Sample records for drs x-ray diffraction

  1. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions

  2. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  3. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    PubMed

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  4. Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.

    2014-12-01

    A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.

  5. Preparation and characterization of Bi-doped TiO{sub 2} and its solar photocatalytic activity for the degradation of isoproturon herbicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu

    Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less

  6. The incorporation of plutonium in lanthanum zirconate pyrochlore

    NASA Astrophysics Data System (ADS)

    Gregg, Daniel J.; Zhang, Yingjie; Middleburgh, Simon C.; Conradson, Steven D.; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.

    2013-11-01

    The incorporation of plutonium (Pu) within lanthanum zirconate pyrochlore was investigated using air, argon, and N2-3.5%H2 sintering atmospheres together with Ca2+ and Sr2+ incorporation for charge compensation. The samples have been characterised in the first instance by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). The results show Pu can be exchanged for La3+ on the A-site with and without charge compensation and for Zr4+ on the B-site. DRS measurements were made over the wavenumber range of 4000-19,000 cm-1 and the Pu in all air- and argon-sintered samples was found to be present as Pu4+ while that in samples sintered in N2-3.5%H2 was present as Pu3+. The Pu valence was confirmed for three of the samples using X-ray near-edge absorption spectroscopy (XANES). Pu valences >4+ were not observed in any of the samples.

  7. Eco-friendly and green synthesis of BiVO4 nanoparticle using microwave irradiation as photocatalayst for the degradation of Alizarin Red S

    NASA Astrophysics Data System (ADS)

    Abraham, S. Daniel; David, S. Theodore; Bennie, R. Biju; Joel, C.; Kumar, D. Sanjay

    2016-06-01

    Bismuth vanadate (BiVO4) nanocrystals have been successfully synthesised using microwave-assisted combustion synthesis (MCS), and characterised using Fourier transform infrared (FT-IR) and Raman spectra, surface area analysis (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX), diffused reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The XRD results confirmed the formation of monoclinic bismuth vanadate. The formations of BiO & VO43-vibrations were ascertained from FT-IR data. The morphology of hallow internal structural micro entities were confirmed by SEM. The optical properties were determined by DRS and PL spectra. Hence, the influence of the preparation methods on the structure, morphology and optical activities of bismuth vanadate was investigated systematically. Photocatalytic degradation (PCD) of Alizarin Red S (ARS), an effective disrupting chemical in aqueous medium was investigated using BiVO4 nanoparticles. The kinetics of PCD was found to follow pseudo first-order.

  8. Synthesis & characterization of Bi7.38Ce0.62O12.3 and its optical and electrocatalytic property

    NASA Astrophysics Data System (ADS)

    Padmanaban, A.; Dhanasekaran, T.; Kumar, S. Praveen; Gnanamoorthy, G.; Stephen, A.; Narayanan, V.

    2017-05-01

    Bismuth cerium oxide was synthesized by thermal decomposition method. The material was characterized by X-ray diffraction technique, DRS UV-Vis, Raman spectral methods and FE-SEM. The electrocatalytic sensing activity of bismuth cerium oxide modified GCE toward 4-nitrophenol exhibits better activity than the bare GCE. The modified electrode shows higher anodic current response with lower potential.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuthmore » nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.« less

  10. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  11. Ultrasonic irradiation-assisted synthesis of Bi2S3 nanoparticles in aqueous ionic liquid at ambient condition.

    PubMed

    de la Parra-Arciniega, Salomé M; Garcia-Gomez, Nora A; Garza-Tovar, Lorena L; García-Gutiérrez, Domingo I; Sánchez, Eduardo M

    2017-05-01

    In this work, an easy, fast and environmentally friendly method to obtain Bi 2 S 3 nanostructures with sphere-like morphology is introduced. The promising material was successfully synthesized by a sonochemical route in 20% 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO 4 ] ionic liquid solution (IL). Morphological studies by electron microscopy (SEM and TEM) show that the use of IL in the synthesis of Bi 2 S 3 favors the formation of nanocrystals non-agglomerated. Micro Raman and energy dispersive X-ray spectroscopy (EDXS) were used to determine the composition and purity of the synthesized material. X-ray powder diffraction (XRD) and selective area electron diffraction (SAED) revealed that ultrasonic radiation accelerated the crystallization of Bi 2 S 3 into orthorhombic bismuthinite structure. The band gap calculated from the diffuse reflectance spectra (DRS) was found to be 1.5eV. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L.

    NASA Astrophysics Data System (ADS)

    Saputra, I. S.; Yulizar, Y.

    2017-04-01

    ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.

  13. Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul

    2016-09-01

    Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.

  14. Prediction of Ba, Co and Ni for tropical soils using diffuse reflectance spectroscopy and X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica

    2017-04-01

    Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.

  15. The effects of surfactant on the structure of ZnCr2O4 dendrimer like nanostructures used in degradation of Eriochrome Black T

    NASA Astrophysics Data System (ADS)

    Sabet, Mohammad; Jahangiri, Hasan

    2018-01-01

    In this experimental work, we synthesized ZnCr2O4 nano dendrimer-like structures via a simple hydrothermal method. Different parameters such as the reaction time and temperature and the surfactant kind were changed to obtain different particle sizes and morphologies. Scanning electron microscopy was utilized to obtain the products morphologies. The results showed the product is mainly composed of dendrimer-like structures. Also, it was found the mentioned parameters had significant effects on the product sizes and morphologies. Furthermore, it was found key parameters that determine the morphology of the product is surfactant type and each surfactant creates a unique morphology. The crystallinity and crystallite size were studied by x-ray diffraction pattern. Also, the composition of the product was determined by energy dispersive x-ray analysis. Diffuse reflectance spectroscopy (DRS) was used to the investigation of the optical properties of the product. The results obtained from DRS spectra showed the product has about 3.3 eV band gap. The photocatalytic activity of the product showed that ZnCr2O4 has a significant photocatalytic activity and it can decompose Eriochrome Black T about 91% under ultra violet radiation.

  16. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.

  17. BiOBr microspheres for photocatalytic degradation of an anionic dye

    NASA Astrophysics Data System (ADS)

    Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.

    2017-03-01

    BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.

  18. Synthesis of N-doped potassium tantalate perovskite material for environmental applications

    NASA Astrophysics Data System (ADS)

    Rao, Martha Purnachander; Nandhini, Vellangattupalayam Ponnusamy; Wu, Jerry J.; Syed, Asad; Ameen, Fuad; Anandan, Sambandam

    2018-02-01

    Nitrogen containing potassium tantalate perovskite material has been synthesized by the solvothermal method using urea (CH4N2O) as a nitrogen source. The as-prepared sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The particle size of nitrogen containing KTaO3 observed from SEM images was found to be 100-150 nm. Doping KTaO3 with nitrogen causes reduction of band gap from 3.5 to 2.54 eV. The incorporation of Nitrogen into the crystal lattice of KTaO3 not only extended the absorption of light from UV (ultraviolet) region to visible region and also enhanced the photocatalytic activity. As prepared nitrogen containing KTaO3 samples exhibit cubic-like morphology and noticed efficient photocatalytic activity towards methylene blue dye degradation under visible light illumination. The intermediates formed during photodegradation were identified by mass spectrometry (GC-MS) and proposed suitable degradation pathway.

  19. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Senobari, Samaneh; Nezamzadeh-Ejhieh, Alireza

    2018-05-01

    Coupled CdS-CuO nanoparticles (NPs) subjected in the photocatalytic degradation of Methylene blue (MB) aqueous solution. The calcination temperature and the crystallite phase of CuO had a significant role on the photocatalytic activity of the coupled system and CuO200/2h-CdS catalyst (containing CuO calcined at 200 °C for 2 h) showed the best photocatalytic activity. The coupled system showed increased activity with respect to the monocomponent semiconductors. The prepared catalysts characterized by x-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive X-ray (EDX) analyzer, x-ray mapping, Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance spectroscopy (DRS) and electrochemical impedance spectroscopy (EIS) techniques. The best degradation extent of MB was obtained at: CMB: 1 mg L-1, pH 5, 80 min irradiation time and 0.8 g L-1 of the CuO200/2h-CdS catalyst. The chemical oxygen demand (COD) confirmed about 83% of MB molecules can be mineralized at the optimum conditions.

  20. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  1. Preparation of Ag/AgCl/BiMg{sub 2}VO{sub 6} composite and its visible-light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Rui; Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn; Liu, Jiu

    2013-05-15

    Graphical abstract: - Abstract: A novel composite photocatalyst Ag/AgCl/BiMg{sub 2}VO{sub 6} was synthesized by depositing Ag/AgCl nanoparticles on BiMg{sub 2}VO{sub 6} substrate via a precipitation–photoreduction method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDXA), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectrophotometer (UV–vis DRS). The photocatalyst showed high and stable photocatalytic activity for photocatalytic degradation of acid red G under visible-light irradiation (λ > 420 nm). In addition, the active ·O{sub 2}{sup −} and h{sup +}, as main reactive species, played the major roles during the reaction process.more » The high photocatalytic activity of the composite may be related to the efficient electron–hole pairs separation at the photocatalyst interfaces, as well as the surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction.« less

  2. Excellent sun-light-driven photocatalytic activity by aurivillius layered perovskites, Bi₅-xLaxTi₃FeO₁₅ (x = 1, 2).

    PubMed

    Naresh, Gollapally; Mandal, Tapas Kumar

    2014-12-10

    Aurivillius phase layered perovskites, Bi5-xLaxTi3FeO15 (x = 1, 2) are synthesized by solid-state reaction. The compounds are characterized by powder X-ray diffraction (PXD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis diffuse reflectance (UV-vis DRS), and photoluminescence (PL) spectroscopy. UV-vis DRS data revealed that the compounds are visible light absorbing semiconductors with band gaps ranging from ∼2.0-2.7 eV. Photocatalytic activity studies by Rhodamine B (RhB) degradation under sun-light irradiation showed that these layered oxides are very efficient photocatalysts in mild acidic medium. Scavenger test studies demonstrated that the photogenerated holes and superoxide radicals (O2(•-)) are the active species responsible for RhB degradation over the Aurivillius layered perovskites. Comparison of PL intensity, dye adsorption and ζ-potential suggested that a slow e(-)-h(+) recombination and effective dye adsorption are crucial for the degradation process over these photocatalysts. Moreover, relative positioning of the valence and conduction band edges of the semiconductors, O2/O2(•-), (•)OH/H2O potential and HOMO-LUMO levels of RhB appears to be responsible for making the degradation hole-specific. Photocatalytic cycle tests indicated high stability of the catalysts in the reaction medium without any observable loss of activity. This work shows great potential in developing novel photocatalysts with layered structures for sun-light-driven oxidation and degradation processes largely driven by holes and without any intervention of hydroxyl radicals, which is one of the most common reactive oxygen species (ROS) in many advanced oxidation processes.

  3. As-synthesis of nanostructure AgCl/Ag/MCM-41 composite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.

    2012-02-01

    In this work, we present the simple synthetic route for silver chloride/silver nanoparticles (AgCl/Ag-NPs) using as-synthesis method. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed that when AgNO 3 content is below 0.1 wt.% in synthetic gel, the guest AgCl/Ag-NPs is formed on the silica channel wall, and lower exists in the crystalline state. When AgNO 3 content exceeds this value, AgCl/Ag nanoparticles can be observed in high crystalline state. The absorption at 327 nm ascribed to the characteristic absorption of the AgCl semiconductor. Ag nanoparticles have been shown to exist in the nanocomposite at 375 nm. When AgNO 3 content is above 0.1 wt.% in synthetic gel, spectra exhibited stronger absorption at 450-700 nm that was attributed to the surface plasmonic resonance of silver nanoparticles. The obtained AgCl/Ag/MCM-41 sample exhibit enhanced photocatalytic activity for the degradation of methylene blue under visible-light irradiation.

  4. Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications.

    PubMed

    S, Gowri; K, Gopinath; A, Arumugam

    2018-03-01

    The present study reports the biogenic synthesis of Cadmium Oxide Nanoparticles (CdO NPs) using plant pathogenic fungus Nigrospora oryzae culture filtrate. Further, the effect of the NPs on the cancer cell line (HeLa) is explored. The sample was characterized using Thermogravimetric/Differential Thermal (TG/DTA), Powder X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Field Emission Transmission Electron Microscopy (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED) analysis. Antibacterial activity was evaluated against both Gram positive and Gram negative bacterial strains and it showed maximum activity against Proteus vulgaris. The larvicidal activity was performed to evaluate the maximum ability of synthesized CdO NPs against Anopheles stephensi. Subsequently, MTT assay also depicted the dose-dependent anticancer activity of CdO NPs against cancer cell line (HeLa). Additionally, the inhibitory effect of CdO NPs was analyzed through extensive docking with cancerous protein agent. Results enlighten that Transketolase protein exhibited high docking score of -4.8 k/mol with H-bond interactions found with Lys75 and Asn185 amino acid residues. DFT study was performed on CdO to understand the charge transfer reaction for the inhibitory mechanism. Convincingly, this study explores the understanding of CdO NPs against HeLa cells. Copyright © 2018. Published by Elsevier B.V.

  5. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  6. Investigations on surface chemical analysis using X-ray photoelectron spectroscopy and optical properties of Dy3+-doped LiNa3P2O7 phosphor

    NASA Astrophysics Data System (ADS)

    Munirathnam, K.; Dillip, G. R.; Chaurasia, Shivanand; Joo, S. W.; Deva Prasad Raju, B.; John Sushma, N.

    2016-08-01

    Near white-light emitting LiNa3P2O7:Dy3+ phosphors were prepared by a conventional solid-state reaction method. The orthorhombic crystal structure of the phosphors was confirmed using X-ray diffraction (XRD), and the valence states of the surface elements were determined from the binding energies of Li 1s, O 1s, Na 1s, P 2p, and Dy 3d by X-ray photoelectron spectroscopy (XPS). Attenuated total reflectance (ATR) - Fourier transform infrared (FT-IR) spectroscopy was employed to identify the pyrophosphate groups in the phosphors. Diffuse reflectance spectra (DRS) show the absorption bands of the Dy3+ ions in the host material. Intense blue (481 nm) and yellow (575 nm) emissions were obtained at an excitation wavelength of 351 nm and are attributed to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The combination of these two intense bands generates light emission in the near-white region of the chromaticity diagram.

  7. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  8. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  9. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  10. Template-Free Synthesis and Enhanced Photocatalytic Performance of Uniform BiOCI Flower-Like Microspheres.

    PubMed

    Chang, Fei; Xie, Yunchao; Chen, Juan; Luo, Jieru; Li, Chenlu; Hu, Xuefeng; Xu, Bin

    2015-02-01

    Preparation of uniform BiOCI flower-like microspheres was facilely accomplished through a sim- ple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCI nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCI samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (.O-) played critical roles.

  11. Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cai, Yujie; Li, Dongya; Sun, Jingyu; Chen, Mengdie; Li, Yirui; Zou, Zhongwei; Zhang, Hua; Xu, Haiming; Xia, Dongsheng

    2018-05-01

    The square-sharped BiOCl nanosheets with oxygen vacancies were successfully synthesized via a facile hydrothermal route using xylitol as surfactant. The as-prepared BiOCl samples were characterized by Powder X-ray Diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), UV-Vis diffuse reflectance spectra (DRS), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR). The as-prepared samples were phase-pure with the width and the thickness were about 50-400 nm and 20-50 nm respectively. Besides, the photodegradation performances showed the BiOCl nanosheets with 0.1 g concentration of xylitol (BOC-1) had the best photocatalytic activity under visible light due to its special polycrystalline structure, grain boundary and an optimum concentration of oxygen vacancies. The h+ and radO2- were the two main active species during the photocatalytic process and the possible photocatalytic mechanism was proposed.

  12. Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li

    2008-05-01

    CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.

  13. Electrochemical deposition of copper decorated titania nanotubes and its visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lim, Y. C.; Siti, A. S.; Nur Amiera, P.; Devagi, K.; Lim, Y. P.

    2017-09-01

    Coupling of titania with narrow band gap materials has been a promising strategy in preparing visible light responsive photocatalyst. In this work, self-organized copper decorated TiO2 nanotube (Cu/TNT) was prepared via electrodeposition of Cu onto highly ordered titania nanotube arrays (TNT). The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The DRS studies clearly show the extended absorption of Cu/TNT into the visible region and present a red shift of band gap to 2.1 eV. FESEM analysis has shown the dispersion of cubic-like Cu particles upon electrodeposition and EDX analysis supports the presence of copper species on the nanotubes surface. The photocatalytic ability of Cu/TNT was evaluated by the degradation of methyl orange from aqueous solution under low power visible light illumination. Compared to TNT, an appreciable improvement in methyl orange removal was observed for Cu/TNT and the highest removal efficiency of 80% was achieved. The effects of catalyst loading and samples repeatability were investigated and under optimum conditions, the removal efficiency of methyl orange over Cu/TNT had further increased to 93.4%. This work has demonstrated a feasible and simple way to introduce narrow band gap transition metal into nanotube arrays, which could create novel properties for functionalized nanotube arrays as well as promise a wide range of applications.

  14. The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposite

    NASA Astrophysics Data System (ADS)

    Shahbazi, Hessam; Shafei, Alireza; Sheibani, Saeed

    2018-01-01

    In this paper the morphology and structure of TiO2-CNT nanocomposite powder obtained by an in situ sol-gel process were investigated. The synthesized nanocomposite powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS). The effect of functionalizing of CNT on the properties was studied. XRD results showed amorphous structure before calcination. Also, anatase phase TiO2 was formed after calcination at 400 °C. The SEM results indicate different distributions of TiO2 on CNTs. As a result, well dispersed TiO2 microstructure on the surface of CNTs was observed after functionalizing, while compact and large aggregated particles were found without functionalizing. The average thickness of uniform and well-defined coated TiO2 layer was in the range of 30-40 nm. The DRS results have determined the reflective properties and band gap energies of nanocomposite powders and have shown that functionalizing of CNTs caused the change of band-gap energy from 2.98 to 2.87 eV.

  15. Photoluminescence and energy transfer process in Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvalakshmi, T.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    Variation in photoluminescence (PL) properties of Eu{sup 3+} and Tb{sup 3+} as a function of co-dopant (Tb{sup 3+}) concentration are studied for Gd{sub 2-x-y}O{sub 3}: Eu{sup 3+}{sub x} Tb{sup 3+}{sub y} (x = 0.02, y = 0.01, 0.03, 0.05). The crystal structure analysis is carried out by X-ray Diffraction (XRD). Absence of addition peaks corresponding europium or terbium phase confirms the phase purity. Diffuse reflectance spectroscopy (DRS) reveals the absorption peaks corresponding to host matrix, Eu{sup 3+} and Tb{sup 3+}. The bandgap calculated from Kubelka – Munk function is also reported. PL spectra are recorded at the excitation wavelength ofmore » 307 nm and the emission peak corresponding to Eu{sup 3+} confirms the energy transfer from Tb{sup 3+} to Eu{sup 3+}. The agglomeration of particles acts as quenching centres for energy transfer at higher concentrations.« less

  16. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.

    PubMed

    Sohrabnezhad, Sh; Zanjanchi, M A; Razavi, M

    2014-09-15

    Metal-semiconductor compounds, such as Ag/AgX (X=Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that O2- and OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  18. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  19. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method.

    PubMed

    M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi

    2017-06-01

    In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  1. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2018-06-01

    AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.

  2. Thermal, structural, functional, optical and magnetic studies of pure and Ba doped CdO nanoparticles.

    PubMed

    Sivakumar, S; Venkatesan, A; Soundhirarajan, P; Khatiwada, Chandra Prasad

    2015-12-05

    In this research, a chemical precipitation method was used to synthesize undoped and doped cadmium oxide nanoparticles and studied by TG-DTA, XRD, FT-IR, SEM, with EDX and antibacterial activities, respectively. The melting points, thermal stability and the kinetic parameters like entropy (ΔS), enthalpy (ΔH), Gibb's energy (ΔG), activation energy (E), frequency factor (A) were evaluated from TG-DTA measurements. X-ray diffraction analysis (XRD) brought out the information about the synthesized products exist in spherical in shape with cubic structure. The functional groups and band area of the samples were established by Fourier transform infrared (FT-IR) spectroscopy. The direct and indirect band gap energy of pure and doped samples were determined by UV-Vis-DRS. The surface morphological, elemental compositions and particles sizes were evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Finally, antibacterial activities indicated the Gram-positive and Gram-negative bacteria are more active in transporter, dehydrogenize and periplasmic enzymatic activities of pure and doped samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  4. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    NASA Astrophysics Data System (ADS)

    Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng

    2012-10-01

    A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  5. Synthesis, characterization and anti-bacterial activities of pure and Co-doped BaSO4 nanoparticles via chemical precipitation route

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Soundhirarajan, P.; Venkatesan, A.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, we reported that the synthesis and characterization of pure and diverse mole Co-doped BaSO4 nanoparticles have been synthesized by chemical precipitation technique. X-ray diffraction analysis (XRD) brought out the information about the synthesized products is orthorhombic structure and highly crystalline in nature. The average grain size of the samples was determined by using the Debye-Scherer's equation. The existence of functional groups and band area of the samples were confirmed by Fourier transform infrared (FTIR) spectroscopy. The direct and indirect band gap energy of pure and doped samples was carried out using UV-VIS-DRS. The surface micrograph, morphological distribution and elemental compositions of the synthesized products were assessed by scanning electron microscopy (SEM) and Energy dispersive X-ray (EDS). Thermo gravimetric and differential thermal analysis (TG-DTA) techniques were analyzed thermal behaviour of pure and Co-doped samples. Finally, antibacterial activities found the Gram-positive and Gram-negative bacteria are more active in transporter, dehydrogenize and periplasmic enzymatic activities of pure and doped samples.

  6. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid.

    PubMed

    Ghasemi, S; Rahimnejad, S; Setayesh, S Rahman; Rohani, S; Gholami, M R

    2009-12-30

    TiO(2) and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO(2) nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 degrees C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO(2). Dopant ions in the TiO(2) structure caused significant absorption shift into the visible region. The results of photodegradation of Acid Blue92 (AB92) in aqueous medium under UV light showed that photocatalytic activity of TiO(2) nanoparticles was significantly enhanced by the presence of some transition metal ions. Chemical Oxygen Demand (COD) of dye solutions were done at regular intervals gave a good idea about mineralization of dye.

  7. Non-Metal Doped Titania Photocatalysts for the Degradation of Neonicotinoid Insecticides Under Visible Light Irradiation.

    PubMed

    Joseph, Amala Infant Joice; Thiripuranthagan, Sivakumar

    2018-05-01

    Recombination of e-/h+ pair, the major issue of any titania based photocatalytic material, is addressed here by doping non-metals such as C, N, B, F into the lattice of nano TiO2. The as-synthesised catalysts were characterized by using various instrumental techniques such as X-ray diffraction (XRD), UV-Diffuse reflectance spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Nanosize of titania was confirmed by both XRD and TEM studies. Visible light inactivity of TiO2 is overcome by C, N, B, F doped titania catalysts in the degradation of neonicotinoid type insecticides namely imidacloprid (IMI) and thiamethoxam (TMX). The degradation efficiencies of the catalysts under different irradiations namely UV, visible and solar were compared. Among the catalysts, CNBF/TiO2 degraded IMI completely at 150, 240 and 330 min whereas TMX has been degraded completely at 210, 270 and 420 min under UV, solar and visible irradiations respectively. The recyclability test of CNBF/TiO2 confirmed its stability towards photocatalytic reaction.

  8. Improving the catalytic activity of magnetic Fe3O4/ZnO-CdO/reduced graphene oxide for ultrasonic degradation of the organic pollutants and the green oxidation of olefins

    NASA Astrophysics Data System (ADS)

    Mirzazadeh, Hoda; Lashanizadegan, Maryam

    2018-05-01

    Magnetic Fe3O4/ZnO-CdO/reduced graphene oxide (MFZC/RGO) has been synthesized by simple hydrothermal method. The structure and morphology were investigated by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Diffuse reflectance spectroscopy (DRS), Vibrating sample magnetometer (VSM), Raman and Fourier-transform infrared spectroscopy (FTIR). MFZC/RGO was applied as catalyst in degradation of methylene blue (MB), rhodamin B (RhB) and methylorange (MO) under ultrasonic irradiation. Based on the results, excellent degradation efficiencies of MB, RhB and MO (>99%) were achieved within 10, 20 and 20 min, respectively under oxygen flow. Moreover the catalytic property of MFZC/RGO was investigated in oxidation of styrene, α-methyl styrene, cyclohexene and cyclooctene under oxygen flow. In addition, MFZC/RGO can be easily collected and separated by an external magnet. The catalyst displayed negligible loss in activity and selectivity within several successive runs due to super paramagnetism.

  9. Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification

    PubMed Central

    Luo, Yidong; Qiao, Lina; Wang, Huanchun; Lan, Shun; Shen, Yang; Lin, Yuanhua; Nan, Cewen

    2018-01-01

    The danger of toxic organic pollutants in both aquatic and air environments calls for high-efficiency purification material. Herein, layered bismuth copper oxychalcogenides, BiCuSO, nanosheets of high photocatalytic activity were introduced to the PVDF (Polyvinylidene Fluoride). The fibrous membranes provide an easy, efficient, and recyclable way to purify organic pollutant. The physical and photophysical properties of the BiCuSO and its polymer composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (EPR). Photocatalysis of Congo Red reveals that the BiCuSO/PVDF shows a superior photocatalytic activity of a 55% degradation rate in 70 min at visible light. The high photocatalytic activity is attributed to the exposed active {101} facets and the triple vacant associates VBi‴VO••VBi‴. By engineering the intrinsic defects on the surface of bismuth oxysulfide, high solar-driven photocatalytic activity can be approached. The successful fabrication of the bismuth oxysulfide and its polymer nanocomposites provides an easy and general approach for high-performance purification materials for various applications. PMID:29562701

  10. Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin

    2018-06-01

    In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.

  11. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Yang, Kai; Xie, Yu; Fan, Qizhe; Yu, Jimmy C.; Shu, Qing; Wang, Chunying

    2013-02-01

    Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals.Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals. Electronic supplementary information (ESI) available: Fig. S1-S3. See DOI: 10.1039/c2nr33595f

  12. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-11-01

    The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH3COO)2, AgNO3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2-4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  13. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ternary rare earth sulfide CaCe2S4: Synthesis and characterization of stability, structure, and photoelectrochemical properties in aqueous media

    NASA Astrophysics Data System (ADS)

    Sotelo, Paola; Orr, Melissa; Galante, Miguel Tayar; Hossain, Mohammad Kabir; Firouzan, Farinaz; Vali, Abbas; Li, Jun; Subramanian, Mas; Longo, Claudia; Rajeshwar, Krishnan; Macaluso, Robin T.

    2018-06-01

    A red-orange rare earth ternary chalcogenide, CaCe2S4, was prepared in powder form by solid-state synthesis. The structural details of this compound were determined by powder X-ray diffraction. The optical band gap of CaCe2S4 was determined by diffuse reflectance spectroscopy (DRS) to be 2.1 eV, consistent with the observed red-orange color. Quantitative colorimetry measurements also support the observed color and band gap of CaCe2S4. Both direct and indirect optical transitions were gleaned from Tauc analyses of the DRS data. Photoelectrochemistry experiments on CaCe2S4 films showed n-type semiconductor behavior. Analyses of these data via the Butler-Gärtner model afforded a flat-band potential of - 0.33 V (vs. Ag/AgCl/KCl 4 M) in pH 9 aqueous sulfite electrolyte. The potential and limitations of this material for solar water splitting and photocatalytic environmental remediation (e.g., dye photodegradation) are finally presented against the backdrop of its photoelectrochemical stability and surface hole transfer kinetics in aqueous electrolytes.

  15. Morphological effect of BiVO4 catalysts on degradation of aqueous paracetamol under visible light irradiation.

    PubMed

    Hu, Changying; Xu, Jie; Zhu, Yaqi; Chen, Acong; Bian, Zhaoyong; Wang, Hui

    2016-09-01

    Morphological effect of bismuth vanadate (BiVO4) on visible light-driven catalytic degradation of aqueous paracetamol was carefully investigated using four monoclinic BiVO4 catalysts. The catalysts with different morphologies were controllably prepared by a hydrothermal method without any additions. The prepared catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS). Under the visible light irradiation, these catalysts with different morphology were investigated to degrade aqueous paracetamol contaminant. The degradation effects were evaluated based on the catalyst morphology, solution pH, initial paracetamol concentration, and catalyst dosage. Cube-like BiVO4 powders exhibited excellent photocatalytic performance. The optimal photocatalytic performance of the cube-like BiVO4 in degrading paracetamol was achieved.

  16. Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Wang, Yongbin; Zhang, Lixin; Jiu, Hongfang; Li, Na; Sun, Yixin

    2014-06-01

    A series of copper sulfide nanocrystals/graphene nanocomposites (CuS/GR) with different weight ratios of GR were fabricated via a one-step hydrothermal approach by using dimethylsulfoxide (DMSO) as the source of sulfur and solvent. The as-prepared samples were studied by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), transmission scanning electron microscopy (TEM) and photoluminescence spectra (PL) are employed to determine the properties of the samples. The results show that the CuS nanocrystals with an average size of 16 nm almost overspread on the GR graphene scaffold. The samples exhibit excellent photocatalytic activities in degrading the methylene blue (MB) compared with pure CuS. This work shows that CuS/GR nanocomposites would be promising in dye wastewater treatment as Fenton-like reagents.

  17. Examination of U valence states in the brannerite structure by near-infrared diffuse reflectance and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Finnie, Kim S.; Zhang, Zhaoming; Vance, Eric R.; Carter, Melody L.

    2003-04-01

    The valence state of uranium doped into a f 0 thorium analog of brannerite (i.e., thorutite) has been examined using near-infrared (NIR) diffuse reflectance (DRS) and X-ray photoelectron (XPS) spectroscopies. NIR transitions of U 4+, which are not observed in spectra of brannerite, have been detected in the samples of U xTh 1- xTi 2O 6, and we propose that strong specular reflectance is responsible for the lack of U 4+ features in UTi 2O 6. Characteristic U 5+ bands have been identified in samples in which sufficient Ca 2+ has been added to nominally effect complete oxidation to U 5+. XPS results support the assignments of U 4+ and U 5+ by DRS. The presence of residual U 4+ bands in the spectra of the Ca-doped samples is consistent with segregation of Ca 2+ to the grain boundaries during high temperature sintering.

  18. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  19. Structure and photocatalytic activity studies of TiO{sub 2}-supported over Ce-modified Al-MCM-41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Reddy, Jakkidi; Durgakumari, Valluri, E-mail: durgakumari@iict.res.in; Subrahmanyam, Machiraju

    2009-07-01

    Ce-Al-MCM-41, TiO{sub 2}/Al-MCM-41 and TiO{sub 2}/Ce-Al-MCM-41 materials with varying contents of Ce (by impregnation) and TiO{sub 2} loaded (by solid-state dispersion) on Al-MCM-41 support are prepared. The Ce modified and TiO{sub 2} loaded composite systems are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS) techniques. The DRS and XPS of low Ce content (0.2-0.5 wt.%) modified Al-MCM-41 samples are showing more characteristic of Ce{sup 3+} species wherein cerium in interaction with Al-MCM-41 and that of high Ce (0.8, 3.0 wt.%) content modified samples are showing the characteristic of bothmore » Ce{sup 4+}and Ce{sup 3+}species. A series of Ce-modified Al-MCM-41 and TiO{sub 2} loaded composite catalysts are evaluated for photocatalytic degradation of phenol under UV irradiation. Low Ce content in Ce{sup 3+} state on Al-MCM-41 is showing good photoactivity in comparison with high Ce content samples and pure ceria. The composite TiO{sub 2}/Ce-Al-MCM-41 is showing enhanced degradation activity due decreased rate of electron-hole recombination on TiO{sub 2} surface by the redox properties of cerium. The photocatalyst TiO{sub 2}/Ce-Al-MCM-41 with an optimum of 10 wt.% TiO{sub 2} and 0.3 wt.% Ce is showing maximum phenol degradation activity. The possible mechanism of phenol degradation on the composite photocatalyst is proposed.« less

  20. Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium.

    PubMed

    Chen, Guihua; Wang, Yong; Zhang, Juihui; Wu, Chenglin; Liang, Huading; Yang, Hui

    2012-05-01

    A series of nitrogen and erbium co-doped TiO2 photocatalyst was prepared by sol-hydrothermal method. The structure and properties of the photocatalyst were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (DRS). The XRD and BET results showed that co-doping inhibited the increase of crystallite size and enlarged specific surface areas. XPS spectroscopy indicated nitrogen atoms were incorporated into TiO2 lattice, and erbium atoms mostly existed in the forms of Er2O3. A shift of the absorption edge to the lower energy and four absorption bands located at 654, 544, 524 and 489 nm attributed to the 4f transitions of 4I15/2 --> 4F2/9, 4I15/2 --> 4S3/2, 4I15/2 --> 2H11/2, 4I15/2 --> 4F7/2 of Er3+ were observed using DRS spectroscopy. The catalytic efficency was evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the photocatalytic performance of the co-doped TiO2 was related with the hydrothermal temperature and the molar ratio of N/Ti, and they showed higher acitivites than pure TiO2. Results determined by fluorescence technique revealed that irradiation (lambda > 400 nm) of TiO2 photocatalyst dispersed in MO solution induces the generation of the highly active hydroxyl radicals (OH). It indicated the photocatalytic activities of TiO2 photocatalyst were correlation with the formation rate of hydroxyl radicals (OH) and other active oxygen species.

  1. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  2. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less

  3. Crystal structure, spectroscopic study, photoluminescent properties and DFT calculations of the 2-guanidinobenzimidazolium dichloride and dibromide monohydrate salts

    NASA Astrophysics Data System (ADS)

    Hassen, S.; Chebbi, H.; Zid, M. F.; Arfaoui, Y.

    2018-09-01

    Two organic salts compounds C8H13Cl2N5O(1) and C8H13Br2N5O(2) were prepared by slow evaporation at room temperature and characterized through single-crystal X-ray diffraction, photoluminescence, IR and UV-Vis diffuse reflectance spectroscopy (UV/DRS) from which the optical properties were determined. The asymmetric unit of (1) and (2) consists of a discrete guanidinobenzimidazolium, two halide anions X- (X = Cl, Br) and one crystallization water molecule. The crystal structures of the two title salts are stabilized by Nsbnd H … X, Osbnd H … X, Nsbnd H⋯O and Csbnd H … X hydrogen bonds. Moreover, the protonated 2-guanidobenzimidazole shows a π-π interaction adding extra stability to the three-dimensional architecture. The ground state geometries of the two compounds were optimized using density functional theory (DFT) at the 6-311+G(2d, 2p) level of theory. In order to study the excited states, time-depending density functional theory calculations were performed on the optimized structures at the same level of theory. The calculated electronic absorption and infrared spectra were in good agreement with the experimental ones.

  4. Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Valipour, A.

    2013-10-01

    The Mobil Composition of Matter No. 41 (MCM-41) containing 1.0 and 5.0 wt.% of Cu was synthesized under solid state reaction. The calcinations of samples were done at two different temperatures, 500 and 300 °C. X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used for samples characterization. Powder X-ray diffraction showed that when Cu(CH3COO)2 content is about 1.0 wt.% in Cu/MCM-41, the guest CuO-NPs and copper ions is formed on the silica channel wall, and more exists in the crystalline state. When Cu(CH3COO)2 content exceeds this value (5.0 wt.%), CuO nanoparticles and Cu2+ ions can be observed in low crystalline state. From the diffuse reflectance spectra it was confirmed that 5 wt.% Cu/MCM-41 sample calcined at 500 °C show plasmon resonance band due to Cu nanoparticles in the range between 500 and 600 nm and small copper clusters Cun in 450 nm. It also shows that some of the Cu2+ ions are present octahedrally in extraframework position in all samples. Both fourier transform infrared and diffuse reflectance spectra indicate that some of Cu2+ ions are tetrahedrally within the framework position in 1 wt.% Cu/MCM-41 samples. TEM images indicated that nanoparticles size of CuO is in range of 30-40 nm.

  5. EPR and optical investigations of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com; Sivaramaiah, G.; Rao, J.L.

    2014-12-15

    Graphical abstract: The EPR spectrum of as-prepared LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor at 110 K. - Highlights: • Using the combustion synthesis, LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared in a few minutes. • Optical investigation indicates that Cr{sup 3+} ions are present in octahedral symmetry. • The EPR signals indicate that exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs in weakly distorted sites. - Abstract: The LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared by a low-temperature combustion synthesis method. As-prepared combustion synthesized powder was characterized using powder X-ray diffraction (XRD), diffuse reflectance (DRS), electron paramagnetic resonance (EPR) andmore » photoluminescence (PL) studies. The X-ray diffraction pattern reveals crystalline hexagonal phases. The UV–vis diffuse reflectance spectrum exhibits three broad bands characteristic of Cr{sup 3+} ions in octahedral symmetry. The EPR spectrum exhibits several resonance signals. The signals with the effective g values at g = 4.84, 3.64 and 2.26 have been attributed to the isolated Cr{sup 3+} ions. The signal with the effective g value at g = 1.94 has been attributed to exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs. The PL studies exhibit several bands characteristic of Cr{sup 3+} ions in octahedral symmetry.« less

  6. Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution.

    PubMed

    Gomez, Silvina; Marchena, Candelaria Leal; Pizzio, Luis; Pierella, Liliana

    2013-08-15

    The TiO2/HZSM-11 materials were synthesized using titanium isopropoxide as a TiO2 precursor and HZSM-11 a medium pore size zeolite with high thermal and chemical resistance as support. The amount of titanium isopropoxide was varied in order to obtain TiO2 concentrations of 3, 10, 20, 30 and 50 wt% in the final material. They were characterized by a series of complementary techniques: X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (DRS), transmittance Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The surface area of the TiO2/HZSM-11 samples decreased with the increment of TiO2 loading. As result of the increment of the calcination temperature from 450 to 800°C an increase in the size of the anatase crystals was observed. However, the X-ray diffraction patterns of the solids only presented the characteristic peaks of the anatase phase. The catalytic activity of the materials in the photodegradation of Dichlorvos (DDVP) depended on the TiO2 amount the thermal treatment temperature. The sample containing 30% TiO2 calcined at 450°C showed the best catalytic performance and it can be reused without noticeable activity loss during at least four cycles. The catalytic performance was similar to that of the P25 Degussa used as a reference but its separation, recovery and reuse was easier. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  8. Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique

    NASA Astrophysics Data System (ADS)

    Rajamannan, B.; Mugundan, S.; Viruthagiri, G.; Praveen, P.; Shanmugam, N.

    2014-01-01

    In general, the nanoparticles of TiO2 may exist in the phases of anatase, rutile and brookite. In the present work, we used titanium terta iso propoxide and 2-propanol as a common starting material to prepare the precursors of bare and copper doped nanosized TiO2. Then the synthesized products were calcinated at 500 °C and after calcination the pure TiO2 nanoparticles in anatase phase were harvested. The crystallite sizes of bare and copper doped TiO2 nanoparticles were calculated from X-ray diffraction analysis. The existence of functional groups of the samples was identified by Fourier transform infrared spectroscopy. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the copper doped TiO2 nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The nonlinear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP).

  9. Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6-CdS nanocomposite film under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rajendran, Ranjith; Varadharajan, Krishnakumar; Jayaraman, Venkatesan; Singaram, Boobas; Jeyaram, Jayaprakash

    2018-02-01

    The enhanced photocatalytic performance of nanocomposite is synthesized via the hydrothermal method and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). Under visible light irradiation, PVA assisted Bi2WO6-CdS nanocomposite film displayed enhanced photocatalytic efficiency and inhibition of photocorrosion as compared with pure CdS, pure Bi2WO6 and Bi2WO6-CdS composite. The PVA assisted Bi2WO6-CdS composite film catalyst showed stable catalytic performance until seven successive runs with 92% of methylene blue(MB) degradation, and easy to recover after degradation of organic pollutant. PVA assisted Bi2WO6-CdS nanocomposite film has optimal band edge position for superior photocatalytic degradation. Furthermore, the trapping experiment was carried out using different scavenger for active species. Among the active species, OH· are the most responsive species which play a vital role in the degradation of metronidazole and MB.

  10. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  11. Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook

    2015-01-01

    In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.

  12. Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique.

    PubMed

    Rajamannan, B; Mugundan, S; Viruthagiri, G; Praveen, P; Shanmugam, N

    2014-01-24

    In general, the nanoparticles of TiO2 may exist in the phases of anatase, rutile and brookite. In the present work, we used titanium terta iso propoxide and 2-propanol as a common starting material to prepare the precursors of bare and copper doped nanosized TiO2. Then the synthesized products were calcinated at 500°C and after calcination the pure TiO2 nanoparticles in anatase phase were harvested. The crystallite sizes of bare and copper doped TiO2 nanoparticles were calculated from X-ray diffraction analysis. The existence of functional groups of the samples was identified by Fourier transform infrared spectroscopy. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the copper doped TiO2 nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The nonlinear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-05

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light

    PubMed Central

    Yuan, Xiaoya; Zhou, Chao; Jing, Qiuye; Tang, Qi; Mu, Yuanhua; Du, An-ke

    2016-01-01

    Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers. PMID:28335301

  15. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.

    PubMed

    Taghizadeh, Mohammad Taghi; Vatanparast, Morteza

    2016-12-01

    Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Unpredictable adsorption and visible light induced decolorization of nano rutile for the treatment of crystal violet

    NASA Astrophysics Data System (ADS)

    Dong, Yanling; Liu, Yang; Lu, Dingze; Zheng, Feng; Fang, Pengfei; Zhang, Haining

    2017-04-01

    Photocatalysts containing different ratios of anatase and rutile are prepared via heat treatment of Degussa P-25 titania. X-ray diffraction (XRD), Bruuauer-Emmett-Teller (BET), ultraviolet-visible light diffuse reflectance spectra (DRS), Raman spectra (Raman), positron annihilation lifetime spectra (PAL) and temperature-programmed desorption (TPD) are applied to investigate the phase composition of the synthesized catalysts. Using crystal violet (CV) as the target pollutant, the unexpected visible light decolorization of rutile is observed. Despite the decreased specific surface area, the as-synthesized rutile samples exhibit much higher adsorption capability of CV than P-25 does, which in turn leads to improved photoreaction efficiency. Since the rutile samples can't absorb the visible light, the degradation under visible light irradiation is attributed to self-sensitization of CV on the surface of rutile.

  17. Real-time X-ray Diffraction: Applications to Materials Characterization

    NASA Technical Reports Server (NTRS)

    Rosemeier, R. G.

    1984-01-01

    With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.

  18. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  19. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  20. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.

    PubMed

    Iwamoto, Hiroyuki

    2018-06-13

    X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.

  1. Photocatalytic degradation of methylene blue dye and magneto-optical studies of magnetically recyclable spinel NixMn1-xFe2O4 (x = 0.0-1.0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mathubala, G.; Manikandan, A.; Arul Antony, S.; Ramar, P.

    2016-06-01

    Nickel doped spinel manganese ferrite (NixMn1-xFe2O4: x = 0.0-1.0) nanoparticles were prepared successfully by a superficial microwave irradiation technique using urea as the fuel. Powder X-ray diffraction (XRD) analysis was recognized the configuration of single phase spinel structure of NixMn1-xFe2O4. Debye Sherrer's formula was used to calculate the average crystallite size of the samples, which were found in the range of 15-20 nm. High resolution scanning electron microscopy (HR-SEM) was used to analyze the surface morphology of the samples, which showed the particle like-morphology with smaller agglomeration, and it was also confirmed by high resolution transmission electron microscopy (HR-TEM). Energy dispersive X-ray (EDX) analysis confirmed the elemental composition, which also evidence for the formation of single pure phase. Microwave heating method produced well crystalline nature of the products, which was confirmed by selected area electron diffraction (SAED) analysis. UV-Visible diffuse reflectance spectra (DRS) were used to calculate the energy band gap and the observed values are increased slightly from 2.05 eV to 2.44 eV with increasing the Ni-dapant. Magnetic characterization of the samples were analyzed by room temperature vibrating sample magnetometer (VSM) technique and the observed magnetization (Ms) values are decreased with increasing Ni content, due to the different magnetic moments of Mn2+ and Ni2+ cations. Photocatalytic degradation (PCD) of methylene blue dye was carried out by self designed photo-catalytic reactor. It was observed that PCD efficiency is increased with increase in concentration of Ni and the sample Ni0.6Mn0.4Fe2O4 shows better photocatalytic activity (96.73%) than other samples.

  2. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  3. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  4. Potential of Sm3+ doped LiSrVO4 nanophosphor to fill amber gap in LEDs

    NASA Astrophysics Data System (ADS)

    Biswas, P.; Kumar, Vinay; Sharma, Vishal; Bedyal, A. K.; Padha, Naresh; Swart, H. C.

    2018-04-01

    The LiSrVO4:Sm3+ phosphor powders were synthesized by the combustion method by varying the concentration of the Sm3+ ions from 0.25 mol% to 2.5 mol%. The powder X-ray diffraction (XRD) studies confirmed that the phosphors were crystallized as monoclinic structure belonging to space group P2/m and the transmission electron microscopy (TEM) revealed nanosized grains of the powders. The Fourier transform infrared studies (FTIR) established the formation of non-hygroscopic vanadate powders. The photoluminescence (PL) and diffused reflectance studies (DRS) were also carried out and discussed. Under 401 nm excitation, the optimized phosphor exhibited the characteristic 568, 600, 646 and 704 nm emissions of Sm3+ which corresponded to the orange-red (amber) color with (0.59, 0.41) Commission Internationale de' Eclairage (CIE) chromaticity coordinates. Concentration quenching of phosphor intensity on account of non-radiative energy transfer was ascribed to dipole-dipole interaction between activators. DRS study reveals that the host of the phosphor is a wide bandgap material which accommodates the dopant successfully. The present results signify that the LiSrVO4:Sm3+ phosphor can suitably be excited by the GaN family of UV-LEDs chips for efficient amber LEDs applications.

  5. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    PubMed

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  6. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.

    2018-06-01

    Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.

  8. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  9. DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.

    2012-03-01

    X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.

  10. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  11. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  12. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  13. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  14. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  15. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  16. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation.

    PubMed

    Vadivel, S; Maruthamani, D; Habibi-Yangjeh, A; Paul, Bappi; Dhar, Siddhartha Sankar; Selvam, Kaliyamoorthy

    2016-10-15

    Hybrid organic/inorganic nanocomposites comprised of calcium ferrite (CaFe2O4) and graphitic carbon nitride (g-C3N4) were prepared via a simple two-step process. The hybridized CaFe2O4/g-C3N4 heterostructure was characterized by a variety of techniques, including X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, electrochemical impedance spectroscopy (EIS), and photoelectrochemical studies. Photocatalytic activity of the prepared samples was evaluated against degradation of methylene blue (MB) under visible-light irradiation. The photocatalytic activity of CaFe2O4 30%/g-C3N4 nanocomposite, as optimum photocatalyst, for degradation of MB was superior to the pure CaFe2O4 and g-C3N4 samples. It was demonstrated that the photogenerated holes and superoxide ion radicals were the two main reactive species towards the photocatalytic degradation of MB over the nanocomposite. Based on the experimental results, a possible photocatalytic mechanism for the MB degradation over the nanocomposite was proposed. This work may provide some inspiration for the fabrication of spinel ferrites with efficient photocatalytic performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E.; Weaver, H. Joseph

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  18. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  19. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  20. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less

  1. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye

    NASA Astrophysics Data System (ADS)

    Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel

    2016-12-01

    In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.

  2. Electrodeposition of gold nanoparticles on mesoporous TiO{sub 2} photoelectrode to enhance visible region photocurrent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriyono,; Krisnandi, Yuni Krisyuningsih; Gunlazuardi, Jarnuzi, E-mail: jarnuzi@ui.ac.id

    2016-04-19

    Electrodeposition of gold nanoparticles (Au NPs) on the mesoporous TiO{sub 2} photoelectrode to enchance visible region photocurrent have been investigated. Mesoporous TiO{sub 2} was prepared by a sol gel method and immobilized to the fluorine doped tin oxide (FTO) substrate by dip coating technique. Gold nanoparticles were electrodeposited on the TiO{sub 2} surface and the result FTO/TiO{sub 2}/Au was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray diffraction (XRD). The generated photocurrent was evaluated with an electrochemical workstation (e-DAQ/e-recorder 401) using 60 W wolfram lamp as visible lightmore » source. The photoelectrochemical evaluation indicated that the presence of gold nanoparticles on TiO{sub 2} photoelectrode shall enhance the photocurrent up to 50%.« less

  3. Template-Free Solvothermal Synthesis of Flower-Like BiOBr Microspheres in Ethanol Medium for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Hong, Shaoming; Ren, Huijun; Fang, Yanfeng; Huang, Yingping; Li, Ruiping

    2018-05-01

    Three-dimensionally (3D) BiOBr microflowers were prepared by a simple solvothermal method, employing Bi(NO3)3 · 5H2O and NaBr as starting reagents in ethanol. The structural, light absorption and morphological properties of as-prepared BiOBr microspheres were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS), etc. The results showed that ethanol acted not only as a solvent but also as a template in 3D BiOBr preparation. The BiOBr microspheres exhibited superior photocatalytic activity compared with 2D BiOBr nanosheets, far exceeding that of TiO2 (Degussa, P25). It was found that both superoxide radical (O2 •-) and holes (h+) played a key role in the degradation of RhB by BiOBr microflowers.

  4. Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.

    PubMed

    Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John

    2014-03-01

    A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.

  5. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    PubMed

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  6. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  7. Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca3Co4O9 by a starch assisted sol-gel combustion method

    NASA Astrophysics Data System (ADS)

    Agilandeswari, K.; Ruban Kumar, A.

    2014-09-01

    In this present work we discussed the synthesis of pure Ca3Co4O9 ceramic powder by a starch assisted sol-gel combustion method. The products were characterized by powder X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA-DTA), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). X-ray diffraction pattern confirmed the formation of single phase Ca3Co4O9 at a sintering temperature of 1073 K, and it is also confirmed in the thermal analysis. SEM images indicate the presence of diffused microporous sphere like morphology and the grain sizes are in the range of 150-300 nm. Optical properties of Ca3Co4O9 ceramic show a band gap at an energy level of 2.10 eV. A maximum electrical resistivity of 0.002 mΩ cm was exhibited by Ca3Co4O9 that was decreased to 0.0012 mΩ cm, when the temperature increased from 300 K to 473 K. Dielectric studies were conducted at various temperatures from room temperature to 673 K and the results indicate that the space charge polarization contributes to the conduction mechanism. It also shows that the dielectric relaxation with activation energy is 0.96 eV. The magnetic properties as a function of temperature represent the ferri-paramagnetic phase transition at above 50 K. M-H curve shows the hysteresis loop with saturation magnetization (Ms) and confirms the presence of soft magnetic materials.

  8. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method.

    PubMed

    Sohrabnezhad, Sh; Zanjanchi, M A; Hosseingholizadeh, S; Rahnama, R

    2014-04-05

    The synthesis of CuS nanomaterial in MCM-41 matrix has been realized by chemical synthesis between MCM-41, copper sulfate pentahydrate and thiourea via a solvothermal method in ethylene glycol and water, separately. X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) were used to characterize the products. At synthesized CuS/MCM-41 sample in ethylene glycol, X-ray diffraction and diffuse reflectance spectroscopy showed pure covellite phase of copper sulfide with high crystality. But prepared CuS/MCM-41 sample in water shows the covellite, chalcocite and the djurleite phase of copper sulfide nanostructures. The formation of CuS nanostructures was confirmed by FT-IR. Photocatalytic activity of CuS/MCM-41 nanocomposites was studied for degradation of Methylene Blue (MB) under visible light. The CuS/MCM-41 nanocomposite is more effective nanocatalyst than synthesized CuS/MCM-41 sample in water for degradation of methylene blue. Several parameters were examined, catalyst amount (0.1-1gL(-1)), pH (1-13) and initial concentration of MB (0.96-10ppm). The extent of degradation was estimated from the residual concentration by spectrophotometrically. The support size was obtained in the range 60-145nm by TEM. In the same way, the average size of copper sulfide in CuSMCM-41E and CuS/MCM-41W nanostructures were obtained about 10nm and 16nm, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  10. Philip A. Parilla | NREL

    Science.gov Websites

    atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence

  11. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  12. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  13. Coherent X-ray diffraction imaging of nanoengineered polymeric capsules

    NASA Astrophysics Data System (ADS)

    Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.

    2017-10-01

    For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  15. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    NASA Astrophysics Data System (ADS)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  16. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  17. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  18. Utilization of visible to NIR light energy by Yb+3, Er+3 and Tm+3 doped BiVO4 for the photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Regmi, Chhabilal; Kshetri, Yuwaraj K.; Ray, Schindra Kumar; Pandey, Ramesh Prasad; Lee, Soo Wohn

    2017-01-01

    Lanthanide-doped BiVO4 semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC® CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO4 with 6:3:3 mol percentage of Yb+3:Er+3:Tm+3 in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  19. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase.

    PubMed

    Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie

    2009-05-30

    Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.

  20. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid.

    PubMed

    Xia, Jiexiang; Yin, Sheng; Li, Huaming; Xu, Hui; Yan, Yongsheng; Zhang, Qi

    2011-02-01

    BiOI uniform flowerlike hollow microspheres with a hole in its surface structures have been successfully synthesized through an EG-assisted solvothermal process in the presence of ionic liquid 1-butyl-3-methylimidazolium iodine ([Bmim]I). The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), nitrogen sorption, and diffuse reflectance spectroscopy (DRS). A possible formation mechanism for the growth of hollow microspheres was discussed. During the reactive process, ionic liquid not only acted as solvents and templates but also as an I source for the fabrication of BiOI hollow microspheres and was vital for the structure of hollow microspheres. Additionally, we evaluated the photocatalytic activities of BiOI on the degradation of methyl orange (MO) under visible light irradiation and found that as-prepared BiOI hollow microspheres exhibited higher photocatalytic activity than BiOI nanoplates and TiO(2) (Degussa, P25) did. On the basis of such analysis, it can be assumed that the enhanced photocatalytic activities of BiOI hollow microspheres could be ascribed to its energy band structure, high BET surface area, high surface-to-volume ratios, and light absorbance.

  1. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  2. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  3. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  4. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  5. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  6. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  7. Enhanced photocatalytic hydrogen evolution activity of CuInS{sub 2} loaded TiO{sub 2} under solar light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changjiang; Xi, Zhenhao; Fang, Wenzhang

    2015-03-15

    In this paper, p–n type CuInS{sub 2}/TiO{sub 2} particles were prepared in ethylenediamine by the solvothermal method. The microstructural properties of the synthesized p–n type catalysts were characterized by X-ray diffraction (XRD) in order to confirm the existence of crystalline CuInS{sub 2} on the surface of TiO{sub 2}, which was also confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) images provided the detailed morphological properties about the CuInS{sub 2}/TiO{sub 2} heterostructure. UV–vis diffuse reflectance spectroscopy (UV–vis DRS) was used to investigate the optical properties of the CuInS{sub 2}/TiO{sub 2} particles. The DRS results indicated that both the p–nmore » type structure and CuInS{sub 2} acting as a sensitizer can enhance significantly the absorption of UV and visible light. The photocatalytic activities of the CuInS{sub 2}/TiO{sub 2} particles were evaluated by hydrogen evolution reactions using Xe-lamp irradiation as a simulated solar light source. The greatly enhanced photocatalytic activity of hydrogen evolution under simulated solar light is about ~7 fold higher than that of pure commercial TiO{sub 2} (Degussa P25). - Graphical abstract: The heterojunction structure of CuInS{sub 2}/TiO{sub 2} promoted the efficiency of photoinduced charge carrier transfer and highly inherited the recombination of activated electrons and holes. - Highlight: • CuInS{sub 2}/TiO{sub 2} was prepared by a one-step solvothermal method. • 2.5% CuInS{sub 2}/TiO{sub 2} has the highest activity and keeps the activity stable. • Heterojunction structure of sample promoted the separation of electrons and holes.« less

  8. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  9. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    PubMed

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  10. X-ray Diffraction Gratings for Astrophysics

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    2010-12-01

    Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.

  11. Amorphous boron gasket in diamond anvil cell research

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin

    2003-11-01

    Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.

  12. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2018-06-01

    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.

  13. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  14. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  15. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and

  16. X-Ray Diffraction and the Discovery of the Structure of DNA

    ERIC Educational Resources Information Center

    Crouse, David T.

    2007-01-01

    A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…

  17. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  18. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain

    DOE PAGES

    Logan, Jonathan; Harder, Ross; Li, Luxi; ...

    2016-01-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd 5Si 2Ge 2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. Thesemore » tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd 5Si 2Ge 2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less

  19. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    DOE PAGES

    Cha, W.; Ulvestad, A.; Allain, M.; ...

    2016-11-23

    Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  20. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  1. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.

    2016-11-01

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  2. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.

    PubMed

    Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O

    2016-11-25

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  3. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  4. Sonocatalytic activity of a heterostructured β-Bi2O3/Bi2O2CO3 nanoplate in degradation of bisphenol A.

    PubMed

    Lee, Gooyong; Ibrahim, Shaliza; Kittappa, Shanmuga; Park, Heekyung; Park, Chang Min

    2018-06-01

    Novel heterostructured β-Bi 2 O 3 /Bi 2 O 2 CO 3 nanoplates (hBN) were synthesized to observe the sonocatalytic degradation of bisphenol A (BPA) (widely used as a model pollutant) under ultrasonic (US) irradiation. Prior to obtaining the hBN, the Bi 2 O 2 CO 3 micropowder precursor was prepared under hydrothermal conditions and then converted to hBN by increasing the calcination temperature to 300 °C. The synthesized hBN samples were characterized by field emission scanning electron microscope with energy dispersive X-ray analysis (FESEM/EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer diffuse reflection spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The hBN/US system exhibited greater sonocatalytic activity for the degradation of BPA than the US treatment with the single element bismuth oxide, β-Bi 2 O 3 prepared by annealing the Bi 2 O 2 CO 3 precursor at 400 °C for 1 h. The US frequency and US power intensity in the hBN/US system were the key operating parameters, which were responsible for the complete degradation of BPA during 6 h of reactions. The degradation efficiency of BPA under the US irradiation was positively correlated with the dose of hBN. Our findings indicate that heterostructured hBN can be used as an efficient sonocatalyst for the catalytic degradation of BPA in water and wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  6. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    PubMed

    Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  7. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Matthias; Carlson, David B.; Hunter, Mark

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less

  8. Influence of gamma ray irradiation on stoichiometry of hydrothermally synthesized bismuth telluride nanoparticles

    NASA Astrophysics Data System (ADS)

    Abishek, N. S.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.

  9. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  10. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  11. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  12. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE PAGES

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  13. Dynamic X-ray diffraction sampling for protein crystal positioning

    PubMed Central

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558

  14. Dynamic X-ray diffraction sampling for protein crystal positioning.

    PubMed

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.

  15. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOEpatents

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  16. Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus

    DOEpatents

    Green, Lanny A.; Heck, Jr., Joaquim L.

    1987-01-01

    A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.

  17. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  18. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  19. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  20. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  1. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  2. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  3. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  4. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  5. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    PubMed Central

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.

    2014-01-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  6. Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)3 nanostructures.

    PubMed

    Aškrabić, S; Araújo, V D; Passacantando, M; Bernardi, M I B; Tomić, N; Dojčinović, B; Manojlović, D; Čalija, B; Miletić, M; Dohčević-Mitrović, Z D

    2017-12-06

    Pr(OH) 3 one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr 1-x Eu x (OH) 3 (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu 3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH) 3 , subsequently changing the Pr(OH) 3 nanorod morphology. The presence of KNO 3 phase was registered in the Eu-doped samples. The oxygen-deficient Eu-doped Pr(OH) 3 nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH) 3 nanostructures was caused by the synergetic effect of oxygen vacancies and Eu 3+ (NO 3 - ) ions present on the Pr(OH) 3 surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr 1-x Eu x (OH) 3 nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.

  7. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less

  8. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  9. Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Liang, Mengning; Harder, Ross; Robinson, Ian

    2007-03-01

    A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.

  10. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  11. Quantitative analysis of thoria phase in Th-U alloys using diffraction studies

    NASA Astrophysics Data System (ADS)

    Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.

    2017-05-01

    In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.

  12. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  13. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  14. Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)

    DTIC Science & Technology

    2012-05-14

    on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m

  15. Efficient modeling of Bragg coherent x-ray nanobeam diffraction

    DOE PAGES

    Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...

    2015-07-02

    X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less

  16. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples

    DOE PAGES

    Sun, Tao; Fezzaa, Kamel

    2016-06-17

    Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less

  17. X-ray diffraction and X-ray standing-wave study of the lead stearate film structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.

    2016-05-15

    A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less

  18. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  19. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  20. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  1. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  2. X-ray fractography on fatigue fractured surface of austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo

    1995-12-31

    X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less

  3. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  4. Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.

  5. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  6. History and Solution of the Phase Problem in theTheory of Structure Determination of Crystals from X-ray Diffraction Experiments

    ScienceCinema

    Wolf, Emil [University of Rochester, Rochester, New York, United States

    2017-12-09

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  7. CdS quantum dots confined in mesoporous TiO2 with exceptional photocatalytic performance for degradation of organic polutants.

    PubMed

    Zhou, Panpan; Xie, Yu; Fang, Jing; Ling, Yun; Yu, Changling; Liu, Xiaoming; Dai, Yuhua; Qin, Yuancheng; Zhou, Dan

    2017-07-01

    In this paper, the mesoporous TiO 2 with different concentration of CdS quantum dots (i.e., x% CdS/TiO 2 ) was successfully fabricated by the sol-gel method. The composition, structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (UV-Vis/DRS) and nitrogen physical adsorption test and so on. The proportion of CdS and TiO 2 is very important for the photocatalytic performance. As a result, the photocatalytic degradation performance from the most to the least is in the order of 2% CdS/TiO 2 , 4% CdS/TiO 2 , 8% CdS/TiO 2 , pure TiO 2 and 1% CdS/TiO 2 . The photocatalytic (PC) activity of the 2% CdSTiO 2 is characterized by photocatalytic degradation of methyl orange, which can be completely degraded within 45 min better than 60 min TiO 2 takes. It is also much better than CdS. Moreover, other four organic pollutants, such as methylthionine chloride, bisphenol A, rhodamine B, malachite green can also be degraded quickly on the condition of 2% CdS/TiO 2 . What's more, the chemical stability and cycling capability of 2% CdS/TiO 2 are reflected by five cyclic degradation of methyl orange. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. XRayView: a teaching aid for X-ray crystallography.

    PubMed

    Phillips, G N

    1995-10-01

    A software package, XRayView, has been developed that uses interactive computer graphics to introduce basic concepts of x-ray diffraction by crystals, including the reciprocal lattice, the Ewald sphere construction, Laue cones, the wavelength dependence of the reciprocal lattice, primitive and centered lattices and systematic extinctions, rotation photography. Laue photography, space group determination and Laue group symmetry, and the alignment of crystals by examination of reciprocal space. XRayView is designed with "user-friendliness" in mind, using pull-down menus to control the program. Many of the experiences of using real x-ray diffraction equipment to examine crystalline diffraction can be simulated. Exercises are available on-line to guide the users through many typical x-ray diffraction experiments.

  9. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  10. Fabrication of high-resolution x-ray diffractive optics at King's College London

    NASA Astrophysics Data System (ADS)

    Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia

    1995-09-01

    The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.

  11. Photocatalyst based on TiO2 nanotube arrays co-decorated with CdS quantum dots and reduced graphene oxide irradiated by γ rays for effective degradation of ethylene

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Ye, Shengying; Song, Xianliang; Luo, Shucan

    2018-06-01

    We report herein a means of transforming TiO2 nanotube arrays (TNAs) from an amorphous state to an anatase crystal state (denoted as ∗TNAs), and present a single-step synthetic route for preparing CdS quantum dots (CdS QDs) as well as reduced graphene oxide (rGO) through gamma-ray irradiation. The as-prepared ∗TNAs, CdS QDs, and rGO, which had all been subjected to gamma-ray irradiation, were then assembled together to produce the desired heterojunction (denoted as CdS QDs/rGO-∗TNAs). X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet/visible diffuse-reflectance spectroscopy (UV/Vis DRS), Fourier-transform infrared spectroscopy (FTIR), micro-Raman spectrometry (RS), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) have been applied to characterize the appearance and performance of this photocatalyst. The photocatalytic activity of CdS QDs/rGO-∗TNAs towards ethylene degradation has been measured by placing it in a simulated cold-storage environment, the temperature and humidity of which were set at about 3 ± 1 °C and 75-90%, respectively. The results showed that the rate constant (K) of ethylene degradation could reach up to 1.07 × 10-3 min-1 with CdS QDs/rGO-∗TNAs, as compared to 2.30 × 10-4 min-1 with ∗TNAs and 6.25 × 10-4 min-1 with CdS QDs-∗TNAs, indicating that the constructed CdS QDs/rGO-∗TNAs constitutes a promising photocatalyst for ethylene removal in a cold storage environment.

  12. Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity

    PubMed Central

    Liu, Yazi; Xu, Jian; Wang, Liqiong; Zhang, Huayang; Xu, Ping; Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin

    2017-01-01

    Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO) oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O2 evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure, a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized for the degradation of various industrial dyes under natural sunlight irradiation which is of high significance for the remediation of industrial wastewater in the future. PMID:28336897

  13. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali Aldabaa, Abdalsamad Abdalsatar; Ghosh, Rakesh Kumar; Paul, Sathi; Nasim Ali, Md

    2015-05-01

    Using 108 petroleum contaminated soil samples, this pilot study proposed a new analytical approach of combining visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence spectrometry (PXRF) for rapid and improved quantification of soil petroleum contamination. Results indicated that an advanced fused model where VisNIR DRS spectra-based penalized spline regression (PSR) was used to predict total petroleum hydrocarbon followed by PXRF elemental data-based random forest regression was used to model the PSR residuals, it outperformed (R(2)=0.78, residual prediction deviation (RPD)=2.19) all other models tested, even producing better generalization than using VisNIR DRS alone (RPD's of 1.64, 1.86, and 1.96 for random forest, penalized spline regression, and partial least squares regression, respectively). Additionally, unsupervised principal component analysis using the PXRF+VisNIR DRS system qualitatively separated contaminated soils from control samples. Fusion of PXRF elemental data and VisNIR derivative spectra produced an optimized model for total petroleum hydrocarbon quantification in soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Two-photon x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, J.

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  15. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  16. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  17. Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.

    PubMed

    Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter

    2011-03-01

    A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.

  18. Functionalized mesoporous silica supported copper(II) and nickel(II) catalysts for liquid phase oxidation of olefins.

    PubMed

    Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim

    2011-12-14

    Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions.

  19. Visible light assisted photodecolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Suganthi, A.; Rajarajan, M.; Sakthivadivel, R.

    2012-03-01

    Hesperidin a flavanoid, modified TiO2 nanoparticles (Hes-TiO2) was synthesized to improve the visible light driven photocatalytic performance of TiO2. The synthesized nanoparticles were characterized by UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), FT-IR, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of Hes-TiO2 was investigated based on the decolorization of eosin-Y under visible light irradiation. Hes-TiO2 showed high efficiency for the decolorization of eosin-Y. The influences of various reaction parameters like effect of pH, catalyst dosage and initial dye concentration on the photocatalytic efficiency were investigated. The adsorption of eosin-Y on Hes-TiO2 was found favorable by the Langmuir approach. The removal percentage of chemical oxygen demand (COD) was determined to evaluate the mineralization of eosin-Y during photodecolorization. Based on the intermediates obtained in the GC-MS spectroscopic technique, a probable degradation mechanism has been proposed.

  20. The influence of Ce doping of titania on the photodegradation of phenol.

    PubMed

    Martin, Marcela V; Villabrille, Paula I; Rosso, Janina A

    2015-09-01

    Pure and cerium-doped [0.05, 0.1, 0.3, 0.5, and 1.0 Ce nominal atomic % (at.%)] TiO2 was synthesized by the sol-gel method. The obtained catalysts were characterized by X-ray diffraction (XRD), UV-visible diffused reflectance spectroscopy (DRS), Raman, and BET surface area measurement. The photocatalytic activity of synthesized samples for the oxidative degradation of phenol in aqueous suspension was investigated. The content of Ce in the catalysts increases both the transition temperature for anatase to rutile phase transformation and the specific surface area, and decreases the crystallite size of anatase phase, the crystallinity, and the band gap energy value. The material with higher efficiency corresponds to 0.1 Ce nominal at.%. Under irradiation with 350 nm lamps, the degradation of phenol could be described as an exponential trend, with an apparent rate constant of (9.1 ± 0.6) 10(-3) s(-1) (r(2) = 0.98). Hydroquinone was identified as the main intermediate.

  1. The structure feature of layered M1/3TiNbO5 (M=Fe, Ce) and their photocatalytic oxidization performance for ethyl mercaptan

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Wang, Yuan; Wang, Ningning; Xu, Lei; He, Jie; Wu, Shanshan; Lan, Yunxiang; Hu, Jinsong

    2016-09-01

    Layered photocatalytic materials M1/3TiNbO5 (M = Fe, Ce) were prepared by ion-exchange of KTiNbO5 with M(NO3)3. The parent KTiNbO5 was synthesized with titanium (IV) isopropoxide and niobium oxalate by a novel polymerized complex (PC) method. The micro-structures and spectral response features of the as-prepared samples were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), laser Raman spectroscopy (LRS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that there was a significant interaction between the interlayer cation and the terminal Nbdbnd O (Tidbnd O) bond in the NbO6 (TiO6) unit of the laminates. Photocatalytic performance was evaluated in oxidation of ethyl mercaptan under natural and UV light irradiation. It can be deduced that the photocatalytic oxidization performance can be directly affected by the characteristics of the interlayer cations.

  2. Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cui, Haojie; Zhou, Yawen; Mei, Jinfeng; Li, Zhongyu; Xu, Song; Yao, Chao

    2018-01-01

    The efficient charge separation action and visible-light responding could enhance the photocatalytic property of photocatalysts. In the present study, novel CdS/BiOBr nanosheets composites were synthesized by a three-step process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), diffuse reflection spectroscopy (DRS), Raman spectroscopy and photoluminescence (PL). Under visible-light irradiation, the as-prepared CdS nanoparticles decorated BiOBr nanosheets exhibited the excellent photocatalytic activity and high stability for malachite green (MG) degradation. The photodegradation achieved maximum degradation efficiency (99%) using CdS/BiOBr-3 composites as photocatalyst. Furthermore, the possible photocatalytic mechanism upon CdS/BiOBr composites was also discussed through radical and holes trapping experiments. The heterostructure between CdS and BiOBr improved photocatalytic activity dramatically, which greatly promoted migration rate of the photoinduced electrons besides limiting the recombination of photogenerated electron-hole pairs.

  3. Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol-gel synthesized TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, J.; Pathinettam Padiyan, D.

    2017-09-01

    TiO2 nanoparticles were prepared by a sol-gel method using titanium tetra isopropoxide as a precursor. The structural, optical, morphological and electrical properties were studied by x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), a high resolution scanning electron microscope (HR-SEM), a transmission electron microscope (TEM), Raman analysis, Photoluminescence (PL) and impedance spectroscopy. The XRD and Raman spectra revealed that the synthesized samples are in pure anatase phase with an average crystallite size of 18 nm. Photocatalytic activity of the TiO2 nanoparticles was investigated for the degradation of 10 ppm methyl orange (MO) and bromophenol blue (BPB) dye using 10 mg of catalyst. Anatase TiO2 exhibited the removal of 67.12% and 85.51% of MO and BPB, respectively, within 240 min. The photocatalytic degradation process is explained using pseudo second order kinetics and fits well with the higher correlation coefficient.

  4. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    PubMed

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  5. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe

    2015-10-01

    A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron-hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  6. Effect of Ag nanoparticles deposition on photocatalytic activity of Ag{sub 2}SO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuan, E-mail: xzhang@dhu.edu.cn; Wang, Qi; Hu, Jin-Wen

    Highlights: • Ag{sub 2}SO{sub 3} was developed as novel photocatalyst. • The effect of Ag nanoparticles deposition on photocatalytic activity was investigated. • The activation and deactivation mechanism was proposed. - Abstract: A novel photocatalyst Ag{sub 2}SO{sub 3} was prepared and the effect of Ag nanoparticles, photo-deposited on the surface of Ag{sub 2}SO{sub 3}, on its photocatalytic activity was investigated. The as-prepared photocatalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflection spectroscopy (DRS). The photocatalytic activity was evaluated by photo-degradation of rhodamine B dye under UV light irradiation. It was found that the photocatalyticmore » activity of Ag{sub 2}SO{sub 3} was initially enhanced with deposition of Ag nanoparticles, but subsequently declined with Ag nanoparticles overloaded. The possible mechanism was proposed based on experimental results. These findings may contribute to developing novel photocatalysts and understanding of fundamentals of Ag-based photocatalytic materials.« less

  7. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    NASA Astrophysics Data System (ADS)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  8. Photochemical quenching of aqueous methylene blue by N, Nb co-doped TiO2 nanomaterials under visible light: a confirmatory UV/LC-MS study

    NASA Astrophysics Data System (ADS)

    Gupta, Kamini; Pandey, Ashutosh; Singh, R. P.

    2017-12-01

    Nanodimensional un-doped, Nb doped, N doped and N,Nb co-doped TiO2 particles have been prepared by the sol-gel procedure. Phase identification of the anatase particles was done by X-ray powder diffraction and Deby-Scherrer calculations revealed their particle sizes to range from 20 to 30 nm. The band gap energies of the samples were measured by UV-Vis-diffuse reflectance (UV-DRS) spectra. While un-doped TiO2 showed wide optical absorption in the UV region. The co-doped TiO2 particles exhibited narrow band gaps of ~2.7 eV, which showed absorption in the visible region. A decline in charge carrier recombination rates in the prepared samples was confirmed through photoluminescence (PL). The morphological appearances of the particles have been examined by scanning electron microscopy. X-ray photoelectron spectroscopy (XPS) of the samples confirmed the incorporations of N and Nb into the TiO2 matrices. The photocatalytic efficiencies of the prepared particles have been determined by the degradation of the non-biodegradable dye methylene blue (MB) under electromagnetic radiation. The co-doped sample showed superior photocatalytic activity under the visible light (λ  >  400) over the other samples. Photochemical quenching of aqueous MB was further analysed by UV/LC-MS which confirmed the attenuation of methylene blue.

  9. Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Ni, Jie; Xue, Jinjuan; Shen, Jing; He, Guangyu; Chen, Haiqun

    2018-05-01

    The ZnAl mixed metal-oxides (MMOs)/graphene nanocomposites were successfully fabricated by a facile hydrothermal method combined with a calcination process. The thermal treatment enables simultaneously the formation of ZnO/ZnAl2O4 heterogeneous structure, which are uniformly decorated on the surface of graphene, accompanying with the reduction of graphene oxide. The as-prepared heterostructure photocatalysts were well characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) to conduct investigations into the phase structures, microstructure and optical capability. The ZnAl MMO/RGO20 composite displayed favorable adsorption property and photo-degradation efficiency for Ciprofloxacin (CIP) aqueous solution under visible light. The photo-degradation efficiency of the as-prepared ZnAl MMO/RGO20 was 3.0 and even 4.6 times higher than that of ZnAl MMO and pure ZnAl LDH, respectively. The improvement of photocatalytic performance is ascribed to the synergistic effect of heterogeneous structure coupled with graphene, which realizes efficient charge separation efficiency, enlarged visible light adsorption range, and chemical stability of hybrid nanocomposite. The results of EIS, PL and photocurrent response also explained the best performance of ZnAl MMO/RGO20 nanocomposite. Besides, the mechanism of ZnAl MMO/RGO20 photocatalytic system was proposed and analyzed in detail.

  10. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode

    PubMed Central

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light. PMID:27055277

  11. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode.

    PubMed

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light.

  12. Synthesis, characterization and evaluation of the photocatalytic performance of Ag-CdMoO{sub 4} solar light driven plasmonic photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Rajesh; Malla, Shova; Gyawali, Gobinda

    2013-09-01

    Graphical abstract: - Highlights: • Ag-CdMoO{sub 4} solar light driven photocatalyst was successfully synthesized. • Photocatalyst exhibited strong absorption in the visible region. • Photocatalytic activity was significantly enhanced. • Enhanced activity was caused by the SPR effect induced by Ag nanoparticles. - Abstract: Ag-CdMoO{sub 4} plasmonic photocatalyst was synthesized in ethanol/water mixture by photo assisted co-precipitation method at room temperature. As synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Photocatalytic activity was evaluated by performing the degradation experiment over methylenemore » blue (MB) and indigo carmine (IC) as model dyes under simulated solar light irradiation. The results revealed that the Ag-CdMoO{sub 4} showed the higher photocatalytic performance as compared to CdMoO{sub 4} nanoparticles. Dispersion of Ag nanoparticles over the surface of CdMoO{sub 4} nanoparticles causes the surface plasmon resonance (SPR) and enhances the broad absorption in the entire visible region of the solar spectrum. Hence, dispersion of Ag nanoparticles over CdMoO{sub 4} nanoparticles could be the better alternative to enhance the absorption of visible light by scheelite crystal family for effective photocatalysis.« less

  13. One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Tang, Qian; Meng, Xianfeng; Wang, Zhiying; Zhou, Jianwei; Tang, Hua

    2018-02-01

    TiO2/g-C3N4 composite nanofibers have been successfully synthesized by one-step electrospinning method, using titanium (IV) n-butoxide (TNBT) and urea as raw materials. The structure and compositions of TiO2/g-C3N4 samples are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance spectroscopy (DRS), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS) and Brunauer-Emmett-Teller (BET), respectively. The results show that the porous uniform TiO2/g-C3N4 composite nanofibers, with diameter of 100-150 nm, can be successfully prepared through electrospinning method combining 550 °C calcination process. The photocatalytic activity is evaluated by the degradation of rhodamine B (RhB) under simulated solar light. The enhanced catalytic activity is attributed predominantly to the heterojunction between TiO2 and g-C3N4, which promotes the transferring of carriers and prohibits their recombination. With the optimal doping amount of 0.6 g urea (corresponding to 3 g TNBT), the TiO2/g-C3N4 composite nanofibers exhibit the highest rate towards the photocatalytic degradation of RhB. A diagram is presented to explicate the mechanism of the whole catalytic experiment. This study might provide a promising future of applying green catalysts to solving water pollution problems.

  14. Spectroscopic investigations on the simulated solar light induced photodegradation of 4-nitrophenol by using three novel copper(II) porphyrin-TiO2 photocatalysts.

    PubMed

    Lü, Xiang-fei; Sun, Wan-jun; Li, Jun; Xu, Wei-xia; Zhang, Feng-xing

    2013-07-01

    Three porphyrins containing different functional groups (-OH, C-O2C2H5, -COOH), 5-(4-hydroxy) phenyl-10,15,20-triphenyl porphyrin (1a), 5-(4-ethylacetatatomethoxy) phenyl-10,15,20-triphenyl porphyrin (1b), 5-(4-carboxylatomethoxy) phenyl-10,15,20-triphenyl porphyrin (1c), were synthesized and characterized spectroscopically. The CuPp(2a, 2b, 2c)-TiO2 photocatalysts were then prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS), Fourier-transform infrared spectroscopy (FT-IR). The photocatalytic activities of the photocatalysts were investigated by carrying out the photodegradation of 4-nitrophenol in aqueous solution under simulated solar irradiation. It was found that the CuPp(2a, 2b, 2c)-TiO2 enhanced the photocatalytic efficiency of bare TiO2 in photodegrading the 4-NP due to the interaction between CuPp(2a, 2b, 2c) and TiO2, resulted in the enhancement of the photogenerated electron-hole separation. The reasons of this enhanced photocatalytic activity were also discussed. Based on the present study, it could be considered as a promising photocatalyst for the further industrial application. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Georgieva, J.; Valova, E.; Armyanov, S.; Tatchev, D.; Sotiropoulos, S.; Avramova, I.; Dimitrova, N.; Hubin, A.; Steenhaut, O.

    2017-08-01

    Highly ordered TiO2 nanotube arrays (TNTA) have attracted much attention due to the excellent photocatalytic, optical and electrical properties. However, their absorption range is limited to ultraviolet (UV) spectrum only due to the wide band gap (3.2 eV). One of the strategies to overcome this problem is doping with boron and nitrogen. They are produced via titanium sheet anodization and subsequent electrochemical treatment of titania in an electrolyte containing boric acid. The as-prepared B-TNTA are annealed in N2 atmosphere at 500 °C for 2 h to obtain B,N-TNTA. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The B,N-TNTA consist of uniform and well aligned nanotubes with an average inner diameter of 80-100 nm and a length not exceeding 1 μm. The photocurrent response measurements of undoped TNTA, N-doped and B,N-co-doped samples are performed under UV and visible light (Vis) illumination and a comparison is made. The obtained results show that the B,N-doping leads to remarkable photocurrent enhancement and better photocatalytic activity for methyl orange (MO) degradation due to the synergistic effects of B,N-co-doping and lower electron-hole recombination rates.

  16. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  17. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination

    NASA Astrophysics Data System (ADS)

    Pan, Jinbo; Liu, Jianjun; Zuo, Shengli; Khan, Usman Ali; Yu, Yingchun; Li, Baoshan

    2018-06-01

    Z-scheme CdS/CQDs/BiOCl heterojunction was synthesized by a facile region-selective deposition process. Owing to the electronegativity of the groups on the surface of Carbon Quantum Dots (CQDs), they can be sandwiched between CdS and BiOCl, based on the stepwise region-selective deposition process. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical measurements and photoluminescence (PL). The results indicate that CQDs with size of 2-5 nm and CdS nanoparticles with size of 5-10 nm dispersed uniformly on the surface of cuboid BiOCl nanosheets. The photocatalytic performance tests reveal that the CdS/CQDs/BiOCl heterojunction exhibits much higher photocatalytic activity than that of BiOCl, CdS/BiOCl and CQDs/BiOCl for Rhodamine B (RhB) and phenol photodegradation under visible and UV light illumination, respectively. The enhanced photocatalytic performance should be attributed to the Z-scheme structure of CdS/CQDs/BiOCl, which not only improves visible light absorption and the migration efficiency of the photogenerated electron-holes but also keeps high redox ability of CdS/CQDs/BiOCl composite.

  18. Studies on novel BiyXz-TiO2/SrTiO3 composites: Surface properties and visible light-driven photoactivity

    NASA Astrophysics Data System (ADS)

    Marchelek, Martyna; Grabowska, Ewelina; Klimczuk, Tomasz; Lisowski, Wojciech; Giamello, Elio; Zaleska-Medynska, Adriana

    2018-03-01

    A series of novel BiyXz-TiO2/SrTiO3 composites were prepared by multistep synthesis route. The as-prepared photocatalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FT-IR), Raman spectra and BET analysis. The photocatalytic activity test was performed in aqueous solution of phenol under the irradiation of visible light range (λ ≥ 420 nm). Obtained results revealed that the BiOI_TiO2/SrTiO3 sample exhibit the highest photocatalytic activity under visible irradiation (0.6 μmol/dm3/min). Thus, it was demonstrated that modification of the TiO2/SrTiO3 microspheres by flowers-like structure made of bismuth oxyiodide resulted in enhancement of photocatalytic activity under visible light. The role of active species during the decomposition process of organic compound was investigated using different types of active species scavengers as well as electron paramagnetic resonance analysis (EPR). The study showed that in the BiOI_TiO2/SrTiO3/Vis system the holes (h+) plays relevant role in phenol decomposition. Furthermore, the stability and recyclable properties of obtained BiOI_TiO2/SrTiO3 sample were confirmed during three consecutive processes.

  19. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr.

    PubMed

    Deng, Jun; Liang, Jialiang; Li, Mian; Tong, Meiping

    2017-04-01

    g-C 3 N 4 -AgBr was synthesized by depositing AgBr nanoparticles onto g-C 3 N 4 . Scanning electron microscopy (SEM), Transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra were employed to characterize the as-synthesized photocatalysts. The disinfection activities towards representative Gram-negative strain E. coli and Gram-positive strain S. aureus were examined under visible light irradiation. Complete inactivation of 3×10 6 CFU/mL viable cell density was reached in 60min for E. coli and 150min for S. aureus, respectively. Ag + released from the photocatalysts did not contribute to the photocatalytic disinfection process. Direct contact of g-C 3 N 4 -AgBr composites and bacterial cells, as well as the presence of O 2 was indispensable for the cell inactivation. Photo-generated holes, surface bounded OH, and indirect generation of intracellular active species played important roles in disinfection process of g-C 3 N 4 -AgBr under visible light irradiation. The disruption of outside structure of cells as well as inner cell injury led to the inactivation. High pH condition led to increasing the cell disinfection due to the generation of surface bounded OH. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Facile Synthesis of BiOI Nanoparticles at Room Temperature and Evaluation of their Photoactivity Under Sunlight Irradiation.

    PubMed

    Mahmoodi, Vahid; Ahmadpour, Ali; Rohani Bastami, Tahereh; Hamed Mousavian, Mohammad Taghi

    2018-01-01

    In this study, highly photoactive BiOI nanoparticles (NPs) under sunlight irradiation were synthesized by a facile precipitation method using polyvinylpyrrolidone (PVP) at room temperature. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) and UV-vis diffuse reflectance spectra (UV-vis DRS). The results of XRD showed that PVP did not have any significant effect on tetragonal crystalline structure of BiOI. Also, using different amounts of PVP in the synthesis led to different morphologies and sizes of BiOI particles. It was found that using 0.2 g of PVP in the synthesis method changed morphology from 1-μm platelets to NPs with size under 10 nm. In addition, the photocatalytic performance of prepared photocatalysts was evaluated in the photodegradation of reactive blue 19 (RB19) dye under sunlight irradiation. The BiOI synthesized using 0.2 g PVP (BiOI0.2) showed higher degradation efficiency compared to BiOI prepared without any additive. Excellent visible light photocatalytic properties of nano-scaled BiOI0.2 samples compared to BiOI platelets could be attributed to higher surface-to-volume ratio and narrow band-gap energy of as-prepared BiOI0.2 NPs. © 2017 The American Society of Photobiology.

  1. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light

    NASA Astrophysics Data System (ADS)

    Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-01

    The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  2. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs

    NASA Astrophysics Data System (ADS)

    Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran

    2018-06-01

    In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.

  3. Synthesis and characterization of InNbO₄ nanopowder for gas sensors.

    PubMed

    Balamurugan, C; Vijayakumar, E; Subramania, A

    2012-01-15

    Indium niobate (InNbO(4)) nanopowder was prepared by a comparatively low temperature niobium citrate complex process. The prepared InNbO(4) was characterized by thermal analysis, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, diffuse reflectance spectroscopy (DRS), and impedance studies. It revealed that the well crystalline monoclinic InNbO(4) nanopowder was obtained at the calcination temperature of 600°C. The average particle diameter was 22nm. The optical band gap was found to be 2.66eV. The temperature dependent conductivity obeyed Arrhenius relation. The activation energy of the conductivity process was calculated to be 0.43eV. The gas sensing behaviour of the prepared InNbO(4) was studied by measuring the change in resistance of the sensor material as a function of various concentrations of the test gases such as liquid petroleum gas (LPG), ammonia (NH(3)) and ethanol (C(2)H(5)OH) at their optimized operating temperature. InNbO(4) had a better sensitivity to LPG (0.97) and NH(3) (0.70) gas than ethanol (0.46). The sensor responses of InNbO(4) as a function of gas concentrations and with recovery time were also studied in detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  5. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  6. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  7. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veluraja, K., E-mail: veluraja@msuniv.ac.in; Vennila, K.N.; Umamakeshvari, K.

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of themore » homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.« less

  8. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  9. Investigating the Effects of Low Temperature Annealing of Amorphous Corrosion Resistant Alloys.

    DTIC Science & Technology

    1980-11-01

    Ray Diffraction.................................................... 6 Differential Scanning Calorimetry....................................... 9...17 LIST OF FIGURES Figure 1. X- Ray Diffraction Results From Fe32Ni 36Cr 4P 2 B Annealed for One Hour at...Various Temperatures (Cr Ka Radiation) ................................. 7 Figure 2. X- Ray Diffraction Results From FeU2NiaeCr14SieB Annealed for One

  10. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl(6) and other alloys are twinned cubic crystals.

    PubMed

    Pauling, L

    1987-06-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).

  11. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl6 and other alloys are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1987-01-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841

  12. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  13. Crystallization and preliminary X-ray diffraction analysis of a chitin-binding domain of hyperthermophilic chitinase from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa

    The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.

  14. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    PubMed

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  15. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  16. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  17. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  18. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.

    PubMed

    Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  19. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  20. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    NASA Astrophysics Data System (ADS)

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  1. Conceptual Design for Time-Resolved X-ray Diffraction in a Single Laser-Driven Compression Experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.

    2017-06-01

    Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.

  2. Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation.

    PubMed

    Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen

    2015-01-01

    Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.

  3. Enhanced photo-stability and photocatalytic activity of Ag3PO4 via modification with BiPO4 and polypyrrole

    NASA Astrophysics Data System (ADS)

    Cai, Li; Jiang, Hui; Wang, Luxi

    2017-10-01

    Ag3PO4 photocatalysts modified with BiPO4 and polypyrrole (PPy) were successfully synthesized via a combination of co-precipitation hydrothermal technique and oxidative polymerization method. Their morphologies, structures and optical and electronic properties were characterized by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), X-ray photo-electron spectroscopy (XPS), UV-vis diffuse reflection spectra (UV-vis DRS), photocurrent technique and electrochemical impedance spectra (EIS). The typical triphenylmethane dye (malachite green) was chosen as a target organic contaminants to estimate the photocatalytic activities and photo-stabilities of Ag3PO4-BiPO4-PPy heterostructures under visible light irradiation. The results indicated that the existence of BiPO4 and PPy not only showed great influences on the photocatalytic activity, but also significantly enhanced photo-stability of Ag3PO4 in repeated and long-term applications. The degradation conversion of Ag3PO4-BiPO4-PPy heterostructures (ABP-3) was 1.58 times of that of pure Ag3PO4. The photo-corrosion phenomenon of Ag3PO4 was effectively avoided. The photocatalytic activity of up to 87% in the Ag3PO4-BiPO4-PPy heterostructures (ABP-3) can be remained after five repeated cycles, while only about 33% of the degradation efficiency can be reserved in pure Ag3PO4. The possible mechanism of enhanced photo-stability and photocatalytic activity of Ag3PO4-BiPO4-PPy heterostructures was also discussed in this work.

  4. IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA.

    PubMed

    Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi

    2014-11-01

    Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.

  5. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  6. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  7. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  8. An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography

    ERIC Educational Resources Information Center

    Clegg, William

    2004-01-01

    The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…

  9. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  10. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  11. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  12. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  13. X-ray Diffraction, Big and Small

    NASA Image and Video Library

    2012-10-30

    A conventional X-ray diffraction instrument left is the size of a large refrigerator, in contrast to the compact size of the Chemistry and Mineralogy CheMin instrument on NASA Curiosity rover top right.

  14. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  15. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; ...

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  16. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment

    DOE PAGES

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; ...

    2016-07-26

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable,more » for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.« less

  17. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    DOE PAGES

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less

  18. Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.

    2017-04-01

    Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.

  19. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.

  20. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film

    NASA Astrophysics Data System (ADS)

    Beyerlein, Kenneth R.

    2018-03-01

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  1. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

  2. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film.

    PubMed

    Beyerlein, Kenneth R

    2018-02-27

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  3. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  4. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  5. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  6. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  7. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  8. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  9. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  10. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  11. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...

    2017-03-21

    Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less

  12. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.

    PubMed

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-09-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.

  13. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

    PubMed Central

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-01-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079

  14. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  15. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  16. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  17. In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?

    NASA Astrophysics Data System (ADS)

    Barber, John

    2011-03-01

    In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.

  18. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  19. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  20. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  1. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  2. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  3. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  4. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  5. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  6. Illicit drug detection using energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  7. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  8. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  9. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.

    2008-09-15

    A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.

  10. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimminau, G; Nagler, B; Higginbotham, A

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  11. Framework for three-dimensional coherent diffraction imaging by focused beam x-ray Bragg ptychography.

    PubMed

    Hruszkewycz, Stephan O; Holt, Martin V; Tripathi, Ash; Maser, Jörg; Fuoss, Paul H

    2011-06-15

    We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.

  12. Development of receiving-detecting circuit for digital radiographic systems with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Volodymir D.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Voronkin, Yevheniy F.; Lysetska, Olena K.; Kostyukevych, Serhiy A.

    2009-08-01

    Detection of X-ray radiation by digital radiographic systems (DRS) is realized using multi-element detector arrays of scintillator-photodiode (S-PD) type. Accounting for our experience in development of X-ray introscopy systems, possibilities can be found for improvement of DRS detection efficiency. Namely, a more efficient use of the dynamic range of the analog-to-digit converter by means of instrumental compensation of scatter of detector characteristics and smaller apertures of individual detection channels. However, smaller apertures lead to lower levels of useful signals, and a problem emerges of signal interference over neighboring channels, which is related to optical separation of the scintillation elements. Also, more compact arrangement of electronic components of preamplifiers is achieved. The latter problem is solved by using multi-channel (from 32 to 1024 channels) photoreceiving devices (PRD). PRD has a set of photosensitive elements formed on one crystal, as well as shift registers ensuring preliminary amplification of signals and series connection to one outlet. The work envisages creation of receiving-detecting circuit (RDC) with improved spatial resolution (ISR) with the aim of producing advanced DRS with improved characteristics: density resolution better than 0.9%, and detecting ability allowing detection of θ 0.5 mm steel wire behind 6 mm steel. The work will result in the development of RDC with ISR (800-200 microns). In combination with various ionizing radiation sources and scanning mechanisms this will allow creation of DRS for many tasks of non-destructive testing (NDT) and technical diagnostics (TD), in particular, for check-up of pipelines, objects of oil and gas industries, etc. This work was supported by the Ministry of Education and Science of Ukraine, the U.S. Civilian Research and Development Foundation (CRDF), and by the NATO Science for Peace and Security Program (Project SfP-982823).

  13. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    PubMed

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV-vis light.

  14. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  15. Introduction of oxygen vacancies and fluorine into TiO{sub 2} nanoparticles by co-milling with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Sepelak, Vladimir; Shi, Jianmin

    2012-03-15

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO{sub 2} nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm{sup -1} (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d-d transitions of titanium ions. Incorporation of fluorine into n-TiO{sub 2} was concentrated at the near surfacemore » region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO{sub 2} was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO{sub 2} lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO{sub 6-n}Vo{sub n}, located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO{sub 2} particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO{sub 2} and (c) fluorine migration from PTFE to TiO{sub 2}. Highlights: Transfer of fluorine from PTFE to n-TiO{sub 2} in a dry solid state process was confirmed. Black-Right-Pointing-Pointer 40% of F in PTFE was incorporated to the near surface region of n-TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The transfer process is triggered by the oxidative decomposition of PTFE. Black-Right-Pointing-Pointer Fluorine incorporation is mediated by the formation of oxygen vacancies. Black-Right-Pointing-Pointer The sequential mechanisms are verified by XPS, EDXS, HRTEM, TG and DRS.« less

  16. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    NASA Astrophysics Data System (ADS)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490 nm when the excitation wavelength was 300 nm. As the ZnO phase developed, a variety of violet emission bands occurred within the range of 400 nm-450 nm, which was obviously related to the change in Eg. The intrinsic defects occurred in the NiO/ZnO composite powders were probably responsible for this phenomenon.

  17. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.

    PubMed

    Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael

    2018-04-24

    This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.

  18. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  19. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  20. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  1. The Space Technology-7 Disturbance Reduction Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad

    2004-01-01

    The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.

  2. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  3. Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses

  4. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  5. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination

    NASA Astrophysics Data System (ADS)

    Maiden, A. M.; Morrison, G. R.; Kaulich, B.; Gianoncelli, A.; Rodenburg, J. M.

    2013-04-01

    Ptychography is a form of scanning diffractive imaging that can successfully retrieve the modulus and phase of both the sample transmission function and the illuminating probe. An experimental difficulty commonly encountered in diffractive imaging is the large dynamic range of the diffraction data. Here we report a novel ptychographic experiment using a randomly phased X-ray probe to considerably reduce the dynamic range of the recorded diffraction patterns. Images can be reconstructed reliably and robustly from this setup, even when scatter from the specimen is weak. A series of ptychographic reconstructions at X-ray energies around the L absorption edge of iron demonstrates the advantages of this method for soft X-ray spectromicroscopy, which can readily provide chemical sensitivity without the need for optical refocusing. In particular, the phase signal is in perfect registration with the modulus signal and provides complementary information that can be more sensitive to changes in the local chemical environment.

  6. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  7. Submicron x-ray diffraction and its applications to problems in materials and environmental science

    NASA Astrophysics Data System (ADS)

    Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.

    2002-03-01

    The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  8. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.

    1999-02-01

    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  9. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  10. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  11. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  12. Curved focusing crystals for hard X-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  13. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  14. X-ray diffraction on radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Roof, R.B.

    1978-01-01

    X-ray diffraction studies on radioactive materials are discussed with the aim of providing a guide to new researchers in the field. Considerable emphasis is placed on the safe handling and loading of not-too-exotic samples. Special considerations such as the problems of film blackening by the gamma rays and changes induced by the self-irradiation of the sample are covered. Some modifications of common diffraction techniques are presented. Finally, diffraction studies on radioactive samples under extreme conditions are discussed, with primary emphasis on high-pressure studies involving diamond-anvil cells.

  15. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  17. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  18. A multi-dataset data-collection strategy produces better diffraction data

    PubMed Central

    Liu, Zhi-Jie; Chen, Lirong; Wu, Dong; Ding, Wei; Zhang, Hua; Zhou, Weihong; Fu, Zheng-Qing; Wang, Bi-Cheng

    2011-01-01

    A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays. PMID:22011470

  19. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  20. {ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.

    Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}

  1. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment

    NASA Astrophysics Data System (ADS)

    Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.

    2018-02-01

    Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.

  3. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals

    DOE PAGES

    Awel, Salah; Kirian, Richard A.; Wiedorn, Max O.; ...

    2018-02-01

    High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.

  4. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  5. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  6. Publications - GMC 42 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 42 Publication Details Title: X-ray diffraction clay mineralogy analysis of the J.W. Dalton #1 for more information. Bibliographic Reference Unknown, 1984, X-ray diffraction clay mineralogy

  7. Publications - GMC 297 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 297 Publication Details Title: X-ray diffraction analysis of cuttings from the: Texaco Inc information. Bibliographic Reference Unknown, 2001, X-ray diffraction analysis of cuttings from the: Texaco

  8. Publications - GMC 196 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 196 Publication Details Title: X-ray diffraction patterns of clay from the following wells for more information. Bibliographic Reference Unknown, 1992, X-ray diffraction patterns of clay from

  9. Publications - GMC 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 43 Publication Details Title: X-ray diffraction clay mineralogy analysis of 23 North Slope more information. Bibliographic Reference Unknown, 1983, X-ray diffraction clay mineralogy analysis of

  10. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  11. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  12. Theoretical calculation of coherent Laue-case conversion between x-rays and ALPs for an x-ray light-shining-through-a-wall experiment

    NASA Astrophysics Data System (ADS)

    Yamaji, T.; Yamazaki, T.; Tamasaku, K.; Namba, T.

    2017-12-01

    Single crystals have high atomic electric fields as much as 1 011 V /m , which correspond to magnetic fields of ˜103 T . These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up to O (10 keV ) can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.

  13. X-ray phase Identification of Chocolate is Possible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie,S.; Mazzanti, G.; Idziak, S.

    2005-01-01

    When examining chocolate samples by means of X-ray diffraction, it has become common practice for any sugar to be removed through repeated rinsing in cold water. While necessary in some cases, we show that it is possible to determine the phase of certain dark chocolate samples without sugar removal, through examination of distinctive X-ray diffraction peaks corresponding to lattice spacings of 3.98 and 3.70 Angstroms.

  14. The effect of laser radiation on the diffraction of X-rays in crystals

    NASA Astrophysics Data System (ADS)

    Trushin, V. N.; Chuprunov, E. V.; Khokhlov, A. F.

    1988-10-01

    The effect of laser radiation on the intensity of the X-ray diffraction peaks of KDP, ADP, and CuSO4-5H2O crystals was studied experimentally. This intensity was found to increase as a function of the laser beam power. This result suggests that it is possible to use laser beams to control X-ray intensity in the crystals considered.

  15. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  16. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  17. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.

    PubMed

    Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  18. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  19. X-ray characterization of curved crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo

    2015-05-01

    Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).

  20. Publications - GMC 95 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 95 Publication Details Title: X-ray diffraction analysis of seven core samples from the information. Bibliographic Reference Bergman, S.C., and Stuart, C.J., 1988, X-ray diffraction analysis of

  1. X-Ray Topography of Tetragonal Lysozyme Grown by the Temperature-Controlled Technique

    NASA Technical Reports Server (NTRS)

    Stojanoff, V.; Siddons, D. P.; Monaco, Lisa A.; Vekilov, Peter; Rosenberger, Franz

    1997-01-01

    Growth-induced defects in lysozyme crystals were observed by white-beam and monochromatic X-ray topography at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). The topographic methods were non-destructive to the extent that traditional diffraction data collection could be performed to high resolution after topography. It was found that changes in growth parameters, defect concentration as detected by X-ray topography, and the diffraction quality obtainable from the crystals were all strongly correlated. In addition, crystals with fewer defects showed lower mosaicity and higher diffraction resolution as expected.

  2. Crystallization and X-ray diffraction analysis of a catalytic domain of hyperthermophilic chitinase from Pyrococcus furiosus

    PubMed Central

    Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi

    2006-01-01

    The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559

  3. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    NASA Astrophysics Data System (ADS)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  4. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  5. Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method.

    PubMed

    Lazzari, Olivier; Jacques, Simon; Sochi, Taha; Barnes, Paul

    2009-09-01

    Tomographic Energy-Dispersive Diffraction Imaging (TEDDI) enables a unique non-destructive mapping of the interior of bulk objects, exploiting the full range of X-ray signals (diffraction, fluorescence, scattering, background) recorded. By analogy to optical imaging, a wide variety of features (structure, composition, orientation, strain) dispersed in X-ray wavelengths can be extracted and colour-coded to aid interpretation. The ultimate aim of this approach is to realise real-time high-definition colour X-ray diffraction imaging, on the timescales of seconds, so that one will be able to 'look inside' optically opaque apparatus and unravel the space/time-evolution of the materials chemistry taking place. This will impact strongly on many fields of science but there are currently two barriers to this goal: speed of data acquisition (a 2D scan currently takes minutes to hours) and loss of image definition through spatial distortion of the X-ray sampling volume. Here we present a data-collection scenario and reconstruction routine which overcomes the latter barrier and which has been successfully applied to a phantom test object and to real materials systems such as a carbonating cement block. These procedures are immediately transferable to the promising technology of multi-energy-dispersive-detector-arrays which are planned to deliver the other breakthrough, that of one-two orders of magnitude improvement in data acquisition rates, that will be needed to realise real-time high-definition colour X-ray diffraction imaging.

  6. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  7. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  8. Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene.

    PubMed

    Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria; Barthelmess, Miriam; Longchamp, Jean-Nicolas; Ringler, Philippe; Pardini, Tommaso; Wojtas, David H; Coleman, Matthew A; Dörner, Katerina; Fuglerud, Silje; Hammarin, Greger; Habenstein, Birgit; Langkilde, Annette E; Loquet, Antoine; Meents, Alke; Riek, Roland; Stahlberg, Henning; Boutet, Sébastien; Hunter, Mark S; Koglin, Jason; Liang, Mengning; Ginn, Helen M; Millane, Rick P; Frank, Matthias; Barty, Anton; Chapman, Henry N

    2018-05-09

    Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.

  9. Diffracted diffraction radiation and its application to beam diagnostics

    NASA Astrophysics Data System (ADS)

    Goponov, Yu. A.; Shatokhin, R. A.; Sumitani, K.; Syshchenko, V. V.; Takabayashi, Y.; Vnukov, I. E.

    2018-03-01

    We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first time. Diffraction radiation is produced when relativistic particles move near a target. If the target is a crystal or X-ray mirror, diffraction radiation in the X-ray region is expected to be diffracted at the Bragg angle and therefore be detectable. We present a scheme for applying this process to measurements of the beam angular spread, and consider how to conduct a proof-of-principle experiment for the proposed method.

  10. Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method

    NASA Astrophysics Data System (ADS)

    Sundararajan, M.; John Kennedy, L.; Nithya, P.; Judith Vijaya, J.; Bououdina, M.

    2017-09-01

    Co1-xMgxFe2O4 (0≤x≤0.5) spinel nanoparticles were synthesized by a simple microwave combustion method. The characterization of the samples were performed using X-ray diffraction (XRD) analysis, scanning electron (SEM) microscopy, energy dispersive X-ray (EDX) analysis, UV-visible and diffuse reflectance (DRS) spectroscopy, photoluminescence (PL) spectroscopy, Fourier transformed infrared (FT-IR) spectroscopy and vibrating sample magnetometry (VSM) analysis. The XRD patterns indicate the formation of cubic inverse spinel structure. The calculated average crystallite size using Debye Scherrer's equation is found to be around 46-38 nm. The morphology of spinel nanoparticles was observed from SEM images and the elemental mapping of magnesium doped cobalt ferrite was obtained by using energy dispersive X-ray technique. Optical studies were carried out for the deeper understanding of the conduction band (CB) and valence band (VB) edges of the synthesized nanoparticles. The intrinsic stretching vibrations of Fe3+-O2- in tetrahedral sites leads to the appearance of IR band at around 573 cm-1. The magnetic properties such as remanence magnetization (Mr), coercivity (Hc) and saturation magnetization (Ms) were calculated from the hysteresis curves. The maximum photocatalytic degradation efficiency for Co0.6Mg0.4Fe2O4 is around (99.5%) when compared to that of CoFe2O4 whose efficiency is around (73.0%). The improvement in photocatalytic degradation efficiency is due to the effective separation and prevention of electron-hole pair recombination. The R2 values for the first order rate kinetics are found to be better than R2 values for the second order rate kinetics and this proves that photocatalytic degradation of RhB dye follows first order kinetics. The probable mechanism for the photocatalytic degradation of RhB dye is proposed.

  11. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism

    NASA Astrophysics Data System (ADS)

    Bao, Yongchao; Chen, Kezheng

    2018-04-01

    The novel BiOBr/reduced graphene oxide/protonated g-C3N4 (BiOBr/RGO/pg-C3N4) composites were successfully synthesized by using a facile solvothermal synthesis method. The structure, morphology, optical and electronic properties were explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectrochemical measurement. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of Rhodamine B (Rh B) and tetracycline hydrochloride (TC) aqueous solution under visible light irradiation (λ > 420nm). Compared with BiOBr, protonated g-C3N4 (pg-C3N4), BiOBr/pg-C3N4 and RGO/pg-C3N4, BiOBr/RGO/pg-C3N4 composites exhibited higher photocatalytic activity. The total organic carbon (TOC) removal ratios of Rh B and TC over 10% BiOBr/RGO/pg-C3N4 were 88% and 59%, respectively. The excellent photcatalytic performance was investigated by photoluminescence spectroscopy (PL), the radical quenching and electron spin resonance experiments. A Z-scheme charge transfer mechanism was proposed, in which RGO acted as an electron transfer mediator. It was worth pointing out that the closely contacted two-dimensional interface among the BiOBr, the RGO and pg-C3N4 promoted the separation and transfer of photo-generated charge carriers, and thus enhanced the photocatalytic efficiency.

  12. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Majedi, A.

    2010-01-01

    A novel copper and sulfur codoped TiO 2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl 2·2H 2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO 2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO 2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced "red-shift" in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO 2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO 2 catalyst has higher activity than undoped and Cu or S doped TiO 2 catalysts.

  13. Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation

    NASA Astrophysics Data System (ADS)

    Wang, Xuejiang; Song, Jingke; Huang, Jiayu; Zhang, Jing; Wang, Xin; Ma, RongRong; Wang, Jiayi; Zhao, Jianfu

    2016-12-01

    Magnetic photocatalyst - iodine and nitrogen codoped TiO2 based on chitosan decorated magnetic activated carbon (I-N-T/CMAC) was prepared via simple coprecipitation and sol-gel method. The characteristics of photocatalysts were investigated by X-ray diffraction (XRD), N2 adsorption-desorption isotherm, field emission scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). It turned out that the prepared material had large surface area, enhanced absorption of visible light, and magnetically separable properties when mole ratio of I/Ti was 0.1. Iodine-nitrogen codoped magnetic photocatalyst was used for the removal of salicylic acid (SA), and the rate of adsorption reaction for SA by I0.1-N-T/CMAC followed the pseudo second-order kinetic. Under visible light irradiation, 89.71% SA with initial concentration = 30 mg/L could be removed by I0.1-N-T/CMAC, and photodegradation rate of SA on I0.1-N-T/CMAC composites was 0.0084 min-1 which is about 4 times higher than that of magnetic photocatalyst with nitrogen doped only. The effects of SA initial concentration, pH, coexisting anions and humic acid to the degradation of SA with the prepared material were also investigated. Main oxidative species in the photodegradation process are rad OH and h+.

  14. Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites.

    PubMed

    Jiang, Jingjing; Wang, Hongtao; Chen, Xiaodong; Li, Shuo; Xie, Tengfeng; Wang, Dejun; Lin, Yanhong

    2017-05-15

    In this paper, a series of BiOI/ZnO photocatalysts containing various BiOI contents were prepared by a facile two-step synthetic method. The structure and crystal phase, morphology, surface element analysis, optical property of as-prepared samples are measured by X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectrometry (DRS). BiOI/ZnO photocatalytic activities of the prepared photocatalysts were evaluated by photocatalytic degradation of phenol under simulated light irradiation. The phenol degradation rate reached 99.9% within 2h under simulated solar light irradiation. The probable photocatalytic mechanism of composites photocatalysts is discussed by active species trapping experiments, the surface photovoltage (SPV), the transient photovoltage (TPV) and photoluminescence (PL) measurements. The results manifest that the superior photocatalytic activity of BiOI/ZnO composites is derived from the strong internal electric field between BiOI and ZnO, which is beneficial for the effective separation and transfer of photogenerated charges in ZnO. Moreover, the loading of BiOI on the surface of ZnO inhibited the recombination of photogenerated charge carriers in ZnO, resulting in excellent photocatalytic activity. On the contrary, the effect of an extension of the light absorption range induced by the introduction of BiOI on the phenol degradation activity is not significant. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Yanhui; Liang, Wei; Guo, Jinqiu; Tang, Hua; Liu, Shuaishuai

    2018-02-01

    A novel MoS2 quantum dots (QDs) decorated g-C3N4/Ag heterostructured photocatalyst has been synthesized via a two-step method including in situ microemulsion-assisted reduction and wetness impregnation method. The obtained heterostructure photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectrosxopy (PL). The photocatalytic activity was evaluated by the degradation of methyl orange (MO) under visible-light irradiation. The MoS2 QDs decorated hybrid photocatalysts exhibited significantly enhanced photocatalytic performance. The concentration of Ag and MoS2 QDs showing the optimal photocatalytic performance was determined to be 10% and 0.3% respectively, which exceeded the photocatalytic performance of pure g-C3N4 by more than 4.7 times. Recycling experiments confirmed that the hybrid catalysts had superior cycle performance and stability. The enhanced photocatalytic activity of MoS2 QDs decorated g-C3N4/Ag hybrid photocatalysts can be mainly ascribed to enhanced visible-light absorption, the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of g-C3N4, Ag and MoS2 QDs, in which Ag nanoparticles act as the charge separation center. The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts was obtained from the active species trapping experiments.

  16. Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Mera, Adriana C.; Moreno, Yanko; Contreras, David; Escalona, Nestor; Meléndrez, Manuel F.; Mangalaraja, Ramalinga Viswanathan; Mansilla, Héctor D.

    2017-01-01

    BiOI nanostructured microspheres were obtained from the solvothermal synthesis route in the presence of ethylene glycol and KI as solvent and source of iodide, respectively. Optimal conditions for the synthesis were obtained by using multivariate analysis and choosing the photocatalytic oxidation rate constant of 3,4,5-trihydroxybenzoic acid (gallic acid) as response factor under simulated solar radiation. Response surface methodology (RSM) was used to determine the optimum values of the reaction time and temperature which were 18 h and 126 °C, respectively, to obtain the most active catalyst. In addition, BiOI synthesis using ionic liquid 1-butyl-3-methylimidazolium iodide ([bmim]I) as iodide source was also carried out for the comparison of microstructure and its photocatalytic efficiency. The obtained BiOI nanostructures were characterized by scanning electron microscopy (SEM) attached with energy dispersive spectrometer (EDS), nitrogen adsorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), Fourier transform infrared (FTIR) spectrometry, diffuse reflectance spectroscopy (DRS) and cyclic voltammetry (CV) analyses for their changes in morphological and structural behaviors. It was observed that the synthesis temperature of BiOI nanostructures strongly influenced the morphology, crystalline phase, surface area and electrochemical behavior, and thus affecting the photocatalytic efficiency. The higher photocatalytic removal of gallic acid (60%) was reached within 30 min of irradiation with UV-A on microspheres obtained with ionic liquid. The (1 1 0) crystal phase of BiOI influenced the photocatalytic efficiency.

  17. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    PubMed

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  18. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  19. High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter

    2017-09-01

    The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline

  20. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  1. Publications - GMC 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 45 Publication Details Title: X-ray diffraction mineral percentages of chips from Exxon Pt , 1983, X-ray diffraction mineral percentages of chips from Exxon Pt. Thomson Unit #1 and #3 wells

  2. Publications - GMC 361 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 361 Publication Details Title: X-ray Diffraction Analysis of: Drew Point #1, East Simpson Test , 2009, X-ray Diffraction Analysis of: Drew Point #1, East Simpson Test Well #1, East Simpson #2

  3. Publications - GMC 41 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 41 Publication Details Title: X-ray diffraction clay mineralogy analysis of core samples from Unknown, [n.d.], X-ray diffraction clay mineralogy analysis of core samples from Mobil West Staines State

  4. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  5. Thermal expansion in UO 2 determined by high-energy X-ray diffraction

    DOE PAGES

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; ...

    2016-06-24

    In this study, we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO 2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  7. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation.

    PubMed

    Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2017-05-01

    Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.

  8. Improved solar-driven photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} prepared in-situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Junbo, E-mail: junbozhong@163.com; Li, Jianzhang, E-mail: lschmanuscript@163.com; Huang, Shengtian

    Highlights: • Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag{submore » 2}CO{sub 3} has no effect on the crystal phase and bandgap of (BiO){sub 2}CO{sub 3}. The existence of Ag{sub 2}CO{sub 3} in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.« less

  9. Phase modulation due to crystal diffraction by ptychographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Civita, M.; Diaz, A.; Bean, R. J.

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less

  10. Track membranes with open pores used as diffractive filters for space-based x-ray and EUV solar observations.

    PubMed

    Dominique, Marie; Mitrofanov, A V; Hochedez, J-F; Apel, P Yu; Schühle, U; Pudonin, F A; Orelovich, O L; Zuev, S Yu; Bolsée, D; Hermans, C; BenMoussa, A

    2009-02-10

    We describe the fabrication and performance of diffractive filters designed for space-based x-ray and EUV solar observations. Unlike traditional thin film filters, diffractive filters can be made to have a high resistance against the destructive mechanical and acoustic loads of a satellite launch. The filters studied are made of plastic track-etched membranes that are metal-coated on one side only. They have all-through open cylindrical pores with diameters as small as 500 nm, limiting their transmittance to very short wavelengths. The spectral transmittance of various diffractive filters with different pore parameters was measured from the soft x-ray to the near IR range (namely, from 1-1100 nm).

  11. Phase modulation due to crystal diffraction by ptychographic imaging

    DOE PAGES

    Civita, M.; Diaz, A.; Bean, R. J.; ...

    2018-03-06

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less

  12. Phase modulation due to crystal diffraction by ptychographic imaging

    NASA Astrophysics Data System (ADS)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  13. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE PAGES

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-19

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  14. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  15. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  16. Cryogenic X-Ray Diffraction Microscopy for Biological Samples

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Wiegart, Lutz; Pernot, Petra; Howells, Malcolm; Timmins, Joanna; Zontone, Federico; Madsen, Anders

    2009-11-01

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  17. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles.

  18. Observation of the strain field near the Si(111) 7 x 7 surface with a new X-ray diffraction technique.

    PubMed

    Emoto, T; Akimoto, K; Ichimiya, A

    1998-05-01

    A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.

  19. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  20. Electronic and atomic structures of Ti{sub 1-x}Al{sub x}N thin films related to their damage behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.

    2008-04-15

    Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less

  1. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  2. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE PAGES

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita; ...

    2017-04-28

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  3. Publications - GMC 145 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 145 Publication Details Title: Analytical results of x-ray diffraction studies on tuff beds , Analytical results of x-ray diffraction studies on tuff beds from core of the following 5 NPRA wells: U.S

  4. Coherent Soft X-ray Diffraction Imaging of Coliphage PR772 at the Linac Coherent Light Source

    DOE Data Explorer

    Reddy, Hemanth, K.N.

    2017-01-05

    A dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source.

  5. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  6. AUSPEX: a graphical tool for X-ray diffraction data analysis.

    PubMed

    Thorn, Andrea; Parkhurst, James; Emsley, Paul; Nicholls, Robert A; Vollmar, Melanie; Evans, Gwyndaf; Murshudov, Garib N

    2017-09-01

    In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.

  7. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE PAGES

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-08-09

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  8. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  9. A laboratory based system for laue micro x-ray diffraction.

    PubMed

    Lynch, P A; Stevenson, A W; Liang, D; Parry, D; Wilkins, S; Tamura, N

    2007-02-01

    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 microm beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the "knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt % Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis.

  10. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    PubMed Central

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151

  11. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.

    PubMed

    Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-07-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  12. Monochromatic X-ray sources based on a mechanism of real and virtual photon diffraction in crystals

    NASA Astrophysics Data System (ADS)

    Wagner, A. R.; Kuznetsov, S. I.; Potylitsyn, A. P.; Razin, S. V.; Uglov, S. R.; Zabaev, V. N.

    2008-09-01

    A source of monochromatic X-ray radiation is wanted in industry, science, medicine and so on. Many ways of making such a source are known. The present work describes two mechanisms for the creation of a monochromatic X-ray beam, which are parametric X-ray radiation (PXR) and bremsstrahlung diffraction (DBS). Both the experiments were carried out using an electron beam at a microtron. During the first experiment, the DBS process was investigated as a scattering of the Bremsstrahlung (BS) beam on the crystallographic surfaces of tungsten and pyrolytic graphite crystals. The second experiment consisted in the registration of the PXR and DBS yield during the passage of the electrons through the same crystals as in the first experiment. The spectral and orientation radiation characteristics and simulation results obtained for the DBS and PXR processes are presented. It is shown that the usage of mosaic crystalline targets is rather useful in order to obtain a monochromatic X-ray source based on bremsstrahlung diffraction from moderately relativistic electrons.

  13. Insights into photosystem II from isomorphous difference Fourier maps of femtosecond X-ray diffraction data and quantum mechanics/molecular mechanics structural models

    DOE PAGES

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.; ...

    2017-01-12

    Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less

  14. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    PubMed

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  15. Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration

    NASA Technical Reports Server (NTRS)

    Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.

    1993-01-01

    The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.

  16. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models.

    PubMed

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-02-10

    Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.

  17. Insights into photosystem II from isomorphous difference Fourier maps of femtosecond X-ray diffraction data and quantum mechanics/molecular mechanics structural models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.

    Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less

  18. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  19. Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles

    DOEpatents

    Carpenter, Donald A.

    1995-01-01

    A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.

  20. Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles

    DOEpatents

    Carpenter, D.A.

    1995-05-23

    A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.

  1. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  2. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  3. TiO2-PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation.

    PubMed

    Sboui, Mouheb; Nsib, Mohamed Faouzi; Rayes, Ali; Swaminathan, Meenakshisundaram; Houas, Ammar

    2017-10-01

    A novel photocatalyst based on TiO 2 -PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline (PANI)-modified TiO 2 on cork. The TiO 2 -PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis DRS) and the Brunauer-Emmett-Teller (BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO 2 -PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency. Copyright © 2017. Published by Elsevier B.V.

  4. Preparation, characterization and activity evaluation of heterostructure In(2)O(3)/In(OH)(3) photocatalyst.

    PubMed

    Shifu, Chen; Xiaoling, Yu; Huaye, Zhang; Wei, Liu

    2010-08-15

    In this paper, the heterostructure In(2)O(3)/In(OH)(3) photocatalyst was prepared by programmed thermal treatment of In(OH)(3) using In(NO(3))(3).9H(2)O as the precursor. Various characterization methods such as X-ray power diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectrometry (FT-IR) and transmission electron microscopy (TEM) were employed to investigate the structure, morphologies, and optical properties. Terephthalic acid was used as a probe molecule to detect the generation of hydroxyl radicals (OH) on the surface of UV-illuminated photocatalyst by a photoluminescence (PL) technique. The results showed that the photocatalytic activity of the heterostructure In(2)O(3)/In(OH)(3) was higher than that of single In(2)O(3) or In(OH)(3). The increased photocatalytic activity may be attributed to the formation of the heterojunction between In(2)O(3) and In(OH)(3), which suppresses the recombination of photoexcited electrons-hole pairs. Copyright 2010 Elsevier B.V. All rights reserved.

  5. DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions

    PubMed Central

    Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej

    2018-01-01

    Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370

  6. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).

  7. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    PubMed Central

    Ribeiro, Viviane Gomes Pereira; Marcelo, Ana Maria Pereira; da Silva, Kássia Teixeira; da Silva, Fernando Luiz Firmino; Mota, João Paulo Ferreira; do Nascimento, João Paulo Costa; Sombra, Antonio Sérgio Bezerra; Clemente, Claudenilson da Silva; Mazzetto, Selma Elaine

    2017-01-01

    This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL). The obtained nanomaterials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and steady-state photoluminescence spectra (PL). The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB) in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions. PMID:28934117

  8. Effect of Ar9+ irradiation on Zr-1Nb-1Sn-0.1Fe alloy characterized by Grazing Incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita

    2018-03-01

    The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).

  9. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGES

    Shapiro, D.; Thibault, P.; Beetz, T.; ...

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  10. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE PAGES

    Kelly, B. G.; Loether, A.; Unruh, K. M.; ...

    2017-02-01

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  11. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B. G.; Loether, A.; Unruh, K. M.

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  12. Spread spectrum phase modulation for coherent X-ray diffraction imaging.

    PubMed

    Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R

    2015-09-21

    High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.

  13. Nanofiber-Based Bulk-Heterojunction Organic Solar Cells Using Coaxial Electrospinning

    DTIC Science & Technology

    2012-01-01

    chains are likely oriented with the [010] direction, perpendicular to the substrate, in the fi lm device. Glancing incidence X - ray diffraction (GIXD...Electron and X - ray diffraction measurements were per- formed in order to study the structural order in annealed fi bers and devices. For reference... angle X - ray scattering (SAXS/WAXS) beamline 7.3.3 of the Advanced Light Source at Lawrence Berkeley National Laboratory at 10 keV (1.24 Å) from a bend

  14. Three-dimensional x-ray diffraction nanoscopy

    NASA Astrophysics Data System (ADS)

    Nikulin, Andrei Y.; Dilanian, Ruben A.; Zatsepin, Nadia A.; Muddle, Barry C.

    2008-08-01

    A novel approach to x-ray diffraction data analysis for non-destructive determination of the shape of nanoscale particles and clusters in three-dimensions is illustrated with representative examples of composite nanostructures. The technique is insensitive to the x-rays coherence, which allows 3D reconstruction of a modal image without tomographic synthesis and in-situ analysis of large (over a several cubic millimeters) volume of material with a spatial resolution of few nanometers, rendering the approach suitable for laboratory facilities.

  15. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation ofmore » methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.« less

  16. A Compact X-Ray System for Support of High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  17. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay

    2016-05-23

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less

  18. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less

  19. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  20. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper limit to the effect of X-rays on the structure of cosmic silicates.

  1. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE PAGES

    Fan, D.; Huang, J. W.; Zeng, X. L.; ...

    2016-05-23

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  2. Single photon energy dispersive x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signalmore » from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.« less

  3. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Huang, J. W.; Zeng, X. L.

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  4. Origin of Pressure-induced Superconducting Phase in K xFe 2-ySe 2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    DOE PAGES

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...

    2016-08-08

    Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less

  5. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE PAGES

    Miao, H.; Downing, K.; Huang, X.; ...

    2009-09-25

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  6. Publications - GMC 40 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 40 Publication Details Title: X-ray diffraction analysis of the Pan Am Hoodoo Lake #2; Pan Am , X-ray diffraction analysis of the Pan Am Hoodoo Lake #2; Pan Am David River #1-A; and the AMOCO

  7. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; hide

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  8. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    USDA-ARS?s Scientific Manuscript database

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  9. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging.

    PubMed

    Oroguchi, Tomotaka; Nakasako, Masayoshi

    2013-02-01

    Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.

  10. Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers

    DTIC Science & Technology

    2011-03-07

    plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in

  11. Apparatus for use in examining the lattice of a semiconductor wafer by X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Parker, D. L.; Porter, W. A. (Inventor)

    1978-01-01

    An improved apparatus for examining the crystal lattice of a semiconductor wafer utilizing X-ray diffraction techniques was presented. The apparatus is employed in a method which includes the step of recording the image of a wafer supported in a bent configuration conforming to a compound curve, produced through the use of a vacuum chuck provided for an X-ray camera. The entire surface thereof is illuminated simultaneously by a beam of incident X-rays which are projected from a distant point-source and satisfy conditions of the Bragg Law for all points on the surface of the water.

  12. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less

  13. Grating-based holographic diffraction methods for X-rays and neutrons: phase object approximation and dynamical theory

    DOE PAGES

    Feng, Hao; Ashkar, Rana; Steinke, Nina; ...

    2018-02-01

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  14. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  15. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori

    2003-01-01

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  16. Quantitative disentanglement of coherent and incoherent laser-induced surface deformations by time-resolved x-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.

    2017-12-01

    We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.

  17. Structural studies of liquid Co–Sn alloys

    PubMed Central

    Yakymovych, A.; Shtablavyi, I.; Mudry, S.

    2014-01-01

    An analysis of the structure features of liquid Co–Sn alloys has been performed by means of X-ray diffraction method, viscosity coefficient analysis and computer simulation method. The X-ray diffraction investigations were carried out over a wide concentration range at the temperature 1473 K. It was found that the structure of these alloys can be described in the frame of independent X-ray scattering model. The viscosity coefficient was calculated by an excess entropy scaling and compared with experimental data. PMID:25328282

  18. Quantitative determination of mineral composition by powder x-ray diffraction

    DOEpatents

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  19. Quantitative determination of mineral composition by powder X-ray diffraction

    DOEpatents

    Pawloski, Gayle A.

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  20. The Influence of Growth Temperature on Sb Incorporation in InAsSb, and the Temperature-dependent Impact of Bi Surfactants

    DTIC Science & Technology

    2014-01-01

    resolution X - ray diffraction (XRD) were collected for all samples, and reciprocal space maps (RSMs) were collected from selected samples. The complete data...exposure. The lines represent the model fit. 19 13 Figure 1. Triple axis x - ray diffraction from the bi-layered InAsSb structures grown on GaSb at...Applied Physics, Structural properties of bismuth‐bearing semiconductor alloys, 63 (1988) 107. 18 12 Figure Captions Figure 1. Triple axis x - ray

  1. Effects of Peripheral Architecture on the Properties of Aryl Polyhedral Oligomeric Silsesquioxanes

    DTIC Science & Technology

    2012-07-26

    POSS) molecules are described. These POSS materials were synthesized in our laboratory and characterized by single-crystal and powder X - ray diffraction ...powder X - ray diffraction (XRD), where applicable. 1H, 13C, and 29Si NMR spectra were obtained on Bruker 300 and 400 MHz spectrometers using 5 mm o.d...degree of cage ordering during precipitation. Referring back to Figure 14, strong X - ray scattering peaks in the spectra for 1 in the d- spacing range

  2. Étude de la structure des alliages vitreux Ag-As2S3 par diffraction de rayons X

    NASA Astrophysics Data System (ADS)

    Popescu, M.; Sava, F.; Cornet, A.; Broll, N.

    2002-07-01

    The structure of several silver alloyed arsenic chalocgenide has been determined by X-ray diffraction. For low silver doping the disordered layer structure, characteristic to the glassy AS2S3 is retained as demonstrated by the well developed first sharp diffraction peak in the X-ray diffraction pattern. For high amount of silver introduced in the As2S3 matrix, the disoredered layer configurations disappear, as shown by the diminishing and even disappearance of the first sharp diffraction peak in the X-ray patterns. A three-dimensional structure based on Ag2S -type configuration is formed. La structure de quelques alliages sulfure d'arsenic - argent a été determinée par diffraction de rayons X. Pour de faibles dopages à l'argent on conserve la structure desordonnées caractéristique des couches atomique d'As2S3 vitreux ; ceci est prouvé par la forte intensité du premier pic étroit de diffraction. Pour des plus grandes proportions d'argent la structure de l'alliage vitreux fait apparaître des unités structurales caractéristiques du cristal d'Ag2S et la configuration atomique avec des couches desordonnées disparaît (le premier pic étroit de diffraction s'évanouit) en faisant place à une structure tridimensionelle.

  3. Development of variable-magnification X-ray Bragg optics.

    PubMed

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  4. Synthesis and characterization of (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Dwivedi, Saurabh; Pandey, Rishikesh

    2016-05-23

    We present here the comprehensive x-ray diffraction and polarization-electric field hysteresis studies on (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics with x = 0.52, 0.56 and 0.60. The powder x-ray diffraction data reveals the presence of tetragonal phase for all the compositions. The saturation of hysteresis loop is observed for x ≤ 0.56.

  5. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  6. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken

    Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolutionmore » so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.« less

  7. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    PubMed Central

    Abdullah, Malik Muhammad; Jurek, Zoltan; Son, Sang-Kil; Santra, Robin

    2016-01-01

    We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop. PMID:27478859

  8. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Maia, Filipe R. N. C.; Bielecki, Johan; Ekeberg, Tomas; Hantke, Max F.; Daurer, Benedikt J.; Nettelblad, Carl; Andreasson, Jakob; Barty, Anton; Bruza, Petr; Carron, Sebastian; Hasse, Dirk; Krzywinski, Jacek; Larsson, Daniel S. D.; Morgan, Andrew; Mühlig, Kerstin; Müller, Maria; Okamoto, Kenta; Pietrini, Alberto; Rupp, Daniela; Sauppe, Mario; van der Schot, Gijs; Seibert, Marvin; Sellberg, Jonas A.; Svenda, Martin; Swiggers, Michelle; Timneanu, Nicusor; Westphal, Daniel; Williams, Garth; Zani, Alessandro; Chapman, Henry N.; Faigel, Gyula; Möller, Thomas; Hajdu, Janos; Bostedt, Christoph

    2018-03-01

    Ultrafast X-ray imaging on individual fragile specimens such as aerosols1, metastable particles2, superfluid quantum systems3 and live biospecimens4 provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined4,5. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.

  9. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

    DOE PAGES

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; ...

    2018-02-26

    Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolutionmore » so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.« less

  10. CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS

    NASA Astrophysics Data System (ADS)

    Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.

    2017-06-01

    The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.

  11. An in situ X ray diffraction study of the kinetics of the Ni2SiO4 olivine-spinel transformation

    NASA Technical Reports Server (NTRS)

    Rubie, D. C.; Tsuchida, Y.; Yagi, T.; Utsumi, W.; Kikegawa, T.

    1990-01-01

    The kinetics of the olivine-spinel transformation in Ni2SiO4 were investigated in an in situ X-ray diffraction experiments in which synchrotron radiation was used as an X-ray source. The starting material was Ni2SO4 olivine which was hot-pressed in situ at 980 C and 2.5 GPa; during the transformation, X-ray diffraction patterns were collected at intervals of 30 or 120 sec. The kinetic data were analyzed using Cahn's (1956) model. The activation energy for growth at 3.6-3.7 GPa was estimated as 438 + or - 199 kJ/mol. It is shown that, in order to make significant extrapolations of the kinetic data to a geological scale, the dependence of the rates of both nucleation and growth on temperature and pressure must be evaluated separately.

  12. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    PubMed

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  13. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  14. Pink-beam serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meents, A.; Wiedorn, M. O.; Srajer, V.

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  15. Pink-beam serial crystallography

    DOE PAGES

    Meents, A.; Wiedorn, M. O.; Srajer, V.; ...

    2017-11-03

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  16. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  17. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  18. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE PAGES

    McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...

    2015-08-11

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  19. Experimental Approaches for Solution X-Ray Scattering and Fiber Diffraction

    PubMed Central

    Irving, T. C.

    2008-01-01

    X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a critical dimension to many of these investigations. This article reviews experimental approaches in non-crystalline x-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies. PMID:18801437

  20. Purification, crystallization and preliminary X-ray diffraction studies of N-acetylglucosamine-phosphate mutase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishitani, Yuichi; Maruyama, Daisuke; Nonaka, Tsuyoshi

    2006-04-01

    Preliminary X-ray diffraction studies on N-acetylglucosamine-phosphate mutase from C. albicans are reported. N-acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc) in eukaryotes and belongs to the α-d-phosphohexomutase superfamily. AGM1 from Candida albicans (CaAGM1) was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals obtained belong to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 60.2, b = 130.2, c = 78.0 Å, β = 106.7°. The crystals diffract X-rays to beyond 1.8 Å resolution using synchrotron radiation.

  1. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  2. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  3. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Holý, V.; Rafaja, D.

    2018-04-01

    X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.

  4. Femtosecond X-ray protein nanocrystallography.

    PubMed

    Chapman, Henry N; Fromme, Petra; Barty, Anton; White, Thomas A; Kirian, Richard A; Aquila, Andrew; Hunter, Mark S; Schulz, Joachim; DePonte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Maia, Filipe R N C; Martin, Andrew V; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D; Hau-Riege, Stefan P; Frank, Matthias; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Williams, Garth J; Hajdu, Janos; Timneanu, Nicusor; Seibert, M Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M; Barends, Thomas R M; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C H

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  5. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.

    PubMed

    Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A

    2012-10-22

    We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.

  6. Synchrotron applications in wood preservation and deterioration

    Treesearch

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  7. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    PubMed

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  8. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  9. Daniel Shechtman and Quasicrystals

    Science.gov Websites

    toolbox that included transmission electron microscopy, X-ray diffraction and neutron diffraction. The searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Letters, Vol. 53, Issue 20: 1951-1953; November 12, 1984 Nuclear γ-ray resonance observations in an

  10. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  11. Crystallographic Study of Itokawa Particle, RA-QD02-0127 by Using Energy-Scanning X-Ray Diffraction Method with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.

    2016-08-01

    Crystallographic study of Itokawa particle, RA-QD02-0127 by using new X-ray diffraction method was performed. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.

  12. Noble Gas Isotopic Signatures and X-Ray and Electron Diffraction Characteristics of Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.

    2001-01-01

    Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.

  13. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  14. A study of mercuric iodide near melting using differential scanning calorimetry, Raman spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.

    1989-11-01

    High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.

  15. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  16. Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction

    PubMed Central

    Hart, Michael L.; Drakopoulos, Michael; Reinhard, Christina; Connolley, Thomas

    2013-01-01

    A complete calibration method to characterize a static planar two-dimensional detector for use in X-ray diffraction at an arbitrary wavelength is described. This method is based upon geometry describing the point of intersection between a cone’s axis and its elliptical conic section. This point of intersection is neither the ellipse centre nor one of the ellipse focal points, but some other point which lies in between. The presented solution is closed form, algebraic and non-iterative in its application, and gives values for the X-ray beam energy, the sample-to-detector distance, the location of the beam centre on the detector surface and the detector tilt relative to the incident beam. Previous techniques have tended to require prior knowledge of either the X-ray beam energy or the sample-to-detector distance, whilst other techniques have been iterative. The new calibration procedure is performed by collecting diffraction data, in the form of diffraction rings from a powder standard, at known displacements of the detector along the beam path. PMID:24068840

  17. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less

  18. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less

  19. Effect of exit beam phase aberrations on coherent x-ray reconstructions of Au nanocrystals

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, Stephan; Harder, Ross; Fuoss, Paul

    2010-03-01

    Current studies in coherent x-ray diffractive imaging (CXDI) are focusing on in-situ imaging under a variety of environmental conditions. Such studies often involve environmental sample chambers through which the x-ray beam must pass before and after interacting with the sample: i.e. cryostats or high pressure cells. Such sample chambers usually contain polycrystalline x-ray windows with structural imperfections that can in turn interact with the diffracted beam. A phase object in the near field that interacts with the beam exiting the sample can introduce distortions at the detector plane that may affect coherent reconstructions. We investigate the effects of a thin beryllium membrane on the coherent exit beam of a gold nanoparticle. We compare three dimensional reconstructions from experimental diffraction patterns measured with and without a 380 micron thick Be dome and find that the reconstructions are reproducible within experimental errors. Simulated near-field distortions of the exit beam consistent with micron sized voids in Be establish a ``worst case scenario'' where distorted diffraction patterns inhibit accurate inversions.

  20. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGES

    Beetz, T.; Howells, M. R.; Jacobsen, C.; ...

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  1. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  2. Open data set of live cyanobacterial cells imaged using an X-ray laser

    NASA Astrophysics Data System (ADS)

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max F.; Deponte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  3. Open data set of live cyanobacterial cells imaged using an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max F; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N Duane; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  4. CheMin Instrument Performance and Calibration on Mars

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Blake, D. F.; Morookian, J. M.; Yen, A. S.; Ming, D. W.; Morris, R. V.; Achilles, C. N.; Bish, D. L.; Chipera, S. J.; Morrison, S. M.; hide

    2013-01-01

    The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode X-ray tube source to acquire both mineralogy (from the pattern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A key component of the CheMin instrument is the ability to move grains within sample cells during analysis, providing multiple, random grain orientations that disperse diffracted X-ray photons along Debye rings rather than producing discrete Laue spots. This movement is accomplished by piezoelectric vibration of the sample cells. A cryocooler is used to maintain the CCD at a temperature at about -50 C in order to obtain energy resolution better than 250 eV, allowing discrimination of diffracted Co K X-rays from Fe K and other fluorescent X-rays. A detailed description of CheMin is provided in [1]. The CheMin flight model (FM) is mounted within the body of Curiosity and has been operating on Mars since August 6, 2012. An essentially identical sister instrument, the CheMin demonstration model (DM), is operated in a Mars environment chamber at JPL.

  5. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, P.; Haggerty, R; Yoon, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less

  6. Open data set of live cyanobacterial cells imaged using an X-ray laser

    PubMed Central

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R.N.C.; Hantke, Max F.; DePonte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S.D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-01-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences. PMID:27479514

  7. Study of thermal stability of spontaneously grown superlattice structures by metalorganic vapor phase epitaxy in AlxGa1-xAs/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.

    2018-04-01

    Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.

  8. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  9. Coherent X-ray diffraction from collagenous soft tissues.

    PubMed

    Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K

    2009-09-08

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  10. Combustion synthesized TiO{sub 2} for enhanced photocatalytic activity under the direct sunlight-optimization of titanylnitrate synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daya Mani, A.; Laporte, V.; Ghosal, P.

    2012-09-15

    Graphical abstract: Effect of oxidant on the combustion synthesis of TiO{sub 2} has been studied by preparing titanylnitrate in four different ways from Ti(IV) iso-propoxide. It is observed that oxidant preparation method has a significant effect on physico-chemical as well as photocatalytic properties of TiO{sub 2}. All the catalysts showed excellent photocatalytic activity than Degussa P-25 under direct sunlight for the degradation of a textile dye (methylene blue), without the need of external light sources, oxygen supply and reactor systems. Highlights: ► Optimized synthesis of titanylnitrate. ► Influence of titanylnitrate synthesis on the physico-chemical properties of TiO{sub 2} prepared bymore » combustion synthesis. ► Development of highly efficient TiO{sub 2} photocatalysts those are active under the direct sunlight in open atmosphere. ► Degradation of the textile dye (methylene blue) under direct sunlight. -- Abstract: Optimized synthesis of Ti-precursor ‘titanylnitrate’ for one step combustion synthesis of N- and C-doped TiO{sub 2} catalysts were reported and characterized by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), diffused reflectance UV–vis spectroscopy, N{sub 2} adsorption and X-ray photoelectron spectroscopy (XPS). XRD confirmed the formation of TiO{sub 2} anatase and nano-crystallite size which was further confirmed by TEM. UV-DRS confirmed the decrease in the band gap to less than 3.0 eV, which was assigned due to the presence of C and N in the framework of TiO{sub 2} as confirmed by X-ray photoelectron spectroscopy. Degradation of methylene blue in aqueous solution under the direct sunlight was carried out and typical results indicated the better performance of the synthesized catalysts than Degussa P-25.« less

  11. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse.

  12. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygiel, C.; Lebius, H.; Bouffard, S.

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less

  13. Microgravity

    NASA Image and Video Library

    2001-06-06

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  14. Ultra-high Resolution Coherent X-ray Imaging of Nano-Materials

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    A revolution is underway in the field of x-ray microscopy driven by the develop of experimental, theoretical and computational means of producing a complete description of coherent imaging systems from x-ray diffraction data. The methods being developed not only allow for full quantification and removal of all optical aberrations but also extension of the numerical aperture to the diffraction limit. One such method under intensive development is x-ray ptychography. This is a scanned probe method that reconstructs a scattering object and its illumination from coherent diffraction data. Within the first few years of development at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, this method has already achieved the highest resolution x-ray images ever recorded in two, three and four dimensions. With the ability of x-rays to penetrate significantly more matter than electrons, their short wavelength and their sensitivity to chemical and magnetic states of matter, x-ray ptychography is set to revolutionize how we see the nano-scale world. In this presentation I will briefly describe the technical framework for how various methods work and will give a detailed account of a practical implementation at the ALS along with various scientific applications. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  15. Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xian-Rong; Gog, Thomas; Kim, Jungho

    Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less

  16. [Study on bamboo treated with gamma rays by X-ray diffraction].

    PubMed

    Sun, Feng-Bo; Fei, Ben-Hua; Jiang, Ze-Hui; Yu, Zi-Xuan; Tian, Gen-Lin; Yang, Quan-Wen

    2011-06-01

    The microfibril angle and crystallinity of bamboo treated with gamma rays were tested by X-ray diffraction (XRD). The result indicated that crystallinity in bamboo increased when irradiation dose was less than 100 kGy, while the irradiation dose was raised to about 100 kGy, crystallinity in bamboo reduced. But during the whole irradiation process, the influence on microfibril angle was not obvious, so it was not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.

  17. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    NASA Astrophysics Data System (ADS)

    Holý, Vaclav

    2005-05-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP 2004 took place just after EPDIC IX (European Powder Diffraction Conference) organised in Prague by the same Association during 2-5 September 2004. The Organizing Committee was supported by an International Programme Committee including about 20 prominent scientists from several European and overseas countries, whose helpful suggestions for speakers are acknowledged. The conference was sponsored by the International Union of Crystallography and by several industrial sponsors; this sponsorship allowed us to support about 20 students and young scientists. In total, 147 official delegates and 8 accompanying persons from 16 countries of three continents attended our conference. The scientific programme of the conference was divided into 11 half-day sessions and 2 poster sessions. The participants presented 147 accepted contributions; of these 9 were 45-minute long invited talks, 34 were 20-minute oral presentations and 104 were posters. All posters were displayed for the whole meeting to ensure maximum exposure and interaction between delegates. We followed the very good experience from the previous conference, XTOP 2002, and also organized pre-conference tutorial lectures presented by experts in the field: `Imaging with hard synchrotron radiation' (J Härtwig, Grenoble), `High-resolution x-ray diffractometry: determination of strain and composition' (J Stangl, Linz), `X-ray grazing-incidence scattering from surfaces and nanostructures' (U Pietsch, Potsdam) and `Hard x-ray optics' (J Hrdý, Prague). According to the recommendation of the International Program Committee, the invited lectures covered a broader field than the original conference subject, namely coherent speckle diffraction (I Robinson, Urbana), scattering from soft-matter films (W de Jeu, Amsterdam), femtosecond diffraction (J Wark, Oxford), magnetic soft x-ray microscopy (P Fischer, Stuttgart), x-ray standing-wave imaging (J Zegenhagen, Grenoble), new trends in hard x-ray imaging (J Baruchel, Grenoble), anomalous x-ray scattering from nanostructures, (T Schülli, Grenoble), in-situ x-ray scattering (G Renaud, Grenoble) and x-ray waveguides (W Jark, Trieste). The topics of the oral presentations and posters can be divided into two large groups, namely x-ray imaging and x-ray diffraction. In the first group, the contributions concentrated on new developments in methods and instrumentation, including in-situ imaging, phase-contrast imaging and three-dimensional imaging. In the second group, attention was paid to anomalous scattering methods and scattering from thin films and nanostructures. The full list of all contributions together with their abstracts are available at the website http://www.xray.cz/xtop. During one session, Professor Andrew Lang, one of the pioneers of x-ray topography who gave his name to the popular topographic technique, and honorary guest of XTOP 2004, celebrated his 80th birthday. In a celebration address Professor A Authier reviewed Professor Lang's career and his invaluable contribution to the development of our field. We continue the tradition of previous XTOPs and publish a selection of original contributions from the conference in this special issue of Journal of Physics D: Applied Physics. The papers have been subject to peer review according to the normal practice of the journal. Generally, we observed that a new generation of young and very talented scientists has appeared, who are publishing very interesting and important papers. Therefore, the future prospects of x-ray imaging and high-resolution diffraction are bright and we all look forward to the next XTOP conference, organized by Tilo Baumbach and his group, which will take place in Karlsruhe, Germany, in 2006.

  18. X-ray diffraction patterns and diffracted intensity of Kα spectral lines of He-like ions

    NASA Astrophysics Data System (ADS)

    Goyal, Arun; Khatri, Indu; Singh, A. K.; Sharma, Rinku; Mohan, Man

    2017-09-01

    In the present paper, we have calculated fine-structure energy levels related to the configurations 1s2s, 1s2p, 1s3s and 1s3p by employing GRASP2K code. We have also computed radiative data for transitions from 1s2p 1 P1o, 1s2p 3 P2o, 1s2p 3 P1o and 1s2s 3S1 to the ground state 1s2. We have made comparisons of our presented energy levels and transition wavelengths with available results compiled by NIST and good agreement is achieved. We have also provided X-ray diffraction (XRD) patterns of Kα spectral lines, namely w, x, y and z of Cu XXVIII, Kr XXXV and Mo with diffraction angle and maximum diffracted intensity which is not published elsewhere in the literature. We believe that our presented results may be beneficial in determination of the order parameter, X-ray crystallography, solid-state drug analysis, forensic science, geological and medical applications.

  19. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  20. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

Top