination of root and shoot growths of DT2008 and W82 under both normal and drought conditions indicated that DT2008 maintains a better shoot and root growth rates than W82 under both two growth conditions. These results together suggest that DT2008 has better drought tolerance degree than W82. Our results open the way for further comparison of DT2008 and W82 at molecular levels by advanced omic approaches to identify mutation(s) involved in the enhancement of drought tolerance of DT2008, contributing to our understanding of drought tolerance mechanisms in soybean. Mutation(s) identified are potential candidates for genetic engineering of elite soybean varieties to improve drought tolerance and biomass. PMID:23509774

  14. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  15. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  16. Defining Drought Characteristics for Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Senay, G. B.; McNeeley, S.; Morisette, J. T.

    2016-12-01

    In the north central region of the US, on-going drought studies are investigating factors determining how drought impacts various ecosystem services and challenge natural resource management decisions. The effort reported here stems from research sponsored by the USGS North Central Climate Science Center, to deal with ecosystem response to drought with the goal to see if there are indicators of drought emerging from the ecosystem interactions with various weather patterns, soil moisture dynamics, and the structural aspects of the ecosystem in question. The North Central domain covers a region from the headwaters of the Missouri River Basin to the northern Great Plains. Using spatial and temporal analysis of remote sensing products and mechanistic daily time-step ecosystem model simulations across the northern Great Plains and northern Rockies, analysis of recent drought conditions over the region will be provided. Drought characteristics will be analyzed related to resource management targets, such as water supply, landscape productivity, or habitat needs for key species. Analysis of ecosystem and landscape patterns of drought relative to net primary productivity, surface temperatures, soil moisture content, evaporation, transpiration, and water use efficiency from 2000 through 2014 will be analyzed for different drought and non-drought events. Comparisons between satellite-derived ET and NPP of different Great Plains ecosystems related to simulated ET and NPP will be presented. These comparisons provide indications of the role that soil moisture dynamics, groundwater recharge and rooting depth of different ecosystems have on determining the sensitivity to water stress due to seasonal warming and reduced precipitation across the region. In addition, indications that average annual rainfall levels over certain ecosystems may result in reduced production due to higher rates of water demand under the observed warmer temperatures and the prolonged warming in the spring and fall affecting soil moisture conditions. These results are being used to inform managers in our region about recent climate trends regarding drought impacts and provide a basis for further co-design efforts of research to action strategies with resource managers and stakeholders in the region.

  17. A national-scale analysis of the impacts of drought on water quality in UK rivers

    NASA Astrophysics Data System (ADS)

    Coxon, G.; Howden, N. J. K.; Freer, J. E.; Whitehead, P. G.; Bussi, G.

    2015-12-01

    Impacts of droughts on water quality qre difficult to quanitify but are essential to manage ecosystems and maintain public water supply. During drought, river water quality is significantly changed by increased residence times, reduced dilution and enhanced biogeochemical processes. But, the impact severity varies between catchments and depends on multiple factors including the sensitivity of the river to drought conditions, anthropogenic influences in the catchment and different delivery patterns of key nutrient, contaminant and mineral sources. A key constraint is data availability for key water quality parameters such that impacts of drought periods on certain determinands can be identified. We use national-scale water quality monitoring data to investigate the impacts of drought periods on water quality in the United Kingdom (UK). The UK Water Quality Sampling Harmonised Monitoring Scheme (HMS) dataset consists of >200 UK sites with weekly to monthly sampling of many water quality variables over the past 40 years. This covers several major UK droughts in 1975-1976, 1983-1984,1989-1992, 1995 and 2003, which cover severity, spatial and temporal extent, and how this affects the temporal impact of the drought on water quality. Several key water quality parameters, including water temperature, nitrate, dissolved organic carbon, orthophosphate, chlorophyll and pesticides, are selected from the database. These were chosen based on their availability for many of the sites, high sampling resolution and importance to the drinking water function and ecological status of the river. The water quality time series were then analysed to investigate whether water quality during droughts deviated significantly from non-drought periods and examined how the results varied spatially, for different drought periods and for different water quality parameters. Our results show that there is no simple conclusion as to the effects of drought on water quality in UK rivers; impacts are diverse both in terms of timing, magnitude and duration. We consider several scenarios in which management interventions may alleviate water quality pressures, and discuss how the many interacting factors need to be better characterised to support detailed mechanistic models to improve our process understanding.

  18. Drought Variability in Eastern Part of Romania and its Connection with Large-Scale Air Circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Stefan, Sabina; Georgescu, Florinela

    2014-05-01

    Drought is a phenomenon that appears due to precipitation deficit and it is intensified by strong winds, high temperatures, low relative humidity and high insolation; in fact, all these factors lead to increasing of evapotranspiration processes that contribute to soil water deficit. The Standardized Precipitation Evapotranspiration Index (SPEI) take into account all this factors listed above. The temporal variability of the drought in Eastern part of Romania for 50 years, during the period 1961-2010, is investigated. This study is focused on the drought variability related to large scale air circulation. The gridded dataset with spatial resolution of 0.5º lat/lon of SPEI, (https://digital.csic.es/handle/10261/72264) were used to analyze drought periods in connection with large scale air circulation determinate from the two catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) defined in COST733Action. The GWT catalogue uses at input dataset the sea level pressure and the WLK catalogue uses as input dataset the geopotential field at 925 hPa and 500 hPa, wind at 700 hPa and total water content for entire atmospheric column. In this study we use the GWT catalogue with 18 circulation types and the WLK catalogue with 40 circulation types. The analysis for Barlad Hydrological Basin indicated that the negative values (that means water deficit - drought period) of SPEI are associated with prevailing anticyclonic regime and positive values (that means water excess - rainy period) of SPEI are associated with prevailing cyclonic regime as was expected. In last decade was observed an increase of dry period associated with an increase of anticyclonic activity over Romania. Using GWT18 catalogue the drought are associated with the north-eastern anticyclonic circulation type (NE-A). According to the WLK40 catalogue, the dominant circulation type associated with the drought is north-west-anticyclonic-dry anticyclonic (NW-AAD) type. keywords: drought, SPEI, large-scale atmospheric circulation

  19. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery.

    PubMed

    Zang, Ulrich; Goisser, Michael; Grams, Thorsten E E; Häberle, Karl-Heinz; Matyssek, Rainer; Matzner, Egbert; Borken, Werner

    2014-01-01

    Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into 20 l pots. In 2011, the saplings were subjected to different levels of soil drought ranging from non-limiting water supply (control) to severe water limitation with soil water potentials of less than -1.5 MPa. As a physiologically relevant measure of drought, the cumulated soil water potential (i.e., drought stress dose (DSD)) was calculated for the growing season. In late August, the saplings were transferred into a climate chamber and pulse-labeled with (13)C-depleted CO2 (δ(13)C of -47‰). Isotopic signatures in leaf and soil respiration were repeatedly measured. Five days after soil rewetting, a second label was applied using 99 atom% (13)CO2. After another 12 days, the fate of assimilated C in each sapling was assessed by calculating the (13)C mass balance. Photosynthesis decreased by 60% in saplings under severe drought. The mean residence time (MRT) of recent assimilates in leaf respiration was more than three times longer than under non-limited conditions and was positively correlated to DSD. Also, the appearance of the label in soil respiration was delayed. Within 5 days after rewetting, photosynthesis, MRT of recent assimilates in leaf respiration and appearance of the label in soil respiration recovered fully. Despite the fast recovery, less label was recovered in the biomass of the previously drought-stressed plants, which also allocated less C to the root compartment (45 vs 64% in the control). We conclude that beech saplings quickly recover from extreme soil drought, although transitional after-effects prevail in C allocation, possibly due to repair-driven respiratory processes.

  20. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.

  1. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  2. Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L.) Using Genome-Wide Sequencing and Association Mapping

    PubMed Central

    Yu, Long-Xi

    2017-01-01

    Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses. PMID:28706532

  3. How to help woody plants to overcome drought stress?-a control study of four tree species in Northwest China.

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Zhang, Shuoxin

    2010-05-01

    Water is essential for plants and involves most physical and chemical processes within their lifecycles. Drought stress is a crucial limiting factor for plant growth and production. 48% of the land in China is arid and semi-arid, and non-irrigated land occupies approximately 51.9% of the total cultivated areas. Therefore, studies on plant drought resistant mechanisms have great significance for improving water use efficiency and thus increasing productivity of economical plants. Prior research has shown that the application of nitrogenous fertilizer affects the drought-resistant characteristics of plants. This study aimed to reveal the effect of nitrogenous fertilizer on physiological aspects and its impact on the drought resistance of four tree species (Robinia pseudoacacia L., Ligustrum lucidum Ait., Acer truncatum Bge. and Ulmus pumila L. ) in northwest China. Three levels of nitrogen fertilization (46% N based of urea adjusted to: 5g/15g soil, 15g/15g soil and 25g/15g soil) and an additional control study were applied to 2-year-old well-grown seedlings under drought conditions (30% field moisture capacity). Stomatal conductance, transpiration rate and net photosynthetic rate were measured by a LI-6400 photosynthesis system, while water use efficiency was calculated from net photosynthesis rate and transpiration rate. The results revealed that as the amount of urea applied was raised, stomatal conductance, transpiration rate and net photosynthetic rate decreased significantly, and thus water use efficiency significantly increased. It is therefore concluded that the application of nitrogenous fertilizer regulated physiological parameters by reducing stomata conductance to improve water use efficiency. In addition, among the four tree species, U. pumila had the maximum value of water use efficiency under the same drought condition. The outcome of this study provides a guided option for forest management in arid and semi-arid areas of northwest China.

  4. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  5. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco.

    PubMed

    Xu, Chongyi; Jing, Ruilian; Mao, Xinguo; Jia, Xiaoyun; Chang, Xiaoping

    2007-03-01

    Multiple copies of genes encoding the catalytic subunit (c) of protein phosphatase 2A (PP2A) are commonly found in plants. For some of these genes, expression is up-regulated under water stress. The aim of this study was to investigate expression and characterization of TaPP2Ac-1 from Triticum aestivum, and to evaluate the effects of TaPP2Ac-1 on Nicotiana benthamiana in response to water stress. TaPP2Ac-1 cDNA was isolated from wheat by in silico identification and RT-PCR amplification. Transcript levels of TaPP2Ac-1 were examined in wheat responding to water deficit. Copy numbers of TaPP2Ac-1 in wheat genomes and subcellular localization in onion epidermal cells were studied. Enzyme properties of the recombinant TaPP2Ac-1 protein were determined. In addition, studies were carried out in tobacco plants with pCAPE2-TaPP2Ac-1 under water-deficit conditions. TaPP2Ac-1 cDNA was cloned from wheat. Transcript levels of TaPP2Ac-1 in wheat seedlings were up-regulated under drought condition. One copy for this TaPP2Ac-1 was present in each of the three wheat genomes. TaPP2Ac-1 fused with GFP was located in the nucleus and cytoplasm of onion epidermis cells. The recombinant TaPP2Ac-1 gene was over-expressed in Escherichia coli and encoded a functional serine/threonine phosphatase. Transgenic tobacco plants over-expressing TaPP2Ac-1 exhibited stronger drought tolerance than non-transgenic tobacco plants. Tobacco plants with pCAPE2-TaPP2Ac-1 appeared to be resistant to water deficit, as shown by their higher capacity to maintain leaf relative water content, leaf cell-membrane stability index, water-retention ability and water use efficiency under water stress. The results suggest that the physiological role of TaPP2Ac-1 is related to drought stress response, possibly through its involvement in drought-responding signal transduction pathways.

  6. Baseflow response to climate variability induced droughts in the Apalachicola-Chattahoochee-Flint River Basin, U.S.A.

    NASA Astrophysics Data System (ADS)

    Singh, Sarmistha; Srivastava, Puneet; Abebe, Ash; Mitra, Subhasis

    2015-09-01

    Droughts have been a major factor leading to the Tri-State Water Wars in the southeastern United States. One of the primary issues related to the conflict is the reduction in baseflow levels in the Flint River during droughts. This affects the availability of freshwater resources to support the endangered mussel species in the Flint and Apalachicola Rivers and threatens the shellfish industry in the Apalachicola Bay. Study of large-scale climate phenomena as well as the interactions of interannual with decadal and multidecadal oceanic-atmospheric phenomena can provide valuable information regarding regional climatic conditions such as droughts and their impact on water resources. This study was conducted to quantify the impacts of climate variability cycles on baseflow levels in the Flint River. The individual and coupled impacts of the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Atlantic Oscillation (NAO) on baseflow were quantified. The non-parametric Joint Rank Fit (JRFit) procedure was used to provide a robust test of the significance of interactions between the phases of ENSO-PDO, ENSO-AMO and ENSO-NAO baseflows. Simple-main effect comparisons were also performed using the JRFit model to estimate significant difference between the positive and negative phase baseflows of PDO, AMO and NAO associated with El Niño or La Niña phases. The results indicate that the phases of ENSO, AMO and NAO significantly affect baseflows in the Flint River. Interaction tests showed that the PDO and AMO phases modulate ENSO phase baseflows. La Niña associated with positive phases of PDO and AMO resulted in greater decrease in baseflow levels of approximately 28% and 33%, respectively. However, La Niña associated with negative phase of AMO showed above normal baseflows. The results illustrate the importance of coupled analyses of climate variability by providing a better understanding of the severity of droughts and their impact on baseflows. The results obtained from this study can be used by water managers in the region as a guide for the issuance of drought severity-based water restrictions.

  7. Individual traits as determinants of time to death under extreme drought in Pinus sylvestris L.

    PubMed

    Garcia-Forner, Núria; Sala, Anna; Biel, Carme; Savé, Robert; Martínez-Vilalta, Jordi

    2016-10-01

    Plants exhibit a variety of drought responses involving multiple interacting traits and processes, which makes predictions of drought survival challenging. Careful evaluation of responses within species, where individuals share broadly similar drought resistance strategies, can provide insight into the relative importance of different traits and processes. We subjected Pinus sylvestris L. saplings to extreme drought (no watering) leading to death in a greenhouse to (i) determine the relative effect of predisposing factors and responses to drought on survival time, (ii) identify and rank the importance of key predictors of time to death and (iii) compare individual characteristics of dead and surviving trees sampled concurrently. Time until death varied over 3 months among individual trees (from 29 to 147 days). Survival time was best predicted (higher explained variance and impact on the median survival time) by variables related to carbon uptake and carbon/water economy before and during drought. Trees with higher concentrations of monosaccharides before the beginning of the drought treatment and with higher assimilation rates prior to and during the treatment survived longer (median survival time increased 25-70 days), even at the expense of higher water loss. Dead trees exhibited less than half the amount of nonstructural carbohydrates (NSCs) in branches, stem and relative to surviving trees sampled concurrently. Overall, our results indicate that the maintenance of carbon assimilation to prevent acute depletion of NSC content above some critical level appears to be the main factor explaining survival time of P. sylvestris trees under extreme drought. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Physiological Assessment of Water Stress in Potato Using Spectral Information

    PubMed Central

    Romero, Angela P.; Alarcón, Andrés; Valbuena, Raúl I.; Galeano, Carlos H.

    2017-01-01

    Water stress in potato (Solanum tuberosum L.) causes considerable losses in yield, and therefore, potato is often considered to be a drought sensitive crop. Identification of water deficit tolerant potato genotypes is an adaptation strategy to mitigate the climatic changes that are occurring in the Cundiboyacense region in Colombia. Previous studies have evaluated potato plants under water stress conditions using physiological analyses. However, these methodologies require considerable amounts of time and plant material to perform these measurements. This study evaluated and compared the physiological and spectral traits between two genotypes, Diacol Capiro and Perla Negra under two drought levels (10 and 15 days without irrigation from flowering). Reflectance information was used to calculate indexes which were associated with the physiological behavior in plants. The results showed that spectral information was correlated (ρ < 0.0001) with physiological variables such as foliar area (FA), total water content (H2Ot), relative growth rate of potato tubers (RGTtub), leaf area ratio (LAR), and foliar area index (AFI). In general, there was a higher concentration of chlorophyll under drought treatments. In addition, Perla Negra under water deficit treatments did not show significant differences in its physiological variables. Therefore, it could be considered a drought tolerant genotype because its physiological performance was not affected under water stress conditions. However, yield was affected in both genotypes after being subject to 15 days of drought. The results suggested that reflectance indexes are a useful and affordable approach for potato phenotyping to select parent and segregant populations in breeding programs. PMID:28979277

  9. Indicators to measure risk of disaster associated with drought: Implications for the health sector.

    PubMed

    Sena, Aderita; Ebi, Kristie L; Freitas, Carlos; Corvalan, Carlos; Barcellos, Christovam

    2017-01-01

    Brazil has a large semiarid region, which covers part of 9 states, over 20% of the 5565 municipalities in the country and at 22.5 million persons, 12% of the country's population. This region experiences recurrent and extended droughts and is characterized by low economic development, scarcity of natural resources including water, and difficult agricultural and livestock production. Local governments and communities need easily obtainable tools to aid their decision making process in managing risks associated with drought. To inform decision-making at the level of municipalities, we investigated factors contributing to the health risks of drought. We used education and poverty indicators to measure vulnerability, number of drought damage evaluations and historical drought occurrences as indicators of hazard, and access to water as an indicator of exposure, to derive a drought disaster risk index. Indicators such as access to piped water, illiteracy and poverty show marked differences in most states and, in nearly all states, the living conditions of communities in the semiarid region are worse than in the rest of each state. There are municipalities at high drought disaster risk in every state and there are a larger number of municipalities at higher risks from the center to the north of the semiarid region. Understanding local hazards, exposures and vulnerabilities provides the means to understand local communities' risks and develop interventions to reduce them. In addition, communities in these regions need to be empowered to add their traditional knowledge to scientific tools, and to identify the actions most relevant to their needs and realities.

  10. Indicators to measure risk of disaster associated with drought: Implications for the health sector

    PubMed Central

    Ebi, Kristie L.; Freitas, Carlos; Corvalan, Carlos; Barcellos, Christovam

    2017-01-01

    Introduction Brazil has a large semiarid region, which covers part of 9 states, over 20% of the 5565 municipalities in the country and at 22.5 million persons, 12% of the country’s population. This region experiences recurrent and extended droughts and is characterized by low economic development, scarcity of natural resources including water, and difficult agricultural and livestock production. Local governments and communities need easily obtainable tools to aid their decision making process in managing risks associated with drought. Methods To inform decision-making at the level of municipalities, we investigated factors contributing to the health risks of drought. We used education and poverty indicators to measure vulnerability, number of drought damage evaluations and historical drought occurrences as indicators of hazard, and access to water as an indicator of exposure, to derive a drought disaster risk index. Results Indicators such as access to piped water, illiteracy and poverty show marked differences in most states and, in nearly all states, the living conditions of communities in the semiarid region are worse than in the rest of each state. There are municipalities at high drought disaster risk in every state and there are a larger number of municipalities at higher risks from the center to the north of the semiarid region. Conclusions Understanding local hazards, exposures and vulnerabilities provides the means to understand local communities’ risks and develop interventions to reduce them. In addition, communities in these regions need to be empowered to add their traditional knowledge to scientific tools, and to identify the actions most relevant to their needs and realities. PMID:28742848

  11. Avoiding Drought Risks and Social Conflict Under Climate Change

    NASA Astrophysics Data System (ADS)

    Towler, E.; Lazrus, H.; Paimazumder, D.

    2014-12-01

    Traditional drought research has mainly focused on physical drought risks and less on the cultural processes that also contribute to how drought risks are perceived and managed. However, as society becomes more vulnerable to drought and climate change threatens to increase water scarcity, it is clear that drought research would benefit from a more interdisciplinary approach. To assess avoided drought impacts from reduced climate change, drought risks need to be assessed in the context of both climate prediction as well as improved understanding of socio-cultural processes. To this end, this study explores a risk-based framework to combine physical drought likelihoods with perceived risks from stakeholder interviews. Results are presented from a case study on how stakeholders in south-central Oklahoma perceive drought risks given diverse cultural beliefs, water uses, and uncertainties in future drought prediction. Stakeholder interviews (n=38) were conducted in 2012 to understand drought risks to various uses of water, as well as to measure worldviews from the cultural theory of risk - a theory that explains why people perceive risks differently, potentially leading to conflict over management decisions. For physical drought risk, drought projections are derived from a large ensemble of future climates generated from two RCPs that represent higher and lower emissions trajectories (i.e., RCP8.5 and RCP4.5). These are used to develop a Combined Drought Risk Matrix (CDRM) that characterizes drought risks for different water uses as the products of both physical likelihood (from the climate ensemble) and risk perception (from the interviews). We use the CRDM to explore the avoided drought risks posed to various water uses, as well as to investigate the potential for reduction of conflict over water management.

  12. Impact of climate change on waterborne diseases.

    PubMed

    Funari, Enzo; Manganelli, Maura; Sinisi, Luciana

    2012-01-01

    Change in climate and water cycle will challenge water availability but it will also increase the exposure to unsafe water. Floods, droughts, heavy storms, changes in rain pattern, increase of temperature and sea level, they all show an increasing trend worldwide and will affect biological, physical and chemical components of water through different paths thus enhancing the risk of waterborne diseases. This paper is intended, through reviewing the available literature, to highlight environmental changes and critical situations caused by floods, drought and warmer temperature that will lead to an increase of exposure to water related pathogens, chemical hazards and cyanotoxins. The final aim is provide knowledge-based elements for more focused adaptation measures.

  13. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure.

    PubMed

    Trifilò, Patrizia; Casolo, Valentino; Raimondo, Fabio; Petrussa, Elisa; Boscutti, Francesco; Lo Gullo, Maria Assunta; Nardini, Andrea

    2017-11-01

    Drought-induced tree decline is a complex event, and recent hypotheses suggest that hydraulic failure and carbon starvation are co-responsible for this process. We tested the possible role of non-structural carbohydrates (NSC) content on post-drought hydraulic recovery, to verify the hypothesis that embolism reversal represents a mechanistic link between carbon starvation and stem hydraulics. Measurements were performed in laurel plants subjected to similar water stress levels either over short or long term, to induce comparable embolism levels. Plants subjected to mild and prolonged water shortage (S) showed reduced growth, adjustment of turgor loss point driven by changes in both osmotic potential at full turgor and bulk modulus of elasticity, a lower content of soluble NSC and a higher content of starch with respect to control (C) plants. Moreover, S plants showed a lower ability to recover from xylem embolism than C plants, even after irrigation. Our data suggest that plant carbon status might indirectly influence plant performance during and after drought via effects on xylem hydraulic functioning, supporting the view of a possible mechanistic link between the two processes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry

    NASA Astrophysics Data System (ADS)

    Frenck, Georg; Leitinger, Georg; Obojes, Nikolaus; Hofmann, Magdalena; Newesely, Christian; Deutschmann, Mario; Tappeiner, Ulrike; Tasser, Erich

    2018-02-01

    For central Europe in addition to rising temperatures an increasing variability in precipitation is predicted. This will increase the probability of drought periods in the Alps, where water supply has been sufficient in most areas so far. For Alpine grasslands, community-specific imprints on drought responses are poorly analyzed so far due to the sufficient natural water supply. In a replicated mesocosm experiment we compared evapotranspiration (ET) and biomass productivity of two differently drought-adapted Alpine grassland communities during two artificial drought periods divided by extreme precipitation events using high-precision small lysimeters. The drought-adapted vegetation type showed a high potential to utilize even scarce water resources. This is combined with a low potential to translate atmospheric deficits into higher water conductance and a lower biomass production as those measured for the non-drought-adapted type. The non-drought-adapted type, in contrast, showed high water conductance potential and a strong increase in ET rates when environmental conditions became less constraining. With high rates even at dry conditions, this community appears not to be optimized to save water and might experience drought effects earlier and probably more strongly. As a result, the water use efficiency of the drought-adapted plant community is with 2.6 gDW kg-1 of water much higher than that of the non-drought-adapted plant community (0.16 gDW kg-1). In summary, the vegetation's reaction to two covarying gradients of potential evapotranspiration and soil water content revealed a clear difference in vegetation development and between water-saving and water-spending strategies regarding evapotranspiration.

  15. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia.

    PubMed

    Leyden, Emily; Cook, Freeman; Hamilton, Benjamin; Zammit, Benjamin; Barnett, Liz; Lush, Ann Marie; Stone, Dylan; Mosley, Luke

    2016-06-01

    An extreme hydrological drought in the Lower Lakes of the Murray-Darling Basin (Ramsar listed site) resulted in exposure of large areas of lake bed (25% of pre-drought lake area), containing the reduced iron (Fe) sulfide mineral pyrite. The pyrite oxidised and the resulting acidification (pH<4) posed risks of acid and metals entering shallow groundwater and potentially discharging to the remaining lake water body. Piezometer transects were installed at four locations and monitoring of the groundwater levels and quality was undertaken for six years from 2009 (drought) to 2014 (4years post-reinundation). Acidic (pH3-5) groundwater was recorded at three of the four piezometer locations and included sites close to the lake water. The acidic groundwater (0.5-2m below lake bed) at these sites is likely to have originated from the transport of acid from the upper oxidised sediment layer formed during the drought. High soluble metal (Fe, Al, Mn) levels were also recorded at acidic locations. Acidic shallow groundwater has persisted at many sites for over 4years following reinundation post-drought, and is likely due to slow diffusion and limited sulfate reduction. Increases in dissolved Fe and Mn with decreases in redox potential suggest that reductive dissolution of Fe and Mn hydrous oxides and Fe oxy-hydroxysulfate minerals (e.g. jarosite) occurred post-drought. Groundwater hydraulic head gradients were low, indicating there was limited potential for groundwater to discharge to the lake. The hydraulic gradients at all locations were dynamic with complex relationships along the near-shore environment. The results highlight the long lasting and severe effects on groundwater that can occur following hydrological drought in aquatic environments with sulfidic sediments. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia

    NASA Astrophysics Data System (ADS)

    Leyden, Emily; Cook, Freeman; Hamilton, Benjamin; Zammit, Benjamin; Barnett, Liz; Lush, Ann Marie; Stone, Dylan; Mosley, Luke

    2016-06-01

    An extreme hydrological drought in the Lower Lakes of the Murray-Darling Basin (Ramsar listed site) resulted in exposure of large areas of lake bed (25% of pre-drought lake area), containing the reduced iron (Fe) sulfide mineral pyrite. The pyrite oxidised and the resulting acidification (pH < 4) posed risks of acid and metals entering shallow groundwater and potentially discharging to the remaining lake water body. Piezometer transects were installed at four locations and monitoring of the groundwater levels and quality was undertaken for six years from 2009 (drought) to 2014 (4 years post-reinundation). Acidic (pH 3-5) groundwater was recorded at three of the four piezometer locations and included sites close to the lake water. The acidic groundwater (0.5-2 m below lake bed) at these sites is likely to have originated from the transport of acid from the upper oxidised sediment layer formed during the drought. High soluble metal (Fe, Al, Mn) levels were also recorded at acidic locations. Acidic shallow groundwater has persisted at many sites for over 4 years following reinundation post-drought, and is likely due to slow diffusion and limited sulfate reduction. Increases in dissolved Fe and Mn with decreases in redox potential suggest that reductive dissolution of Fe and Mn hydrous oxides and Fe oxy-hydroxysulfate minerals (e.g. jarosite) occurred post-drought. Groundwater hydraulic head gradients were low, indicating there was limited potential for groundwater to discharge to the lake. The hydraulic gradients at all locations were dynamic with complex relationships along the near-shore environment. The results highlight the long lasting and severe effects on groundwater that can occur following hydrological drought in aquatic environments with sulfidic sediments.

  17. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance.

    PubMed

    Zhou, Shumei; Sun, Xiudong; Yin, Suhong; Kong, Xiangzhu; Zhou, Shan; Xu, Ying; Luo, Yin; Wang, Wei

    2014-11-01

    Drought is one of the most important factors limiting plant growth and development. We identified a gene in wheat (Triticum aestivum L.) under drought stress named TaFBA1. TaFBA1 encodes a putative 325-amino-acid F-box protein with a conserved N-terminal F-box domain and a C-terminal AMN1 domain. Real-time RT-PCR analysis revealed that TaFBA1 transcript accumulation was upregulated by high-salinity, water stress, and abscisic acid (ABA) treatment. To evaluate the functions of TaFBA1 in the regulation of drought stress responses, we produced transgenic tobacco lines overexpressing TaFBA1. Under water stress conditions, the transgenic tobacco plants had a higher germination rate, higher relative water content, net photosynthesis rate (Pn), less chlorophyll loss, and less growth inhibition than WT. These results demonstrate the high tolerance of the transgenic plants to drought stress compared to the WT. The enhanced oxidative stress tolerance of these plants, which may be involved in their drought tolerance, was indicated by their lower levels of reactive oxygen species (ROS) accumulation, MDA content, and cell membrane damage under drought stress compared to WT. The antioxidant enzyme activities were higher in the transgenic plants than in WT, which may be related to the upregulated expression of some antioxidant genes via overexpression of TaFBA1. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences.

    PubMed

    Pratt, R Brandon; Jacobsen, Anna L; Ramirez, Aaron R; Helms, Anjel M; Traugh, Courtney A; Tobin, Michael F; Heffner, Marcus S; Davis, Stephen D

    2014-03-01

    We examined postfire regeneration of chaparral shrubs during an intense drought. This study focused on the demography and physiology of shrub species that resprout from a basal lignotuber following fire. We found significant levels of resprout mortality when intense drought occurred in the year following fire during the period of shrub recovery. Three of the seven sampled resprouting species had the greatest or near greatest levels of mortality ever recorded when compared to previous studies. Most shrub mortality occurred during the drought after individuals had resprouted (i.e. individuals survived fire, resprouted and then subsequently died). Physiological measurements of species with high mortality suggested that resprout stems were highly embolized and xylem hydraulic conductivities were close to zero during the peak of the drought. In addition, lignotubers of two of the three species experiencing high mortality were depleted of starch. Population densities of most shrub species declined after the drought compared with their prefire levels, with the exception of one drought tolerant obligate seeding species. Resprouting shrub species may deplete their carbohydrate reserves during the resprouting process, making them particularly vulnerable to drought because of the need to transpire water to acquire the CO2 that is used to supply energy to a large respiring root system. Drought appears to interact with fire by altering postfire shrub recovery and altering species abundances and composition of chaparral communities. © 2013 John Wiley & Sons Ltd.

  19. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress

    PubMed Central

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M.; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf chlorophyll content, chlorophyll fluorescence parameters, metabolic constituent content, activating anti-oxidant enzymes and reducing TBARS, O2-, and H2O2 levels. PMID:28223992

  20. Geohydrology of the French Creek basin and simulated effects of droughtand ground-water withdrawals, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2004-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a recharge rate of 6.2 in/yr. Average conditions were simulated by adjusting the recharge rate until simulated streamflow at streamflow-measurement station 01472157 matched the long-term (1968-2001) average base flow of 54.1 cubic feet per second. The recharge rate used for average conditions was 15.7 in/yr. The effect of drought in the French Creek Basin was simulated using a drought year recharge rate of 8 in/yr for 3 months. After 3 months of drought, the simulated streamflow of French Creek at streamflow-measurement station 01472157 decreased 34 percent. The simulations show that after 6 months of average recharge (15.7 in/yr) following drought, streamflow and water levels recovered almost to pre-drought conditions. The effect of increased ground-water withdrawals on stream base flow in the South Branch French Creek Subbasin was simulated under average and drought conditions with pumping rates equal to 50, 75, and 100 percent of the Delaware River Basin Commission Ground Water Protected Area (GWPA) withdrawal limit (1,393 million gallons per year) with all pumped water removed from the basin. For average recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 18, 28, and 37 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. After 3 months of drought recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 27, 40, and 52 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. The effect of well location on base flow, water levels, and the sources of water to the well was simulated by locating a hypothetical well pumping 200 gallons per minute in different places in the Beaver Run Subbasin with all pumped water removed from the basin. The smallest reduction in the base flow of Beaver Run was from a well on the drainage divide

  1. Crop yield risk analysis and mitigation of smallholder farmers at quaternary catchment level: Case study of B72A in Olifants river basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, Manuel S.; Taigbenu, Akpofure E.

    Currently, Sub-Sahara is experiencing increased frequency of disasters either as floods or droughts which depletes the scarce resources available to sustain increasing populations. Success in preventing food shortages in the African continent can only be achieved by understanding the vulnerability and risk of the majority of smallholder farmers under rainfed and supplementary irrigation coupled with appropriate interventions. Increased frequency of floods, droughts and dry spells pose an increasing threat to the smallholder farmers’ food security and water resources availability in B72A quaternary catchment of the Olifants river basin in South Africa. This paper links maize crop yield risk and smallholder farmer vulnerability arising from droughts by applying a set of interdisciplinary indicators (physical and socio-economic) encompassing gender and institutional vulnerabilities. For the study area, the return period of droughts and dry spells was 2 years. The growing season for maize crop was 121 days on average. Soil water deficit during critical growth stages may reduce potential yields by up to 62%, depending on the length and severity of the moisture deficit. To minimize grain yield loss and avoid total crop failures from intra-seasonal dry spells, farmers applied supplementary irrigation either from river water or rainwater harvested into small reservoirs. Institutional vulnerability was evidenced by disjointed water management institutions with lack of comprehension of roles of higher level institutions by lower level ones. Women are most hit by droughts as they derived more than 90% of their family income from agriculture activities. An enhanced understanding of the vulnerability and risk exposure will assist in developing technologies and policies that conform to the current livelihood strategies of smallholder, resource-constrained farmers. Development of such knowledge base for a catchment opens avenues for computational modeling of the impacts of different types of disasters under different scenarios.

  2. a Brazilian Vulnerability Index to Natural Disasters of Drought - in the Context of Climate Change

    NASA Astrophysics Data System (ADS)

    Camarinha, P. I., Sr.; Debortoli, N. S.; Hirota, M.

    2015-12-01

    Droughts are characterized as one of the main types of natural disasters that occur in Brazil. During the 1991-2012, droughts affected more than 14 million Brazilians, so that the concern for the following decades is about the potential impacts triggered by climate change. To analyze the vulnerability of the Brazilian municipalities to drought disasters, we have assessed the effects of climate change to droughts until the end of 21th century. A composite index was created based on three different dimensions: i) Exposure, represented by climate anomalies related to the drought process, such as changes in accumulated rainfall averages, interannual variability of rainfall, and the frequency and magnitude of severe droughts (measured by the Standardized Precipitation-Evapotranspiration Index); ii) Sensitivity, encompassing socioeconomic, demographic, land use and water management data; iii) Adaptive Capacity, consisting of socioeconomic and institutional data from Brazilian municipalities, such as the Human Development Index (HDI), social inequality (Gini index) and illiteracy rate. The climate variables used in this study are results from simulations of the Regional Climate Model Eta (with a downscaling of 20km spatial resolution) nested with two global climate models (HadGEM ES and MIROC 5) and was provided by National Institute for Space Research. The baseline period was 1961-1990 and future periods was 2011-2040; 2041-2070 and 2071-2099. For the simulations of future climate it was used the 4.5 and 8.5 IPCC/AR5 RCP (Representative Concentration Pathways) scenarios. All variables used in this study was handled, exploited and related in a Geographic Information System (GIS). The methodology allowed the identification of vulnerability hotspots, the targeting of adaptation strategies and the development of public policy to minimize the potential impacts of future droughts. The final results (see attached image) indicate that the most vulnerable regions are located in the Midwest, in the northeastern Brazilian semi-arid and also on western Amazon.

  3. Impact of urbanization coupled with drought situations on groundwater quality in shallow (basalt) and deeper (granite) aquifers with special reference to fluoride in Nanded-Waghala Municipal Corporation, Nanded District, Maharashtra (India).

    PubMed

    Pandith, Madhnure; Kaplay, R D; Potdar, S S; Sangnor, H; Rao, A D

    2017-09-01

    Rapid expansion in urbanization and industrialization coupled with recent drought conditions has triggered unplanned groundwater development leading to severe stress on groundwater resources in many urban cities of India, particularly cities like Nanded, Maharashtra. In the quest of tapping drinking water requirement, due to recent drought conditions, people from the city are piercing through entire thickness of shallow basalt aquifers to reach productive deeper granite aquifers. Earlier reports from Nanded and surrounding districts suggest that deeper granite aquifer is contaminated with fluoride (geogenic). The study aimed to find out variations in fluoride concentration in shallow basalt (10-167 m) and deeper granite aquifers (below 167 m) and to find out the relationship between fluoride and other ions. Study suggests that concentration of fluoride in shallow basalt aquifer is within maximum permissible limits of Bureau of Indian Standards and deeper granite aquifer contains as high as 4.9 mg/l of fluoride and all samples from granite aquifers are unfit for human consumption. The groundwater from basalt aquifer is mainly Ca-HCO 3- Cl type, and from granite aquifer, it is Ca-Na-Cl type. The correlation plot between F - vs. pH, Na + and HCO 3 - shows a positive correlation and an inverse relationship with Ca 2+ in both aquifers. As recommendations, it is suggested that granite aquifers should not be tapped for drinking purposes; however, in drought situations, water from this aquifer should be blended with treated surface water before supplying for drinking purposes. Efforts may be made to utilize 1.35 MCM of rainwater from available rooftop, which is sufficient to cater for the needs of ~40,800 people annually. Most effective defluoridation techniques like electrolytic de-fluoridation (EDF), ion exchange and reverse osmosis may be adopted along with integrated fluorosis mitigation measures.

  4. Variation in drought resistance, drought acclimation and water conservation in four willow cultivars used for biomass production.

    PubMed

    Wikberg, Jenny; Ogren, Erling

    2007-09-01

    Growth and water-use parameters of four willow (Salix spp.) clones grown in a moderate drought regime or with ample water supply were determined to characterize their water-use efficiency, drought resistance and capacity for drought acclimation. At the end of the 10-week, outdoor pot experiment, clonal differences were observed in: (1) water-use efficiency of aboveground biomass production (WUE); (2) resistance to xylem cavitation; and (3) stomatal conductance to leaf-specific, whole-plant hydraulic conductance ratio (g(st)/K(P); an indicator of water balance). Across clones and regimes, WUE was positively correlated with the assimilation rate to stomatal conductance ratio (A/g(st)), a measure of instantaneous water-use efficiency. Both of these water-use efficiency indicators were generally higher in drought-treated trees compared with well-watered trees. However, the between-treatment differences in (shoot-based) WUE were smaller than expected, considering the differences in A/g(st) for two of the clones, possibly because plants reallocated dry mass from shoots to roots when subject to drought. Higher root hydraulic conductance to shoot hydraulic conductance ratios (K(R)/K(S)) during drought supports this hypothesis. The same clones were also the most sensitive to xylem cavitation and, accordingly, showed the strongest reduction in g(st)/K(P) in response to drought. Drought acclimation was manifested in decreased g(st), g(st)/K(P), osmotic potential and leaf area to vessel internal cross-sectional area ratio, and increased K(R), K(P) and WUE. Increased resistance to stem xylem cavitation in response to drought was observed in only one clone. It is concluded that WUE and drought resistance traits are inter-linked and that both may be enhanced by selection and breeding.

  5. Analysis of 20th century rainfall and streamflow to characterize drought and water resources in Puerto Rico

    USGS Publications Warehouse

    Larsen, M.C.

    2000-01-01

    During the period from 1990 to 1997, annual rainfall accumulation averaged 87% of normal at the 12 stations with the longest period of record in Puerto Rico, a Caribbean island with a 1999 population of 3.8 million. Streamflow in rivers supplying the La Plata and Loi??za reservoirs, the principal water supply of the San Juan metropolitan area, was at or below the 10th flow percentile for 27% to 50% of the time between December 1993 and May 1996. Diminished reservoir levels in 1994 and 1995 affected more than 1 million people in the San Juan metropolitan area. Water rationing was implemented during this period and significant agricultural losses, valued at $165 million, were recorded in 1994. The public endured a year of mandatory water rationing in which sections of the city had their water-distribution networks shut off for 24 to 36 hours on alternate days. During the winter and spring of 1997-1998, water was rationed to more than 200,000 people in northwestern Puerto Rico because water level in the Guajataca reservoir was well below normal for two years because of rainfall deficits. The drought period of 1993-1996 was comparable in magnitude to a drought in 1966-1968, but water rationing was more severe during the 1993-1996 period, indicating that water management issues such as demand, storage capacity, water production and losses, and per capita consumption are increasingly important as population and development in Puerto Rico expand.

  6. Drought evolution: greater and faster impacts on blue water than on green water

    NASA Astrophysics Data System (ADS)

    Destouni, G.; Orth, R.

    2017-12-01

    Drought propagates through the terrestrial water cycle, affecting different interlinked geospheres which have so far been mostly investigated separately and without direct comparison. By use of comprehensive multi-decadal data from >400 near-natural catchments along a steep climate gradient across Europe we here analyze drought propagation from precipitation (deficits) through soil moisture to runoff (blue water) and evapotranspiration (green water). We show that soil-moisture droughts reduce runoff stronger and faster than evapotranspiration. While runoff responds within weeks, evapotranspiration can be unaffected for months, or even entirely as in central and northern Europe. Understanding these different drought pathways towards blue and green water resources contributes to improve food and water security and offers early warning potential to mitigate (future) drought impacts on society and ecosystems.

  7. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    PubMed Central

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  8. Analysis of Gene Expression and Physiological Responses in Three Mexican Maize Landraces under Drought Stress and Recovery Irrigation

    PubMed Central

    Hayano-Kanashiro, Corina; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Simpson, June

    2009-01-01

    Background Drought is one of the major constraints for plant productivity worldwide. Different mechanisms of drought-tolerance have been reported for several plant species including maize. However, the differences in global gene expression between drought-tolerant and susceptible genotypes and their relationship to physiological adaptations to drought are largely unknown. The study of the differences in global gene expression between tolerant and susceptible genotypes could provide important information to design more efficient breeding programs to produce maize varieties better adapted to water limiting conditions. Methodology/Principal Findings Changes in physiological responses and gene expression patterns were studied under drought stress and recovery in three Mexican maize landraces which included two drought tolerant (Cajete criollo and Michoacán 21) and one susceptible (85-2) genotypes. Photosynthesis, stomatal conductance, soil and leaf water potentials were monitored throughout the experiment and microarray analysis was carried out on transcripts obtained at 10 and 17 days following application of stress and after recovery irrigation. The two tolerant genotypes show more drastic changes in global gene expression which correlate with different physiological mechanisms of adaptation to drought. Differences in the kinetics and number of up- and down-regulated genes were observed between the tolerant and susceptible maize genotypes, as well as differences between the two tolerant genotypes. Interestingly, the most dramatic differences between the tolerant and susceptible genotypes were observed during recovery irrigation, suggesting that the tolerant genotypes activate mechanisms that allow more efficient recovery after a severe drought. Conclusions/Significance A correlation between levels of photosynthesis and transcription under stress was observed and differences in the number, type and expression levels of transcription factor families were also identified under drought and recovery between the three maize landraces. Gene expression analysis suggests that the drought tolerant landraces have a greater capacity to rapidly modulate more genes under drought and recovery in comparison to the susceptible landrace. Modulation of a greater number of differentially expressed genes of different TF gene families is an important characteristic of the tolerant genotypes. Finally, important differences were also noted between the tolerant landraces that underlie different mechanisms of achieving tolerance. PMID:19888455

  9. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    PubMed

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response. © 2015 John Wiley & Sons Ltd.

  10. Could the 2012 Drought in Central U.S. Have Been Anticipated? A Review of NASA Working Group Research

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y. Simon; Barandiaran, Danny; Hilburn, Kyle; Houser, Paul; Oglesby, Bob; Pan, Ming; Pinker, Rachel; Santanello, Joe; Schubert, Siegfried; Wang, Hailan; hide

    2015-01-01

    This paper summarizes research related to the 2012 record drought in the central United States conducted by members of the NASA Energy and Water cycle Study (NEWS) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Palins. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains.

  11. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE PAGES

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.; ...

    2016-11-21

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  12. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  13. Drought monitoring of Tumen river basin wetlands between 1991 and 2016 using Landsat TM/ETM+

    NASA Astrophysics Data System (ADS)

    Yu, H.; Zhu, W.; Lee, W. K.; Heo, S.

    2017-12-01

    Wetlands area described as "the kidney of earth" owing to the importance of functions for stabilizing environment, long-term protection of water sources, as well as effectively minimize sediment loss, purify surface water from industrial and agricultural pollutants, and enhancing aquifer recharge. Drought monitoring in wetlands is vital due to the condition of water supply directly affecting the growth of wetland plants and local biodiversity. In this study, Vegetation Temperature Condition Index derived from Normalized Difference Vegetation Index and Land Surface Temperature is used to observe drought status from 1991 to 2016. For doing this, Landsat TM/ETM+ data for six periods are used to analytical processing. On the other hand, soil moisture maps which are acquired from CMA Land Data Assimilation System Version 1.0 for validating reliability of drought monitoring. As a result, the study shows most of area at normal moist level (decreased 25.8%) became slightly drought (increased 29.7%) in Tumen river basin cross-border (China and North Korea) wetland. The correlation between vegetation temperature condition index and soil moisture are 0.69, 0.32 and 0.2 for the layers of 0 5cm, 0 10cm, and 10 20cm, respectively. Although climate change probably contributes to the process of drought by decreasing precipitation and increasing temperature, human activities are shown as main factor that led to the process in this wetland.

  14. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-12-01

    While a majority of global climate models project drier and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC (Interaction Soil-Biosphere-Atmosphere Carbon Cycle) land surface model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent throughfall exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different water stress functions (WSFs) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentrations, the increased water-use efficiency (WUE) mitigates the sensitivity of ISBACC to drought. While one of the proposed WSF formulations improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  15. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  16. Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains.

    NASA Astrophysics Data System (ADS)

    Chang, Fong-Chiau; Smith, Eric A.

    2001-05-01

    A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated occurrences of high (low) surface air temperature and deficit (excess) rainfall. The center of maximum amplitude in rain fluctuation is around Kansas City; that of temperature is over South Dakota. Internal consistency between temperature and precipitation variability is the salient feature of the drought pattern. A drought index is used to quantify drought severity for the period 1895-1996. The 12 severest drought months (in order) during this period are June 1933, June 1988, July 1936, August 1983, July 1934, July 1901, June 1931, August 1947, July 1930, June 1936, July 1954, and August 1936. Hydrological conditions are examined using National Centers for Environmental Prediction (NCEP) reanalysis precipitable water (PW) and monthly surface observations from Kansas City, Missouri, and Bismarck, North Dakota, near the drought centers. This analysis explains why droughts exhibit negative surface relative humidity anomalies accompanied by larger than normal monthly mean daily temperature ranges and why maximum PWs are confined to a strip of about 10° longitude from New Mexico and Arizona into the Dakotas and Minnesota.Dynamical conditions are examined using NCEP reanalysis sea level pressures and 500- and 200-mb geopotential heights. The analysis indicates a midtroposphere wave train with positive centers situated over the North Pacific, North America, and the North Atlantic, with negative centers in the southeastern Gulf of Alaska and Davis Strait. Above-normal sea level pressures over New Mexico, the North Atlantic, and the subtropical Pacific along with below-normal sea level pressures over the Gulf of Alaska eastward to Canada, Davis Strait, and Greenland are present during drought periods. The most prominent feature is the strong anticyclone over central North America.On a regional scale, midtropospheric westerly winds are weakened (or become easterly) south of a thermal heat low centered in South Dakota during drought episodes because of the north-south temperature reversal perturbation. The associated westward displaced Bermuda high leads to enhanced low-level warm flow into the Dakotas, thus helping to maintain the reversal in the meridional temperature gradient and the concomitant thermal wind reversal. Enhanced moisture transport from the Gulf of California into the western plains (part of the Great Basin monsoon process) results from the large-scale perturbation pressure pattern. Middle-upper level convergence maintains the water vapor strip east of the Rocky Mountains, while the Mississippi valley undergoes moisture cutoff from both this process and the westward shift in the Bermuda high. The strip of maximum PW then undergoes enhanced solar and infrared absorption that feeds back on the thermal heat low. Surface air temperatures warm while sinking motion balances middle-upper level radiative cooling around the Kansas City area. This is the dynamical coupling that leads to reduced surface relative humidities. The centers of high surface air temperature and deficit rainfall are dynamically consistent with patterns in geopotential heights, vertical velocities, and water vapor amounts.

  17. Plasma Membrane Intrinsic Proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 Conferring Enhanced Drought Stress Tolerance in Tomato.

    PubMed

    Li, Ren; Wang, Jinfang; Li, Shuangtao; Zhang, Lei; Qi, Chuandong; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2016-08-22

    The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots. Assay on expression in Xenopus oocytes demonstrated that SlPIP2s protein displayed water channel activity and facilitated water transport into the cells. With real-time PCR and in situ hybridization analysis, SlPIP2s were considered to be involved in response to drought treatment. To test its function, transgenic Arabidopsis and tomato lines overexpressing SlPIP2;1, SlPIP2;7 or SlPIP2;5 were generated. Compared with wild type, the over-expression of SlPIP2;1, SlPIP2;7 or SlPIP2;5 transgenic Arabidopsis and tomato plants all showed significantly higher hydraulic conductivity levels and survival rates under both normal and drought conditions. Taken together, this study concludes that aquaporins (SlPIP2;1, SlPIP2;7 and SlPIP2;5) contribute substantially to root water uptake in tomato plants through improving plant water content and maintaining osmotic balance.

  18. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia.

    PubMed

    Yan, Weiming; Zheng, Shuxia; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-06-30

    Leaf gas exchange is closely associated with water relations; however, less attention has been given to this relationship over successive drought events. Dynamic changes in gas exchange and water potential in the seedlings of two woody species, Amorpha fruticosa and Robinia pseudoacacia, were monitored during recurrent drought. The pre-dawn leaf water potential declined in parallel with gas exchange in both species, and sharp declines in gas exchange occurred with decreasing water potential. A significant correlation between pre-dawn water potential and gas exchange was observed in both species and showed a right shift in R. pseudoacacia in the second drought. The results suggested that stomatal closure in early drought was mediated mainly by elevated foliar abscisic acid (ABA) in R. pseudoacacia, while a shift from ABA-regulated to leaf-water-potential-driven stomatal closure was observed in A. fruticosa. After re-watering, the pre-dawn water potential recovered quickly, whereas stomatal conductance did not fully recover from drought in R. pseudoacacia, which affected the ability to tightly control transpiration post-drought. The dynamics of recovery from drought suggest that stomatal behavior post-drought may be restricted mainly by hydraulic factors, but non-hydraulic factors may also be involved in R. pseudoacacia.

  19. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia C.; Pool, Donald; Uhlman, Kristine

    2016-03-01

    Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ˜44 km3 in the Central Valley and by ˜100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3 yr-1, CU) or is used to recharge groundwater (MAR, ≤1.5 km3 yr-1) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0-1.6 km3 yr-1, 2000-2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  20. Effects of Geographic Diversification on Risk Pooling to Mitigate Drought-Related Financial Losses for Water Utilities

    NASA Astrophysics Data System (ADS)

    Baum, Rachel; Characklis, Gregory W.; Serre, Marc L.

    2018-04-01

    As the costs and regulatory barriers to new water supply development continue to rise, drought management strategies have begun to rely more heavily on temporary conservation measures. While these measures are effective, they often lead to intermittent and unpredictable reductions in revenues that are financially disruptive to water utilities, raising concerns over lower credit ratings and higher rates of borrowing for this capital intensive sector. Consequently, there is growing interest in financial risk management strategies that reduce utility vulnerabilities. This research explores the development of financial index insurance designed to compensate a utility for drought-related losses. The focus is on analyzing candidate hydrologic indices that have the potential to be used by utilities across the US, increasing the potential for risk pooling, which would offer the possibility of both lower risk management costs and more widespread implementation. This work first analyzes drought-related financial risks for 315 publicly operated water utilities across the country and examines the effectiveness of financial contracts based on several indices both in terms of their correlation with utility revenues and their spatial autocorrelation across locations. Hydrologic-based index insurance contracts are then developed and tested over a 120 year period. Results indicate that risk pooling, even under conditions in which droughts are subject to some level of spatial autocorrelation, has the potential to significantly reduce the cost of managing financial risk.

Top