Sample records for drug development candidate

  1. New Zealand’s Drug Development Industry

    PubMed Central

    Lockhart, Michelle Marie; Babar, Zaheer-Ud-Din; Carswell, Christopher; Garg, Sanjay

    2013-01-01

    The pharmaceutical industry’s profitability depends on identifying and successfully developing new drug candidates while trying to contain the increasing costs of drug development. It is actively searching for new sources of innovative compounds and for mechanisms to reduce the enormous costs of developing new drug candidates. There is an opportunity for academia to further develop as a source of drug discovery. The rising levels of industry outsourcing also provide prospects for organisations that can reduce the costs of drug development. We explored the potential returns to New Zealand (NZ) from its drug discovery expertise by assuming a drug development candidate is out-licensed without clinical data and has anticipated peak global sales of $350 million. We also estimated the revenue from NZ’s clinical research industry based on a standard per participant payment to study sites and the number of industry-sponsored clinical trials approved each year. Our analyses found that NZ’s clinical research industry has generated increasing foreign revenue and appropriate policy support could ensure that this continues to grow. In addition the probability-based revenue from the out-licensing of a drug development candidate could be important for NZ if provided with appropriate policy and financial support. PMID:24065037

  2. Commentary: Why Pharmaceutical Scientists in Early Drug Discovery Are Critical for Influencing the Design and Selection of Optimal Drug Candidates.

    PubMed

    Landis, Margaret S; Bhattachar, Shobha; Yazdanian, Mehran; Morrison, John

    2018-01-01

    This commentary reflects the collective view of pharmaceutical scientists from four different organizations with extensive experience in the field of drug discovery support. Herein, engaging discussion is presented on the current and future approaches for the selection of the most optimal and developable drug candidates. Over the past two decades, developability assessment programs have been implemented with the intention of improving physicochemical and metabolic properties. However, the complexity of both new drug targets and non-traditional drug candidates provides continuing challenges for developing formulations for optimal drug delivery. The need for more enabled technologies to deliver drug candidates has necessitated an even more active role for pharmaceutical scientists to influence many key molecular parameters during compound optimization and selection. This enhanced role begins at the early in vitro screening stages, where key learnings regarding the interplay of molecular structure and pharmaceutical property relationships can be derived. Performance of the drug candidates in formulations intended to support key in vivo studies provides important information on chemotype-formulation compatibility relationships. Structure modifications to support the selection of the solid form are also important to consider, and predictive in silico models are being rapidly developed in this area. Ultimately, the role of pharmaceutical scientists in drug discovery now extends beyond rapid solubility screening, early form assessment, and data delivery. This multidisciplinary role has evolved to include the practice of proactively taking part in the molecular design to better align solid form and formulation requirements to enhance developability potential.

  3. Drug efficiency: a new concept to guide lead optimization programs towards the selection of better clinical candidates.

    PubMed

    Braggio, Simone; Montanari, Dino; Rossi, Tino; Ratti, Emiliangelo

    2010-07-01

    As a result of their wide acceptance and conceptual simplicity, drug-like concepts are having a major influence on the drug discovery process, particularly in the selection of the 'optimal' absorption, distribution, metabolism, excretion and toxicity and physicochemical parameters space. While they have an undisputable value when assessing the potential of lead series or in evaluating inherent risk of a portfolio of drug candidates, they result much less useful in weighing up compounds for the selection of the best potential clinical candidate. We introduce the concept of drug efficiency as a new tool both to guide the drug discovery program teams during the lead optimization phase and to better assess the developability potential of a drug candidate.

  4. Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development.

    PubMed

    Tomar, Dheeraj S; Kumar, Sandeep; Singh, Satish K; Goswami, Sumit; Li, Li

    2016-01-01

    Effective translation of breakthrough discoveries into innovative products in the clinic requires proactive mitigation or elimination of several drug development challenges. These challenges can vary depending upon the type of drug molecule. In the case of therapeutic antibody candidates, a commonly encountered challenge is high viscosity of the concentrated antibody solutions. Concentration-dependent viscosity behaviors of mAbs and other biologic entities may depend on pairwise and higher-order intermolecular interactions, non-native aggregation, and concentration-dependent fluctuations of various antibody regions. This article reviews our current understanding of molecular origins of viscosity behaviors of antibody solutions. We discuss general strategies and guidelines to select low viscosity candidates or optimize lead candidates for lower viscosity at early drug discovery stages. Moreover, strategies for formulation optimization and excipient design are also presented for candidates already in advanced product development stages. Potential future directions for research in this field are also explored.

  5. Using Social Media Data to Identify Potential Candidates for Drug Repurposing: A Feasibility Study.

    PubMed

    Rastegar-Mojarad, Majid; Liu, Hongfang; Nambisan, Priya

    2016-06-16

    Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates. Patients today report their experiences with medications on social media and reveal side effects as well as beneficial effects of those medications. Our aim was to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this is the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in patient comments. Our preliminary study shows that social media has the potential to be used in drug repurposing.

  6. Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development

    PubMed Central

    Tomar, Dheeraj S.; Kumar, Sandeep; Singh, Satish K.; Goswami, Sumit; Li, Li

    2016-01-01

    ABSTRACT Effective translation of breakthrough discoveries into innovative products in the clinic requires proactive mitigation or elimination of several drug development challenges. These challenges can vary depending upon the type of drug molecule. In the case of therapeutic antibody candidates, a commonly encountered challenge is high viscosity of the concentrated antibody solutions. Concentration-dependent viscosity behaviors of mAbs and other biologic entities may depend on pairwise and higher-order intermolecular interactions, non-native aggregation, and concentration-dependent fluctuations of various antibody regions. This article reviews our current understanding of molecular origins of viscosity behaviors of antibody solutions. We discuss general strategies and guidelines to select low viscosity candidates or optimize lead candidates for lower viscosity at early drug discovery stages. Moreover, strategies for formulation optimization and excipient design are also presented for candidates already in advanced product development stages. Potential future directions for research in this field are also explored. PMID:26736022

  7. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    PubMed

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  8. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases

    PubMed Central

    Allarakhia, Minna

    2013-01-01

    Repurposing has the objective of targeting existing drugs and failed, abandoned, or yet-to-be-pursued clinical candidates to new disease areas. The open-source model permits for the sharing of data, resources, compounds, clinical molecules, small libraries, and screening platforms to cost-effectively advance old drugs and/or candidates into clinical re-development. Clearly, at the core of drug-repurposing activities is collaboration, in many cases progressing beyond the open sharing of resources, technology, and intellectual property, to the sharing of facilities and joint program development to foster drug-repurposing human-capacity development. A variety of initiatives under way for drug repurposing, including those targeting rare and neglected diseases, are discussed in this review and provide insight into the stakeholders engaged in drug-repurposing discovery, the models of collaboration used, the intellectual property-management policies crafted, and human capacity developed. In the case of neglected tropical diseases, it is suggested that the development of human capital be a central aspect of drug-repurposing programs. Open-source models can support human-capital development through collaborative data generation, open compound access, open and collaborative screening, preclinical and possibly clinical studies. Given the urgency of drug development for neglected tropical diseases, the review suggests elements from current repurposing programs be extended to the neglected tropical diseases arena. PMID:23966771

  9. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases.

    PubMed

    Allarakhia, Minna

    2013-01-01

    Repurposing has the objective of targeting existing drugs and failed, abandoned, or yet-to-be-pursued clinical candidates to new disease areas. The open-source model permits for the sharing of data, resources, compounds, clinical molecules, small libraries, and screening platforms to cost-effectively advance old drugs and/or candidates into clinical re-development. Clearly, at the core of drug-repurposing activities is collaboration, in many cases progressing beyond the open sharing of resources, technology, and intellectual property, to the sharing of facilities and joint program development to foster drug-repurposing human-capacity development. A variety of initiatives under way for drug repurposing, including those targeting rare and neglected diseases, are discussed in this review and provide insight into the stakeholders engaged in drug-repurposing discovery, the models of collaboration used, the intellectual property-management policies crafted, and human capacity developed. In the case of neglected tropical diseases, it is suggested that the development of human capital be a central aspect of drug-repurposing programs. Open-source models can support human-capital development through collaborative data generation, open compound access, open and collaborative screening, preclinical and possibly clinical studies. Given the urgency of drug development for neglected tropical diseases, the review suggests elements from current repurposing programs be extended to the neglected tropical diseases arena.

  10. Expert Opinion Editorial Tissue Engineered Blood Vessels as Promising Tools for Testing Drug Toxicity

    PubMed Central

    Truskey, George A.; Fernandez, Cristina E.

    2015-01-01

    Drug-induced vascular injury (DIVI) is a serious problem in preclinical studies of vasoactive molecules and for survivors of pediatric cancers. DIVI is often observed in rodents and some larger animals, primarily with drugs affecting vascular tone, but not in humans; however, DIVI observed in animal studies often precludes a drug candidate from continuing along the development pipeline. Thus, there is great interest by the pharmaceutical industry to identify quantifiable human biomarkers of DIVI. Small scale endothelialized tissue-engineered blood vessels using human cells represent a promising approach to screen drug candidates and developed alternatives to cancer therapeutics in vitro. We identify several technical challenges that remain to be addressed, including high throughput systems to screen large numbers of candidates, identification of suitable cell sources, and establishing and maintaining a differentiated state of the vessel wall cells. Adequately addressing these challenges should yield novel platforms to screen drugs and develop new therapeutics to treat cardiovascular disease. PMID:26028128

  11. Remote controlled capsules in human drug absorption (HDA) studies.

    PubMed

    Wilding, Ian R; Prior, David V

    2003-01-01

    The biopharmaceutical complexity of today's new drug candidates provides significant challenges for pharmaceutical scientists in terms of both candidate selection and optimizing subsequent development strategy. In addition, life cycle management of marketed drugs has become an important income stream for pharmaceutical companies, but the selection of least risk/highest benefit strategies is far from simple. The proactive adoption of human drug absorption (HDA) studies using remote controlled capsules offers the pharmaceutical scientist significant guidance for planning a route through the maze of product development. This review examines the position of HDA studies in drug development, using a variety of case histories and an insightful update on remote controlled capsules to achieve site-specific delivery.

  12. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates

    PubMed Central

    Dostalek, Miroslav; Prueksaritanont, Thomayant; Kelley, Robert F.

    2017-01-01

    ABSTRACT Pharmacokinetic studies play an important role in all stages of drug discovery and development. Recent advancements in the tools for discovery and optimization of therapeutic proteins have created an abundance of candidates that may fulfill target product profile criteria. Implementing a set of in silico, small scale in vitro and in vivo tools can help to identify a clinical lead molecule with promising properties at the early stages of drug discovery, thus reducing the labor and cost in advancing multiple candidates toward clinical development. In this review, we describe tools that should be considered during drug discovery, and discuss approaches that could be included in the pharmacokinetic screening part of the lead candidate generation process to de-risk unexpected pharmacokinetic behaviors of Fc-based therapeutic proteins, with an emphasis on monoclonal antibodies. PMID:28463063

  13. Drug delivery strategies for poorly water-soluble drugs.

    PubMed

    Fahr, Alfred; Liu, Xiangli

    2007-07-01

    The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.

  14. Preformulation and Vaginal Film Formulation Development of Microbicide Drug Candidate CSIC for HIV prevention

    PubMed Central

    Gong, Tiantian; Zhang, Wei; Parniak, Michael A.; Graebing, Phillip W.; Moncla, Bernard; Gupta, Phalguni; Empey, Kerry M.; Rohan, Lisa C.

    2017-01-01

    Purpose 5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. Methods Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. Results Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. Conclusions The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform. PMID:28983328

  15. Preformulation and Vaginal Film Formulation Development of Microbicide Drug Candidate CSIC for HIV prevention.

    PubMed

    Gong, Tiantian; Zhang, Wei; Parniak, Michael A; Graebing, Phillip W; Moncla, Bernard; Gupta, Phalguni; Empey, Kerry M; Rohan, Lisa C

    2017-06-01

    5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w ) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform.

  16. Application of metabonomics in a compound ranking study in early drug development revealing drug-induced excretion of choline into urine.

    PubMed

    Dieterle, Frank; Schlotterbeck, Götz; Ross, Alfred; Niederhauser, Urs; Senn, Hans

    2006-09-01

    Selecting drug candidates based on toxicity is an important step in early drug development. In this case study, it is shown how metabonomics is applied to a ranking study, in which drug candidates with equal pharmacological activities are selected based on least toxic side effects. The metabonomic analyses were carried out on an animal study that followed an established protocol for pilot toxicology/ranking studies in rats, however, not specifically modified for a metabonomic assessment. It is shown how conditions not specificially adopted for metabonomics investigations can significantly influence the metabolic profiles recorded by NMR. Furthermore, it is shown how the multivariate analysis of the NMR spectra identified an extreme excretion of an endogenous metabolite into urine induced by two out of the five drug candidates. The subsequent structure elucidation by two-dimensional NMR experiments and a subsequent validation by spiking experiments identified the metabolite as choline. The discussion of the mechanistic background for the excretion of choline, which is usually well-conserved in the body, results in two hypotheses of either a massive degradation of cell membranes or an inhibition of the choline oxidation. Although the validation of these hypotheses needs a follow-up study, the finding of a increased excretion of the important metabolite choline warrants exclusion of these two compounds as viable drug candidates from a metabonomics point of view.

  17. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    Our group is interested in developing novel epigenetic therapeutics for thoracic malignancies, especially small cell lung cancer. The successful candidate will perform studies to develop an effective drug combo from bench to bedside.  The candidate should have a PhD in Molecular Biology, Biochemistry or related disciplines.  The candidate will work with both cell models and animal models. 

  18. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    Our group is interested in developing novel epigenetic therapeutics for thoracic malignancies, especially small cell lung cancer. The successful candidate will perform studies to develop an effective drug combo from bench to bedside.  The candidate should have a PhD in Molecular Biology, Biochemistry or related disciplines.  The candidate will work with both cell models and

  19. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

    PubMed Central

    Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

    2013-01-01

    Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

  20. Developing Memory Reconsolidation Blockers as Novel PTSD Treatments

    DTIC Science & Technology

    2012-06-01

    freezing in a Pavlovian cue- conditioned fear task in rats. In Stage II, we will evaluate the ability of candidate drugs to reverse fear conditioning ...disorder (PTSD). The underlying theory is that candidate drugs , when given following the reactivation of a conditioned fear response in animals, or a...traumatic memory in humans, will reduce the strength of the conditioned response or traumatic memory. We plan to test such drugs , either alone or in

  1. Refining adverse drug reaction signals by incorporating interaction variables identified using emergent pattern mining.

    PubMed

    Reps, Jenna M; Aickelin, Uwe; Hubbard, Richard B

    2016-02-01

    To develop a framework for identifying and incorporating candidate confounding interaction terms into a regularised cox regression analysis to refine adverse drug reaction signals obtained via longitudinal observational data. We considered six drug families that are commonly associated with myocardial infarction in observational healthcare data, but where the causal relationship ground truth is known (adverse drug reaction or not). We applied emergent pattern mining to find itemsets of drugs and medical events that are associated with the development of myocardial infarction. These are the candidate confounding interaction terms. We then implemented a cohort study design using regularised cox regression that incorporated and accounted for the candidate confounding interaction terms. The methodology was able to account for signals generated due to confounding and a cox regression with elastic net regularisation correctly ranking the drug families known to be true adverse drug reactions above those that are not. This was not the case without the inclusion of the candidate confounding interaction terms, where confounding leads to a non-adverse drug reaction being ranked highest. The methodology is efficient, can identify high-order confounding interactions and does not require expert input to specify outcome specific confounders, so it can be applied for any outcome of interest to quickly refine its signals. The proposed method shows excellent potential to overcome some forms of confounding and therefore reduce the false positive rate for signal analysis using longitudinal data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.

    PubMed

    Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta

    2014-06-01

    Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates

    PubMed Central

    Xiao, Zhiyan; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung

    2015-01-01

    Natural products have made significant contribution to cancer chemotherapy over the past decades and remain an indispensable source of molecular and mechanistic diversity for anticancer drug discovery. More often than not, natural products may serve as leads for further drug development rather than as effective anticancer drugs by themselves. Generally, optimization of natural leads into anticancer drugs or drug candidates should not only address drug efficacy, but also improve ADMET profiles and chemical accessibility associated with the natural leads. Optimization strategies involve direct chemical manipulation of functional groups, structure-activity relationship-directed optimization and pharmacophore-oriented molecular design based on the natural templates. Both fundamental medicinal chemistry principles (e.g., bio-isosterism) and state-of-the-art computer-aided drug design techniques (e.g., structure-based design) can be applied to facilitate optimization efforts. In this review, the strategies to optimize natural leads to anticancer drugs or drug candidates are illustrated with examples and described according to their purposes. Furthermore, successful case studies on lead optimization of bioactive compounds performed in the Natural Products Research Laboratories at UNC are highlighted. PMID:26359649

  4. Engineering three-dimensional cardiac microtissues for potential drug screening applications.

    PubMed

    Wang, L; Huang, G; Sha, B; Wang, S; Han, Y L; Wu, J; Li, Y; Du, Y; Lu, T J; Xu, F

    2014-01-01

    Heart disease is one of the major global health issues. Despite rapid advances in cardiac tissue engineering, limited successful strategies have been achieved to cure cardiovascular diseases. This situation is mainly due to poor understanding of the mechanism of diverse heart diseases and unavailability of effective in vitro heart tissue models for cardiovascular drug screening. With the development of microengineering technologies, three-dimensional (3D) cardiac microtissue (CMT) models, mimicking 3D architectural microenvironment of native heart tissues, have been developed. The engineered 3D CMT models hold greater potential to be used for assessing effective drugs candidates than traditional two-dimensional cardiomyocyte culture models. This review discusses the development of 3D CMT models and highlights their potential applications for high-throughput screening of cardiovascular drug candidates.

  5. Open Access Could Transform Drug Discovery: A Case Study of JQ1.

    PubMed

    Arshad, Zeeshaan; Smith, James; Roberts, Mackenna; Lee, Wen Hwa; Davies, Ben; Bure, Kim; Hollander, Georg A; Dopson, Sue; Bountra, Chas; Brindley, David

    2016-01-01

    The cost to develop a new drug from target discovery to market is a staggering $1.8 billion, largely due to the very high attrition rate of drug candidates and the lengthy transition times during development. Open access is an emerging model of open innovation that places no restriction on the use of information and has the potential to accelerate the development of new drugs. To date, no quantitative assessment has yet taken place to determine the effects and viability of open access on the process of drug translation. This need is addressed within this study. The literature and intellectual property landscapes of the drug candidate JQ1, which was made available on an open access basis when discovered, and conventionally developed equivalents that were not are compared using the Web of Science and Thomson Innovation software, respectively. Results demonstrate that openly sharing the JQ1 molecule led to a greater uptake by a wider and more multi-disciplinary research community. A comparative analysis of the patent landscapes for each candidate also found that the broader scientific diaspora of the publically released JQ1 data enhanced innovation, evidenced by a greater number of downstream patents filed in relation to JQ1. The authors' findings counter the notion that open access drug discovery would leak commercial intellectual property. On the contrary, JQ1 serves as a test case to evidence that open access drug discovery can be an economic model that potentially improves efficiency and cost of drug discovery and its subsequent commercialization.

  6. Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries.

    PubMed

    Cruz-Monteagudo, Maykel; Borges, Fernanda; Cordeiro, M Natália D S; Cagide Fajin, J Luis; Morell, Carlos; Ruiz, Reinaldo Molina; Cañizares-Carmenate, Yudith; Dominguez, Elena Rosa

    2008-01-01

    Up to now, very few applications of multiobjective optimization (MOOP) techniques to quantitative structure-activity relationship (QSAR) studies have been reported in the literature. However, none of them report the optimization of objectives related directly to the final pharmaceutical profile of a drug. In this paper, a MOOP method based on Derringer's desirability function that allows conducting global QSAR studies, simultaneously considering the potency, bioavailability, and safety of a set of drug candidates, is introduced. The results of the desirability-based MOOP (the levels of the predictor variables concurrently producing the best possible compromise between the properties determining an optimal drug candidate) are used for the implementation of a ranking method that is also based on the application of desirability functions. This method allows ranking drug candidates with unknown pharmaceutical properties from combinatorial libraries according to the degree of similarity with the previously determined optimal candidate. Application of this method will make it possible to filter the most promising drug candidates of a library (the best-ranked candidates), which should have the best pharmaceutical profile (the best compromise between potency, safety and bioavailability). In addition, a validation method of the ranking process, as well as a quantitative measure of the quality of a ranking, the ranking quality index (Psi), is proposed. The usefulness of the desirability-based methods of MOOP and ranking is demonstrated by its application to a library of 95 fluoroquinolones, reporting their gram-negative antibacterial activity and mammalian cell cytotoxicity. Finally, the combined use of the desirability-based methods of MOOP and ranking proposed here seems to be a valuable tool for rational drug discovery and development.

  7. Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations.

    PubMed

    Vilar, Santiago; Hripcsak, George

    2016-01-01

    Drug-target identification is crucial to discover novel applications for existing drugs and provide more insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect discovery. In this article, we propose a method based on the integration of 3D chemical similarity, target and adverse effect data to generate a drug-target-adverse effect predictor along with a simple leveraging system to improve identification of drug-targets and drug-adverse effects. In the first step, we generated a system for multiple drug-target identification based on the application of 3D drug similarity into a large target dataset extracted from the ChEMBL. Next, we developed a target-adverse effect predictor combining targets from ChEMBL with phenotypic information provided by SIDER data source. Both modules were linked to generate a final predictor that establishes hypothesis about new drug-target-adverse effect candidates. Additionally, we showed that leveraging drug-target candidates with phenotypic data is very useful to improve the identification of drug-targets. The integration of phenotypic data into drug-target candidates yielded up to twofold precision improvement. In the opposite direction, leveraging drug-phenotype candidates with target data also yielded a significant enhancement in the performance. The modeling described in the current study is simple and efficient and has applications at large scale in drug repurposing and drug safety through the identification of mechanism of action of biological effects.

  8. Stimulating neuroregeneration as a therapeutic drug approach for traumatic brain injury

    PubMed Central

    Mueller, Bernhard K; Mueller, Reinhold; Schoemaker, Hans

    2009-01-01

    Traumatic brain injury, a silent epidemic of modern societies, is a largely neglected area in drug development and no drug is currently available for the treatment of patients suffering from brain trauma. Despite this grim situation, much progress has been made over the last two decades in closely related medical indications, such as spinal cord injury, giving rise to a more optimistic approach to drug development in brain trauma. Fundamental insights have been gained with animal models of central nervous system (CNS) trauma and spinal cord injury. Neuroregenerative drug candidates have been identified and two of these have progressed to clinical development for spinal cord injury patients. If successful, these drug candidates may be used to treat brain trauma patients. Significant progress has also been made in understanding the fundamental molecular mechanism underlying irreversible axonal growth arrest in the injured CNS of higher mammals. From these studies, we have learned that the axonal retraction bulb, previously regarded as a marker for failure of regenerative growth, is not static but dynamic and, therefore, amenable to pharmacotherapeutic approaches. With the development of modified magnetic resonance imaging methods, fibre tracts can be visualised in the living human brain and such imaging methods will soon be used to evaluate the neuroregenerative potential of drug candidates. These significant advances are expected to fundamentally change the often hopeless situation of brain trauma patients and will be the first step towards overcoming the silent epidemic of brain injury. PMID:19422372

  9. Prostate cancer prevention agent development: Criteria and pipeline for candidate chemoprevention agents.

    PubMed

    Nelson, W G; Wilding, G

    2001-04-01

    Epidemiologic data suggest that prostate cancer morbidity and mortality ought to be preventable. New insights into the molecular pathogenesis of prostate cancer offer new opportunities for the discovery of prostate cancer chemoprevention drugs and new challenges for their development. Established pathways that lead to US Food and Drug Administration (FDA) approval of drugs for advanced prostate cancer may not be appropriate for the development of drugs for prostate cancer chemoprevention. For example, large randomized clinical trials designed to test the efficacy of new chemoprevention drugs on prostate cancer survival in the general population are likely to be conducted at great expense and take many years, threatening to increase commercial development risks while decreasing exclusive marketing revenues. As a consequence, to accelerate progress in research, new validated surrogate and strategic clinical trial endpoints, and new clinical trial designs featuring more precisely defined high-risk clinical trial cohorts, are needed. In this review, 10 criteria for prostate cancer chemoprevention agent development are offered and the pipeline of new prostate cancer chemoprevention drug candidates is considered.

  10. Process Pharmacology: A Pharmacological Data Science Approach to Drug Development and Therapy.

    PubMed

    Lötsch, Jörn; Ultsch, Alfred

    2016-04-01

    A novel functional-genomics based concept of pharmacology that uses artificial intelligence techniques for mining and knowledge discovery in "big data" providing comprehensive information about the drugs' targets and their functional genomics is proposed. In "process pharmacology", drugs are associated with biological processes. This puts the disease, regarded as alterations in the activity in one or several cellular processes, in the focus of drug therapy. In this setting, the molecular drug targets are merely intermediates. The identification of drugs for therapeutic or repurposing is based on similarities in the high-dimensional space of the biological processes that a drug influences. Applying this principle to data associated with lymphoblastic leukemia identified a short list of candidate drugs, including one that was recently proposed as novel rescue medication for lymphocytic leukemia. The pharmacological data science approach provides successful selections of drug candidates within development and repurposing tasks. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  11. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  12. Developing Memory Reconsolidation Blockers as Novel PTSD Treatments

    DTIC Science & Technology

    2009-06-01

    for posttraumatic stress disorder (PTSD). The underlying theory is that candidate drugs , when given following the reactivation of a conditioned ...freezing in a Pavlovian cue- conditioned fear task in rats, as well as to reduce associated retrieval-induced activation of immediate early genes in the...amygdala. In Stage II, we will evaluate the ability of candidate drugs to reverse fear conditioning -induced synaptic enhancement in rat amygdala

  13. Cost-effectiveness analysis of microdose clinical trials in drug development.

    PubMed

    Yamane, Naoe; Igarashi, Ataru; Kusama, Makiko; Maeda, Kazuya; Ikeda, Toshihiko; Sugiyama, Yuichi

    2013-01-01

    Microdose (MD) clinical trials have been introduced to obtain human pharmacokinetic data early in drug development. Here we assessed the cost-effectiveness of microdose integrated drug development in a hypothetical model, as there was no such quantitative research that weighed the additional effectiveness against the additional time and/or cost. First, we calculated the cost and effectiveness (i.e., success rate) of 3 types of MD integrated drug development strategies: liquid chromatography-tandem mass spectrometry, accelerator mass spectrometry, and positron emission tomography. Then, we analyzed the cost-effectiveness of 9 hypothetical scenarios where 100 drug candidates entering into a non-clinical toxicity study were selected by different methods as the conventional scenario without MD. In the base-case, where 70 drug candidates were selected without MD and 30 selected evenly by one of the three MD methods, incremental cost-effectiveness ratio per one additional drug approved was JPY 12.7 billion (US$ 0.159 billion), whereas the average cost-effectiveness ratio of the conventional strategy was JPY 24.4 billion, which we set as a threshold. Integrating MD in the conventional drug development was cost-effective in this model. This quantitative analytical model which allows various modifications according to each company's conditions, would be helpful for guiding decisions early in clinical development.

  14. Investigational Drugs for Visceral Leishmaniasis

    PubMed Central

    Sundar, Shyam; Chakravarty, Jaya

    2014-01-01

    Introduction The armamentarium of antileishmanials is small. It is further being threatened by development of resistance and decreasing sensitivity to the available drugs. Development of newer drugs are sorely needed. Areas covered Literature search on investigational drugs for visceral leishmaniasis (VL) was done on PubMed. Those candidates with at least in vitro and in vivo activity against leishmania species causing VL were reviewed. Among the investigational drugs the nitroimidazole compound fexinidazole is the one of the few drugs which has reached phase II trials. Although the (S)-PA-824 is in phase II trials for the treatment of tuberculosis its R enantiomer has shown good antileishmanial activity. Development of sitamaquin, which has completed phase II studies has been stopped for VL due to its low efficacy. Many novel delivery system and oral formulations of Amphotericin B which are cheap and less toxic are in investigational stages, and will go a long way in improving the treatment of VL. Expert opinion Very few new drugs have reached the clinical stage in the treatment of this neglected tropical disease. Thus, there is an urgent need for support from public private partnerships to ensure that drug candidates are promptly taken forward into development. PMID:25409760

  15. Assays for the Identification and Prioritization of Drug Candidates for Spinal Muscular Atrophy

    PubMed Central

    Cherry, Jonathan J.; Kobayashi, Dione T.; Lynes, Maureen M.; Naryshkin, Nikolai N.; Tiziano, Francesco Danilo; Zaworski, Phillip G.; Rubin, Lee L.

    2014-01-01

    Abstract Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials. PMID:25147906

  16. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  17. Drug targets for resistant malaria: Historic to future perspectives.

    PubMed

    Kumar, Sahil; Bhardwaj, T R; Prasad, D N; Singh, Rajesh K

    2018-05-11

    New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Radiation- and Depleted Uranium-Induced Carcinogenesis Studies: Characterization of the Carcinogenic Process and Development of Medical Countermeasures

    DTIC Science & Technology

    2005-01-01

    drug development. 3.2 Candidate Agents: Phenylacetate and Epigallocatechin Gallate Phenylacetate (PA) is an attractive candidate for our studies...The polyphenol, epigallocathechin-3 gallate ( EGCG ), a major constituent of green tea, is also an attractive candidate for low-dose radiation...preventive agents. Part 1: chemopreventive potential of Epigallocatechin gallate , cimigenol, cimigenol-3,15-dione, and related compounds, Bioorganic Medical

  19. Has molecular imaging delivered to drug development?

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  20. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention. In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds. The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively. This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. The basics of preclinical drug development for neurodegenerative disease indications.

    PubMed

    Steinmetz, Karen L; Spack, Edward G

    2009-06-12

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial.

  2. The basics of preclinical drug development for neurodegenerative disease indications

    PubMed Central

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial. PMID:19534731

  3. Development of potential candidate reference materials for drugs in bottom sediment, cod and herring tissues.

    PubMed

    Baranowska, Irena; Buszewski, Bogusław; Namieśnik, Jacek; Konieczka, Piotr; Magiera, Sylwia; Polkowska-Motrenko, Halina; Kościelniak, Paweł; Gadzała-Kopciuch, Renata; Woźniakiewicz, Aneta; Samczyński, Zbigniew; Kochańska, Kinga; Rutkowska, Małgorzata

    2017-02-01

    Regular use of a reference material and participation in a proficiency testing program can improve the reliability of analytical data. This paper presents the preparation of candidate reference materials for the drugs metoprolol, propranolol, carbamazepine, naproxen, and acenocoumarol in freshwater bottom sediment and cod and herring tissues. These reference materials are not available commercially. Drugs (between 7 ng/g and 32 ng/g) were added to the samples, and the spiked samples were freeze-dried, pulverized, sieved, homogenized, bottled, and sterilized by γ-irradiation to prepare the candidate materials. Procedures for extraction and liquid chromatography coupled with tandem mass spectrometry were developed to determine the drugs of interest in the studied material. Each target drug was quantified using two analytical procedures, and the results obtained from these two procedures were in good agreement with each other. Stability and homogeneity assessments were performed, and the relative uncertainties due to instability (for an expiration date of 12 months) and inhomogeneity were 10-25% and 4.0-6.8%, respectively. These procedures will be useful in the future production of reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The role of chromatographic and chiroptical spectroscopic techniques and methodologies in support of drug discovery for atropisomeric drug inhibitors of Bruton's tyrosine kinase.

    PubMed

    Dai, Jun; Wang, Chunlei; Traeger, Sarah C; Discenza, Lorell; Obermeier, Mary T; Tymiak, Adrienne A; Zhang, Yingru

    2017-03-03

    Atropisomers are stereoisomers resulting from hindered bond rotation. From synthesis of pure atropisomers, characterization of their interconversion thermodynamics to investigation of biological stereoselectivity, the evaluation of drug candidates subject to atropisomerism creates special challenges and can be complicated in both early drug discovery and later drug development. In this paper, we demonstrate an array of analytical techniques and systematic approaches to study the atropisomerism of drug molecules to meet these challenges. Using a case study of Bruton's tyrosine kinase (BTK) inhibitor drug candidates at Bristol-Myers Squibb, we present the analytical strategies and methodologies used during drug discovery including the detection of atropisomers, the determination of their relative composition, the identification of relative chirality, the isolation of individual atropisomers, the evaluation of interconversion kinetics, and the characterization of chiral stability in the solid state and in solution. In vivo and in vitro stereo-stability and stereo-selectivity were investigated as well as the pharmacological significance of any changes in atropisomer ratios. Techniques applied in these studies include analytical and preparative enantioselective supercritical fluid chromatography (SFC), enantioselective high performance liquid chromatography (HPLC), circular dichroism (CD), and mass spectrometry (MS). Our experience illustrates how atropisomerism can be a very complicated issue in drug discovery and why a thorough understanding of this phenomenon is necessary to provide guidance for pharmaceutical development. Analytical techniques and methodologies facilitate key decisions during the discovery of atropisomeric drug candidates by characterizing time-dependent physicochemical properties that can have significant biological implications and relevance to pharmaceutical development plans. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. ATOM - Accelerating therapeutics through opportunities in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcmahon, Benjamin Hamilton; Dotson, Paul Jeffrey

    Create a new paradigm of drug discovery that would reduce the time from an identified drug target to clinical candidate from the current ~6 years to just 12 months. ATOM will develop, test, and validate a multidisciplinary approach to drug discovery in which modern science, technology and engineering, supercomputing, simulations, data science, and artificial intelligence are highly integrated into a single drug-discovery platform that can ultimately be shared with the drug development community at-large.

  6. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    PubMed

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  7. The Rule of Five for Non-Oral Routes of Drug Delivery: Ophthalmic, Inhalation and Transdermal

    PubMed Central

    Choy, Young Bin; Prausnitz, Mark R.

    2011-01-01

    The Rule of Five predicts suitability of drug candidates, but was developed primarily using orally administered drugs. Here, we test whether the Rule of Five predicts drugs for delivery via non-oral routes, specifically ophthalmic, inhalation and transdermal. We assessed 111 drugs approved by FDA for those routes of administration and found that >98% of current non-oral drugs have physicochemical properties within the limits of the Rule of Five. However, given the inherent bias in the dataset, this analysis was not able to assess whether drugs with properties outside those limits are poor candidates. Indeed, further analysis indicates that drugs well outside the Rule of Five limits, including hydrophilic macromolecules, can be delivered by inhalation. In contrast, drugs currently administered across skin fall within more stringent limits than predicted by the Rule of Five, but new transdermal delivery technologies may make these constraints obsolete by dramatically increasing skin permeability. The Rule of Five does appear to apply well to ophthalmic delivery. We conclude that although current non-oral drugs mostly have physicochemical properties within the Rule of Five thresholds, the Rule of Five should not be used to predict non-oral drug candidates, especially for inhalation and transdermal routes. PMID:20967491

  8. Tuberculosis vaccine development at a divide.

    PubMed

    Kaufmann, Stefan H E

    2014-05-01

    Tuberculosis (TB) remains a major health threat that will only be defeated by a combination of better drugs, diagnostics and vaccines. The only licensed TB vaccine, bacille Calmette-Guérin (BCG), protects against extrapulmonary TB in infants. Novel vaccine candidates that could protect against pulmonary TB either in TB naïve or in latent TB-infected healthy individuals have been developed and are currently being assessed in clinical trials. Subunit booster vaccines are either based on viral vectors expressing TB-specific antigens or on TB-protein antigens in adjuvants. Subunit vaccines are administered on top of BCG. Replacement vaccines for BCG are recombinant viable BCG or Mycobacterium tuberculosis. Several candidates are undergoing, or will soon start, phase IIb assessment for efficacy. The first vaccine candidate, MVA85A, to complete a phase IIb trial, unfortunately failed to show protection against TB in infants. Therapeutic vaccines composed of killed mycobacterial preparations target patients with complicated TB in adjunct to drug treatment. With increasing numbers of TB vaccine candidates in clinical trials, financial, regulatory and infrastructural issues arise, which would be best tackled by a global strategy. In addition, selection of the most promising vaccine candidates for further clinical development gains increasing importance.

  9. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making.

    PubMed

    Dambach, Donna M; Misner, Dinah; Brock, Mathew; Fullerton, Aaron; Proctor, William; Maher, Jonathan; Lee, Dong; Ford, Kevin; Diaz, Dolores

    2016-04-18

    Discovery toxicology focuses on the identification of the most promising drug candidates through the development and implementation of lead optimization strategies and hypothesis-driven investigation of issues that enable rational and informed decision-making. The major goals are to [a] identify and progress the drug candidate with the best overall drug safety profile for a therapeutic area, [b] remove the most toxic drugs from the portfolio prior to entry into humans to reduce clinical attrition due to toxicity, and [c] establish a well-characterized hazard and translational risk profile to enable clinical trial designs. This is accomplished through a framework that balances the multiple considerations to identify a drug candidate with the overall best drug characteristics and provides a cogent understanding of mechanisms of toxicity. The framework components include establishing a target candidate profile for each program that defines the qualities of a successful candidate based on the intended therapeutic area, including the risk tolerance for liabilities; evaluating potential liabilities that may result from engaging the therapeutic target (pharmacology-mediated or on-target) and that are chemical structure-mediated (off-target); and characterizing identified liabilities. Lead optimization and investigation relies upon the integrated use of a variety of technologies and models (in silico, in vitro, and in vivo) that have achieved a sufficient level of qualification or validation to provide confidence in their use. We describe the strategic applications of various nonclinical models (established and new) for a holistic and integrated risk assessment that is used for rational decision-making. While this review focuses on strategies for small molecules, the overall concepts, approaches, and technologies are generally applicable to biotherapeutics.

  10. New Therapeutic Uses for Existing Drugs.

    PubMed

    Austin, Bobbie Ann; Gadhia, Ami D

    2017-01-01

    Eighty percent of drugs that enter human clinical testing are never approved for use. This means that for every five drugs that make it into the clinic, there are four that failed to show effectiveness for treating the disease or condition the drug was designed to treat.This high failure rate means there are many existing, partially developed therapeutic candidates with known pharmacology, formulation, and potential toxicity. Finding new uses for existing experimental drugs or biologics "repositioning" builds upon previous research and development efforts, so new candidate therapies can be advanced to clinical trials for a new use more quickly than starting from scratch.Federal funding initiatives in the U.S. and UK started to support pre-clinical /or early stage trials for repositioning existing experimental drugs or biologics (therapies). This chapter covers some of the process issues that have been solved and the remaining challenges that are still in need of solutions. The chapter is primarily written from a U.S. federal funding perspective. The general concepts could be applied more globally to benefit rare and neglected disease populations. The drug development and process bottlenecks are the same for both rare and common disease.

  11. Drug repurposing in kidney disease.

    PubMed

    Panchapakesan, Usha; Pollock, Carol

    2018-07-01

    Drug repurposing, is the re-tasking of known medications for new clinical indications. Advantages, compared to de novo drug development, include reduced cost and time to market plus the added benefit of a known pharmacokinetic and safety profiles. Suitable drug candidates are identified through serendipitous observations, data mining, or increased understanding of disease mechanisms. This review highlights drugs suited for repurposing in kidney disease. The main cause of mortality in patients with chronic kidney disease is cardiovascular disease. Hence, we have included CV endpoints for the drugs. This review begins with candidates in acute kidney injury: vasodilators levosimendan and vitamin D, followed by candidates in CKD, with particular focus on diabetic kidney disease, autosomal dominant polycystic kidney disease, and focal segmental glomerulosclerosis. Examples include glucose-lowering drugs (sodium glucose co-transporter 2 inhibitors, glucagon-like peptide 1 agonists, and metformin), which have mechanistic potential for cardiac and/or renal protection beyond glucose lowering, with broader applicability to the nondiabetic population; xanthine oxidase inhibitors (allopurinol, febuxostat), selective endothelin receptor A antagonist (atrasentan), Janus kinase inhibitor (baricitinib), selective costimulation modulator (abatacept), pentoxyfylline, and the DNA demethylating agent/vasodilator (hydralazine). Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Recent developments with metalloprotease inhibitor class of drug candidates for Botulinum neurotoxins

    DOE PAGES

    Kumar, Gyanendra; Swaminathan, Subramanyam

    2015-03-01

    Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are also potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, andmore » these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.« less

  13. Recent developments with metalloprotease inhibitor class of drug candidates for botulinum neurotoxins.

    PubMed

    Kumar, Gyanendra; Swaminathan, Subramanyam

    2015-01-01

    Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, and these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.

  14. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators

    PubMed Central

    Flierl, Ulrike; Nero, Tracy L.; Lim, Bock; Arthur, Jane F.; Yao, Yu; Jung, Stephanie M.; Gitz, Eelo; Pollitt, Alice Y.; Zaldivia, Maria T.K.; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K.; Parker, Michael W.; Gardiner, Elizabeth E.

    2015-01-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  15. Discovery of Novel HIV-1 Integrase Inhibitors Using QSAR-Based Virtual Screening of the NCI Open Database.

    PubMed

    Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil

    2016-01-01

    Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.

  16. [Improvement and prediction of intestinal drug absorption].

    PubMed

    Miyake, Masateru

    2013-01-01

    The suppository preparation, which can improve the absorption of poorly absorbable drugs safer than commercially available suppositories, was developed by utilizing sodium laurate and taurine. Additionally, the novel oral absorption-improving system was also established by utilizing polyamines and bile acids. Furthermore, to evaluate the efficacy of these new formulations and estimate the absorbability of new drug candidates in humans, the in vitro prediction system utilizing an isolated human intestinal tissues was developed and successfully predicted the fraction of dose absorbed for several model drugs. These findings would contribute to the development of new dosage forms and new drugs for oral administration.

  17. Instrumentation development for drug detection on the breath

    DOT National Transportation Integrated Search

    1972-09-01

    Based on a survey of candidate analytical methods, mass spectrometry was identified as a promising technique for drug detection on the breath. To demonstrate its capabilities, an existing laboratory mass spectrometer was modified by the addition of a...

  18. Single dose treatment of malaria - current status and perspectives.

    PubMed

    Mischlinger, Johannes; Agnandji, Selidji T; Ramharter, Michael

    2016-07-01

    Despite increased international efforts for control and ultimate elimination, malaria remains a major health problem. Currently, artemisinin-based combination therapies are the treatment of choice for uncomplicated malaria exhibiting high efficacy in clinical trial settings in sub-Saharan Africa. However, their administration over a three-day period is associated with important problems of treatment adherence resulting in markedly reduced effectiveness of currently recommended antimalarials under real world settings. Antimalarial drug candidates and antimalarial drug combinations currently under advanced clinical development for the indication as single dose antimalarial therapy. Expert commentary: Several new drug candidates and combinations are currently undergoing pivotal proof-of-concept studies or clinical development programmes. The development of a single dose combination therapy would constitute a breakthrough in the control of malaria. Such an innovative treatment approach would simultaneously close the effectiveness gap of current three-day therapies and revolutionize population based interventions in the context of malaria elimination campaigns.

  19. Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hansen-Hagge, Thomas; Kurtz, Andreas; Mrowka, Ralf; Wölfl, Stefan; Gärtner, Claudia

    2017-02-01

    The development of new drugs is time-consuming, extremely expensive and often promising drug candidates fail in late stages of the development process due to the lack of suitable tools to either predict toxicological effects or to test drug candidates in physiologically relevant environments prior to clinical tests. We therefore try to develop diagnostic multiorgan microfluidic chips based on patient specific induced pluripotent stem cell (iPS) technology to explore liver dependent toxic effects of drugs on individual human tissues such as liver or kidney cells. Based initially on standardized microfluidic modules for cell culture, we have developed integrated microfluidic devices which contain different chambers for cell/tissue cultivation. The devices are manufactured using injection molding of thermoplastic polymers such as polystyrene or cyclo-olefin polymer. In the project, suitable surface modification methods of the used materials had to be explored. We have been able to successfully demonstrate the seeding, cultivation and further differentiation of modified iPS, as shown by the use of differentiation markers, thus providing a suitable platform for toxicity testing and potential tissue-tissue interactions.

  20. Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy.

    PubMed

    Temesi, Gergely; Bolgár, Bence; Arany, Adám; Szalai, Csaba; Antal, Péter; Mátyus, Péter

    2014-04-01

    Despite famous serendipitous drug repositioning success stories, systematic projects have not yet delivered the expected results. However, repositioning technologies are gaining ground in different phases of routine drug development, together with new adaptive strategies. We demonstrate the power of the compound information pool, the ever-growing heterogeneous information repertoire of approved drugs and candidates as an invaluable catalyzer in this transition. Systematic, computational utilization of this information pool for candidates in early phases is an open research problem; we propose a novel application of the enrichment analysis statistical framework for fusion of this information pool, specifically for the prediction of indications. Pharmaceutical consequences are formulated for a systematic and continuous knowledge recycling strategy, utilizing this information pool throughout the drug-discovery pipeline.

  1. A Network Approach to Rare Disease Modeling

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan; Rabello, Sabrina; Sharma, Amitabh; Wiest, Olaf; Barabasi, Albert-Laszlo

    2011-03-01

    Network approaches have been widely used to better understand different areas of natural and social sciences. Network Science had a particularly great impact on the study of biological systems. In this project, using biological networks, candidate drugs as a potential treatment of rare diseases were identified. Developing new drugs for more than 2000 rare diseases (as defined by ORPHANET) is too expensive and beyond expectation. Disease proteins do not function in isolation but in cooperation with other interacting proteins. Research on FDA approved drugs have shown that most of the drugs do not target the disease protein but a protein which is 2 or 3 steps away from the disease protein in the Protein-Protein Interaction (PPI) network. We identified the already known drug targets in the disease gene's PPI subnetwork (up to the 3rd neighborhood) and among them those in the same sub cellular compartment and higher coexpression coefficient with the disease gene are expected to be stronger candidates. Out of 2177 rare diseases, 1092 were found not to have any drug target. Using the above method, we have found the strongest candidates among the rest in order to further experimental validations.

  2. A review of late-stage CNS drug candidates for the treatment of obesity.

    PubMed

    Heal, D J; Gosden, J; Smith, S L

    2013-01-01

    Obesity is an important causative factor in morbidity, disability and premature death. Increasing levels of obesity will impose enormous health, financial and social burdens on worldwide society unless effective interventions are implemented. For many obese individuals, diet and behavioural modification need to be supplemented by pharmacotherapy. Preclinical research has revealed a greater understanding of the complex nature of the hypothalamic regulation of food intake and has generated a wide range of new molecular targets for the development of drug candidates for obesity treatment. As shown by the clinical results that have been obtained with this next generation of therapies, some approaches, for example, fixed-dose drug combinations, have already demonstrated an ability to deliver levels of efficacy that are not achievable with the current antiobesity drug therapies. The regulatory and marketing landscape for development, registration and commercialisation of novel centrally acting drugs for treatment of obesity and related metabolic disorders has changed substantially in recent years. Now a much greater emphasis is placed on tolerability and safety, as well as efficacy. In this review we briefly describe the therapeutic approaches to tackle obesity that are in late-stage clinical development. We then discuss drugs in late-stage development for the treatment of obesity and also future directions.

  3. Novel Approaches to Pulmonary Arterial Hypertension Drug Discovery

    PubMed Central

    Sung, Yon K.; Yuan, Ke; de Jesus Perez, Vinicio A.

    2016-01-01

    Introduction Pulmonary arterial hypertension (PAH) is a rare disorder associated with abnormally elevated pulmonary pressures that, if untreated, leads to right heart failure and premature death. The goal of drug development for PAH is to develop effective therapies that halt, or ideally, reverse the obliterative vasculopathy that results in vessel loss and obstruction of blood flow to the lungs. Areas Covered This review summarizes the current approach to candidate discovery in PAH and discusses the currently available drug discovery methods that should be implemented to prioritize targets and obtain a comprehensive pharmacological profile of promising compounds with well-defined mechanisms. Expert opinion To improve the successful identification of leading drug candidates, it is necessary that traditional pre-clinical studies are combined with drug screening strategies that maximize the characterization of biological activity and identify relevant off-target effects that could hinder the clinical efficacy of the compound when tested in human subjects. A successful drug discovery strategy in PAH will require collaboration of clinician scientists with medicinal chemists and pharmacologists who can identify compounds with an adequate safety profile and biological activity against relevant disease mechanisms. PMID:26901465

  4. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.

    PubMed

    Li, Nan; Ainsworth, Richard I; Ding, Bo; Hou, Tingjun; Wang, Wei

    2015-07-27

    Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of highly active anti-retroviral therapy (HAART) that block the catalytic site of HIV protease, thus preventing maturation of the HIV virion. However, with two decades of PI prescriptions in clinical practice, drug-resistant HIV mutants have now been found for all of the PI drugs. Therefore, the continuous development of new PI drugs is crucial both to combat the existing drug-resistant HIV strains and to provide treatments for future patients. Here we purpose an HIV PI drug design strategy to select candidate PIs with binding energy distributions dominated by interactions with conserved protease residues in both wild-type and various drug-resistant mutants. On the basis of this strategy, we have constructed a virtual screening pipeline including combinatorial library construction, combinatorial docking, MM/GBSA-based rescoring, and reranking on the basis of the binding energy distribution. We have tested our strategy on lopinavir by modifying its two functional groups. From an initial 751 689 candidate molecules, 18 candidate inhibitors were selected using the pipeline for experimental validation. IC50 measurements and drug resistance predictions successfully identified two ligands with both HIV protease inhibitor activity and an improved drug resistance profile on 2382 HIV mutants. This study provides a proof of concept for the integration of MM/GBSA energy analysis and drug resistance information at the stage of virtual screening and sheds light on future HIV drug design and the use of virtual screening to combat drug resistance.

  5. Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteron, Jose M.; Marco, Maria; Esquivias, Jorge

    2012-02-27

    Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model,more » can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.« less

  6. Mass spectrometry-driven drug discovery for development of herbal medicine.

    PubMed

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2018-05-01

    Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.

  7. Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading.

    PubMed

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-10

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. © 2013.

  8. Self-contained, low-cost Body-on-a-Chip systems for drug development.

    PubMed

    Wang, Ying I; Oleaga, Carlota; Long, Christopher J; Esch, Mandy B; McAleer, Christopher W; Miller, Paula G; Hickman, James J; Shuler, Michael L

    2017-11-01

    Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.

  9. Application of a novel combination of near-infrared spectroscopy and a humidity-controlled 96-well plate to the characterization of the polymorphism of imidafenacin.

    PubMed

    Uchida, Hiroshi; Yoshinaga, Tokuji; Mori, Hirotoshi; Otsuka, Makoto

    2010-11-01

    This study aimed to apply a currently available chemometric near-infrared spectroscopy technique to the characterization of the polymorphic properties of drug candidates. The technique requires only small quantities of samples and is therefore applicable to drugs in the early stages of development. The combination of near-infrared spectroscopy and a patented 96-well plate divided into 32 individual, humidity-controlled, three-well compartments was used in the characterization of a hygroscopic drug, imidafenacin, which has two polymorphs and one pseudo-polymorph. Characterization was also conducted with powder X-ray diffraction and thermal analysis. The results were compared with those from routinely used conventional analyses. Both the microanalysis and conventional analysis successfully characterised the substance (transformation and relative stability among the two polymorphs and a pseudo-polymorph) depending on the storage conditions. Near-infrared spectroscopic analyses utilizing a humidity-controlled 96-well plate required only small amounts of the sample for characterization under the various conditions of relative humidity. Near-infrared microanalysis can be applied to polymorphic studies of small quantities of a drug candidate. The results also suggest that the method will predict the behaviors of a hygroscopic candidate in solid pharmaceutical preparations at the early stages of drug development. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  10. Semantic Web Ontology and Data Integration: a Case Study in Aiding Psychiatric Drug Repurposing.

    PubMed

    Liang, Chen; Sun, Jingchun; Tao, Cui

    2015-01-01

    There remain significant difficulties selecting probable candidate drugs from existing databases. We describe an ontology-oriented approach to represent the nexus between genes, drugs, phenotypes, symptoms, and diseases from multiple information sources. We also report a case study in which we attempted to explore candidate drugs effective for bipolar disorder and epilepsy. We constructed an ontology incorporating knowledge between the two diseases and performed semantic reasoning tasks with the ontology. The results suggested 48 candidate drugs that hold promise for further breakthrough. The evaluation demonstrated the validity our approach. Our approach prioritizes the candidate drugs that have potential associations among genes, phenotypes and symptoms, and thus facilitates the data integration and drug repurposing in psychiatric disorders.

  11. Current Status of Human Resource Training Program for Fostering RIBiomics Professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Eun; Jang, Beom-Su; Choi, Dae Seong

    RI-Biomics is a state-of-the-art radiation fusion technology for evaluating in-vivo dynamics such as absorption, distribution, metabolism and excretion (ADME) of new drug candidates and biomaterials using radioisotope (RI), and quantitative evaluation of their efficacy via molecular imaging techniques and animal models. The RI-Biomics center is the sole comprehensive research and experiment complex in Korea that can simultaneously perform the radio-synthesis of drug candidate with radioisotope, analysis, and molecular imaging evaluation with animal model. Molecular imaging techniques, including nuclear imaging (SPECT and PET), near-infrared fluorescent (NIRF) imaging, and magnetic resonance imaging (MRI), are the cutting-edge technologies for evaluating drug candidates. Sincemore » they allow in vivo real-time imaging of the diseased site, monitoring the biodistribution of drug and determining the optimal therapeutic efficacy following treatments, we have integrated RI-ADME and molecular imaging to provide useful information for drug evaluation and to accelerate the development of new drugs and biomaterials. The RI-Biomics center was established with total investment of 18 million $ during four years from 2009 to 2012 in order to develop a comprehensive analyzing system using RI for new drug development as an axis for national growth in the next generation. The RI-Biomics center has labeling synthesis facility for the radiosynthesis of drug candidate with radioisotope such as Tc-99m, I-125, I-131, F-18, H-3 and C-14 using hot cell. It also includes RI-general analysis facilities, such as Radio-HPLC, LC/MS, GC/MS, gamma counter that can analyzing the radio-synthesized materials, and animal image analysis facilities that developed small animal imaging equipment such as SPECT/PET/CT, 7 T MRI, in-vivo optical imaging system and others. In order to achieve the system to verify safety and effectiveness of the new drugs using RI, it is necessary to establish a human resource training program for fostering RI-Biomics professionals in the following key fields; (1) Radio-pharmaceuticals synthesis and labeled compound development, (2) Development of RI-ADME in the living object and image assessment technology. Personnel training program that carries out theoretical education and practical training in the field related to RI-Biomics in parallel is being conducted. Internship training for university students has been administered twice already while educational program for the existing professionals in the RI-Biomics field will be carried out during the summer of 2014. The human resource training program for combination of RIADME and different molecular imaging techniques can offer synergistic advantages to facilitate understanding RIADME and fostering RI-ADME professionals. (authors)« less

  12. NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans.

    PubMed

    Gengenbacher, Martin; Duque-Correa, Maria A; Kaiser, Peggy; Schuerer, Stefanie; Lazar, Doris; Zedler, Ulrike; Reece, Stephen T; Nayyar, Amit; Cole, Stewart T; Makarov, Vadim; Barry Iii, Clifton E; Dartois, Véronique; Kaufmann, Stefan H E

    2017-08-18

    During active TB in humans a spectrum of pulmonary granulomas with central necrosis and hypoxia exists. BALB/c mice, predominantly used in TB drug development, do not reproduce this complex pathology thereby inaccurately predicting clinical outcome. We found that Nos2 -/- mice incapable of NO-production in immune cells as microbial defence uniformly develop hypoxic necrotizing lung lesions, widely observed in human TB. To study the impact of hypoxic necrosis on the efficacy of antimycobacterials and drug candidates, we subjected Nos2 -/- mice with TB to monotherapy before or after establishment of human-like pathology. Isoniazid induced a drug-tolerant persister population only when necrotic lesions were present. Rifapentine was more potent than rifampin prior to development of human-like pathology and equally potent thereafter, in agreement with recent clinical trials. Pretomanid, delamanid and the pre-clinical candidate BTZ043 were bactericidal independent of pulmonary pathology. Linezolid was bacteriostatic in TB-infected Nos2 -/- mice but significantly improved lung pathology. Hypoxic necrotizing lesions rendered moxifloxacin less active. In conclusion, Nos2 -/- mice are a predictive TB drug development tool owing to their consistent development of human-like pathology.

  13. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi drug resistant Mycobacterium tuberculosis.

    PubMed

    Kaur, Divneet; Mathew, Shalu; Nair, Chinchu G S; Begum, Azitha; Jainanarayan, Ashwin K; Sharma, Mukta; Brahmachari, Samir K

    2017-12-21

    The problem of drug resistance and bacterial persistence in tuberculosis is a cause of global alarm. Although, the UN's Sustainable Development Goals for 2030 has targeted a Tb free world, the treatment gap exists and only a few new drug candidates are in the pipeline. In spite of large information from medicinal chemistry to 'omics' data, there has been a little effort from pharmaceutical companies to generate pipelines for the development of novel drug candidates against the multi drug resistant Mycobacterium tuberculosis. In the present study, we describe an integrated methodology; utilizing systems level information to optimize ligand selection to lower the failure rates at the pre-clinical and clinical levels. In the present study, metabolic targets (Rv2763c, Rv3247c, Rv1094, Rv3607c, Rv3048c, Rv2965c, Rv2361c, Rv0865, Rv0321, Rv0098, Rv0390, Rv3588c, Rv2244, Rv2465c and Rv2607) in M. tuberculosis, identified using our previous Systems Biology and data-intensive genome level analysis, have been used to design potential lead molecules, which are likely to be non-toxic. Various in silico drug discovery tools have been utilized to generate small molecular leads for each of the 15 targets with available crystal structures. The present study resulted in identification of 20 novel lead molecules including 4 FDA approved drugs (droxidropa, tetroxoprim, domperidone and nemonapride) which can be further taken for drug repurposing. This comprehensive integrated methodology, with both experimental and in silico approaches, has the potential to not only tackle the MDR form of Mtb but also the most important persister population of the bacterium, with a potential to reduce the failures in the Tb drug discovery. We propose an integrated approach of systems and structural biology for identifying targets that address the high attrition rate issue in lead identification and drug development We expect that this system level analysis will be applicable for identification of drug candidates to other pathogenic organisms as well.

  14. Synergistic interaction of ten essential oils against Haemonchus contortus in vitro

    USDA-ARS?s Scientific Manuscript database

    Anthelmintic resistance in sheep gastrointestinal nematodes is a worldwide problem. Multi-drug resistant haemonchosis is the most serious impediment for small ruminant systems, and there are no new drug candidates currently under development. Molecules from natural sources have demonstrated anthelmi...

  15. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    PubMed

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. An Algorithm to Identify Compounded Non-Sterile Products that Can Be Formulated on a Commercial Scale or Imported to Promote Safer Medication Use in Children

    PubMed Central

    Bhatt-Mehta, Varsha; MacArthur, Robert B.; Löbenberg, Raimar; Cies, Jeffrey J.; Cernak, Ibolja; Parrish, Richard H.

    2015-01-01

    The lack of commercially-available pediatric drug products and dosage forms is well-known. A group of clinicians and scientists with a common interest in pediatric drug development and medicines-use systems developed a practical framework for identifying a list of active pharmaceutical ingredients (APIs) with the greatest market potential for development to use in pediatric patients. Reliable and reproducible evidence-based drug formulations designed for use in pediatric patients are needed vitally, otherwise safe and consistent clinical practices and outcomes assessments will continue to be difficult to ascertain. Identification of a prioritized list of candidate APIs for oral formulation using the described algorithm provides a broader integrated clinical, scientific, regulatory, and market basis to allow for more reliable dosage forms and safer, effective medicines use in children of all ages. Group members derived a list of candidate API molecules by factoring in a number of pharmacotherapeutic, scientific, manufacturing, and regulatory variables into the selection algorithm that were absent in other rubrics. These additions will assist in identifying and categorizing prime API candidates suitable for oral formulation development. Moreover, the developed algorithm aids in prioritizing useful APIs with finished oral liquid dosage forms available from other countries with direct importation opportunities to North America and beyond. PMID:28975916

  17. The clinical development process for a novel preventive vaccine: An overview.

    PubMed

    Singh, K; Mehta, S

    2016-01-01

    Each novel vaccine candidate needs to be evaluated for safety, immunogenicity, and protective efficacy in humans before it is licensed for use. After initial safety evaluation in healthy adults, each vaccine candidate follows a unique development path. This article on clinical development gives an overview on the development path based on the expectations of various guidelines issued by the World Health Organization (WHO), the European Medicines Agency (EMA), and the United States Food and Drug Administration (USFDA). The manuscript describes the objectives, study populations, study designs, study site, and outcome(s) of each phase (Phase I-III) of a clinical trial. Examples from the clinical development of a malaria vaccine candidate, a rotavirus vaccine, and two vaccines approved for human papillomavirus (HPV) have also been discussed. The article also tabulates relevant guidelines, which can be referred to while drafting the development path of a novel vaccine candidate.

  18. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions.

    PubMed

    Sedykh, Alexander; Fourches, Denis; Duan, Jianmin; Hucke, Oliver; Garneau, Michel; Zhu, Hao; Bonneau, Pierre; Tropsha, Alexander

    2013-04-01

    Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71-100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles.

  19. Similarity-based modeling in large-scale prediction of drug-drug interactions.

    PubMed

    Vilar, Santiago; Uriarte, Eugenio; Santana, Lourdes; Lorberbaum, Tal; Hripcsak, George; Friedman, Carol; Tatonetti, Nicholas P

    2014-09-01

    Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health concern, as they increase hospital care expenses and reduce patients' quality of life. DDI detection is, therefore, an important objective in patient safety, one whose pursuit affects drug development and pharmacovigilance. In this article, we describe a protocol applicable on a large scale to predict novel DDIs based on similarity of drug interaction candidates to drugs involved in established DDIs. The method integrates a reference standard database of known DDIs with drug similarity information extracted from different sources, such as 2D and 3D molecular structure, interaction profile, target and side-effect similarities. The method is interpretable in that it generates drug interaction candidates that are traceable to pharmacological or clinical effects. We describe a protocol with applications in patient safety and preclinical toxicity screening. The time frame to implement this protocol is 5-7 h, with additional time potentially necessary, depending on the complexity of the reference standard DDI database and the similarity measures implemented.

  20. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events.

    PubMed

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng; Weng, Zuquan

    2016-04-01

    Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning.

  1. Pharmaceutical applications of cyclodextrins: basic science and product development.

    PubMed

    Loftsson, Thorsteinn; Brewster, Marcus E

    2010-11-01

    Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  2. Computer-aided design of liposomal drugs: in silico prediction and experimental validation of drug candidates for liposomal remote loading

    PubMed Central

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-01

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343

  3. Use of biomarkers for assessing radiation injury and efficacy of countermeasures

    PubMed Central

    Singh, Vijay K; Newman, Victoria L; Romaine, Patricia LP; Hauer-Jensen, Martin; Pollard, Harvey B

    2016-01-01

    Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy. PMID:26568096

  4. Connection Map for Compounds (CMC): A Server for Combinatorial Drug Toxicity and Efficacy Analysis.

    PubMed

    Liu, Lei; Tsompana, Maria; Wang, Yong; Wu, Dingfeng; Zhu, Lixin; Zhu, Ruixin

    2016-09-26

    Drug discovery and development is a costly and time-consuming process with a high risk for failure resulting primarily from a drug's associated clinical safety and efficacy potential. Identifying and eliminating inapt candidate drugs as early as possible is an effective way for reducing unnecessary costs, but limited analytical tools are currently available for this purpose. Recent growth in the area of toxicogenomics and pharmacogenomics has provided with a vast amount of drug expression microarray data. Web servers such as CMap and LTMap have used this information to evaluate drug toxicity and mechanisms of action independently; however, their wider applicability has been limited by the lack of a combinatorial drug-safety type of analysis. Using available genome-wide drug transcriptional expression profiles, we developed the first web server for combinatorial evaluation of toxicity and efficacy of candidate drugs named "Connection Map for Compounds" (CMC). Using CMC, researchers can initially compare their query drug gene signatures with prebuilt gene profiles generated from two large-scale toxicogenomics databases, and subsequently perform a drug efficacy analysis for identification of known mechanisms of drug action or generation of new predictions. CMC provides a novel approach for drug repositioning and early evaluation in drug discovery with its unique combination of toxicity and efficacy analyses, expansibility of data and algorithms, and customization of reference gene profiles. CMC can be freely accessed at http://cadd.tongji.edu.cn/webserver/CMCbp.jsp .

  5. New drug candidates and therapeutic targets for tuberculosis therapy.

    PubMed

    Zhang, Ying; Post-Martens, Katrin; Denkin, Steven

    2006-01-01

    Despite advances in chemotherapy and the BCG (Bacillus Calmette-Guérin) vaccine, tuberculosis remains a significant infectious disease. Although it can be cured, the therapy takes at least 6-9 months, and the laborious and lengthy treatment brings with it dangers of noncompliance, significant toxicity and drug resistance. The increasing emergence of drug resistance and the problem of mycobacterial persistence highlight the need to develop novel TB drugs that are active against drug resistant bacteria but, more importantly, kill persistent bacteria and shorten the length of treatment. Recent new and exciting developments in tuberculosis drug discovery show good promise of a possible revolution in the chemotherapy of tuberculosis.

  6. In Silico Knockout Screening of Plasmodium falciparum Reactions and Prediction of Novel Essential Reactions by Analysing the Metabolic Network

    PubMed Central

    Isewon, Itunuoluwa; Aromolaran, Olufemi; Oladipupo, Olufunke

    2018-01-01

    Malaria is an infectious disease that affects close to half a million individuals every year and Plasmodium falciparum is a major cause of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted. Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility. In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier, and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with biological evidence and one (1) has been with computational evidence. The results from our study were compared with an extensive list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31) potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug targets. PMID:29789805

  7. Benefits attained from space flight in pre-clinical evaluation of candidate drugs

    NASA Astrophysics Data System (ADS)

    Stodieck, Louis S.; Bateman, Ted; Ayers, Reed; Ferguson, Virginia; Simske, Steve

    1998-01-01

    Modern medicine has made great strides in recent decades. The promises of biotechnology and advances in gene identification and manipulation offer tremendous potential for treatment of disease. However, developing new drug therapies by biotechnology and pharmaceutical companies is still a very costly and time consuming process. One of the important milestones in drug development is the successful completion of preclinical evaluation. During this phase, drug candidates must be shown to be safe, yet effective as a treatment of the target disease or disorder. Critical for preclinical testing is the availability of biomedical test models that adequately mimic the target disease. A good model will 1) allow confident prediction of a drug's effects before expensive clinical trials are begun, 2) provide convincing data for use in an FDA new drug application and 3) minimize the time required for testing. Space flight may offer a completely unique and new set of biomedical models for use in pharmaceutical testing. This paper highlights some examples of recent experiments done in space to test new compounds for Chiron, (Emmeryville, CA) and discusses the importance of the International Space Station to greatly expand such commercial opportunities.

  8. Microfluidic Devices for Automation of Assays on Drosophila Melanogaster for Applications in Drug Discovery and Biological Studies.

    PubMed

    Ghaemi, Reza; Selvaganapathy, Ponnambalam R

    Drug discovery is a long and expensive process, which usually takes 12-15 years and could cost up to ~$1 billion. Conventional drug discovery process starts with high throughput screening and selection of drug candidates that bind to specific target associated with a disease condition. However, this process does not consider whether the chosen candidate is optimal not only for binding but also for ease of administration, distribution in the body, effect of metabolism and associated toxicity if any. A holistic approach, using model organisms early in the drug discovery process to select drug candidates that are optimal not only in binding but also suitable for administration, distribution and are not toxic is now considered as a viable way for lowering the cost and time associated with the drug discovery process. However, the conventional drug discovery assays using Drosophila are manual and required skill operator, which makes them expensive and not suitable for high-throughput screening. Recently, microfluidics has been used to automate many of the operations (e.g. sorting, positioning, drug delivery) associated with the Drosophila drug discovery assays and thereby increase their throughput. This review highlights recent microfluidic devices that have been developed for Drosophila assays with primary application towards drug discovery for human diseases. The microfluidic devices that have been reviewed in this paper are categorized based on the stage of the Drosophila that have been used. In each category, the microfluidic technologies behind each device are described and their potential biological applications are discussed.

  9. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs.

  10. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    PubMed Central

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs. PMID:28054562

  11. Minimizing DILI risk in drug discovery - A screening tool for drug candidates.

    PubMed

    Schadt, S; Simon, S; Kustermann, S; Boess, F; McGinnis, C; Brink, A; Lieven, R; Fowler, S; Youdim, K; Ullah, M; Marschmann, M; Zihlmann, C; Siegrist, Y M; Cascais, A C; Di Lenarda, E; Durr, E; Schaub, N; Ang, X; Starke, V; Singer, T; Alvarez-Sanchez, R; Roth, A B; Schuler, F; Funk, C

    2015-12-25

    Drug-induced liver injury (DILI) is a leading cause of acute hepatic failure and a major reason for market withdrawal of drugs. Idiosyncratic DILI is multifactorial, with unclear dose-dependency and poor predictability since the underlying patient-related susceptibilities are not sufficiently understood. Because of these limitations, a pharmaceutical research option would be to reduce the compound-related risk factors in the drug-discovery process. Here we describe the development and validation of a methodology for the assessment of DILI risk of drug candidates. As a training set, 81 marketed or withdrawn compounds with differing DILI rates - according to the FDA categorization - were tested in a combination of assays covering different mechanisms and endpoints contributing to human DILI. These include the generation of reactive metabolites (CYP3A4 time-dependent inhibition and glutathione adduct formation), inhibition of the human bile salt export pump (BSEP), mitochondrial toxicity and cytotoxicity (fibroblasts and human hepatocytes). Different approaches for dose- and exposure-based calibrations were assessed and the same parameters applied to a test set of 39 different compounds. We achieved a similar performance to the training set with an overall accuracy of 79% correctly predicted, a sensitivity of 76% and a specificity of 82%. This test system may be applied in a prospective manner to reduce the risk of idiosyncratic DILI of drug candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.

    PubMed

    Janero, David R

    2014-08-01

    Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.

  13. Use of Preclinical Drug vs. Food Choice Procedures to Evaluate Candidate Medications for Cocaine Addiction.

    PubMed

    Banks, Matthew L; Hutsell, Blake A; Schwienteck, Kathryn L; Negus, S Stevens

    2015-06-01

    Drug addiction is a disease that manifests as an inappropriate allocation of behavior towards the procurement and use of the abused substance and away from other behaviors that produce more adaptive reinforcers (e.g. exercise, work, family and social relationships). The goal of treating drug addiction is not only to decrease drug-maintained behaviors, but also to promote a reallocation of behavior towards alternative, nondrug reinforcers. Experimental procedures that offer concurrent access to both a drug reinforcer and an alternative, nondrug reinforcer provide a research tool for assessment of medication effects on drug choice and behavioral allocation. Choice procedures are currently the standard in human laboratory research on medications development. Preclinical choice procedures have been utilized in biomedical research since the early 1940's, and during the last 10-15 years, their use for evaluation of medications to treat drug addiction has increased. We propose here that parallel use of choice procedures in preclinical and clinical studies will facilitate translational research on development of medications to treat cocaine addiction. In support of this proposition, a review of the literature suggests strong concordance between preclinical effectiveness of candidate medications to modify cocaine choice in nonhuman primates and rodents and clinical effectiveness of these medications to modify either cocaine choice in human laboratory studies or metrics of cocaine abuse in patients with cocaine use disorder. The strongest evidence for medication effectiveness in preclinical choice studies has been obtained with maintenance on the monoamine releaser d -amphetamine, a candidate agonist medication for cocaine use analogous to use of methadone to treat heroin abuse or nicotine formulations to treat tobacco dependence.

  14. Use of Preclinical Drug vs. Food Choice Procedures to Evaluate Candidate Medications for Cocaine Addiction

    PubMed Central

    Banks, Matthew L; Hutsell, Blake A; Schwienteck, Kathryn L; Negus, S. Stevens

    2015-01-01

    Opinion Statement Drug addiction is a disease that manifests as an inappropriate allocation of behavior towards the procurement and use of the abused substance and away from other behaviors that produce more adaptive reinforcers (e.g. exercise, work, family and social relationships). The goal of treating drug addiction is not only to decrease drug-maintained behaviors, but also to promote a reallocation of behavior towards alternative, nondrug reinforcers. Experimental procedures that offer concurrent access to both a drug reinforcer and an alternative, nondrug reinforcer provide a research tool for assessment of medication effects on drug choice and behavioral allocation. Choice procedures are currently the standard in human laboratory research on medications development. Preclinical choice procedures have been utilized in biomedical research since the early 1940’s, and during the last 10–15 years, their use for evaluation of medications to treat drug addiction has increased. We propose here that parallel use of choice procedures in preclinical and clinical studies will facilitate translational research on development of medications to treat cocaine addiction. In support of this proposition, a review of the literature suggests strong concordance between preclinical effectiveness of candidate medications to modify cocaine choice in nonhuman primates and rodents and clinical effectiveness of these medications to modify either cocaine choice in human laboratory studies or metrics of cocaine abuse in patients with cocaine use disorder. The strongest evidence for medication effectiveness in preclinical choice studies has been obtained with maintenance on the monoamine releaser d-amphetamine, a candidate agonist medication for cocaine use analogous to use of methadone to treat heroin abuse or nicotine formulations to treat tobacco dependence. PMID:26009706

  15. Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson's disease.

    PubMed

    Johnston, Tom H; Lacoste, Alix M B; Visanji, Naomi P; Lang, Anthony E; Fox, Susan H; Brotchie, Jonathan M

    2018-06-01

    In this review, we discuss the opportunity for repurposing drugs for use in l-DOPA-induced dyskinesia (LID) in Parkinson's disease. LID is a particularly suitable indication for drug repurposing given its pharmacological diversity, translatability of animal-models, availability of Phase II proof-of-concept (PoC) methodologies and the indication-specific regulatory environment. A compound fit for repurposing is defined as one with appropriate human safety-data as well as animal safety, toxicology and pharmacokinetic data as found in an Investigational New Drug (IND) package for another indication. We first focus on how such repurposing candidates can be identified and then discuss development strategies that might progress such a candidate towards a Phase II clinical PoC. We discuss traditional means for identifying repurposing candidates and contrast these with newer approaches, especially focussing on the use of computational and artificial intelligence (AI) platforms. We discuss strategies that can be categorised broadly as: in vivo phenotypic screening in a hypothesis-free manner; in vivo phenotypic screening based on analogy to a related disorder; hypothesis-driven evaluation of candidates in vivo and in silico screening with a hypothesis-agnostic component to the selection. To highlight the power of AI approaches, we describe a case study using IBM Watson where a training set of compounds, with demonstrated ability to reduce LID, were employed to identify novel repurposing candidates. Using the approaches discussed, many diverse candidates for repurposing in LID, originally envisaged for other indications, will be described that have already been evaluated for efficacy in non-human primate models of LID and/or clinically. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A strategy to find novel candidate anti-Alzheimer's disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants.

    PubMed

    Chen, Bi-Wen; Li, Wen-Xing; Wang, Guang-Hui; Li, Gong-Hua; Liu, Jia-Qian; Zheng, Jun-Juan; Wang, Qian; Li, Hui-Juan; Dai, Shao-Xing; Huang, Jing-Fei

    2018-01-01

    Alzheimer' disease (AD) is an ultimately fatal degenerative brain disorder that has an increasingly large burden on health and social care systems. There are only five drugs for AD on the market, and no new effective medicines have been discovered for many years. Chinese medicinal plants have been used to treat diseases for thousands of years, and screening herbal remedies is a way to develop new drugs. We used molecular docking to screen 30,438 compounds from Traditional Chinese Medicine (TCM) against a comprehensive list of AD target proteins. TCM compounds in the top 0.5% of binding affinity scores for each target protein were selected as our research objects. Structural similarities between existing drugs from DrugBank database and selected TCM compounds as well as the druggability of our candidate compounds were studied. Finally, we searched the CNKI database to obtain studies on anti-AD Chinese plants from 2007 to 2017, and only clinical studies were included. A total of 1,476 compounds (top 0.5%) were selected as drug candidates. Most of these compounds are abundantly found in plants used for treating AD in China, especially the plants from two genera Panax and Morus. We classified the compounds by single target and multiple targets and analyzed the interactions between target proteins and compounds. Analysis of structural similarity revealed that 17 candidate anti-AD compounds were structurally identical to 14 existing approved drugs. Most of them have been reported to have a positive effect in AD. After filtering for compound druggability, we identified 11 anti-AD compounds with favorable properties, seven of which are found in anti-AD Chinese plants. Of 11 anti-AD compounds, four compounds 5,862, 5,863, 5,868, 5,869 have anti-inflammatory activity. The compound 28,814 mainly has immunoregulatory activity. The other six compounds have not yet been reported for any biology activity at present. Natural compounds from TCM provide a broad prospect for the screening of anti-AD drugs. In this work, we established networks to systematically study the connections among natural compounds, approved drugs, TCM plants and AD target proteins with the goal of identifying promising drug candidates. We hope that our study will facilitate in-depth research for the treatment of AD in Chinese medicine.

  17. Leishmaniasis: vaccine candidates and perspectives.

    PubMed

    Singh, Bhawana; Sundar, Shyam

    2012-06-06

    Leishmania is a protozoan parasite and a causative agent of the various clinical forms of leishmaniasis. High cost, resistance and toxic side effects of traditional drugs entail identification and development of therapeutic alternatives. The sound understanding of parasite biology is key for identifying novel drug targets, that can induce the cell mediated immunity (mainly CD4+ and CD8+ IFN-gamma mediated responses) polarized towards a Th1 response. These aspects are important in designing a new vaccine along with the consideration of the candidates with respect to their ability to raise memory response in order to improve the vaccine performance. This review is an effort to identify molecules according to their homology with the host and their ability to be used as potent vaccine candidates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  18. In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery.

    PubMed

    Prakash, Chandra; Sharma, Raman; Gleave, Michelle; Nedderman, Angus

    2008-11-01

    Drug induced toxicity remains one of the major reasons for failures of new pharmaceuticals, and for the withdrawal of approved drugs from the market. Efforts are being made to reduce attrition of drug candidates, and to minimize their bioactivation potential in the early stages of drug discovery in order to bring safer compounds to the market. Therefore, in addition to potency and selectivity; drug candidates are now selected on the basis of acceptable metabolism/toxicology profiles in preclinical species. To support this, new approaches have been developed, which include extensive in vitro methods using human and animal hepatic cellular and subcellular systems, recombinant human drug metabolizing enzymes, increased automation for higher-throughput screens, sensitive analytical technologies and in silico computational models to assess the metabolism aspects of the new chemical entities. By using these approaches many compounds that might have serious adverse reactions associated with them are effectively eliminated before reaching clinical trials, however some toxicities such as those caused by idiosyncratic responses, are not detected until a drug is in late stages of clinical trials or has become available to the market. One of the proposed mechanisms for the development of idiosyncratic drug toxicity is the bioactivation of drugs to form reactive metabolites by drug metabolizing enzymes. This review discusses the different approaches to, and benefits of using existing in vitro techniques, for the detection of reactive intermediates in order to minimize bioactivation potential in drug discovery.

  19. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies.

    PubMed

    Andrade, E L; Bento, A F; Cavalli, J; Oliveira, S K; Schwanke, R C; Siqueira, J M; Freitas, C S; Marcon, R; Calixto, J B

    2016-12-12

    The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose.

  20. The emergence of designed multiple ligands for neurodegenerative disorders.

    PubMed

    Geldenhuys, Werner J; Youdim, Moussa B H; Carroll, Richard T; Van der Schyf, Cornelis J

    2011-09-01

    The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline. Copyright © 2011. Published by Elsevier Ltd.

  1. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond.

    PubMed

    Fujii, Shinya; Hashimoto, Yuichi

    2017-04-01

    Application of silyl functionalities is one of the most promising strategies among various 'elements chemistry' approaches for the development of novel and distinctive drug candidates. Replacement of one or more carbon atoms of various biologically active compounds with silicon (so-called sila-substitution) has been intensively studied for decades, and is often effective for alteration of activity profile and improvement of metabolic profile. In addition to simple C/Si exchange, several novel approaches for utilizing silicon in medicinal chemistry have been suggested in recent years, focusing on the intrinsic differences between silicon and carbon. Sila-substitution offers great potential for enlarging the chemical space of medicinal chemistry, and provides many options for structural development of drug candidates.

  2. Nanonization strategies for poorly water-soluble drugs.

    PubMed

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  3. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    PubMed

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents. © 2015 Wiley Periodicals, Inc.

  4. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates.

    PubMed

    Lauschke, Volker M; Hendriks, Delilah F G; Bell, Catherine C; Andersson, Tommy B; Ingelman-Sundberg, Magnus

    2016-12-19

    The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity. Yet, these models are far from satisfactory due to extensive species differences and because hepatocytes in 2D cultures rapidly dedifferentiate resulting in the loss of their hepatic phenotype and functionality. With the increasing comprehension that 3D cell culture systems more accurately reflect in vivo physiology, in the recent decade more and more research has focused on the development and optimization of various 3D culture strategies in an attempt to preserve liver properties in vitro. In this contribution, we critically review these developments, which have resulted in an arsenal of different static and perfused 3D models. These systems include sandwich-cultured hepatocytes, spheroid culture platforms, and various microfluidic liver or multiorgan biochips. Importantly, in many of these models hepatocytes maintain their phenotype for prolonged times, which allows probing the potential of newly developed chemical entities to cause chronic hepatotoxicity. Moreover, some platforms permit the investigation of drug action in specific genetic backgrounds or diseased hepatocytes, thereby significantly expanding the repertoire of tools to detect drug-induced liver injuries. It is concluded that the development of 3D liver models has hitherto been fruitful and that systems are now at hand whose sensitivity and specificity in detecting hepatotoxicity are superior to those of classical 2D culture systems. For the future, we highlight the need to develop more integrated coculture model systems to emulate immunotoxicities that arise due to complex interactions between hepatocytes and immune cells.

  5. Imaging mass spectrometry in drug development and toxicology.

    PubMed

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  6. Regulatory Forum Opinion Piece*: Use and Utility of Animal Models of Disease for Nonclinical Safety Assessment: A Pharmaceutical Industry Survey.

    PubMed

    Morgan, Sherry J; Couch, Jessica; Guzzie-Peck, Peggy; Keller, Douglas A; Kemper, Ray; Otieno, Monicah A; Schulingkamp, Robert J; Jones, Thomas W

    2017-04-01

    An Innovation and Quality (IQ) Consortium focus group conducted a cross-company survey to evaluate current practices and perceptions around the use of animal models of disease (AMDs) in nonclinical safety assessment of molecules in clinical development. The IQ Consortium group is an organization of pharmaceutical and biotechnology companies with the mission of advancing science and technology. The survey queried the utilization of AMDs during drug discovery in which drug candidates are evaluated in efficacy models and limited short-duration non-Good Laboratory Practices (GLP) toxicology testing and during drug development in which drug candidates are evaluated in GLP toxicology studies. The survey determined that the majority of companies used AMDs during drug discovery primarily as a means for proactively assessing potential nonclinical safety issues prior to the conduct of toxicology studies, followed closely by the use of AMDs to better understand toxicities associated with exaggerated pharmacology in traditional toxicology models or to derisk issues when the target is only expressed in the disease state. In contrast, the survey results indicated that the use of AMDs in development is infrequent, being used primarily to investigate nonclinical safety issues associated with targets expressed only in disease states and/or in response to requests from global regulatory authorities.

  7. SemaTyP: a knowledge graph based literature mining method for drug discovery.

    PubMed

    Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian

    2018-05-30

    Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.

  8. Pharmacogenetics of drugs withdrawn from the market.

    PubMed

    Zhang, Wei; Roederer, Mary W; Chen, Wang-Qing; Fan, Lan; Zhou, Hong-Hao

    2012-01-01

    The safety and efficacy of candidate compounds are critical factors during the development of drugs, and most drugs have been withdrawn from the market owing to severe adverse reactions. Individuals/populations with different genetic backgrounds may show significant differences in drug metabolism and efficacy, which can sometimes manifest as severe adverse drug reactions. With an emphasis on the mechanisms underlying abnormal drug effects caused by genetic mutations, pharmacogenetic studies may enhance the safety and effectiveness of drug use, provide more comprehensive delineations of the scope of usage, and change the fates of drugs withdrawn from the market.

  9. Examination of the Cytotoxic and Embryotoxic Potential and Underlying Mechanisms of Next-Generation Synthetic Trioxolane and Tetraoxane Antimalarials

    PubMed Central

    Copple, Ian M; Mercer, Amy E; Firman, James; Donegan, Gail; Herpers, Bram; Wong, Michael HL; Chadwick, James; Bringela, Andreia D; Cristiano, Maria LS; van de Water, Bob; Ward, Stephen A; O’Neill, Paul M; Park, B Kevin

    2012-01-01

    Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria. PMID:22669474

  10. Modeling Liver-Related Adverse Effects of Drugs Using kNN QSAR Method

    PubMed Central

    Rodgers, Amie D.; Zhu, Hao; Fourches, Dennis; Rusyn, Ivan; Tropsha, Alexander

    2010-01-01

    Adverse effects of drugs (AEDs) continue to be a major cause of drug withdrawals both in development and post-marketing. While liver-related AEDs are a major concern for drug safety, there are few in silico models for predicting human liver toxicity for drug candidates. We have applied the Quantitative Structure Activity Relationship (QSAR) approach to model liver AEDs. In this study, we aimed to construct a QSAR model capable of binary classification (active vs. inactive) of drugs for liver AEDs based on chemical structure. To build QSAR models, we have employed an FDA spontaneous reporting database of human liver AEDs (elevations in activity of serum liver enzymes), which contains data on approximately 500 approved drugs. Approximately 200 compounds with wide clinical data coverage, structural similarity and balanced (40/60) active/inactive ratio were selected for modeling and divided into multiple training/test and external validation sets. QSAR models were developed using the k nearest neighbor method and validated using external datasets. Models with high sensitivity (>73%) and specificity (>94%) for prediction of liver AEDs in external validation sets were developed. To test applicability of the models, three chemical databases (World Drug Index, Prestwick Chemical Library, and Biowisdom Liver Intelligence Module) were screened in silico and the validity of predictions was determined, where possible, by comparing model-based classification with assertions in publicly available literature. Validated QSAR models of liver AEDs based on the data from the FDA spontaneous reporting system can be employed as sensitive and specific predictors of AEDs in pre-clinical screening of drug candidates for potential hepatotoxicity in humans. PMID:20192250

  11. Re-inventing drug development: A case study of the I-SPY 2 breast cancer clinical trials program.

    PubMed

    Das, Sonya; Lo, Andrew W

    2017-11-01

    In this case study, we profile the I-SPY 2 TRIAL (Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And molecular anaLysis 2), a unique breast cancer clinical trial led by researchers at 20 leading cancer centers across the US, and examine its potential to serve as a model of drug development for other disease areas. This multicenter collaboration launched in 2010 to reengineer the drug development process to be more efficient and patient-centered. We conduct several interviews with the I-SPY leadership as well as a literature review of relevant publications to assess the I-SPY 2 initiative. To date, six drugs have graduated from I-SPY 2, identified as excellent candidates for phase 3 trials in their corresponding tumor subtype, and several others have been or are still being evaluated. These trials are also more efficient, typically involving fewer subjects and reaching conclusions more quickly, and candidates have more than twice the predicted likelihood of success in a smaller phase 3 setting compared to traditional trials. We observe that I-SPY 2 possesses several novel features that could be used as a template for more efficient and cost effective drug development, namely its adaptive trial design; precompetitive network of stakeholders; and flexible infrastructure to accommodate innovation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  13. A cross-species analysis method to analyze animal models' similarity to human's disease state

    PubMed Central

    2012-01-01

    Background Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. Results We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. Conclusions We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology. PMID:23282076

  14. A cross-species analysis method to analyze animal models' similarity to human's disease state.

    PubMed

    Yu, Shuhao; Zheng, Lulu; Li, Yun; Li, Chunyan; Ma, Chenchen; Li, Yixue; Li, Xuan; Hao, Pei

    2012-01-01

    Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology.

  15. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    PubMed

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  16. A look at ligand binding thermodynamics in drug discovery.

    PubMed

    Claveria-Gimeno, Rafael; Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian

    2017-04-01

    Drug discovery is a challenging endeavor requiring the interplay of many different research areas. Gathering information on ligand binding thermodynamics may help considerably in reducing the risk within a high uncertainty scenario, allowing early rejection of flawed compounds and pushing forward optimal candidates. In particular, the free energy, the enthalpy, and the entropy of binding provide fundamental information on the intermolecular forces driving such interaction. Areas covered: The authors review the current status and recent developments in the application of ligand binding thermodynamics in drug discovery. The thermodynamic binding profile (Gibbs energy, enthalpy, and entropy of binding) can be used for lead selection and optimization (binding enthalpy, selectivity, and adaptability). Expert opinion: Binding thermodynamics provides fundamental information on the forces driving the formation of the drug-target complex. It has been widely accepted that binding thermodynamics may be used as a decision criterion along the ligand optimization process in drug discovery and development. In particular, the binding enthalpy may be used as a guide when selecting and optimizing compounds over a set of potential candidates. However, this has been recently called into question by arguing certain difficulties and in the light of certain experimental examples.

  17. Editor's Highlight: Transgenic Zebrafish Reporter Lines as Alternative In Vivo Organ Toxicity Models.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Lee, Serene G P; Ng, Ashley S; Goh, Wei Huang; Zhao, Zhonghua; Al-Haddawi, Muthafar; Wang, Haishan; Mathavan, Sinnakaruppan; Ingham, Philip W; McGinnis, Claudia; Carney, Tom J

    2017-03-01

    Organ toxicity, particularly liver toxicity, remains one of the major reasons for the termination of drug candidates in the development pipeline as well as withdrawal or restrictions of marketed drugs. A screening-amenable alternative in vivo model such as zebrafish would, therefore, find immediate application in the early prediction of unacceptable organ toxicity. To identify highly upregulated genes as biomarkers of toxic responses in the zebrafish model, a set of well-characterized reference drugs that cause drug-induced liver injury (DILI) in the clinic were applied to zebrafish larvae and adults. Transcriptome microarray analysis was performed on whole larvae or dissected adult livers. Integration of data sets from different drug treatments at different stages identified common upregulated detoxification pathways. Within these were candidate biomarkers which recurred in multiple treatments. We prioritized 4 highly upregulated genes encoding enzymes acting in distinct phases of the drug metabolism pathway. Through promoter isolation and fosmid recombineering, eGFP reporter transgenic zebrafish lines were generated and evaluated for their response to DILI drugs. Three of the 4 generated reporter lines showed a dose and time-dependent induction in endodermal organs to reference drugs and an expanded drug set. In conclusion, through integrated transcriptomics and transgenic approaches, we have developed parallel independent zebrafish in vivo screening platforms able to predict organ toxicities of preclinical drugs. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Mechanisms of Drug Toxicity and Relevance to Pharmaceutical Development

    PubMed Central

    Guengerich, F. Peter

    2016-01-01

    Toxicity has been estimated to be responsible for the attrition of ~ 1/3 of drug candidates and is a major contributor to the high cost of drug development, particularly when not recognized until late in the clinical trials or post-marketing. The causes of drug toxicity can be organized in several ways and include mechanism-based (on-target) toxicity, immune hypersensitivity, off-target toxicity, and bioactivation/covalent modification. In addition, idiosyncratic responses are rare but one of the most problematic issues; several hypotheses for these have been advanced. Although covalent binding of drugs to proteins was described almost 40 years ago, the significance to toxicity has been difficult to establish; recent literature in this field is considered. The development of more useful biomarkers and short-term assays for rapid screening of drug toxicity early in the drug discovery/development process is a major goal, and some progress has been made using “omics” approaches. PMID:20978361

  19. Developing novel chemical entities for the treatment of lysosomal storage disorders: an academic perspective.

    PubMed

    Shayman, James A

    2015-12-15

    Historically, most Federal Drug Administration-approved drugs were the result of "in-house" efforts within large pharmaceutical companies. Over the last two decades, this paradigm has steadily shifted as the drug industry turned to startups, small biotechnology companies, and academia for the identification of novel drug targets and early drug candidates. This strategic pivot has created new opportunities for groups less traditionally associated with the creation of novel therapeutics, including small academic laboratories, for engagement in the drug discovery process. A recent example of the successful development of a drug that had its origins in academia is eliglustat tartrate, an oral agent for Gaucher disease type 1. Copyright © 2015 the American Physiological Society.

  20. ADDME – Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective

    PubMed Central

    Tsaioun, Katya; Bottlaender, Michel; Mabondzo, Aloise

    2009-01-01

    The advent of early absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening has increased the attrition rate of weak drug candidates early in the drug-discovery process, and decreased the proportion of compounds failing in clinical trials for ADMET reasons. This paper reviews the history of ADMET screening and its place in pharmaceutical development, and central nervous system drug discovery in particular. Assays that have been developed in response to specific needs and improvements in technology that result in higher throughput and greater accuracy of prediction of human mechanisms of absorption and toxicity are discussed. The paper concludes with the authors' forecast of new models that will better predict human efficacy and toxicity. PMID:19534730

  1. One target-multiple indications: a call for an integrated common mechanisms strategy.

    PubMed

    Nielsch, Ulrich; Schäfer, Stefan; Wild, Hanno; Busch, Andreas

    2007-12-01

    Ever-increasing research and development costs are putting constant pressure on the pharmaceutical industry to improve their efficiency. Efforts to increase the output of the research pipeline have yielded limited success. Traditionally, maximization of the value of a drug is attempted through life-cycle management, which is initiated late in development, or when the drug is already on the market. Validated targets can be exploited further through development of a follow-up drug, which may offer advantages regarding safety or convenience. In this article, we propose to systematically evaluate the full therapeutic potential of a drug target, proprietary chemical lead structure, or drug candidate as broad and as early as possible and we call this the 'common mechanism' approach.

  2. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders.

    PubMed

    Ivachtchenko, Alexandre V; Lavrovsky, Yan; Okun, Ilya

    2016-05-25

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2-2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41-3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer's disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis.

  3. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders

    PubMed Central

    Ivachtchenko, Alexandre V.; Lavrovsky, Yan; Okun, Ilya

    2016-01-01

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2–2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41–3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer’s disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis. PMID:27232215

  4. Utility of preclinical drug versus food choice procedures to evaluate candidate medications for methamphetamine use disorder.

    PubMed

    Banks, Matthew L

    2017-04-01

    Substance use disorders are diagnosed as a manifestation of inappropriate behavioral allocation toward abused drugs and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., money and social relationships). Substance use disorder treatment goals include not only decreasing drug-maintained behavior but also promoting behavioral reallocation toward these socially adaptive alternative reinforcers. Preclinical drug self-administration procedures that offer concurrent access to both drug and nondrug reinforcers provide a translationally relevant dependent measure of behavioral allocation that may be useful for candidate medication evaluation. In contrast to other abused drugs, such as heroin or cocaine, preclinical methamphetamine versus food choice procedures have been a more recent development. We hypothesize that preclinical to clinical translatability would be improved by the evaluation of repeated pharmacological treatment effects on methamphetamine self-administration under a methamphetamine versus food choice procedure. In support of this hypothesis, a literature review suggests strong concordance between preclinical pharmacological treatment effects on methamphetamine versus food choice in nonhuman primates and clinical medication treatment effects on methamphetamine self-administration in human laboratory studies or methamphetamine abuse metrics in clinical trials. In conclusion, this literature suggests preclinical methamphetamine versus food choice procedures may be useful in developing innovative pharmacotherapies for methamphetamine use disorder. © 2016 New York Academy of Sciences.

  5. Utility of preclinical drug versus food choice procedures to evaluate candidate medications for methamphetamine use disorder

    PubMed Central

    Banks, Matthew L.

    2016-01-01

    Substance use disorders are diagnosed as a manifestation of inappropriate behavioral allocation towards abused drugs and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., work and social relationships). Substance use disorder treatment goals include not only decreasing drug-maintained behavior but also promoting behavioral reallocation toward these socially adaptive alternative reinforcers. Preclinical drug self-administration procedures that offer concurrent access to both drug and nondrug reinforcers provide a translationally relevant dependent measure of behavioral allocation that may be useful for candidate medication evaluation. In contrast to other abused drugs, such as heroin or cocaine, preclinical methamphetamine versus food choice procedures have been a more recent development. We hypothesize that preclinical to clinical translatability would be improved by the evaluation of repeated pharmacological treatment effects on methamphetamine self-administration under a methamphetamine versus food choice procedure. In support of this hypothesis, a literature review suggests strong concordance between preclinical pharmacological treatment effects on methamphetamine versus food choice in nonhuman primates and clinical medication treatment effects on methamphetamine self-administration in human laboratory studies or methamphetamine abuse metrics in clinical trials. In conclusion, this literature suggests preclinical methamphetamine versus food choice procedures may be useful in developing innovative pharmacotherapies for methamphetamine use disorder. PMID:27936284

  6. In silico assessment of drug safety in human heart applied to late sodium current blockers

    PubMed Central

    Trenor, Beatriz; Gomis-Tena, Julio; Cardona, Karen; Romero, Lucia; Rajamani, Sridharan; Belardinelli, Luiz; Giles, Wayne R; Saiz, Javier

    2013-01-01

    Drug-induced action potential (AP) prolongation leading to Torsade de Pointes is a major concern for the development of anti-arrhythmic drugs. Nevertheless the development of improved anti-arrhythmic agents, some of which may block different channels, remains an important opportunity. Partial block of the late sodium current (INaL) has emerged as a novel anti-arrhythmic mechanism. It can be effective in the settings of free radical challenge or hypoxia. In addition, this approach can attenuate pro-arrhythmic effects of blocking the rapid delayed rectifying K+ current (IKr). The main goal of our computational work was to develop an in-silico tool for preclinical anti-arrhythmic drug safety assessment, by illustrating the impact of IKr/INaL ratio of steady-state block of drug candidates on “torsadogenic” biomarkers. The O’Hara et al. AP model for human ventricular myocytes was used. Biomarkers for arrhythmic risk, i.e., AP duration, triangulation, reverse rate-dependence, transmural dispersion of repolarization and electrocardiogram QT intervals, were calculated using single myocyte and one-dimensional strand simulations. Predetermined amounts of block of INaL and IKr were evaluated. “Safety plots” were developed to illustrate the value of the specific biomarker for selected combinations of IC50s for IKr and INaL of potential drugs. The reference biomarkers at baseline changed depending on the “drug” specificity for these two ion channel targets. Ranolazine and GS967 (a novel potent inhibitor of INaL) yielded a biomarker data set that is considered safe by standard regulatory criteria. This novel in-silico approach is useful for evaluating pro-arrhythmic potential of drugs and drug candidates in the human ventricle. PMID:23696033

  7. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles.

    PubMed

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  8. Natural products as a foundation for drug discovery.

    PubMed

    Beutler, John A

    2009-09-01

    Natural products have provided chemical leads for the development of many drugs for diverse indications. While most U.S. pharmaceutical firms have reduced or eliminated their in-house natural product groups, there is a renewed interest in this source of new chemical entities. Many of the reasons for the past decline in popularity of natural products are being addressed by the development of new techniques for screening and production. The aim of this unit is to review current strategies and techniques that increase the value of natural products as a source for novel drug candidates.

  9. Search for Novel Antibacterial Compounds and Targets.

    PubMed

    Kuroda, Teruo; Ogawa, Wakano

    2017-01-01

    Drug-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa, and vancomycin-resistant enterococci (VRE) have been spreading; however, the development of new antibacterial drugs has not progressed accordingly. Novel antibacterial drugs or their candidate seeds need to be developed for effective antibiotic therapy. Under these conditions, the search for novel compounds and novel targets is important. In Okayama University, as a part of the Drug Discovery for Intractable Infectious Diseases project, we are proceeding with the development of antibacterial drugs for the treatment of drug-resistant bacterial infections. We found that riccardin C (a natural product of liverwort) and 6,6'-dihydroxythiobinupharidine (from the crude drug Senkotsu) exhibited strong antibacterial activities, particularly against Gram-positive bacteria. We showed that riccardin C induced cell membrane leakage and that 6,6'-dihydroxythiobinupharidine inhibited DNA topoisomerase IV. Moreover, 6,6'-dihydroxythiobinupharidine exerted synergistic effects with already known anti-MRSA drugs as well as with vancomycin for VRE.

  10. Porous Inorganic Drug Delivery Systems-a Review.

    PubMed

    Sayed, E; Haj-Ahmad, R; Ruparelia, K; Arshad, M S; Chang, M-W; Ahmad, Z

    2017-07-01

    Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.

  11. Developability assessment of clinical drug products with maximum absorbable doses.

    PubMed

    Ding, Xuan; Rose, John P; Van Gelder, Jan

    2012-05-10

    Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions

    PubMed Central

    Tomar, Dheeraj S.; Li, Li; Broulidakis, Matthew P.; Luksha, Nicholas G.; Burns, Christopher T.; Singh, Satish K.; Kumar, Sandeep

    2017-01-01

    ABSTRACT Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence—structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on VH, VL, and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development. PMID:28125318

  13. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions.

    PubMed

    Tomar, Dheeraj S; Li, Li; Broulidakis, Matthew P; Luksha, Nicholas G; Burns, Christopher T; Singh, Satish K; Kumar, Sandeep

    2017-04-01

    Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence-structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on V H , V L , and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development.

  14. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.

    PubMed

    Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong

    2016-01-01

    Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.

  15. The value of plants used in traditional medicine for drug discovery.

    PubMed Central

    Fabricant, D S; Farnsworth, N R

    2001-01-01

    In this review we describe and discuss several approaches to selecting higher plants as candidates for drug development with the greatest possibility of success. We emphasize the role of information derived from various systems of traditional medicine (ethnomedicine) and its utility for drug discovery purposes. We have identified 122 compounds of defined structure, obtained from only 94 species of plants, that are used globally as drugs and demonstrate that 80% of these have had an ethnomedical use identical or related to the current use of the active elements of the plant. We identify and discuss advantages and disadvantages of using plants as starting points for drug development, specifically those used in traditional medicine. PMID:11250806

  16. Recent development in software and automation tools for high-throughput discovery bioanalysis.

    PubMed

    Shou, Wilson Z; Zhang, Jun

    2012-05-01

    Bioanalysis with LC-MS/MS has been established as the method of choice for quantitative determination of drug candidates in biological matrices in drug discovery and development. The LC-MS/MS bioanalytical support for drug discovery, especially for early discovery, often requires high-throughput (HT) analysis of large numbers of samples (hundreds to thousands per day) generated from many structurally diverse compounds (tens to hundreds per day) with a very quick turnaround time, in order to provide important activity and liability data to move discovery projects forward. Another important consideration for discovery bioanalysis is its fit-for-purpose quality requirement depending on the particular experiments being conducted at this stage, and it is usually not as stringent as those required in bioanalysis supporting drug development. These aforementioned attributes of HT discovery bioanalysis made it an ideal candidate for using software and automation tools to eliminate manual steps, remove bottlenecks, improve efficiency and reduce turnaround time while maintaining adequate quality. In this article we will review various recent developments that facilitate automation of individual bioanalytical procedures, such as sample preparation, MS/MS method development, sample analysis and data review, as well as fully integrated software tools that manage the entire bioanalytical workflow in HT discovery bioanalysis. In addition, software tools supporting the emerging high-resolution accurate MS bioanalytical approach are also discussed.

  17. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library

    PubMed Central

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G.; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10–20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi persisters in vitro, even when pre-treated with amoxicillin. These findings may have implications for improved treatment of Lyme disease. PMID:27242757

  18. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library.

    PubMed

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi persisters in vitro, even when pre-treated with amoxicillin. These findings may have implications for improved treatment of Lyme disease.

  19. Lead Phytochemicals for Anticancer Drug Development

    PubMed Central

    Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S.; Kumar, Ashok

    2016-01-01

    Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed. PMID:27877185

  20. Characterizing Phage Genomes for Therapeutic Applications

    PubMed Central

    Philipson, Casandra W.; Voegtly, Logan J.; Lueder, Matthew R.; Long, Kyle A.; Rice, Gregory K.; Frey, Kenneth G.; Biswas, Biswajit; Cer, Regina Z.; Hamilton, Theron; Bishop-Lilly, Kimberly A.

    2018-01-01

    Multi-drug resistance is increasing at alarming rates. The efficacy of phage therapy, treating bacterial infections with bacteriophages alone or in combination with traditional antibiotics, has been demonstrated in emergency cases in the United States and in other countries, however remains to be approved for wide-spread use in the US. One limiting factor is a lack of guidelines for assessing the genomic safety of phage candidates. We present the phage characterization workflow used by our team to generate data for submitting phages to the Federal Drug Administration (FDA) for authorized use. Essential analysis checkpoints and warnings are detailed for obtaining high-quality genomes, excluding undesirable candidates, rigorously assessing a phage genome for safety and evaluating sequencing contamination. This workflow has been developed in accordance with community standards for high-throughput sequencing of viral genomes as well as principles for ideal phages used for therapy. The feasibility and utility of the pipeline is demonstrated on two new phage genomes that meet all safety criteria. We propose these guidelines as a minimum standard for phages being submitted to the FDA for review as investigational new drug candidates. PMID:29642590

  1. Predictive Biomarkers for Linking Disease Pathology and Drug Effect.

    PubMed

    Mayer, Bernd; Heinzel, Andreas; Lukas, Arno; Perco, Paul

    2017-01-01

    Productivity in drug R&D continues seeing significant attrition in clinical stage testing. Approval of new molecular entities proceeds with slow pace specifically when it comes to chronic, age-related diseases, calling for new conceptual approaches, methodological implementation and organizational adoption in drug development. Detailed phenotyping of disease presentation together with comprehensive representation of drug mechanism of action is considered as a path forward, and a big data spectrum has become available covering behavioral, clinical and molecular characteristics, the latter combining reductionist and explorative strategies. On this basis integrative analytics in the realm of Systems Biology has emerged, essentially aiming at traversing associations into causal relationships for bridging molecular disease specifics and clinical phenotype surrogates and finally explaining drug response and outcome. From a conceptual perspective bottom-up modeling approaches are available, with dynamical hierarchies as formalism capable of describing clinical findings as emergent properties of an underlying molecular process network comprehensively resembling disease pathology. In such representation biomarker candidates serve as proxy of a molecular process set, at the interface of a corresponding representation of drug mechanism of action allowing patient stratification and prediction of drug response. In practical implementation network analytics on a protein coding gene level has provided a number of example cases for matching disease presentation and drug molecular effect, and workflows combining computational hypothesis generation and experimental evaluation have become available for systematically optimizing biomarker candidate selection. With biomarker-based enrichment strategies in adaptive clinical trials, implementation routes for tackling development attrition are provided. Predictive biomarkers add precision in drug development and as companion diagnostics in clinical practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Using Functional Signatures to Identify Repositioned Drugs for Breast, Myelogenous Leukemia and Prostate Cancer

    PubMed Central

    Shigemizu, Daichi; Hu, Zhenjun; Hung, Jui-Hung; Huang, Chia-Ling; Wang, Yajie; DeLisi, Charles

    2012-01-01

    The cost and time to develop a drug continues to be a major barrier to widespread distribution of medication. Although the genomic revolution appears to have had little impact on this problem, and might even have exacerbated it because of the flood of additional and usually ineffective leads, the emergence of high throughput resources promises the possibility of rapid, reliable and systematic identification of approved drugs for originally unintended uses. In this paper we develop and apply a method for identifying such repositioned drug candidates against breast cancer, myelogenous leukemia and prostate cancer by looking for inverse correlations between the most perturbed gene expression levels in human cancer tissue and the most perturbed expression levels induced by bioactive compounds. The method uses variable gene signatures to identify bioactive compounds that modulate a given disease. This is in contrast to previous methods that use small and fixed signatures. This strategy is based on the observation that diseases stem from failed/modified cellular functions, irrespective of the particular genes that contribute to the function, i.e., this strategy targets the functional signatures for a given cancer. This function-based strategy broadens the search space for the effective drugs with an impressive hit rate. Among the 79, 94 and 88 candidate drugs for breast cancer, myelogenous leukemia and prostate cancer, 32%, 13% and 17% respectively are either FDA-approved/in-clinical-trial drugs, or drugs with suggestive literature evidences, with an FDR of 0.01. These findings indicate that the method presented here could lead to a substantial increase in efficiency in drug discovery and development, and has potential application for the personalized medicine. PMID:22346740

  3. Steps toward a globally available malaria vaccine: harnessing the potential of algae for future low cost vaccines.

    PubMed

    Jones, Carla S; Mayfield, Stephen P

    2013-01-01

    Malaria is an infectious disease that threatens half of the world's population. This debilitating disease is caused by infection from parasites of the genus Plasmodium. Insecticides, bed nets and drug therapies have lowered the prevalence and death rate associated with malaria but this disease continues to plague many populations around the world. In recent years, many organizations have suggested developing methods for a complete eradication of malaria. The most straightforward and effective method for this potential eradication will be through the development of a low-cost vaccine. To achieve eradication, it will be necessary to develop new vaccine candidates and novel systems for both the production and delivery of these vaccines. Recently, the green algae Chlamydomonas reinhardtii has been used for the recombinant expression of malaria vaccine candidates including the transmission blocking vaccine candidate Pfs48/45. Here, we discuss the potential of this research on the future development of a low-cost malaria vaccine candidate.

  4. Virtual drug discovery: beyond computational chemistry?

    PubMed

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  5. The impact of assay technology as applied to safety assessment in reducing compound attrition in drug discovery.

    PubMed

    Thomas, Craig E; Will, Yvonne

    2012-02-01

    Attrition in the drug industry due to safety findings remains high and requires a shift in the current safety testing paradigm. Many companies are now positioning safety assessment at each stage of the drug development process, including discovery, where an early perspective on potential safety issues is sought, often at chemical scaffold level, using a variety of emerging technologies. Given the lengthy development time frames of drugs in the pharmaceutical industry, the authors believe that the impact of new technologies on attrition is best measured as a function of the quality and timeliness of candidate compounds entering development. The authors provide an overview of in silico and in vitro models, as well as more complex approaches such as 'omics,' and where they are best positioned within the drug discovery process. It is important to take away that not all technologies should be applied to all projects. Technologies vary widely in their validation state, throughput and cost. A thoughtful combination of validated and emerging technologies is crucial in identifying the most promising candidates to move to proof-of-concept testing in humans. In spite of the challenges inherent in applying new technologies to drug discovery, the successes and recognition that we cannot continue to rely on safety assessment practices used for decades have led to rather dramatic strategy shifts and fostered partnerships across government agencies and industry. We are optimistic that these efforts will ultimately benefit patients by delivering effective and safe medications in a timely fashion.

  6. Biotransformation of prednisone and dexamethasone by cytochrome P450 based systems - Identification of new potential drug candidates.

    PubMed

    Putkaradze, Natalia; Kiss, Flora Marta; Schmitz, Daniela; Zapp, Josef; Hutter, Michael C; Bernhardt, Rita

    2017-01-20

    Prednisone and dexamethasone are synthetic glucocorticoids widely used as anti-inflammatory and immunosuppressive drugs. Since their hydroxylated derivatives could serve as novel potential drug candidates, our aim was to investigate their biotransformation by the steroid hydroxylase CYP106A2 from Bacillus megaterium ATCC13368. In vitro we were able to demonstrate highly selective 15β-hydroxylation of the steroids with a reconstituted CYP106A2 system. The reactions were thoroughly characterized, determining the kinetic parameters and the equilibrium dissociation constant. The observed lower conversion rate in the case of dexamethasone hydroxylation was clarified by quantum chemical calculations, which suggest a rearrangement of the intermediately formed radical species. To identify the obtained conversion products with NMR, CYP106A2-based Bacillus megaterium whole-cell systems were applied resulting in an altered product pattern for prednisone, yet no significant change for dexamethasone conversion compared to in vitro. Even the MS941 control strain performed a highly selective biotransformation of prednisone producing the known metabolite 20β-dihydrocortisone. The identified novel prednisone derivatives 15β, 17, 20β, 21-tetrahydroxy-preg-4-en-3,11-dione and 15β, 17, 20β, 21-tetrahydroxy-preg-1,4-dien-3,11-dione as well as the 15β-hydroxylated variants of both drugs are promising candidates for drug-design and development approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Can Untargeted Metabolomics Be Utilized in Drug Discovery/Development?

    PubMed

    Caldwell, Gary W; Leo, Gregory C

    2017-01-01

    Untargeted metabolomics is a promising approach for reducing the significant attrition rate for discovering and developing drugs in the pharmaceutical industry. This review aims to highlight the practical decision-making value of untargeted metabolomics for the advancement of drug candidates in drug discovery/development including potentially identifying and validating novel therapeutic targets, creating alternative screening paradigms, facilitating the selection of specific and translational metabolite biomarkers, identifying metabolite signatures for the drug efficacy mechanism of action, and understanding potential drug-induced toxicity. The review provides an overview of the pharmaceutical process workflow to discover and develop new small molecule drugs followed by the metabolomics process workflow that is involved in conducting metabolomics studies. The pros and cons of the major components of the pharmaceutical and metabolomics workflows are reviewed and discussed. Finally, selected untargeted metabolomics literature examples, from primarily 2010 to 2016, are used to illustrate why, how, and where untargeted metabolomics can be integrated into the drug discovery/preclinical drug development process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Formulation of tretinoin-loaded topical proniosomes for treatment of acne: in-vitro characterization, skin irritation test and comparative clinical study.

    PubMed

    Rahman, Salwa Abdel; Abdelmalak, Nevine Shawky; Badawi, Alia; Elbayoumy, Tahany; Sabry, Nermeen; El Ramly, Amany

    2015-01-01

    Tretinoin (TRT) is a widely used retinoid for the topical treatment of acne, photo-aged skin, psoriasis and skin cancer which makes it a good candidate for topical formulation. Yet side effects, like redness, swelling, peeling, blistering and, erythema, in addition to its high lipophilicity make this challenging. Therefore, the aim of this study was the development of TRT-loaded proniosomes to improve the drug efficacy and to increase user acceptability and compliance by reducing its side effects. Nine formulae were prepared according to 3(2) factorial design and were evaluated for their morphology, vesicle size, entrapment efficiency (EE %), and% of drug released after 5 h. Hydrogel of the candidate formula, N8G (proniosomes prepared with 0.025% TRT, and Span60: cholesterol molar ratio of 3:1 and incorporated in 1% carbopol gel) was developed and evaluated for skin irritation test and clinical study in acne patients compared to marketed product. Candidate formula showed higher efficacy and very low irritation potential when compared to marketed product in human volunteers.

  9. Net present value approaches for drug discovery.

    PubMed

    Svennebring, Andreas M; Wikberg, Jarl Es

    2013-12-01

    Three dedicated approaches to the calculation of the risk-adjusted net present value (rNPV) in drug discovery projects under different assumptions are suggested. The probability of finding a candidate drug suitable for clinical development and the time to the initiation of the clinical development is assumed to be flexible in contrast to the previously used models. The rNPV of the post-discovery cash flows is calculated as the probability weighted average of the rNPV at each potential time of initiation of clinical development. Practical considerations how to set probability rates, in particular during the initiation and termination of a project is discussed.

  10. Current Development and Future Prospects in Chemotherapy of Tuberculosis

    PubMed Central

    Nuermberger, Eric L.; Spigelman, Melvin K.; Yew, Wing Wai

    2015-01-01

    Although treatment of drug-susceptible tuberculosis (TB) under ideal conditions may be successful in ≥95% of cases, cure rates in the field are often significantly lower due to the logistical challenges of administering and properly supervising the intake of combination chemotherapy for 6–9 months. Success rates are far worse for multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB cases. There is general agreement that new anti-TB drugs are needed to shorten or otherwise simplify treatment for drug-susceptible and MDR/XDR-TB, including TB associated with HIV infection. For the first time in over 40 years, a nascent pipeline of new anti-TB drug candidates has been assembled. Eleven candidates from 7 classes are currently being evaluated in clinical trials. They include novel chemical entities belonging to entirely new classes of antibacterials, agents approved for use against infections other than TB, and an agent already approved for limited use against TB. In this article, we review the current state of TB treatment and its limitations and provide updates on the status of new drugs in clinical trials. In the conclusion, we briefly highlight ongoing efforts to discover new compounds and recent advances in alternative drug delivery systems. PMID:20546189

  11. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases

    PubMed Central

    Chernomoretz, Ariel; Agüero, Fernán

    2016-01-01

    Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature. PMID:26735851

  12. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.

    PubMed

    Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Agüero, Fernán

    2016-01-01

    Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.

  13. Development of Antibody Therapeutics against Flaviviruses

    PubMed Central

    Sun, Haiyan; Chen, Qiang; Lai, Huafang

    2017-01-01

    Recent outbreaks of Zika virus (ZIKV) highlight the urgent need to develop efficacious interventions against flaviviruses, many of which cause devastating epidemics around the world. Monoclonal antibodies (mAb) have been at the forefront of treatment for cancer and a wide array of other diseases due to their specificity and potency. While mammalian cell-produced mAbs have shown promise as therapeutic candidates against several flaviviruses, their eventual approval for human application still faces several challenges including their potential risk of predisposing treated patients to more severe secondary infection by a heterologous flavivirus through antibody-dependent enhancement (ADE). The high cost associated with mAb production in mammalian cell cultures also poses a challenge for the feasible application of these drugs to the developing world where the majority of flavivirus infection occurs. Here, we review the current therapeutic mAb candidates against various flaviviruses including West Nile (WNV), Dengue virus (DENV), and ZIKV. The progress of using plants for developing safer and more economical mAb therapeutics against flaviviruses is discussed within the context of their expression, characterization, downstream processing, neutralization, and in vivo efficacy. The progress of using plant glycoengineering to address ADE, the major impediment of flavivirus therapeutic development, is highlighted. These advancements suggest that plant-based systems are excellent alternatives for addressing the remaining challenges of mAb therapeutic development against flavivirus and may facilitate the eventual commercialization of these drug candidates. PMID:29295568

  14. Apoptotic impact on Brugia malayi by sulphonamido-quinoxaline: search for a novel therapeutic rationale.

    PubMed

    Bhoj, Priyanka S; Ingle, Rahul G; Goswami, Kalyan; Jena, Lingaraj; Wadher, Shailesh

    2018-05-01

    Human lymphatic filariasis although not fatal but poses serious socioeconomic burden due to associated disability. This is reflected by the huge magnitude of the estimated disability-adjusted life years of about 5.09 million. Therefore, following WHO mandate, our earlier studies on antifilarial drug development revealed the significance of apoptosis. Apoptotic impact has been implicated in anticancer rationale of several drugs. In this study, we explored the antifilarial potential of sulphonamido-quinoxaline compounds, shown to be specific inhibitor for c-Met kinase in human cancer cells. Out of studied compounds, Q4, showing favorable drug-likeness and medicinal chemistry properties on bioinformatics platform along with subsequently recorded lowest IC 100 value, was considered as a suitable antifilarial candidate. Significant apoptosis due to mitochondrial involvement was recorded in drug-treated parasite unlike untreated control. In spite of homology between human c-Met kinase and Brugia malayi counterpart, comparative docking result of this compound showed more favorable binding parameters with the parasitic target. The wide gap between IC 100 and LD 50 values further confirmed the therapeutic safety. We propose sulphonamido-quinoxaline derivative as a lead candidate for antifilarial drug development. Further study is warranted to authenticate parasitic c-Met kinase as a novel therapeutic target reminiscent of anticancer rationale implicating inhibition of proliferation.

  15. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.

    PubMed

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-09-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  16. A novel integrated framework and improved methodology of computer-aided drug design.

    PubMed

    Chen, Calvin Yu-Chian

    2013-01-01

    Computer-aided drug design (CADD) is a critical initiating step of drug development, but a single model capable of covering all designing aspects remains to be elucidated. Hence, we developed a drug design modeling framework that integrates multiple approaches, including machine learning based quantitative structure-activity relationship (QSAR) analysis, 3D-QSAR, Bayesian network, pharmacophore modeling, and structure-based docking algorithm. Restrictions for each model were defined for improved individual and overall accuracy. An integration method was applied to join the results from each model to minimize bias and errors. In addition, the integrated model adopts both static and dynamic analysis to validate the intermolecular stabilities of the receptor-ligand conformation. The proposed protocol was applied to identifying HER2 inhibitors from traditional Chinese medicine (TCM) as an example for validating our new protocol. Eight potent leads were identified from six TCM sources. A joint validation system comprised of comparative molecular field analysis, comparative molecular similarity indices analysis, and molecular dynamics simulation further characterized the candidates into three potential binding conformations and validated the binding stability of each protein-ligand complex. The ligand pathway was also performed to predict the ligand "in" and "exit" from the binding site. In summary, we propose a novel systematic CADD methodology for the identification, analysis, and characterization of drug-like candidates.

  17. Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications

    PubMed Central

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152

  18. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    PubMed Central

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  19. Salicytamide: a New Anti-inflammatory Designed Drug Candidate.

    PubMed

    Guedes, Karen Marinho Maciel; Borges, Rosivaldo Santos; Fontes-Júnior, Enéas Andrade; Silva, Andressa Santa Brigida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Pinto, Ana Carla Godinho; Silva, Mallone Lopes; Queiroz, Luana Melo Diogo; Vieira, José Luís Fernandes; Sousa, Pergentino José Cunha; Maia, Cristiane Socorro Ferraz

    2018-04-13

    Salicytamide is a new drug developed through molecular modelling and rational drug design by the molecular association of paracetamol and salicylic acid. This study was conducted to assess the acute oral toxicity, antinociceptive, and antioedematogenic properties of salicytamide. Acute toxicity was based on the OECD 423 guidelines. Antinociceptive properties were investigated using the writhing, hot plate and formalin tests in Swiss mice. Antioedematogenic properties were evaluated using the carrageenan-induced paw oedema model and croton oil-induced dermatitis in Wistar rats. Salicytamide did not promote behavioural changes or animal deaths during acute oral toxicity evaluation. Furthermore, salicytamide exhibited peripheral antinociceptive activity as evidenced by the reduction in writhing behaviour (ED50 = 4.95 mg/kg) and licking time in the formalin test's inflammatory phase. Also, salicytamide elicited central antinociceptive activity on both hot plate test and formalin test's neurogenic phase. Additionally, salicytamide was effective in reducing carrageenan or croton oil-induced oedema formation. Overall, we have shown that salicytamide, proposed here as a new NSAID candidate, did not induce oral acute toxicity and elicited both peripheral antinociceptive effects (about 10-25 times more potent than its precursors in the writhing test) and antioedematogenic properties. Salicytamide also presented central antinociceptive activity, which seems to be mediated through opioid-independent mechanisms. These findings reveal salicytamide as a promising antinociceptive/antioedematogenic drug candidate.

  20. A side-effect free method for identifying cancer drug targets.

    PubMed

    Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

    2018-04-27

    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

  1. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications.

    PubMed

    Kawabata, Yohei; Wada, Koichi; Nakatani, Manabu; Yamada, Shizuo; Onoue, Satomi

    2011-11-25

    The poor oral bioavailability arising from poor aqueous solubility should make drug research and development more difficult. Various approaches have been developed with a focus on enhancement of the solubility, dissolution rate, and oral bioavailability of poorly water-soluble drugs. To complete development works within a limited amount of time, the establishment of a suitable formulation strategy should be a key consideration for the pharmaceutical development of poorly water-soluble drugs. In this article, viable formulation options are reviewed on the basis of the biopharmaceutics classification system of drug substances. The article describes the basic approaches for poorly water-soluble drugs, such as crystal modification, micronization, amorphization, self-emulsification, cyclodextrin complexation, and pH modification. Literature-based examples of the formulation options for poorly water-soluble compounds and their practical application to marketed products are also provided. Classification of drug candidates based on their biopharmaceutical properties can provide an indication of the difficulty of drug development works. A better understanding of the physicochemical and biopharmaceutical properties of drug substances and the limitations of each delivery option should lead to efficient formulation development for poorly water-soluble drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. New developments in anti-malarial target candidate and product profiles.

    PubMed

    Burrows, Jeremy N; Duparc, Stephan; Gutteridge, Winston E; Hooft van Huijsduijnen, Rob; Kaszubska, Wiweka; Macintyre, Fiona; Mazzuri, Sébastien; Möhrle, Jörg J; Wells, Timothy N C

    2017-01-13

    A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.

  3. The prescribable drugs with efficacy in experimental epilepsies (PDE3) database for drug repurposing research in epilepsy.

    PubMed

    Sivapalarajah, Shayeeshan; Krishnakumar, Mathangi; Bickerstaffe, Harry; Chan, YikYing; Clarkson, Joseph; Hampden-Martin, Alistair; Mirza, Ahmad; Tanti, Matthew; Marson, Anthony; Pirmohamed, Munir; Mirza, Nasir

    2018-02-01

    Current antiepileptic drugs (AEDs) have several shortcomings. For example, they fail to control seizures in 30% of patients. Hence, there is a need to identify new AEDs. Drug repurposing is the discovery of new indications for approved drugs. This drug "recycling" offers the potential of significant savings in the time and cost of drug development. Many drugs licensed for other indications exhibit antiepileptic efficacy in animal models. Our aim was to create a database of "prescribable" drugs, approved for other conditions, with published evidence of efficacy in animal models of epilepsy, and to collate data that would assist in choosing the most promising candidates for drug repurposing. The database was created by the following: (1) computational literature-mining using novel software that identifies Medline abstracts containing the name of a prescribable drug, a rodent model of epilepsy, and a phrase indicating seizure reduction; then (2) crowdsourced manual curation of the identified abstracts. The final database includes 173 drugs and 500 abstracts. It is made freely available at www.liverpool.ac.uk/D3RE/PDE3. The database is reliable: 94% of the included drugs have corroborative evidence of efficacy in animal models (for example, evidence from multiple independent studies). The database includes many drugs that are appealing candidates for repurposing, as they are widely accepted by prescribers and patients-the database includes half of the 20 most commonly prescribed drugs in England-and they target many proteins involved in epilepsy but not targeted by current AEDs. It is important to note that the drugs are of potential relevance to human epilepsy-the database is highly enriched with drugs that target proteins of known causal human epilepsy genes (Fisher's exact test P-value < 3 × 10 -5 ). We present data to help prioritize the most promising candidates for repurposing from the database. The PDE3 database is an important new resource for drug repurposing research in epilepsy. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  4. Acute Radiation Sickness Amelioration Analysis

    DTIC Science & Technology

    1994-05-01

    Emetic Drugs 16. PRICE CODE Antagonists 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF...102 UNCLASSIFIED mcuIw IA IIIcaIIin or Isis PAW CLASSFIED BY: N/A since Unclassified. DECLASSIFY ON: N/A since Unclassified. SECURITY CLASSIFICATION OF...Approximately 2000 documents relevant to the development of the candidate anti-emetic drugs ondansetron (Zofran, Glaxo Pharmaceuticals) and granisetron

  5. The renaissance of complement therapeutics

    PubMed Central

    Ricklin, Daniel; Mastellos, Dimitrios C.; Reis, Edimara S.; Lambris, John D.

    2018-01-01

    The increasing number of clinical conditions that involve a pathological contribution from the complement system — many of which affect the kidneys — has spurred a regained interest in therapeutic options to modulate this host defence pathway. Molecular insight, technological advances, and the first decade of clinical experience with the complement-specific drug eculizumab, have contributed to a growing confidence in therapeutic complement inhibition. More than 20 candidate drugs that target various stages of the complement cascade are currently being evaluated in clinical trials, and additional agents are in preclinical development. Such diversity is clearly needed in view of the complex and distinct involvement of complement in a wide range of clinical conditions, including rare kidney disorders, transplant rejection and haemodialysis-induced inflammation. The existing drugs cannot be applied to all complement-driven diseases, and each indication has to be assessed individually. Alongside considerations concerning optimal points of intervention and economic factors, patient stratification will become essential to identify the best complement-specific therapy for each individual patient. This Review provides an overview of the therapeutic concepts, targets and candidate drugs, summarizes insights from clinical trials, and reflects on existing challenges for the development of complement therapeutics for kidney diseases and beyond. PMID:29199277

  6. Molecular dynamics-driven drug discovery: leaping forward with confidence.

    PubMed

    Ganesan, Aravindhan; Coote, Michelle L; Barakat, Khaled

    2017-02-01

    Given the significant time and financial costs of developing a commercial drug, it remains important to constantly reform the drug discovery pipeline with novel technologies that can narrow the candidates down to the most promising lead compounds for clinical testing. The past decade has witnessed tremendous growth in computational capabilities that enable in silico approaches to expedite drug discovery processes. Molecular dynamics (MD) has become a particularly important tool in drug design and discovery. From classical MD methods to more sophisticated hybrid classical/quantum mechanical (QM) approaches, MD simulations are now able to offer extraordinary insights into ligand-receptor interactions. In this review, we discuss how the applications of MD approaches are significantly transforming current drug discovery and development efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Next Wave of Influenza Drugs.

    PubMed

    Shaw, Megan L

    2017-10-13

    Options for influenza therapy are currently limited to one class of drug, the neuraminidase inhibitors. Amidst concerns about drug resistance, much effort has been placed on the discovery of new drugs with distinct targets and mechanisms of action, with great success. There are now several candidates in late stage development which include small molecules targeting the three subunits of the viral polymerase complex and monoclonal antibodies targeting the hemagglutinin, as well as host-directed therapies. The availability of drugs with diverse mechanisms now opens the door to exploring combination therapies for influenza, and the range of administration routes presents more opportunities for treating hospitalized patients.

  8. Human neuroscience at National Institute on Drug Abuse: Implications for genetics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, H.W.

    It is becoming clear that there is a genetic component to drug abuse. Family studies, adoption studies, and critical twin studies have all pointed to some genetic vulnerability or risk factors for an individual to abuse psychoactive drugs depending on certain psychopathologies in the biological parents and/or parents` own drug use. The question for the next generation of research at the National Institute on Drug Abuse (NIDA) is to apply the rapidly developing technology in molecular genetics in an effort to determine the candidate genes contributing to the risk. 19 refs.

  9. The role of nanobiotechnology in drug discovery.

    PubMed

    Jain, Kewal K

    2009-01-01

    The potential applications of nanotechnology in life sciences, particularly nanobiotechnology, include those for drug discovery. This chapter shows how several of the nanotechnologies including nanoparticles and various nanodevices such as nanobiosensors and nanobiochips are being used to improve drug discovery. Nanoscale assays using nanoliter volumes contribute to cost saving. Some nanosubstances such as fullerenes are drug candidates. There are some safety concerns about the in vivo use of nanoparticles that are being investigated. However, future prospects for applications in healthcare of drugs discovered through nanotechnology and their role in the development of personalized medicine appear to be excellent.

  10. Imaging in Central Nervous System Drug Discovery.

    PubMed

    Gunn, Roger N; Rabiner, Eugenii A

    2017-01-01

    The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. RAS - Screens & Assays

    Cancer.gov

    A primary goal of the RAS Initiative is to develop assays for RAS activity, localization, and signaling and adapt those assays so they can be used for finding new drug candidates. Explore the work leading to highly validated screening protocols.

  12. An automated synthesis-purification-sample-management platform for the accelerated generation of pharmaceutical candidates.

    PubMed

    Sutherland, J David; Tu, Noah P; Nemcek, Thomas A; Searle, Philip A; Hochlowski, Jill E; Djuric, Stevan W; Pan, Jeffrey Y

    2014-04-01

    A flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.

  13. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB

    PubMed Central

    Vaddady, Pavan K; Lee, Richard E; Meibohm, Bernd

    2011-01-01

    For rapid anti-tuberculosis (TB) drug development in vitro pharmacokinetic/pharmacodynamic (PK/PD) models are useful in evaluating the direct interaction between the drug and the bacteria, thereby guiding the selection of candidate compounds and the optimization of their dosing regimens. Utilizing in vivo drug-clearance profiles from animal and/or human studies and simulating them in an in vitro PK/PD model allows the in-depth characterization of antibiotic activity of new and existing antibacterials by generating time–kill data. These data capture the dynamic interplay between mycobacterial growth and changing drug concentration as encountered during prolonged drug therapy. This review focuses on important PK/PD parameters relevant to anti-TB drug development, provides an overview of in vitro PK/PD models used to evaluate the efficacy of agents against mycobacteria and discusses the related mathematical modeling approaches of time–kill data. Overall, it provides an introduction to in vitro PK/PD models and their application as critical tools in evaluating anti-TB drugs. PMID:21359155

  14. Ebola vaccines in clinical trial: The promising candidates

    PubMed Central

    Wang, Yuxiao; Li, Jingxin; Hu, Yuemei; Liang, Qi; Wei, Mingwei; Zhu, Fengcai

    2017-01-01

    ABSTRACT Ebola virus disease (EVD) has become a great threat to humans across the world in recent years. The 2014 Ebola epidemic in West Africa caused numerous deaths and attracted worldwide attentions. Since no specific drugs and treatments against EVD was available, vaccination was considered as the most promising and effective method of controlling this epidemic. So far, 7 vaccine candidates had been developed and evaluated through clinical trials. Among them, the recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV) is the most promising candidate, which demonstrated a significant protection against EVD in phase III clinical trial. However, several concerns were still associated with the Ebola vaccine candidates, including the safety profile in some particular populations, the immunization schedule for emergency vaccination, and the persistence of the protection. We retrospectively reviewed the current development of Ebola vaccines and discussed issues and challenges remaining to be investigated in the future. PMID:27764560

  15. A structure- and chemical genomics-based approach for repositioning of drugs against VCP/p97 ATPase.

    PubMed

    Segura-Cabrera, Aldo; Tripathi, Reshmi; Zhang, Xiaoyi; Gui, Lin; Chou, Tsui-Fen; Komurov, Kakajan

    2017-03-21

    Valosin-containing protein (VCP/p97) ATPase (a.k.a. Cdc48) is a key member of the ER-associated protein degradation (ERAD) pathway. ERAD and VCP/p97 have been implicated in a multitude of human diseases, such as neurodegenerative diseases and cancer. Inhibition of VCP/p97 induces proteotoxic ER stress and cell death in cancer cells, making it an attractive target for cancer treatment. However, no drugs exist against this protein in the market. Repositioning of drugs towards new indications is an attractive alternative to the de novo drug development due to the potential for significantly shorter time to clinical translation. Here, we employed an integrative strategy for the repositioning of drugs as novel inhibitors of the VCP/p97 ATPase. We integrated structure-based virtual screening with the chemical genomics analysis of drug molecular signatures, and identified several candidate inhibitors of VCP/p97 ATPase. Importantly, experimental validation with cell-based and in vitro ATPase assays confirmed three (ebastine, astemizole and clotrimazole) out of seven tested candidates (~40% true hit rate) as direct inhibitors of VCP/p97 and ERAD. This study introduces an effective integrative strategy for drug repositioning, and identified new drugs against the VCP/p97/ERAD pathway in human diseases.

  16. In Vitro Resistance Profile of the Candidate HIV-1 Microbicide Drug Dapivirine

    PubMed Central

    Schader, Susan M.; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P.

    2012-01-01

    Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries. PMID:22123692

  17. In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine.

    PubMed

    Schader, Susan M; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P; Wainberg, Mark A

    2012-02-01

    Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries.

  18. Mathematical modeling of efficacy and safety for anticancer drugs clinical development.

    PubMed

    Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2018-01-01

    Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.

  19. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view.

    PubMed

    Chadha, Navriti; Silakari, Om

    2017-07-07

    Indoles constitute extensively explored heterocyclic ring systems with wide range of applications in pathophysiological conditions that is, cancer, microbial and viral infections, inflammation, depression, migraine, emesis, hypertension, etc. Presence of indole nucleus in amino acid tryptophan makes it prominent in phytoconstituents such as perfumes, neurotransmitters, auxins (plant hormones), indole alkaloids etc. The interesting molecular architecture of indole makes them suitable candidates for the drug development. This review article provides an overview of the chemistry, biology, and toxicology of indoles focusing on their application as drugs. Our effort is to corroborate the information available on the natural indole alkaloids, indole based FDA approved drugs and clinical trial candidates having diverse therapeutic implementations. This compiled information may serve as a benchmark for the alteration of existing ligands to design novel potent molecules with lesser side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Simulating the drug discovery pipeline: a Monte Carlo approach

    PubMed Central

    2012-01-01

    Background The early drug discovery phase in pharmaceutical research and development marks the beginning of a long, complex and costly process of bringing a new molecular entity to market. As such, it plays a critical role in helping to maintain a robust downstream clinical development pipeline. Despite its importance, however, to our knowledge there are no published in silico models to simulate the progression of discrete virtual projects through a discovery milestone system. Results Multiple variables were tested and their impact on productivity metrics examined. Simulations predict that there is an optimum number of scientists for a given drug discovery portfolio, beyond which output in the form of preclinical candidates per year will remain flat. The model further predicts that the frequency of compounds to successfully pass the candidate selection milestone as a function of time will be irregular, with projects entering preclinical development in clusters marked by periods of low apparent productivity. Conclusions The model may be useful as a tool to facilitate analysis of historical growth and achievement over time, help gauge current working group progress against future performance expectations, and provide the basis for dialogue regarding working group best practices and resource deployment strategies. PMID:23186040

  1. Predicting biopharmaceutical performance of oral drug candidates - Extending the volume to dissolve applied dose concept.

    PubMed

    Muenster, Uwe; Mueck, Wolfgang; van der Mey, Dorina; Schlemmer, Karl-Heinz; Greschat-Schade, Susanne; Haerter, Michael; Pelzetter, Christian; Pruemper, Christian; Verlage, Joerg; Göller, Andreas H; Ohm, Andreas

    2016-05-01

    The purpose of the study was to experimentally deduce pH-dependent critical volumes to dissolve applied dose (VDAD) that determine whether a drug candidate can be developed as immediate release (IR) tablet containing crystalline API, or if solubilization technology is needed to allow for sufficient oral bioavailability. pH-dependent VDADs of 22 and 83 compounds were plotted vs. the relative oral bioavailability (AUC solid vs. AUC solution formulation, Frel) in humans and rats, respectively. Furthermore, in order to investigate to what extent Frel rat may predict issues with solubility limited absorption in human, Frel rat was plotted vs. Frel human. Additionally, the impact of bile salts and lecithin on in vitro dissolution of poorly soluble compounds was tested and data compared to Frel rat and human. Respective in vitro - in vivo and in vivo - in vivo correlations were generated and used to build developability criteria. As a result, based on pH-dependent VDAD, Frel rat and in vitro dissolution in simulated intestinal fluid the IR formulation strategy within Pharmaceutical Research and Development organizations can be already set at late stage of drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Small angle X-ray scattering as a high-throughput method to classify antimicrobial modes of action.

    PubMed

    von Gundlach, A R; Garamus, V M; Gorniak, T; Davies, H A; Reischl, M; Mikut, R; Hilpert, K; Rosenhahn, A

    2016-05-01

    Multi-drug resistant bacteria are currently undermining our health care system worldwide. While novel antimicrobial drugs, such as antimicrobial peptides, are urgently needed, identification of new modes of action is money and time consuming, and in addition current approaches are not available in a high throughput manner. Here we explore how small angle X-ray scattering (SAXS) as high throughput method can contribute to classify the mode of action for novel antimicrobials and therefore supports fast decision making in drug development. Using data bases for natural occurring antimicrobial peptides or predicting novel artificial peptides, many candidates can be discovered that will kill a selected target bacterium. However, in order to narrow down the selection it is important to know if these peptides follow all the same mode of action. In addition, the mode of action should be different from conventional antibiotics, in consequence peptide candidates can be developed further into drugs against multi-drug resistant bacteria. Here we used one short antimicrobial peptide with unknown mode of action and compared the ultrastructural changes of Escherichia coli cells after treatment with the peptide to cells treated with classic antibiotics. The key finding is that SAXS as a structure sensitive tool provides a rapid feedback on drug induced ultrastructural alterations in whole E. coli cells. We could demonstrate that ultrastructural changes depend on the used antibiotics and their specific mode of action. This is demonstrated using several well characterized antimicrobial compounds and the analysis of resulting SAXS curves by principal component analysis. To understand the result of the PCA analysis, the data is correlated with TEM images. In contrast to real space imaging techniques, SAXS allows to obtain nanoscale information averaged over approximately one million cells. The measurement takes only seconds, while conventional tests to identify a mode of action require days or weeks per single substance. The antimicrobial peptide showed a different mode of action as all tested antibiotics including polymyxin B and is therefore a good candidate for further drug development. We envision SAXS to become a useful tool within the high-throughput screening pipeline of modern drug discovery. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins

    PubMed Central

    Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin

    2012-01-01

    Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood–brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates. PMID:22300099

  4. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.

    PubMed

    Silvério-Machado, Rita; Couto, Bráulio R G M; Dos Santos, Marcos A

    2015-04-15

    The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. rita_silverio@hotmail.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A New Screen for Tuberculosis Drug Candidates Utilizing a Luciferase-Expressing Recombinant Mycobacterium bovis Bacillus Calmette-Guéren.

    PubMed

    Ozeki, Yuriko; Igarashi, Masayuki; Doe, Matsumi; Tamaru, Aki; Kinoshita, Naoko; Ogura, Yoshitoshi; Iwamoto, Tomotada; Sawa, Ryuichi; Umekita, Maya; Enany, Shymaa; Nishiuchi, Yukiko; Osada-Oka, Mayuko; Hayashi, Tetsuya; Niki, Mamiko; Tateishi, Yoshitaka; Hatano, Masaki; Matsumoto, Sohkichi

    2015-01-01

    Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904-1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 μg/ml, 0.5 μg/ml, and 2.0-7.5 μg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904-1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904-1. Our method provides a rapid and convenient screen to identify an anti-mycobacterial drug.

  6. Robotic printing and drug testing of 384-well tumor spheroids.

    PubMed

    Ham, Stephanie L; Thakuri, Pradip S; Tavana, Hossein

    2015-08-01

    A major impediment to anti-cancer drug development is the lack of a reliable and inexpensive tumor model to test the efficacy of candidate compounds. This need has emerged due to the insufficiency of widely-used monolayer cultures to predict drug efficacy in vivo. Spheroids, 3D compact clusters of cancer cells, mimic important characteristics of tumors and provide a tissue analog for drug testing. Here we present a novel spheroid formation microtechnology that is simple to use and allows high throughput drug screening in 384-microwell plates. This approach is based on a polymeric aqueous two-phase system. The denser aqueous phase is mixed with cancer cells at a desired density. Using a robotic liquid handler, a drop of this cell suspension is dispensed into each well of a 384-microwell plate containing the second, immersion aqueous phase. Cancer cells remain contained in the drop, which rests on the well bottom, and form a spheroid during incubation. The use of liquid handling robotics ensures precise dispensing of a single drop, resulting in a single spheroid per well and homogenously sized spheroids within each plate. We confirmed the consistency of production of spheroids and demonstrated their biological relevance to tumors. A proof of concept study with spheroids of triple negative breast cancer cells treated with a standard chemotherapeutic compound, doxorubicin, showed the potential of this method for drug testing. This spheroid culture microtechnology presents key advantages over existing methods such as the ease of drug and viability reagent addition, ability to analyze spheroids without transferring them to a new plate, and the elimination of the need for specialized plates or devices to form spheroids. Incorporating this technology in anti-cancer drug development pipeline will help examine the efficacy of drug candidates more effectively and expedite discovery of novel drugs.

  7. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity.

    PubMed

    Xia, Yi; Qu, Fanqi; Peng, Ling

    2010-08-01

    Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.

  8. In vitro production of huperzine A, a promising drug candidate for Alzheimer's disease.

    PubMed

    Ma, Xiaoqiang; Gang, David R

    2008-07-01

    Alzheimer's disease (AD) is growing in impact on human health. With no known cure, AD is one of the most expensive diseases in the world to treat. Huperzine A (HupA), a anti-AD drug candidate from the traditional Chinese medicine Qian Ceng Ta (Huperzia serrata), has been shown to be a powerful and selective inhibitor of acetylcholinesterase and has attracted widespread attention because of its unique pharmacological activities and low toxicity. As a result, HupA is becoming an important lead compound for drugs to treat AD. HupA is obtained naturally from very limited and slowly growing natural resources, members of the Huperziaceae. Unfortunately, the content of HupA is very low in the raw plant material. This has led to strong interest in developing sources of HupA. We have developed a method to propagate in vitro tissues of Phlegmariurus squarrosus, a member of the Huperziaceae, that produce high levels of HupA. The in vitro propagated tissues produce even higher levels of HupA than the natural plant, and may represent an excellent source for HupA.

  9. Medicinal benefits of marine invertebrates: sources for discovering natural drug candidates.

    PubMed

    De Zoysa, Mahanama

    2012-01-01

    Marine invertebrates are one of the major groups of organisms, which could be diversified under the major taxonomic groups of Porifera, Cnidaria, Mollusca, Arthropoda, Echinodermata, and many other minor phyla. To date, range of medicinal benefits and a significant number of marine natural products (MNPs) have been discovered from marine invertebrates. Seafood diet from edible marine invertebrates such as mollusks and crustaceans has been linked with various medicinal benefits to improve human health. Among marine invertebrates, spongers from phylum Porifera is the most dominant group responsible for discovering large number of MNPs, which have been used as template to develop therapeutic drugs. MNPs isolated from invertebrates have shown wide range of therapeutic properties including antimicrobial, antioxidant, antihypertensive, anticoagulant, anticancer, anti-inflammatory, wound healing and immune modulator, and other medicinal effects. Therefore, marine invertebrates are rich sources of chemical diversity and health benefits for developing drug candidates, cosmetics, nutritional supplements, and molecular probes that can be supported to increase the healthy life span of human. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. X-ray free electron laser: opportunities for drug discovery.

    PubMed

    Cheng, Robert K Y; Abela, Rafael; Hennig, Michael

    2017-11-08

    Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Small-molecule xenomycins inhibit all stages of the Plasmodium life cycle.

    PubMed

    Erath, Jessey; Gallego-Delgado, Julio; Xu, Wenyue; Andriani, Grasiella; Tanghe, Scott; Gurova, Katerina V; Gudkov, Andrei; Purmal, Andrei; Rydkina, Elena; Rodriguez, Ana

    2015-03-01

    Widespread resistance to most antimalaria drugs in use has prompted the search for novel candidate compounds with activity against Plasmodium asexual blood stages to be developed for treatment. In addition, the current malaria eradication programs require the development of drugs that are effective against all stages of the parasite life cycle. We have analyzed the antimalarial properties of xenomycins, a novel subclass of small molecule compounds initially isolated for anticancer activity and similarity to quinacrine in biological effects on mammalian cells. In vitro studies show potent activity of Xenomycins against Plasmodium falciparum. Oral administration of xenomycins in mouse models result in effective clearance of liver and blood asexual and sexual stages, as well as effective inhibition of transmission to mosquitoes. These characteristics position xenomycins as antimalarial candidates with potential activity in prevention, treatment and elimination of this disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. The growing pipeline of natural aminoacyl-tRNA synthetase inhibitors for malaria treatment.

    PubMed

    Saint-Léger, Adélaïde; Sinadinos, Christopher; Ribas de Pouplana, Lluís

    2016-04-02

    Malaria remains a major global health problem. Parasite resistance to existing drugs makes development of new antimalarials an urgency. The protein synthesis machinery is an excellent target for the development of new anti-infectives, and aminoacyl-tRNA synthetases (aaRS) have been validated as antimalarial drug targets. However, avoiding the emergence of drug resistance and improving selectivity to target aaRS in apicomplexan parasites, such as Plasmodium falciparum, remain crucial challenges. Here we discuss such issues using examples of known inhibitors of P. falciparum aaRS, namely halofuginone, cladosporin and borrelidin (inhibitors of ProRS, LysRS and ThrRS, respectively). Encouraging recent results provide useful guidelines to facilitate the development of novel drug candidates which are more potent and selective against these essential enzymes.

  13. The growing pipeline of natural aminoacyl-tRNA synthetase inhibitors for malaria treatment

    PubMed Central

    Saint-Léger, Adélaïde; Sinadinos, Christopher; Ribas de Pouplana, Lluís

    2016-01-01

    ABSTRACT Malaria remains a major global health problem. Parasite resistance to existing drugs makes development of new antimalarials an urgency. The protein synthesis machinery is an excellent target for the development of new anti-infectives, and aminoacyl-tRNA synthetases (aaRS) have been validated as antimalarial drug targets. However, avoiding the emergence of drug resistance and improving selectivity to target aaRS in apicomplexan parasites, such as Plasmodium falciparum, remain crucial challenges. Here we discuss such issues using examples of known inhibitors of P. falciparum aaRS, namely halofuginone, cladosporin and borrelidin (inhibitors of ProRS, LysRS and ThrRS, respectively). Encouraging recent results provide useful guidelines to facilitate the development of novel drug candidates which are more potent and selective against these essential enzymes. PMID:26963157

  14. Classification of nervous system withdrawn and approved drugs with ToxPrint features via machine learning strategies.

    PubMed

    Onay, Aytun; Onay, Melih; Abul, Osman

    2017-04-01

    Early-phase virtual screening of candidate drug molecules plays a key role in pharmaceutical industry from data mining and machine learning to prevent adverse effects of the drugs. Computational classification methods can distinguish approved drugs from withdrawn ones. We focused on 6 data sets including maximum 110 approved and 110 withdrawn drugs for all and nervous system diseases to distinguish approved drugs from withdrawn ones. In this study, we used support vector machines (SVMs) and ensemble methods (EMs) such as boosted and bagged trees to classify drugs into approved and withdrawn categories. Also, we used CORINA Symphony program to identify Toxprint chemotypes including over 700 predefined chemotypes for determination of risk and safety assesment of candidate drug molecules. In addition, we studied nervous system withdrawn drugs to determine the key fragments with The ParMol package including gSpan algorithm. According to our results, the descriptors named as the number of total chemotypes and bond CN_amine_aliphatic_generic were more significant descriptors. The developed Medium Gaussian SVM model reached 78% prediction accuracy on test set for drug data set including all disease. Here, bagged tree and linear SVM models showed 89% of accuracies for phycholeptics and psychoanaleptics drugs. A set of discriminative fragments in nervous system withdrawn drug (NSWD) data sets was obtained. These fragments responsible for the drugs removed from market were benzene, toluene, N,N-dimethylethylamine, crotylamine, 5-methyl-2,4-heptadiene, octatriene and carbonyl group. This paper covers the development of computational classification methods to distinguish approved drugs from withdrawn ones. In addition, the results of this study indicated the identification of discriminative fragments is of significance to design a new nervous system approved drugs with interpretation of the structures of the NSWDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir

    PubMed Central

    Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman

    2017-01-01

    To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257

  16. Biomarkers in DILI: One More Step Forward

    PubMed Central

    Robles-Díaz, Mercedes; Medina-Caliz, Inmaculada; Stephens, Camilla; Andrade, Raúl J.; Lucena, M. Isabel

    2016-01-01

    Despite being relatively rare, drug-induced liver injury (DILI) is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings, and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis, and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in “omics” technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (e.g., metabolites, proteins, or DNA) simultaneously enables the identification of ‘toxicity signatures,’ which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review, we summarize recent advances in the area of DILI biomarker studies. PMID:27597831

  17. In silico prediction of cytochrome P450-mediated drug metabolism.

    PubMed

    Zhang, Tao; Chen, Qi; Li, Li; Liu, Limin Angela; Wei, Dong-Qing

    2011-06-01

    The application of combinatorial chemistry and high-throughput screening technique enables the large number of chemicals to be generated and tested simultaneously, which will facilitate the drug development and discovery. At the same time, it brings about a challenge of how to efficiently identify the potential drug candidates from thousands of compounds. A way used to deal with the challenge is to consider the drug pharmacokinetic properties, such as absorption, distribution, metabolism and excretion (ADME), in the early stage of drug development. Among ADME properties, metabolism is of importance due to the strong association with efficacy and safety of drug. The review will focus on in silico approaches for prediction of Cytochrome P450-mediated drug metabolism. We will describe these predictive methods from two aspects, structure-based and data-based. Moreover, the applications and limitations of various methods will be discussed. Finally, we provide further direction toward improving the predictive accuracy of these in silico methods.

  18. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    PubMed

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  19. Discovery and Development of Natural Product-derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach⊥†

    PubMed Central

    Lee, Kuo-Hsiung

    2010-01-01

    Medicinal plants have long been an excellent source of pharmaceutical agents. Accordingly, the long term objectives of the author's research program are to discover and design new chemotherapeutic agents based on plant-derived compound leads by using a medicinal chemistry approach, which is a combination of chemistry and biology. Different examples of promising bioactive natural products and their synthetic analogs, including sesquiterpene lactones, quassinoids, naphthoquinones, phenylquinolones, dithiophenediones, neo-tanshinlactone, tylophorine, suksdorfin, DCK, and DCP, will be presented with respect to their discovery and preclinical development as potential clinical trial candidates. Research approaches include bioactivity- or mechanism of action-directed isolation and characterization of active compounds, rational drug design-based modification and analog synthesis, as well as structure-activity relationship and mechanism of action studies. Current clinical trials agents discovered by the Natural Products Research Laboratories, University of North Carolina, include bevirimat (dimethyl succinyl betulinic acid), which is now in Phase IIb trials for treating AIDS. Bevirimat is also the first in a new class of HIV drug candidates called “maturation inhibitors”. In addition, an etoposide analog, GL-331, progressed to anticancer Phase II clinical trials, and the curcumin analog JC-9 is in Phase II clinical trials for treating acne and in development for trials against prostate cancer. The discovery and development of these clinical trials candidates will also be discussed. PMID:20187635

  20. Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach

    PubMed Central

    Emig, Dorothea; Ivliev, Alexander; Pustovalova, Olga; Lancashire, Lee; Bureeva, Svetlana; Nikolsky, Yuri; Bessarabova, Marina

    2013-01-01

    The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example. PMID:23593264

  1. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szebeni, Janos, E-mail: jszebeni2@gmail.com; Storm, Gert

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs.more » long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.« less

  2. Predicting Adverse Drug Effects from Literature- and Database-Mined Assertions.

    PubMed

    La, Mary K; Sedykh, Alexander; Fourches, Denis; Muratov, Eugene; Tropsha, Alexander

    2018-06-06

    Given that adverse drug effects (ADEs) have led to post-market patient harm and subsequent drug withdrawal, failure of candidate agents in the drug development process, and other negative outcomes, it is essential to attempt to forecast ADEs and other relevant drug-target-effect relationships as early as possible. Current pharmacologic data sources, providing multiple complementary perspectives on the drug-target-effect paradigm, can be integrated to facilitate the inference of relationships between these entities. This study aims to identify both existing and unknown relationships between chemicals (C), protein targets (T), and ADEs (E) based on evidence in the literature. Cheminformatics and data mining approaches were employed to integrate and analyze publicly available clinical pharmacology data and literature assertions interrelating drugs, targets, and ADEs. Based on these assertions, a C-T-E relationship knowledge base was developed. Known pairwise relationships between chemicals, targets, and ADEs were collected from several pharmacological and biomedical data sources. These relationships were curated and integrated according to Swanson's paradigm to form C-T-E triangles. Missing C-E edges were then inferred as C-E relationships. Unreported associations between drugs, targets, and ADEs were inferred, and inferences were prioritized as testable hypotheses. Several C-E inferences, including testosterone → myocardial infarction, were identified using inferences based on the literature sources published prior to confirmatory case reports. Timestamping approaches confirmed the predictive ability of this inference strategy on a larger scale. The presented workflow, based on free-access databases and an association-based inference scheme, provided novel C-E relationships that have been validated post hoc in case reports. With refinement of prioritization schemes for the generated C-E inferences, this workflow may provide an effective computational method for the early detection of potential drug candidate ADEs that can be followed by targeted experimental investigations.

  3. Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis.

    PubMed

    Lakshmi, Bhavana Sethu; Wang, Ruobing; Madhubala, Rentala

    2014-06-24

    Leishmaniasis is a neglected tropical disease caused by Leishmania species. It is a major health concern affecting 88 countries and threatening 350 million people globally. Unfortunately, there are no vaccines and there are limitations associated with the current therapeutic regimens for leishmaniasis. The emerging cases of drug-resistance further aggravate the situation, demanding rapid drug and vaccine development. The genome sequence of Leishmania, provides access to novel genes that hold potential as chemotherapeutic targets or vaccine candidates. In this study, we selected 19 antigenic genes from about 8000 common Leishmania genes based on the Leishmania major and Leishmania infantum genome information available in the pathogen databases. Potential vaccine candidates thus identified were screened using an in vitro high throughput immunological platform developed in the laboratory. Four candidate genes coding for tuzin, flagellar glycoprotein-like protein (FGP), phospholipase A1-like protein (PLA1) and potassium voltage-gated channel protein (K VOLT) showed a predominant protective Th1 response over disease exacerbating Th2. We report the immunogenic properties and protective efficacy of one of the four antigens, tuzin, as a DNA vaccine against Leishmania donovani challenge. Our results show that administration of tuzin DNA protected BALB/c mice against L. donovani challenge and that protective immunity was associated with higher levels of IFN-γ and IL-12 production in comparison to IL-4 and IL-10. Our study presents a simple approach to rapidly identify potential vaccine candidates using the exhaustive information stored in the genome and an in vitro high-throughput immunological platform. Copyright © 2014. Published by Elsevier Ltd.

  4. Insoluble drug delivery strategies: review of recent advances and business prospects

    PubMed Central

    Kalepu, Sandeep; Nekkanti, Vijaykumar

    2015-01-01

    The emerging trends in the combinatorial chemistry and drug design have led to the development of drug candidates with greater lipophilicity, high molecular weight and poor water solubility. Majority of the failures in new drug development have been attributed to poor water solubility of the drug. Issues associated with poor solubility can lead to low bioavailability resulting in suboptimal drug delivery. About 40% of drugs with market approval and nearly 90% of molecules in the discovery pipeline are poorly water-soluble. With the advent of various insoluble drug delivery technologies, the challenge to formulate poorly water soluble drugs could be achieved. Numerous drugs associated with poor solubility and low bioavailabilities have been formulated into successful drug products. Several marketed drugs were reformulated to improve efficacy, safety and patient compliance. In order to gain marketing exclusivity and patent protection for such products, revitalization of poorly soluble drugs using insoluble drug delivery technologies have been successfully adopted by many pharmaceutical companies. This review covers the recent advances in the field of insoluble drug delivery and business prospects. PMID:26579474

  5. Target discovery focused approaches to overcome bottlenecks in the exploitation of antimycobacterial natural products.

    PubMed

    Baptista, Rafael; Bhowmick, Sumana; Nash, Robert J; Baillie, Les; Mur, Luis Aj

    2018-04-01

    Tuberculosis is a major global health hazard. The search for new antimycobacterials has focused on such as screening combinational chemistry libraries or designing chemicals to target predefined pockets of essential bacterial proteins. The relative ineffectiveness of these has led to a reappraisal of natural products for new antimycobacterial drug leads. However, progress has been limited, we suggest through a failure in many cases to define the drug target and optimize the hits using this information. We highlight methods of target discovery needed to develop a drug into a candidate for clinical trials. We incorporate these into suggested analysis pipelines which could inform the research strategies to accelerate the development of new drug leads from natural products.

  6. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery.

    PubMed

    Thomford, Nicholas Ekow; Senthebane, Dimakatso Alice; Rowe, Arielle; Munro, Daniella; Seele, Palesa; Maroyi, Alfred; Dzobo, Kevin

    2018-05-25

    The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.

  7. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists.

    PubMed

    Foster, William R; Car, Bruce D; Shi, Hong; Levesque, Paul C; Obermeier, Mary T; Gan, Jinping; Arezzo, Joseph C; Powlin, Stephanie S; Dinchuk, Joseph E; Balog, Aaron; Salvati, Mark E; Attar, Ricardo M; Gottardis, Marco M

    2011-04-01

    Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs. Copyright © 2010 Wiley-Liss, Inc.

  8. Computational Approaches to Drug Repurposing and Pharmacology

    PubMed Central

    Hodos, Rachel A; Kidd, Brian A; Khader, Shameer; Readhead, Ben P; Dudley, Joel T

    2016-01-01

    Data in the biological, chemical, and clinical domains are accumulating at ever-increasing rates and have the potential to accelerate and inform drug development in new ways. Challenges and opportunities now lie in developing analytic tools to transform these often complex and heterogeneous data into testable hypotheses and actionable insights. This is the aim of computational pharmacology, which uses in silico techniques to better understand and predict how drugs affect biological systems, which can in turn improve clinical use, avoid unwanted side effects, and guide selection and development of better treatments. One exciting application of computational pharmacology is drug repurposing- finding new uses for existing drugs. Already yielding many promising candidates, this strategy has the potential to improve the efficiency of the drug development process and reach patient populations with previously unmet needs such as those with rare diseases. While current techniques in computational pharmacology and drug repurposing often focus on just a single data modality such as gene expression or drug-target interactions, we rationalize that methods such as matrix factorization that can integrate data within and across diverse data types have the potential to improve predictive performance and provide a fuller picture of a drug's pharmacological action. PMID:27080087

  9. Development of Candidate Chemical Simulant List: The Evaluation of Candidate Chemical Simulants Which May Be Used in Chemically Hazardous Operations

    DTIC Science & Technology

    1982-12-01

    generation FDA Food and Drug Administration (U.S.A.) FEMA Flavoring Extract Manufacturer’s Associatic. FID Flame ionization detector FPD Flame...medicinally in the form of local analgesic or anti-inflammatory ointmer,ts or liniments S (Collins et al., 1971). It was given GRAS status by the Flavor ...methyl salicylate is considered safe for use as a flavoring agent in various foods when added in low concentrations, it has been found to be acutely

  10. Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology.

    PubMed

    Zhao, Zheng; Martin, Che; Fan, Raymond; Bourne, Philip E; Xie, Lei

    2016-02-18

    The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis, few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation. One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably, Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal (Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola RNA-directed RNA polymerase through targeting the MTase domain. Identification of safe drug candidates is a crucial first step toward the determination of timely and effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is warranted.

  11. Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs.

    PubMed

    Vialpando, Monica; Martens, Johan A; Van den Mooter, Guy

    2011-08-01

    The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.

  12. Assessment of in vivo organ-uptake and in silico prediction of CYP mediated metabolism of DA-Phen, a new dopaminergic agent.

    PubMed

    Sutera, Flavia Maria; Giannola, Libero Italo; Murgia, Denise; De Caro, Viviana

    2017-12-01

    The drug development process strives to predict metabolic fate of a drug candidate, together with its uptake in major organs, whether they act as target, deposit or metabolism sites, to the aim of establish a relationship between the pharmacodynamics and the pharmacokinetics and highlight the potential toxicity of the drug candidate. The present study was aimed at evaluating the in vivo uptake of 2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-Phen) - a new dopaminergic neurotransmission modulator, in target and non-target organs of animal subjects and integrating these data with SMARTCyp results, an in silico method that predicts the sites of cytochrome P450-mediated metabolism of drug-like molecules. Wistar rats, subjected to two different behavioural studies in which DA-Phen was intraperitoneally administrated at a dose equal to 0.03mmol/kg, were sacrificed after the experimental protocols and their major organs were analysed to quantify the drug uptake. The data obtained were integrated with in silico prediction of potential metabolites of DA-Phen using the SmartCYP predictive tool. DA-Phen reached quantitatively the Central Nervous System and the results showed that the amide bond of the DA-Phen is scarcely hydrolysed as it was found intact in analyzed organs. As a consequence, it is possible to assume that DA-Phen acts as dopaminergic modulator per se and not as a Dopamine prodrug, thus avoiding peripheral release and toxic side effects due to the endogenous neurotransmitter. Furthermore the identification of potential metabolites related to biotransformation of the drug candidate leads to a more careful evaluation of the appropriate route of administration for future intended therapeutic aims and potential translation into clinical studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery.

    PubMed

    Miranda, Margarida S; Rodrigues, Márcia T; Domingues, Rui M A; Costa, Rui R; Paz, Elvira; Rodríguez-Abreu, Carlos; Freitas, Paulo; Almeida, Bernardo G; Carvalho, Maria Alice; Gonçalves, Carine; Ferreira, Catarina M; Torrado, Egídio; Reis, Rui L; Pedrosa, Jorge; Gomes, Manuela E

    2018-05-23

    Tuberculosis (TB) is an infectious disease which affects millions of people worldwide. Inhalable polymeric dry powders are promising alternatives as anti-TB drug carriers to the alveoli milieu and infected macrophages, with potential to significantly improve the therapeutics efficiency. Here, the development of a magnetically responsive microparticulate system for pulmonary delivery of an anti-TB drug candidate (P3) is reported. Microparticles (MPs) are developed based on a cast method using calcium carbonate sacrificial templates and incorporate superparamagnetic iron oxide nanoparticles to concentrate MPs in alveoli and enable drug on demand release upon actuation of an external alternate magnetic field (AMF). The MPs are shown to be suitable for P3 delivery to the lower airways and for alveolar macrophage phagocytosis. The developed MPs reveal unique and promising features to be used as an inhalable dry powder allowing the AMF control over dosage and frequency of drug delivery anticipating improved TB treatments. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nanostructured porous Si-based nanoparticles for targeted drug delivery

    PubMed Central

    Shahbazi, Mohammad-Ali; Herranz, Barbara; Santos, Hélder A.

    2012-01-01

    One of the backbones in nanomedicine is to deliver drugs specifically to unhealthy cells. Drug nanocarriers can cross physiological barriers and access different tissues, which after proper surface biofunctionalization can enhance cell specificity for cancer therapy. Recent developments have highlighted the potential of mesoporous silica (PSiO2) and silicon (PSi) nanoparticles for targeted drug delivery. In this review, we outline and discuss the most recent advances on the applications and developments of cancer therapies by means of PSiO2 and PSi nanomaterials. Bio-engineering and fine tuning of anti-cancer drug vehicles, high flexibility and potential for sophisticated release mechanisms make these nanostructures promising candidates for “smart” cancer therapies. As a result of their physicochemical properties they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting. The main emphasis of this review will be on the in vitro and in vivo studies. PMID:23507894

  15. Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.

    PubMed

    Verbist, Bie; Klambauer, Günter; Vervoort, Liesbet; Talloen, Willem; Shkedy, Ziv; Thas, Olivier; Bender, Andreas; Göhlmann, Hinrich W H; Hochreiter, Sepp

    2015-05-01

    The pharmaceutical industry is faced with steadily declining R&D efficiency which results in fewer drugs reaching the market despite increased investment. A major cause for this low efficiency is the failure of drug candidates in late-stage development owing to safety issues or previously undiscovered side-effects. We analyzed to what extent gene expression data can help to de-risk drug development in early phases by detecting the biological effects of compounds across disease areas, targets and scaffolds. For eight drug discovery projects within a global pharmaceutical company, gene expression data were informative and able to support go/no-go decisions. Our studies show that gene expression profiling can detect adverse effects of compounds, and is a valuable tool in early-stage drug discovery decision making. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Development of a replicated database of DHCP data for evaluation of drug use.

    PubMed Central

    Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A

    1996-01-01

    This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database. PMID:8653451

  17. Development of a replicated database of DHCP data for evaluation of drug use.

    PubMed

    Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A

    1996-01-01

    This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database.

  18. Detecting Novel and Emerging Drug Terms Using Natural Language Processing: A Social Media Corpus Study.

    PubMed

    Simpson, Sean S; Adams, Nikki; Brugman, Claudia M; Conners, Thomas J

    2018-01-08

    With the rapid development of new psychoactive substances (NPS) and changes in the use of more traditional drugs, it is increasingly difficult for researchers and public health practitioners to keep up with emerging drugs and drug terms. Substance use surveys and diagnostic tools need to be able to ask about substances using the terms that drug users themselves are likely to be using. Analyses of social media may offer new ways for researchers to uncover and track changes in drug terms in near real time. This study describes the initial results from an innovative collaboration between substance use epidemiologists and linguistic scientists employing techniques from the field of natural language processing to examine drug-related terms in a sample of tweets from the United States. The objective of this study was to assess the feasibility of using distributed word-vector embeddings trained on social media data to uncover previously unknown (to researchers) drug terms. In this pilot study, we trained a continuous bag of words (CBOW) model of distributed word-vector embeddings on a Twitter dataset collected during July 2016 (roughly 884.2 million tokens). We queried the trained word embeddings for terms with high cosine similarity (a proxy for semantic relatedness) to well-known slang terms for marijuana to produce a list of candidate terms likely to function as slang terms for this substance. This candidate list was then compared with an expert-generated list of marijuana terms to assess the accuracy and efficacy of using word-vector embeddings to search for novel drug terminology. The method described here produced a list of 200 candidate terms for the target substance (marijuana). Of these 200 candidates, 115 were determined to in fact relate to marijuana (65 terms for the substance itself, 50 terms related to paraphernalia). This included 30 terms which were used to refer to the target substance in the corpus yet did not appear on the expert-generated list and were therefore considered to be successful cases of uncovering novel drug terminology. Several of these novel terms appear to have been introduced as recently as 1 or 2 months before the corpus time slice used to train the word embeddings. Though the precision of the method described here is low enough as to still necessitate human review of any candidate term lists generated in such a manner, the fact that this process was able to detect 30 novel terms for the target substance based only on one month's worth of Twitter data is highly promising. We see this pilot study as an important proof of concept and a first step toward producing a fully automated drug term discovery system capable of tracking emerging NPS terms in real time. ©Sean S Simpson, Nikki Adams, Claudia M Brugman, Thomas J Conners. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 08.01.2018.

  19. Detecting Novel and Emerging Drug Terms Using Natural Language Processing: A Social Media Corpus Study

    PubMed Central

    Simpson, Sean S; Brugman, Claudia M; Conners, Thomas J

    2018-01-01

    Background With the rapid development of new psychoactive substances (NPS) and changes in the use of more traditional drugs, it is increasingly difficult for researchers and public health practitioners to keep up with emerging drugs and drug terms. Substance use surveys and diagnostic tools need to be able to ask about substances using the terms that drug users themselves are likely to be using. Analyses of social media may offer new ways for researchers to uncover and track changes in drug terms in near real time. This study describes the initial results from an innovative collaboration between substance use epidemiologists and linguistic scientists employing techniques from the field of natural language processing to examine drug-related terms in a sample of tweets from the United States. Objective The objective of this study was to assess the feasibility of using distributed word-vector embeddings trained on social media data to uncover previously unknown (to researchers) drug terms. Methods In this pilot study, we trained a continuous bag of words (CBOW) model of distributed word-vector embeddings on a Twitter dataset collected during July 2016 (roughly 884.2 million tokens). We queried the trained word embeddings for terms with high cosine similarity (a proxy for semantic relatedness) to well-known slang terms for marijuana to produce a list of candidate terms likely to function as slang terms for this substance. This candidate list was then compared with an expert-generated list of marijuana terms to assess the accuracy and efficacy of using word-vector embeddings to search for novel drug terminology. Results The method described here produced a list of 200 candidate terms for the target substance (marijuana). Of these 200 candidates, 115 were determined to in fact relate to marijuana (65 terms for the substance itself, 50 terms related to paraphernalia). This included 30 terms which were used to refer to the target substance in the corpus yet did not appear on the expert-generated list and were therefore considered to be successful cases of uncovering novel drug terminology. Several of these novel terms appear to have been introduced as recently as 1 or 2 months before the corpus time slice used to train the word embeddings. Conclusions Though the precision of the method described here is low enough as to still necessitate human review of any candidate term lists generated in such a manner, the fact that this process was able to detect 30 novel terms for the target substance based only on one month’s worth of Twitter data is highly promising. We see this pilot study as an important proof of concept and a first step toward producing a fully automated drug term discovery system capable of tracking emerging NPS terms in real time. PMID:29311050

  20. Promising Targets in Anti-cancer Drug Development: Recent Updates.

    PubMed

    Kumar, Bhupinder; Singh, Sandeep; Skvortsova, Ira; Kumar, Vinod

    2017-01-01

    Cancer is a multifactorial disease and its genesis and progression are extremely complex. The biggest problem in the anticancer drug development is acquiring of multidrug resistance and relapse. Classical chemotherapeutics directly target the DNA of the cell, while the contemporary anticancer drugs involve molecular-targeted therapy such as targeting the proteins possessing abnormal expression inside the cancer cells. Conventional strategies for the complete eradication of the cancer cells proved ineffective. Targeted chemotherapy was successful in certain malignancies however, the effectiveness has often been limited by drug resistance and side effects on normal tissues and cells. Since last few years, many promising drug targets have been identified for the effective treatment of cancer. The current review article describes some of these promising anticancer targets that include kinases, tubulin, cancer stem cells, monoclonal antibodies and vascular targeting agents. In addition, promising drug candidates under various phases of clinical trials are also described. Multi-acting drugs that simultaneously target different cancer cell signaling pathways may facilitate the process of effective anti-cancer drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Ebola vaccine, therapeutics, and diagnostics.

    PubMed

    Furuyama, Wakako; Takada, Ayato

    2016-01-01

    Ebolaviruses, members of the family Filoviridae, cause severe hemorrhagic fever in humans and nonhuman primates, with human case fatality rates of up to 90%. No effective prophylaxis or treatment for Ebola virus disease (EVD) is yet commercially available. During the latest outbreak of EVD in West Africa, several unapproved drugs were used for the treatment of patients. This outbreak has indeed accelerated efforts to develop antiviral strategies and some of the vaccine and drug candidates have undergone clinical trials. This article reviews previous researches and recent advances on the development of vaccine, therapeutics, and diagnostics for EVD.

  2. Indexing molecules for their hERG liability.

    PubMed

    Rayan, Anwar; Falah, Mizied; Raiyn, Jamal; Da'adoosh, Beny; Kadan, Sleman; Zaid, Hilal; Goldblum, Amiram

    2013-07-01

    The human Ether-a-go-go-Related-Gene (hERG) potassium (K(+)) channel is liable to drug-inducing blockage that prolongs the QT interval of the cardiac action potential, triggers arrhythmia and possibly causes sudden cardiac death. Early prediction of drug liability to hERG K(+) channel is therefore highly important and preferably obligatory at earlier stages of any drug discovery process. In vitro assessment of drug binding affinity to hERG K(+) channel involves substantial expenses, time, and labor; and therefore computational models for predicting liabilities of drug candidates for hERG toxicity is of much importance. In the present study, we apply the Iterative Stochastic Elimination (ISE) algorithm to construct a large number of rule-based models (filters) and exploit their combination for developing the concept of hERG Toxicity Index (ETI). ETI estimates the molecular risk to be a blocker of hERG potassium channel. The area under the curve (AUC) of the attained model is 0.94. The averaged ETI of hERG binders, drugs from CMC, clinical-MDDR, endogenous molecules, ACD and ZINC, were found to be 9.17, 2.53, 3.3, -1.98, -2.49 and -3.86 respectively. Applying the proposed hERG Toxicity Index Model on external test set composed of more than 1300 hERG blockers picked from chEMBL shows excellent performance (Matthews Correlation Coefficient of 0.89). The proposed strategy could be implemented for the evaluation of chemicals in the hit/lead optimization stages of the drug discovery process, improve the selection of drug candidates as well as the development of safe pharmaceutical products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. NIPTE: a multi-university partnership supporting academic drug development.

    PubMed

    Gurvich, Vadim J; Byrn, Stephen R

    2013-10-01

    The strategic goal of academic translational research is to accelerate translational science through the improvement and development of resources for moving discoveries across translational barriers through 'first in humans' studies. To achieve this goal, access to drug discovery resources and preclinical IND-enabling infrastructure is crucial. One potential approach of research institutions for coordinating preclinical development, based on a model from the National Institute for Pharmaceutical Technology and Education (NIPTE), can provide academic translational and medical centers with access to a wide variety of enabling infrastructure for developing small molecule clinical candidates in an efficient, cost-effective manner. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Preventing Drug-Induced Liver Injury: How Useful Are Animal Models?

    PubMed

    Ballet, François

    2015-01-01

    Drug-induced liver injury (DILI) is the most common organ toxicity encountered in regulatory animal toxicology studies required prior to the clinical development of new drug candidates. Very few reports have evaluated the value of these studies for predicting DILI in humans. Indeed, compounds inducing liver toxicity in regulatory toxicology studies are not always correlated with a risk of DILI in humans. Conversely, compounds associated with the occurrence of DILI in phase 3 studies or after market release are often tested negative in regulatory toxicology studies. Idiosyncratic DILI is a rare event that is precipitated in an individual by the simultaneous occurrence of several critical factors. These factors may relate to the host (e.g. human leukocyte antigen polymorphism, inflammation), the drug (e.g. reactive metabolites) or the environment (e.g. diet/microbiota). This type of toxicity therefore cannot be detected in conventional animal toxicology studies. Several animal models have recently been proposed for the identification of drugs with the potential to cause idiosyncratic DILI: rats treated with lipopolysaccharide, Sod2(+/-) mice, panels of inbred mouse strains or chimeric mice with humanized livers. These models are not suitable for use in the prospective screening of new drug candidates. Humans therefore constitute the best model for predicting and assessing idiopathic DILI. © 2015 S. Karger AG, Basel.

  5. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets.

    PubMed

    Wasko, Michael J; Pellegrene, Kendy A; Madura, Jeffry D; Surratt, Christopher K

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for "growing" the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  6. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets

    PubMed Central

    Wasko, Michael J.; Pellegrene, Kendy A.; Madura, Jeffry D.; Surratt, Christopher K.

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for “growing” the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies. PMID:26441817

  7. Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery

    PubMed Central

    Joo, Jae Yeon; Park, Gil Yong; An, Seong Soo A

    2015-01-01

    In the development of effective drug delivery carriers, many researchers have focused on the usage of nontoxic and biocompatible materials and surface modification with targeting molecules for tumor-specific drug delivery. Fibrinogen (Fbg), an abundant glycoprotein in plasma, could be a potential candidate for developing drug carriers because of its biocompatibility and tumor-targeting property via arginine–glycine–aspartate (RGD) peptide sequences. Doxorubicin (DOX), a chemotherapeutic agent, was covalently conjugated to Fbg, and the microspheres were prepared. Acid-labile and non-cleavable linkers were used for the conjugation of DOX to Fbg, resulting in an acid-triggered drug release under a mild acidic condition and a slow-controlled drug release, respectively. In vitro cytotoxicity tests confirmed low cytotoxicity in normal cells and high antitumor effect toward cancer cells. In addition, it was discovered that a longer linker could make the binding of cells to Fbg drug carriers easier. Therefore, DOX–linker–Fbg microspheres could be a suitable drug carrier for safer and effective drug delivery. PMID:26366073

  8. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  9. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development

    PubMed Central

    Wehbe, Mohamed; Anantha, Malathi; Backstrom, Ian; Leung, Ada; Chen, Kent; Malhotra, Armaan; Edwards, Katarina; Bally, Marcel B.

    2016-01-01

    The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients. PMID:27055237

  10. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development.

    PubMed

    Wehbe, Mohamed; Anantha, Malathi; Backstrom, Ian; Leung, Ada; Chen, Kent; Malhotra, Armaan; Edwards, Katarina; Bally, Marcel B

    2016-01-01

    The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients.

  11. A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning.

    PubMed

    Sun, Yahui; Hameed, Pathima Nusrath; Verspoor, Karin; Halgamuge, Saman

    2016-12-05

    Drug repositioning can reduce the time, costs and risks of drug development by identifying new therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning. Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of 64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases. We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates that also may interact with the biological cardiovascular system. These discoveries show our proposed Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.

  12. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    PubMed

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Supersaturating drug delivery systems: effect of hydrophilic cyclodextrins and other excipients on the formation and stabilization of supersaturated drug solutions.

    PubMed

    Brewster, M E; Vandecruys, R; Verreck, G; Peeters, J

    2008-03-01

    Supersaturating drug delivery systems (SDDS) utilize two important design elements in their preparation including converting the drug of interest into a high energy state or other rapidly dissolving form to facilitate the formation of supersaturated drug solutions and providing a means for stabilizing the formed supersaturated solution such that significant drug absorption is possible from the gastrointestinal tract. This has been referred to as a "spring" and "parachute" approach. The current effort is designed to assess materials which may affect properties in SDDS. To this end, a series of excipients was tested in a co-solvent/solvent quench method to assess their ability to attain and maintain supersaturation for a group of 14 drug development candidates. The approach focussed on hydrophilic cyclodextrins including hydroxypropyl-beta-cyclodextrin (HPbetaCD) and sulfobutyl-beta-cyclodextrin (SBEbetaCD). Various rheological polymers and surfactants were also included in the study. Consistent with previous investigations, the pharmaceutical polymers, as a class, had minimal effects on the extent of supersaturation but tended to be good stabilizers while the surfactants tended to provide for the greatest degree of supersaturation but the formed systems were poorly stable. This study found that hydrophilic cyclodextrins, especially SBEbetaCD, gave superior results in terms of attaining and maintaining supersaturation. A knowledge of the behavior and performance of excipients in this context can be useful in designing solid oral dosage forms for difficult-to-formulate drugs and drug candidates.

  14. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention.

    PubMed

    Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D

    2016-02-01

    There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Larval Zebrafish Model for FDA-Approved Drug Repositioning for Tobacco Dependence Treatment

    PubMed Central

    Cousin, Margot A.; Ebbert, Jon O.; Wiinamaki, Amanda R.; Urban, Mark D.; Argue, David P.; Ekker, Stephen C.; Klee, Eric W.

    2014-01-01

    Cigarette smoking remains the most preventable cause of death and excess health care costs in the United States, and is a leading cause of death among alcoholics. Long-term tobacco abstinence rates are low, and pharmacotherapeutic options are limited. Repositioning medications approved by the U.S. Food and Drug Administration (FDA) may efficiently provide clinicians with new treatment options. We developed a drug-repositioning paradigm using larval zebrafish locomotion and established predictive clinical validity using FDA-approved smoking cessation therapeutics. We evaluated 39 physician-vetted medications for nicotine-induced locomotor activation blockade. We further evaluated candidate medications for altered ethanol response, as well as in combination with varenicline for nicotine-response attenuation. Six medications specifically inhibited the nicotine response. Among this set, apomorphine and topiramate blocked both nicotine and ethanol responses. Both positively interact with varenicline in the Bliss Independence test, indicating potential synergistic interactions suggesting these are candidates for translation into Phase II clinical trials for smoking cessation. PMID:24658307

  16. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors

    PubMed Central

    Jahchan, Nadine S; Dudley, Joel T; Mazur, Pawel K; Flores, Natasha; Yang, Dian; Palmerton, Alec; Zmoos, Anne-Flore; Vaka, Dedeepya; Tran, Kim QT; Zhou, Margaret; Krasinska, Karolina; Riess, Jonathan W; Neal, Joel W; Khatri, Purvesh; Park, Kwon S; Butte, Atul J; Sage, Julien

    2013-01-01

    Small cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with high mortality. We used a systematic drug-repositioning bioinformatics approach querying a large compendium of gene expression profiles to identify candidate FDA-approved drugs to treat SCLC. We found that tricyclic antidepressants and related molecules potently induce apoptosis in both chemonaïve and chemoresistant SCLC cells in culture, in mouse and human SCLC tumors transplanted into immunocompromised mice, and in endogenous tumors from a mouse model for human SCLC. The candidate drugs activate stress pathways and induce cell death in SCLC cells, at least in part by disrupting autocrine survival signals involving neurotransmitters and their G protein-coupled receptors. The candidate drugs inhibit the growth of other neuroendocrine tumors, including pancreatic neuroendocrine tumors and Merkel cell carcinoma. These experiments identify novel targeted strategies that can be rapidly evaluated in patients with neuroendocrine tumors through the repurposing of approved drugs. PMID:24078773

  17. N-Alkylprotoporphyrin Formation and Hepatic Porphyria in Dogs After Administration of a New Antiepileptic Drug Candidate: Mechanism and Species Specificity

    PubMed Central

    Nicolas, Jean-Marie; Chanteux, Hugues; Mancel, Valérie; Dubin, Guy-Marie; Gerin, Brigitte; Staelens, Ludovicus; Depelchin, Olympe; Kervyn, Sophie

    2014-01-01

    A new antiepileptic synaptic vesicle 2a (SV2a) ligand drug candidate was tested in 4-week oral toxicity studies in rat and dog. Brown pigment inclusions were found in the liver of high-dose dogs. The morphology of the deposits and the accompanying liver changes (increased plasma liver enzymes, increased total hepatic porphyrin level, decreased liver ferrochelatase activity, combined induction, and inactivation of cytochrome P-450 CYP2B11) suggested disruption of the heme biosynthetic cascade. None of these changes was seen in rat although this species was exposed to higher parent drug levels. Toxicokinetic analysis and in vitro metabolism assays in hepatocytes showed that dog is more prone to oxidize the drug candidate than rat. Mass spectrometry analysis of liver samples from treated dogs revealed an N-alkylprotoporphyrin adduct. The elucidation of its chemical structure suggested that the drug transforms into a reactive metabolite which is structurally related to a known reference porphyrogenic agent allylisopropylacetamide. That particular metabolite, primarily produced in dog but neither in rat nor in human, has the potential to alkylate the prosthetic heme of CYP. Overall, the data suggested that the drug candidate should not be porphyrogenic in human. This case study further exemplifies the species variability in the susceptibility to drug-induced porphyria. PMID:24973095

  18. Fusion of nonclinical and clinical data to predict human drug safety.

    PubMed

    Johnson, Dale E

    2013-03-01

    Adverse drug reactions continue to be a major cause of morbidity in both patients receiving therapeutics and in drug R&D programs. Predicting and possibly eliminating these adverse events remains a high priority in industry, government agencies and healthcare systems. With small molecule candidates, the fusion of nonclinical and clinical data is essential in establishing an overall system that creates a true translational science approach. Several new advances are taking place that attempt to create a 'patient context' mechanism early in drug research and development and ultimately into the marketplace. This 'life-cycle' approach has as its core the development of human-oriented, nonclinical end points and the incorporation of clinical knowledge at the drug design stage. The next 5 years should witness an explosion of what the author views as druggable and safe chemical space, pharmacosafety molecular targets and the most important aspect, an understanding of unique susceptibilities in patients developing adverse drug reactions. Our current knowledge of clinical safety relies completely on pharmacovigilance data from approved and marketed drugs, with a few exceptions of drugs failing in clinical trials. Massive data repositories now and soon to be available via cloud computing should stimulate a major effort in expanding our view of clinical drug safety and its incorporation into early drug research and development.

  19. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    PubMed

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  20. Identification of Bisindolylmaleimide IX as a potential agent to treat drug-resistant BCR-ABL positive leukemia

    PubMed Central

    Liu, Huijuan; Zang, Yi; Azam, Mohammad; Habib, Samy L.; Li, Jia; Ruan, Xinsen; Jia, Hao; Wang, Xueying; Li, Baojie

    2016-01-01

    Chronic myeloid leukemia (CML) treatment with BCR-ABL inhibitors is often hampered by development of drug resistance. In a screen for novel chemotherapeutic drug candidates with genotoxic activity, we identified a bisindolylmaleimide derivative, IX, as a small molecule compound with therapeutic potential against CML including drug-resistant CML. We show that Bisindolylmaleimide IX inhibits DNA topoisomerase, generates DNA breaks, activates the Atm-p53 and Atm-Chk2 pathways, and induces cell cycle arrest and cell death. Interestingly, Bisindolylmaleimide IX is highly effective in targeting cells positive for BCR-ABL. BCR-ABL positive cells display enhanced DNA damage and increased cell cycle arrest in response to Bisindolylmaleimide IX due to decreased expression of topoisomerases. Cells positive for BCR-ABL or drug-resistant T315I BCR-ABL also display increased cytotoxicity since Bisindolylmaleimide IX inhibits B-Raf and the downstream oncogene addiction pathway. Mouse cancer model experiments showed that Bisindolylmaleimide IX, at doses that show little side effect, was effective in treating leukemia-like disorders induced by BCR-ABL or T315I BCR-ABL, and prolonged the lifespan of these model mice. Thus, Bisindolylmaleimide IX presents a novel drug candidate to treat drug-resistant CML via activating BCR-ABL-dependent genotoxic stress response and inhibiting the oncogene addiction pathway activated by BCR-ABL. PMID:27564101

  1. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    NASA Astrophysics Data System (ADS)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  2. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

    PubMed Central

    Kotze, Andrew C.; Hunt, Peter W.; Skuce, Philip; von Samson-Himmelstjerna, Georg; Martin, Richard J.; Sager, Heinz; Krücken, Jürgen; Hodgkinson, Jane; Lespine, Anne; Jex, Aaron R.; Gilleard, John S.; Beech, Robin N.; Wolstenholme, Adrian J.; Demeler, Janina; Robertson, Alan P.; Charvet, Claude L.; Neveu, Cedric; Kaminsky, Ronald; Rufener, Lucien; Alberich, Melanie; Menez, Cecile; Prichard, Roger K.

    2014-01-01

    Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS) provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance. PMID:25516826

  3. Establishment of a cell model for screening antibody drugs against rheumatoid arthritis with ADCC and CDC.

    PubMed

    Yan, Li; Hu, Rui; Tu, Song; Cheng, Wen-Jun; Zheng, Qiong; Wang, Jun-Wen; Kan, Wu-Sheng; Ren, Yi-Jun

    2015-01-01

    TNFα played a dominant role in the development and progression of rheumatoid arthritis (RA). Clinical trials proved the efficacies of anti-TNFα agents for curing RA. However, most researchers were concentrating on their abilities of neutralizing TNFα, the potencies of different anti-TNFα agents varied a lot due to the antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). For better understanding and differentiating the potentiality of various candidate anti-TNF reagents at the stage of new drug research and development, present study established a cell model expressing the transmembrane TNFα for usage in in vitro ADCC or CDC assay, meanwhile, the assay protocol described here could provide guidelines for screening macromolecular antibody drugs. A stable cell subline bearing transmembrane TNFα was first established by conventional transfection method, the expression of transmembrane TNFα was approved by flow cytometer, and the performance of the stable subline in ADCC and CDC assay was evaluated, using human peripheral blood mononuclear cells as effector cells, and Adalimumab as the anti-TNFα reagent. The stable cell subline demonstrated high level of surface expression of transmembrane TNFα, and Adalimumab exerted both ADCC and CDC effects on this cell model. In conclusion, the stable cell line we established in present research could be used in ADCC or CDC assay for screening antibody drugs, which would provide in-depth understanding of the potencies of candidate antibody drugs in addition to the traditional TNFα neutralizing assay.

  4. The global burden of fasciolosis in domestic animals with an outlook on the contribution of new approaches for diagnosis and control.

    PubMed

    Khan, Muhammad Kasib; Sajid, Muhammad Sohail; Riaz, Hasan; Ahmad, Nazia Ehsan; He, Lan; Shahzad, Muhammad; Hussain, Altaf; Khan, Muhammad Nisar; Iqbal, Zafar; Zhao, Junlong

    2013-07-01

    Fasciolosis is an economically important disease for livestock, as well as being zoonotic. Recent figures on the prevalence of this disease have caused alarm concerning its potential for an increased prevalence in the future. The prevalence of fascioliosis has been documented from different regions of the world, helping us identify areas where future research needs to be focused. This manuscript is a review of the current status of the disease, the pathogenic species involved, diagnostic techniques (with new modifications and comparative specificity, sensitivity, and rapidity of these tests), chemotherapy, and vaccination. This also encompasses inaccurate reports on vaccination and drug development as well as the latest technologies to find promising candidates for drugs and vaccines. Drugs with lower efficacy have been used on some farms which lead to exacerbation of the clinical disease, presumably due to the development of drug resistance. Future studies should be focused on (1) the use of the most reliable diagnostic tests for periodic monitoring of the disease, (2) insights of the ecobiology and transmission dynamics of the snail intermediate host and the best possible methods of their control, (3) in vitro and in vivo testing of chemotherapeutic compounds using sensitive methods, and (4) the identification of novel drug and vaccine candidates using modern molecular markers. This approach may help increase the reliability of chemotherapeutic agents and control nuisance, ultimately reducing the economic losses attributable to the livestock industry around the world.

  5. Prediction of Metabolism of Drugs using Artificial Intelligence: How far have we reached?

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2016-01-01

    Information about drug metabolism is an essential component of drug development. Modeling the drug metabolism requires identification of the involved enzymes, rate and extent of metabolism, the sites of metabolism etc. There has been continuous attempts in the prediction of metabolism of drugs using artificial intelligence in effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are number of predictive models available for metabolism using Support vector machines, Artificial neural networks, Bayesian classifiers etc. There is an urgent need to review their progress so far and address the existing challenges in prediction of metabolism. In this attempt, we are presenting the currently available literature models and some of the critical issues regarding prediction of drug metabolism.

  6. Biochemical Characterization of Glutamate Racemase-A New Candidate Drug Target against Burkholderia cenocepacia Infections.

    PubMed

    Israyilova, Aygun; Buroni, Silvia; Forneris, Federico; Scoffone, Viola Camilla; Shixaliyev, Namiq Q; Riccardi, Giovanna; Chiarelli, Laurent Roberto

    2016-01-01

    The greatest obstacle for the treatment of cystic fibrosis patients infected with the Burkholderia species is their intrinsic antibiotic resistance. For this reason, there is a need to develop new effective compounds. Glutamate racemase, an essential enzyme for the biosynthesis of the bacterial cell wall, is an excellent candidate target for the design of new antibacterial drugs. To this aim, we recombinantly produced and characterized glutamate racemase from Burkholderia cenocepacia J2315. From the screening of an in-house library of compounds, two Zn (II) and Mn (III) 1,3,5-triazapentadienate complexes were found to efficiently inhibit the glutamate racemase activity with IC50 values of 35.3 and 10.0 μM, respectively. Using multiple biochemical approaches, the metal complexes have been shown to affect the enzyme activity by binding to the enzyme-substrate complex and promoting the formation of an inhibited dimeric form of the enzyme. Our results corroborate the value of glutamate racemase as a good target for the development of novel inhibitors against Burkholderia.

  7. The Candidate Antimalarial Drug MMV665909 Causes Oxygen-Dependent mRNA Mistranslation and Synergizes with Quinoline-Derived Antimalarials

    PubMed Central

    Vallières, Cindy

    2017-01-01

    ABSTRACT To cope with growing resistance to current antimalarials, new drugs with novel modes of action are urgently needed. Molecules targeting protein synthesis appear to be promising candidates. We identified a compound (MMV665909) from the Medicines for Malaria Venture (MMV) Malaria Box of candidate antimalarials that could produce synergistic growth inhibition with the aminoglycoside antibiotic paromomycin, suggesting a possible action of the compound in mRNA mistranslation. This mechanism of action was substantiated with a Saccharomyces cerevisiae model using available reporters of mistranslation and other genetic tools. Mistranslation induced by MMV665909 was oxygen dependent, suggesting a role for reactive oxygen species (ROS). Overexpression of Rli1 (a ROS-sensitive, conserved FeS protein essential in mRNA translation) rescued inhibition by MMV665909, consistent with the drug's action on translation fidelity being mediated through Rli1. The MMV drug also synergized with major quinoline-derived antimalarials which can perturb amino acid availability or promote ROS stress: chloroquine, amodiaquine, and primaquine. The data collectively suggest translation fidelity as a novel target of antimalarial action and support MMV665909 as a promising drug candidate. PMID:28652237

  8. Effective visualization of integrated knowledge and data to enable informed decisions in drug development and translational medicine

    PubMed Central

    2013-01-01

    Integrative understanding of preclinical and clinical data is imperative to enable informed decisions and reduce the attrition rate during drug development. The volume and variety of data generated during drug development have increased tremendously. A new information model and visualization tool was developed to effectively utilize all available data and current knowledge. The Knowledge Plot integrates preclinical, clinical, efficacy and safety data by adding two concepts: knowledge from the different disciplines and protein binding. Internal and public available data were gathered and processed to allow flexible and interactive visualizations. The exposure was expressed as the unbound concentration of the compound and the treatment effect was normalized and scaled by including expert opinion on what a biologically meaningful treatment effect would be. The Knowledge Plot has been applied both retrospectively and prospectively in project teams in a number of different therapeutic areas, resulting in closer collaboration between multiple disciplines discussing both preclinical and clinical data. The Plot allows head to head comparisons of compounds and was used to support Candidate Drug selections and differentiation from comparators and competitors, back translation of clinical data, understanding the predictability of preclinical models and assays, reviewing drift in primary endpoints over the years, and evaluate or benchmark compounds in due diligence comparing multiple attributes. The Knowledge Plot concept allows flexible integration and visualization of relevant data for interpretation in order to enable scientific and informed decision-making in various stages of drug development. The concept can be used for communication, decision-making, knowledge management, and as a forward and back translational tool, that will result in an improved understanding of the competitive edge for a particular project or disease area portfolio. In addition, it also builds up a knowledge and translational continuum, which in turn will reduce the attrition rate and costs of clinical development by identifying poor candidates early. PMID:24098919

  9. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus.

    PubMed

    Karthick, V; Nagasundaram, N; Doss, C George Priya; Chakraborty, Chiranjib; Siva, R; Lu, Aiping; Zhang, Ge; Zhu, Hailong

    2016-02-17

    The Ebola virus is highly pathogenic and destructive to humans and other primates. The Ebola virus encodes viral protein 40 (VP40), which is highly expressed and regulates the assembly and release of viral particles in the host cell. Because VP40 plays a prominent role in the life cycle of the Ebola virus, it is considered as a key target for antiviral treatment. However, there is currently no FDA-approved drug for treating Ebola virus infection, resulting in an urgent need to develop effective antiviral inhibitors that display good safety profiles in a short duration. This study aimed to screen the effective lead candidate against Ebola infection. First, the lead molecules were filtered based on the docking score. Second, Lipinski rule of five and the other drug likeliness properties are predicted to assess the safety profile of the lead candidates. Finally, molecular dynamics simulations was performed to validate the lead compound. Our results revealed that emodin-8-beta-D-glucoside from the Traditional Chinese Medicine Database (TCMD) represents an active lead candidate that targets the Ebola virus by inhibiting the activity of VP40, and displays good pharmacokinetic properties. This report will considerably assist in the development of the competitive and robust antiviral agents against Ebola infection.

  10. Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry.

    PubMed

    Hsieh, Yunsheng; Chen, Jiwen; Korfmacher, Walter A

    2007-01-01

    During drug discovery and development stage, often the question is raised as to whether the drug can reach the site of action which helps researchers better assess the potential value of that compound as a pharmaceutical product and toxicological outcomes. High performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) has totally replaced HPLC methods that use UV or other detectors for most drug analysis applications. However, HPLC-MS/MS approaches are not able to provide the answer to certain questions regarding the distribution of a drug in various organs or tissues from laboratory animal experiments. Whole body radioautography (WBA) normally provides a standard means to answer this question on the time course of the drug candidates. However, the major disadvantage in this radioautographic technique is to allow for visualization of total drug-related materials but to image the distribution of the administrated drugs and their metabolites in all tissues. In addition, the availability of radiolabeled compounds at drug discovery stage is another concern. To overcome these issues, matrix-assisted laser desorption/ionization-mass spectrometric method (MALDI-MS) has been developed to directly determine the distribution of pharmaceuticals in tissue sections which might unravel their disposition or biotransformation pathway for new drug development.

  11. Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria.

    PubMed

    Vijayakumar, S; Manogar, P; Prabhu, S

    2016-10-01

    Cyanobacteria find several applications in pharmacology as potential candidates for drug design. The need for new compounds that can be used as drugs has always been on the rise in therapeutics. Cyanobacteria have been identified as promising targets of research in the quest for new pharmaceutical compounds as they can produce secondary metabolites with novel chemical structures. Cyanobacteria is now recognized as a vital source of bioactive molecules like Curacin A, Largazole and Apratoxin which have succeeded in reaching Phase II and Phase III into clinical trials. The discovery of several new clinical cannabinoid drugs in the past decade from diverse marine life should translate into a number of new drugs for cannabinoid in the years to come. Conventional cannabinoid drugs have high toxicity and as a result, they affect the efficacy of chemotherapy and patients' life very much. The present review focuses on how potential, safe and affordable drugs used for cannabinoid treatment could be developed from cyanobacteria. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Drug repurposing in cancer.

    PubMed

    Sleire, Linda; Førde, Hilde Elise; Netland, Inger Anne; Leiss, Lina; Skeie, Bente Sandvei; Enger, Per Øyvind

    2017-10-01

    Cancer is a major health issue worldwide, and the global burden of cancer is expected to increase in the coming years. Whereas the limited success with current therapies has driven huge investments into drug development, the average number of FDA approvals per year has declined since the 1990s. This unmet need for more effective anti-cancer drugs has sparked a growing interest for drug repurposing, i.e. using drugs already approved for other indications to treat cancer. As such, data both from pre-clinical experiments, clinical trials and observational studies have demonstrated anti-tumor efficacy for compounds within a wide range of drug classes other than cancer. Whereas some of them induce cancer cell death or suppress various aspects of cancer cell behavior in established tumors, others may prevent cancer development. Here, we provide an overview of promising candidates for drug repurposing in cancer, as well as studies describing the biological mechanisms underlying their anti-neoplastic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Text Mining of the Classical Medical Literature for Medicines That Show Potential in Diabetic Nephropathy

    PubMed Central

    Zhang, Lei; Li, Yin; Guo, Xinfeng; May, Brian H.; Xue, Charlie C. L.; Yang, Lihong; Liu, Xusheng

    2014-01-01

    Objectives. To apply modern text-mining methods to identify candidate herbs and formulae for the treatment of diabetic nephropathy. Methods. The method we developed includes three steps: (1) identification of candidate ancient terms; (2) systemic search and assessment of medical records written in classical Chinese; (3) preliminary evaluation of the effect and safety of candidates. Results. Ancient terms Xia Xiao, Shen Xiao, and Xiao Shen were determined as the most likely to correspond with diabetic nephropathy and used in text mining. A total of 80 Chinese formulae for treating conditions congruent with diabetic nephropathy recorded in medical books from Tang Dynasty to Qing Dynasty were collected. Sao si tang (also called Reeling Silk Decoction) was chosen to show the process of preliminary evaluation of the candidates. It had promising potential for development as new agent for the treatment of diabetic nephropathy. However, further investigations about the safety to patients with renal insufficiency are still needed. Conclusions. The methods developed in this study offer a targeted approach to identifying traditional herbs and/or formulae as candidates for further investigation in the search for new drugs for modern disease. However, more effort is still required to improve our techniques, especially with regard to compound formulae. PMID:24744808

  14. Organs-on-a-chip for drug discovery.

    PubMed

    Selimović, Seila; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-10-01

    The current drug discovery process is arduous and costly, and a majority of the drug candidates entering clinical trials fail to make it to the marketplace. The standard static well culture approaches, although useful, do not fully capture the intricate in vivo environment. By merging the advances in microfluidics with microfabrication technologies, novel platforms are being introduced that lead to the creation of organ functions on a single chip. Within these platforms, microengineering enables precise control over the cellular microenvironment, whereas microfluidics provides an ability to perfuse the constructs on a chip and to connect individual sections with each other. This approach results in microsystems that may better represent the in vivo environment. These organ-on-a-chip platforms can be utilized for developing disease models as well as for conducting drug testing studies. In this article, we highlight several key developments in these microscale platforms for drug discovery applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  16. Recent strategies for drug development in fibromyalgia syndrome.

    PubMed

    Blumenthal, David E; Malemud, Charles J

    2016-12-01

    The US Federal Drug Administration (FDA) approved 3 medications for treating fibromyalgia syndrome (FMS). There have been no additional FDA approvals since January 2009 and the efficacy of the FDA-approved medications for FMS has been questioned. Areas covered: The "search for studies" tool using clinicaltrials.gov and PubMed were employed. The term, "fibromyalgia" was used for clinicaltrials.gov. The terms employed for PubMed were "Name-of-Drug Fibromyalgia", "Fibromyalgia Treatment" or "Fibromyalgia Drug Treatment." Clinical trials were reviewed if they were prospective and blinded, and if they employed a comparator, either placebo or another pharmaceutical. Expert commentary: Progress toward standardizing the outcome measures for FMS clinical trials have been made but challenges remain. Several pharmaceutical candidates for FMS have been tested since 2009. The results of these studies with potential novel targets for drug development for FMS were reviewed including the results of trials with sodium oxybate, quetiapine, esreboxetine, nabilone, memantine, naltrexone, and melatonin.

  17. Identification of Granulocyte Colony-Stimulating Factor and Interleukin-6 as Candidate Biomarkers of CBLB502 Efficacy as a Medical Radiation Countermeasure

    PubMed Central

    Krivokrysenko, Vadim I.; Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Kononov, Yevgeniy; Shyshynova, Inna; Cheney, Alec; Maitra, Ratan K.; Purmal, Andrei; Whitnall, Mark H.; Feinstein, Elena

    2012-01-01

    Given an ever-increasing risk of nuclear and radiological emergencies, there is a critical need for development of medical radiation countermeasures (MRCs) that are safe, easily administered, and effective in preventing and/or mitigating the potentially lethal tissue damage caused by acute high-dose radiation exposure. Because the efficacy of MRCs for this indication cannot be ethically tested in humans, development of such drugs is guided by the Food and Drug Administration's Animal Efficacy Rule. According to this rule, human efficacious doses can be projected from experimentally established animal efficacious doses based on the equivalence of the drug's effects on efficacy biomarkers in the respective species. Therefore, identification of efficacy biomarkers is critically important for drug development under the Animal Efficacy Rule. CBLB502 is a truncated derivative of the Salmonella flagellin protein that acts by triggering Toll-like receptor 5 (TLR5) signaling and is currently under development as a MRC. Here, we report identification of two cytokines, granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6), as candidate biomarkers of CBLB502's radioprotective/mitigative efficacy. Induction of both G-CSF and IL-6 by CBLB502 1) is strictly TLR5-dependent, 2) occurs in a CBLB502 dose-dependent manner within its efficacious dose range in both nonirradiated and irradiated mammals, including nonhuman primates, and 3) is critically important for the ability of CBLB502 to rescue irradiated animals from death. After evaluation of CBLB502 effects on G-CSF and IL-6 levels in humans, these biomarkers will be useful for accurate prediction of human efficacious CBLB502 doses, a key step in the development of this prospective radiation countermeasure. PMID:22837010

  18. Repurposing of Aspirin and Ibuprofen as Candidate Anti-Cryptococcus Drugs.

    PubMed

    Ogundeji, Adepemi O; Pohl, Carolina H; Sebolai, Olihile M

    2016-08-01

    The usage of fluconazole and amphotericin B in clinical settings is often limited by, among other things, drug resistance development and undesired side effects. Thus, there is a constant need to find new drugs to better manage fungal infections. Toward this end, the study described in this paper considered the repurposing of aspirin (acetylsalicylic acid) and ibuprofen as alternative drugs to control the growth of cryptococcal cells. In vitro susceptibility tests, including a checkerboard assay, were performed to assess the response of Cryptococcus neoformans and Cryptococcus gattii to the above-mentioned anti-inflammatory drugs. Next, the capacity of these two drugs to induce stress as well as their mode of action in the killing of cryptococcal cells was determined. The studied fungal strains revealed a response to both aspirin and ibuprofen that was dose dependent, with ibuprofen exerting greater antimicrobial action. More importantly, the MICs of these drugs did not negatively (i) affect growth or (ii) impair the functioning of macrophages; rather, they enhanced the ability of these immune cells to phagocytose cryptococcal cells. Ibuprofen was also shown to act in synergy with fluconazole and amphotericin B. The treatment of cryptococcal cells with aspirin or ibuprofen led to stress induction via activation of the high-osmolarity glycerol (HOG) pathway, and cell death was eventually achieved through reactive oxygen species (ROS)-mediated membrane damage. The presented data highlight the potential clinical application of aspirin and ibuprofen as candidate anti-Cryptococcus drugs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Rethinking the old antiviral drug moroxydine: Discovery of novel analogues as anti-hepatitis C virus (HCV) agents.

    PubMed

    Magri, Andrea; Reilly, Roisin; Scalacci, Nicolò; Radi, Marco; Hunter, Michael; Ripoll, Manon; Patel, Arvind H; Castagnolo, Daniele

    2015-11-15

    The discovery of a novel class of HCV inhibitors is described. The new amidinourea compounds were designed as isosteric analogues of the antiviral drug moroxydine. The two derivatives 11g and 11h showed excellent HCV inhibition activity and viability and proved to inhibit a step(s) of the RNA replication. The new compounds have been synthesized in only three synthetic steps from cheap building blocks and in high yields, thus turning to be promising drug candidates in the development of cheaper HCV treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Drug Discovery Algorithm for Cutaneous Leishmaniasis

    PubMed Central

    Grogl, Max; Hickman, Mark; Ellis, William; Hudson, Thomas; Lazo, John S.; Sharlow, Elizabeth R.; Johnson, Jacob; Berman, Jonathan; Sciotti, Richard J.

    2013-01-01

    Cutaneous leishmaniasis is clinically widespread but lacks treatments that are effective and well tolerated. Because all present drugs have been grandfathered into clinical use, there are no examples of a pre-clinical product evaluation scheme that lead to new candidates for formal development. To provide oral agents for development targeting cutaneous leishmaniasis, we have implemented a discovery scheme that incorporates in vitro and in vivo testing of efficacy, toxicity, and pharmacokinetics/metabolism. Particular emphasis is placed on in vivo testing, progression from higher-throughput models to those with most clinical relevance, and efficient use of resources. PMID:23390221

  1. Silica Materials for Medical Applications

    PubMed Central

    Vallet-Regí, María; Balas, Francisco

    2008-01-01

    The two main applications of silica-based materials in medicine and biotechnology, i.e. for bone-repairing devices and for drug delivery systems, are presented and discussed. The influence of the structure and chemical composition in the final characteristics and properties of every silica-based material is also shown as a function of the both applications presented. The adequate combination of the synthesis techniques, template systems and additives leads to the development of materials that merge the bioactive behavior with the drug carrier ability. These systems could be excellent candidates as materials for the development of devices for tissue engineering. PMID:19662110

  2. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma.

    PubMed

    Bosse, Kristopher R; Raman, Pichai; Zhu, Zhongyu; Lane, Maria; Martinez, Daniel; Heitzeneder, Sabine; Rathi, Komal S; Kendsersky, Nathan M; Randall, Michael; Donovan, Laura; Morrissy, Sorana; Sussman, Robyn T; Zhelev, Doncho V; Feng, Yang; Wang, Yanping; Hwang, Jennifer; Lopez, Gonzalo; Harenza, Jo Lynne; Wei, Jun S; Pawel, Bruce; Bhatti, Tricia; Santi, Mariarita; Ganguly, Arupa; Khan, Javed; Marra, Marco A; Taylor, Michael D; Dimitrov, Dimiter S; Mackall, Crystal L; Maris, John M

    2017-09-11

    We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. In addition, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2-directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Analytical challenges in sports drug testing.

    PubMed

    Thevis, Mario; Krug, Oliver; Geyer, Hans; Walpurgis, Katja; Baume, Norbert; Thomas, Andreas

    2018-03-01

    Analytical chemistry represents a central aspect of doping controls. Routine sports drug testing approaches are primarily designed to address the question whether a prohibited substance is present in a doping control sample and whether prohibited methods (for example, blood transfusion or sample manipulation) have been conducted by an athlete. As some athletes have availed themselves of the substantial breadth of research and development in the pharmaceutical arena, proactive and preventive measures are required such as the early implementation of new drug candidates and corresponding metabolites into routine doping control assays, even though these drug candidates are to date not approved for human use. Beyond this, analytical data are also cornerstones of investigations into atypical or adverse analytical findings, where the overall picture provides ample reason for follow-up studies. Such studies have been of most diverse nature, and tailored approaches have been required to probe hypotheses and scenarios reported by the involved parties concerning the plausibility and consistency of statements and (analytical) facts. In order to outline the variety of challenges that doping control laboratories are facing besides providing optimal detection capabilities and analytical comprehensiveness, selected case vignettes involving the follow-up of unconventional adverse analytical findings, urine sample manipulation, drug/food contamination issues, and unexpected biotransformation reactions are thematized.

  4. Engineered cell and tissue models of pulmonary fibrosis.

    PubMed

    Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L

    2018-04-01

    Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.

  5. Comparison of minipig, dog, monkey and human drug metabolism and disposition.

    PubMed

    Dalgaard, Lars

    2015-01-01

    This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are initiated. In conclusion, safety testing can be optimized by applying knowledge about species ADME differences and utilising advanced analytical techniques. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Preclinical drug development.

    PubMed

    Brodniewicz, Teresa; Grynkiewicz, Grzegorz

    2010-01-01

    Life sciences provide reasonably sound prognosis for a number and nature of therapeutic targets on which drug design could be based, and search for new chemical entities--future new drugs, is now more than ever based on scientific principles. Nevertheless, current very long and incredibly costly drug discovery and development process is very inefficient, with attrition rate spanning from many thousands of new chemical structures, through a handful of validated drug leads, to single successful new drug launches, achieved in average after 13 years, with compounded cost estimates from hundreds of thousands to over one billion US dollars. Since radical pharmaceutical innovation is critically needed, number of new research projects concerning this area is steeply rising outside of big pharma industry--both in academic environment and in small private companies. Their prospective success will critically depend on project management, which requires combined knowledge of scientific, technical and legal matters, comprising regulations concerning admission of new drug candidates to be subjects of clinical studies. This paper attempts to explain basic rules and requirements of drug development within preclinical study period, in case of new chemical entities of natural or synthetic origin, which belong to low molecular weight category.

  7. Recent approaches in design of peptidomimetics for antimicrobial drug discovery research.

    PubMed

    Lohan, Sandeep; Bisht, Gopal Singh

    2013-06-01

    Resistant pathogenic microbial strains are emerging at a rate that far exceeds the pace of new anti-infective drug development. In order to combat resistance development, there is pressing need to develop novel class of antibiotics having different mechanism of action in comparison to existing antibiotics. Antimicrobial peptides (AMPs) have been identified as ubiquitous components of innate immune system and widely regarded as a potential source of future antibiotics owing to a remarkable set of advantageous properties ranging from broad spectrum of activity to low propensity of resistance development. However, AMPs present several drawbacks that strongly limit their clinical applicability as ideal drug candidates such as; poor bioavailability, potential immunogenicity and high production cost. Thus, to overcome the limitations of native peptides, peptidomimetic becomes an important and promising approach. The different research groups worldwide engaged in antimicrobial drug discovery over the past decade have paid tremendous effort to design peptidomimetics. This review will focus on recent approaches in design of antimicrobial peptidomimetics their structure-activity relationship studies, mode of action, selectivity & toxicity.

  8. Value of shared preclinical safety studies - The eTOX database.

    PubMed

    Briggs, Katharine; Barber, Chris; Cases, Montserrat; Marc, Philippe; Steger-Hartmann, Thomas

    2015-01-01

    A first analysis of a database of shared preclinical safety data for 1214 small molecule drugs and drug candidates extracted from 3970 reports donated by thirteen pharmaceutical companies for the eTOX project (www.etoxproject.eu) is presented. Species, duration of exposure and administration route data were analysed to assess if large enough subsets of homogenous data are available for building in silico predictive models. Prevalence of treatment related effects for the different types of findings recorded were analysed. The eTOX ontology was used to determine the most common treatment-related clinical chemistry and histopathology findings reported in the database. The data were then mined to evaluate sensitivity of established in vivo biomarkers for liver toxicity risk assessment. The value of the database to inform other drug development projects during early drug development is illustrated by a case study.

  9. Aptamers as tools for target prioritization and lead identification.

    PubMed

    Burgstaller, Petra; Girod, Anne; Blind, Michael

    2002-12-15

    The increasing number of potential drug target candidates has driven the development of novel technologies designed to identify functionally important targets and enhance the subsequent lead discovery process. Highly specific synthetic nucleic acid ligands--also known as aptamers--offer a new exciting route in the drug discovery process by linking target validation directly with HTS. Recently, aptamers have proven to be valuable tools for modulating the function of endogenous cellular proteins in their natural environment. A set of technologies has been developed to use these sophisticated ligands for the validation of potential drug targets in disease models. Moreover, aptamers that are specific antagonists of protein function can act as substitute interaction partners in HTS assays to facilitate the identification of small-molecule lead compounds.

  10. Cachexia.

    PubMed

    Graul, A I; Stringer, M; Sorbera, L

    2016-09-01

    Cachexia is a multiorgan, multifactorial and often irreversible wasting syndrome associated with cancer and other serious, chronic illnesses including AIDS, chronic heart failure, chronic kidney disease and chronic obstructive pulmonary disease. Treatment of the patient with cachexia is currently targeted to correcting the two underlying features of the condition: anorexia and metabolic disturbances. Greater understanding of the mechanisms behind cachexia and muscle wasting have led to new therapeutic possibilities, however. Several classes of drugs are under active development for cachexia including drugs acting on hormone receptors or cytokine receptors, myostatin/activin pathway antagonists, beta-adrenoceptor agonists and cannabinoids. This review will cover the pathophysiology, epidemiology, diagnosis, treatment, drug candidates under active development and targets for therapeutic intervention of cachexia. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs

    NASA Astrophysics Data System (ADS)

    Lee, Eugene K.; Kurokawa, Yosuke K.; Tu, Robin; George, Steven C.; Khine, Michelle

    2015-07-01

    Current preclinical screening methods do not adequately detect cardiotoxicity. Using human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs), more physiologically relevant preclinical or patient-specific screening to detect potential cardiotoxic effects of drug candidates may be possible. However, one of the persistent challenges for developing a high-throughput drug screening platform using iPS-CMs is the need to develop a simple and reliable method to measure key electrophysiological and contractile parameters. To address this need, we have developed a platform that combines machine learning paired with brightfield optical flow as a simple and robust tool that can automate the detection of cardiomyocyte drug effects. Using three cardioactive drugs of different mechanisms, including those with primarily electrophysiological effects, we demonstrate the general applicability of this screening method to detect subtle changes in cardiomyocyte contraction. Requiring only brightfield images of cardiomyocyte contractions, we detect changes in cardiomyocyte contraction comparable to - and even superior to - fluorescence readouts. This automated method serves as a widely applicable screening tool to characterize the effects of drugs on cardiomyocyte function.

  12. New fluorescence techniques for high-throughput drug discovery.

    PubMed

    Jäger, S; Brand, L; Eggeling, C

    2003-12-01

    The rapid increase of compound libraries as well as new targets emerging from the Human Genome Project require constant progress in pharmaceutical research. An important tool is High-Throughput Screening (HTS), which has evolved as an indispensable instrument in the pre-clinical target-to-IND (Investigational New Drug) discovery process. HTS requires machinery, which is able to test more than 100,000 potential drug candidates per day with respect to a specific biological activity. This calls for certain experimental demands especially with respect to sensitivity, speed, and statistical accuracy, which are fulfilled by using fluorescence technology instrumentation. In particular the recently developed family of fluorescence techniques, FIDA (Fluorescence Intensity Distribution Analysis), which is based on confocal single-molecule detection, has opened up a new field of HTS applications. This report describes the application of these new techniques as well as of common fluorescence techniques--such as confocal fluorescence lifetime and anisotropy--to HTS. It gives experimental examples and presents advantages and disadvantages of each method. In addition the most common artifacts (auto-fluorescence or quenching by the drug candidates) emerging from the fluorescence detection techniques are highlighted and correction methods for confocal fluorescence read-outs are presented, which are able to circumvent this deficiency.

  13. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.

    PubMed

    Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V

    2009-12-01

    To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.

  14. DeSigN: connecting gene expression with therapeutics for drug repurposing and development.

    PubMed

    Lee, Bernard Kok Bang; Tiong, Kai Hung; Chang, Jit Kang; Liew, Chee Sun; Abdul Rahman, Zainal Ariff; Tan, Aik Choon; Khang, Tsung Fei; Cheong, Sok Ching

    2017-01-25

    The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously. We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC 50 ) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC 50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control. DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

  15. Literature-based prediction of novel drug indications considering relationships between entities.

    PubMed

    Jang, Giup; Lee, Taekeon; Lee, Byung Mun; Yoon, Youngmi

    2017-06-27

    There have been many attempts to identify and develop new uses for existing drugs, which is known as drug repositioning. Among these efforts, text mining is an effective means of discovering novel knowledge from a large amount of literature data. We identify a gene regulation by a drug and a phenotype based on the biomedical literature. Drugs or phenotypes can activate or inhibit gene regulation. We calculate the therapeutic possibility that a drug acts on a phenotype by means of these two types of regulation. We assume that a drug treats a phenotype if the genes regulated by the phenotype are inversely correlated with the genes regulated by the drug. Based on this hypothesis, we identify drug-phenotype associations with therapeutic possibility. To validate the drug-phenotype associations predicted by our method, we make an enrichment comparison with known drug-phenotype associations. We also identify candidate drugs for drug repositioning from novel associations and thus reveal that our method is a novel approach to drug repositioning.

  16. Nanomedicine in the development of anti-HIV microbicides.

    PubMed

    das Neves, José; Nunes, Rute; Rodrigues, Francisca; Sarmento, Bruno

    2016-08-01

    Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method.

    PubMed

    Zhang, Hui; Yu, Peng; Zhang, Teng-Guo; Kang, Yan-Li; Zhao, Xiao; Li, Yuan-Yuan; He, Jia-Hui; Zhang, Ji

    2015-11-01

    Drug-induced myelotoxicity usually leads to decrease the production of platelets, red cells, and white cells. Thus, early identification and characterization of myelotoxicity hazard in drug development is very necessary. The purpose of this investigation was to develop a prediction model of drug-induced myelotoxicity by using a Naïve Bayes classifier. For comparison, other prediction models based on support vector machine and single-hidden-layer feed-forward neural network  methods were also established. Among all the prediction models, the Naïve Bayes classification model showed the best prediction performance, which offered an average overall prediction accuracy of [Formula: see text] for the training set and [Formula: see text] for the external test set. The significant contributions of this study are that we first developed a Naïve Bayes classification model of drug-induced myelotoxicity adverse effect using a larger scale dataset, which could be employed for the prediction of drug-induced myelotoxicity. In addition, several important molecular descriptors and substructures of myelotoxic compounds have been identified, which should be taken into consideration in the design of new candidate compounds to produce safer and more effective drugs, ultimately reducing the attrition rate in later stages of drug development.

  18. Novel cephalosporins for the treatment of MRSA infections.

    PubMed

    Glinka, Tomasz W

    2002-02-01

    Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are among the most difficult to treat, Efforts toward the development of cephalosporin antimicrobial agents with activity against MRSA have been ongoing for the last decade. In spite of advancement of several potential drugs into clinical trials no such drugs are available for anti-MRSA therapy yet. The recent emergence of MRSA strains resistant to vancomycin, which is the treatment of choice for MRSA infection, has made the clinical need for new effective drugs even more pressing. In the present review structure-activity relationships are discussed with an emphasis on anti-MRSA activity, pharmacokinetics and efficacy in animal models. Clinical trial status of promising drug candidates is also provided where available.

  19. Advances in macrocyclic peptide-based antibiotics.

    PubMed

    Luther, Anatol; Bisang, Christian; Obrecht, Daniel

    2018-06-01

    Macrocyclic peptide-based natural products have provided powerful new antibiotic drugs, drug candidates, and scaffolds for medicinal chemists as a source of inspiration to design novel antibiotics. While most of those natural products are active mainly against Gram-positive pathogens, novel macrocyclic peptide-based compounds have recently been described, which exhibit potent and specific activity against some of the most problematic Gram-negative ESKAPE pathogens. This mini-review gives an up-date on recent developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. PET measurement of receptor occupancy as a tool to guide dose selection in neuropharmacology: are we asking the right questions?

    PubMed

    Barrett, Jeffrey S; McGuire, Jennifer; Vezina, Heather; Spitsin, Serguei; Douglas, Steven D

    2013-12-01

    Receptor occupancy studies are becoming commonplace for verifying drug mechanism of action and selecting early development candidates. Positron emission tomography (PET) has been applied to pharmacodynamic (PD) studies in several therapeutic areas including neurology, cardiology, and oncology. Prospective use of PET to define dosing requirements has been proposed particularly for central nervous system (CNS)-targeted drugs; however, correlations with clinical outcomes have been mostly anecdotal and not causally established.

  1. Evaluation of the influence of blood glucose level on oral candidal colonization in complete denture wearers with Type-II Diabetes Mellitus: An in vivo Study.

    PubMed

    Ganapathy, Dhanraj Muthuveera; Joseph, Sajeesh; Ariga, Padma; Selvaraj, Anand

    2013-01-01

    Candidal colonization in complete denture wearers is a commonly encountered condition that worsens in the presence of untreated Diabetes Mellitus. The aim of this study was to evaluate the correlation between oral candidiasis in denture-bearing mucosa and elevated blood glucose levels in complete denture wearers and to evaluate the effect of oral hypoglycemic drug therapy in controlling oral candidal colonization in denture-bearing mucosa of complete denture wearers with Type II Diabetes Mellitus. This prospective observational study involved the participation of 15 complete denture wearers with Type II Diabetes Mellitus. The sample collection was made prior and after oral hypoglycaemic drug intervention, by swabbing the rugal surfaces of palatal mucosa, cultured and the density of the candidal colony formed was analyzed and interpreted as colony forming units (CFU) per mL. The candidal samples CFU and corresponding pre- and post-prandial blood glucose levels were estimated, analyzed and compared using Karl Pearson correlation analysis and paired t-test (α = 0.05). The Karl Pearson correlation analysis showed that there was a positive correlation between the blood glucose levels (PPS and FBS) and the candidal colonization (CFU) (P < 0.05). The mean values of all the variables were analyzed using the paired t-test. There was significant reduction in the mean values of blood glucose levels (P < 0.001) and the mean values of the CFU (P < 0.001) following oral hypoglycemic drug therapy. Positive correlation was observed between oral candidiasis in complete denture-bearing mucosa and elevated blood glucose levels and oral hypoglycemic drug therapy has a positive effect in controlling oral candidal colonization in complete denture wearers with Type II Diabetes Mellitus.

  2. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space.

    PubMed

    Cheng, Feixiong; Li, Weihua; Wu, Zengrui; Wang, Xichuan; Zhang, Chen; Li, Jie; Liu, Guixia; Tang, Yun

    2013-04-22

    Prediction of polypharmacological profiles of drugs enables us to investigate drug side effects and further find their new indications, i.e. drug repositioning, which could reduce the costs while increase the productivity of drug discovery. Here we describe a new computational framework to predict polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. On the basis of our previous developed drug side effects database, named MetaADEDB, a drug side effect similarity inference (DSESI) method was developed for drug-target interaction (DTI) prediction on a known DTI network connecting 621 approved drugs and 893 target proteins. The area under the receiver operating characteristic curve was 0.882 ± 0.011 averaged from 100 simulated tests of 10-fold cross-validation for the DSESI method, which is comparative with drug structural similarity inference and drug therapeutic similarity inference methods. Seven new predicted candidate target proteins for seven approved drugs were confirmed by published experiments, with the successful hit rate more than 15.9%. Moreover, network visualization of drug-target interactions and off-target side effect associations provide new mechanism-of-action of three approved antipsychotic drugs in a case study. The results indicated that the proposed methods could be helpful for prediction of polypharmacological profiles of drugs.

  3. Non-clinical studies required for new drug development - Part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies.

    PubMed

    Andrade, E L; Bento, A F; Cavalli, J; Oliveira, S K; Freitas, C S; Marcon, R; Schwanke, R C; Siqueira, J M; Calixto, J B

    2016-10-24

    This review presents a historical overview of drug discovery and the non-clinical stages of the drug development process, from initial target identification and validation, through in silico assays and high throughput screening (HTS), identification of leader molecules and their optimization, the selection of a candidate substance for clinical development, and the use of animal models during the early studies of proof-of-concept (or principle). This report also discusses the relevance of validated and predictive animal models selection, as well as the correct use of animal tests concerning the experimental design, execution and interpretation, which affect the reproducibility, quality and reliability of non-clinical studies necessary to translate to and support clinical studies. Collectively, improving these aspects will certainly contribute to the robustness of both scientific publications and the translation of new substances to clinical development.

  4. Using Chemoinformatics, Bioinformatics, and Bioassay to Predict and Explain the Antibacterial Activity of Nonantibiotic Food and Drug Administration Drugs.

    PubMed

    Kahlous, Nour Aldin; Bawarish, Muhammad Al Mohdi; Sarhan, Muhammad Arabi; Küpper, Manfred; Hasaba, Ali; Rajab, Mazen

    2017-04-01

    Discovering of new and effective antibiotics is a major issue facing scientists today. Luckily, the development of computer science offers new methods to overcome this issue. In this study, a set of computer software was used to predict the antibacterial activity of nonantibiotic Food and Drug Administration (FDA)-approved drugs, and to explain their action by possible binding to well-known bacterial protein targets, along with testing their antibacterial activity against Gram-positive and Gram-negative bacteria. A three-dimensional virtual screening method that relies on chemical and shape similarity was applied using rapid overlay of chemical structures (ROCS) software to select candidate compounds from the FDA-approved drugs database that share similarity with 17 known antibiotics. Then, to check their antibacterial activity, disk diffusion test was applied on Staphylococcus aureus and Escherichia coli. Finally, a protein docking method was applied using HYBRID software to predict the binding of the active candidate to the target receptor of its similar antibiotic. Of the 1,991 drugs that were screened, 34 had been selected and among them 10 drugs showed antibacterial activity, whereby drotaverine and metoclopramide activities were without precedent reports. Furthermore, the docking process predicted that diclofenac, drotaverine, (S)-flurbiprofen, (S)-ibuprofen, and indomethacin could bind to the protein target of their similar antibiotics. Nevertheless, their antibacterial activities are weak compared with those of their similar antibiotics, which can be potentiated further by performing chemical modifications on their structure.

  5. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Akitoshi, E-mail: akitoshi-tamura@ds-pharma.co.jp; Miyawaki, Izuru; Yamada, Toru

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination ofmore » serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased inflammatory cells and IgE, but the others did not. • The allergic drugs commonly induced germinal center hyperplasia in lymphoid tissues. • Some of these allergic drugs transiently increased CD4{sup +}CD25{sup +} T cells in the spleen.« less

  6. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate

    PubMed Central

    Hook, Gregory; Jacobsen, J. Steven; Grabstein, Kenneth; Kindy, Mark; Hook, Vivian

    2015-01-01

    There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington’s disease, multiple sclerosis, and Alzheimer’s disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated. PMID:26388830

  7. New Milestones Ahead in Complement-Targeted Therapy

    PubMed Central

    Ricklin, Daniel; Lambris, John D.

    2017-01-01

    The complement system is a powerful effector arm of innate immunity that typically confers protection from microbial intruders and accumulating debris. In many clinical situations, however, the defensive functions of complement can turn against host cells and induce or exacerbate immune, inflammatory, and degenerative conditions. Although the value of inhibiting complement in a therapeutic context has long been recognized, bringing complement-targeted drugs into clinical use has proved challenging. This important milestone was finally reached a decade ago, yet the clinical availability of complement inhibitors has remained limited. Still, the positive long-term experience with complement drugs and their proven effectiveness in various diseases has reinvigorated interest and confidence in this approach. Indeed, a broad variety of clinical candidates that act at almost any level of the complement activation cascade are currently in clinical development, with several of them being evaluated in phase 2 and phase 3 trials. With antibody-related drugs dominating the panel of clinical candidates, the emergence of novel small-molecule, peptide, protein, and oligonucleotide-based inhibitors offers new options for drug targeting and administration. Whereas all the currently approved and many of the proposed indications for complement-targeted inhibitors belong to the rare disease spectrum, these drugs are increasingly being evaluated for more prevalent conditions. Fortunately, the growing experience from preclinical and clinical use of therapeutic complement inhibitors has enabled a more evidence-based assessment of suitable targets and rewarding indications as well as related technical and safety considerations. This review highlights recent concepts and developments in complement-targeted drug discovery, provides an overview of current and emerging treatment options, and discusses the new milestones ahead on the way to the next generation of clinically available complement therapeutics. PMID:27321574

  8. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission

    PubMed Central

    Akil, Ayman; Parniak, Michael A.; Dezzuitti, Charlene S.; Moncla, Bernard J.; Cost, Marilyn R.; Li, Mingguang; Rohan, Lisa Cencia

    2012-01-01

    Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide. PMID:22708075

  9. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission.

    PubMed

    Akil, Ayman; Parniak, Michael A; Dezzuitti, Charlene S; Moncla, Bernard J; Cost, Marilyn R; Li, Mingguang; Rohan, Lisa Cencia

    2011-06-01

    Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide.

  10. In vitro and ex vivo screening of candidate therapeutics to restore neurotransmission in nerve terminals intoxicated by botulinum neurotoxin serotype A1.

    PubMed

    Beske, Phillip H; Bradford, Aaron B; Hoffman, Katie M; Mason, Sydney J; McNutt, Patrick M

    2018-06-01

    Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that block cholinergic release in the peripheral nervous system and cause death by asphyxiation. While post-exposure prophylaxis can effectively eliminate toxin in the bloodstream, there are no clinically effective treatments to prevent or reverse disease once BoNT has entered the neuron. To address the need for post-symptomatic countermeasures, we designed and developed an in vitro assay based on whole-cell, patch-clamp electrophysiological monitoring of miniature excitatory post-synaptic currents in synaptically active murine embryonic stem cell-derived neurons. This synaptic function-based assay was used to assess the efficacy of rationally selected drugs to restore neurotransmission in neurons comprehensively intoxicated by BoNT/A. Based on clinical reports suggesting that elevated Ca 2+ signaling promotes symptomatic relief from botulism, we identified seven candidate drugs that modulate presynaptic Ca 2+ signaling and assessed their ability to reverse BoNT/A-induced synaptic blockade. The most effective drugs from the screen were found to phasically agonize voltage-gated calcium channel (VGCC) activity. Lead candidates were then applied to ex vivo studies in BoNT/A-paralyzing mouse phrenic nerve-hemidiaphragm (PND) preparations. Treatment of PNDs with VGCC agonists after paralytic onset transiently potentiated nerve-elicited muscle contraction and delayed progression to neuromuscular failure. Collectively, this study suggests that Ca 2+ -modulating drugs represent a novel symptomatic treatment for neuromuscular paralysis following BoNT/A poisoning. Published by Elsevier Ltd.

  11. What is the prognosis for new centrally-acting anti-obesity drugs?

    PubMed

    Heal, David J; Gosden, Jane; Smith, Sharon L

    2012-07-01

    Obesity is a global problem that is predominantly caused by the increasing adoption of a low-cost, Westernised diet that is rich in fat and sugar and a more sedentary lifestyle. The costs of this epidemic are substantial increases in Type 2 diabetes, cardiovascular disease and some types of cancer that are certain to place a huge burden on individuals, healthcare providers and society. In this review, we provide an overview of the chequered history of pharmacotherapy for the treatment of obesity and an analysis of the regulatory and commercial challenges for developing new centrally-acting drugs in this metabolic indication. The efficacy and safety of the drug candidates that are currently at the pre-registration phase, i.e., lorcaserin, Qnexa and Contrave, are critically assessed. The main focus, however, is to provide a comprehensive review of the wide range of novel CNS compounds that are in the discovery phase or early clinical development. The profiles of various clinical candidates in animal models of obesity predict that several new CNS approaches in the clinic have the potential to deliver greater weight-loss than existing agents. This article is part of a Special Issue entitled 'Central Control of Food Intake'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Identification of an expressed gene in Dipylidium caninum.

    PubMed

    Miranda, Rodrigo R C; Costa-Júnior, Livio M; Campos, Artur K; Santos, Hudson A; Rabelo, Elida M L

    2004-10-01

    Recombinant DNA studies have been focused on developing vaccines to different cestodes. But few studies involving Dipylidium caninum molecular biology and genes have been done. Only partial sequences of mitochondrial DNA and ribosomal RNA gene are available in databases. Any molecular work with this parasite, including epidemiology, study of drug-resistant strains, and vaccine development, is hampered by the lack of knowledge of its genome. Thus, the knowledge of specific genes of different developmental stages of D. caninum is crucial to locate potential targets to be used as candidates to develop a vaccine and/or new drugs against this parasite. Here we report, for the first time, the sequencing of a fragment of a D. caninum expressed gene.

  13. Total synthesis of teixobactin

    NASA Astrophysics Data System (ADS)

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-08-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product.

  14. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: where do we stand?

    PubMed

    Awasthi, Rajendra; Kulkarni, Giriraj T

    2016-01-01

    A major constraint in oral controlled release drug delivery is that not all the drug candidates are absorbed uniformly throughout the gastrointestinal tract (GIT). Drugs having "absorption window" are absorbed in a particular portion of GIT only or are absorbed to a different extent in various segments of the GIT. Thus, only the drug released in the region preceding and in close vicinity to the absorption window is available for absorption. The drug must be released from the dosage form in solution form; otherwise, it is generally not absorbed. Hence, much research has been dedicated to the development of gastroretentive drug delivery systems that may optimize the bioavailability and subsequent therapeutic efficacy of such drugs, as these systems have unique properties to bypass the gastric emptying process. These systems show excellent in vitro results but fail to give desirable in vivo performance. During the last 2-3 decades, researchers from the academia and industries are giving considerable importance in this field. Unfortunately, till date, few so-called gastroretentive dosage forms have been brought to the market in spite of numerous academic publications. The manuscript considers strategies that are commonly used in the development of gastroretentive drug delivery systems with a special attention on various parameters, which needs to be monitored during formulation development.

  15. The quest for fragile X biomarkers.

    PubMed

    Westmark, Cara J

    2014-12-01

    Fragile X is the most common form of inherited intellectual disability and the leading known genetic cause of autism. There is currently no cure or approved medication for fragile X although various drugs target specific disease symptoms and a large number of therapeutics are in various stages of clinical development. Multiple recent clinical trials have failed on their primary endpoints indicating that there is a compelling need for validated biomarkers and outcome measures in fragile X. There are currently no validated blood-based biomarkers to assess disease severity or to monitor drug efficacy in fragile X syndrome. Herein, we review candidate blood protein biomarkers including extracellular-regulated kinase, phosphoinositide 3-kinase, matrix metalloproteinase 9, amyloid-beta and amyloid-beta protein precursor. Bench-to-bedside plans for fragile X syndrome are severely limited by the lack of validated outcome measures. The reviewed candidate biomarkers are at early stages of validation and deserve further investigation.

  16. Investigational drugs in early development for treating dengue infection.

    PubMed

    Beesetti, Hemalatha; Khanna, Navin; Swaminathan, Sathyamangalam

    2016-09-01

    Dengue has emerged as the most significant arboviral disease of the current century. A drug for dengue is an urgent unmet need. As conventional drug discovery efforts have not produced any promising clinical candidates, there is a shift toward re-positioning pre-existing drugs for dengue to fast-track dengue drug development. This article provides an update on the current status of recently completed and ongoing dengue drug trials. All dengue drug trials described in this article were identified from a list of >230 trials that were returned upon searching the World Health Organization's International Clinical Trials Registry Platform web portal using the search term 'dengue' on December 31(st), 2015. None of the handful of drugs tested so far has yielded encouraging results. Early trial experience has served to emphasize the challenge of drug testing in the short therapeutic time window available, the need for tools to predict 'high-risk' patients early on and the limitations of the existing pre-clinical model systems. Significant investment of efforts and resources is a must before the availability of a safe, effective and inexpensive dengue drug becomes a reality. Currently, supportive fluid therapy remains the only option available for dengue treatment.

  17. Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels.

    PubMed

    Manga, Ramya D; Jha, Prateek K

    2017-02-01

    Hydrogels consisting of weakly charged acidic/basic groups are ideal candidates for carriers in oral delivery, as they swell in response to pH changes in the gastrointestinal tract, resulting in drug entrapment at low pH conditions of the stomach and drug release at high pH conditions of the intestine. We have developed 1-dimensional mathematical models to study the drug release behavior through pH-responsive hydrogels. Models are developed for 3 different cases that vary in the level of rigor, which together can be applied to predict both in vitro (drug release from carrier) and in vivo (drug concentration in the plasma) behavior of hydrogel-drug formulations. A detailed study of the effect of hydrogel and drug characteristics and physiological conditions is performed to gain a fundamental insight into the drug release behavior, which may be useful in the design of pH-responsive drug carriers. Finally, we describe a successful application of these models to predict both in vitro and in vivo behavior of docetaxel-loaded micelle in a pH-responsive hydrogel, as reported in a recent experimental study. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.

    PubMed

    Huang, Yu-An; You, Zhu-Hong; Chen, Xing

    2018-01-01

    Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. From crystal to compound: structure-based antimalarial drug discovery.

    PubMed

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  20. Multimodal assessment of spatial distribution of drug-tracer uptake by brain tissue after intra-arterial injections

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder; Chaudhuri, Durba; Wang, Mei; Straubinger, Robert; Bigio, Irving J.; Joshi, Shailendra

    2014-02-01

    It is challenging to track the rapid changes in drug concentrations after intra-arterial (IA) administration to elucidate the pharmacokinetics of this method of drug delivery. Traditional pharmacokinetic parameters (such as protein binding) that are highly relevant to intravenous (IV) administration do not seem to apply to IA injections. Regional drug delivery is affected by the biomechanics of drug injection, resting blood flow, and local tissue extraction. In-vivo and ex-vivo, optical methods for spatial mapping of drug deposition can assist in visualizing drug distributions and aid in the screening of potential drugs and carrier candidates. We present a multimodal approach for the assessment of drug distribution in postmortem tissue specimens using diffuse reflectance spectroscopy, multispectral imaging, and confocal microscopy and demonstrate feasibility of distinguishing route of administration advantages of liposome-dye conjugate delivery. The results of this study suggest that insight on drug dynamics gained by this aggregated approach can be used to help screen and/or optimize potential drug candidates and drug delivery protocols.

  1. New drug candidates for liposomal delivery identified by computer modeling of liposomes' remote loading and leakage.

    PubMed

    Cern, Ahuva; Marcus, David; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2017-04-28

    Remote drug loading into nano-liposomes is in most cases the best method for achieving high concentrations of active pharmaceutical ingredients (API) per nano-liposome that enable therapeutically viable API-loaded nano-liposomes, referred to as nano-drugs. This approach also enables controlled drug release. Recently, we constructed computational models to identify APIs that can achieve the desired high concentrations in nano-liposomes by remote loading. While those previous models included a broad spectrum of experimental conditions and dealt only with loading, here we reduced the scope to the molecular characteristics alone. We model and predict API suitability for nano-liposomal delivery by fixing the main experimental conditions: liposome lipid composition and size to be similar to those of Doxil® liposomes. On that basis, we add a prediction of drug leakage from the nano-liposomes during storage. The latter is critical for having pharmaceutically viable nano-drugs. The "load and leak" models were used to screen two large molecular databases in search of candidate APIs for delivery by nano-liposomes. The distribution of positive instances in both loading and leakage models was similar in the two databases screened. The screening process identified 667 molecules that were positives by both loading and leakage models (i.e., both high-loading and stable). Among them, 318 molecules received a high score in both properties and of these, 67 are FDA-approved drugs. This group of molecules, having diverse pharmacological activities, may be the basis for future liposomal drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies.

    PubMed

    Kesisoglou, Filippos; Chung, John; van Asperen, Judith; Heimbach, Tycho

    2016-09-01

    In recent years, there has been a significant increase in use of physiologically based pharmacokinetic models in drug development and regulatory applications. Although most of the published examples have focused on aspects such as first-in-human (FIH) dose predictions or drug-drug interactions, several publications have highlighted the application of these models in the biopharmaceutics field and their use to inform formulation development. In this report, we present 5 case studies of use of such models in this biopharmaceutics/formulation space across different pharmaceutical companies. The case studies cover different aspects of biopharmaceutics or formulation questions including (1) prediction of absorption prior to FIH studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early exploration of a modified-release formulation; (4) addressing bridging questions for late-stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a Biopharmaceutics Classification System class I drug with fasted state data. The discussion of the case studies focuses on how such models can facilitate decisions and biopharmaceutic understanding of drug candidates and the opportunities for increased use and acceptance of such models in drug development and regulatory interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Permeation enhancer strategies in transdermal drug delivery.

    PubMed

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  4. Quantitative analysis of drug distribution by ambient mass spectrometry imaging method with signal extinction normalization strategy and inkjet-printing technology.

    PubMed

    Luo, Zhigang; He, Jingjing; He, Jiuming; Huang, Lan; Song, Xiaowei; Li, Xin; Abliz, Zeper

    2018-03-01

    Quantitative mass spectrometry imaging (MSI) is a robust approach that provides both quantitative and spatial information for drug candidates' research. However, because of complicated signal suppression and interference, acquiring accurate quantitative information from MSI data remains a challenge, especially for whole-body tissue sample. Ambient MSI techniques using spray-based ionization appear to be ideal for pharmaceutical quantitative MSI analysis. However, it is more challenging, as it involves almost no sample preparation and is more susceptible to ion suppression/enhancement. Herein, based on our developed air flow-assisted desorption electrospray ionization (AFADESI)-MSI technology, an ambient quantitative MSI method was introduced by integrating inkjet-printing technology with normalization of the signal extinction coefficient (SEC) using the target compound itself. The method utilized a single calibration curve to quantify multiple tissue types. Basic blue 7 and an antitumor drug candidate (S-(+)-deoxytylophorinidine, CAT) were chosen to initially validate the feasibility and reliability of the quantitative MSI method. Rat tissue sections (heart, kidney, and brain) administered with CAT was then analyzed. The quantitative MSI analysis results were cross-validated by LC-MS/MS analysis data of the same tissues. The consistency suggests that the approach is able to fast obtain the quantitative MSI data without introducing interference into the in-situ environment of the tissue sample, and is potential to provide a high-throughput, economical and reliable approach for drug discovery and development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Prediction of intestinal absorption and blood-brain barrier penetration by computational methods.

    PubMed

    Clark, D E

    2001-09-01

    This review surveys the computational methods that have been developed with the aim of identifying drug candidates likely to fail later on the road to market. The specifications for such computational methods are outlined, including factors such as speed, interpretability, robustness and accuracy. Then, computational filters aimed at predicting "drug-likeness" in a general sense are discussed before methods for the prediction of more specific properties--intestinal absorption and blood-brain barrier penetration--are reviewed. Directions for future research are discussed and, in concluding, the impact of these methods on the drug discovery process, both now and in the future, is briefly considered.

  6. Curcumin and dietary polyphenol research: beyond drug discovery.

    PubMed

    Jin, Tian-Ru

    2018-05-01

    Numerous natural products available over the counter are commonly consumed by healthy, sub-healthy or ill people for the treatment and prevention of various chronic diseases. Among them, a few dietary polyphenols, including the curry compound curcumin, have been attracting the most attention from biomedical researchers and drug developers. Unlike many so-called "good drug candidates", curcumin and several other dietary polyphenols do not have a single known therapeutic target or defined receptor. In addition, the bioavailability of these polyphenols is usually very low due to their poor absorption in the gut. These recently debated features have created enormous difficulties for drug developers. In this review, I do not discuss how to develop curcumin, other dietary polyphenols or their derivatives into pharmaceutical agents. Instead, I comment on how curcumin and dietary polyphenol research has enriched our knowledge of insulin signaling, including the presentation of my perspectives on how these studies will add to our understanding of the famous hepatic insulin function paradox.

  7. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    PubMed

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

  8. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections.

    PubMed

    Don, Rob; Ioset, Jean-Robert

    2014-01-01

    The Drugs for Neglected Diseases initiative (DNDi) has defined and implemented an early discovery strategy over the last few years, in fitting with its virtual R&D business model. This strategy relies on a medium- to high-throughput phenotypic assay platform to expedite the screening of compound libraries accessed through its collaborations with partners from the pharmaceutical industry. We review the pragmatic approaches used to select compound libraries for screening against kinetoplastids, taking into account screening capacity. The advantages, limitations and current achievements in identifying new quality series for further development into preclinical candidates are critically discussed, together with attractive new approaches currently under investigation.

  9. Subtype and pathway specific responses to anticancer compounds in breast cancer.

    PubMed

    Heiser, Laura M; Sadanandam, Anguraj; Kuo, Wen-Lin; Benz, Stephen C; Goldstein, Theodore C; Ng, Sam; Gibb, William J; Wang, Nicholas J; Ziyad, Safiyyah; Tong, Frances; Bayani, Nora; Hu, Zhi; Billig, Jessica I; Dueregger, Andrea; Lewis, Sophia; Jakkula, Lakshmi; Korkola, James E; Durinck, Steffen; Pepin, François; Guan, Yinghui; Purdom, Elizabeth; Neuvial, Pierre; Bengtsson, Henrik; Wood, Kenneth W; Smith, Peter G; Vassilev, Lyubomir T; Hennessy, Bryan T; Greshock, Joel; Bachman, Kurtis E; Hardwicke, Mary Ann; Park, John W; Marton, Laurence J; Wolf, Denise M; Collisson, Eric A; Neve, Richard M; Mills, Gordon B; Speed, Terence P; Feiler, Heidi S; Wooster, Richard F; Haussler, David; Stuart, Joshua M; Gray, Joe W; Spellman, Paul T

    2012-02-21

    Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.

  10. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.

    PubMed

    Han, Byeonggu; Ahn, Hee-Chul

    2016-01-01

    During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR.

  11. Evolution of Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates.

    PubMed

    Andersson, Tommy B

    2017-10-01

    The pharmaceutical industry urgently needs reliable pre-clinical models to evaluate the efficacy and safety of new chemical entities before they enter the clinical trials. Development of in vitro model systems that emulate the functions of the human liver organ has been an elusive task. Cell lines exhibit a low drug-metabolizing capacity and primary liver cells rapidly dedifferentiate in culture, which restrict their usefulness substantially. Recently, the development of hepatocyte spheroid cultures has shown promising results. The proteome and transcriptome in the spheroids were similar to the liver tissue, and hepatotoxicity of selected substances was detected at in vivo-relevant concentrations. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Drugs for Neglected Diseases initiative model of drug development for neglected diseases: current status and future challenges.

    PubMed

    Ioset, Jean-Robert; Chang, Shing

    2011-09-01

    The Drugs for Neglected Diseases initiative (DNDi) is a patients' needs-driven organization committed to the development of new treatments for neglected diseases. Created in 2003, DNDi has delivered four improved treatments for malaria, sleeping sickness and visceral leishmaniasis. A main DNDi challenge is to build a solid R&D portfolio for neglected diseases and to deliver preclinical candidates in a timely manner using an original model based on partnership. To address this challenge DNDi has remodeled its discovery activities from a project-based academic-bound network to a fully integrated process-oriented platform in close collaboration with pharmaceutical companies. This discovery platform relies on dedicated screening capacity and lead-optimization consortia supported by a pragmatic, structured and pharmaceutical-focused compound sourcing strategy.

  13. Imaging agents for monitoring changes of dopamine receptors and methods of using thereof

    DOEpatents

    Mukherjee, Jogeshwar; Chandy, George; Milne, Norah; Wang, Ping H.; Easwaramoorthy, Balu; Mantil, Joseph; Garcia, Adriana

    2017-05-30

    The present invention is related generally to a method for screening subjects to determine those subjects more likely to develop diabetes by quantization of insulin producing cells. The present invention is also related to the diagnosis of diabetes and related to monitor disease progression or treatment efficacy of candidate drugs.

  14. Animal Venom Peptides: Potential for New Antimicrobial Agents.

    PubMed

    Primon-Barros, Muriel; José Macedo, Alexandre

    2017-01-01

    Microbial infections affect people worldwide, causing diseases with significant impact on public health, indicating the need for research and development of new antimicrobial agents. Animal venoms represent a vast and largely unexploited source of biologically active molecules with attractive candidates for the development of novel therapeutics. Venoms consist of complex mixtures of molecules, including antimicrobial peptides (AMPs). Since the discovery of AMPs, they have been studied as promising new antimicrobial drugs. Amongst the remarkable sources of AMPs with known antimicrobial activities are ants, bees, centipedes, cone snails, scorpions, snakes, spiders, and wasps. The antimicrobial tests against bacteria, protozoans, fungi and viruses using 170 different peptides isolated directly from crude venoms or cDNA libraries of venom glands are listed and discussed in this review, as well as hemolytic ativity. The potential of venoms as source of new compounds, including AMPs, is extensively discussed. Currently, there are six FDA-approved drugs and many others are undergoing preclinical and clinical trials. The search for antimicrobial "weapons" makes the AMPs from venoms promising candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab.

    PubMed

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.

  16. Strategies for bringing drug delivery tools into discovery.

    PubMed

    Kwong, Elizabeth; Higgins, John; Templeton, Allen C

    2011-06-30

    The past decade has yielded a significant body of literature discussing approaches for development and discovery collaboration in the pharmaceutical industry. As a result, collaborations between discovery groups and development scientists have increased considerably. The productivity of pharma companies to deliver new drugs to the market, however, has not increased and development costs continue to rise. Inability to predict clinical and toxicological response underlies the high attrition rate of leads at every step of drug development. A partial solution to this high attrition rate could be provided by better preclinical pharmacokinetics measurements that inform PD response based on key pathways that drive disease progression and therapeutic response. A critical link between these key pharmacology, pharmacokinetics and toxicology studies is the formulation. The challenges in pre-clinical formulation development include limited availability of compounds, rapid turn-around requirements and the frequent un-optimized physical properties of the lead compounds. Despite these challenges, this paper illustrates some successes resulting from close collaboration between formulation scientists and discovery teams. This close collaboration has resulted in development of formulations that meet biopharmaceutical needs from early stage preclinical in vivo model development through toxicity testing and development risk assessment of pre-clinical drug candidates. Published by Elsevier B.V.

  17. Thermodynamic Studies for Drug Design and Screening

    PubMed Central

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  18. Design, synthesis, and biological evaluation of 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates.

    PubMed

    Liu, Jie; Liu, Qin; Yang, Xue; Xu, Shengtao; Zhang, Hengyuan; Bai, Renren; Yao, Hequan; Jiang, Jieyun; Shen, Mingqin; Wu, Xiaoming; Xu, Jinyi

    2013-12-15

    A series of novel 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives were designed and synthesized to develop new angiotensin II subtype 2 (AT2) receptor agonists as novel antihypertensive candidates. It was found that 14f (IC50=0.4 nM) and 15e (IC50=5.0 nM) displayed potent AT2 receptor affinity and selectivity in binding assays. Biological evaluation in vivo suggested that 14f is obviously superior to that of reference drug losartan in RHRs, and meanwhile, 14f has no significant impact on heart rate. The interesting activities of these compounds may make them promising candidates as antihypertensive agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines

    PubMed Central

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A.; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-01-01

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid–based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. PMID:26409271

  20. A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine

    PubMed Central

    Stern, Andrew M.; Schurdak, Mark E.; Bahar, Ivet; Berg, Jeremy M.; Taylor, D. Lansing

    2016-01-01

    Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, and iterative quantitative systems pharmacology (QSP)–driven drug discovery and development strategy and platform that we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing on the patient as the starting and the end point. PMID:26962875

  1. Human tumor xenografts in mouse as a model for evaluating therapeutic efficacy of monoclonal antibodies or antibody-drug conjugate targeting receptor tyrosine kinases.

    PubMed

    Feng, Liang; Wang, Wei; Yao, Hang-Ping; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai

    2015-01-01

    Targeting receptor tyrosine kinases by therapeutic monoclonal antibodies and antibody-drug conjugates has met with tremendous success in clinical oncology. Currently, numerous therapeutic monoclonal antibodies are under preclinical development. The potential for moving candidate antibodies into clinical trials relies heavily on therapeutic efficacy validated by human tumor xenografts in mice. Here we describe methods used to determine therapeutic efficacy of monoclonal antibodies or antibody-drug conjugates specific to human receptor tyrosine kinase using human tumor xenografts in mice as the model. The end point of the study is to determine whether treatment of tumor-bearing mice with a monoclonal antibody or antibody-drug conjugates results in significant delay of tumor growth.

  2. Low-Turnover Drug Molecules: A Current Challenge for Drug Metabolism Scientists.

    PubMed

    Hutzler, J Matthew; Ring, Barbara J; Anderson, Shelby R

    2015-12-01

    In vitro assays using liver subcellular fractions or suspended hepatocytes for characterizing the metabolism of drug candidates play an integral role in the optimization strategy employed by medicinal chemists. However, conventional in vitro assays have limitations in their ability to predict clearance and generate metabolites for low-turnover (slowly metabolized) drug molecules. Due to a rapid loss in the activity of the drug-metabolizing enzymes, in vitro incubations are typically performed for a maximum of 1 hour with liver microsomes to 4 hours with suspended hepatocytes. Such incubations are insufficient to generate a robust metabolic response for compounds that are slowly metabolized. Thus, the challenge of accurately estimating low human clearance with confidence has emerged to be among the top challenges that drug metabolism scientists are confronted with today. In response, investigators have evaluated novel methodologies to extend incubation times and more sufficiently measure metabolism of low-turnover drugs. These methods include plated human hepatocytes in monoculture, and a novel in vitro methodology using a relay of sequential incubations with suspended cryopreserved hepatocytes. In addition, more complex in vitro cellular models, such as HepatoPac (Hepregen, Medford, MA), a micropatterned hepatocyte-fibroblast coculture system, and the HµREL (Beverley Hills, CA) hepatic coculture system, have been developed and characterized that demonstrate prolonged enzyme activity. In this review, the advantages and disadvantages of each of these in vitro methodologies as it relates to the prediction of clearance and metabolite identification will be described in an effort to provide drug metabolism scientists with the most up-to-date experimental options for dealing with the complex issue of low-turnover drug candidates. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Computational selection of antibody-drug conjugate targets for breast cancer

    PubMed Central

    Fauteux, François; Hill, Jennifer J.; Jaramillo, Maria L.; Pan, Youlian; Phan, Sieu; Famili, Fazel; O'Connor-McCourt, Maureen

    2016-01-01

    The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain. Breast cancer samples were classified into molecular subtypes using an iterative ensemble approach combining six classification algorithms and three feature selection techniques, including a novel kernel density-based method. This feature selection method was used in conjunction with differential expression and subcellular localization information to assemble a primary list of targets. A total of 50 cell membrane targets were identified, including one target for which an antibody-drug conjugate is in clinical use, and six targets for which antibody-drug conjugates are in clinical trials for the treatment of breast cancer and other solid tumors. In addition, 50 extracellular proteins were identified as potential targets for non-internalizing strategies and alternative modalities. Candidate targets linked with the epithelial-to-mesenchymal transition were identified by analyzing differential gene expression in epithelial and mesenchymal tumor-derived cell lines. Overall, these results show that mining human gene expression data has the power to select and prioritize breast cancer antibody-drug conjugate targets, and the potential to lead to new and more effective cancer therapeutics. PMID:26700623

  4. Computerized Working-Memory Training as a Candidate Adjunctive Treatment for Addiction

    PubMed Central

    Bickel, Warren K.; Moody, Lara; Quisenberry, Amanda

    2014-01-01

    Alcohol and other drug dependencies are, in part, characterized by deficits in executive functioning, including working memory. Working-memory training is a candidate computerized adjunctive intervention for the treatment of alcoholism and other drug dependencies. This article reviews emerging evidence for computerized working memory training as an efficacious adjunctive treatment for drug dependence and highlights future challenges and opportunities in the field of working-memory training, including duration of training needed, persistence of improvements and utility of booster sessions, and selection of patients based on degree of deficits. PMID:26259006

  5. Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry

    PubMed Central

    Pick, Neora; Cameron, Scott; Arad, Dorit

    2004-01-01

    The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI) exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death. PMID:15472722

  6. Developing therapeutic microRNAs for cancer

    PubMed Central

    Bader, AG; Brown, D; Stoudemire, J; Lammers, P

    2014-01-01

    Despite substantial progress in understanding the cancer-signaling network, effective therapies remain scarce due to insufficient disruption of oncogenic pathways, drug resistance and drug-induced toxicity. This complexity of cancer defines an urgent goal for researchers and clinicians to develop novel therapeutic strategies. The discovery of microRNAs (miRNAs) provides new hope for accomplishing this task. Supported by solid evidence for a critical role in cancer and bolstered by a unique mechanism of action, miRNAs are likely to yield a new class of targeted therapeutics. In contrast to current cancer medicines, miRNA-based therapies function by subtle repression of gene expression on a yet large number of oncogenic factors and are, therefore, anticipated to be highly efficacious. After the completion of target validation for several candidates, the development of therapeutic miRNAs is now moving to a new stage that involves pharmacological drug delivery, preclinical toxicology and regulatory guidelines. PMID:21633392

  7. Comparative Genome Analysis of Ciprofloxacin-Resistant Pseudomonas aeruginosa Reveals Genes Within Newly Identified High Variability Regions Associated With Drug Resistance Development

    PubMed Central

    Su, Hsun-Cheng; Khatun, Jainab; Kanavy, Dona M.

    2013-01-01

    The alarming rise of ciprofloxacin-resistant Pseudomonas aeruginosa has been reported in several clinical studies. Though the mutation of resistance genes and their role in drug resistance has been researched, the process by which the bacterium acquires high-level resistance is still not well understood. How does the genomic evolution of P. aeruginosa affect resistance development? Could the exposure of antibiotics to the bacteria enrich genomic variants that lead to the development of resistance, and if so, how are these variants distributed through the genome? To answer these questions, we performed 454 pyrosequencing and a whole genome analysis both before and after exposure to ciprofloxacin. The comparative sequence data revealed 93 unique resistance strain variation sites, which included a mutation in the DNA gyrase subunit A gene. We generated variation-distribution maps comparing the wild and resistant types, and isolated 19 candidates from three discrete resistance-associated high variability regions that had available transposon mutants, to perform a ciprofloxacin exposure assay. Of these region candidates with transposon disruptions, 79% (15/19) showed a reduction in the ability to gain high-level resistance, suggesting that genes within these high variability regions might enrich for certain functions associated with resistance development. PMID:23808957

  8. Discovery and Development of ATP-Competitive mTOR Inhibitors Using Computational Approaches.

    PubMed

    Luo, Yao; Wang, Ling

    2017-11-16

    The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. This protein is an attractive target for new anticancer drug development. Significant progress has been made in hit discovery, lead optimization, drug candidate development and determination of the three-dimensional (3D) structure of mTOR. Computational methods have been applied to accelerate the discovery and development of mTOR inhibitors helping to model the structure of mTOR, screen compound databases, uncover structure-activity relationship (SAR) and optimize the hits, mine the privileged fragments and design focused libraries. Besides, computational approaches were also applied to study protein-ligand interactions mechanisms and in natural product-driven drug discovery. Herein, we survey the most recent progress on the application of computational approaches to advance the discovery and development of compounds targeting mTOR. Future directions in the discovery of new mTOR inhibitors using computational methods are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  10. Renal Safety Pharmacology in Drug Discovery and Development.

    PubMed

    Benjamin, Amanda; Nogueira da Costa, Andre; Delaunois, Annie; Rosseels, Marie-Luce; Valentin, Jean-Pierre

    2015-01-01

    The kidney is a complex excretory organ playing a crucial role in various physiological processes such as fluid and electrolyte balance, control of blood pressure, removal of waste products, and drug disposition. Drug-induced kidney injury (DIKI) remains a significant cause of candidate drug attrition during drug development. However, the incidence of renal toxicities in preclinical studies is low, and the mechanisms by which drugs induce kidney injury are still poorly understood. Although some in vitro investigational tools have been developed, the in vivo assessment of renal function remains the most widely used methodology to identify DIKI. Stand-alone safety pharmacology studies usually include assessment of glomerular and hemodynamic function, coupled with urine and plasma analyses. However, as renal function is not part of the ICH S7A core battery, such studies are not routinely conducted by pharmaceutical companies. The most common approach consists in integrating renal/urinary measurements in repeat-dose toxicity studies. In addition to the standard analyses and histopathological examination of kidneys, novel promising urinary biomarkers have emerged over the last decade, offering greater sensitivity and specificity than traditional renal parameters. Seven of these biomarkers have been qualified by regulatory agencies for use in rat toxicity studies.

  11. Human IgG subclass cross-species reactivity to mouse and cynomolgus monkey Fcγ receptors.

    PubMed

    Derebe, Mehabaw G; Nanjunda, Rupesh K; Gilliland, Gary L; Lacy, Eilyn R; Chiu, Mark L

    2018-05-01

    In therapeutic antibody discovery and early development, mice and cynomolgus monkey are used as animal models to assess toxicity, efficacy and other properties of candidate molecules. As more candidate antibodies are based on human immunoglobulin (IgG) subclasses, many strategies are pursued to simulate the human system in the test animal. However, translation rate from a successful preclinical trial to an approved drug is extremely low. This may partly be due to differences in interaction of human IgG based candidate molecules to endogenous Fcγ receptors of model animals in comparison to those of human Fcγ receptors. In this study, we compare binding characteristics of human IgG subclasses commonly used in drug development (IgG1, IgG2, IgG4) and their respective Fc silent versions (IgG1σ, IgG2σ, IgG4 PAA) to human, mouse, and cynomolgus monkey Fcγ receptors. To control interactions between Fab and Fc domains, the test IgGs all have the same variable region sequences. We found distinct variations of interaction of human IgG subclasses to model animal Fcγ receptors in comparison to their human counterparts. Particularly, cynomolgus monkey Fcγ receptors showed consistently tighter binding to human IgGs than human Fcγ receptors. Moreover, the presumably Fc silent human IgG4 PAA framework bound to cynomolgus monkey FcγRI with nanomolar affinity while only very weak binding was observed for the human FcγRI. Our results highlighted the need for a thorough in vitro affinity characterization of candidate IgGs against model animal Fcγ receptors and careful design of preclinical studies. Copyright © 2018. Published by Elsevier B.V.

  12. Novel strategies for microdose studies using non-radiolabeled compounds.

    PubMed

    Maeda, Kazuya; Sugiyama, Yuichi

    2011-06-19

    Microdose studies using non-radiolabeled compounds enable assessment of the clinical pharmacokinetics of drug candidates in humans without the need to synthesize radiolabeled compounds. We have demonstrated that the quantification limits of many drugs measured by LC-MS/MS are low enough to allow estimation of their pharmacokinetic parameters following administration of a microdose. Our previous microdose studies with LC-MS/MS demonstrated the linear pharmacokinetics of fexofenadine between microdoses and therapeutic doses. We also obtained time profiles of plasma concentrations of nicardipine and its multiple metabolites following administration of a microdose. A significant advantage of using non-radiolabeled compounds is the ability to perform cassette microdose studies. By administering multiple drug candidates to the same subject, we can select compounds with appropriate pharmacokinetic properties simultaneously. We can also clarify major factors dominating the pharmacokinetics of drug candidates by cocktail microdosing of the test compounds and probe substrates with or without specific inhibitors for enzymes/transporters. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    PubMed Central

    Shrivastav, Anupama; Kim, Hae-Yeong; Kim, Young-Rok

    2013-01-01

    Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system. PMID:23984383

  14. An insight into the exploration of druggable genome of Streptococcus gordonii for the identification of novel therapeutic candidates.

    PubMed

    Azam, Syed Sikander; Shamim, Amen

    2014-09-01

    The discovery of novel drug targets of a genome that can bind with high affinity to drug-like compounds is a significant challenge in drug development. Streptococcus gordonii initiates dental plaque formation and endocarditis by entering into the blood stream, usually after oral trauma. The prolonged use of antibiotics is raising a problem of multi-drug resistance and lack of an optimal therapeutic regime that necessitates the drug discovery of vital importance in curing various infections. To overcome this dilemma, the in silico approach paves the way for identification and qualitative characterization of promising drug targets for S. gordonii that encompass three phases of analyses. The present study deciphers drug target genomes of S. gordonii in which 93 proteins were identified as potential drug targets and 16 proteins were found to be involved in unique metabolic pathways. Highlighted information will convincingly render to facilitate selection of S. gordonii proteins for successful entry into drug design pipelines. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A new descriptor via bio-mimetic chromatography and modeling for the blood brain barrier (Part II).

    PubMed

    Kouskoura, Maria G; Piteni, Aikaterini I; Markopoulou, Catherine K

    2018-05-25

    Within the context of drug design methodology for the central nervous system (CNS), a predictive model which can shorten the process of finding new candidate drugs was developed. Therefore, the retention time of 51 molecules which are clinically established to enter the blood brain barrier (BBB), were recorded on two HPLC columns. For this purpose, a lipophilic butyl (C 4 ) stationary phase was used to simulate the behavior of a drug regarding BBB permeability and a zwitterionic-HILIC to simulate blood. The results were plotted as Y variables on two Partial Least Squares (PLS) models, while 25 specific physicochemical properties (significant for lipid bilayers BBB permeation or blood) were used as X descriptors. Both models can be utilized to predict the drugability of a new molecule avoiding needless animal experiments, as well as time and material consuming syntheses. The developed models were validated (R 2  ≥ 0.90, Q 2  ≥ 0.83), and based on the results specific variables were proved to be significant for the studied phenomenon. Additionally, a new factor symbolized as MT was introduced. MT incorporated the experimental results and it was calculated by the fraction of the sum of the retention time of the drug on the two columns (t r(butyl)  + t r(HILIC) ) divided by the molecular volume (V m ) of each analyte. This new descriptor was used as an equivalent to the logarithm of BBB permeability (logBB) and may indicate the ability of a new molecule to act as a candidate drug able to enter the BBB. Comprehending the extend of contribution of several molecular attributes to the in vivo distribution of a drug may enlighten the knowledge on pharmacokinetics and clinical variation, and enable scientists to design more efficient drug molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.

    PubMed

    Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto

    2012-11-21

    This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

  17. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data

    PubMed Central

    2012-01-01

    Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000

  18. Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer's Disease

    PubMed Central

    Guzior, Natalia; ckowska,, Anna Wię; Panek, Dawid; Malawska, Barbara

    2015-01-01

    Alzheimer’s disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β anti-aggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NO-releasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD. PMID:25386820

  19. Proteomic Candidate Biomarkers of Drug-Induced Nephrotoxicity in the Rat

    PubMed Central

    Rouse, Rodney; Siwy, Justyna; Mullen, William; Mischak, Harald; Metzger, Jochen; Hanig, Joseph

    2012-01-01

    Improved biomarkers of acute nephrotoxicity are coveted by the drug development industry, regulatory agencies, and clinicians. In an effort to identify such biomarkers, urinary peptide profiles of rats treated with two different nephrotoxins were investigated. 493 marker candidates were defined that showed a significant response to cis-platin comparing a cis-platin treated cohort to controls. Next, urine samples from rats that received three consecutive daily doses of 150 or 300 mg/kg gentamicin were examined. 557 potential biomarkers were initially identified; 108 of these gentamicin-response markers showed a clear temporal response to treatment. 39 of the cisplatin-response markers also displayed a clear response to gentamicin. Of the combined 147 peptides, 101 were similarly regulated by gentamicin or cis-platin and 54 could be identified by tandem mass spectrometry. Most were collagen type I and type III fragments up-regulated in response to gentamicin treatment. Based on these peptides, classification models were generated and validated in a longitudinal study. In agreement with histopathology, the observed changes in classification scores were transient, initiated after the first dose, and generally persistent over a period of 10–20 days before returning to control levels. The data support the hypothesis that gentamicin-induced renal toxicity up-regulates protease activity, resulting in an increase in several specific urinary collagen fragments. Urinary proteomic biomarkers identified here, especially those common to both nephrotoxins, may serve as a valuable tool to investigate potential new drug candidates for the risk of nephrotoxicity. PMID:22509332

  20. Searching for new leads to treat epilepsy. Target-based virtual screening for the discovery of anticonvulsant agents.

    PubMed

    Palestro, Pablo; Enrique, Nicolas; Goicoechea, Sofia; Villalba, María Luisa; Sabatier, Laureano Leonel; Martin, Pedro; Milesi, Veronica; Bruno-Blanch, Luis E; Gavernet, Luciana

    2018-06-05

    The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed and open conformations. After the virtual screening, the resulting candidates were submitted to a second virtual filter, to find compounds with better chances of being effective for the treatment of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure of human P-gp and we validated the docking methodology selected to propose the best candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and in vivo by MES-test. Patch clamp studies allowed us to corroborate that our candidates, drugs used for the treatment of other pathologies like Ciprofloxacin, Losartan and Valsartan, exhibit inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, N,N´-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel inhibitory action. Finally, in-vivo studies confirmed the anticonvulsant action of Valsartan, Ciprofloxacin and N.N´-diphenethylsulfamide.

  1. Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies.

    PubMed

    Fraser, Keith; Bruckner, Dylan M; Dordick, Jonathan S

    2018-06-18

    Adverse drug reactions, particularly those that result in drug-induced liver injury (DILI), are a major cause of drug failure in clinical trials and drug withdrawals. Hepatotoxicity-mediated drug attrition occurs despite substantial investments of time and money in developing cellular assays, animal models, and computational models to predict its occurrence in humans. Underperformance in predicting hepatotoxicity associated with drugs and drug candidates has been attributed to existing gaps in our understanding of the mechanisms involved in driving hepatic injury after these compounds perfuse and are metabolized by the liver. Herein we assess in vitro, in vivo (animal), and in silico strategies used to develop predictive DILI models. We address the effectiveness of several two- and three-dimensional in vitro cellular methods that are frequently employed in hepatotoxicity screens and how they can be used to predict DILI in humans. We also explore how humanized animal models can recapitulate human drug metabolic profiles and associated liver injury. Finally, we highlight the maturation of computational methods for predicting hepatotoxicity, the untapped potential of artificial intelligence for improving in silico DILI screens, and how knowledge acquired from these predictions can shape the refinement of experimental methods.

  2. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    PubMed

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-11-01

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Screening approach for identifying candidate drugs and drug-drug interactions related to hip fracture risk in persons with Alzheimer disease.

    PubMed

    Tolppanen, Anna-Maija; Taipale, Heidi; Koponen, Marjaana; Tanskanen, Antti; Lavikainen, Piia; Paananen, Jussi; Tiihonen, Jari; Hartikainen, Sirpa

    2017-08-01

    To assess whether a "drugome-wide" screen with case-crossover design is a feasible approach for identifying candidate drugs and drug-drug interactions. All community-dwelling residents of Finland who received a clinically verified Alzheimer disease diagnosis in 2005 to 2011 and experienced incident hip fracture (HF) afterwards (N = 4851). Three scenarios were used to test the sensitivity of this approach (1) hazard period 0 to 30 and control period 31 to 61 days before HF, (2) hazard period 0 to 30 and control period 336 to 366 days before HF, and (3) hazard period 0 to 14 and control period 16 to 30 days before HF. Nine, 44, and 5 drugs were associated with increased HF risk and 8, 23, and 4 with decreased risk in scenarios 1, 2, and 3, respectively. Six drugs were identified with scenario 1 only and 54 and 1 with scenarios 2 and 3, respectively. Only six drugs (metoprolol, simvastatin, trimethoprim, codeine combinations, fentanyl, and paracetamol) were associated with HF in all scenarios, four with 1 and 2 (cefalexin, buprenorphine, olanzapine, and memantine), and one with 1 and 3 (enalapril) or 2 and 3 (ciprofloxacin). The direction of associations was the same in all/both scenarios. The interaction results were equally versatile, with hydroxocobalamin*oxazepam being the only interaction observed in all scenarios. Case-crossover analysis is a potential approach for identifying candidate drugs and drug-drug interactions associated with adverse events as it implicitly controls for fixed confounders. The results are highly dependent on applied hazard and control periods, but the choice of periods can help in targeting the analyses to different phases of drug use. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates.

    PubMed

    Sirvent, Juan Alberto; Lücking, Ulrich

    2017-04-06

    Sulfoximines have gained considerable recognition as an important structural motif in drug discovery of late. In particular, the clinical kinase inhibitors for the treatment of cancer, roniciclib (pan-CDK inhibitor), BAY 1143572 (P-TEFb inhibitor), and AZD 6738 (ATR inhibitor), have recently drawn considerable attention. Whilst the interest in this underrepresented functional group in drug discovery is clearly on the rise, there remains an incomplete understanding of the medicinal-chemistry-relevant properties of sulfoximines. Herein we report the synthesis and in vitro characterization of a variety of sulfoximine analogues of marketed drugs and advanced clinical candidates to gain a better understanding of this neglected functional group and its potential in drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Targeting Estrogen-Induced COX-2 Activity in Lymphangioleiomyomatosis (LAM)

    DTIC Science & Technology

    2013-10-01

    significant benefit in slowing LAM progression. The well-known side - effect and toxicity profile of these drugs make them attractive candidates for...well-known side - effect and toxicity profile of these drugs make them attractive candidates for long-term therapy in LAM patients. It is also possible...induced prostaglandin biosynthesis signature in TSC2- deficient cells in vitro and in vivo To examine the possible effects of estradiol on metabolic

  6. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    DTIC Science & Technology

    2013-10-01

    several candidate treatments for Fragile X Syndrome have gone to clinical trials. Though promising, no treatment has yet been approved. This sad ...Xenopus laevis tadpoles. J Comp Neurol 520, 401-433. Dong, W., Lee, R.H., Xu, H., Yang, S., Pratt, K.G., Cao, V., Song , Y.K., Nurmikko, A., and

  7. The Curious Case of the OZ439 Mesylate Salt: An Amphiphilic Antimalarial Drug with Diverse Solution and Solid State Structures.

    PubMed

    Clulow, Andrew J; Salim, Malinda; Hawley, Adrian; Gilbert, Elliot P; Boyd, Ben J

    2018-05-07

    Efforts to develop orally administered drugs tend to place an exceptional focus on aqueous solubility as this is an essential criterion for their absorption in the gastrointestinal tract. In this work we examine the solid state behavior and solubility of OZ439, a promising single-dose cure for malaria being developed as the highly water-soluble mesylate salt. The aqueous phase behavior of the OZ439 mesylate salt was determined using a combination of small angle neutron and X-ray scattering (SANS and SAXS, respectively). It was found that this salt has low solubility at low concentrations with the drug largely precipitated in free base aggregates. However, with increasing concentration these crystalline aggregates were observed to dissociate into cationic micelles and lamellar phases, effectively increasing the dissolved drug concentration. It was also found that the dissolved OZ439 spontaneously precipitated in the presence of biologically relevant anions, which we attribute to the high lattice energies of most of the salt forms of the drug. These findings show that aqueous solubility is not always what it seems in the context of amphiphilic drug molecules and highlights that its use as the principal metric in selecting drug candidates for development can be perilous.

  8. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  9. ALS Biomarkers for Therapy Development: State of the Field & Future Directions

    PubMed Central

    Benatar, Michael; Boylan, Kevin; Jeromin, Andreas; Rutkove, Seward B.; Berry, James; Atassi, Nazem; Bruijn, Lucie

    2015-01-01

    Biomarkers have become the focus of intense research in the field of amyotrophic lateral sclerosis (ALS), with the hope that they might aid therapy development efforts. Notwithstanding the discovery of many candidate biomarkers, none have yet emerged as validated tools for drug development. In this review we present a nuanced view of biomarkers based on the perspective of the FDA; highlight the distinction between discovery and validation; describe existing and emerging resources; review leading biological fluid-based, electrophysiological and neuroimaging candidates relevant to therapy development efforts; discuss lessons learned from biomarker initiatives in related neurodegenerative diseases; and outline specific steps that we, as a field, might take in order to hasten the development and validation of biomarkers that will prove useful in enhancing efforts to develop effective treatments for ALS patients. Most important among these perhaps is the proposal to establish a federated ALS Biomarker Consortium (ABC) in which all interested and willing stakeholders may participate with equal opportunity to contribute to the broader mission of biomarker development and validation. PMID:26574709

  10. Preclinical Studies Evaluating Subacute Toxicity and Therapeutic Efficacy of LQB-118 in Experimental Visceral Leishmaniasis

    PubMed Central

    Cunha-Júnior, Edézio Ferreira; Martins, Thiago Martino; Canto-Cavalheiro, Marilene Marcuzzo; Marques, Paulo Roberto; Portari, Elyzabeth Avvad; Coelho, Marsen Garcia Pinto; Netto, Chaquip Daher; Costa, Paulo Roberto Ribeiro; Sabino, Katia Costa de Carvalho

    2016-01-01

    Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and is the second major cause of death by parasites, after malaria. The arsenal of drugs against leishmaniasis is small, and each has a disadvantage in terms of toxicity, efficacy, price, or treatment regimen. Our group has focused on studying new drug candidates as alternatives to current treatments. The pterocarpanquinone LQB-118 was designed and synthesized based on molecular hybridization, and it exhibited antiprotozoal and anti-leukemic cell line activities. Our previous work demonstrated that LQB-118 was an effective treatment for experimental cutaneous leishmaniasis. In this study, we observed that treatment with 10 mg/kg of body weight/day LQB-118 orally inhibited the development of hepatosplenomegaly with a 99% reduction in parasite load. An in vivo toxicological analysis showed no change in the clinical, biochemical, or hematological parameters. Histologically, all of the analyzed organs were normal, with the exception of the liver, where focal points of necrosis with leukocytic infiltration were observed at treatment doses 5 times higher than the therapeutic dose; however, these changes were not accompanied by an increase in transaminases. Our findings indicate that LQB-118 is effective at treating different clinical forms of leishmaniasis and presents no relevant signs of toxicity at therapeutic doses; thus, this framework is demonstrated suitable for developing promising drug candidates for the oral treatment of leishmaniasis. PMID:27067332

  11. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review

    PubMed Central

    Csermely, Peter; Korcsmáros, Tamás; Kiss, Huba J.M.; London, Gábor; Nussinov, Ruth

    2013-01-01

    Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only gives a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The “central hit strategy” selectively targets central node/edges of the flexible networks of infectious agents or cancer cells to kill them. The “network influence strategy” works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach. PMID:23384594

  12. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.

    PubMed

    Vargas, D M; De Bastiani, M A; Zimmer, E R; Klamt, F

    2018-06-23

    Alzheimer's disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD.

  13. The teaching of drug development to medical students: collaboration between the pharmaceutical industry and medical school

    PubMed Central

    Stanley, A G; Jackson, D; Barnett, D B

    2005-01-01

    Collaboration between the medical school at Leicester and a local pharmaceutical company, AstraZeneca, led to the design and implementation of an optional third year special science skills module teaching medical students about drug discovery and development. The module includes didactic teaching about the complexities of the drug discovery process leading to development of candidate drugs for clinical investigation as well as practical experience of the processes involved in drug evaluation preclinically and clinically. It highlights the major ethical and regulatory issues concerned with the production and testing of novel therapies in industry and the NHS. In addition it helps to reinforce other areas of the medical school curriculum, particularly the understanding of clinical study design and critical appraisal. The module is assessed on the basis of a written dissertation and the critical appraisal of a drug advertisement. This paper describes the objectives of the module and its content. In addition we outline the results of an initial student evaluation of the module and an assessment of its impact on student knowledge and the opinion of the pharmaceutical industry partner. This module has proven to be popular with medical students, who acquire a greater understanding of the work required for drug development and therefore reflect more favourably on the role of pharmaceutical companies in the UK. PMID:15801942

  14. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial.

    PubMed

    Kikuchi, Haruhisa; Horoiwa, Seiko; Kasahara, Ryota; Hariguchi, Norimitsu; Matsumoto, Makoto; Oshima, Yoshiteru

    2014-04-09

    Febrifugine, a quinazoline alkaloid isolated from Dichroa febrifuga roots, shows powerful antimalarial activity against Plasmodium falciparum. Although the use of ferifugine as an antimalarial drug has been precluded because of its severe side effects, its potent antimalarial activity has stimulated medicinal chemists to pursue its derivatives instead, which may provide valuable leads for novel antimalarial drugs. In the present study, we synthesized new derivatives of febrifugine and evaluated their in vitro and in vivo antimalarial activities to develop antimalarials that are more effective and safer. As a result, we proposed tetrahydroquinazoline-type derivative as a safe and effective antimalarial candidate. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Establishment of a Comprehensive List of Candidate Antiaging Medicinal Herb Used in Korean Medicine by Text Mining of the Classical Korean Medical Literature, “Dongeuibogam,” and Preliminary Evaluation of the Antiaging Effects of These Herbs

    PubMed Central

    Choi, Moo Jin; Choi, Byung Tae; Shin, Hwa Kyoung; Shin, Byung Cheul; Han, Yoo Kyoung; Baek, Jin Ung

    2015-01-01

    The major objectives of this study were to provide a list of candidate antiaging medicinal herbs that have been widely utilized in Korean medicine and to organize preliminary data for the benefit of experimental and clinical researchers to develop new drug therapies by analyzing previous studies. “Dongeuibogam,” a representative source of the Korean medicine literature, was selected to investigate candidate antiaging medicinal herbs and to identify appropriate terms that describe the specific antiaging effects that these herbs are predicted to elicit. In addition, we aimed to review previous studies that referenced the selected candidate antiaging medicinal herbs. From our chosen source, “Dongeuibogam,” we were able to screen 102 terms describing antiaging effects, which were further classified into 11 subtypes. Ninety-seven candidate antiaging medicinal herbs were selected using the criterion that their antiaging effects were described using the same terms as those employed in “Dongeuibogam.” These candidates were classified into 11 subtypes. Of the 97 candidate antiaging medicinal herbs selected, 47 are widely used by Korean medical doctors in Korea and were selected for further analysis of their antiaging effects. Overall, we found an average of 7.7 previous studies per candidate herb that described their antiaging effects. PMID:25861371

  16. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-05-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  17. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-04-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  18. Relating Human Genetic Variation to Variation in Drug Responses

    PubMed Central

    Madian, Ashraf G.; Wheeler, Heather E.; Jones, Richard Baker; Dolan, M. Eileen

    2012-01-01

    Although sequencing a single human genome was a monumental effort a decade ago, more than one thousand genomes have now been sequenced. The task ahead lies in transforming this information into personalized treatment strategies that are tailored to the unique genetics of each individual. One important aspect of personalized medicine is patient-to-patient variation in drug response. Pharmacogenomics addresses this issue by seeking to identify genetic contributors to human variation in drug efficacy and toxicity. Here, we present a summary of the current status of this field, which has evolved from studies of single candidate genes to comprehensive genome-wide analyses. Additionally, we discuss the major challenges in translating this knowledge into a systems-level understanding of drug physiology with the ultimate goal of developing more effective personalized clinical treatment strategies. PMID:22840197

  19. Combination of human acetylcholinesterase and serum albumin sensing surfaces as highly informative analytical tool for inhibitor screening.

    PubMed

    Fabini, Edoardo; Tramarin, Anna; Bartolini, Manuela

    2018-06-05

    In the continuous research for potential drug lead candidates, the availability of highly informative screening methodologies may constitute a decisive element in the selection of best-in-class compounds. In the present study, a surface plasmon resonance (SPR)-based assay was developed and employed to investigate interactions between human recombinant AChE (hAChE) and four known ligands: galantamine, tacrine, donepezil and edrophonium. To this aim, a sensor chip was functionalized with hAChE using mild immobilization conditions to best preserve enzyme integrity. Binding affinities and, for the first time, kinetic rate constants for all drug-hAChE complexes formation/disruption were determined. Inhibitors were classified in two groups: slow-reversible and fast-reversible binders according to respective target residence time. Combining data obtained on drug-target residence time with data obtained on serum albumin binding levels, a good correlation with potency, plasma protein binding in vivo, and administration regimen was found. The outcomes of this work demonstrated that the developed SPR-based assay is suitable for the screening, the binding affinity ranking and the kinetic evaluation of hAChE inhibitors. The method proposed ensures a simpler and cost-effective assay to quantify kinetic rate constants for inhibitor-hAChE interaction as compared with other proposed and published methods. Eventually, the determination of residence time in combination with preliminary ADME studies might constitute a better tool to predict in vivo behaviour, a key information for the research of new potential drug candidates. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Controlled Human Malaria Infection: Applications, Advances, and Challenges.

    PubMed

    Stanisic, Danielle I; McCarthy, James S; Good, Michael F

    2018-01-01

    Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax -specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration. Copyright © 2017 American Society for Microbiology.

  1. A computational method for drug repositioning using publicly available gene expression data.

    PubMed

    Shabana, K M; Abdul Nazeer, K A; Pradhan, Meeta; Palakal, Mathew

    2015-01-01

    The identification of new therapeutic uses of existing drugs, or drug repositioning, offers the possibility of faster drug development, reduced risk, lesser cost and shorter paths to approval. The advent of high throughput microarray technology has enabled comprehensive monitoring of transcriptional response associated with various disease states and drug treatments. This data can be used to characterize disease and drug effects and thereby give a measure of the association between a given drug and a disease. Several computational methods have been proposed in the literature that make use of publicly available transcriptional data to reposition drugs against diseases. In this work, we carry out a data mining process using publicly available gene expression data sets associated with a few diseases and drugs, to identify the existing drugs that can be used to treat genes causing lung cancer and breast cancer. Three strong candidates for repurposing have been identified- Letrozole and GDC-0941 against lung cancer, and Ribavirin against breast cancer. Letrozole and GDC-0941 are drugs currently used in breast cancer treatment and Ribavirin is used in the treatment of Hepatitis C.

  2. Strategies and Challenges in Clinical Trials Targeting Human Aging

    PubMed Central

    Newman, John C.; Milman, Sofiya; Hashmi, Shahrukh K.; Austad, Steve N.; Kirkland, James L.; Halter, Jeffrey B.

    2016-01-01

    Interventions that target fundamental aging processes have the potential to transform human health and health care. A variety of candidate drugs have emerged from basic and translational research that may target aging processes. Some of these drugs are already in clinical use for other purposes, such as metformin and rapamycin. However, designing clinical trials to test interventions that target the aging process poses a unique set of challenges. This paper summarizes the outcomes of an international meeting co-ordinated by the NIH-funded Geroscience Network to further the goal of developing a translational pipeline to move candidate compounds through clinical trials and ultimately into use. We review the evidence that some drugs already in clinical use may target fundamental aging processes. We discuss the design principles of clinical trials to test such interventions in humans, including study populations, interventions, and outcomes. As examples, we offer several scenarios for potential clinical trials centered on the concepts of health span (delayed multimorbidity and functional decline) and resilience (response to or recovery from an acute health stress). Finally, we describe how this discussion helped inform the design of the proposed Targeting Aging with Metformin study. PMID:27535968

  3. "Inject-mix-react-separate-and-quantitate" (IMReSQ) method for screening enzyme inhibitors.

    PubMed

    Wong, Edmund; Okhonin, Victor; Berezovski, Maxim V; Nozaki, Tomoyoshi; Waldmann, Herbert; Alexandrov, Kirill; Krylov, Sergey N

    2008-09-10

    Many regulatory enzymes are considered attractive therapeutic targets, and their inhibitors are potential drug candidates. Screening combinatorial libraries for enzyme inhibitors is pivotal to identifying hit compounds for the development of drugs targeting regulatory enzymes. Here, we introduce the first inhibitor screening method that consumes only nanoliters of the reactant solutions and is applicable to regulatory enzymes. The method is termed inject-mix-react-separate-and-quantitate (IMReSQ) and includes five steps. First, nanoliter volumes of substrate, candidate inhibitor, and enzyme solutions are injected by pressure into a capillary as separate plugs. Second, the plugs are mixed inside this capillary microreactor by transverse diffusion of laminar flow profiles. Third, the reaction mixture is incubated to form the enzymatic product. Fourth, the product is separated from the substrate inside the capillary by electrophoresis. Fifth, the amounts of the product and substrate are quantitated. In this proof-of-principle work, we applied IMReSQ to study inhibition of recently cloned protein farnesyltransferase from parasite Entamoeba histolytica. This enzyme is a potential therapeutic target for antiparasitic drugs. We identified three previously unknown inhibitors of this enzyme and proved that IMReSQ could be used for quantitatively ranking the potencies of inhibitors.

  4. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    PubMed

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected p<0.05), highly ranked gene-sets reaching suggestive significance including the dopamine receptor antagonists metoclopramide and trifluoperazine and the tyrosine kinase inhibitor neratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  5. Current toxicological aspects on drug and chemical transport and metabolism across the human placental barrier.

    PubMed

    Giaginis, Constantinos; Theocharis, Stamatios; Tsantili-Kakoulidou, Anna

    2012-10-01

    Placenta plays an obligatory role in fetal growth and development by performing a multitude of functions, including embryo implantation, transport of nutrients and elimination of metabolic waste products and endocrine activity. Drugs and chemicals can transfer across the placental barrier from mother to fetus either by passive diffusion mechanisms and/or via a network of active transporters, which may lead to potential fetotoxicity effects. Placenta also expresses a wide variety of enzymes, being capable of metabolizing a large diversity of drugs and chemicals to metabolites of lower or even higher toxicity than parent compounds. The present review aims to summarize the current toxicological aspects in the emerging topic of drug transport and metabolism across the human placental barrier. There is an emerging demand for accurate assessment of drug transport and metabolism across the human placental barrier, on the basis of a high throughput screening process in the early stages of drug design, to avoid drug candidates from potential fetotoxicity effects. In this aspect, combined studies, which take into account in vivo and in vitro investigations, as well as the ex vivo perfusion method and the recently developed computer-aided technologies, may significantly contribute to this direction.

  6. Fluorescence anisotropy (polarization): from drug screening to precision medicine

    PubMed Central

    Zhang, Hairong; Wu, Qian; Berezin, Mikhail Y.

    2016-01-01

    Introduction Fluorescence anisotropy (FA) is one of the major established methods accepted by industry and regulatory agencies for understanding the mechanisms of drug action and selecting drug candidates utilizing a high-throughput format. Areas covered This review covers the basics of FA and complementary methods, such as fluorescence lifetime anisotropy and their roles in the drug discovery process. The authors highlight the factors affecting FA readouts, fluorophore selection, and instrumentation. Furthermore, the authors describe the recent development of a successful, commercially valuable FA assay for Long QT syndrome drug toxicity to illustrate the role that FA can play in the early stages of drug discovery. Expert opinion Despite the success in drug discovery, the FA-based technique experiences competitive pressure from other homogeneous assays. That being said, FA is an established yet rapidly developing technique, recognized by academic institutions, the pharmaceutical industry, and regulatory agencies across the globe. The technical problems encountered in working with small molecules in homogeneous assays are largely solved, and new challenges come from more complex biological molecules and nanoparticles. With that, FA will remain one of the major work-horse techniques leading to precision (personalized) medicine. PMID:26289575

  7. [International Partnership for Therapeutic Drug Development of NTDs by DNDi].

    PubMed

    Yamada, Haruki; Hirabayashi, Fumiko; Brünger, Chris

    2016-01-01

    The Drugs for Neglected Diseases initiative (DNDi), with headquarters in Geneva, is a non-profit drug research and development (R&D) organization and Product Development Partnership (PDP) which was established in 2003 by 7 founding organizations such as Médecins Sans Frontières (MSF), the Pasteur Institute, The Specific Programme for Research and Training in Tropical Diseases (WHO-TDR), etc. DNDi has worked mainly on the development of new treatments for neglected tropical diseases (NTDs), which is difficult to achieve under market economy conditions. DNDi has promoted overall drug discovery research including the screening of drug candidates, hit to lead, lead optimization, pre-clinical and clinical studies in the area of infectious diseases with a focus on malaria, sleeping sickness (human African trypanosomiasis; HAT), Chagas disease, leishmaniasis, filarial diseases and pediatric formulations for HIV treatment. DNDi's achievements include the development of novel therapies based on patient needs through innovative partnerships with over 130 organizations in industry, government, academia, and public institutions around the world. To date, DNDi has registered 6 novel treatments adapted to the needs of patients in poor countries, and has another 12 novel entities in development. DNDi Japan is a Japanese non-profit organization (NPO) based on the global principles of DNDi and, as the only PDP in Japan, is supporting NTD drug discovery projects in collaboration with Japanese pharmaceutical companies, academic institutions and government agencies by utilizing Japan's excellent R&D capabilities to develop new treatments for NTDs in order to contribute to global health.

  8. Defining Desirable Central Nervous System Drug Space through the Alignment of Molecular Properties, in Vitro ADME, and Safety Attributes

    PubMed Central

    2010-01-01

    As part of our effort to increase survival of drug candidates and to move our medicinal chemistry design to higher probability space for success in the Neuroscience therapeutic area, we embarked on a detailed study of the property space for a collection of central nervous system (CNS) molecules. We carried out a thorough analysis of properties for 119 marketed CNS drugs and a set of 108 Pfizer CNS candidates. In particular, we focused on understanding the relationships between physicochemical properties, in vitro ADME (absorption, distribution, metabolism, and elimination) attributes, primary pharmacology binding efficiencies, and in vitro safety data for these two sets of compounds. This scholarship provides guidance for the design of CNS molecules in a property space with increased probability of success and may lead to the identification of druglike candidates with favorable safety profiles that can successfully test hypotheses in the clinic. PMID:22778836

  9. Drug Target Mining and Analysis of the Chinese Tree Shrew for Pharmacological Testing

    PubMed Central

    Liu, Jie; Lee, Wen-hui; Zhang, Yun

    2014-01-01

    The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research. PMID:25105297

  10. Ebola virus: A gap in drug design and discovery - experimental and computational perspective.

    PubMed

    Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S

    2017-03-01

    The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.

  11. eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs.

    PubMed

    Brylinski, Michal; Naderi, Misagh; Govindaraj, Rajiv Gandhi; Lemoine, Jeffrey

    2017-12-10

    About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/. Copyright © 2017. Published by Elsevier Ltd.

  12. A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine.

    PubMed

    Stern, Andrew M; Schurdak, Mark E; Bahar, Ivet; Berg, Jeremy M; Taylor, D Lansing

    2016-07-01

    Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, and iterative quantitative systems pharmacology (QSP)-driven drug discovery and development strategy and platform that we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing on the patient as the starting and the end point. © 2016 Society for Laboratory Automation and Screening.

  13. Deciphering the pharmacological mechanism of the Chinese formula Huanglian-Jie-Du decoction in the treatment of ischemic stroke using a systems biology-based strategy

    PubMed Central

    Zhang, Yan-qiong; Wang, Song-song; Zhu, Wei-liang; Ma, Yan; Zhang, Fang-bo; Liang, Ri-xin; Xu, Hai-yu; Yang, Hong-jun

    2015-01-01

    Aim: Huanglian-Jie-Du decoction (HLJDD) is an important multiherb remedy in TCM, which is recently demonstrated to be effective to treat ischemic stroke. Here, we aimed to investigate the pharmacological mechanisms of HLJDD in the treatment of ischemic stroke using systems biology approaches. Methods: Putative targets of HLJDD were predicted using MetaDrug. An interaction network of putative HLJDD targets and known therapeutic targets for the treatment of ischemic stroke was then constructed, and candidate HLJDD targets were identified by calculating topological features, including 'Degree', 'Node-betweenness', 'Closeness', and 'K-coreness'. The binding efficiencies of the candidate HLJDD targets with the corresponding compositive compounds were further validated by a molecular docking simulation. Results: A total of 809 putative targets were obtained for 168 compositive compounds in HLJDD. Additionally, 39 putative targets were common to all four herbs of HLJDD. Next, 49 major nodes were identified as candidate HLJDD targets due to their network topological importance. The enrichment analysis based on the Gene Ontology (GO) annotation system and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway demonstrated that candidate HLJDD targets were more frequently involved in G-protein-coupled receptor signaling pathways, neuroactive ligand-receptor interactions and gap junctions, which all played important roles in the progression of ischemic stroke. Finally, the molecular docking simulation showed that 170 pairs of chemical components and candidate HLJDD targets had strong binding efficiencies. Conclusion: This study has developed for the first time a comprehensive systems approach integrating drug target prediction, network analysis and molecular docking simulation to reveal the relationships between the herbs contained in HLJDD and their putative targets and ischemic stroke-related pathways. PMID:25937634

  14. Advances in development, scale-up and manufacturing of microbicide gels, films, and tablets.

    PubMed

    Garg, Sanjay; Goldman, David; Krumme, Markus; Rohan, Lisa C; Smoot, Stuart; Friend, David R

    2010-12-01

    Vaginal HIV microbicides are topical, self administered products designed to prevent or significantly reduce transmission of HIV infection in women. The earliest microbicide candidates developed have been formulated as coitally dependent (used around the time of sex) gels and creams. All microbicide candidates tested in Phase III clinical trials, so far, have been gel products with non-specific mechanisms of action. However, recently, research is focusing on compounds containing highly potent and specific anti-retrovirals. These specific anti-retrovirals are being formulated as primary dosage forms such as vaginal gels or in alternative dosage forms such as fast dissolve films and tablets. Recent innovations also include development of combination products of highly active antiviral drugs such as reverse transcriptase inhibitors and entry inhibitors, which would theoretically be more effective and would reduce the possibility of drug resistance. In this article, an overview of recent advances in the microbicide gel, film, and tablet formulations and issues pertaining to scale-up, formulation, and evaluation challenges and regulatory guidelines have been presented. This article forms part of a special supplement covering presentations on gels, tablets, and films from the symposium on "Recent Trends in Microbicide Formulations" held on 25 and 26 January 2010, Arlington, VA. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening

    PubMed Central

    Rijal, Girdhari; Li, Weimin

    2017-01-01

    Most of the anticancer drug candidates entering preclinical trials fail to be approved for clinical applications. The following are among the main causes of these failures: studying molecular mechanisms of cancer development, identifying therapeutic targets, and testing drug candidates using inappropriate tissue culture models, which do not recapitulate the native microenvironment where the cancer cells originate. It has become clear that three-dimensional (3D) cell cultures are more biologically and clinically relevant than 2D models. The spatial and mechanical conditions of 3D cultures enable the cancer cells to display heterogeneous growth, assume diverse phenotypes, express distinct gene and protein products, and attain metastatic potential and resistance to drugs that are reminiscent of tumors in humans. However, the current 3D culture systems using synthetic polymers or selected components of the extracellular matrix (ECM) are defective (particularly the biophysical and biochemical properties of the native ECM) and remain distant to optimally support the signaling cue–oriented cell survival and growth. We introduce a reconstitutable tissue matrix scaffold (TMS) system fabricated using native tissue ECM, with tissue-like architecture and resilience. The structural and compositional properties of TMS favor robust cell survival, proliferation, migration, and invasion in culture and vascularized tumor formation in animals. The combination of porous and hydrogel TMS allows compartmental culture of cancerous and stromal cells, which are distinguishable by biomarkers. The response of the cancer cells grown on TMS to drugs well reflects animal and clinical observations. TMS enables more biologically relevant studies and is suitable for preclinical drug screening. PMID:28924608

  16. Current Strategies for Inhibition of Chikungunya Infection.

    PubMed

    Subudhi, Bharat Bhusan; Chattopadhyay, Soma; Mishra, Priyadarsee; Kumar, Abhishek

    2018-05-03

    Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research.

  17. Current Strategies for Inhibition of Chikungunya Infection

    PubMed Central

    Subudhi, Bharat Bhusan; Chattopadhyay, Soma; Mishra, Priyadarsee

    2018-01-01

    Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research. PMID:29751486

  18. High throughput method to characterize acid-base properties of insoluble drug candidates in water.

    PubMed

    Benito, D E; Acquaviva, A; Castells, C B; Gagliardi, L G

    2018-05-30

    In drug design experimental characterization of acidic groups in candidate molecules is one of the more important steps prior to the in-vivo studies. Potentiometry combined with Yasuda-Shedlovsky extrapolation is one of the more important strategy to study drug candidates with low solubility in water, although, it requires a large number of sequences to determine pK a values at different solvent-mixture compositions to, finally, obtain the pK a in water (pwwK a ) by extrapolation. We have recently proposed a method which requires only two sequences of additions to study the effect of organic solvent content in liquid chromatography mobile phases on the acidity of the buffer compounds usually dissolved in it along wide ranges of compositions. In this work we propose to apply this method to study thermodynamic pwwK a of drug candidates with low solubilities in pure water. Using methanol/water solvent mixtures we study six pharmaceutical drugs at 25 °C. Four of them: ibuprofen, salicylic acid, atenolol and labetalol, were chosen as members of carboxylic, amine and phenol families, respectively. Since these compounds have known pwwK a values, they were used to validate the procedure, the accuracy of Yasuda-Shedlovsky and other empirical models to fit the behaviors, and to obtain pwwK a by extrapolation. Finally, the method is applied to determine unknown thermodynamic pwwK a values of two pharmaceutical drugs: atorvastatin calcium and the two dissociation constants of ethambutol. The procedure proved to be simple, very fast and accurate in all of the studied cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Targeting the human genome-microbiome axis for drug discovery: inspirations from global systems biology and traditional Chinese medicine.

    PubMed

    Zhao, Liping; Nicholson, Jeremy K; Lu, Aiping; Wang, Zhengtao; Tang, Huiru; Holmes, Elaine; Shen, Jian; Zhang, Xu; Li, Jia V; Lindon, John C

    2012-07-06

    Most chronic diseases impairing current human public health involve not only the human genome but also gene-environment interactions, and in the latter case the gut microbiome is an important factor. This makes the classical single drug-receptor target drug discovery paradigm much less applicable. There is widespread and increasing international interest in understanding the properties of traditional Chinese medicines (TCMs) for their potential utilization as a source of new drugs for Western markets as emerging evidence indicates that most TCM drugs are actually targeting both the host and its symbiotic microbes. In this review, we explore the challenges of and opportunities for harmonizing Eastern-Western drug discovery paradigms by focusing on emergent functions at the whole body level of humans as superorganisms. This could lead to new drug candidate compounds for chronic diseases targeting receptors outside the currently accepted "druggable genome" and shed light on current high interest issues in Western medicine such as drug-drug and drug-diet-gut microbial interactions that will be crucial in the development and delivery of future therapeutic regimes optimized for the individual patient.

  20. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting.

    PubMed

    Nakayama, Masamichi; Akimoto, Jun; Okano, Teruo

    2014-08-01

    Since the 1990s, nanoscale drug carriers have played a pivotal role in cancer chemotherapy, acting through passive drug delivery mechanisms and subsequent pharmaceutical action at tumor tissues with reduction of adverse effects. Polymeric micelles, as supramolecular assemblies of amphiphilic polymers, have been considerably developed as promising drug carrier candidates, and a number of clinical studies of anticancer drug-loaded polymeric micelle carriers for cancer chemotherapy applications are now in progress. However, these systems still face several issues; at present, the simultaneous control of target-selective delivery and release of incorporated drugs remains difficult. To resolve these points, the introduction of stimuli-responsive mechanisms to drug carrier systems is believed to be a promising approach to provide better solutions for future tumor drug targeting strategies. As possible trigger signals, biological acidic pH, light, heating/cooling and ultrasound actively play significant roles in signal-triggering drug release and carrier interaction with target cells. This review article summarizes several molecular designs for stimuli-responsive polymeric micelles in response to variation of pH, light and temperature and discusses their potentials as next-generation tumor drug targeting systems.

  1. 6SLN-lipo PGA specifically catches (coats) human influenza virus and synergizes neuraminidase-targeting drugs for human influenza therapeutic potential.

    PubMed

    Sriwilaijaroen, Nongluk; Suzuki, Katsuhiko; Takashita, Emi; Hiramatsu, Hiroaki; Kanie, Osamu; Suzuki, Yasuo

    2015-10-01

    The purpose of this study was to develop a new compound to overcome influenza epidemics and pandemics as well as drug resistance. We synthesized a new compound carrying: (i) Neu5Acα2-6Galβ1-4GlcNAc (6SLN) for targeting immutable haemagglutinins (HAs) unless switched from human-type receptor preference; (ii) an acyl chain (lipo) for locking the compound with the viral HA via hydrophobic interactions; and (iii) a flexible poly-α-L-glutamic acid (PGA) for enhancing the compound solubility and for coating the viral surface, precluding accessibility of the PGA-coated virus to the negatively charged sialic acid on the host cell surface. 6SLN-lipo PGA appears to subvert binding of pandemic H1 and seasonal H3 HAs to receptors, as assessed by using guinea pig erythrocytes, which is critical for virus entry into host cells for multiplication. It shows high potency with IC50 values in the range of 300-500 nM against multiplication of both influenza pandemic H1N1/2009 and seasonal H3N2/2004 viruses in cell culture. It acts in synergism with either of the two FDA-approved neuraminidase inhibitor (NAI) clinical drugs, zanamivir (Relenza(®)) and oseltamivir carboxylate (active form of Tamiflu(®)), and it has the potential to aid NAI drugs to achieve complete clearance of the virus from the culture. 6SLN-lipo PGA is a new potential candidate drug for influenza control and is an attractive candidate for use in combination with an NAI drug for minimized toxicity, delayed development of resistance, prevention and treatment with the potential for eradication of human influenza. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Strategic incorporation of fluorine in the drug discovery of new-generation antitubercular agents targeting bacterial cell division protein FtsZ⋆

    PubMed Central

    Ojima, Iwao; Awasthi, Divya; Wei, Longfei; Haranahalli, Krupanandan

    2016-01-01

    This article presents an account of our research on the discovery and development of new-generation fluorine-containing antibacterial agents against drug-resistant tuberculosis, targeting FtsZ. FtsZ is an essential protein for bacterial cell division and a highly promising therapeutic target for antibacterial drug discovery. Through design, synthesis and semi-HTP screening of libraries of novel benzimidazoles, followed by SAR studies, we identified highly potent lead compounds. However, these lead compounds were found to lack sufficient metabolic and plasma stabilities. Accordingly, we have performed extensive study on the strategic incorporation of fluorine into lead compounds to improve pharmacological properties. This study has led to the development of highly efficacious fluorine-containing benzimidazoles as potential drug candidates. We have also performed computational docking analysis of these novel FtsZ inhibitors to identify their putative binding site. Based on the structural data and docking analysis, a plausible mode-of-action for this novel class of FtsZ inhibitors is proposed. PMID:28555087

  3. KCa 3.1-a microglial target ready for drug repurposing?

    PubMed

    Dale, Elena; Staal, Roland G W; Eder, Claudia; Möller, Thomas

    2016-10-01

    Over the past decade, glial cells have attracted attention for harboring unexploited targets for drug discovery. Several glial targets have attracted de novo drug discovery programs, as highlighted in this GLIA Special Issue. Drug repurposing, which has the objective of utilizing existing drugs as well as abandoned, failed, or not yet pursued clinical development candidates for new indications, might provide a faster opportunity to bring drugs for glial targets to patients with unmet needs. Here, we review the potential of the intermediate-conductance calcium-activated potassium channels KCa 3.1 as the target for such a repurposing effort. We discuss the data on KCa 3.1 expression on microglia in vitro and in vivo and review the relevant literature on the two KCa 3.1 inhibitors TRAM-34 and Senicapoc. Finally, we provide an outlook of what it might take to harness the potential of KCa 3.1 as a bona fide microglial drug target. GLIA 2016;64:1733-1741. © 2016 Wiley Periodicals, Inc.

  4. A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients

    PubMed Central

    Cheng, Lijun; Schneider, Bryan P

    2016-01-01

    Background Cancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data on how the cancers respond to target based therapy to help to optimum cancer treatment. Objective The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data. Methods In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowledge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selection in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression. Results By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target. Sixty-five drug targets are identified as TNBC treatment targets and 85 candidate drugs are recommended. Many existing TNBC candidate targets, such as Poly (ADP-Ribose) Polymerase 1 (PARP1), Cell division protein kinase 6 (CDK6), epidermal growth factor receptor, etc., were identified. On the other hand, we found some additional targets that are not yet fully investigated in the TNBC, such as Gamma-Glutamyl Hydrolase (GGH), Thymidylate Synthetase (TYMS), Protein Tyrosine Kinase 6 (PTK6), Topoisomerase (DNA) I, Mitochondrial (TOP1MT), Smoothened, Frizzled Class Receptor (SMO), etc. Our additional analysis of target and drug selection strategy is also fully supported by the drug screening data on TNBC cell lines in the Cancer Cell Line Encyclopedia. Conclusions The proposed bioinformatics approach lays a foundation for cancer precision medicine. It supplies much needed knowledge base for the off-label cancer drug usage in clinics. PMID:27107440

  5. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    PubMed

    LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C

    2014-01-01

    Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number of CPUs to tens of thousands of protein targets and millions of potential drug candidates.

  6. Vaccine candidates for leishmaniasis: a review.

    PubMed

    Nagill, Rajeev; Kaur, Sukhbir

    2011-10-01

    Leishmaniasis is a diverse group of clinical syndromes caused by protozoan parasites of the genus Leishmania. The clinical manifestation of the disease varies from self-limiting cutaneous lesions to progressive visceral disease. It is estimated that 350 million people are at risk in 88 countries, with a global incidence of 1-1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. The key control measures mainly rely on early case detection and chemotherapy which has been hampered by the toxicity of drugs, side-effects and by the emergence of drug resistance in parasites. Control of reservoir host and vector is difficult due to operational difficulties and frequent relapses in the host. Therefore, the development of effective and affordable vaccine against leishmaniasis is highly desirable. Although considerable progress has been made over the last decade in understanding immune mechanisms underlying potential candidate antigens, including killed, live attenuated parasites, crude parasites, pure or recombinant Leishmania proteins or DNA encoding leishmanial proteins, as well as immunomodulators from sand fly saliva, very few candidate vaccines have progressed beyond the experimental stage. As such there is no vaccine against any form of human leishmaniasis. In recent years, however, much interest has been stimulated towards vaccination against leishmaniasis focused mainly on cutaneous leishmaniasis with fewer attempts against visceral leishmaniasis. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab

    PubMed Central

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions. PMID:26514585

  8. Prioritizing and modelling of putative drug target proteins of Candida albicans by systems biology approach.

    PubMed

    Ismail, Tariq; Fatima, Nighat; Muhammad, Syed Aun; Zaidi, Syed Saoud; Rehman, Nisar; Hussain, Izhar; Tariq, Najam Us Sahr; Amirzada, Imran; Mannan, Abdul

    2018-01-01

    Candida albicans (Candida albicans) is one of the major sources of nosocomial infections in humans which may prove fatal in 30% of cases. The hospital acquired infection is very difficult to treat affectively due to the presence of drug resistant pathogenic strains, therefore there is a need to find alternative drug targets to cure this infection. In silico and computational level frame work was used to prioritize and establish antifungal drug targets of Candida albicans. The identification of putative drug targets was based on acquiring 5090 completely annotated genes of Candida albicans from available databases which were categorized into essential and non-essential genes. The result indicated that 9% of proteins were essential and could become potential candidates for intervention which might result in pathogen eradication. We studied cluster of orthologs and the subtractive genomic analysis of these essential proteins against human genome was made as a reference to minimize the side effects. It was seen that 14% of Candida albicans proteins were evolutionary related to the human proteins while 86% are non-human homologs. In the next step of compatible drug target selections, the non-human homologs were sequentially compared to the human microbiome data to minimize the potential effects against gut flora which accumulated to 38% of the essential genome. The sub-cellular localization of these candidate proteins in fungal cellular systems indicated that 80% of them are cytoplasmic, 10% are mitochondrial and the remaining 10% are associated with the cell wall. The role of these non-human and non-gut flora putative target proteins in Candida albicans biological pathways was studied. Due to their integrated and critical role in Candida albicans replication cycle, four proteins were selected for molecular modeling. For drug designing and development, four high quality and reliable protein models with more than 70% sequence identity were constructed. These proteins are used for the docking studies of the known and new ligands (unpublished data). Our study will be an effective framework for drug target identifications of pathogenic microbial strains and development of new therapies against the infections they cause.

  9. Use of Microdosing and Accelerator Mass Spectrometry To Evaluate the Pharmacokinetic Linearity of a Novel Tricyclic GyrB/ParE Inhibitor in Rats

    PubMed Central

    Lao, Victoria; Ramos, Courtney L.; Ong, Voon S.; Turteltaub, Kenneth W.

    2014-01-01

    Determining the pharmacokinetics (PKs) of drug candidates is essential for understanding their biological fate. The ability to obtain human PK information early in the drug development process can help determine if future development is warranted. Microdosing was developed to assess human PKs, at ultra-low doses, early in the drug development process. Microdosing has also been used in animals to confirm PK linearity across subpharmacological and pharmacological dose ranges. The current study assessed the PKs of a novel antimicrobial preclinical drug candidate (GP-4) in rats as a step toward human microdosing studies. Dose proportionality was determined at 3 proposed therapeutic doses (3, 10, and 30 mg/kg of body weight), and PK linearity between a microdose and a pharmacological dose was assessed in Sprague-Dawley rats. Plasma PKs over the 3 pharmacological doses were proportional. Over the 10-fold dose range, the maximum concentration in plasma and area under the curve (AUC) increased 9.5- and 15.8-fold, respectively. PKs from rats dosed with a 14C-labeled microdose versus a 14C-labeled pharmacological dose displayed dose linearity. In the animals receiving a microdose and the therapeutically dosed animals, the AUCs from time zero to infinity were 2.6 ng · h/ml and 1,336 ng · h/ml, respectively, and the terminal half-lives were 5.6 h and 1.4 h, respectively. When the AUC values were normalized to a dose of 1.0 mg/kg, the AUC values were 277.5 ng · h/ml for the microdose and 418.2 ng · h/ml for the pharmacological dose. This 1.5-fold difference in AUC following a 300-fold difference in dose is considered linear across the dose range. On the basis of the results, the PKs from the microdosed animals were considered to be predictive of the PKs from the therapeutically dosed animals. PMID:25136019

  10. Targeted proteins for diabetes drug design

    NASA Astrophysics Data System (ADS)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  11. Teratogenic Potential of Antiepileptic Drugs in the Zebrafish Model

    PubMed Central

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data. PMID:24324971

  12. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data.

  13. Drug discovery: lessons from evolution

    PubMed Central

    Warren, John

    2011-01-01

    A common view within the pharmaceutical industry is that there is a problem with drug discovery and we should do something about it. There is much sympathy for this from academics, regulators and politicians. In this article I propose that lessons learnt from evolution help identify those factors that favour successful drug discovery. This personal view is influenced by a decade spent reviewing drug development programmes submitted for European regulatory approval. During the prolonged gestation of a new medicine few candidate molecules survive. This process of elimination of many variants and the survival of so few has much in common with evolution, an analogy that encourages discussion of the forces that favour, and those that hinder, successful drug discovery. Imagining a world without vaccines, anaesthetics, contraception and anti-infectives reveals how medicines revolutionized humanity. How to manipulate conditions that favour such discoveries is worth consideration. PMID:21395642

  14. Accelerating proof of concept for small molecule drugs using solid-state chemistry.

    PubMed

    Byrn, Stephen R; Zografi, George; Chen, Xiaoming Sean

    2010-09-01

    In this perspective we have shown that the process of "proof of concept" (POC) in the early part of drug development can be greatly accelerated by close attention to the underlying solid-state chemistry (SSC) of a new chemical entity. POC seeks data that provide confidence in the therapeutic activity and safety of a new chemical entity, which can rapidly lead to a key "GO/NO-GO" decision point for further development. Due to the high cost of the development of new chemical entities and the current low overall productivity of obtaining successful candidates, the pharmaceutical industry is being required to develop accelerated POC strategies. The success of accelerated approaches to POC depends on a full understanding of the SSC of drugs in relation to solubility and stability. Dissolution-limited absorption due to poor solubility of drug substances is particularly important because it can lead to low exposure in animals and undesired bioavailability in humans. Choosing a desirable solid form with sufficient solubility and acceptable stability is essential in developing formulations for POC with superior quality. In this perspective we present an approach that utilizes SSC as part of a novel 2-year development strategy for reaching the pivotal clinical trial stage of development.

  15. Novel drug discovery for Chagas disease.

    PubMed

    Moraes, Carolina B; Franco, Caio H

    2016-01-01

    Chagas disease is a chronic infection associated with long-term morbidity. Increased funding and advocacy for drug discovery for neglected diseases have prompted the introduction of several important technological advances, and Chagas disease is among the neglected conditions that has mostly benefited from technological developments. A number of screening campaigns, and the development of new and improved in vitro and in vivo assays, has led to advances in the field of drug discovery. This review highlights the major advances in Chagas disease drug screening, and how these are being used not only to discover novel chemical entities and drug candidates, but also increase our knowledge about the disease and the parasite. Different methodologies used for compound screening and prioritization are discussed, as well as novel techniques for the investigation of these targets. The molecular mechanism of action is also discussed. Technological advances have been executed with scientific rigour for the development of new in vitro cell-based assays and in vivo animal models, to bring about novel and better drugs for Chagas disease, as well as to increase our understanding of what are the necessary properties for a compound to be successful in the clinic. The gained knowledge, combined with new exciting approaches toward target deconvolution, will help identifying new targets for Chagas disease chemotherapy in the future.

  16. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs.

    PubMed

    Zhang, Xingwang; Xing, Huijie; Zhao, Yue; Ma, Zhiguo

    2018-06-23

    Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.

  17. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates.

    PubMed

    Zhao, Feng; Lan, Xin-Qiang; Du, Yan; Chen, Pei-Yi; Zhao, Jiao; Zhao, Fang; Lee, Wen-Hui; Zhang, Yun

    2018-03-18

    Cationic antimicrobial peptides (AMPs) are considered as important candidate therapeutic agents, which exert potent microbicidal properties against bacteria, fungi and some viruses. Based on our previous findings king cobra cathelicidin (OH-CATH) is a 34-amino acid peptide that exerts strong antibacterial and weak hemolytic activity. The aim of this research is to evaluate the efficacy of both OH-CATH30 and its analog D-OH-CATH30 against clinical isolates comparing with routinely utilized antibiotics in vitro. In this study, 584 clinical isolates were tested (spanning 2013-2016) and the efficacy of the candidate peptides and antibiotics were determined by a broth microdilution method according to the CLSI guidelines. Among the 584 clinical isolates, 85% were susceptible to OH-CATH30 and its analogs. Both L- and D-OH-CATH30 showed higher efficacy against (toward) Gram-positive bacteria and stronger antibacterial activity against nearly all Gram-negative bacteria tested compare with antibiotics. The highest bactericidal activity was detected against Acinetobacter spp., including multi-drug-resistant Acinetobacter baumannii (MRAB) and methicillin-resistant Staphylococcus aureus (MRSA). The overall efficacy of OH-CATH30 and its analogs was higher than that of the 9 routinely used antibiotics. OH-CATH30 is a promising candidate drug for the treatment of a wide variety of bacterial infections which are resistant to many routinely used antimicrobial agents.

  18. Natural products as reservoirs of novel therapeutic agents.

    PubMed

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.

  19. Preparation of magnetic and pH-responsive chitosan microcapsules via sonochemical method.

    PubMed

    Xu, Fengzhi; Zhao, Tianqi; Wang, Shurong; Liu, Songfeng; Yang, Ting; Li, Zhanfeng; Wang, Hongyan; Cui, Xuejun

    2016-01-01

    Magnetic and pH-responsive chitosan microcapsules (MPRCMCs) were prepared by a simple sonochemical method. Superparamagnetic oleic acid modified Fe3O4 nanoparticles (OA-Fe3O4 NPs) and hydrophobic drugs could be directly loaded into MPRCMCs during sonication. The obtained microcapsules had a well-defined spherical morphology with the average size of 2 μm. The microcapsules showed an excellent magnetic property. In addition, the pH-responsive controlled release of coumarin 6 (C6) from MPRCMCs indicated that the developed microcapsules could be a promising candidate for drugs carriers.

  20. Integrating High-Dimensional Transcriptomics and Image Analysis Tools into Early Safety Screening: Proof of Concept for a New Early Drug Development Strategy.

    PubMed

    Verbist, Bie M P; Verheyen, Geert R; Vervoort, Liesbet; Crabbe, Marjolein; Beerens, Dominiek; Bosmans, Cindy; Jaensch, Steffen; Osselaer, Steven; Talloen, Willem; Van den Wyngaert, Ilse; Van Hecke, Geert; Wuyts, Dirk; Van Goethem, Freddy; Göhlmann, Hinrich W H

    2015-10-19

    During drug discovery and development, the early identification of adverse effects is expected to reduce costly late-stage failures of candidate drugs. As risk/safety assessment takes place rather late during the development process and due to the limited ability of animal models to predict the human situation, modern unbiased high-dimensional biology readouts are sought, such as molecular signatures predictive for in vivo response using high-throughput cell-based assays. In this theoretical proof of concept, we provide findings of an in-depth exploration of a single chemical core structure. Via transcriptional profiling, we identified a subset of close analogues that commonly downregulate multiple tubulin genes across cellular contexts, suggesting possible spindle poison effects. Confirmation via a qualified toxicity assay (in vitro micronucleus test) and the identification of a characteristic aggregate-formation phenotype via exploratory high-content imaging validated the initial findings. SAR analysis triggered the synthesis of a new set of compounds and allowed us to extend the series showing the genotoxic effect. We demonstrate the potential to flag toxicity issues by utilizing data from exploratory experiments that are typically generated for target evaluation purposes during early drug discovery. We share our thoughts on how this approach may be incorporated into drug development strategies.

  1. "Drug" Discovery with the Help of Organic Chemistry.

    PubMed

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  2. Phenome-driven disease genetics prediction toward drug discovery.

    PubMed

    Chen, Yang; Li, Li; Zhang, Guo-Qiang; Xu, Rong

    2015-06-15

    Discerning genetic contributions to diseases not only enhances our understanding of disease mechanisms, but also leads to translational opportunities for drug discovery. Recent computational approaches incorporate disease phenotypic similarities to improve the prediction power of disease gene discovery. However, most current studies used only one data source of human disease phenotype. We present an innovative and generic strategy for combining multiple different data sources of human disease phenotype and predicting disease-associated genes from integrated phenotypic and genomic data. To demonstrate our approach, we explored a new phenotype database from biomedical ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our approach achieved significantly improved performance over a baseline method, which used only one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction analysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly higher than 84.2% (P < e(-4)) and 81.3% (P < e(-12)) for the baseline approach. We further demonstrated that our predicted genes have the translational potential in drug discovery. We used Crohn's disease as an example and ranked the candidate drugs based on the rank of drug targets. Our gene prediction approach prioritized druggable genes that are likely to be associated with Crohn's disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food and Drug Administration-approved drugs for Crohn's disease. We also found literature evidence to support a number of drugs among the top 200 candidates. In summary, we demonstrated that a novel strategy combining unique disease phenotype data with system approaches can lead to rapid drug discovery. nlp. edu/public/data/DMN © The Author 2015. Published by Oxford University Press.

  3. Modeling Human Cancers in Drosophila.

    PubMed

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  4. Integrating internal and external bioanalytical support to deliver a diversified pharmaceutical portfolio.

    PubMed

    Summerfield, Scott G; Evans, Christopher; Spooner, Neil; Dunn, John A; Szapacs, Matthew E; Yang, Eric

    2014-05-01

    The portfolios of pharmaceutical companies have diversified substantially over recent years in recognition that monotherapies and/or small molecules are less suitable for modulating many complex disease etiologies. Furthermore, there has been increased pressure on drug-development budgets over this same period. This has placed new challenges in the path of bioanalytical scientists, both within the industry and with contract research organizations (CROs). Large pharmaceutical, biotechnology and small-medium healthcare enterprises have had to make important decisions on what internal capabilities they wish to retain and where CROs offers a significant strategic benefit to their business model. Our journey has involved asking where we believe an internal bioanalytical facility offers the greatest benefit to progressing drug candidates through the drug-development cycle and where externalization can help free up internal resources, adding flexibility to our organization in order to deal with the inevitable peaks and troughs in workload.

  5. Filled carbon nanotubes in biomedical imaging and drug delivery.

    PubMed

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  6. Biomimetic three-dimensional tissue models for advanced high-throughput drug screening

    PubMed Central

    Nam, Ki-Hwan; Smith, Alec S.T.; Lone, Saifullah; Kwon, Sunghoon; Kim, Deok-Ho

    2015-01-01

    Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately recreate the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when utilizing such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models which accurately mimic the physiological properties of native tissue samples, and highlight the advantages of using such 3D micro-tissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based-on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models. PMID:25385716

  7. PhenoPredict: A disease phenome-wide drug repositioning approach towards schizophrenia drug discovery.

    PubMed

    Xu, Rong; Wang, QuanQiu

    2015-08-01

    Schizophrenia (SCZ) is a common complex disorder with poorly understood mechanisms and no effective drug treatments. Despite the high prevalence and vast unmet medical need represented by the disease, many drug companies have moved away from the development of drugs for SCZ. Therefore, alternative strategies are needed for the discovery of truly innovative drug treatments for SCZ. Here, we present a disease phenome-driven computational drug repositioning approach for SCZ. We developed a novel drug repositioning system, PhenoPredict, by inferring drug treatments for SCZ from diseases that are phenotypically related to SCZ. The key to PhenoPredict is the availability of a comprehensive drug treatment knowledge base that we recently constructed. PhenoPredict retrieved all 18 FDA-approved SCZ drugs and ranked them highly (recall=1.0, and average ranking of 8.49%). When compared to PREDICT, one of the most comprehensive drug repositioning systems currently available, in novel predictions, PhenoPredict represented clear improvements over PREDICT in Precision-Recall (PR) curves, with a significant 98.8% improvement in the area under curve (AUC) of the PR curves. In addition, we discovered many drug candidates with mechanisms of action fundamentally different from traditional antipsychotics, some of which had published literature evidence indicating their treatment benefits in SCZ patients. In summary, although the fundamental pathophysiological mechanisms of SCZ remain unknown, integrated systems approaches to studying phenotypic connections among diseases may facilitate the discovery of innovative SCZ drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Targeted drug discovery and development, from molecular signaling to the global market: an educational program at New York University, 5-year metrics

    PubMed Central

    Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    Drug discovery and development (DDD) is a collaborative, dynamic process of great interest to researchers, but an area where there is a lack of formal training. The Drug Development Educational Program (DDEP) at New York University was created in 2012 to stimulate an improved, multidisciplinary DDD workforce by educating early stage scientists as well as a variety of other like-minded students. The first course of the program emphasizes post-compounding aspects of DDD; the second course focuses on molecular signaling pathways. In five years, 196 students (candidates for PhD, MD, Master’s degree, and post-doctoral MD/PhD) from different schools (Medicine, Biomedical Sciences, Dentistry, Engineering, Business, and Education) completed the course(s). Pre/post surveys demonstrate knowledge gain across all course topics. 26 students were granted career development awards (73% women, 23% underrepresented minorities). Some graduates of their respective degree-granting/post-doctoral programs embarked on DDD related careers. This program serves as a framework for other academic institutions to develop compatible programs designed to train a more informed DDD workforce. PMID:29657854

  9. Progress and Prospects of Anti-HBV Gene Therapy Development

    PubMed Central

    Maepa, Mohube B.; Roelofse, Ilke; Ely, Abdullah; Arbuthnot, Patrick

    2015-01-01

    Despite the availability of an effective vaccine against hepatitis B virus (HBV), chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA). For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV. PMID:26263978

  10. E-tongue: a tool for taste evaluation.

    PubMed

    Gupta, Himanshu; Sharma, Aarti; Kumar, Suresh; Roy, Saroj K

    2010-01-01

    Taste has an important role in the development of oral pharmaceuticals. With respect to patient acceptability and compliance, taste is one of the prime factors determining the market penetration and commercial success of oral formulations, especially in pediatric medicine. Taste assessment is one important quality-control parameter for evaluating taste-masked formulations. Hence, pharmaceutical industries invest time, money and resources into developing palatable and pleasant-tasting products. The primary method for the taste measurement of a drug substance or a formulation is by human sensory evaluation, in which tasting a sample is relayed to inspectors. However, this method is impractical for early stage drug development because the test in humans is expensive and the taste of a drug candidate may not be important to the final product. Therefore, taste-sensing analytical devices, which can detect tastes, have been replacing the taste panelists. In the present review we are presenting different aspect of electronic tongue. The review article also discussed some useful patents and instrument with respect to E-tongue.

  11. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design.

    PubMed

    Vandecruys, Roger; Peeters, Jef; Verreck, Geert; Brewster, Marcus E

    2007-09-05

    Assessing the effect of excipients on the ability to attain and maintain supersaturation of drug-based solution may provide useful information for the design of solid formulations. Judicious selection of materials that affect either the extent or stability of supersaturating drug delivery systems may be enabling for poorly soluble drug candidates or other difficult-to-formulate compounds. The technique suggested herein is aimed at providing a screening protocol to allow preliminary assessment of these factors based on small to moderate amounts of drug substance. A series of excipients were selected that may, by various mechanisms, affect supersaturation including pharmaceutical polymers such as HMPC and PVP, surfactants such as Polysorbate 20, Cremophor RH40 and TPGS and hydrophilic cyclodextrins such as HPbetaCD. Using a co-solvent based method and 25 drug candidates, the data suggested, on the whole, that the surfactants and the selected cyclodextrin seemed to best augment the extent of supersaturation but had variable benefits as stabilizers, while the pharmaceutical polymers had useful effect on supersaturation stability but were less helpful in increasing the extent of supersaturation. Using these data, a group of simple solid dosage forms were prepared and tested in the dog for one of the drug candidates. Excipients that gave the best extent and stability for the formed supersaturated solution in the screening assay also gave the highest oral bioavailability in the dog.

  12. Aqua mediated synthesis of bio-active compounds.

    PubMed

    Panda, Siva S

    2013-05-01

    Recently the aqueous medium has attracted the interest of organic chemists, and many. Moreover, in the past 20 years, the drug-discovery process has undergone extraordinary changes, and high-throughput biological screening of potential drug candidates has led to an ever-increasing demand for novel drug-like compounds. Noteworthy advantages were observed during the course of study on aqua mediated synthesis of compounds of medicinal importance. The established advantages of water as a solvent for reactions are, water is the most abundant and available resource on the planet and many biochemical processes occur in aqueous medium. This review will focus on describing new developments in the application of water in medicinal chemistry for the synthesis of bio-active compounds possessing various biological properties.

  13. How to revive breakthrough innovation in the pharmaceutical industry.

    PubMed

    Munos, Bernard H; Chin, William W

    2011-06-29

    Over the past 20 years, pharmaceutical companies have implemented conservative management practices to improve the predictability of therapeutics discovery and success rates of drug candidates. This approach has often yielded compounds that are only marginally better than existing therapies, yet require larger, longer, and more complex trials. To fund them, companies have shifted resources away from drug discovery to late clinical development; this has hurt innovation and amplified the crisis brought by the expiration of patents on many best-selling drugs. Here, we argue that more breakthrough therapeutics will reach patients only if the industry ceases to pursue "safe" incremental innovation, re-engages in high-risk discovery research, and adopts collaborative innovation models that allow sharing of knowledge and costs among collaborators.

  14. Development of nanostructured lipid carrier for dacarbazine delivery

    NASA Astrophysics Data System (ADS)

    Almousallam, Musallam; Moia, Claudia; Zhu, Huijun

    2015-09-01

    Dacarbazine (Dac) is one of the most commonly used chemotherapy drugs for treating various cancers. However, its poor water solubility, short half-life in blood circulation, low response rate and high side effect limit its application. This study aimed to improve the drug solubility and prolong drug release by developing nanostructured lipid carriers (NLCs) for Dac delivery. The NLC and Dac-encapsulated NLC were synthesized with precirol ATO 5 and isopropyl myristate as lipids, tocopheryl polyethylene glycol succinate, soybean lecithin and Kolliphor P 188 as co-surfactants. The NLCs with controlled size were achieved using high shear dispersion following solidification of oil-in-water emulsion. For Dac encapsulation, the smallest NLC with 155 ± 10 nm in size, 0.2 ± 0.01 polydispersion index and -43.4 ± 2 mV zeta potential was selected. The resultant DLC-Dac possessed size, polydispersion index and zeta potential of 190 ± 10, 0.2 ± 0.01, and -43.5 ± 1.2, respectively. The drug encapsulation efficiency and drug loading were 98.5 % and 14 %, respectively. In vitro drug release study showed a biphasic pattern, with 50 % released in the first 2 h, and the remaining released sustainably for up to 30 h. This is the first report on the development of NLC for Dac delivery, implying that NLC could be a new potential candidate as drug carrier to improve the therapeutic profile of Dac.

  15. AXL kinase as a novel target for cancer therapy

    PubMed Central

    Lee, Chang Youl; Zhang, Zhenfeng; Halmos, Balazs

    2014-01-01

    The AXL receptor tyrosine kinase and its major ligand, GAS6 have been demonstrated to be overexpressed and activated in many human cancers (such as lung, breast, and pancreatic cancer) and have been correlated with poor prognosis, promotion of increased invasiveness/metastasis, the EMT phenotype and drug resistance. Targeting AXL in different model systems with specific small molecule kinase inhibitors or antibodies alone or in combination with other drugs can lead to inactivation of AXL-mediated signaling pathways and can lead to regained drug sensitivity and improved therapeutic efficacy, defining AXL as a promising novel target for cancer therapeutics. This review highlights the data supporting AXL as a novel treatment candidate in a variety of cancers as well as the current status of drug development targeting the AXL/GAS6 axis and future perspectives in this emerging field. PMID:25337673

  16. Discovery of potent HIV-1 non-nucleoside reverse transcriptase inhibitors from arylthioacetanilide structural motif.

    PubMed

    Li, Wenxin; Li, Xiao; De Clercq, Erik; Zhan, Peng; Liu, Xinyong

    2015-09-18

    The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of the clinically used anti-HIV drugs. Therefore, the discovery of novel and effective NNRTIs is still an extremely primary mission. Arylthioacetanilide family is one of the highly active HIV-1 NNRTIs against wide-type (WT) HIV-1 and a wide range of drug-resistant mutant strains. Especially, VRX-480773 and RDEA806 have been chosen as candidates for further clinical studies. In this article, we review the discovery and development of the arylthioacetanilides, and, especially, pay much attention to the structural modifications, SARs conclusions and molecular modeling. Moreover, several medicinal chemistry strategies to overcome drug resistance involved in the optimization process of arylthioacetanilides are highlighted, providing valuable clues for further investigations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery

    PubMed Central

    Perryman, Alexander L.; Horta Andrade, Carolina

    2016-01-01

    The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses. PMID:27764115

  18. OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery.

    PubMed

    Ekins, Sean; Perryman, Alexander L; Horta Andrade, Carolina

    2016-10-01

    The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses.

  19. Obesity medications: what does the future look like?

    PubMed

    Butsch, W Scott

    2015-10-01

    Lifestyle modification remains the mainstay of treatment for obesity despite the lack of substantial long-term efficacy. For many who do not respond to lifestyle therapy and are not candidates for weight loss surgery, pharmacotherapy is a viable treatment option. Advances in understanding mechanisms of appetite control, nutrient sensing, and energy expenditure have not only helped shape current drug development but have also changed the way in which antiobesity medications are prescribed. Current antiobesity medications and pharmacological strategies will be reviewed. Two new antiobesity drugs - naltrexone/bupropion (Contrave) and liraglutide (Saxenda) - were approved by the US Food and Drug Administration in 2014 and join four other approved obesity medications, including phentermine/topiramate XR (Qsymia) and lorcaserin (Belviq), to form the largest number of medications available for the treatment of obesity. In addition, investigational drugs, like belnoranib, show promise in early clinical trials, brightening the outlook on drug development. To combat the complex physiological system of energy regulation and the known variation of treatment response, combinatory therapies for obesity, including pharmacotherapy, are needed. Now six US Food and Drug Administration-approved antiobesity medications, including two combination medications, will allow providers to tailor obesity treatment in combination with lifestyle modification for a great number of individuals with obesity.

  20. Stability studies of anticancer agent bis(4-fluorobenzyl)trisulfide and synthesis of related substances.

    PubMed

    Bao, Yimei; Mo, Xiaopeng; Xu, Xiaoying; He, Yuyu; Xu, Xiao; An, Haoyun

    2008-11-04

    Bis(4-fluorobenzyl)trisulfide, fluorapacin, has been extensively developed as a promising new anticancer drug candidate. Its degradation products were identified and verified by the newly synthesized compounds bis(4-fluorobenzyl)disulfide (A) and bis(4-fluorobenzyl)tetrasulfide (B) which were resulted from the disproportionation of fluorapacin under forced conditions. A stability-indicating HPLC method was used for the stability evaluation of active pharmaceutical ingredient (API) fluorapacin and finished pharmaceutical product (FPP) under various conditions. High recovery (99.57%) of API was found after three freeze-thaw cycle processes of fluorapacin FPP. Susceptibility of fluorapacin to oxidative degradation was studied by treating fluorapacin and FPP in 30% hydrogen peroxide aqueous solution, and the result verified the oxidative stability of fluorapacin. However, treatment of this drug candidate under strong light (4500 Lx+/-500 Lx) for 10 days showed substantial effect on the recovery of fluorapacin, especially from fluorapacin FPP. Strong acid (1.0M, HCl) did not affect the recovery of fluorapacin while strong basic condition (1.0M, NaOH) accelerated the disproportionation of fluorapacin to its related substances A and B. The stability of fluorapacin in its aqueous media at a pH range of 2.0-10.0 for up to 6h was further investigated, and 4.0-8.0 was found to be the most stable pH range. Fluorapacin and FPP were exposed to the elevated temperatures of 40 and 60 degrees C for 10 days without obvious impact on their stability. The thermal stability of fluorapacin API and FPP under constant humidity with light protection was also thoroughly investigated under accelerated (40+/-2 degrees C, RH 75+/-5%, 6 months) and long-term (25+/-2 degrees C, RH 60+/-10%, 24 months) conditions. There was no significant change except minor color change of fluorapacin FPP. Therefore, fluorapacin has excellent stability as a potential drug candidate for further clinical development investigation.

  1. Lead Optimization of 3-Carboxyl-4(1H)-Quinolones to Deliver Orally Bioavailable Antimalarials

    PubMed Central

    Zhang, Yiqun; Clark, Julie A; Connelly, Michele C.; Zhu, Fangyi; Min, Jaeki; Guiguemde, W. Armand; Pradhan, Anupam; Iyer, Lalitha; Furimsky, Anna; Gow, Jason; Parman, Toufan; El Mazouni, Farah; Phillips, Margaret A.; Kyle, Dennis E.; Mirsalis, Jon; Guy, R. Kiplin

    2012-01-01

    Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multi-drug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins. Herein, we report the lead optimization of 4(1H)-quinolones with a focus on improving both antimalarial potency and bioavailability. These studies led to the development of orally efficacious antimalarials including quinolone analogue 20g, a promising candidate for further optimization. PMID:22435599

  2. Preformulation considerations for controlled release dosage forms. Part I. Selecting candidates.

    PubMed

    Chrzanowski, Frank

    2008-01-01

    The physical-chemical properties of interest for controlled release (CR) dosage form development presented are based on the author's experience. Part I addresses selection of the final form based on a logical progression of physical-chemical properties evaluation of candidate forms and elimination of forms with undesirable properties from further evaluation in order to simplify final form selection. Several candidate forms which could include salt, free base or acid, polymorphic and amorphic forms of a new chemical entity (NCE) or existing drug substance (DS) are prepared and evaluated for critical properties in a scheme relevant to manufacturing processes, predictive of problems, requiring small amounts of test materials and simple analytical tools. A stability indicating assay is not needed to initiate the evaluation. This process is applicable to CR and immediate release (IR) dosage form development. The critical properties evaluated are melting, crystallinity, solubilities in water, 0.1 N HCl, and SIF, hygrodymamics, i.e., moisture sorption and loss at extremes of RH, and LOD at typical wet granulation drying conditions, and processability, i.e., corrosivity, and filming and/or sticking upon compression.

  3. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    PubMed

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mutagenic potential of Cordia ecalyculata alone and in association with Spirulina maxima for their evaluation as candidate anti-obesity drugs.

    PubMed

    Araldi, R P; Rechiutti, B M; Mendes, T B; Ito, E T; Souza, E B

    2014-07-07

    Obesity is one of the most important nutritional disorders, and can be currently considered as an epidemic. Although there are few weight reduction drugs available on the market, some new drug candidates have been proposed, including Cordia ecalyculata, a Brazilian plant with anorectic properties, and Spirulina maxima, a cyanobacterium with antioxidant and anti-genotoxic activity. In this study, we evaluated the mutagenic potential of C. ecalyculata at doses of 150, 300, and 500 mg/kg alone and in association with S. maxima at doses of 75, 150, and 250 mg/kg, respectively, through an in vivo micronucleus test, using mice of both sexes, and an in vitro micronucleus test and comet assay, using human peripheral blood. For all tests, cyclophosphamide was used as a positive control. The results showed that treatment of 300 mg/kg C. ecalyculata and the combination treatment of 500 mg/kg C. ecalyculata with 250 mg/kg S. maxima resulted in anorectic effects. The mutagenic tests did not reveal any clastogenic or genotoxic activity for any treatment, indicating that these candidates could be marketed as weight-reduction drugs. Moreover, the drugs contain chemo-preventive substances that can protect against tumorigenesis, which has been associated with obesity.

  5. 76 FR 45578 - Request for Nominations for Members on a Public Advisory Committee; Medical Imaging Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002... Committee AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug..., minority, or physically challenged candidates. Final selection from each vacancy will be determined by the...

  6. Anti-Helicobacter pylori Potential of Artemisinin and Its Derivatives

    PubMed Central

    Goswami, Suchandra; Chinniah, Annalakshmi; Pal, Anirban; Kar, Sudip K.

    2012-01-01

    The antimalarial drug artemisinin from Artemisia annua demonstrated remarkably strong activity against Helicobacter pylori, the pathogen responsible for peptic ulcer diseases. In an effort to develop a novel antimicrobial chemotherapeutic agent containing such a sesquiterpene lactone endoperoxide, a series of analogues (2 natural and 15 semisynthetic molecules), including eight newly synthesized compounds, were investigated against clinical and standard strains of H. pylori. The antimicrobial spectrum against 10 H. pylori strains and a few other bacterial and fungal strains indicated specificity against the ulcer causing organism. Of five promising molecules, a newly synthesized ether derivative β-artecyclopropylmether was found to be the most potent compound, which exhibited MIC range, MIC90, and minimum bactericidal concentration range values of 0.25 to 1.0 μg/ml, 1.0 μg/ml, and 1 to 16 μg/ml, respectively, against both resistant and sensitive strains of H. pylori. The molecule demonstrated strong bactericidal kinetics with extensive morphological degeneration, retained functional efficacy at stomach acidic pH unlike clarithromycin, did not elicit drug resistance unlike metronidazole, and imparted sensitivity to resistant strains. It is not cytotoxic and exhibits in vivo potentiality to reduce the H. pylori burden in a chronic infection model. Thus, β-artecyclopropylmether could be a lead candidate for anti-H. pylori therapeutics. Since the recurrence of gastroduodenal ulcers is believed to be mainly due to antibiotic resistance of the commensal organism H. pylori, development of a candidate drug from this finding is warranted. PMID:22687518

  7. State-of-the-Art Workshops on Medical Countermeasures Potentially Available for Human Use Following Accidental Exposures to Ebola Virus.

    PubMed

    Jahrling, Peter B; Hensley, Lisa E; Barrett, Kevin; Lane, Henry Clifford; Davey, Richard T

    2015-10-01

    The ongoing outbreak of Ebola in West Africa has raised a general awareness that at present there are no Ebola-specific medical countermeasures (MCMs) with proven effectiveness. This paper recapitulates discussions held at the 6th International Filovirus Symposium in March 2014 as well as the subsequent design of a randomized clinical trial design for treating Ebola virus-infected patients evacuated from West Africa to the United States. A number of different drugs or biologics were critically reviewed and 3 different postexposure strategies were identified as being farthest along in development; passive immunotherapy with monoclonal antibodies, postexposure vaccination with constructs involving viral vectors (such as vesicular stomatitis virus), and antisense compounds directly targeting the viral genome such as modified phosphorodiamidate morpholino oligomer-based compounds and small interfering RNA products. At the time of the meetings, there were no investigational new drugs (INDs) in place for the candidate MCMs. Developers and sponsors of these candidate products were strongly encouraged to prepare pre-IND packets and submit pre-IND meeting requests to the Food and Drug Administration. Some of these investigational products have already been used under emergency authorizations to treat patients in Africa as well as patients evacuated to the United States or Western Europe. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?

    PubMed

    Gopalakrishnan, Ranganath; Frolov, Andrey I; Knerr, Laurent; Drury, William J; Valeur, Eric

    2016-11-10

    Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.

  9. Large-scale computational drug repositioning to find treatments for rare diseases.

    PubMed

    Govindaraj, Rajiv Gandhi; Naderi, Misagh; Singha, Manali; Lemoine, Jeffrey; Brylinski, Michal

    2018-01-01

    Rare, or orphan, diseases are conditions afflicting a small subset of people in a population. Although these disorders collectively pose significant health care problems, drug companies require government incentives to develop drugs for rare diseases due to extremely limited individual markets. Computer-aided drug repositioning, i.e., finding new indications for existing drugs, is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Structure-based matching of drug-binding pockets is among the most promising computational techniques to inform drug repositioning. In order to find new targets for known drugs ultimately leading to drug repositioning, we recently developed e MatchSite, a new computer program to compare drug-binding sites. In this study, e MatchSite is combined with virtual screening to systematically explore opportunities to reposition known drugs to proteins associated with rare diseases. The effectiveness of this integrated approach is demonstrated for a kinase inhibitor, which is a confirmed candidate for repositioning to synapsin Ia. The resulting dataset comprises 31,142 putative drug-target complexes linked to 980 orphan diseases. The modeling accuracy is evaluated against the structural data recently released for tyrosine-protein kinase HCK. To illustrate how potential therapeutics for rare diseases can be identified, we discuss a possibility to repurpose a steroidal aromatase inhibitor to treat Niemann-Pick disease type C. Overall, the exhaustive exploration of the drug repositioning space exposes new opportunities to combat orphan diseases with existing drugs. DrugBank/Orphanet repositioning data are freely available to research community at https://osf.io/qdjup/.

  10. From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery.

    PubMed

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-01-01

    Fragment-based drug discovery (FBDD) is a broadly used strategy in structure-guided ligand design, whereby low-molecular weight hits move from lead-like to drug-like compounds. Over the past 15 years, an increasingly important role of the integration of these strategies into industrial and academic research platforms has been successfully established, allowing outstanding contributions to drug discovery. One important factor for the current prominence of FBDD is the better coverage of the chemical space provided by fragment-like libraries. The development of the field relies on two features: (i) the growing number of structurally characterized drug targets and (ii) the enormous chemical diversity available for experimental and virtual screenings. Indeed, fragment-based campaigns have contributed to address major challenges in lead optimization, such as the appropriate physicochemical profile of clinical candidates. This perspective paper outlines the usefulness and applications of FBDD approaches in medicinal chemistry and drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Chemistry challenges in lead optimization: silicon isosteres in drug discovery.

    PubMed

    Showell, Graham A; Mills, John S

    2003-06-15

    During the lead optimization phase of drug discovery projects, the factors contributing to subsequent failure might include poor portfolio decision-making and a sub-optimal intellectual property (IP) position. The pharmaceutical industry has an ongoing need for new, safe medicines with a genuine biomedical benefit, a clean IP position and commercial viability. Inherent drug-like properties and chemical tractability are also essential for the smooth development of such agents. The introduction of bioisosteres, to improve the properties of a molecule and obtain new classes of compounds without prior art in the patent literature, is a key strategy used by medicinal chemists during the lead optimization process. Sila-substitution (C/Si exchange) of existing drugs is an approach to search for new drug-like candidates that have beneficial biological properties and a clear IP position. Some of the fundamental differences between carbon and silicon can lead to marked alterations in the physicochemical and biological properties of the silicon-containing analogues and the resulting benefits can be exploited in the drug design process.

  12. Cross-sector sponsorship of research in eosinophilic esophagitis: a collaborative model for rational drug development in rare diseases.

    PubMed

    Fiorentino, Robert; Liu, Gumei; Pariser, Anne R; Mulberg, Andrew E

    2012-09-01

    Like many rare diseases, eosinophilic esophagitis (EoE) is a poorly understood disorder, and assessment tools to accurately determine disease activity, remission, and natural history have long been inadequate. Clinical outcome end points able to assess the effectiveness of candidate therapeutic agents in clinical trials have been a particular deficiency and are urgently needed. With no approved therapy available to patients and with the prevalence of EoE on the increase, collaborative approaches to drug development are becoming ever more important. We describe a collaborative effort mobilized across institutions, including both the public and private sectors, that was initiated within the past 18 months expressly to address the need for further clinical research into the cause and treatment of EoE. Collaborators include the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition; the International Gastrointestinal Eosinophilic Researchers; and the US Food and Drug Administration. This effort has resulted in the elucidation of several parameters essential for effective EoE registration trials, including the need for clinically meaningful end points that measure changes in clinical symptoms in addition to the assessment of intraepithelial mucosal eosinophilia. The development and use of biomarkers, particularly in early-phase drug development, have become an important focus for investigations that might reduce clinical reliance on serial invasive monitoring. The concerted efforts described here to develop rational therapeutics and drug development paradigms in EoE also appear to provide a model for effective collaboration in the context of drug development for rare diseases and perhaps more generally for public health initiatives. Published by Mosby, Inc.

  13. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.

    PubMed

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E; Bailey-Kellogg, Chris

    2017-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.

  14. EpiSweep: Computationally-driven Reengineering of Therapeutic Proteins to Reduce immunogenicity while Maintaining Function

    PubMed Central

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E.; Bailey-Kellogg, Chris

    2016-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics renders them subject to immune surveillance within the patient’s body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity. To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure- based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates. PMID:27914063

  15. Development of an ex vivo lymph node explant model for identification of novel molecules active against Leishmania major.

    PubMed

    Peniche, Alex G; Osorio, Yaneth; Renslo, Adam R; Frantz, Doug E; Melby, Peter C; Travi, Bruno L

    2014-01-01

    Leishmaniasis is a vector-borne zoonotic infection affecting people in tropical and subtropical regions of the world. Current treatments for cutaneous leishmaniasis are difficult to administer, toxic, expensive, and limited in effectiveness and availability. Here we describe the development and application of a medium-throughput screening approach to identify new drug candidates for cutaneous leishmaniasis using an ex vivo lymph node explant culture (ELEC) derived from the draining lymph nodes of Leishmania major-infected mice. The ELEC supported intracellular amastigote proliferation and contained lymph node cell populations (and their secreted products) that enabled the testing of compounds within a system that mimicked the immunopathological environment of the infected host, which is known to profoundly influence parasite replication, killing, and drug efficacy. The activity of known antileishmanial drugs in the ELEC system was similar to the activity measured in peritoneal macrophages infected in vitro with L. major. Using the ELEC system, we screened a collection of 334 compounds, some of which we had demonstrated previously to be active against L. donovani, and identified 119 hits, 85% of which were confirmed to be active by determination of the 50% effective concentration (EC50). We found 24 compounds (7%) that had an in vitro therapeutic index (IVTI; 50% cytotoxic/effective concentration [CC50]/EC50) > 100; 19 of the compounds had an EC50 below 1 μM. According to PubChem searchs, 17 of those compounds had not previously been reported to be active against Leishmania. We expect that this novel method will help to accelerate discovery of new drug candidates for treatment of cutaneous leishmaniasis.

  16. Development of an Ex Vivo Lymph Node Explant Model for Identification of Novel Molecules Active against Leishmania major

    PubMed Central

    Peniche, Alex G.; Osorio, Yaneth; Renslo, Adam R.; Frantz, Doug E.; Melby, Peter C.

    2014-01-01

    Leishmaniasis is a vector-borne zoonotic infection affecting people in tropical and subtropical regions of the world. Current treatments for cutaneous leishmaniasis are difficult to administer, toxic, expensive, and limited in effectiveness and availability. Here we describe the development and application of a medium-throughput screening approach to identify new drug candidates for cutaneous leishmaniasis using an ex vivo lymph node explant culture (ELEC) derived from the draining lymph nodes of Leishmania major-infected mice. The ELEC supported intracellular amastigote proliferation and contained lymph node cell populations (and their secreted products) that enabled the testing of compounds within a system that mimicked the immunopathological environment of the infected host, which is known to profoundly influence parasite replication, killing, and drug efficacy. The activity of known antileishmanial drugs in the ELEC system was similar to the activity measured in peritoneal macrophages infected in vitro with L. major. Using the ELEC system, we screened a collection of 334 compounds, some of which we had demonstrated previously to be active against L. donovani, and identified 119 hits, 85% of which were confirmed to be active by determination of the 50% effective concentration (EC50). We found 24 compounds (7%) that had an in vitro therapeutic index (IVTI; 50% cytotoxic/effective concentration [CC50]/EC50) > 100; 19 of the compounds had an EC50 below 1 μM. According to PubChem searchs, 17 of those compounds had not previously been reported to be active against Leishmania. We expect that this novel method will help to accelerate discovery of new drug candidates for treatment of cutaneous leishmaniasis. PMID:24126577

  17. Developing Memory Reconsolidation Blockers as Novel PTSD Treatments

    DTIC Science & Technology

    2013-08-01

    corticosterone- induced enhancement of auditory fear condi- tioning. Neurobiology of Learning and Memory, 86, 249–255. Roozendaal, B., & McGaugh, J. L. (1997...rats. In Stage II, we evaluated the ability of candidate drug to reverse fear conditioning- induced synaptic enhancement in rat amygdala slices...reduced subsequent cue- induced conditioned responding, as manifest in a shorter duration of freezing. The percent reduction in percent freezing from

  18. [EBOLA HEMORRHAGIC FEVER: DIAGNOSTICS, ETIOTROPIC AND PATHOGENETIC THERAPY, PREVENTION].

    PubMed

    Zhdanov, K V; Zakharenko, S M; Kovalenko, A N; Semenov, A V; Fisun, A Ya

    2015-01-01

    The data on diagnostics, etiotropic and pathogenetic therapy, prevention of Ebola hemorrhagic fever are presented including diagnostic algorithms for different clinical situations. Fundamentals of pathogenetic therapy are described. Various groups of medications used for antiviral therapy of conditions caused by Ebola virus are characterized. Experimental drugs at different stages of clinical studies are considered along with candidate vaccines being developed for the prevention of the disease.

  19. Use of Osmotic Pumps to Establish the Pharmacokinetic-Pharmacodynamic Relationship and Define Desirable Human Performance Characteristics for Aggrecanase Inhibitors.

    PubMed

    Wiley, Michael R; Durham, Timothy B; Adams, Lisa A; Chambers, Mark G; Lin, Chaohua; Liu, Chin; Marimuthu, Jothirajah; Mitchell, Peter G; Mudra, Daniel R; Swearingen, Craig A; Toth, James L; Weller, Jennifer M; Thirunavukkarasu, Kannan

    2016-06-23

    The development of reliable relationships between in vivo target engagement, pharmacodynamic activity, and efficacy in chronic disease models is beneficial for enabling hypothesis-driven drug discovery and facilitating the development of patient-focused candidate selection criteria. Toward those ends, osmotic infusion pumps can be useful for overcoming limitations in the PK properties of proof-of-concept (POC) compounds to accelerate the development of such relationships. In this report, we describe the application of this strategy to the development of hydantoin-derived aggrecanase inhibitors (eg, 3) for the treatment of osteoarthiritis (OA). Potent, selective inhibitors were efficacious in both chemical and surgical models of OA when exposures were sustained in excess of 10 times the plasma IC50. The use of these data for establishing patient-focused candidate selection criteria is exemplified with the characterization of compound 8, which is projected to sustain the desired level of target engagement at a dose of 45 mg qd.

  20. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction parameters (rupture force profiles, hydrogen bonds, hydrophobic interactions), geometry and the orientation of the drug candidates, the hydroxylamine is suggested to orchestrate the reactivation process better than TMB4. Furthermore, the calculated log P values show the effective penetration of the neutral drug candidate through the blood-brain barrier. The toxicity measurements and the IC50 values (a measure of the intrinsic affinity toward AChE) suggest that the pyridinylhydroxylamine compound could have similar toxic behavior compared to the prototype oxime antidotes used for reactivation purposes. The newly designed pyridinylhydroxylamine drug candidate can be an effective antidote both kinetically and structurally to reactivate the tabun-inhibited enzyme.

  1. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    PubMed

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  2. Investigating the Release of a Hydrophobic Peptide from Matrices of Biodegradable Polymers: An Integrated Method Approach

    PubMed Central

    Gubskaya, Anna V.; Khan, I. John; Valenzuela, Loreto M.; Lisnyak, Yuriy V.; Kohn, Joachim

    2013-01-01

    The objectives of this work were: (1) to select suitable compositions of tyrosine-derived polycarbonates for controlled delivery of voclosporin, a potent drug candidate to treat ocular diseases, (2) to establish a structure-function relationship between key molecular characteristics of biodegradable polymer matrices and drug release kinetics, and (3) to identify factors contributing in the rate of drug release. For the first time, the experimental study of polymeric drug release was accompanied by a hierarchical sequence of three computational methods. First, suitable polymer compositions used in subsequent neural network modeling were determined by means of response surface methodology (RSM). Second, accurate artificial neural network (ANN) models were built to predict drug release profiles for fifteen polymers located outside the initial design space. Finally, thermodynamic properties and hydrogen-bonding patterns of model drug-polymer complexes were studied using molecular dynamics (MD) technique to elucidate a role of specific interactions in drug release mechanism. This research presents further development of methodological approaches to meet challenges in the design of polymeric drug delivery systems. PMID:24039300

  3. Recently disclosed chemical entities as potential candidates for management of tuberculosis.

    PubMed

    Stec, Jozef; Abourashed, Ehab A

    2015-01-01

    Tuberculosis (TB) is one of the deadliest infectious diseases worldwide. The drug discovery process of novel, safe and effective agents to combat TB involves identification of new molecular targets and novel chemical scaffolds. The current anti-TB drug pipeline includes several small molecules with more to follow as new candidates are disclosed. This review highlights the most significant findings described in 78 international, European and US patents for chemically diverse compounds as prospective anti-TB medications. Main points of emphasis include chemical classification, in vitro and in vivo activity, ADME/Tox profile and mycobacterial target as described in each patent. The collective mass of compounds disclosed in the reviewed patents introduces new candidates as potential therapeutic agents for TB infections.

  4. [Industry, Academia and Government Partnership through the Global Health Innovative Technology Fund (GHIT)].

    PubMed

    Hinoshita, Eiji

    2016-01-01

    In developing countries, many people are unable to access basic healthcare services, resulting in many avoidable deaths and/or disabilities. The United Nations adopted the Millennium Development Goals in order to resolve this problem, and Japan has been contributing greatly to the achievement of these goals. In this context, in 2013 the Government of Japan proposed its Strategy on Global Health Diplomacy, and since then has been promoting Universal Health Coverage. Since the beginning of the 21st century, the particular importance of addressing neglected tropical diseases (NTDs) has been stressed by the international community. Nevertheless, of the 1 billion people world-wide who are currently living with NTDs, about three-fourths of these are living in poverty, and of these, nearly 65% are unable to acquire or access drugs for the prevention and treatment of these diseases. Under these circumstances, Japan decided to support the Global Health Innovative Technology (GHIT) Fund in order to support the research and development of drugs for people in developing countries, as well as the manufacture, supply and administration of these drugs. Over the last two years, the GHIT Fund has been supporting the research and development of five new candidate drugs for three NTDs (Chagas disease, leishmaniasis and malaria). Japan also hopes to stimulate domestic pharmaceutical industries in developing countries, as well as to increase international cooperation through various activities such the utilization of our capacity to research and develop new drugs.

  5. Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection

    PubMed Central

    Kalia, Nitin P.; Hasenoehrl, Erik J.; Ab Rahman, Nurlilah B.; Koh, Vanessa H.; Ang, Michelle L. T.; Sajorda, Dannah R.; Hards, Kiel; Grüber, Gerhard; Alonso, Sylvie; Cook, Gregory M.; Berney, Michael; Pethe, Kevin

    2017-01-01

    The recent discovery of small molecules targeting the cytochrome bc1:aa3 in Mycobacterium tuberculosis triggered interest in the terminal respiratory oxidases for antituberculosis drug development. The mycobacterial cytochrome bc1:aa3 consists of a menaquinone:cytochrome c reductase (bc1) and a cytochrome aa3-type oxidase. The clinical-stage drug candidate Q203 interferes with the function of the subunit b of the menaquinone:cytochrome c reductase. Despite the affinity of Q203 for the bc1:aa3 complex, the drug is only bacteriostatic and does not kill drug-tolerant persisters. This raises the possibility that the alternate terminal bd-type oxidase (cytochrome bd oxidase) is capable of maintaining a membrane potential and menaquinol oxidation in the presence of Q203. Here, we show that the electron flow through the cytochrome bd oxidase is sufficient to maintain respiration and ATP synthesis at a level high enough to protect M. tuberculosis from Q203-induced bacterial death. Upon genetic deletion of the cytochrome bd oxidase-encoding genes cydAB, Q203 inhibited mycobacterial respiration completely, became bactericidal, killed drug-tolerant mycobacterial persisters, and rapidly cleared M. tuberculosis infection in vivo. These results indicate a synthetic lethal interaction between the two terminal respiratory oxidases that can be exploited for anti-TB drug development. Our findings should be considered in the clinical development of drugs targeting the cytochrome bc1:aa3, as well as for the development of a drug combination targeting oxidative phosphorylation in M. tuberculosis. PMID:28652330

  6. Predicting drug side-effect profiles: a chemical fragment-based approach

    PubMed Central

    2011-01-01

    Background Drug side-effects, or adverse drug reactions, have become a major public health concern. It is one of the main causes of failure in the process of drug development, and of drug withdrawal once they have reached the market. Therefore, in silico prediction of potential side-effects early in the drug discovery process, before reaching the clinical stages, is of great interest to improve this long and expensive process and to provide new efficient and safe therapies for patients. Results In the present work, we propose a new method to predict potential side-effects of drug candidate molecules based on their chemical structures, applicable on large molecular databanks. A unique feature of the proposed method is its ability to extract correlated sets of chemical substructures (or chemical fragments) and side-effects. This is made possible using sparse canonical correlation analysis (SCCA). In the results, we show the usefulness of the proposed method by predicting 1385 side-effects in the SIDER database from the chemical structures of 888 approved drugs. These predictions are performed with simultaneous extraction of correlated ensembles formed by a set of chemical substructures shared by drugs that are likely to have a set of side-effects. We also conduct a comprehensive side-effect prediction for many uncharacterized drug molecules stored in DrugBank, and were able to confirm interesting predictions using independent source of information. Conclusions The proposed method is expected to be useful in various stages of the drug development process. PMID:21586169

  7. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations.

    PubMed

    Perez-Lopez, Áron R; Szalay, Kristóf Z; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-05-11

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.

  8. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-05-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.

  9. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    PubMed Central

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates. PMID:25960144

  10. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.

    PubMed

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei

    2018-01-01

    Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drugtarget interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-theart Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    PubMed

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Redox activation of metal-based prodrugs as a strategy for drug delivery

    PubMed Central

    Graf, Nora

    2012-01-01

    This review provides an overview of metal-based anticancer drugs and drug candidates. In particular, we focus on metal complexes that can be activated in the reducing environment of cancer cells, thus serving as prodrugs. There are many reports of Pt and Ru complexes as redox-activatable drug candidates, but other d-block elements with variable oxidation states have a similar potential to serve as prodrugs in this manner. In this context are compounds based on Fe, Co, or Cu chemistry, which are also covered. A trend in the field of medicinal inorganic chemistry has been toward molecularly targeted, metal-based drugs obtained by functionalizing complexes with biologically active ligands. Another recent activity is the use of nanomaterials for drug delivery, exploiting passive targeting of tumors with nanosized constructs made from Au, Fe, carbon, or organic polymers. Although complexes of all of the above mentioned metals will be described, this review focuses primarily on Pt compounds, including constructs containing nanomaterials. PMID:22289471

  13. The development of biomarkers to reduce attrition rate in drug discovery focused on oncology and central nervous system.

    PubMed

    Safavi, Maliheh; Sabourian, Reyhaneh; Abdollahi, Mohammad

    2016-10-01

    The task of discovery and development of novel therapeutic agents remains an expensive, uncertain, time-consuming, competitive, and inefficient enterprise. Due to a steady increase in the cost and time of drug development and the considerable amount of resources required, a predictive tool is needed for assessing the safety and efficacy of a new chemical entity. This study is focused on the high attrition rate in discovery and development of oncology and central nervous system (CNS) medicines, because the failure rate of these medicines is higher than others. Some approaches valuable in reducing attrition rates are proposed and the judicious use of biomarkers is discussed. Unlike the significant progress made in identifying and characterizing novel mechanisms of disease processes and targeted therapies, the process of novel drug development is associated with an unacceptably high attrition rate. The application of clinically qualified predictive biomarkers holds great promise for further development of therapeutic targets, improved survival, and ultimately personalized medicine sets for patients. Decisions such as candidate selection, development risks, dose ranging, early proof of concept/principle, and patient stratification are based on the measurements of biologically and/or clinically validated biomarkers.

  14. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach.

    PubMed

    Rashid, Muhammad Ibrahim; Naz, Anam; Ali, Amjad; Andleeb, Saadia

    2017-07-01

    Pseudomonas aeruginosa is among top critical nosocomial infectious agents due to its persistent infections and tendency for acquiring drug resistance mechanisms. To date, there is no vaccine available for this pathogen. We attempted to exploit the genomic and proteomic information of P. aeruginosa though reverse-vaccinology approaches to unveil the prospective vaccine candidates. P. aeruginosa strain PAO1 genome was subjected to sequential prioritization approach following genomic, proteomics and structural analyses. Among, the predicted vaccine candidates: surface components of antibiotic efflux pumps (Q9HY88, PA2837), chaperone-usher pathway components (CupC2, CupB3), penicillin binding protein of bacterial cell wall (PBP1a/mrcA), extracellular component of Type 3 secretory system (PscC) and three uncharacterized secretory proteins (PA0629, PA2822, PA0978) were identified as potential candidates qualifying all the set criteria. These proteins were then analyzed for potential immunogenic surface exposed epitopes. These predicted epitopes may provide a basis for development of a reliable subunit vaccine against P. aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. In silico fragment-based drug design.

    PubMed

    Konteatis, Zenon D

    2010-11-01

    In silico fragment-based drug design (FBDD) is a relatively new approach inspired by the success of the biophysical fragment-based drug discovery field. Here, we review the progress made by this approach in the last decade and showcase how it complements and expands the capabilities of biophysical FBDD and structure-based drug design to generate diverse, efficient drug candidates. Advancements in several areas of research that have enabled the development of in silico FBDD and some applications in drug discovery projects are reviewed. The reader is introduced to various computational methods that are used for in silico FBDD, the fragment library composition for this technique, special applications used to identify binding sites on the surface of proteins and how to assess the druggability of these sites. In addition, the reader will gain insight into the proper application of this approach from examples of successful programs. In silico FBDD captures a much larger chemical space than high-throughput screening and biophysical FBDD increasing the probability of developing more diverse, patentable and efficient molecules that can become oral drugs. The application of in silico FBDD holds great promise for historically challenging targets such as protein-protein interactions. Future advances in force fields, scoring functions and automated methods for determining synthetic accessibility will all aid in delivering more successes with in silico FBDD.

  16. Regulatory Approval of Cancer Risk-reducing (Chemopreventive) Drugs: Moving What We Have Learned into the Clinic

    PubMed Central

    Meyskens, Frank L.; Curt, Gregory A.; Brenner, Dean E.; Gordon, Gary; Herberman, Ronald B.; Finn, Olivera; Kelloff, Gary J.; Khleif, Samir N.; Sigman, Caroline C.; Szabo, Eva

    2010-01-01

    This paper endeavors to clarify the current requirements and status of regulatory approval for chemoprevention (risk reduction) drugs and discusses possible improvements to the regulatory pathway for chemoprevention. Covering a wide range of topics in as much depth as space allows, this report is written in a style to facilitate the understanding of non-scientists and to serve as a framework for informing the directions of experts engaged more deeply with this issue. Key topics we cover here are as follows: a history of definitive cancer chemoprevention trials and their influence on the evolution of regulatory assessments; a brief review of the long-standing success of pharmacologic risk reduction of cardiovascular diseases and its relevance to approval for cancer risk reduction drugs; the use and limitations of biomarkers for developing and the approval of cancer risk reduction drugs; the identification of individuals at a high(er) risk for cancer and who are appropriate candidates for risk reduction drugs; business models that should incentivize pharmaceutical-industry investment in cancer risk reduction; a summary of scientific and institutional barriers to development of cancer risk reduction drugs; and a summary of major recommendations that should help facilitate the pathway to regulatory approval for pharmacologic cancer risk reduction drugs. PMID:21372031

  17. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    PubMed

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  18. Proposal for a new therapy for drug-resistant malaria using Plasmodium synthetic lethality inference.

    PubMed

    Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun

    2013-12-01

    Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast-human-Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes.

  19. Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells

    NASA Astrophysics Data System (ADS)

    Pramod, P. S.; Shah, Ruchira; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, Manickam

    2014-09-01

    Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy.Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy. Electronic supplementary information (ESI) available: Synthesis scheme, DLS histogram, FE-SEM image, AFM image, TEM image of DEX-PDP-5, AFM image of VDOX+CPT, AFM image of VDOX, characterization of VCPT, characterization of VRHO, DOX nuclear localization, characterization of dual drug loaded vesicles, fluorescent microscopic image of VDOX-CPT, cumulative drug release profile from dual drug loaded vesicles, rate constant determination, and cumulative release profile of DOX and CPT from VDOX+CPT (1 : 4). See DOI: 10.1039/c4nr03514c

  20. Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery.

    PubMed

    Łukasiewicz, Sylwia; Szczepanowicz, Krzysztof; Błasiak, Ewa; Dziedzicka-Wasylewska, Marta

    2015-06-16

    The use of polymeric nanoparticles (NPs) in pharmacology provides many benefits because this approach can increase the efficacy and selectivity of active compounds. However, development of new nanocarriers requires better understanding of the interactions between NPs and the immune system, allowing for the optimization of NP properties for effective drug delivery. Therefore, in the present study, we focused on the investigation of the interactions between biocompatible polymeric NPs and a murine macrophage cell line (RAW 264.7) and a human monocytic leukemia cell line (THP-1). NPs based on a liquid core with polyelectrolyte shells were prepared by sequential adsorption of polyelectrolytes (LbL) using AOT (docusate sodium salt) as the emulsifier and the biocompatible polyelectrolytes polyanion PGA (poly-l-glutamic acid sodium salt) and polycation PLL (poly l-lysine). The average size of the obtained NPs was 80 nm. Pegylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG poly(ethylene glycol)). The influence of the physicochemical properties of the NPs (charge, size, surface modification) on viability, phagocytosis potential, and endocytosis was studied. Internalization of NPs was determined by flow cytometry and confocal microscopy. Moreover, we evaluated whether addition of PEG chains downregulates particle uptake by phagocytic cells. The presented results confirm that the obtained PEG-grafted NPs are promising candidates for drug delivery.

  1. Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning

    PubMed Central

    Ciraldo, Francesca E.; Goldmann, Wolfgang H.

    2018-01-01

    Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol–gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications. PMID:29710768

  2. Exploring the multifunctionality of thioflavin- and deferiprone-based molecules as acetylcholinesterase inhibitors for potential application in Alzheimer's disease.

    PubMed

    Telpoukhovskaia, Maria A; Patrick, Brian O; Rodríguez-Rodríguez, Cristina; Orvig, Chris

    2013-04-05

    Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects millions of people worldwide. With no prevention or cure available, this progressive disease has a significant impact on society - dementia patients and their caretakers, healthcare systems, and the economy. Previously, we have reported initial developments of multifunctional drug candidates for AD based on two scaffolds - thioflavin-T and deferiprone. Individually, these molecules have shown several favorable functionalities, including dissociation of toxic amyloid-β aggregates, antioxidant and/or metal chelating ability that can pacify reactive oxygen species, plaque targeting, and blood-brain barrier penetration. In this work, the two scaffolds are augmented with a new functionality - acetylcholinesterase inhibition. This functionality is incorporated by derivatization with a carbamate group, which is the active group in some AD drugs currently in the market. We present the rationale for designing three novel compounds, their synthesis and characterization, including X-ray crystallographic data, and encouraging results from in vitro and computational acetylcholinesterase inhibition studies. Also, we evaluate the compounds as potential drug candidates by Lipinski's rules and cytotoxicity studies in a neuronal cell line. Overall, we demonstrate the feasibility of improving on two well established scaffolds, as well as show in vitro efficacy plus initial mode of action and biological compatibility data.

  3. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system.

    PubMed

    Machado, Alexandra; Cunha-Reis, Cassilda; Araújo, Francisca; Nunes, Rute; Seabra, Vítor; Ferreira, Domingos; das Neves, José; Sarmento, Bruno

    2016-10-15

    Topical pre-exposure prophylaxis (PrEP) with antiretroviral drugs holds promise in preventing vaginal transmission of HIV. However, significant biomedical and social issues found in multiple past clinical trials still need to be addressed in order to optimize protection and users' adherence. One approach may be the development of improved microbicide products. A novel delivery platform comprising drug-loaded nanoparticles (NPs) incorporated into a thin polymeric film base (NPs-in-film) was developed in order to allow the vaginal administration of the microbicide drug candidate tenofovir. The system was optimized for relevant physicochemical features and characterized for biological properties, namely cytotoxicity and safety in a mouse model. Tenofovir-loaded poly(lactic-co-glycolic acid) (PLGA)/stearylamine (SA) composite NPs with mean diameter of 127nm were obtained with drug association efficiency above 50%, and further incorporated into an approximately 115μm thick, hydroxypropyl methylcellulose/poly(vinyl alcohol)-based film. The system was shown to possess suitable mechanical properties for vaginal administration and to quickly disintegrate in approximately 9min upon contact with a simulated vaginal fluid (SVF). The original osmolarity and pH of SVF was not affected by the film. Tenofovir was also released in a biphasic fashion (around 30% of the drug in 15min, followed by sustained release up to 24h). The incorporation of NPs further improved the adhesive potential of the film to ex vivo pig vaginal mucosa. Cytotoxicity of NPs and film was significantly increased by the incorporation of SA, but remained at levels considered tolerable for vaginal delivery of tenofovir. Moreover, histological analysis of genital tissues and cytokine/chemokine levels in vaginal lavages upon 14days of daily vaginal administration to mice confirmed that tenofovir-loaded NPs-in-film was safe and did not induce any apparent histological changes or pro-inflammatory response. Overall, obtained data support that the proposed delivery system combining the use of polymeric NPs and a film base may constitute an exciting alternative for the vaginal administration of microbicide drugs in the context of topical PrEP. The development of nanotechnology-based microbicides is a recent but promising research field seeking for new strategies to circumvent HIV sexual transmission. Different reports detail on the multiple potential advantages of using drug nanocarriers for such purpose. However, one important issue being frequently neglected regards the development of vehicles for the administration of microbicide nanosystems. In this study, we propose and detail on the development of a nanoparticle-in-film system for the vaginal delivery of the microbicide drug candidate tenofovir. This is an innovative approach that, to our best knowledge, had never been tested for tenofovir. Results, including those from in vivo testing, sustain that the proposed system is safe and holds potential for further development as a vaginal microbicide product. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. In silico prediction of potential chemical reactions mediated by human enzymes.

    PubMed

    Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun

    2018-06-13

    Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.

  5. Recent advance in oxazole-based medicinal chemistry.

    PubMed

    Zhang, Hui-Zhen; Zhao, Zhi-Long; Zhou, Cheng-He

    2018-01-20

    Oxazole compounds containing nitrogen and oxygen atoms in the five-membered aromatic ring are readily able to bind with a variety of enzymes and receptors in biological systems via diverse non-covalent interactions, and thus display versatile biological activities. The related researches in oxazole-based derivatives including oxazoles, isoxazoles, oxazolines, oxadiazoles, oxazolidones, benzoxazoles and so on, as medicinal drugs have been an extremely active topic, and numerous excellent achievements have been acquired. Noticeably, a large number of oxazole compounds as clinical drugs or candidates have been frequently employed for the treatment of various types of diseases, which have shown their large development value and wide potential as medicinal agents. This work systematically reviewed the recent researches and developments of the whole range of oxazole compounds as medicinal drugs, including antibacterial, antifungal, antiviral, antitubercular, anticancer, anti-inflammatory and analgesic, antidiabetic, antiparasitic, anti-obesitic, anti-neuropathic, antioxidative as well as other biological activities. The perspectives of the foreseeable future in the research and development of oxazole-based compounds as medicinal drugs are also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic oxazole medicinal drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development.

    PubMed

    Brader, Mark L; Baker, Edward N; Dunn, Michael F; Laue, Thomas M; Carpenter, John F

    2017-02-01

    Every major biopharmaceutical company incorporates a protein crystallography unit that is central to its structure-based drug discovery efforts. Yet these capabilities are rarely leveraged toward the formal higher order structural characterization that is so challenging but integral to large-scale biologics manufacturing. Although the biotech industry laments the shortcomings of its favored biophysical techniques, x-ray crystallography is not even considered for drug development. Why not? We suggest that this is due, at least in part, to outdated thinking (for a recent industry-wide survey, see Gabrielson JP, Weiss IV WF. Technical decision-making with higher order structure data: starting a new dialogue. J Pharm Sci. 2015;104(4):1240-1245). We examine some myths surrounding protein crystallography and highlight the inherent properties of protein crystals (molecular identity, biochemical purity, conformational uniformity, and macromolecular crowding) as having practicable commonalities with today's patient-focused liquid drug products. In the new millennium, protein crystallography has become essentially a routine analytical test. Its application may aid the identification of better candidate molecules that are more amenable to high-concentration processing, formulation, and analysis thereby helping to make biologics drug development quicker, simpler, and cheaper. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    PubMed

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  8. Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery.

    PubMed

    Wang, Linlin; Zhu, Hongli; Shi, Ying; Ge, You; Feng, Xiaomiao; Liu, Ruiqing; Li, Yi; Ma, Yanwen; Wang, Lianhui

    2018-06-07

    Micromotors hold promise as drug carriers for targeted drug delivery owing to the characteristics of self-propulsion and directional navigation. However, several defects still exist, including high cost, short movement life, low drug loading and slow release rate. Herein, a novel catalytic micromotor based on porous zeolitic imidazolate framework-67 (ZIF-67) synthesized by a greatly simplified wet chemical method assisted with ultrasonication is described as an efficient anticancer drug carrier. These porous micromotors display effective autonomous motion in hydrogen peroxide and long durable movement life of up to 90 min. Moreover, the multifunctional micromotor ZIF-67/Fe3O4/DOX exhibits excellent performance in precise drug delivery under external magnetic field with high drug loading capacity of fluorescent anticancer drug DOX up to 682 μg mg-1 owing to its porous nature, high surface area and rapid drug release based on dual stimulus of catalytic reaction and solvent effects. Therefore, these porous ZIF-67-based catalytic micromotors combine the domains of metal-organic frameworks (MOFs) and micomotors, thus developing potential resources for micromotors and holding great potential as label-free and precisely controlled high-quality candidates of drug delivery systems for biomedical applications.

  9. Evaluation of a Novel Renewable Hepatic Cell Model for Prediction of Clinical CYP3A4 Induction Using a Correlation-Based Relative Induction Score Approach.

    PubMed

    Zuo, Rongjun; Li, Feng; Parikh, Sweta; Cao, Li; Cooper, Kirsten L; Hong, Yulong; Liu, Jin; Faris, Ronald A; Li, Daochuan; Wang, Hongbing

    2017-02-01

    Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing. Copyright © 2017 by The Author(s).

  10. Organotypic cultures as tools for testing neuroactive drugs - link between in-vitro and in-vivo experiments.

    PubMed

    Drexler, B; Hentschke, H; Antkowiak, B; Grasshoff, C

    2010-01-01

    The development of neuroactive drugs is a time consuming procedure. Candidate drugs must be run through a battery of tests, including receptor studies and behavioural tests on animals. As a rule, numerous substances with promising properties as assessed in receptor studies must be eliminated from the development pipeline in advanced test phases because of unforeseen problems like intolerable side-effects or unsatisfactory performance in the whole organism. Clearly, test systems of intermediate complexity would alleviate this inefficiency. In this review, we propose cultured organotypic brain slices as model systems that could bridge the 'interpolation gap' between receptors and the brain, with a focus on the development of new general anaesthetics with lesser side effects. General anaesthesia is based on the modulation of neurotransmitter receptors and other conductances located on neurons in diverse brain regions, including cerebral cortex and spinal cord. It is well known that different components of general anaesthesia, e.g. hypnosis and immobility, are produced by the depression of neuronal activity in distinct brain regions. The ventral horn of the spinal cord is an important structure for the induction of immobility. Thus, the potentially immobilizing effects of a newly designed drug can be estimated from its depressant effect on neuronal network activity in cultured spinal slices. A drug's sedative and hypnotic potential can be examined in cortical cultures. Combined with genetically engineered mice, this approach can point to receptor subtypes most relevant to the drug's intended net effect and in return can help in the design of more selective drugs. In conclusion, the use of organotypic cultures permits predictions of neuroactive properties of newly designed drugs on an intermediate level, and should therefore open up avenues for a more creative and economic drug development process.

  11. Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays

    NASA Astrophysics Data System (ADS)

    Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2016-03-01

    Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.

  12. Therapeutic approaches to preventing cell death in Huntington disease

    PubMed Central

    Kaplan, Anna; Stockwell, Brent R.

    2012-01-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  13. Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer.

    PubMed

    Senkowski, Wojciech; Zhang, Xiaonan; Olofsson, Maria Hägg; Isacson, Ruben; Höglund, Urban; Gustafsson, Mats; Nygren, Peter; Linder, Stig; Larsson, Rolf; Fryknäs, Mårten

    2015-06-01

    Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials. ©2015 American Association for Cancer Research.

  14. Drug Repositioning for Effective Prostate Cancer Treatment.

    PubMed

    Turanli, Beste; Grøtli, Morten; Boren, Jan; Nielsen, Jens; Uhlen, Mathias; Arga, Kazim Y; Mardinoglu, Adil

    2018-01-01

    Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.

  15. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    EPA Science Inventory

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  16. P2Y nucleotide receptors: promise of therapeutic applications.

    PubMed

    Jacobson, Kenneth A; Boeynaems, Jean-Marie

    2010-07-01

    Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G-protein-coupled receptors, termed P2Y. The receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease and thrombosis. On the horizon are novel treatments for cardiovascular diseases, inflammatory diseases and neurodegeneration. Published by Elsevier Ltd.

  17. Natural products as reservoirs of novel therapeutic agents

    PubMed Central

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it. PMID:29805348

  18. Plasmodium Sporozoite Biology.

    PubMed

    Frischknecht, Friedrich; Matuschewski, Kai

    2017-05-01

    Plasmodium sporozoite transmission is a critical population bottleneck in parasite life-cycle progression and, hence, a target for prophylactic drugs and vaccines. The recent progress of a candidate antisporozoite subunit vaccine formulation to licensure highlights the importance of sporozoite transmission intervention in the malaria control portfolio. Sporozoites colonize mosquito salivary glands, migrate through the skin, penetrate blood vessels, breach the liver sinusoid, and invade hepatocytes. Understanding the molecular and cellular mechanisms that mediate the remarkable sporozoite journey in the invertebrate vector and the vertebrate host can inform evidence-based next-generation drug development programs and immune intervention strategies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Virtual screening of compound libraries.

    PubMed

    Cerqueira, Nuno M F S A; Sousa, Sérgio F; Fernandes, Pedro A; Ramos, Maria João

    2009-01-01

    During the last decade, Virtual Screening (VS) has definitively established itself as an important part of the drug discovery and development process. VS involves the selection of likely drug candidates from large libraries of chemical structures by using computational methodologies, but the generic definition of VS encompasses many different methodologies. This chapter provides an introduction to the field by reviewing a variety of important aspects, including the different types of virtual screening methods, and the several steps required for a successful virtual screening campaign within a state-of-the-art approach, from target selection to postfilter application. This analysis is further complemented with a small collection important VS success stories.

  20. Trafficking of drug candidates relevant for sports drug testing: detection of non-approved therapeutics categorized as anabolic and gene doping agents in products distributed via the Internet.

    PubMed

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Schänzer, Wilhelm

    2011-05-01

    Identifying the use of non-approved drugs by cheating athletes has been a great challenge for doping control laboratories. This is due to the additional complexities associated with identifying relatively unknown and uncharacterized compounds and their metabolites as opposed to known and well-studied therapeutics. In 2010, the prohibited drug candidates and gene doping substances AICAR and GW1516, together with the selective androgen receptor modulator (SARM) MK-2866 were obtained by the Cologne Doping Control Laboratory from Internet suppliers and their structure, quantity, and formulation elucidated. All three compounds proved authentic as determined by liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry and comparison to reference material. While AICAR was provided as a colourless powder in 100 mg aliquots, GW1516 was obtained as an orange/yellow suspension in water/glycerol (150 mg/ml), and MK-2866 (25 mg/ml) was shipped dissolved in polyethylene glycol (PEG) 300. In all cases, the quantified amounts were considerably lower than indicated on the label. The substances were delivered via courier, with packaging identifying them as containing 'amino acids' and 'green tea extract', arguably to circumvent customs control. Although all of the substances were declared 'for research only', their potential misuse in illicit performance-enhancement cannot be excluded; moreover sports drug testing authorities should be aware of the facile availability of black market copies of these drug candidates. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Clinical pharmacology of novel anti-Alzheimer disease modifying medications.

    PubMed

    Caraci, Filippo; Bosco, Paolo; Leggio, Gian Marco; Malaguarnera, Michele; Drago, Filippo; Bucolo, Claudio; Salomone, Salvatore

    2013-01-01

    In recent years, efforts have been directed to develop "disease-modifying" medications to treat Alzheimer's disease (AD), able to halt or slow the pathological process. Because the earlier the treatment starts, the greater is the possibility of efficacy, it is important to set up biomarkers for early diagnosis of functional brain abnormalities, before the clinical manifestation of the overt disease. Up to now, strategies to develop disease-modifying drugs have mainly targeted β amyloid (Aβ, accumulation, aggregation, clearance) and/or tau protein (phosphorylation and aggregation). Active and passive immunotherapy is the main strategy aimed at increasing Aβ clearance. Unfortunately several candidate diseasemodifying drugs have failed in phase III clinical trials conducted in mild to moderate AD. More recently, in phase III studies, bapineuzumab has been discontinued because it did not prove clinically effective (despite its significant effect on biomarkers), while solaneuzumab has been found effective in slowing AD progression. Several methological problems have been recently pointed out to explain the lack of clinical efficacy of novel disease-modifying drug-treatments; moreover, new insights in pathophysiology of AD give the premise to develop novel drug targeting. Clinical trials recently completed and/or still ongoing are discussed in the present review.

  2. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis

    PubMed Central

    Tran, Anh T.; Watson, Emma E.; Pujari, Venugopal; Conroy, Trent; Dowman, Luke J.; Giltrap, Andrew M.; Pang, Angel; Wong, Weng Ruh; Linington, Roger G.; Mahapatra, Sebabrata; Saunders, Jessica; Charman, Susan A.; West, Nicholas P.; Bugg, Timothy D. H.; Tod, Julie; Dowson, Christopher G.; Roper, David I.; Crick, Dean C.; Britton, Warwick J.; Payne, Richard J.

    2017-01-01

    Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis. PMID:28248311

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Gyanendra; Swaminathan, Subramanyam

    Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are also potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, andmore » these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.« less

  4. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis

    NASA Astrophysics Data System (ADS)

    Tran, Anh T.; Watson, Emma E.; Pujari, Venugopal; Conroy, Trent; Dowman, Luke J.; Giltrap, Andrew M.; Pang, Angel; Wong, Weng Ruh; Linington, Roger G.; Mahapatra, Sebabrata; Saunders, Jessica; Charman, Susan A.; West, Nicholas P.; Bugg, Timothy D. H.; Tod, Julie; Dowson, Christopher G.; Roper, David I.; Crick, Dean C.; Britton, Warwick J.; Payne, Richard J.

    2017-03-01

    Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis.

  5. Synergic in vitro combinations of artemisinin, pyrimethamine and methylene blue against Neospora caninum.

    PubMed

    Pereira, Luiz Miguel; de Luca, Gabriela; Abichabki, Nathália de Lima Martins; Bronzon da Costa, Cássia Mariana; Yatsuda, Ana Patrícia

    2018-01-15

    Neospora caninum is a member of Apicomplexa phylum, the causative agent of neosporosis. The neosporosis combat is not well established and several strategies related to vaccine, chemotherapy and immune modulation are under development. In this work, we evaluated the effects of artemisinin (Art), methylene blue (MB) and pyrimethamine (Pyr) alone or associated, on N. caninum proliferation and elimination using LacZ tagged tachyzoites. The reactive oxygen species (ROS) production after incubation with Art were also performed. Our results indicate that combinations of classical antimalarial drugs improve the parasite control, allowing the use of three drugs in a single dose. Additionally, artemisinin demonstrated distinct ROS production patterns in intra and extracellular N. caninum forms. The drug repurposing appears as a suitable approach, allowing a fast and safe method to evaluate old drugs but novel candidates against neosporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Clinical views from the forefront of immunosuppressive drugs].

    PubMed

    Kobayashi, Eiji

    2005-11-01

    Recently, many immunosuppressants have been developed and some of them have already been introduced in clinical organ transplantation. With a new concept of immunoregulation, which focuses on prevention of rejection and over-immunosuppression, the latest protocol has been conducted. Chimeric or humanized antibodies targeting the lymphocyte surface molecule such as CD19, 20, 25, 40, and 52 are administrated in the induction phase, and calcineurin inhibitors (cyclosporin and tacrolimus) are used as key drugs. For tapering the doses of them, the combined application of anti-metabolic agents of azathioprine, mizoribine, or mycophenolate mofetil (MMF) has been proved effective. Lymphocyte forming drugs induce unique immunoregulation, targeting at sphingosine 1-phosphate (SlP) receptors. FTY720 is now in the procedure of clinical trial to compare with MMF. KRP203 is also a candidate for more specific SIP receptor agonist. In this issue, I reviewed the recent immunosuppressive strategy and focused on the advance of novel immunosuppressive drugs.

  7. Novel inhibitor candidates of TRPV2 prevent damage of dystrophic myocytes and ameliorate against dilated cardiomyopathy in a hamster model.

    PubMed

    Iwata, Yuko; Katayama, Yoshimi; Okuno, Yasushi; Wakabayashi, Shigeo

    2018-03-06

    Transient receptor potential cation channel, subfamily V, member 2 (TRPV2) is a principal candidate for abnormal Ca 2+ -entry pathways, which is a potential target for therapy of muscular dystrophy and cardiomyopathy. Here, an in silico drug screening and the following cell-based screening to measure the TRPV2 activation were carried out in HEK293 cells expressing TRPV2 using lead compounds (tranilast or SKF96365) and off-patent drug stocks. We identified 4 chemical compounds containing amino-benzoyl groups and 1 compound (lumin) containing an ethylquinolinium group as candidate TRPV2 inhibitors. Three of these compounds inhibited Ca 2+ entry through both mouse and human TRPV2, with IC 50 of less than 10 μM, but had no apparent effect on other members of TRP family such as TRPV1 and TRPC1. Particularly, lumin inhibited agonist-induced TRPV2 channel activity at a low dose. These compounds inhibited abnormally increased Ca 2+ influx and prevented stretch-induced skeletal muscle damage in cultured myocytes from dystrophic hamsters (J2N-k). Further, they ameliorated cardiac dysfunction, and prevented disease progression in vivo in the same J2N-k hamsters developing dilated cardiomyopathy as well as muscular dystrophy. The identified compounds described here are available as experimental tools and represent potential treatments for patients with cardiomyopathy and muscular dystrophy.

  8. Novel inhibitor candidates of TRPV2 prevent damage of dystrophic myocytes and ameliorate against dilated cardiomyopathy in a hamster model

    PubMed Central

    Iwata, Yuko; Katayama, Yoshimi; Okuno, Yasushi; Wakabayashi, Shigeo

    2018-01-01

    Transient receptor potential cation channel, subfamily V, member 2 (TRPV2) is a principal candidate for abnormal Ca2+-entry pathways, which is a potential target for therapy of muscular dystrophy and cardiomyopathy. Here, an in silico drug screening and the following cell-based screening to measure the TRPV2 activation were carried out in HEK293 cells expressing TRPV2 using lead compounds (tranilast or SKF96365) and off-patent drug stocks. We identified 4 chemical compounds containing amino-benzoyl groups and 1 compound (lumin) containing an ethylquinolinium group as candidate TRPV2 inhibitors. Three of these compounds inhibited Ca2+ entry through both mouse and human TRPV2, with IC50 of less than 10 μM, but had no apparent effect on other members of TRP family such as TRPV1 and TRPC1. Particularly, lumin inhibited agonist-induced TRPV2 channel activity at a low dose. These compounds inhibited abnormally increased Ca2+ influx and prevented stretch-induced skeletal muscle damage in cultured myocytes from dystrophic hamsters (J2N-k). Further, they ameliorated cardiac dysfunction, and prevented disease progression in vivo in the same J2N-k hamsters developing dilated cardiomyopathy as well as muscular dystrophy. The identified compounds described here are available as experimental tools and represent potential treatments for patients with cardiomyopathy and muscular dystrophy. PMID:29581825

  9. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: Its evaluation using curcumin.

    PubMed

    Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Prabhu, Sunil; M, Rafiq; P, Rangesh

    2017-10-15

    Psoriasis is considered to be a systemic disease of immune dysfunction. It is still unclear what triggers the inflammatory cascade associated with psoriasis but recent evidences suggest the vital role of IL-23/IL-17A cytokine axis in etiology of psoriasis. Several studies have been conducted in psoriatic-like animal models but ethical issues and complexity surrounding it halts the screening of new anti-psoriatic drug candidates. Hence, in this study, we developed a new in-vitro model for psoriasis using imiquimod (IMQ) induced differentiated HaCaT cells which could be used for screening of new anti-psoriatic drug candidates. The differentiated HaCaT cells were treated with IMQ (100μM) to induce psoriatic like inflammation and its effect was investigated using a natural anti-psoriatic compound, curcumin. The proliferation of psoriatic-like cells was inhibited by curcumin at 25 and 50µM concentrations. The psoriatic-like cells decreased in number with increase in apoptotic and dead cells upon curcumin treatment. Curcumin inhibited the proliferation of IMQ-induced differentiated HaCaT cells (Psoriatic-like cells) by down-regulation of pro-inflammatory cytokines, interleukin-17, tumor necrosis factor-α, interferon-γ, and interleukin-6. Apart from this, curcumin significantly enhanced the skin-barrier function by up-regulation of involucrin (iNV) and filaggrin (FLG), the regulators of epidermal skin barrier. The IMQ-induced differentiated HaCaT in vitro model recapitulated some aspects of the psoriasis pathogenesis similar to murine model. Henceforth, we conclude that this model may be used for rapid screening of anti-psoriatic drug candidates and warrant further mechanistic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Panitumumab-Conjugated Pt-Drug Nanomedicine for Enhanced Efficacy of Combination Targeted Chemotherapy against Colorectal Cancer.

    PubMed

    Tsai, Ming-Hsien; Pan, Chao-Hsuan; Peng, Cheng-Liang; Shieh, Ming-Jium

    2017-07-01

    Targeted combination chemotherapy (TCT) has recently been used to increase the induction of tumor cell death. In particular, the combination of Panitumumab and the platinum (Pt)-derived chemotherapeutic drug Oxaliplatin is clinically effective against KRAS and BRAF wild-type colorectal cancer (CRC) cells that overexpress epidermal growth factor receptors, and significantly greater efficacy is observed than with either drug alone. However, low accumulation of Pt drug in tumor sites prevents achievement of ideal efficacy. To develop an alternative drug therapy that achieves the ideal efficacy of TCT, the novel nanomedicine NANO Pt-Pan using self-assembled dichloro(1,2-diaminocyclohexane)Pt(II)-modified Panitumumab is generated. Treatments with NANO Pt-Pan lead to significant accumulation of Pt drug and Panitumumab in tumors, reflecting enhanced permeability and retention effect, active targeting, and sustained circulation of the Pt drug in the blood. In addition, NANO Pt-Pan has excellent in vivo anti-CRC efficacy. These data indicate that NANO Pt-Pan has high potential as a candidate nanomedicine for CRC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery.

    PubMed

    Gourevich, Dana; Volovick, Alexander; Dogadkin, Osnat; Wang, Lijun; Mulvana, Helen; Medan, Yoav; Melzer, Andreas; Cochran, Sandy

    2015-07-01

    Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children.

    PubMed

    Liu, Yue; Sheng, Ju; Fokine, Andrei; Meng, Geng; Shin, Woong-Hee; Long, Feng; Kuhn, Richard J; Kihara, Daisuke; Rossmann, Michael G

    2015-01-02

    Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report here the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. We also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, be a possible drug candidate to alleviate EV-D68 outbreaks. Copyright © 2015, American Association for the Advancement of Science.

  13. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yue; Sheng, Ju; Fokine, Andrei

    Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report in this paper the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. Finally, we also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, bemore » a possible drug candidate to alleviate EV-D68 outbreaks.« less

  14. Obesity Pharmacotherapy: Current Perspectives and Future Directions

    PubMed Central

    Misra, Monika

    2013-01-01

    The rising tide of obesity and its related disorders is one of the most pressing health concerns worldwide, yet existing medicines to combat the problem are disappointingly limited in number and effectiveness. Recent advances in mechanistic insights into the neuroendocrine regulation of body weight have revealed an expanding list of molecular targets for novel, rationally designed antiobesity pharmaceutical agents. Antiobesity drugs act via any of four mechanisms: 1) decreasing energy intake, 2) increasing energy expenditure or modulating lipid metabolism, 3) modulating fat stores or adipocyte differentiation, and 4) mimicking caloric restriction. Various novel drug candidates and targets directed against obesity are currently being explored. A few of them are also in the later phases of clinical trials. This review discusses the development of novel antiobesity drugs based on current understanding of energy homeostasis PMID:23092275

  15. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children

    DOE PAGES

    Liu, Yue; Sheng, Ju; Fokine, Andrei; ...

    2015-01-02

    Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report in this paper the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. Finally, we also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, bemore » a possible drug candidate to alleviate EV-D68 outbreaks.« less

  16. Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification

    NASA Astrophysics Data System (ADS)

    Zhu, Marie M.; Mollet, Michael; Hubert, Rene S.

    The biotechnology and pharmaceutical industries have seen a recent surge in the development of biological drug products manufactured from engineered mammalian cell lines. Since the hugely successful launch of human tissue plasminogen activator in 1987 and erythropoietin in 1988, the biopharmaceutical market has grown immensely. Global sales in 2003 exceeded US 30 billion.1 Currently, a total of 108 biotherapeutics are approved and available to patients (Table 32.1). In addition, 324 medically related, biotechnology-derived medicines for nearly 150 diseases are in clinical trials or under review by the U.S. Food and Drug Administration.2 These biopharmaceutical candidates promise to bring more and better treatments to patients. Compared to small molecule drugs, biotherapeutics show exquisite specificity with fewer off-target interactions and improved safety profiles.

  17. A Micro-Polyethylene Glycol Precipitation Assay as a Relative Solubility Screening Tool for Monoclonal Antibody Design and Formulation Development.

    PubMed

    Toprani, Vishal M; Joshi, Sangeeta B; Kueltzo, Lisa A; Schwartz, Richard M; Middaugh, C Russell; Volkin, David B

    2016-08-01

    Adequate protein solubility is an important prerequisite for development, manufacture, and administration of biotherapeutic drug candidates, especially for high-concentration protein formulations. A previously established method for determining the relative apparent solubility (thermodynamic activity) of proteins using polyethylene glycol (PEG) precipitation is adapted for screening and comparing monoclonal antibody (mAb) candidates where only limited quantities (≤1 mg) are available. This micro-PEG assay is used to evaluate various broadly neutralizing mAb candidates to HIV-1 viral spike (gp120 and gp41 glycoproteins). Using ∼1 mg of VRC01-WT mAb per assay, the precision of the micro-PEG assay was established. A series of 7 different broadly neutralizing mAbs to the HIV-1 viral spike proteins were compared by curve shape (%PEG vs. protein concentration), %PEGmidpoint determinations, and extrapolated apparent solubility values. Numerous formulation conditions were then evaluated for their relative effects on the VRC01-WT mAb. The PEGmidpt and apparent solubility values of VRC01-WT mAb decreased as the solution pH increased and increased as NaCl and arginine were added. A final optimization of the micro-PEG assay established that amounts as low as 0.1-0.2 mg can be used. Thus, the micro-PEG assay has significant potential as a relative solubility screening tool during candidate selection and early formulation development. Copyright © 2016 American Pharmacists Association®. All rights reserved.

  18. Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular Frameworks.

    PubMed

    Kontijevskis, Aleksejs

    2017-04-24

    The emergence of the DNA-encoded chemical libraries (DEL) field in the past decade has attracted the attention of the pharmaceutical industry as a powerful mechanism for the discovery of novel drug-like hits for various biological targets. Nuevolution Chemetics technology enables DNA-encoded synthesis of billions of chemically diverse drug-like small molecule compounds, and the efficient screening and optimization of these, facilitating effective identification of drug candidates at an unprecedented speed and scale. Although many approaches have been developed by the cheminformatics community for the analysis and visualization of drug-like chemical space, most of them are restricted to the analysis of a maximum of a few millions of compounds and cannot handle collections of 10 8 -10 12 compounds typical for DELs. To address this big chemical data challenge, we developed the Reduced Complexity Molecular Frameworks (RCMF) methodology as an abstract and very general way of representing chemical structures. By further introducing RCMF descriptors, we constructed a global framework map of drug-like chemical space and demonstrated how chemical space occupied by multi-million-member drug-like Chemetics DNA-encoded libraries and virtual combinatorial libraries with >10 12 members could be analyzed and mapped without a need for library enumeration. We further validate the approach by performing RCMF-based searches in a drug-like chemical universe and mapping Chemetics library selection outputs for LSD1 targets on a global framework chemical space map.

  19. Towards precision medicine-based therapies for glioblastoma: interrogating human disease genomics and mouse phenotypes.

    PubMed

    Chen, Yang; Gao, Zhen; Wang, Bingcheng; Xu, Rong

    2016-08-22

    Glioblastoma (GBM) is the most common and aggressive brain tumors. It has poor prognosis even with optimal radio- and chemo-therapies. Since GBM is highly heterogeneous, drugs that target on specific molecular profiles of individual tumors may achieve maximized efficacy. Currently, the Cancer Genome Atlas (TCGA) projects have identified hundreds of GBM-associated genes. We develop a drug repositioning approach combining disease genomics and mouse phenotype data towards predicting targeted therapies for GBM. We first identified disease specific mouse phenotypes using the most recently discovered GBM genes. Then we systematically searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with GBM. We evaluated the ranks for approved and novel GBM drugs, and compared with an existing approach, which also use the mouse phenotype data but not the disease genomics data. We achieved significantly higher ranks for the approved and novel GBM drugs than the earlier approach. For all positive examples of GBM drugs, we achieved a median rank of 9.2 45.6 of the top predictions have been demonstrated effective in inhibiting the growth of human GBM cells. We developed a computational drug repositioning approach based on both genomic and phenotypic data. Our approach prioritized existing GBM drugs and outperformed a recent approach. Overall, our approach shows potential in discovering new targeted therapies for GBM.

  20. Identification of the mechanism of action of a glucokinase activator from oral glucose tolerance test data in type 2 diabetic patients based on an integrated glucose-insulin model.

    PubMed

    Jauslin, Petra M; Karlsson, Mats O; Frey, Nicolas

    2012-12-01

    A mechanistic drug-disease model was developed on the basis of a previously published integrated glucose-insulin model by Jauslin et al. A glucokinase activator was used as a test compound to evaluate the model's ability to identify a drug's mechanism of action and estimate its effects on glucose and insulin profiles following oral glucose tolerance tests. A kinetic-pharmacodynamic approach was chosen to describe the drug's pharmacodynamic effects in a dose-response-time model. Four possible mechanisms of action of antidiabetic drugs were evaluated, and the corresponding affected model parameters were identified: insulin secretion, glucose production, insulin effect on glucose elimination, and insulin-independent glucose elimination. Inclusion of drug effects in the model at these sites of action was first tested one-by-one and then in combination. The results demonstrate the ability of this model to identify the dual mechanism of action of a glucokinase activator and describe and predict its effects: Estimating a stimulating drug effect on insulin secretion and an inhibiting effect on glucose output resulted in a significantly better model fit than any other combination of effect sites. The model may be used for dose finding in early clinical drug development and for gaining more insight into a drug candidate's mechanism of action.

Top