Sample records for drug development studies

  1. Impact of Availability of Companion Diagnostics on the Clinical Development of Anticancer Drugs.

    PubMed

    Tibau, Ariadna; Díez-González, Laura; Navarro, Beatriz; Galán-Moya, Eva M; Templeton, Arnoud J; Seruga, Bostjan; Pandiella, Atanasio; Amir, Eitan; Ocana, Alberto

    2017-06-01

    Companion diagnostics permit the selection of patients likely to respond to targeted anticancer drugs; however, it is unclear if the drug development process differs between drugs developed with or without companion diagnostics. Identification of differences in study design could help future clinical development. Anticancer drugs approved for use in solid tumors between 28 September 2000 and 4 January 2014 were identified using a search of the US FDA website. Phase III trials supporting registration were extracted from the drug label. Each published study was reviewed to obtain information about the phase I and II trials used for the development of the respective drug. We identified 35 drugs and 59 phase III randomized trials supporting regulatory approval. Fifty-three phase I trials and 47 phase II trials were cited in the studies and were used to support the design of these phase III trials. The approval of drugs using a companion diagnostic has increased over time (p for trend 0.01). Expansion cohorts were more frequently observed with drugs developed with a companion diagnostic (62 vs. 20%; p = 0.005). No differences between drugs developed with or without a companion diagnostic were observed for the design of phase I and II studies. The approval of drugs developed with a companion diagnostic has increased over time. The availability of a companion diagnostic was associated with more frequent use of phase I expansion cohorts comprising patients selected by the companion diagnostic.

  2. The Development of a Test to Assess Drug Using Behavior.

    ERIC Educational Resources Information Center

    Althoff, Michael E.

    The objective of the study was to develop a test which could measure both the qualitative and quantitative aspects of drug-using behavior, including such factors as attitudes toward drugs, experience with drugs, and knowledge about drugs. The Drug Use Scale was developed containing 134 items and dealing with five classes of drugs: marijuana,…

  3. 78 FR 32669 - New Approaches to Antibacterial Drug Development; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...] New Approaches to Antibacterial Drug Development; Request for Comments AGENCY: Food and Drug... related to antibacterial drug development: Potential new study designs, proposed priorities for CDER guidances, and strategies intended to slow the rate of emerging resistance to antibacterial drugs. The...

  4. Membrane transporters in drug development

    PubMed Central

    2011-01-01

    Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labeling. PMID:20190787

  5. Pharmacokinetic/Pharmacodynamic-Driven Drug Development

    PubMed Central

    Gallo, James M.

    2010-01-01

    The drug discovery and development enterprise, traditionally an industrial juggernaut, has spanned into the academic arena that is partially motivated by the National Institutes of Health Roadmap highlighting translational science and medicine. Since drug discovery and development represents a pipeline of basic to clinical investigations it meshes well with the prime “bench to the bedside” directive of translational medicine. The renewed interest in drug discovery and develpoment in academia provides an opportunity to rethink the hiearchary of studies with the hope to improve the staid approaches that have been critizied for lacking innovation. One area that has received limited attention concerns the use of pharmacokinetic [PK] and pharmacodynamic [PD] studies in the drug development process. Using anticancer drug development as a focus, this review will address past and current deficencies in how PK/PD studies are conducted and offer new strategies that might bridge the gap between preclinical and clinical trials. PMID:20687184

  6. Metabonomics and drug development.

    PubMed

    Ramana, Pranov; Adams, Erwin; Augustijns, Patrick; Van Schepdael, Ann

    2015-01-01

    Metabolites as an end product of metabolism possess a wealth of information about altered metabolic control and homeostasis that is dependent on numerous variables including age, sex, and environment. Studying significant changes in the metabolite patterns has been recognized as a tool to understand crucial aspects in drug development like drug efficacy and toxicity. The inclusion of metabonomics into the OMICS study platform brings us closer to define the phenotype and allows us to look at alternatives to improve the diagnosis of diseases. Advancements in the analytical strategies and statistical tools used to study metabonomics allow us to prevent drug failures at early stages of drug development and reduce financial losses during expensive phase II and III clinical trials. This chapter introduces metabonomics along with the instruments used in the study; in addition relevant examples of the usage of metabonomics in the drug development process are discussed along with an emphasis on future directions and the challenges it faces.

  7. Multi-target drugs: the trend of drug research and development.

    PubMed

    Lu, Jin-Jian; Pan, Wei; Hu, Yuan-Jia; Wang, Yi-Tao

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future.

  8. Do drug prices reflect development time and government investment?

    PubMed

    Keyhani, Salomeh; Diener-West, Marie; Powe, Neil

    2005-08-01

    Lengthy development times are cited by the pharmaceutical industry as one reason for high drug prices. We compared the prices of different groups of drugs after accounting for development time, government support, market size, and other drug characteristics. We conducted a retrospective study of 180 human therapeutic drugs categorized into 8 drug groups by assembling data on drug development times, government support, drug characteristics, and prices. First, we compared the development time and level of government support across the 8 drug groups. Second, we assessed the independent effect of drug group on median price per day in a multivariable analysis, controlling for development time and all other variables. Thirty percent of antiretroviral drugs had government patents compared with 16% of other infectious disease drugs, 6% of cancer drugs, and less than 6% of any other drug group (P < 0.002). Fifty percent of antiretrovirals had NIH trials listed in the new drug application for approval by the Food and Drug Administration compared with less than 6% of any other drug group (P < 0.001). More antiretroviral and cancer drugs received fast track status and accelerated review during regulatory review by the Food and Drug Administration (P < 0.001). The median price of antiretrovirals was 8 US dollars per day more, cancer drugs 11 US dollars per day more, than the reference group after adjustment for other variables (P < 0.001). Development time was not associated with drug price. Antiretroviral and cancer drugs, even after accounting for development time, are among the most highly priced medications. Notably, drugs with rapid development and more government support did not have lower drug prices.

  9. Regulatory Considerations of Bioequivalence Studies for Oral Solid Dosage Forms in Japan.

    PubMed

    Kuribayashi, Ryosuke; Takishita, Tomoko; Mikami, Kenichi

    2016-08-01

    Bioequivalence (BE) studies are used to infer the therapeutic equivalence of generic drug products to original drug products throughout the world. In BE studies, bioavailability (BA) should be compared between the original and generic drug products, with BA defined as the rate and extent of absorption of active pharmaceutical ingredients or active metabolites from a product into the systemic circulation. For most of BE studies conducted during generic drug development, BA comparisons are performed in single-dose studies. In Japan, the revised "Guideline for Bioequivalence Studies of Generic Products" was made available in 2012 by the Ministry of Health, Labour, and Welfare, and generic drug development is currently conducted based on this guideline. Similarly, the U.S. Food and Drug Administration and European Medicines Agency have published guidance and guideline on generic drug development. This article introduces the guideline on Japanese BE studies for oral solid dosage forms and the dissolution tests for the similarity and equivalence evaluation between the original and generic drug products. Additionally, we discuss some of the similarities and differences in guideline between Japan, the United States, and the European Union. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. The cost of drug development: a systematic review.

    PubMed

    Morgan, Steve; Grootendorst, Paul; Lexchin, Joel; Cunningham, Colleen; Greyson, Devon

    2011-04-01

    We aimed to systematically review and assess published estimates of the cost of developing new drugs. We sought English language research articles containing original estimates of the cost of drug development that were published from 1980 to 2009, inclusive. We searched seven databases and used citation tracing and expert referral to identify studies. We abstracted qualifying studies for information about methods, data sources, study samples, and key results. Thirteen articles were found to meet our inclusion criteria. Estimates of the cost of drug development ranged more than 9-fold, from USD$92 million cash (USD$161 million capitalized) to USD$883.6 million cash (USD$1.8 billion capitalized). Differences in methods, data sources, and time periods explain some of the variation in estimates. Lack of transparency limits many studies. Confidential information provided by unnamed companies about unspecified products forms all or part of the data underlying 10 of the 13 studies. Despite three decades of research in this area, no published estimate of the cost of developing a drug can be considered a gold standard. Studies on this topic should be subjected to reasonable audit and disclosure of - at the very least - the drugs which authors purport to provide development cost estimates for. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Remote controlled capsules in human drug absorption (HDA) studies.

    PubMed

    Wilding, Ian R; Prior, David V

    2003-01-01

    The biopharmaceutical complexity of today's new drug candidates provides significant challenges for pharmaceutical scientists in terms of both candidate selection and optimizing subsequent development strategy. In addition, life cycle management of marketed drugs has become an important income stream for pharmaceutical companies, but the selection of least risk/highest benefit strategies is far from simple. The proactive adoption of human drug absorption (HDA) studies using remote controlled capsules offers the pharmaceutical scientist significant guidance for planning a route through the maze of product development. This review examines the position of HDA studies in drug development, using a variety of case histories and an insightful update on remote controlled capsules to achieve site-specific delivery.

  12. The relationship between perceived discrimination and high-risk social ties among illicit drug users in New York City, 2006-2009.

    PubMed

    Crawford, Natalie D; Ford, Chandra; Galea, Sandro; Latkin, Carl; Jones, Kandice C; Fuller, Crystal M

    2013-01-01

    Discrimination can influence risk of disease by promoting unhealthy behaviors (e.g., smoking, alcohol use). Whether it influences the formation of high-risk social ties that facilitate HIV transmission is unclear. Using cross-sectional data from a cohort of illicit drug users, this study examined the association between discrimination based on race, drug use and prior incarceration and risky sex and drug ties. Negative binomial regression models were performed. Participants who reported discrimination based on race and drug use had significantly more sex and drug-using ties. But, after accounting for both racial and drug use discrimination, only racial discrimination was associated with increased sex, drug-using, and injecting ties. Drug users who experience discrimination and subsequently develop more sex and drug-using ties, increase their risk of contracting HIV. Future longitudinal studies illuminating the pathways linking discrimination and social network development may guide intervention development and identify drug-using subpopulations at high risk for disease transmission.

  13. Low hanging fruit in infectious disease drug development.

    PubMed

    Kraus, Carl N

    2008-10-01

    Cost estimates for developing new molecular entities (NME) are reaching non-sustainable levels and coupled with increasing regulatory requirements and oversight have led many pharmaceutical sponsors to divest their anti-microbial development portfolios [Projan SJ: Why is big Pharma getting out of anti-bacterial drug discovery?Curr Opin Microbiol 2003, 6:427-430] [Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE, Jr: Trends in antimicrobial drug development: implications for the future.Clin Infect Dis 2004, 38:1279-1286]. Operational issues such as study planning and execution are significant contributors to the overall cost of drug development that can benefit from the leveraging of pre-randomization data in an evidence-based approach to protocol development, site selection and patient recruitment. For non-NME products there is even greater benefit from available data resources since these data may permit smaller and shorter study programs. There are now many available open source intelligence (OSINT) resources that are being integrated into drug development programs, permitting an evidence-based or 'operational epidemiology' approach to study planning and execution.

  14. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies.

    PubMed

    Andrade, E L; Bento, A F; Cavalli, J; Oliveira, S K; Schwanke, R C; Siqueira, J M; Freitas, C S; Marcon, R; Calixto, J B

    2016-12-12

    The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose.

  15. Corneal cell culture models: a tool to study corneal drug absorption.

    PubMed

    Dey, Surajit

    2011-05-01

    In recent times, there has been an ever increasing demand for ocular drugs to treat sight threatening diseases such as glaucoma, age-related macular degeneration and diabetic retinopathy. As more drugs are developed, there is a great need to test in vitro permeability of these drugs to predict their efficacy and bioavailability in vivo. Corneal cell culture models are the only tool that can predict drug absorption across ocular layers accurately and rapidly. Cell culture studies are also valuable in reducing the number of animals needed for in vivo studies which can increase the cost of the drug developmental process. Currently, rabbit corneal cell culture models are used to predict human corneal absorption due to the difficulty in human corneal studies. More recently, a three dimensional human corneal equivalent has been developed using three different cell types to mimic the human cornea. In the future, human corneal cell culture systems need to be developed to be used as a standardized model for drug permeation.

  16. Clinical trials in drug development: a minimalistic approach.

    PubMed

    Verweij, Jaap

    2012-05-01

    Drug development in oncology finds itself at the crossroad of unique opportunities and major challenges. The old paradigms should and can be replaced by a system that better matches the right patients to the right compounds and puts much more emphasis on the early stages of drug development. The clinical phases of drug development will no longer be split into phase I, II, and III studies, but rather into 'functional target pharmacology studies', followed by 'proof of concept studies'. The resulting development flow becomes Apollo-capsule shaped. Although randomized studies will still be needed for drugs using targets in the tumor environment, or for combinations of agents, drug registration might proceed without these if all of the following criteria are met in early development: availability of preclinical convincing evidence that the drug's target is the functional driver behind the disease phenotype, availability of a predictive biomarker that enables appropriate and actual patient selection in early pharmacology studies, a Response Evaluation Criteria In Solid Tumors (RECIST)-based single agent response rate of at least 50%, and/or a progression at first tumor assessment rate of 15% or less, a duration of absence of progression (stable disease) beyond doubt and considered clinically relevant, and no major safety concern. This set is not yet mature, but may be adapted over time. The concerns related to registering agents on the basis of small datasets can be adequately addressed by obligatory postmarketing hypothesis driven studies.

  17. Economics of new oncology drug development.

    PubMed

    DiMasi, Joseph A; Grabowski, Henry G

    2007-01-10

    Review existing studies and provide new results on the development, regulatory, and market aspects of new oncology drug development. We utilized data from the US Food and Drug Administration (FDA), company surveys, and publicly available commercial business intelligence databases on new oncology drugs approved in the United States and on investigational oncology drugs to estimate average development and regulatory approval times, clinical approval success rates, first-in-class status, and global market diffusion. We found that approved new oncology drugs to have a disproportionately high share of FDA priority review ratings, of orphan drug designations at approval, and of drugs that were granted inclusion in at least one of the FDA's expedited access programs. US regulatory approval times were shorter, on average, for oncology drugs (0.5 years), but US clinical development times were longer on average (1.5 years). Clinical approval success rates were similar for oncology and other drugs, but proportionately more of the oncology failures reached expensive late-stage clinical testing before being abandoned. In relation to other drugs, new oncology drug approvals were more often first-in-class and diffused more widely across important international markets. The market success of oncology drugs has induced a substantial amount of investment in oncology drug development in the last decade or so. However, given the great need for further progress, the extent to which efforts to develop new oncology drugs will grow depends on future public-sector investment in basic research, developments in translational medicine, and regulatory reforms that advance drug-development science.

  18. Developing an Occupational Drug Abuse Program: Considerations and Approaches. Services Research Monograph Series.

    ERIC Educational Resources Information Center

    Stephen, Mae; Prentice, Robert

    This monograph, developed as a guide for companies interested in establishing drug abuse programs, begins with a brief summary of studies assessing the extent and costs of employee drug use. The next section addresses some practical and conceptual issues about establishing a drug abuse program. Suggestions for implementing a drug abuse program are…

  19. Imaging in Central Nervous System Drug Discovery.

    PubMed

    Gunn, Roger N; Rabiner, Eugenii A

    2017-01-01

    The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neonatal Safety Information Reported to the FDA During Drug Development Studies

    PubMed Central

    Avant, Debbie; Baer, Gerri; Moore, Jason; Zheng, Panli; Sorbello, Alfred; Ariagno, Ron; Yao, Lynne; Burckart, Gilbert J.; Wang, Jian

    2017-01-01

    Background Relatively few neonatal drug development studies have been conducted, but an increase is expected with the enactment of the Food and Drug Administration Safety and Innovation Act (FDASIA). Understanding the safety of drugs studied in neonates is complicated by the unique nature of the population and the level of illness. The objective of this study was to examine neonatal safety data submitted to the FDA in studies pursuant to the Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA) between 1998 and 2015. Methods FDA databases were searched for BPCA and/or PREA studies that enrolled neonates. Studies that enrolled a minimum of 3 neonates were analyzed for the presence and content of neonatal safety data. Results The analysis identified 40 drugs that were studied in 3 or more neonates. Of the 40 drugs, 36 drugs received a pediatric labeling change as a result of studies between 1998 and 2015, that included information from studies including neonates. Fourteen drugs were approved for use in neonates. Clinical trials for 20 of the drugs reported serious adverse events (SAEs) in neonates. The SAEs primarily involved cardiovascular events such as bradycardia and/or hypotension or laboratory abnormalities such as anemia, neutropenia, and electrolyte disturbances. Deaths were reported during studies of 9 drugs. Conclusions Our analysis revealed that SAEs were reported in studies involving 20 of the 40 drugs evaluated in neonates, with deaths identified in 9 of those studies. Patients enrolled in studies were often critically ill, which complicated determination of whether an adverse event was drug-related. We conclude that the traditional means for collecting safety information in drug development trials needs to be adjusted for neonates and will require the collaboration of regulators, industry, and the clinical and research communities to establish appropriate definitions and reporting strategies for the neonatal population. PMID:28804696

  1. Personalized medicine and rescuing "unsafe" drugs with pharmacogenomics: a regulatory perspective.

    PubMed

    Avery, Matthew

    2010-01-01

    The sequencing of the human genome and the revolution it has caused in biomedical science created hope for a new era in the prevention and treatment of serious illnesses. In the area of drug development, much of this hope is focused in the field of pharmacogenomics (PGx), which is the study of how individual genetic differences affect drug response. Many people expected advances in pharmacogenomics to lead to the rapid development of new "personalized medicines," where drugs and dosages could be tailored specifically to a patient's genotype. However, pharmacogenomics has largely failed to meet these expectations and the Food and Drug Administration has only approved a handful of drugs that rely on PGx data. This article evaluates how FDA regulates the use of pharmacogenomics and discusses how the current regulatory scheme fails to provide an adequate route for developing personalized medicine. The article then proposes modifying the current regulatory regime to encourage development of PGx-based drugs by either allowing PGx-based drugs to be approved with unvalidated biomarkers if the sponsor commits to Phase IV studies or using the Orphan Drug Act to provide economic incentives.

  2. Data-intensive drug development in the information age: applications of Systems Biology/Pharmacology/Toxicology.

    PubMed

    Kiyosawa, Naoki; Manabe, Sunao

    2016-01-01

    Pharmaceutical companies continuously face challenges to deliver new drugs with true medical value. R&D productivity of drug development projects depends on 1) the value of the drug concept and 2) data and in-depth knowledge that are used rationally to evaluate the drug concept's validity. A model-based data-intensive drug development approach is a key competitive factor used by innovative pharmaceutical companies to reduce information bias and rationally demonstrate the value of drug concepts. Owing to the accumulation of publicly available biomedical information, our understanding of the pathophysiological mechanisms of diseases has developed considerably; it is the basis for identifying the right drug target and creating a drug concept with true medical value. Our understanding of the pathophysiological mechanisms of disease animal models can also be improved; it can thus support rational extrapolation of animal experiment results to clinical settings. The Systems Biology approach, which leverages publicly available transcriptome data, is useful for these purposes. Furthermore, applying Systems Pharmacology enables dynamic simulation of drug responses, from which key research questions to be addressed in the subsequent studies can be adequately informed. Application of Systems Biology/Pharmacology to toxicology research, namely Systems Toxicology, should considerably improve the predictability of drug-induced toxicities in clinical situations that are difficult to predict from conventional preclinical toxicology studies. Systems Biology/Pharmacology/Toxicology models can be continuously improved using iterative learn-confirm processes throughout preclinical and clinical drug discovery and development processes. Successful implementation of data-intensive drug development approaches requires cultivation of an adequate R&D culture to appreciate this approach.

  3. Accelerating drug development for neuroblastoma - New Drug Development Strategy: an Innovative Therapies for Children with Cancer, European Network for Cancer Research in Children and Adolescents and International Society of Paediatric Oncology Europe Neuroblastoma project.

    PubMed

    Moreno, Lucas; Caron, Hubert; Geoerger, Birgit; Eggert, Angelika; Schleiermacher, Gudrun; Brock, Penelope; Valteau-Couanet, Dominique; Chesler, Louis; Schulte, Johannes H; De Preter, Katleen; Molenaar, Jan; Schramm, Alexander; Eilers, Martin; Van Maerken, Tom; Johnsen, John Inge; Garrett, Michelle; George, Sally L; Tweddle, Deborah A; Kogner, Per; Berthold, Frank; Koster, Jan; Barone, Giuseppe; Tucker, Elizabeth R; Marshall, Lynley; Herold, Ralf; Sterba, Jaroslav; Norga, Koen; Vassal, Gilles; Pearson, Andrew Dj

    2017-08-01

    Neuroblastoma, the commonest paediatric extra-cranial tumour, remains a leading cause of death from cancer in children. There is an urgent need to develop new drugs to improve cure rates and reduce long-term toxicity and to incorporate molecularly targeted therapies into treatment. Many potential drugs are becoming available, but have to be prioritised for clinical trials due to the relatively small numbers of patients. Areas covered: The current drug development model has been slow, associated with significant attrition, and few new drugs have been developed for neuroblastoma. The Neuroblastoma New Drug Development Strategy (NDDS) has: 1) established a group with expertise in drug development; 2) prioritised targets and drugs according to tumour biology (target expression, dependency, pre-clinical data; potential combinations; biomarkers), identifying as priority targets ALK, MEK, CDK4/6, MDM2, MYCN (druggable by BET bromodomain, aurora kinase, mTORC1/2) BIRC5 and checkpoint kinase 1; 3) promoted clinical trials with target-prioritised drugs. Drugs showing activity can be rapidly transitioned via parallel randomised trials into front-line studies. Expert opinion: The Neuroblastoma NDDS is based on the premise that optimal drug development is reliant on knowledge of tumour biology and prioritisation. This approach will accelerate neuroblastoma drug development and other poor prognosis childhood malignancies.

  4. Iron-catalysed tritiation of pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Pony Yu, Renyuan; Hesk, David; Rivera, Nelo; Pelczer, István; Chirik, Paul J.

    2016-01-01

    A thorough understanding of the pharmacokinetic and pharmacodynamic properties of a drug in animal models is a critical component of drug discovery and development. Such studies are performed in vivo and in vitro at various stages of the development process—ranging from preclinical absorption, distribution, metabolism and excretion (ADME) studies to late-stage human clinical trials—to elucidate a drug molecule’s metabolic profile and to assess its toxicity. Radiolabelled compounds, typically those that contain 14C or 3H isotopes, are one of the most powerful and widely deployed diagnostics for these studies. The introduction of radiolabels using synthetic chemistry enables the direct tracing of the drug molecule without substantially altering its structure or function. The ubiquity of C-H bonds in drugs and the relative ease and low cost associated with tritium (3H) make it an ideal radioisotope with which to conduct ADME studies early in the drug development process. Here we describe an iron-catalysed method for the direct 3H labelling of pharmaceuticals by hydrogen isotope exchange, using tritium gas as the source of the radioisotope. The site selectivity of the iron catalyst is orthogonal to currently used iridium catalysts and allows isotopic labelling of complementary positions in drug molecules, providing a new diagnostic tool in drug development.

  5. Vaccine and Drug Ontology Studies (VDOS 2014).

    PubMed

    Tao, Cui; He, Yongqun; Arabandi, Sivaram

    2016-01-01

    The "Vaccine and Drug Ontology Studies" (VDOS) international workshop series focuses on vaccine- and drug-related ontology modeling and applications. Drugs and vaccines have been critical to prevent and treat human and animal diseases. Work in both (drugs and vaccines) areas is closely related - from preclinical research and development to manufacturing, clinical trials, government approval and regulation, and post-licensure usage surveillance and monitoring. Over the last decade, tremendous efforts have been made in the biomedical ontology community to ontologically represent various areas associated with vaccines and drugs - extending existing clinical terminology systems such as SNOMED, RxNorm, NDF-RT, and MedDRA, developing new models such as the Vaccine Ontology (VO) and Ontology of Adverse Events (OAE), vernacular medical terminologies such as the Consumer Health Vocabulary (CHV). The VDOS workshop series provides a platform for discussing innovative solutions as well as the challenges in the development and applications of biomedical ontologies for representing and analyzing drugs and vaccines, their administration, host immune responses, adverse events, and other related topics. The five full-length papers included in this 2014 thematic issue focus on two main themes: (i) General vaccine/drug-related ontology development and exploration, and (ii) Interaction and network-related ontology studies.

  6. Recent trends for drug lag in clinical development of oncology drugs in Japan: does the oncology drug lag still exist in Japan?

    PubMed

    Maeda, Hideki; Kurokawa, Tatsuo

    2015-12-01

    This study exhaustively and historically investigated the status of drug lag for oncology drugs approved in Japan. We comprehensively investigated oncology drugs approved in Japan between April 2001 and July 2014, using publicly available information. We also examined changes in the status of drug lag between Japan and the United States, as well as factors influencing drug lag. This study included 120 applications for approval of oncology drugs in Japan. The median difference over a 13-year period in the approval date between the United States and Japan was 875 days (29.2 months). This figure peaked in 2002, and showed a tendency to decline gradually each year thereafter. In 2014, the median approval lag was 281 days (9.4 months). Multiple regression analysis identified the following potential factors that reduce drug lag: "Japan's participation in global clinical trials"; "bridging strategies"; "designation of priority review in Japan"; and "molecularly targeted drugs". From 2001 to 2014, molecularly targeted drugs emerged as the predominant oncology drug, and the method of development has changed from full development in Japan or bridging strategy to global simultaneous development by Japan's taking part in global clinical trials. In line with these changes, the drug lag between the United States and Japan has significantly reduced to less than 1 year.

  7. 77 FR 71211 - Request for Information: Establish a Public-Private Collaboration, “Drug Development Initiative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... clinical trials with the support of the VA Cooperative Studies Program. To identify and test new drug..., ``Drug Development Initiative'' (DDI), for New Pharmacological Treatments for Post-Traumatic Stress... will delineate the collaboration for PTSD treatment intended to test new drugs to benefit Veterans...

  8. Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum

    PubMed Central

    Langer, Christine; Goodman, Christopher D.; McFadden, Geoffrey I.

    2013-01-01

    Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials. PMID:23318799

  9. [Consideration of clinical development for new anticancer drugs on Japan, proposal from approval reviewer].

    PubMed

    Urano, Tsutomu

    2007-02-01

    There become problems about a delay on clinical development of anticancer drug in Japan and drug lag. I consider causes and solutions of the problems from a position of drug approval reviewer. I think the drug lag may cause by stating later state in global clinical development or stagnation of clinical trial activities. To prevail against drug lag,it is necessary to attend to multinational clinical studies,and to mature Japanese clinical trial environment and post-market planning. Then, I believe that the most important point is to make a start on early stage of global clinical development.

  10. Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain.

    PubMed

    Salunkhe, Sachin S; Bhatia, Neela M; Bhatia, Manish S

    2016-05-01

    The aim of present investigation was to formulate and develop lipid-based nanostructured carriers (NLCs) containing Idebenone (IDE) for delivery to brain. Attempts have been made to evaluate IDE NLCs for its pharmacokinetic and pharmacodynamic profile through the objective of enhancement in bioavailability and effectivity of drug. Nanoprecipitation technique was used for development of drug loaded NLCs. The components solid lipid Precirol ATO 5, oil Miglyol 840, surfactants Tween 80 and Labrasol have been screened out for formulation development by consideration of preformulation parameters including solubility, Required Hydrophilic lipophilic balance (HLB) of lipids and stability study. Developed IDE NLCs were subjected for particle size, zeta potential, entrapment efficiency (%EE), crystallographic investigation, transmission electron microscopy, in vitro drug release, pharmacokinetics, in vivo and stability study. Formulation under investigation has particle size 174.1 ± 2.6 nm, zeta potential -18.65 ± 1.13 mV and% EE 90.68 ± 2.90. Crystallographic studies exemplified for partial amorphization of IDE by molecularly dispersion within lipid crust. IDE NLCs showed drug release 93.56 ± 0.39% at end of 24 h by following Higuchi model which necessitates for appropriate drug delivery with enhancement in bioavailability of drug by 4.6-fold in plasma and 2.8-fold in brain over plain drug loaded aqueous dispersions. In vivo studies revealed that effect of drug was enhanced by prepared lipid nanocarriers. IDE lipid-based nanostructured carriers could have potential for efficient drug delivery to brain with enhancement in bioavailability of drug over the conventional formulations.

  11. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies.

    PubMed

    Kesisoglou, Filippos; Chung, John; van Asperen, Judith; Heimbach, Tycho

    2016-09-01

    In recent years, there has been a significant increase in use of physiologically based pharmacokinetic models in drug development and regulatory applications. Although most of the published examples have focused on aspects such as first-in-human (FIH) dose predictions or drug-drug interactions, several publications have highlighted the application of these models in the biopharmaceutics field and their use to inform formulation development. In this report, we present 5 case studies of use of such models in this biopharmaceutics/formulation space across different pharmaceutical companies. The case studies cover different aspects of biopharmaceutics or formulation questions including (1) prediction of absorption prior to FIH studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early exploration of a modified-release formulation; (4) addressing bridging questions for late-stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a Biopharmaceutics Classification System class I drug with fasted state data. The discussion of the case studies focuses on how such models can facilitate decisions and biopharmaceutic understanding of drug candidates and the opportunities for increased use and acceptance of such models in drug development and regulatory interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.

    PubMed

    Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen

    2018-01-01

    While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.

  13. Recent advances in inkjet dispensing technologies: applications in drug discovery.

    PubMed

    Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin

    2012-09-01

    Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.

  14. The impact of the written request process on drug development in childhood cancer.

    PubMed

    Snyder, Kristen M; Reaman, Gregory; Avant, Debbie; Pazdur, Richard

    2013-04-01

    The Food and Drug Administration (FDA) Modernization Act, enacted in 1997, created a pediatric exclusivity incentive allowing sponsors to qualify for an additional 6 months of marketing exclusivity after satisfying the requirements outlined in the Written Request (WR). This review evaluates the impact of the WR mechanism on the development of oncology drugs in children. A search of the FDA document archiving, reporting, and regulatory tracking system was performed for January 1, 2000 to December 31, 2010. Drugs were identified and pediatric-specific labeling information was obtained from Drugs@fda.gov and FDA Pediatric Labeling Changes Table. Fifty WRs have been issued for oncology drugs. Pediatric studies have been submitted for 14 drugs. Thirteen received pediatric exclusivity. As of December 31, 2010, labeling changes have been made for 11 drugs. Three drugs were approved for pediatric use. WRs have provided a mechanism to promote the study of drugs in pediatric malignancies. Information from studies resulting from the WRs regarding safety, pharmacokinetics, and tolerability of oncology drugs has been incorporated into pediatric labeling for 11/14 of the drugs. Earlier communication and collaboration between the FDA, National Cancer Institute, clinical investigators, and commercial sponsors are envisioned to facilitate the identification and prioritization of emerging new drugs of interest for WR consideration. Since this is the only regulatory mechanism, resulting from specific legislative initiatives relevant to cancer drug development for children, efforts to enhance its impact on increasing drug approval for pediatric cancer indications are warranted. Copyright © 2013 Wiley Periodicals, Inc.

  15. Bioengineered humanized livers as better three-dimensional drug testing model system.

    PubMed

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed

    2018-01-27

    To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.

  16. Ethical imperatives of timely access to orphan drugs: is possible to reconcile economic incentives and patients' health needs?

    PubMed

    Rodriguez-Monguio, R; Spargo, T; Seoane-Vazquez, E

    2017-01-05

    More than 6,800 rare diseases and conditions have been identified in the US, which affect 25-30 million Americans. In 1983, the US Congress enacted the Orphan Drug Act (ODA) to encourage the development and marketing of drugs to treat rare diseases and conditions. This study analyzed all orphan designations and FDA approvals since 1983 through 2015, discussed the effectiveness of incentives for the development of treatments for rare diseases, and reflected on the ethical imperatives for timely access to orphan drugs. Study data were derived from the Food and Drug Administration (FDA) Orange Book and the Office of Orphan Drugs Development. A search was conducted to assess literature on the ethical principles and economic incentives for the development of orphan drugs. In the period 1983-2015, the FDA granted 3,647 orphan drug designations and 554 orphan drug approvals. The orphan drug approvals corresponded to 438 different brand names. Cancer was the therapeutic area with the highest number of approvals. The increased number of patients with rare diseases and the growth in the cost of orphan drugs pose a significant economic burden for patients, public programs and private third party payers. Regulatory differences to qualify for orphan designation and various population thresholds employed by the FDA and the European Medicines Agency lead to further unmet health needs for patients with rare diseases and aggravate health inequities. There is no societal consensus on the population and economic thresholds, the drug effectiveness indicator(s), or the societal value to be placed for the approval and reimbursement of orphan drugs. Orphan drug development and marketing in the US concentrate in few therapeutic areas. Despite the increase in the number of FDA approved orphan drugs, the unmet needs of patients with rare diseases evidence that the current incentives are not efficiently stimulating orphan drug development. There is need to balance economic incentives to stimulate the development and marketing of orphan drugs without jeopardizing patients' access to treatment. Thus, aligning pharmaceutical companies' incentives with societal budgetary constraints is necessary and the ethical imperatives of timely access to orphan drugs need to be agreed upon.

  17. Exploring Professional Identity Development in Alcohol and Drug Counselors in the 21st Century

    ERIC Educational Resources Information Center

    Simmons, Lori; Haas, Deborah; Massella, John; Young, Jared; Toth, Paul

    2017-01-01

    Professional identity development is an emerging area for alcohol and drug counselors. Few studies have investigated professional identity in alcohol and drug counselors (Ogborne, Braun, & Schmidt, 2001; Massella, Simons, Young, Haas, & Toth 2013). The goal of the current study is to add to this area of research. A total of 1,333 certified…

  18. Has molecular imaging delivered to drug development?

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  19. DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development.

    PubMed

    Shah, Eric D; Fisch, Brandon M A; Arceci, Robert J; Buckley, Jonathan D; Reaman, Gregory H; Sorensen, Poul H; Triche, Timothy J; Reynolds, C Patrick

    2014-05-01

    Academic laboratories are developing increasingly large amounts of data that describe the genomic landscape and gene expression patterns of various types of cancers. Such data can potentially identify novel oncology molecular targets in cancer types that may not be the primary focus of a drug sponsor's initial research for an investigational new drug. Obtaining preclinical data that point toward the potential for a given molecularly targeted agent, or a novel combination of agents requires knowledge of drugs currently in development in both the academic and commercial sectors. We have developed the DrugPath database ( http://www.drugpath.org ) as a comprehensive, free-of-charge resource for academic investigators to identify agents being developed in academics or industry that may act against molecular targets of interest. DrugPath data on molecular targets overlay the Michigan Molecular Interactions ( http://mimi.ncibi.org ) gene-gene interaction map to facilitate identification of related agents in the same pathway. The database catalogs 2,081 drug development programs representing 751 drug sponsors and 722 molecular and genetic targets. DrugPath should assist investigators in identifying and obtaining drugs acting on specific molecular targets for biological and preclinical therapeutic studies.

  20. The druggable genome and support for target identification and validation in drug development.

    PubMed

    Finan, Chris; Gaulton, Anna; Kruger, Felix A; Lumbers, R Thomas; Shah, Tina; Engmann, Jorgen; Galver, Luana; Kelley, Ryan; Karlsson, Anneli; Santos, Rita; Overington, John P; Hingorani, Aroon D; Casas, Juan P

    2017-03-29

    Target identification (determining the correct drug targets for a disease) and target validation (demonstrating an effect of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clinically relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm, we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there were licensed drugs, to clinical indications. We used this set of genes to inform the design of a new genotyping array, which will enable association studies of druggable genes for drug target selection and validation in human disease. Copyright © 2017, American Association for the Advancement of Science.

  1. Future technology insight: mass spectrometry imaging as a tool in drug research and development

    PubMed Central

    Cobice, D F; Goodwin, R J A; Andren, P E; Nilsson, A; Mackay, C L; Andrew, R

    2015-01-01

    In pharmaceutical research, understanding the biodistribution, accumulation and metabolism of drugs in tissue plays a key role during drug discovery and development. In particular, information regarding pharmacokinetics, pharmacodynamics and transport properties of compounds in tissues is crucial during early screening. Historically, the abundance and distribution of drugs have been assessed by well-established techniques such as quantitative whole-body autoradiography (WBA) or tissue homogenization with LC/MS analysis. However, WBA does not distinguish active drug from its metabolites and LC/MS, while highly sensitive, does not report spatial distribution. Mass spectrometry imaging (MSI) can discriminate drug and its metabolites and endogenous compounds, while simultaneously reporting their distribution. MSI data are influencing drug development and currently used in investigational studies in areas such as compound toxicity. In in vivo studies MSI results may soon be used to support new drug regulatory applications, although clinical trial MSI data will take longer to be validated for incorporation into submissions. We review the current and future applications of MSI, focussing on applications for drug discovery and development, with examples to highlight the impact of this promising technique in early drug screening. Recent sample preparation and analysis methods that enable effective MSI, including quantitative analysis of drugs from tissue sections will be summarized and key aspects of methodological protocols to increase the effectiveness of MSI analysis for previously undetectable targets addressed. These examples highlight how MSI has become a powerful tool in drug research and development and offers great potential in streamlining the drug discovery process. PMID:25766375

  2. Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management

    PubMed Central

    Kang, Lifeng; Chung, Bong Geun; Langer, Robert; Khademhosseini, Ali

    2009-01-01

    Microfluidic technologies’ ability to miniaturize assays and increase experimental throughput have generated significant interest in the drug discovery and development domain. These characteristics make microfluidic systems a potentially valuable tool for many drug discovery and development applications. Here, we review the recent advances of microfluidic devices for drug discovery and development and highlight their applications in different stages of the process, including target selection, lead identification, preclinical tests, clinical trials, chemical synthesis, formulations studies, and product management. PMID:18190858

  3. Applicability of bioanalysis of multiple analytes in drug discovery and development: review of select case studies including assay development considerations.

    PubMed

    Srinivas, Nuggehally R

    2006-05-01

    The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select disease areas and/or in clinically important drug-drug interaction studies. A tabular representation of select examples of analysis is provided covering areas of separation conditions, validation aspects and applicable conclusion. A limited discussion is provided on relevant aspects of the need for developing bioanalytical procedures for speedy drug discovery and development. Additionally, some key elements such as internal standard selection, likely issues of mass detection, matrix effect, chiral aspects etc. are provided for consideration during method development.

  4. New Zealand’s Drug Development Industry

    PubMed Central

    Lockhart, Michelle Marie; Babar, Zaheer-Ud-Din; Carswell, Christopher; Garg, Sanjay

    2013-01-01

    The pharmaceutical industry’s profitability depends on identifying and successfully developing new drug candidates while trying to contain the increasing costs of drug development. It is actively searching for new sources of innovative compounds and for mechanisms to reduce the enormous costs of developing new drug candidates. There is an opportunity for academia to further develop as a source of drug discovery. The rising levels of industry outsourcing also provide prospects for organisations that can reduce the costs of drug development. We explored the potential returns to New Zealand (NZ) from its drug discovery expertise by assuming a drug development candidate is out-licensed without clinical data and has anticipated peak global sales of $350 million. We also estimated the revenue from NZ’s clinical research industry based on a standard per participant payment to study sites and the number of industry-sponsored clinical trials approved each year. Our analyses found that NZ’s clinical research industry has generated increasing foreign revenue and appropriate policy support could ensure that this continues to grow. In addition the probability-based revenue from the out-licensing of a drug development candidate could be important for NZ if provided with appropriate policy and financial support. PMID:24065037

  5. 78 FR 29755 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... research study, and why? (Examples of risks that may be associated with participation in an HIV cure... Research: Public Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public meeting... Development and HIV Cure Research. Patient-Focused Drug Development is part of FDA's performance commitments...

  6. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?

    PubMed

    Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H

    2012-08-30

    In recent years, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are among the popular research topics for the delivery of lipophilic drugs. Although SLNs have demonstrated several beneficial properties as drug-carrier, limited drug-loading and expulsion of drug during storage led to the development of NLCs. However, the superiority of NLCs over SLNs has not been fully established yet due to the contradictory results. In this study, SLNs and NLCs were developed using clotrimazole as model drug. Size, polydispersity index (PI), zeta potential (ZP), drug-loading (L), drug encapsulation efficiency (EE), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), drug release and stability of SLNs and NLCs were compared. Critical process parameters exhibited significant impact on the nanoparticles' properties. Size, PI, ZP and EE of the developed SLNs and NLCs were<100 nm, <0.17, <-22 mV and>82%, respectively. SEM images of SLNs and NLCs revealed spherical shaped particles (≈ 100 nm). DSC and XRD studies indicated slight difference between SLNs and NLCs as well as disappearance of the crystalline peak(s) of the encapsulated drug. NLCs demonstrated faster drug release than SLNs at low drug-loading, whereas there was no significant difference in drug release from SLNs and NLCs at high drug-loading. However, sustained/prolonged drug release was observed from both formulations. Furthermore, this study suggests that the drug release experiment should be designed considering the final application (topical/oral/parenteral) of the product. Regarding stability, NLCs showed better stability (in terms of size, PI, EE and L) than SLNs at 25°C. Moreover, there was no significant difference in drug release profile of NLCs after 3 months storage in compare to fresh NLCs, while significant change in drug release rate was observed in case of SLNs. Therefore, NLCs have an edge over SLNs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Pharmacogenomics in early-phase clinical development

    PubMed Central

    Burt, Tal; Dhillon, Savita

    2015-01-01

    Pharmacogenomics (PGx) offers the promise of utilizing genetic fingerprints to predict individual responses to drugs in terms of safety, efficacy and pharmacokinetics. Early-phase clinical trial PGx applications can identify human genome variations that are meaningful to study design, selection of participants, allocation of resources and clinical research ethics. Results can inform later-phase study design and pipeline developmental decisions. Nevertheless, our review of the clinicaltrials.gov database demonstrates that PGx is rarely used by drug developers. Of the total 323 trials that included PGx as an outcome, 80% have been conducted by academic institutions after initial regulatory approval. Barriers for the application of PGx are discussed. We propose a framework for the role of PGx in early-phase drug development and recommend PGx be universally considered in study design, result interpretation and hypothesis generation for later-phase studies, but PGx results from underpowered studies should not be used by themselves to terminate drug-development programs. PMID:23837482

  8. Adolescent dosing and labeling since the Food and Drug Administration Amendments Act of 2007.

    PubMed

    Momper, Jeremiah D; Mulugeta, Yeruk; Green, Dionna J; Karesh, Alyson; Krudys, Kevin M; Sachs, Hari C; Yao, Lynn P; Burckart, Gilbert J

    2013-10-01

    During pediatric drug development, dedicated pharmacokinetic studies are generally performed in all relevant age groups to support dose selection for subsequent efficacy trials. To our knowledge, no previous assessments regarding the need for an intensive pharmacokinetic study in adolescents have been performed. To compare U.S. Food and Drug Administration (FDA)-approved adult and adolescent drug dosing and to assess the utility of allometric scaling for the prediction of drug clearance in the adolescent population. Adult and adolescent dosing and drug clearance data were obtained from FDA-approved drug labels and publicly available databases containing reviews of pediatric trials submitted to the FDA. Dosing information was compared for products with concordant indications for adolescent and adult patients. Adolescent drug clearance was predicted from adult pharmacokinetic data by using allometric scaling and compared with observed values. Adolescent and adult dosing information and drug clearance. There were 126 unique products with pediatric studies submitted to the FDA since the FDA Amendments Act of 2007, of which 92 had at least 1 adolescent indication concordant with an adult indication. Of these 92 products, 87 (94.5%) have equivalent dosing for adults and adolescent patients. For 18 of these 92 products, a minimum weight or body surface area threshold is recommended for adolescents to receive adult dosing. Allometric scaling predicted adolescent drug clearance with an overall mean absolute percentage error of 17.0%. Approved adult and adolescent drug dosing is equivalent for 94.5% of products with an adolescent indication studied since the FDA Amendments Act of 2007. Allometric scaling may be a useful tool to avoid unnecessary dedicated pharmacokinetic studies in the adolescent population during pediatric drug development, although each development program in adolescents requires a full discussion of drug dosing with the FDA.

  9. The story of artesunate–mefloquine (ASMQ), innovative partnerships in drug development: case study

    PubMed Central

    2013-01-01

    Background The Drugs for Neglected Diseases initiative (DNDi) is a not-for profit organization committed to providing affordable medicines and access to treatments in resource-poor settings. Traditionally drug development has happened “in house” within pharmaceutical companies, with research and development costs ultimately recuperated through drug sales. The development of drugs for the treatment of neglected tropical diseases requires a completely different model that goes beyond the scope of market-driven research and development. Artesunate and mefloquine are well-established drugs for the treatment of uncomplicated malaria, with a strong safety record based on many years of field-based studies and use. The administration of such artemisinin-based combination therapy in a fixed-dose combination is expected to improve patient compliance and to reduce the risk of emerging drug resistance. Case description DNDi developed an innovative approach to drug development, reliant on strong collaborations with a wide range of partners from the commercial world, academia, government institutions and NGOs, each of which had a specific role to play in the development of a fixed dose combination of artesunate and mefloquine. Discussion and evaluation DNDi undertook the development of a fixed-dose combination of artesunate with mefloquine. Partnerships were formed across five continents, addressing formulation, control and production through to clinical trials and product registration, resulting in a safe and efficacious fixed dose combination treatment which is now available to treat patients in resource-poor settings. The south-south technology transfer of production from Farmanguinhos/Fiocruz in Brazil to Cipla Ltd in India was the first of its kind. Of additional benefit was the increased capacity within the knowledge base and infrastructure in developing countries. Conclusions This collaborative approach to drug development involving international partnerships and independent funding mechanisms is a powerful new way to develop drugs for tropical diseases. PMID:23433060

  10. Application of Model Animals in the Study of Drug Toxicology

    NASA Astrophysics Data System (ADS)

    Song, Yagang; Miao, Mingsan

    2018-01-01

    Drug safety is a key factor in drug research and development, Drug toxicology test is the main method to evaluate the safety of drugs, The body condition of an animal has important implications for the results of the study, Previous toxicological studies of drugs were carried out in normal animals in the past, There is a great deviation from the clinical practice.The purpose of this study is to investigate the necessity of model animals as a substitute for normal animals for toxicological studies, It is expected to provide exact guidance for future drug safety evaluation.

  11. Development times, clinical testing, postmarket follow-up, and safety risks for the new drugs approved by the US food and drug administration: the class of 2008.

    PubMed

    Moore, Thomas J; Furberg, Curt D

    2014-01-01

    The US Food and Drug Administration (FDA) has advanced multiple proposals to promote biomedical innovation by making new drugs available more quickly but with shorter, smaller, and more selective clinical trials and less rigorous end points. To inform the debate about appropriate standards, we studied the development times, clinical testing, postmarket follow-up, and safety risks for the new drugs approved by the FDA in 2008, when most provisions of current law, regulation, and policies were in effect. Descriptive study of the drugs classified as new molecular entities using preapproval FDA evaluation documents, agency drug information databases, prescribing information, and other primary data sources. Comparison of drugs that received standard review and those deemed sufficiently innovative to receive expedited review with regard to clinical development and FDA review time, the size and duration of efficacy trials, safety issues, and postmarket follow-up. In 2008, the FDA approved 20 therapeutic drugs, 8 with expedited review and 12 with standard review. The expedited drugs took a median of 5.1 years (range, 1.6-10.6 years) of clinical development to obtain marketing approval compared with 7.5 years (range, 4.7-19.4 years) for the standard review drugs (P = .05). The expedited drugs were tested for efficacy in a median of 104 patients receiving the active drug (range, 23-599), compared with a median of 580 patients (range, 75-1207) for standard review drugs (P = .003). Nonclinical testing showed that 6 therapeutic drugs were animal carcinogens, 5 were in vitro mutagens, and 14 were animal teratogens. Other safety concerns resulted in 5 Boxed Warnings; 8 drugs required risk management plans. The FDA required 85 postmarket commitments. By 2013, 5 drugs acquired a new or expanded Boxed Warning; 26 of 85 (31%) of the postmarketing study commitments had been fulfilled, and 8 (9%) had been submitted for agency review. For new drugs approved by the FDA in 2008, those that received expedited review were approved more rapidly than those that received standard review. However, considerably fewer patients were studied prior to approval, and many safety questions remained unanswered. By 2013, many postmarketing studies had not been completed.

  12. Orphan drug: Development trends and strategies

    PubMed Central

    Sharma, Aarti; Jacob, Abraham; Tandon, Manas; Kumar, Dushyant

    2010-01-01

    The growth of pharma industries has slowed in recent years because of various reasons such as patent expiries, generic competition, drying pipelines, and increasingly stringent regulatory guidelines. Many blockbuster drugs will loose their exclusivity in next 5 years. Therefore, the current economic situation plus the huge generic competition shifted the focus of pharmaceutical companies from the essential medicines to the new business model — niche busters, also called orphan drugs. Orphan drugs may help pharma companies to reduce the impact of revenue loss caused by patent expiries of blockbuster drugs. The new business model of orphan drugs could offer an integrated healthcare solution that enables pharma companies to develop newer areas of therapeutics, diagnosis, treatment, monitoring, and patient support. Incentives for drug development provided by governments, as well as support from the FDA and EU Commission in special protocols, are a further boost for the companies developing orphan drugs. Although there may still be challenges ahead for the pharmaceutical industry, orphan drugs seem to offer the key to recovery and stability within the market. In our study, we have compared the policies and orphan drug incentives worldwide alongwith the challenges faced by the pharmaceutical companies. Recent developments are seen in orphan drug approval, the various drugs in orphan drug pipeline, and the future prospectives for orphan drugs and diseases. PMID:21180460

  13. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery

    PubMed Central

    Peetla, Chiranjeevi; Stine, Andrew; Labhasetwar, Vinod

    2009-01-01

    The transport of drugs or drug delivery systems across the cell membrane is a complex biological process, often difficult to understand because of its dynamic nature. In this regard, model lipid membranes, which mimic many aspects of cell-membrane lipids, have been very useful in helping investigators to discern the roles of lipids in cellular interactions. One can use drug-lipid interactions to predict pharmacokinetic properties of drugs, such as their transport, biodistribution, accumulation, and hence efficacy. These interactions can also be used to study the mechanisms of transport, based on the structure and hydrophilicity/hydrophobicity of drug molecules. In recent years, model lipid membranes have also been explored to understand their mechanisms of interactions with peptides, polymers, and nanocarriers. These interaction studies can be used to design and develop efficient drug delivery systems. Changes in the lipid composition of cells and tissue in certain disease conditions may alter biophysical interactions, which could be explored to develop target-specific drugs and drug delivery systems. In this review, we discuss different model membranes, drug-lipid interactions and their significance, studies of model membrane interactions with nanocarriers, and how biophysical interaction studies with lipid model membranes could play an important role in drug discovery and drug delivery. PMID:19432455

  14. Defining the value of a comparative approach to cancer drug development

    PubMed Central

    LeBlanc, AK; Mazcko, C; Khanna, C

    2016-01-01

    Comparative oncology as a tool in drug development requires a deeper examination of the value of the approach and examples of where this approach can satisfy unmet needs. This review seeks to demonstrate types of drug development questions that are best answered by the comparative oncology approach. We believe common perceived risks of the comparative approach relate to uncertainty of how regulatory bodies will prioritize or react to data generated from these unique studies conducted in diseased animals, and how these new data will affect ongoing human clinical trials. We contend that it is reasonable to consider these data as potentially informative and valuable to cancer drug development, but as supplementary to conventional preclinical studies and human clinical trials particularly as they relate to the identification of drug-associated adverse events. PMID:26712689

  15. The Development of a Korean Drug Dosing Database

    PubMed Central

    Kim, Sun Ah; Kim, Jung Hoon; Jang, Yoo Jin; Jeon, Man Ho; Hwang, Joong Un; Jeong, Young Mi; Choi, Kyung Suk; Lee, Iyn Hyang; Jeon, Jin Ok; Lee, Eun Sook; Lee, Eun Kyung; Kim, Hong Bin; Chin, Ho Jun; Ha, Ji Hye; Kim, Young Hoon

    2011-01-01

    Objectives This report describes the development process of a drug dosing database for ethical drugs approved by the Korea Food & Drug Administration (KFDA). The goal of this study was to develop a computerized system that supports physicians' prescribing decisions, particularly in regards to medication dosing. Methods The advisory committee, comprised of doctors, pharmacists, and nurses from the Seoul National University Bundang Hospital, pharmacists familiar with drug databases, KFDA officials, and software developers from the BIT Computer Co. Ltd. analyzed approved KFDA drug dosing information, defined the fields and properties of the information structure, and designed a management program used to enter dosing information. The management program was developed using a web based system that allows multiple researchers to input drug dosing information in an organized manner. The whole process was improved by adding additional input fields and eliminating the unnecessary existing fields used when the dosing information was entered, resulting in an improved field structure. Results A total of 16,994 drugs sold in the Korean market in July 2009, excluding the exclusion criteria (e.g., radioactivity drugs, X-ray contrast medium), usage and dosing information were made into a database. Conclusions The drug dosing database was successfully developed and the dosing information for new drugs can be continually maintained through the management mode. This database will be used to develop the drug utilization review standards and to provide appropriate dosing information. PMID:22259729

  16. Comparison of Occlusive and Open Application in a Psoriasis Plaque Test Design, Exemplarily Using Investigations of Mapracorat 0.1% Ointment versus Vehicle and Reference Drugs.

    PubMed

    Wigger-Alberti, Walter; Williams, Ragna; von Mackensen, Yi-Ling; Hoffman-Wecker, Maciej; Grossmann, Ulrike; Staedtler, Gerald; Nkulikiyinka, Richard; Shakery, Kaweh

    2017-01-01

    Psoriasis plaque tests (PPTs) are important tools in the early phases of antipsoriatic drug development. Two distinct PPT design variants (open vs. occluded drug application) are commonly used, but no previous work has aimed to directly compare and contrast their performance. We compared the antipsoriatic efficacy of mapracorat 0.1% ointment and reference drugs reported in 2 separate studies, representing open and occluded PPT designs. The drug effect size was measured by sonography (mean change in echo-poor band thickness), chromametry, and standardized clinical assessment. Antipsoriatic effects were detectable for the study drugs in both occluded and open PPTs. Differences between the potency of antipsoriatic drugs and vehicle were observable. The total antipsoriatic effect size appeared to be higher in the occluded PPT than the open PPT, despite the shorter treatment duration (2 vs. 4 weeks). Effect dynamics over time revealed greater differences between some study drugs in the open PPT compared to the occluded PPT. Taking the higher technical challenges for the open PPT into account, we recommend the occluded PPT as a standard screening setting in early drug development. In special cases, considering certain drug aspects or study objectives that would require procedural adaptations, an open PPT could be the better-suited design. Finally, both PPT models show clear advantages: classification as phase I studies, small number of psoriatic subjects, relatively short study duration, excellent discrimination between compounds and concentrations, parallel measurement of treatment response, and go/no go decisions very early in clinical development. © 2017 S. Karger AG, Basel.

  17. The development of multiple drug use among anabolic-androgenic steroid users: six subjective case reports

    PubMed Central

    Skårberg, Kurt; Nyberg, Fred; Engström, Ingemar

    2008-01-01

    Background The inappropriate use of anabolic androgenic steroids (AAS) was originally a problem among athletes but AAS are now often used in nonsport situations and by patients attending regular addiction clinics. The aim of this study was to improve understanding of the development of multiple drug use in patients seeking treatment at an addiction clinic for AAS-related problems. Methods We interviewed six patients (four men and two women) with experience of AAS use who were attending an addiction clinic for what they believed were AAS-related problems. The patients were interviewed in-depth about their life stories, with special emphasis on social background, substance use, the development of total drug use and subjective experienced psychological and physical side effects. Results There was significant variation in the development of drug use in relation to social background, onset of drug use, relationship to AAS use and experience of AAS effects. All patients had initially experienced positive effects from AAS but, over time, the negative experiences had outweighed the positive effects. All patients were dedicated to excess training and took AAS in combination with gym training, indicating that the use of these drugs is closely related to this form of training. Use of multiple drugs was common either in parallel with AAS use or serially. Conclusion The study shows the importance of understanding how AAS use can develop either with or without the concomitant use of other drugs of abuse. The use of AAS can, however, progress to the use of other drugs. The study also indicates the importance of obtaining accurate, comprehensive information about the development of AAS use in designing treatment programmes and prevention strategies in this area. PMID:19040748

  18. The development of multiple drug use among anabolic-androgenic steroid users: six subjective case reports.

    PubMed

    Skårberg, Kurt; Nyberg, Fred; Engström, Ingemar

    2008-11-28

    The inappropriate use of anabolic androgenic steroids (AAS) was originally a problem among athletes but AAS are now often used in nonsport situations and by patients attending regular addiction clinics. The aim of this study was to improve understanding of the development of multiple drug use in patients seeking treatment at an addiction clinic for AAS-related problems. We interviewed six patients (four men and two women) with experience of AAS use who were attending an addiction clinic for what they believed were AAS-related problems. The patients were interviewed in-depth about their life stories, with special emphasis on social background, substance use, the development of total drug use and subjective experienced psychological and physical side effects. There was significant variation in the development of drug use in relation to social background, onset of drug use, relationship to AAS use and experience of AAS effects. All patients had initially experienced positive effects from AAS but, over time, the negative experiences had outweighed the positive effects. All patients were dedicated to excess training and took AAS in combination with gym training, indicating that the use of these drugs is closely related to this form of training. Use of multiple drugs was common either in parallel with AAS use or serially. The study shows the importance of understanding how AAS use can develop either with or without the concomitant use of other drugs of abuse. The use of AAS can, however, progress to the use of other drugs. The study also indicates the importance of obtaining accurate, comprehensive information about the development of AAS use in designing treatment programmes and prevention strategies in this area.

  19. Development and application of a biorelevant dissolution method using USP apparatus 4 in early phase formulation development.

    PubMed

    Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S

    2010-10-04

    Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.

  20. An observational study of drug administration errors in a Malaysian hospital (study of drug administration errors).

    PubMed

    Chua, S S; Tea, M H; Rahman, M H A

    2009-04-01

    Drug administration errors were the second most frequent type of medication errors, after prescribing errors but the latter were often intercepted hence, administration errors were more probably to reach the patients. Therefore, this study was conducted to determine the frequency and types of drug administration errors in a Malaysian hospital ward. This is a prospective study that involved direct, undisguised observations of drug administrations in a hospital ward. A researcher was stationed in the ward under study for 15 days to observe all drug administrations which were recorded in a data collection form and then compared with the drugs prescribed for the patient. A total of 1118 opportunities for errors were observed and 127 administrations had errors. This gave an error rate of 11.4 % [95% confidence interval (CI) 9.5-13.3]. If incorrect time errors were excluded, the error rate reduced to 8.7% (95% CI 7.1-10.4). The most common types of drug administration errors were incorrect time (25.2%), followed by incorrect technique of administration (16.3%) and unauthorized drug errors (14.1%). In terms of clinical significance, 10.4% of the administration errors were considered as potentially life-threatening. Intravenous routes were more likely to be associated with an administration error than oral routes (21.3% vs. 7.9%, P < 0.001). The study indicates that the frequency of drug administration errors in developing countries such as Malaysia is similar to that in the developed countries. Incorrect time errors were also the most common type of drug administration errors. A non-punitive system of reporting medication errors should be established to encourage more information to be documented so that risk management protocol could be developed and implemented.

  1. Drug sales data analysis for outbreak detection of infectious diseases: a systematic literature review.

    PubMed

    Pivette, Mathilde; Mueller, Judith E; Crépey, Pascal; Bar-Hen, Avner

    2014-11-18

    This systematic literature review aimed to summarize evidence for the added value of drug sales data analysis for the surveillance of infectious diseases. A search for relevant publications was conducted in Pubmed, Embase, Scopus, Cochrane Library, African Index Medicus and Lilacs databases. Retrieved studies were evaluated in terms of objectives, diseases studied, data sources, methodologies and performance for real-time surveillance. Most studies compared drug sales data to reference surveillance data using correlation measurements or indicators of outbreak detection performance (sensitivity, specificity, timeliness of the detection). We screened 3266 articles and included 27 in the review. Most studies focused on acute respiratory and gastroenteritis infections. Nineteen studies retrospectively compared drug sales data to reference clinical data, and significant correlations were observed in 17 of them. Four studies found that over-the-counter drug sales preceded clinical data in terms of incidence increase. Five studies developed and evaluated statistical algorithms for selecting drug groups to monitor specific diseases. Another three studies developed models to predict incidence increase from drug sales. Drug sales data analyses appear to be a useful tool for surveillance of gastrointestinal and respiratory disease, and OTC drugs have the potential for early outbreak detection. Their utility remains to be investigated for other diseases, in particular those poorly surveyed.

  2. Alzheimer’s Disease Drug Development in 2008 and Beyond: Problems and Opportunities

    PubMed Central

    Becker, Robert E.; Greig, Nigel H.

    2008-01-01

    Recently, a number of Alzheimer’s disease (AD) multi-center clinical trials (CT) have failed to provide statistically significant evidence of drug efficacy. To test for possible design or execution flaws we analyzed in detail CTs for two failed drugs that were strongly supported by preclinical evidence and by proven CT AD efficacy for other drugs in their class. Studies of the failed commercial trials suggest that methodological flaws may contribute to the failures and that these flaws lurk within current drug development practices ready to impact other AD drug development [1]. To identify and counter risks we considered the relevance to AD drug development of the following factors: (1) effective dosing of the drug product, (2) reliable evaluations of research subjects, (3) effective implementation of quality controls over data at research sites, (4) resources for practitioners to effectively use CT results in patient care, (5) effective disease modeling, (6) effective research designs. New drugs currently under development for AD address a variety of specific mechanistic targets. Mechanistic targets provide AD drug development opportunities to escape from many of the factors that currently undermine AD clinical pharmacology, especially the problems of inaccuracy and imprecision associated with using rated outcomes. In this paper we conclude that many of the current problems encountered in AD drug development can be avoided by changing practices. Current problems with human errors in clinical trials make it difficult to differentiate drugs that fail to evidence efficacy from apparent failures due to Type II errors. This uncertainty and the lack of publication of negative data impede researchers’ abilities to improve methodologies in clinical pharmacology and to develop a sound body of knowledge about drug actions. We consider the identification of molecular targets as offering further opportunities for overcoming current failures in drug development. PMID:18690832

  3. A design of experiment approach for efficient multi-parametric drug testing using a Caenorhabditis elegans model.

    PubMed

    Letizia, M C; Cornaglia, M; Tranchida, G; Trouillon, R; Gijs, M A M

    2018-01-22

    When studying the drug effectiveness towards a target model, one should distinguish the effects of the drug itself and of all the other factors that could influence the screening outcome. This comprehensive knowledge is crucial, especially when model organisms are used to study the drug effect at a systemic level, as a higher number of factors can influence the drug-testing outcome. Covering the entire experimental domain and studying the effect of the simultaneous change in several factors would require numerous experiments, which are costly and time-consuming. Therefore, a design of experiment (DoE) approach in drug-testing is emerging as a robust and efficient method to reduce the use of resources, while maximizing the knowledge of the process. Here, we used a 3-factor-Doehlert DoE to characterize the concentration-dependent effect of the drug doxycycline on the development duration of the nematode Caenorhabditis elegans. To cover the experimental space, 13 experiments were designed and performed, where different doxycycline concentrations were tested, while also varying the temperature and the food amount, which are known to influence the duration of C. elegans development. A microfluidic platform was designed to isolate and culture C. elegans larvae, while testing the doxycycline effect with full control of temperature and feeding over the entire development. Our approach allowed predicting the doxycycline effect on C. elegans development in the complete drug concentration/temperature/feeding experimental space, maximizing the understanding of the effect of this antibiotic on the C. elegans development and paving the way towards a standardized and optimized drug-testing process.

  4. Drugs foresight 2020: a Delphi expert panel study.

    PubMed

    Lintonen, Tomi; Konu, Anne; Rönkä, Sanna; Kotovirta, Elina

    2014-05-03

    Historically substance misuse has been relatively common in western countries, but comparatively few Finns report drug use. The Drugs 2020 study aimed at foreseeing changes in the drug situation in Finland by the year 2020. The Delphi method was used, utilizing drug experts of the EU national network in Finland. Marked growth was foreseen in drug use, especially in synthetic designer drugs and misuse of medicinal drugs. Significant increase was also expected in growing cannabis at home. However, the control of drug market was expected to shift more into the hands of organized crime. No consensus was reached on how drug prices will develop in the time period. Drug use is likely to remain punishable although the use and possession of cannabis may be treated less severely. It seems likely that health and social services resources will be directed towards medicinal treatment. Foresight can be utilized in preparing for the future; desirable developments can be fostered, and measures can be taken to curb probable but undesirable lines of development. Based on the results of this study, the experts' view is that it is highly likely that the Finnish society will have to prepare for an increase in the demand for drug-related care, both in terms of content of the care and financing the services. Also, the forecasted increase in the role of legal prescription medicine used as intoxicants will call for efforts not only in changing prescription practices but in border and police control measures, as well. Parallel developments have been foreseen in the UK and Sweden, and it is likely that similar trends will actualize also in other western countries.

  5. [Pediatric drug development: ICH harmonized tripartite guideline E11 within the United States of America, the European Union, and Japan].

    PubMed

    Pflieger, M; Bertram, D

    2014-10-01

    To address the lack of appropriate pediatric drugs available on the global market, in 2000 the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) issued the ICH E11 guideline regarding the Clinical Investigation of Medicinal Products in the Pediatric Population. This guideline considerably changes the environment of drug development for children. It has been written specifically to harmonize, promote, and facilitate high-quality and ethical clinical research for children within the ICH regions, i.e., the United States of America (USA), the European Union (EU), and Japan. This article details the various regulations applicable in each ICH region following the publication of the guideline. The framework of rewards, incentives, and obligations for pharmaceutical companies established for the development of pediatric drugs are compared. It appears that the USA and the EU have both developed specific regulations for pediatric drug development while Japan has not. However, in Japan, pharmaceutical companies (PCs) are encouraged to develop pediatric drugs voluntarily, and they may be granted additional months of market exclusivity or the postponement of the drug re-examination deadline. In both the USA and the EU, regulations aimed to increase the number of clinical studies conducted in children, in order to ensure that the necessary data are generated, determining the conditions in which a drug may be authorized to treat the pediatric population. PCs are encouraged to develop pediatric assessment, including pediatric clinical trials, which is described in a pediatric plan submitted to the relevant authorities. A system of rewards for PCs submitting an application for marketing authorization containing pediatric use information has been put in place to cover the additional investment for testing drugs in children. Subject to conditions, these rewards consist in a 6-month extension of the patent or supplementary protection. Regarding the approval for new medicinal products in these two regions, regulations require PCs to include, when it is relevant, a pediatric assessment in their drug research and development plan, which must be approved. Although these regions have implemented the ICH guideline, the regulation differs with respect to the timing of studies in children relative to adults and approval of a pediatric drug development plan. Except for special cases, the pediatric investigation plan in the EU is required to be prepared and submitted to the competent authorities upon availability of adult pharmacokinetic studies (after phase I), which means at an early phase of a new drug development plan. In the USA, the pediatric plan is requested later during the phase II or III trials. In practice, it has become difficult for pharmaceutical industries to develop a practicable clinical program for pediatrics including timelines for studies in children that satisfy both EU and USA authorities. Nevertheless, at an early stage of the development strategy, direct support and advice from competent authorities can be obtained. For the ICH regions, pediatric committees are well-established albeit less structured in Japan. Their roles are to review and assess pediatric plans, to issue recommendations, to advise pharmaceutical companies on the content and format of pediatric data to be methodically collected and analyzed, and to avoid exposing children to unnecessary or redundant clinical trials. This regulatory framework encourages the study and the development of pediatric drugs, but it is still quite difficult to actually measure the impact of the ICH E11 on increasing the number of drugs for pediatric use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Towards early inclusion of children in tuberculosis drugs trials: a consensus statement.

    PubMed

    Nachman, Sharon; Ahmed, Amina; Amanullah, Farhana; Becerra, Mercedes C; Botgros, Radu; Brigden, Grania; Browning, Renee; Gardiner, Elizabeth; Hafner, Richard; Hesseling, Anneke; How, Cleotilde; Jean-Philippe, Patrick; Lessem, Erica; Makhene, Mamodikoe; Mbelle, Nontombi; Marais, Ben; McIlleron, Helen; McNeeley, David F; Mendel, Carl; Murray, Stephen; Navarro, Eileen; Anyalechi, E Gloria; Porcalla, Ariel R; Powell, Clydette; Powell, Mair; Rigaud, Mona; Rouzier, Vanessa; Samson, Pearl; Schaaf, H Simon; Shah, Seema; Starke, Jeff; Swaminathan, Soumya; Wobudeya, Eric; Worrell, Carol

    2015-06-01

    Children younger than 18 years account for a substantial proportion of patients with tuberculosis worldwide. Available treatments for paediatric drug-susceptible and drug-resistant tuberculosis, albeit generally effective, are hampered by high pill burden, long duration of treatment, coexistent toxic effects, and an overall scarcity of suitable child-friendly formulations. Several new drugs and regimens with promising activity against both drug-susceptible and drug-resistant strains have entered clinical development and are either in various phases of clinical investigation or have received marketing authorisation for adults; however, none have data on their use in children. This consensus statement, generated from an international panel of opinion leaders on childhood tuberculosis and incorporating reviews of published literature from January, 2004, to May, 2014, addressed four key questions: what drugs or regimens should be prioritised for clinical trials in children? Which populations of children are high priorities for study? When can phase 1 or 2 studies be initiated in children? What are the relevant elements of clinical trial design? The consensus panel found that children can be included in studies at the early phases of drug development and should be an integral part of the clinical development plan, rather than studied after regulatory approval in adults is obtained. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Studies on Semantic Systems Chemical Biology

    ERIC Educational Resources Information Center

    Chen, Bin

    2012-01-01

    Current "one disease, one target and one drug" drug development paradigm is under question as relatively few drugs have reached the market in the last two decades. Increasingly research focus is being placed on the study of drug action against biological systems as a whole rather than against a single component (called "Systems…

  8. An Abraded Surface of Doxorubicin-Loaded Surfactant-Containing Drug Delivery Systems Effectively Reduces the Survival of Carcinoma Cells.

    PubMed

    Schmidt, Christian; Yokaichiya, Fabiano; Doğangüzel, Nurdan; Dias Franco, Margareth K K; Cavalcanti, Leide P; Brown, Mark A; Alkschbirs, Melissa I; de Araujo, Daniele R; Kumpugdee-Vollrath, Mont; Storsberg, Joachim

    2016-09-15

    An effective antitumor remedy is yet to be developed. All previous approaches for a targeted delivery of anticancer medicine have relied on trial and error. The goal of this study was to use structural insights gained from the study of delivery systems and malignant cells to provide for a systematic approach to the development of next-generation drugs. We used doxorubicin (Dox) liposomal formulations. We assayed for cytotoxicity via the electrical current exclusion method. Dialysis of the samples yielded information about their drug release profiles. Information about the surface of the delivery systems was obtained through synchrotron small-angle X-ray scattering (SAXS) measurements. SAXS measurements revealed that Dox-loading yielded an abraded surface of our Dox liposomal formulation containing soybean oil, which also correlated with an effective reduction of the survival of carcinoma cells. Furthermore, a dialysis assay revealed that a higher burst of Dox was released from soybean oil-containing preparations within the first five hours. We conclude from our results that an abraded surface of Dox-loaded drug delivery system increases their efficacy. The apparent match between surface geometry of drug delivery systems and target cells is suggested as a steppingstone for refined development of drug delivery systems. This is the first study to provide a systematic approach to developing next-generation drug carrier systems using structural insights to guide the development of next-generation drug delivery systems with increased efficacy and reduced side effects.

  9. Trends in utilization of FDA expedited drug development and approval programs, 1987-2014: cohort study.

    PubMed

    Kesselheim, Aaron S; Wang, Bo; Franklin, Jessica M; Darrow, Jonathan J

    2015-09-23

    To evaluate the use of special expedited development and review pathways at the US Food and Drug Administration over the past two decades. Cohort study. FDA approved novel therapeutics between 1987 and 2014. Publicly available sources provided each drug's year of approval, their innovativeness (first in class versus not first in class), World Health Organization Anatomic Therapeutic Classification, and which (if any) of the FDA's four primary expedited development and review programs or designations were associated with each drug: orphan drug, fast track, accelerated approval, and priority review. Logistic regression models evaluated trends in the proportion of drugs associated with each of the four expedited development and review programs. To evaluate the number of programs associated with each approved drug over time, Poisson models were employed, with the number of programs as the dependent variable and a linear term for year of approval. The difference in trends was compared between drugs that were first in class and those that were not. The FDA approved 774 drugs during the study period, with one third representing first in class agents. Priority review (43%) was the most prevalent of the four programs, with accelerated approval (9%) the least common. There was a significant increase of 2.6% per year in the number of expedited review and approval programs granted to each newly approved agent (incidence rate ratio 1.026, 95% confidence interval 1.017 to 1.035, P<0.001), and a 2.4% increase in the proportion of drugs associated with at least one such program (odds ratio 1.024, 95% confidence interval 1.006 to 1.043, P=0.009). Driving this trend was an increase in the proportion of approved, non-first in class drugs associated with at least one program for drugs (P=0.03 for interaction). In the past two decades, drugs newly approved by the FDA have been associated with an increasing number of expedited development or review programs. Though expedited programs should be strictly limited to drugs providing noticeable clinical advances, this trend is being driven by drugs that are not first in class and thus potentially less innovative. © Kesselheim et al 2015.

  10. Glycan antagonists and inhibitors: a fount for drug discovery.

    PubMed

    Brown, Jillian R; Crawford, Brett E; Esko, Jeffrey D

    2007-01-01

    Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.

  11. Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models.

    PubMed

    Carvalho, Mariana R; Lima, Daniela; Reis, Rui L; Oliveira, Joaquim M; Correlo, Vitor M

    2017-06-01

    Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current "state of art" on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their study.

  12. Experimental design and statistical analysis for three-drug combination studies.

    PubMed

    Fang, Hong-Bin; Chen, Xuerong; Pei, Xin-Yan; Grant, Steven; Tan, Ming

    2017-06-01

    Drug combination is a critically important therapeutic approach for complex diseases such as cancer and HIV due to its potential for efficacy at lower, less toxic doses and the need to move new therapies rapidly into clinical trials. One of the key issues is to identify which combinations are additive, synergistic, or antagonistic. While the value of multidrug combinations has been well recognized in the cancer research community, to our best knowledge, all existing experimental studies rely on fixing the dose of one drug to reduce the dimensionality, e.g. looking at pairwise two-drug combinations, a suboptimal design. Hence, there is an urgent need to develop experimental design and analysis methods for studying multidrug combinations directly. Because the complexity of the problem increases exponentially with the number of constituent drugs, there has been little progress in the development of methods for the design and analysis of high-dimensional drug combinations. In fact, contrary to common mathematical reasoning, the case of three-drug combinations is fundamentally more difficult than two-drug combinations. Apparently, finding doses of the combination, number of combinations, and replicates needed to detect departures from additivity depends on dose-response shapes of individual constituent drugs. Thus, different classes of drugs of different dose-response shapes need to be treated as a separate case. Our application and case studies develop dose finding and sample size method for detecting departures from additivity with several common (linear and log-linear) classes of single dose-response curves. Furthermore, utilizing the geometric features of the interaction index, we propose a nonparametric model to estimate the interaction index surface by B-spine approximation and derive its asymptotic properties. Utilizing the method, we designed and analyzed a combination study of three anticancer drugs, PD184, HA14-1, and CEP3891 inhibiting myeloma H929 cell line. To our best knowledge, this is the first ever three drug combinations study performed based on the original 4D dose-response surface formed by dose ranges of three drugs.

  13. Increased Risk of Autism Development in Children Whose Mothers Experienced Birth Complications or Received Labor and Delivery Drugs.

    PubMed

    Smallwood, Melissa; Sareen, Ashley; Baker, Emma; Hannusch, Rachel; Kwessi, Eddy; Williams, Tyisha

    2016-08-01

    Autism spectrum disorder (ASD) is a perplexing and pervasive developmental disorder characterized by social difficulties, communicative deficits, and repetitive behavior. The increased rate of ASD diagnosis has raised questions concerning the genetic and environmental factors contributing to the development of this disorder; meanwhile, the cause of ASD remains unknown. This study surveyed mothers of ASD and non-ASD children to determine possible effects of labor and delivery (L&D) drugs on the development of ASD. The survey was administered to mothers; however, the results were analyzed by child, as the study focused on the development of autism. Furthermore, an independent ASD dataset from the Southwest Autism Research and Resource Center was analyzed and compared. Indeed, L&D drugs are associated with ASD (p = .039). Moreover, the Southwest Autism Research and Resource Center dataset shows that the labor induction drug, Pitocin, is significantly associated with ASD (p = .004). We also observed a synergistic effect between administrations of L&D drugs and experiencing a birth complication, in which both obstetrics factors occurring together increased the likelihood of the fetus developing ASD later in life (p = .0003). The present study shows the possible effects of L&D drugs, such as Pitocin labor-inducing and analgesic drugs, on children and ASD. © The Author(s) 2016.

  14. Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Dyall, Julie; Coleman, Christopher M.; Hart, Brit J.; Venkataraman, Thiagarajan; Holbrook, Michael R.; Kindrachuk, Jason; Johnson, Reed F.; Olinger, Gene G.; Jahrling, Peter B.; Laidlaw, Monique; Johansen, Lisa M.; Lear-Rooney, Calli M.; Glass, Pamela J.; Hensley, Lisa E.

    2014-01-01

    Outbreaks of emerging infections present health professionals with the unique challenge of trying to select appropriate pharmacologic treatments in the clinic with little time available for drug testing and development. Typically, clinicians are left with general supportive care and often untested convalescent-phase plasma as available treatment options. Repurposing of approved pharmaceutical drugs for new indications presents an attractive alternative to clinicians, researchers, public health agencies, drug developers, and funding agencies. Given the development times and manufacturing requirements for new products, repurposing of existing drugs is likely the only solution for outbreaks due to emerging viruses. In the studies described here, a library of 290 compounds was screened for antiviral activity against Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Selection of compounds for inclusion in the library was dependent on current or previous FDA approval or advanced clinical development. Some drugs that had a well-defined cellular pathway as target were included. In total, 27 compounds with activity against both MERS-CoV and SARS-CoV were identified. The compounds belong to 13 different classes of pharmaceuticals, including inhibitors of estrogen receptors used for cancer treatment and inhibitors of dopamine receptor used as antipsychotics. The drugs identified in these screens provide new targets for in vivo studies as well as incorporation into ongoing clinical studies. PMID:24841273

  15. Can Untargeted Metabolomics Be Utilized in Drug Discovery/Development?

    PubMed

    Caldwell, Gary W; Leo, Gregory C

    2017-01-01

    Untargeted metabolomics is a promising approach for reducing the significant attrition rate for discovering and developing drugs in the pharmaceutical industry. This review aims to highlight the practical decision-making value of untargeted metabolomics for the advancement of drug candidates in drug discovery/development including potentially identifying and validating novel therapeutic targets, creating alternative screening paradigms, facilitating the selection of specific and translational metabolite biomarkers, identifying metabolite signatures for the drug efficacy mechanism of action, and understanding potential drug-induced toxicity. The review provides an overview of the pharmaceutical process workflow to discover and develop new small molecule drugs followed by the metabolomics process workflow that is involved in conducting metabolomics studies. The pros and cons of the major components of the pharmaceutical and metabolomics workflows are reviewed and discussed. Finally, selected untargeted metabolomics literature examples, from primarily 2010 to 2016, are used to illustrate why, how, and where untargeted metabolomics can be integrated into the drug discovery/preclinical drug development process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Mining hidden knowledge for drug safety assessment: topic modeling of LiverTox as a case study

    PubMed Central

    2014-01-01

    Background Given the significant impact on public health and drug development, drug safety has been a focal point and research emphasis across multiple disciplines in addition to scientific investigation, including consumer advocates, drug developers and regulators. Such a concern and effort has led numerous databases with drug safety information available in the public domain and the majority of them contain substantial textual data. Text mining offers an opportunity to leverage the hidden knowledge within these textual data for the enhanced understanding of drug safety and thus improving public health. Methods In this proof-of-concept study, topic modeling, an unsupervised text mining approach, was performed on the LiverTox database developed by National Institutes of Health (NIH). The LiverTox structured one document per drug that contains multiple sections summarizing clinical information on drug-induced liver injury (DILI). We hypothesized that these documents might contain specific textual patterns that could be used to address key DILI issues. We placed the study on drug-induced acute liver failure (ALF) which was a severe form of DILI with limited treatment options. Results After topic modeling of the "Hepatotoxicity" sections of the LiverTox across 478 drug documents, we identified a hidden topic relevant to Hy's law that was a widely-accepted rule incriminating drugs with high risk of causing ALF in humans. Using this topic, a total of 127 drugs were further implicated, 77 of which had clear ALF relevant terms in the "Outcome and management" sections of the LiverTox. For the rest of 50 drugs, evidence supporting risk of ALF was found for 42 drugs from other public databases. Conclusion In this case study, the knowledge buried in the textual data was extracted for identification of drugs with potential of causing ALF by applying topic modeling to the LiverTox database. The knowledge further guided identification of drugs with the similar potential and most of them could be verified and confirmed. This study highlights the utility of topic modeling to leverage information within textual drug safety databases, which provides new opportunities in the big data era to assess drug safety. PMID:25559675

  17. Mining hidden knowledge for drug safety assessment: topic modeling of LiverTox as a case study.

    PubMed

    Yu, Ke; Zhang, Jie; Chen, Minjun; Xu, Xiaowei; Suzuki, Ayako; Ilic, Katarina; Tong, Weida

    2014-01-01

    Given the significant impact on public health and drug development, drug safety has been a focal point and research emphasis across multiple disciplines in addition to scientific investigation, including consumer advocates, drug developers and regulators. Such a concern and effort has led numerous databases with drug safety information available in the public domain and the majority of them contain substantial textual data. Text mining offers an opportunity to leverage the hidden knowledge within these textual data for the enhanced understanding of drug safety and thus improving public health. In this proof-of-concept study, topic modeling, an unsupervised text mining approach, was performed on the LiverTox database developed by National Institutes of Health (NIH). The LiverTox structured one document per drug that contains multiple sections summarizing clinical information on drug-induced liver injury (DILI). We hypothesized that these documents might contain specific textual patterns that could be used to address key DILI issues. We placed the study on drug-induced acute liver failure (ALF) which was a severe form of DILI with limited treatment options. After topic modeling of the "Hepatotoxicity" sections of the LiverTox across 478 drug documents, we identified a hidden topic relevant to Hy's law that was a widely-accepted rule incriminating drugs with high risk of causing ALF in humans. Using this topic, a total of 127 drugs were further implicated, 77 of which had clear ALF relevant terms in the "Outcome and management" sections of the LiverTox. For the rest of 50 drugs, evidence supporting risk of ALF was found for 42 drugs from other public databases. In this case study, the knowledge buried in the textual data was extracted for identification of drugs with potential of causing ALF by applying topic modeling to the LiverTox database. The knowledge further guided identification of drugs with the similar potential and most of them could be verified and confirmed. This study highlights the utility of topic modeling to leverage information within textual drug safety databases, which provides new opportunities in the big data era to assess drug safety.

  18. Preparation, characterization, in vitro drug release, and cellular interactions of tailored paclitaxel releasing polyethylene oxide films for drug-coated balloons.

    PubMed

    Anderson, Jordan A; Lamichhane, Sujan; Remund, Tyler; Kelly, Patrick; Mani, Gopinath

    2016-01-01

    Drug-coated balloons (DCBs) are used to treat various cardiovascular diseases. Currently available DCBs carry drug on the balloon surface either solely or using different carriers. Several studies have shown that a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. This research is focused on developing paclitaxel (PAT) loaded polyethylene oxide (PEO) films (PAT-PEO) as a controlled drug delivery carrier for DCBs. An array of PAT-PEO films were developed in this study to provide tailored release of >90% of drug only at specific time intervals, which is the time frame required for carrying out balloon-based therapy. The characterizations of PAT-PEO films using SEM, FTIR, and DSC showed that the films developed were homogenous and the PAT was molecularly dispersed in the PEO matrix. Mechanical tests showed that most PAT-PEO films developed were flexible and ductile, with yield and tensile strengths not affected after PAT incorporation. The viability, proliferation, morphology, and phenotype of smooth muscle cells (SMCs) interacted with control-PEO and PAT-PEO films were investigated. All control-PEO and PAT-PEO films showed a significant inhibitory effect on the growth of SMCs, with the degree of inhibition strongly dependent on the w/v% of the polymer used. The PAT-PEO coating was produced on the balloons. The integrity of PAT-PEO coating was well maintained without any mechanical defects occurring during balloon inflation or deflation. The drug release studies showed that only 15% of the total PAT loaded was released from the balloons within the initial 1min (typical balloon tracking time), whereas 80% of the PAT was released between 1min and 4min (typical balloon treatment time). Thus, this study demonstrated the use of PEO as an alternate drug delivery system for the balloons. Atherosclerosis is primarily responsible for cardiovascular diseases (CVDs) in millions of patients every year. Drug-coated balloons (DCBs) are commonly used to treat various CVDs. However, in several currently used DCBs, a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. In this study, paclitaxel containing polyethylene oxide (PEO) films were developed to provide unique advantages including drug release profiles specifically tailored for balloon-based therapy, homogeneous films with molecularly dispersed drug, flexible and ductile films, and exhibits significant inhibitory effect on smooth muscle cell growth. Thus, this study demonstrated the use of PEO as an alternate drug delivery platform for DCBs to improve its efficacy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Characteristics and drug utilization patterns for heavy users of prescription drugs among the elderly: a Danish register-based drug utilization study.

    PubMed

    Øymoen, Anita; Pottegård, Anton; Almarsdóttir, Anna Birna

    2015-06-01

    The objectives of this study were to (1) identify and characterize heavy users of prescription drugs among persons aged 60 years and above; (2) investigate the association of demographic, socioeconomic, and health-related variables with being a heavy drug user; and (3) study the most frequently used drugs among heavy drug users and development in use over time. This is a descriptive study. Heavy drug users were defined as the accumulated top 1 percentile who accounted for the largest share of prescription drug use measured in number of dispensed defined daily doses (DDDs). The nationwide Danish registers were used to obtain data. Multivariable logistic binary regression was used to determine which factors were associated with being a heavy drug user. Heavy drug users among persons aged 60 years and above accounted for 6.8, 6.0, and 5.5% of prescription drug use in 2002, 2007, and 2012, respectively. Male gender, those aged 60-69 years, being divorced, shorter education, low annual income, and recent hospitalization were all significantly associated with being in the top 1 percentile group of drug users (p < 0.05). The ten most frequently used drug classes among heavy drug users accounted for 75.4% of their use in 2012, and five of these were cardiovascular drugs. The development over time for the ten most used drug classes followed the same pattern among heavy drug users and in the general population. There is a skewed utilization of prescription drugs. Contrary to earlier findings, being male was associated with heavy prescription drug use both with respect to number of drugs used and drug expenditure.

  20. Preparation and application of functionalized nano drug carriers.

    PubMed

    Gong, Rudong; Chen, Gaimin

    2016-05-01

    Targeting at category memory characteristics and preparation methods of functionalized nano drugs, preparation technology of functionalized nano drug carriers is studied, and then important role of functionalized nano drug carrier in preparation of medicine is studied. Carry out the relevant literature search with computer, change limited language in the paper to Chinese and necessarily remove repetitive studies. After first review of 1260 retrieved literature, it can be found that nano drug is with accurate quantity, relatively good targeting, specificity and absorbency. Necessary research of nano drug carriers can prevent and treat disease to a certain extent. Preparation of functionalized nanocarrier is simple and convenient, which can improve frequency of use of nano preparation technology and provide better development space for medical use. Therefore, nanocarriers should be combined with drugs with relatively strong specificity in clinics, in order to be able to conduct effective research on nanometer intelligent drug, effectively promote long-term development of nano biotechnology, and then provide favorable, reliable basis for clinical diagnosis and treatment.

  1. A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis.

    PubMed

    Castillo-Garit, Juan Alberto; Abad, Concepción; Rodríguez-Borges, J Enrique; Marrero-Ponce, Yovani; Torrens, Francisco

    2012-01-01

    The neglected tropical diseases (NTDs) affect more than one billion people (one-sixth of the world's population) and occur primarily in undeveloped countries in sub-Saharan Africa, Asia, and Latin America. Available drugs for these diseases are decades old and present an important number of limitations, especially high toxicity and, more recently, the emergence of drug resistance. In the last decade several Quantitative Structure-Activity Relationship (QSAR) studies have been developed in order to identify new organic compounds with activity against the parasites responsible for these diseases, which are reviewed in this paper. The topics summarized in this work are: 1) QSAR studies to identify new organic compounds actives against Chaga's disease; 2) Development of QSAR studies to discover new antileishmanial drusg; 3) Computational studies to identify new drug-like compounds against human African trypanosomiasis. Each topic include the general characteristics, epidemiology and chemotherapy of the disease as well as the main QSAR approaches to discovery/identification of new actives compounds for the corresponding neglected disease. The last section is devoted to a new approach know as multi-target QSAR models developed for antiparasitic drugs specifically those actives against trypanosomatid parasites. At present, as a result of these QSAR studies several promising compounds, active against these parasites, are been indentify. However, more efforts will be required in the future to develop more selective (specific) useful drugs.

  2. Clinical Drug-Drug Pharmacokinetic Interaction Potential of Sucralfate with Other Drugs: Review and Perspectives.

    PubMed

    Sulochana, Suresh P; Syed, Muzeeb; Chandrasekar, Devaraj V; Mullangi, Ramesh; Srinivas, Nuggehally R

    2016-10-01

    Sucralfate, a complex of aluminium hydroxide with sulfated sucrose, forms a strong gastrointestinal tract (GIT) mucosal barrier with excellent anti-ulcer property. Because sucralfate does not undergo any significant oral absorption, sucralfate resides in the GIT for a considerable length of time. The unabsorbed sucralfate may alter the pharmacokinetics of the oral drugs by impeding its absorption and reducing the oral bioavailability. Because of the increased use of sucralfate, it was important to provide a reappraisal of the published clinical drug-drug interaction studies of sucralfate with scores of drugs. This review covers several category of drugs such as non-steroidal anti-inflammatory drugs, fluoroquinolones, histamine H2-receptor blockers, macrolides, anti-fungals, anti-diabetics, salicylic acid derivatives, steroidal anti-inflammatory drugs and provides pharmacokinetic data summary along with study design, objectives and key remarks. While the loss of oral bioavailability was significant for the fluoroquinolone class, it generally varied for other classes of drugs, suggesting that impact of the co-administration of sucralfate is manageable in clinical situations. Given the technology advancement in formulation development, it may be in order feasible to develop appropriate formulation strategies to either avoid or minimize the absorption-related issues when co-administered with sucralfate. It is recommended that consideration of both in vitro and preclinical studies may be in order to gauge the level of interaction of a drug with sucralfate. Such data may aid in the development of appropriate strategies to navigate the co-administration of sucralfate with other drugs in this age of polypharmacy.

  3. The basics of preclinical drug development for neurodegenerative disease indications.

    PubMed

    Steinmetz, Karen L; Spack, Edward G

    2009-06-12

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial.

  4. The basics of preclinical drug development for neurodegenerative disease indications

    PubMed Central

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial. PMID:19534731

  5. Research, public policy and drug abuse: current approaches and new directions.

    PubMed

    Smith, J P

    This article examines current U.S. research policy in the drug abuse field and comments on future directions. It discusses three main themes: (1) the relationship of national policy and research on drug abuse; (2) how research is planned and priorities are set at the National Institute on Drug Abuse; and (3) the need for a variety of policy studies on drug abuse to help develop more effective national prevention and control efforts. Examination of national policy statements on drug abuse supply and demand reduction issued by administrations from John F. Kennedy to Ronald W. Reagan suggests a lack of appreciation of the potential that research offers to aid public policy and an underutilization of research as a response to gaps in our knowledge of how to deal with drug problems. This paper proposes development of a National Research Strategy on Drug Abuse to identify research goals that reflect national policy needs. The importance and contribution of policy studies, as part of the National Research Strategy, are discussed with a plea for research to improve policy analysis and development.

  6. Miniaturized blood sampling techniques to benefit reduction in mice and refinement in nonhuman primates: applications to bioanalysis in toxicity studies with antibody-drug conjugates.

    PubMed

    Caron, Alexis; Lelong, Christine; Pascual, Marie-Hélène; Benning, Véronique

    2015-03-01

    Minimizing the number of animals in regulatory toxicity studies while achieving study objectives to support the development of future medicines contributes to good scientific and ethical practices. Recent advances in technology have enabled the development of miniaturized blood sampling methods (including microsampling and dried blood spots) applicable to toxicokinetic determinations of small-molecule drugs. Implementation of miniaturized blood sampling methods in the context of biotherapeutic drugs is desirable because a limitation to this type of medicine remains the total blood volume needed from a single animal to support toxicokinetic determinations of several analytes (parent drug, metabolites[s], antidrug antibodies, and so forth). We describe here the technical details, applicability, and relevance of new miniaturized blood sampling procedures in mice and nonhuman primates in the context of the toxicologic evaluation of biotherapeutic drugs consisting of antibody-drug conjugates developed for oncology indications. These examples illustrate how these techniques can benefit the reduction of animal usage in mouse toxicity studies by decreasing the number of animals dedicated to toxicokinetic determinations and the refinement of practices in nonhuman primate toxicity studies by decreasing the blood volume repeatedly drawn for toxicokinetic determinations.

  7. Miniaturized Blood Sampling Techniques to Benefit Reduction in Mice and Refinement in Nonhuman Primates: Applications to Bioanalysis in Toxicity Studies with Antibody–Drug Conjugates

    PubMed Central

    Caron, Alexis; Lelong, Christine; Pascual, Marie-Hélène; Benning, Véronique

    2015-01-01

    Minimizing the number of animals in regulatory toxicity studies while achieving study objectives to support the development of future medicines contributes to good scientific and ethical practices. Recent advances in technology have enabled the development of miniaturized blood sampling methods (including microsampling and dried blood spots) applicable to toxicokinetic determinations of small-molecule drugs. Implementation of miniaturized blood sampling methods in the context of biotherapeutic drugs is desirable because a limitation to this type of medicine remains the total blood volume needed from a single animal to support toxicokinetic determinations of several analytes (parent drug, metabolites[s], antidrug antibodies, and so forth). We describe here the technical details, applicability, and relevance of new miniaturized blood sampling procedures in mice and nonhuman primates in the context of the toxicologic evaluation of biotherapeutic drugs consisting of antibody–drug conjugates developed for oncology indications. These examples illustrate how these techniques can benefit the reduction of animal usage in mouse toxicity studies by decreasing the number of animals dedicated to toxicokinetic determinations and the refinement of practices in nonhuman primate toxicity studies by decreasing the blood volume repeatedly drawn for toxicokinetic determinations. PMID:25836960

  8. Renal Safety Pharmacology in Drug Discovery and Development.

    PubMed

    Benjamin, Amanda; Nogueira da Costa, Andre; Delaunois, Annie; Rosseels, Marie-Luce; Valentin, Jean-Pierre

    2015-01-01

    The kidney is a complex excretory organ playing a crucial role in various physiological processes such as fluid and electrolyte balance, control of blood pressure, removal of waste products, and drug disposition. Drug-induced kidney injury (DIKI) remains a significant cause of candidate drug attrition during drug development. However, the incidence of renal toxicities in preclinical studies is low, and the mechanisms by which drugs induce kidney injury are still poorly understood. Although some in vitro investigational tools have been developed, the in vivo assessment of renal function remains the most widely used methodology to identify DIKI. Stand-alone safety pharmacology studies usually include assessment of glomerular and hemodynamic function, coupled with urine and plasma analyses. However, as renal function is not part of the ICH S7A core battery, such studies are not routinely conducted by pharmaceutical companies. The most common approach consists in integrating renal/urinary measurements in repeat-dose toxicity studies. In addition to the standard analyses and histopathological examination of kidneys, novel promising urinary biomarkers have emerged over the last decade, offering greater sensitivity and specificity than traditional renal parameters. Seven of these biomarkers have been qualified by regulatory agencies for use in rat toxicity studies.

  9. A Survey of Neonatal Pharmacokinetic and Pharmacodynamic Studies in Pediatric Drug Development.

    PubMed

    Wang, J; Avant, D; Green, D; Seo, S; Fisher, J; Mulberg, A E; McCune, S K; Burckart, G J

    2015-09-01

    Conducting clinical trials in neonates is challenging, and knowledge gaps in neonatal clinical pharmacology exist. We surveyed the US Food and Drug Administration databases and identified 43 drugs studied in neonates or referring to neonates between 1998 and 2014. Twenty drugs were approved in neonates. For 10 drugs, approval was based on efficacy data in neonates, supplemented by pharmacokinetic data for four drugs. Approval for neonates was based on full extrapolation from older patients for six drugs, and partial extrapolation was the basis of approval for four drugs. Dosing recommendations differed from older patients for most drugs, and used body-size based adjustment in neonates. Trial failures were associated with various factors including inappropriate dose selection. Successful drug development in neonates could be facilitated by an improved understanding of the natural history and pathophysiology of neonatal diseases and identification and validation of clinically relevant biomarkers. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  11. Liposheres as a Novel Carrier for Lipid Based Drug Delivery: Current and Future Directions.

    PubMed

    Swain, Suryakanta; Beg, Sarwar; Babu, Sitty M

    2016-01-01

    Researchers are facing challenges to develop robust formulation and to enhance the bioavailability of poorly water-soluble drugs towards clinical applications. The development of new drug molecule alone is not adequate to assure ample pharmacotherapy of various diseases. Considerable results obtained from in vitro studies are not supported by in vivo data due to inadequate plasma drug concentrations. This may occur due to limited drug solubility and absorption. To resolve these problems, development of new drug delivery systems will be a promising approach. One of the promising pharmaceutical strategies is the use of lipospheres drug delivery system to deliver the poorly water-soluble drugs. Therefore, the present review described the methodology for manufacturing of lipospheres and factors influencing the formulation to deliver the drugs to the targeted site. Apart from that, this review also enlisted briefly the various applications of liposphers in medical and biomedical fields and critically discussed the recent patent system.

  12. Peering into the pharmaceutical "pipeline": investigational drugs, clinical trials, and industry priorities.

    PubMed

    Fisher, Jill A; Cottingham, Marci D; Kalbaugh, Corey A

    2015-04-01

    In spite of a growing literature on pharmaceuticalization, little is known about the pharmaceutical industry's investments in research and development (R&D). Information about the drugs being developed can provide important context for existing case studies detailing the expanding--and often problematic--role of pharmaceuticals in society. To access the pharmaceutical industry's pipeline, we constructed a database of drugs for which pharmaceutical companies reported initiating clinical trials over a five-year period (July 2006-June 2011), capturing 2477 different drugs in 4182 clinical trials. Comparing drugs in the pipeline that target diseases in high-income and low-income countries, we found that the number of drugs for diseases prevalent in high-income countries was 3.46 times higher than drugs for diseases prevalent in low-income countries. We also found that the plurality of drugs in the pipeline was being developed to treat cancers (26.2%). Interpreting our findings through the lens of pharmaceuticalization, we illustrate how investigating the entire drug development pipeline provides important information about patterns of pharmaceuticalization that are invisible when only marketed drugs are considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A long and winding road; evolution of antimicrobial drug development - crisis management.

    PubMed

    Echols, Roger M

    2012-11-01

    The development of antimicrobial drugs has evolved from observational case reports to complex randomized prospective clinical trials in specific treatment indications. Beginning around the year 2000, the US FDA has evolved its approach on study design and other study characteristics, which has made the conduct of these studies more difficult and the outcomes for sponsors more risky. This has contributed to the decline in the discovery and development of new antimicrobials, which are needed to address the increasing problem of bacterial resistance to existing marketed products. This study reviews the historical basis for the current regulatory climate including the various crises that have led to considerable political pressures on the agency. Recent efforts to resolve development uncertainties and to provide economic incentives for future antimicrobial drug development are presented.

  14. Development of Pain Endpoint Models for Use in Prostate Cancer Clinical Trials and Drug Approval

    DTIC Science & Technology

    2016-10-01

    consensus meeting, with input from investigators in the Prostate Cancer Clinical Trials Consortium, FDA Office of Oncology Drug Products, FDA Study...Cancer Clinical Trials Consortium, FDA Office of Oncology Drug Products, FDA Study Endpoint and Label Development Team, and FDA Division of...Abstract. American Society of Clinical Oncology . Chicago IL, June 1-5, 2013. INVENTIONS, PATENTS AND LICENSES None 11 REPORTABLE OUTCOMES

  15. 76 FR 18226 - Guidance for Industry on Postmarketing Studies and Clinical Trials-Implementation of Section 505...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... and Development (HFM-40), Center for Biologics Evaluation and Research (CBER), Food and Drug... Drug Information, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New..., Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 51...

  16. Cognitive and affective determinants of generic drug acceptance and use: cross-sectional and experimental findings

    PubMed Central

    Dohle, Simone; Siegrist, Michael

    2013-01-01

    An increase in generic substitution could be a viable approach to reduce global healthcare expenditures. In many countries, however, generic drug use is rather low. This study examines cognitive predictors (knowledge and beliefs) and affective predictors (general affect and sacred values) to explain generic drug acceptance and use. Data for the study come from a random postal survey conducted in Switzerland (N = 668). A detailed knowledge scale about generic drugs was developed. In addition, an experimental choice task was constructed in which respondents chose between branded and generic drugs. Generic drug acceptance as well as drug choices were influenced by knowledge, beliefs, and affect. It was also found that generic substitution is chosen less frequently for a more severe illness. Key insights could be used for developing information material or interventions aimed at increasing the substitution of generic drugs in order to make health care more affordable. PMID:25632372

  17. Experimental Design for Multi-drug Combination Studies Using Signaling Networks

    PubMed Central

    Huang, Hengzhen; Fang, Hong-Bin; Tan, Ming T.

    2017-01-01

    Summary Combinations of multiple drugs are an important approach to maximize the chance for therapeutic success by inhibiting multiple pathways/targets. Analytic methods for studying drug combinations have received increasing attention because major advances in biomedical research have made available large number of potential agents for testing. The preclinical experiment on multi-drug combinations plays a key role in (especially cancer) drug development because of the complex nature of the disease, the need to reduce development time and costs. Despite recent progresses in statistical methods for assessing drug interaction, there is an acute lack of methods for designing experiments on multi-drug combinations. The number of combinations grows exponentially with the number of drugs and dose-levels and it quickly precludes laboratory testing. Utilizing experimental dose-response data of single drugs and a few combinations along with pathway/network information to obtain an estimate of the functional structure of the dose-response relationship in silico, we propose an optimal design that allows exploration of the dose-effect surface with the smallest possible sample size in this paper. The simulation studies show our proposed methods perform well. PMID:28960231

  18. A survey of the administration of drugs to young infants. The Alspac Survey Team. Avon Longitudinal Study of Pregnancy and Childhood.

    PubMed Central

    Hawkins, N; Golding, J

    1995-01-01

    Medication which is given to young infants during the first months of life, an important period of development, may have effects on development which would not be observed in adults receiving the same drugs. The aim of this study was to estimate the numbers of children receiving various types of medication, including both prescription and non-prescription drugs, during the first 6 months of life. Self-completion questionnaires were posted to mothers participating in the Avon Longitudinal Study of Pregnancy & Childhood (ALSPAC) when their children were 6 months of age. These questionnaires included enquiries about the administration of drugs to the study children. The study was based in the three Bristol-based health districts of Avon in the United Kingdom. The study population comprised of 6973 children born in the 12 month period between the 1st July 1991 and the 30th June 1992. The majority of mothers, 96%, reported that their children had received medication, excluding vaccines, during the first 6 months of life. 35% had been given drugs from four or more different classes. Paracetamol had been given to 84% of the children, antibiotics to 30%. In view of potential effects of drug exposure on long term development, it is important that drugs which are administered to children are carefully assessed to ensure that they are not harmful. PMID:8527273

  19. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension.

    PubMed

    Lennernäs, Hans; Abrahamsson, Bertil

    2005-03-01

    Bioavailability (BA) and bioequivalence (BE) play a central role in pharmaceutical product development and BE studies are presently being conducted for New Drug Applications (NDAs) of new compounds, in supplementary NDAs for new medical indications and product line extensions, in Abbreviated New Drug Applications (ANDAs) of generic products and in applications for scale-up and post-approval changes. The Biopharmaceutics Classification System (BCS) has been developed to provide a scientific approach for classifying drug compounds based on solubility as related to dose and intestinal permeability in combination with the dissolution properties of the oral immediaterelease (IR) dosage form. The aim of the BCS is to provide a regulatory tool for replacing certain BE studies by accurate in-vitro dissolution tests. The aim of this review is to present the status of the BCS and discuss its future application in pharmaceutical product development. The future application of the BCS is most likely increasingly important when the present framework gains increased recognition, which will probably be the case if the BCS borders for certain class II and III drugs are extended. The future revision of the BCS guidelines by the regulatory agencies in communication with academic and industrial scientists is exciting and will hopefully result in an increased applicability in drug development. Finally, we emphasize the great use of the BCS as a simple tool in early drug development to determine the rate-limiting step in the oral absorption process, which has facilitated the information between different experts involved in the overall drug development process. This increased awareness of a proper biopharmaceutical characterization of new drugs may in the future result in drug molecules with a sufficiently high permeability, solubility and dissolution rate, and that will automatically increase the importance of the BCS as a regulatory tool over time.

  20. Thermodynamic Studies for Drug Design and Screening

    PubMed Central

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  1. Application of PBPK modelling in drug discovery and development at Pfizer.

    PubMed

    Jones, Hannah M; Dickins, Maurice; Youdim, Kuresh; Gosset, James R; Attkins, Neil J; Hay, Tanya L; Gurrell, Ian K; Logan, Y Raj; Bungay, Peter J; Jones, Barry C; Gardner, Iain B

    2012-01-01

    Early prediction of human pharmacokinetics (PK) and drug-drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.

  2. Pattern of Drug Use and Associated Behaviors Among Female Injecting Drug Users From Northeast India: A Multi-Centric, Cross-Sectional, Comparative Study.

    PubMed

    Ambekar, Atul; Rao, Ravindra; Agrawal, Alok; Goyal, Shrigopal; Mishra, Ashwani; Kishore, Kunal; Mukherjee, Debashis; Albertin, Cristina

    2015-01-01

    Studies from developed countries document the presence of injecting drug use among females and significantly higher vulnerabilities and risks as compared with male injecting drug users (IDUs). Studies comparing vulnerabilities and drug use patterns between female and male IDUs are not available for developing countries. The aim of the study was to assess the drug use pattern and related HIV vulnerabilities among female IDUs and compare these findings with those from male IDUs from four states of Northeast India. The study used data collected as part of a nationwide study of drug use pattern and related HIV vulnerabilities among IDUs. Ninety-eight female and 202 male IDUs accessing services from harm reduction sites across the four states of Northeast region of India were chosen through random sampling methodology. Drug use pattern, injecting practices, and knowledge of HIV were assessed using a structured questionnaire. Significantly higher proportion of female IDUs was uneducated, unemployed, reported their occupation as sex workers, and switched to injecting drug use faster as compared with male IDUs. Female IDUs practicing sex work differed significantly from those who did not with respect to frequency of daily injections, choice of drugs injected, and concomitant use of non-injecting drugs. More than half of female IDUs initiated sharing within the first month of injecting. The study demonstrates that female IDUs differ from male IDUs in their drug use pattern, initiation into injection as well as injecting behavior, which would be an important consideration during designing of female-specific interventions.

  3. Development of an in vitro cell culture model to study milk to plasma ratios of therapeutic drugs.

    PubMed

    Athavale, Maithili A; Maitra, Anurupa; Patel, Shahnaz; Bhate, Vijay R; Toddywalla, Villi S

    2013-01-01

    To create an in vitro cell culture model to predict the M/P (concentration of drug in milk/concentration in maternal plasma) ratios of therapeutic drugs viz. rifampicin, theophylline, paracetamol, and aspirin. An in vitro cell culture model using CIT3 cells (mouse mammary epithelial cells) was created by culturing the cells on transwells. The cells formed an integral monolayer, allowing only transcellular transport as it happens in vivo. Functionality of the cells was confirmed through scanning electron microscopy. Time wise transfer of the study drugs from plasma to milk was studied and compared with actual (in vivo) M/P ratios obtained at reported tmax for the respective drugs. The developed model mimicked two important intrinsic factors of mammary epithelial cells viz. secretory and tight-junction properties and also the passive route of drug transport. The in vitro M/P ratios at reported tmax were 0.23, 0.61, 0.87, and 0.03 respectively, for rifampicin, theophylline, paracetamol, and salicylic acid as compared to 0.29, 0.65, 0.65, and 0.22, respectively, in vitro. Our preliminary effort to develop an in vitro physiological model showed promising results. Transfer rate of the drugs using the developed model compared well with the transfer potential seen in vivo except for salicylic acid, which was transferred in far lower concentration in vitro. The model has a potential to be developed as a non-invasive alternative to the in vitro technique for determining the transfer of therapeutic drugs into breast milk.

  4. DeSigN: connecting gene expression with therapeutics for drug repurposing and development.

    PubMed

    Lee, Bernard Kok Bang; Tiong, Kai Hung; Chang, Jit Kang; Liew, Chee Sun; Abdul Rahman, Zainal Ariff; Tan, Aik Choon; Khang, Tsung Fei; Cheong, Sok Ching

    2017-01-25

    The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously. We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC 50 ) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC 50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control. DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

  5. How drugs are developed and approved by the FDA: current process and future directions.

    PubMed

    Ciociola, Arthur A; Cohen, Lawrence B; Kulkarni, Prasad

    2014-05-01

    This article provides an overview of FDA's regulatory processes for drug development and approval, and the estimated costs associated with the development of a drug, and also examines the issues and challenges facing the FDA in the near future. A literature search was performed using MEDLINE to summarize the current FDA drug approval processes and future directions. MEDLINE was further utilized to search for all cost analysis studies performed to evaluate the pharmaceutical industry R&D productivity and drug development cost estimates. While the drug approval process remains at high risk and spans over multiple years, the FDA drug review and approval process has improved, with the median approval time for new molecular drugs been reduced from 19 months to 10 months. The overall cost to development of a drug remains quite high and has been estimated to range from $868M to $1,241M USD. Several new laws have been enacted, including the FDA Safety and Innovation Act (FDASIA) of 2013, which is designed to improve the drug approval process and enhance access to new medicines. The FDA's improved processes for drug approval and post-market surveillance have achieved the goal of providing patients with timely access to effective drugs while minimizing the risk of drug-related harm. The FDA drug approval process is not without controversy, as a number of well-known gastroenterology drugs have been withdrawn from the US market over the past few years. With the approval of the new FDASIA law, the FDA will continue to improve their processes and, working together with the ACG through the FDA-Related Matters Committee, continue to develop safe and effective drugs for our patients.

  6. A cross-species analysis method to analyze animal models' similarity to human's disease state

    PubMed Central

    2012-01-01

    Background Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. Results We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. Conclusions We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology. PMID:23282076

  7. A cross-species analysis method to analyze animal models' similarity to human's disease state.

    PubMed

    Yu, Shuhao; Zheng, Lulu; Li, Yun; Li, Chunyan; Ma, Chenchen; Li, Yixue; Li, Xuan; Hao, Pei

    2012-01-01

    Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology.

  8. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  9. Cellular mechanism of oral absorption of solidified polymer micelles.

    PubMed

    Abramov, Eva; Cassiola, Flavia; Schwob, Ouri; Karsh-Bluman, Adi; Shapero, Mara; Ellis, James; Luyindula, Dema; Adini, Irit; D'Amato, Robert J; Benny, Ofra

    2015-11-01

    Oral delivery of poorly soluble and permeable drugs represents a significant challenge in drug development. The oral delivery of drugs remains to be the ultimate route of any drugs. However, in many cases, drugs are not absorbed well in the gastrointestinal tract, or they lose their activity. Polymer micelles were recognized as an effective carrier system for drug encapsulation, and are now studied as a vehicle for oral delivery of insoluble compounds. We characterized the properties of monomethoxy polyethylene glycol-poly lactic acid (mPEG-PLA) micelles, and visualized their internalization in mouse small intestine. Using Caco-2 cells as a cellular model, we studied the kinetics of particle uptake, their transport, and the molecular mechanism of their intestinal absorption. Moreover, by inhibiting specific endocytosis pathways, pharmacologically and genetically, we found that mPEG-PLA nanoparticle endocytosis is mediated by clathrin in an energy-dependent manner, and that the low-density lipoprotein receptor is involved. Many current drugs used are non-water soluble and indeed, the ability to deliver these drugs via the gastrointestinal tract remains the holy grail for many researchers. The authors in this paper developed monomethoxy polyethylene glycol-poly lactic acid (mPEG-PLA) micelles as a drug nanocarrier, and studied the mechanism of uptake across intestinal cells. The findings should improve our current understanding and point to the development of more nanocarriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Impact of Drug Metabolism/Pharmacokinetics and Their Relevance upon Taxus-based Drug Development.

    PubMed

    Hao, Da-Cheng; Ge, Guang-Bo; Wang, Ping; Yang, Ling

    2018-05-22

    Drug metabolism and pharmacokinetic (DMPK) studies of Taxus natural products, their semi-synthetic derivatives and analogs are indispensable in the optimization of lead compounds and clinical therapy. These studies can lead to development of new drug entities with improved absorption, distribution, metabolism, excretion and toxicity (ADME/T) profiles. To date, there have been no comprehensive reviews of the DMPK features of Taxus derived medicinal compounds.Natural and semi-synthetic taxanes may cause and could be affected by drug-drug interaction (DDI). Hence ADME/T studies of various taxane-containing formulations are important; to date these studies indicate that the role of cytochrome p450s and drug transporters is more prominent than phase II drug metabolizing enzymes. Mechanisms of taxane DMPK mediated by nuclear receptors, microRNAs, and single nucleotide polymorphisms are being revealed. Herein we review the latest knowledge on these topics, as well as the gaps in knowledge of the DMPK issues of Taxus compounds. DDIs significantly impact the PK/pharmacodynamics performance of taxanes and co-administered chemicals, which may inspire researchers to develop novel formula. While the ADME/T profiles of some taxanes are well defined, DMPK studies should be extended to more Taxus compounds, species, and Taxus -involved formulations, which would be streamlined by versatile omics platforms and computational analyses. Further biopharmaceutical investigations will be beneficial tothe translation of bench findings to the clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Utilization of the Bridging Strategy for the Development of New Drugs in Oncology to Avoid Drug Lag.

    PubMed

    Kogure, Seiji; Koyama, Nobuyuki; Hidaka, Shinji

    2017-11-01

    Global trial (GT) strategy and bridging (BG) strategy are currently the main clinical development strategies of oncology drugs in Japan, but the relationship between development style and drug lag and how the bridging strategy has contributed to the solution of drug lag have not been clear. We investigated the potential factors that influenced submission lag (SL), and also compared the differences in SL among early-initiation BG strategy, late-initiation BG strategy, and GT strategy. A stepwise linear regression analysis identified the potential factors that shorten SL: development start lag and development style. Comparison of the differences in SL among the strategies also indicated that the SL in the GT strategy and that in the early-initiation BG strategy were significantly shorter than that in the late-initiation BG strategy. The findings in our study suggest that the late-initiation BG strategy may not contribute to shortening drug lag. Because the number of late-initiation BG studies has not decreased, we propose first that pharmaceutical companies should initiate clinical development as early as possible in Japan so that they can choose the GT strategy as a first option at the next step, and second when they cannot choose the GT strategy after investigating differences in exposure between Japanese and non-Japanese in a phase 1 study, they should select the early BG strategy to avoid future drug lag. It is also important for the regulatory authorities to provide reasonable guidance to have a positive impact on strategic decisions, even for foreign-capital companies. © 2017, The American College of Clinical Pharmacology.

  12. Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.

    PubMed

    Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M

    2017-11-21

    Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.

  13. [The price of the drugs in Rome: economy and pharmacy from 1700 till 1870].

    PubMed

    Lederman, F

    1999-01-01

    Since the Middle Ages pharmacists had played an important role as producers and retailers of drugs, many of them exotic and precious. Proof is the resignation of the church of San Lorenzo by Martin V to the guild of apothecaries. 100 years later, Pope Clemens VII introduced the principle of drug taxes. The first roman tax was published in 1558. Until Garibaldi overthrew the papal state in 1870, these principles had remained the same, only to be interrupted by the French occupation at the beginning of the 19th century. An analysis of the drug prices shows the general development of drug costs between 1700 and 1854, the prices and the drug trade in particular being especially dependent on strong political tendencies. The introduction of new drugs and the omission of old ones had a remarkable effect on the costs, a fact which is represented by a study about the development of the prices comparing different drug groups. A further comparison between the wages and the cost of living explains why mainly members of the higher social classes could afford to buy drugs in pharmacies. This economical study of taxes emphasizes the fact that drugs, in regard to their development in prices, can hardly be compared to other goods.

  14. Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels.

    PubMed

    Manga, Ramya D; Jha, Prateek K

    2017-02-01

    Hydrogels consisting of weakly charged acidic/basic groups are ideal candidates for carriers in oral delivery, as they swell in response to pH changes in the gastrointestinal tract, resulting in drug entrapment at low pH conditions of the stomach and drug release at high pH conditions of the intestine. We have developed 1-dimensional mathematical models to study the drug release behavior through pH-responsive hydrogels. Models are developed for 3 different cases that vary in the level of rigor, which together can be applied to predict both in vitro (drug release from carrier) and in vivo (drug concentration in the plasma) behavior of hydrogel-drug formulations. A detailed study of the effect of hydrogel and drug characteristics and physiological conditions is performed to gain a fundamental insight into the drug release behavior, which may be useful in the design of pH-responsive drug carriers. Finally, we describe a successful application of these models to predict both in vitro and in vivo behavior of docetaxel-loaded micelle in a pH-responsive hydrogel, as reported in a recent experimental study. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. 75 FR 80511 - National Institute on Drug Abuse; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... unwarranted invasion of personal privacy. Name of Committee: National Institute on Drug Abuse Special Emphasis Panel; Development of Alternate Drug Delivery Dosage Forms for Drug Abuse Studies. Date: January 7, 2011... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute on Drug...

  16. Regulatory challenges in developing long-acting antiretrovirals for treatment and prevention of HIV infection.

    PubMed

    Arya, Vikram; Au, Stanley; Belew, Yodit; Miele, Peter; Struble, Kimberly

    2015-07-01

    To outline some of the regulatory challenges inherent to the development of long-acting antiretrovirals (ARVs) for the treatment or prevention of HIV infection. Despite advances in drug development that have reduced ARV dosing to once daily, suboptimal drug adherence remains an obstacle to successful HIV treatment. Further, large randomized trials of once daily oral ARVs for preexposure prophylaxis (PrEP) have shown that drug adherence correlates strongly with prophylactic effect and study outcomes. Thus, the prospect of developing long-acting ARVs, which may mitigate drug adherence issues, has attracted considerable attention lately. Because of their pharmacokinetic properties, the development of long-acting ARVs can present novel regulatory challenges. Chief among them is determining the appropriate dosing regimen, the need for an oral lead-in, and whether existing data with an approved oral agent, if available, can be leveraged for a treatment or prevention indication. For PrEP, because validated biomarkers are lacking, additional nonclinical studies and evaluation of tissue concentrations in multiple compartments may be necessary to identify optimal dosages. Study design and choice of controls for registrational trials of new long-acting PrEP agents might also prove challenging following the availability of an oral PrEP drug.

  17. Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays.

    PubMed

    Eastman, Alan

    2017-01-31

    The high failure rate of anticancer drug discovery and development has consumed billions of dollars annually. While many explanations have been provided, I believe that misinformation arising from inappropriate cell-based screens has been completely over-looked. Most cell culture experiments are irrelevant to how drugs are subsequently administered to patients. Usually, drug development focuses on growth inhibition rather than cell killing. Drugs are selected based on continuous incubation of cells, then frequently administered to the patient as a bolus. Target identification and validation is often performed by gene suppression that inevitably mimics continuous target inhibition. Drug concentrations in vitro frequently far exceed in vivo concentrations. Studies of drug synergy are performed at sub-optimal concentrations. And the focus on a limited number of cell lines can misrepresent the potential efficacy in a patient population. The intent of this review is to encourage more appropriate experimental design and data interpretation, and to improve drug development in the area of cell-based assays. Application of these principles should greatly enhance the successful translation of novel drugs to the patient.

  18. Obesity and Pediatric Drug Development.

    PubMed

    Vaughns, Janelle D; Conklin, Laurie S; Long, Ying; Zheng, Panli; Faruque, Fahim; Green, Dionna J; van den Anker, John N; Burckart, Gilbert J

    2018-05-01

    There is a lack of dosing guidelines for use in obese children. Moreover, the impact of obesity on drug safety and clinical outcomes is poorly defined. The paucity of information needed for the safe and effective use of drugs in obese patients remains a problem, even after drug approval. To assess the current incorporation of obesity as a covariate in pediatric drug development, the pediatric medical and clinical pharmacology reviews under the Food and Drug Administration (FDA) Amendments Act of 2007 and the FDA Safety and Innovation Act (FDASIA) of 2012 were reviewed for obesity studies. FDA labels were also reviewed for statements addressing obesity in pediatric patients. Forty-five drugs studied in pediatric patients under the FDA Amendments Act were found to have statements and key words in the medical and clinical pharmacology reviews and labels related to obesity. Forty-four products were identified similarly with pediatric studies under FDASIA. Of the 89 product labels identified, none provided dosing information related to obesity. The effect of body mass index on drug pharmacokinetics was mentioned in only 4 labels. We conclude that there is little information presently available to provide guidance related to dosing in obese pediatric patients. Moving forward, regulators, clinicians, and the pharmaceutical industry should consider situations in drug development in which the inclusion of obese patients in pediatric trials is necessary to facilitate the safe and effective use of new drug products in the obese pediatric population. © 2018, The American College of Clinical Pharmacology.

  19. A preliminary study for the development and optimization by experimental design of an in vitro method for prediction of drug buccal absorption.

    PubMed

    Mura, Paola; Orlandini, Serena; Cirri, Marzia; Maestrelli, Francesca; Mennini, Natascia; Casella, Giada; Furlanetto, Sandra

    2018-06-15

    The work was aimed at developing an in vitro method able to provide rapid and reliable evaluation of drug absorption through buccal mucosa. Absorption simulator apparatus endowed with an artificial membrane was purposely developed by experimental design. The apparent permeation coefficient (P app ) through excised porcine buccal mucosa of naproxen, selected as model drug, was the target value to obtain with the artificial membrane. The multivariate approach enabled systematic evaluation of the effect on the response (P app ) of simultaneous variations of the variables (kind of lipid components for support impregnation and relative amounts). A screening phase followed by a response-surface study allowed optimization of the lipid-mixture composition to obtain the desired P app value, and definition of a design space where all mixture components combinations fulfilled the desired target at a fixed probability level. The method offers a useful tool for a quick screening in the early stages of drug discovery and/or in preformulation studies, improving efficiency and chance of success in the development of buccal delivery systems. Further studies with other model drugs are planned to confirm the buccal absorption predictive capacity of the developed membrane. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions.

    PubMed

    Diller, David J; Swanson, Jon; Bayden, Alexander S; Jarosinski, Mark; Audie, Joseph

    2015-01-01

    Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.

  1. Analyzing global trends of biomarker use in drug interventional clinical studies.

    PubMed

    Hayashi, K; Masuda, S; Kimura, H

    2012-04-01

    The trend of biomarker use in drug interventional clinical studies was analyzed using ClinicalTrials.gov to provide an overview of how biomarkers are used to streamline clinical studies and to examine regional differences. A total of 3,383 clinical study data was analyzed according to phase, region, sponsor, and therapeutic class. The number of clinical studies using biomarkers has been increasing constantly and is dependent on the number of Phase I and II studies. The majority of studies (58.5%) were sponsored by the United States, with the studies being conducted mainly in the sponsor's home region (80.3%). The use of biomarkers was prominent in the oncology area (37.1%). Although current data indicates some bias in the clinical use of biomarkers, it is expected that their use will increase in later phase studies or other therapeutic areas as biomarker development proceeds. In addition, limited regional use of biomarkers may lead to differences in biomarker use in drug development and in combination with political support may result in differences in competitiveness of drug development. Biomarkers would be a powerful tool against deteriorating research and development productivity when used more in appropriate clinical study conditions.

  2. Professional ideologies and the development of syringe exchange: Wales as a case study.

    PubMed

    Keene, J M; Stimson, G V

    1997-12-01

    This paper is derived from an evaluative study of HIV prevention programs for drug injectors across Wales. It considers how different professional territories and ideologies, concepts of drug misuse and models of HIV prevention may influence policy development. The research involved monitoring the introduction and development of agency and community based syringe exchange schemes and initiatives taken by community pharmacists. Interviews with staff, managers and administrators, and descriptions of service history, development and delivery inform the discussion. HIV prevention varied in different areas of Wales depending on the particular professional group involved, local ideologies regarding drug use treatment, and the extent to which HIV prevention was seen either as a specialist area of expertise and specific remit of drug workers or a generic health care task. Drug agencies with an abstinence policy rejected syringe exchange; instead, prevention in those areas developed in ad hoc ways as health care workers and pharmacists attempted to develop a community based service. Drug agencies with a pre-existing harm minimisation model easily integrated syringe exchange into their work and played the major part in establishing the service, but there was difficulty in extending it beyond their professional caseloads. As there were disincentives to use treatment agencies, and their catchment areas were limited, these factors influenced effective service provision.

  3. Diffusion and cellular uptake of drugs in live cells studied with surface-enhanced Raman scattering probes

    NASA Astrophysics Data System (ADS)

    Bálint, Štefan; Rao, Satish; Sánchez, Mónica Marro; Huntošová, Veronika; Miškovský, Pavol; Petrov, Dmitri

    2010-03-01

    An understanding of the mechanisms of drug diffusion and uptake through cellular membranes is critical for elucidating drug action and in the development of effective drug delivery systems. We study these processes for emodin, a potential anticancer drug, in live cancer cells using surface-enhanced Raman scattering. Micrometer-sized silica beads covered by nanosized silver colloids are passively embedded into the cell and used as sensors of the drug. We demonstrate that the technique offers distinct advantages: the possibility to study the kinetics of drug diffusion through the cellular membrane toward specific cell organelles, the detection of lower drug concentrations compared to fluorescence techniques, and less damage imparted on the cell.

  4. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases

    PubMed Central

    Allarakhia, Minna

    2013-01-01

    Repurposing has the objective of targeting existing drugs and failed, abandoned, or yet-to-be-pursued clinical candidates to new disease areas. The open-source model permits for the sharing of data, resources, compounds, clinical molecules, small libraries, and screening platforms to cost-effectively advance old drugs and/or candidates into clinical re-development. Clearly, at the core of drug-repurposing activities is collaboration, in many cases progressing beyond the open sharing of resources, technology, and intellectual property, to the sharing of facilities and joint program development to foster drug-repurposing human-capacity development. A variety of initiatives under way for drug repurposing, including those targeting rare and neglected diseases, are discussed in this review and provide insight into the stakeholders engaged in drug-repurposing discovery, the models of collaboration used, the intellectual property-management policies crafted, and human capacity developed. In the case of neglected tropical diseases, it is suggested that the development of human capital be a central aspect of drug-repurposing programs. Open-source models can support human-capital development through collaborative data generation, open compound access, open and collaborative screening, preclinical and possibly clinical studies. Given the urgency of drug development for neglected tropical diseases, the review suggests elements from current repurposing programs be extended to the neglected tropical diseases arena. PMID:23966771

  5. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases.

    PubMed

    Allarakhia, Minna

    2013-01-01

    Repurposing has the objective of targeting existing drugs and failed, abandoned, or yet-to-be-pursued clinical candidates to new disease areas. The open-source model permits for the sharing of data, resources, compounds, clinical molecules, small libraries, and screening platforms to cost-effectively advance old drugs and/or candidates into clinical re-development. Clearly, at the core of drug-repurposing activities is collaboration, in many cases progressing beyond the open sharing of resources, technology, and intellectual property, to the sharing of facilities and joint program development to foster drug-repurposing human-capacity development. A variety of initiatives under way for drug repurposing, including those targeting rare and neglected diseases, are discussed in this review and provide insight into the stakeholders engaged in drug-repurposing discovery, the models of collaboration used, the intellectual property-management policies crafted, and human capacity developed. In the case of neglected tropical diseases, it is suggested that the development of human capital be a central aspect of drug-repurposing programs. Open-source models can support human-capital development through collaborative data generation, open compound access, open and collaborative screening, preclinical and possibly clinical studies. Given the urgency of drug development for neglected tropical diseases, the review suggests elements from current repurposing programs be extended to the neglected tropical diseases arena.

  6. Porous starch-based drug delivery systems processed by a microwave route.

    PubMed

    Malafaya, P B; Elvira, C; Gallardo, A; San Román, J; Reis, R L

    2001-01-01

    Abstract-A new simple processing route to produce starch-based porous materials was developed based on a microwave baking methodology. This innovative processing route was used to obtain non-loaded controls and loaded drug delivery carriers, incorporating a non-steroid anti-inflammatory agent. This bioactive agent was selected as model drug with expectations that the developed methodology might be used for other drugs and growth factors. The prepared systems were characterized by 1H and 13C NMR spectroscopy which allow the study of the interactions between the starch-based materials and the processing components, i.e, the blowing agents. The porosity of the prepared materials was estimated by measuring their apparent density and studied by comparing drug-loaded and non-loaded carriers. The behaviour of the porous structures, while immersed in aqueous media, was studied in terms of swelling and degradation, being intimately related to their porosity. Finally, in vitro drug release studies were performed showing a clear burst effect, followed by a slow controlled release of the drug over several days (up to 10 days).

  7. Expert Opinion Editorial Tissue Engineered Blood Vessels as Promising Tools for Testing Drug Toxicity

    PubMed Central

    Truskey, George A.; Fernandez, Cristina E.

    2015-01-01

    Drug-induced vascular injury (DIVI) is a serious problem in preclinical studies of vasoactive molecules and for survivors of pediatric cancers. DIVI is often observed in rodents and some larger animals, primarily with drugs affecting vascular tone, but not in humans; however, DIVI observed in animal studies often precludes a drug candidate from continuing along the development pipeline. Thus, there is great interest by the pharmaceutical industry to identify quantifiable human biomarkers of DIVI. Small scale endothelialized tissue-engineered blood vessels using human cells represent a promising approach to screen drug candidates and developed alternatives to cancer therapeutics in vitro. We identify several technical challenges that remain to be addressed, including high throughput systems to screen large numbers of candidates, identification of suitable cell sources, and establishing and maintaining a differentiated state of the vessel wall cells. Adequately addressing these challenges should yield novel platforms to screen drugs and develop new therapeutics to treat cardiovascular disease. PMID:26028128

  8. Lost in translation: neuropsychiatric drug development.

    PubMed

    Becker, Robert E; Greig, Nigel H

    2010-12-08

    Recent studies have identified troubling method and practice lapses in neuropsychiatric drug developments. These problems have resulted in errors that are of sufficient magnitude to invalidate clinical trial data and interpretations. We identify two potential sources for these difficulties: investigators selectively choosing scientific practices for demonstrations of efficacy in human-testing phases of drug development and investigators failing to anticipate the needs of practitioners who must optimize treatment for the individual patient. When clinical investigators neglect to use clinical trials as opportunities to test hypotheses of disease mechanisms in humans, the neuropsychiatric knowledge base loses both credibility and scope. When clinical investigators do not anticipate the need to translate discoveries into applications, the practitioner cannot provide optimal care for the patient. We conclude from this evidence that clinical trials, and other aspects of neuropsychiatric drug development, must adopt more practices from basic science and show greater responsiveness to conditions of clinical practice. We feel that these changes are necessary to overcome current threats to the validity and utility of studies of neurological and psychiatric drugs.

  9. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development.

    PubMed

    Burt, T; Yoshida, K; Lappin, G; Vuong, L; John, C; de Wildt, S N; Sugiyama, Y; Rowland, M

    2016-04-01

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications and design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. All phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.

  10. Peering into the Pharmaceutical “Pipeline”: Investigational Drugs, Clinical Trials, and Industry Priorities

    PubMed Central

    Cottingham, Marci D.; Kalbaugh, Corey A.

    2014-01-01

    In spite of a growing literature on pharmaceuticalization, little is known about the pharmaceutical industry’s investments in research and development (R&D). Information about the drugs being developed can provide important context for existing case studies detailing the expanding – and often problematic – role of pharmaceuticals in society. To access the pharmaceutical industry’s pipeline, we constructed a database of drugs for which pharmaceutical companies reported initiating clinical trials over a five-year period (July 2006-June 2011), capturing 2,477 different drugs in 4,182 clinical trials. Comparing drugs in the pipeline that target diseases in high-income and low-income countries, we found that the number of drugs for diseases prevalent in high-income countries was 3.46 times higher than drugs for diseases prevalent in low-income countries. We also found that the plurality of drugs in the pipeline were being developed to treat cancers (26.2%). Interpreting our findings through the lens of pharmaceuticalization, we illustrate how investigating the entire drug development pipeline provides important information about patterns of pharmaceuticalization that are invisible when only marketed drugs are considered. PMID:25159693

  11. Prolonged Suppression of Neuropathic Pain by Sequential Delivery of Lidocaine and Thalidomide Drugs Using PEGylated Graphene Oxide.

    PubMed

    Song, Tieying; Gu, Kunfeng; Wang, Wenli; Wang, Hong; Yang, Yunliang; Yang, Lijun; Ma, Pengxu; Ma, Xiaojing; Zhao, Jianhui; Yan, Ruyu; Guan, Jiao; Wang, Chunping; Qi, Yan; Ya, Jian

    2015-11-01

    The management of patients with neuropathic pain is challenging. Monotherapy with a single pain relief drug may encounter different difficulties, such as short duration of efficacy and hence too many times of drug administration, and inadequate drug delivery. Recently, nanocarrier-based drug delivery systems have been proved to provide promising strategies for efficient drug loading, delivery, and release. In the present study, we developed poly(ethylene glycol) methyl ether functionalized graphene oxide (GO) bearing two commonly used drugs of lidocaine (LDC) and thalidomide (THD) as an agent for the treatment of neuropathic pain. The sequential drug release of LDC and THD from the developed LDC-THD-GO nanosheets exhibited a synergistic effect on neuropathic pain in vitro and in vivo, as evidenced by the increased pain threshold in mechanical allodynia and hyperalgesic response tests, and the improved inhibition of proinflammatory cytokines TNF-α, IL-1β, IL-6, and nitric oxide. We believed that the present study herein would hold promise for future development of a new generation of potent agents for neuropathic pain relief. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Preclinical drug development.

    PubMed

    Brodniewicz, Teresa; Grynkiewicz, Grzegorz

    2010-01-01

    Life sciences provide reasonably sound prognosis for a number and nature of therapeutic targets on which drug design could be based, and search for new chemical entities--future new drugs, is now more than ever based on scientific principles. Nevertheless, current very long and incredibly costly drug discovery and development process is very inefficient, with attrition rate spanning from many thousands of new chemical structures, through a handful of validated drug leads, to single successful new drug launches, achieved in average after 13 years, with compounded cost estimates from hundreds of thousands to over one billion US dollars. Since radical pharmaceutical innovation is critically needed, number of new research projects concerning this area is steeply rising outside of big pharma industry--both in academic environment and in small private companies. Their prospective success will critically depend on project management, which requires combined knowledge of scientific, technical and legal matters, comprising regulations concerning admission of new drug candidates to be subjects of clinical studies. This paper attempts to explain basic rules and requirements of drug development within preclinical study period, in case of new chemical entities of natural or synthetic origin, which belong to low molecular weight category.

  13. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation.

    PubMed

    Sahana, Basudev; Santra, Kousik; Basu, Sumit; Mukherjee, Biswajit

    2010-09-07

    The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide)-85:15 (PLGA) was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w) and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM) and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.

  14. Drug-device combination products in the twenty-first century: epinephrine auto-injector development using human factors engineering.

    PubMed

    Edwards, Eric S; Edwards, Evan T; Simons, F Estelle R; North, Robert

    2015-05-01

    The systematic application of human factors engineering (HFE) principles to the development of drug-device combination products, including epinephrine auto-injectors (EAIs), has the potential to improve the effectiveness and safety of drug administration. A PubMed search was performed to assess the role of HFE in the development of drug-device combination products. The following keywords were used in different combinations: 'human factors engineering,' 'human factors,' 'medical products,' 'epinephrine/adrenaline auto-injector,' 'healthcare' and 'patient safety.' This review provides a summary of HFE principles and their application to the development of drug-device combination products as advised by the US FDA. It also describes the HFE process that was applied to the development of Auvi-Q, a novel EAI, highlighting specific steps that occurred during the product-development program. For drug-device combination products, device labeling and usability are critical and have the potential to impact clinical outcomes. Application of HFE principles to the development of drug-delivery devices has the potential to improve product quality and reliability, reduce risk and improve patient safety when applied early in the development process. Additional clinical and real-world studies will confirm whether the application of HFE has helped to develop an EAI that better meets the needs of patients at risk of anaphylaxis.

  15. The role of an intergovernmental regional organization in combating drug trafficking: a perspective of the Colombo Plan Bureau.

    PubMed

    Abarro, P A

    1987-01-01

    The Colombo Plan was established in 1950 as a regional intergovernmental organization for co-operative economic and social development in Asia and the Pacific comprising 26 member States. The permanent secretariat is the Colombo Plan Bureau to which is attached the Drug Advisory Programme (DAP) headed by a drug adviser, who consults with Governments and helps develop co-operative programmes for drug abuse prevention and control. DAP functions in close liaison and co-operation with organizations of the United Nations system and other regional and international organizations in pursuing activities in line with the international strategy and policies for drug control of the United Nations. DAP assists member States in creating public awareness of the dangers of drug abuse and drug trafficking through the use of mass media, seminars, workshops and conferences and study exchange programmes. It assists Governments in updating their drug laws and in establishing special drug units and national co-ordinating bodies on drug abuse control. DAP encourages and supports the utilization of community resources and the activities of non-governmental organizations and voluntary bodies for the prevention and reduction of drug abuse, as well as the use of mass media for more co-ordinated efforts in this area. It assists member States in developing human resources and technical expertise of personnel in the various disciplines of law enforcement, prevention, treatment and rehabilitation, through training, seminars, study exchange fellowship programmes and research. DAP also assists in promoting co-operation at the regional and interregional levels, and is involved in developing and strengthening co-operation between agencies of member States that deal with drug problems.

  16. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    PubMed

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents. © 2015 Wiley Periodicals, Inc.

  17. [Advance in studies on Aconitum traditional Chinese medicines in toxicokinetics and metabonomics].

    PubMed

    Ma, Tian-Yu; Yu, Teng-Fei; Li, Shu-Min; Li, Gang

    2014-06-01

    Aconitum, as a kind of common traditional Chinese medicine, contains multiple biological active substances, with a very high medicinal value but high toxicity. Its major toxic ingredients are aconitine, mesaconitine and hypaconitine, which are also efficient ingredients. Therefore, the safety of its clinical application has aroused wide attention. With the constant deepening of drug development studies, people want to learn about its toxic mechanism and the regularity of its emergence and development of its toxicology, so as to make a scientific and rational assessment for its safety. Therefore, toxicokinetics and metabonomics have gradually become important content in the new drug assessment. During the development of drug performance, it is crucial to establish a scientific, objective and standardized Aconitum safety evaluation system and correctly assess and utilize its toxicity. Having summarized studies on metabonomics and toxicokinetics of Aconitum drugs in recent years, authors proposed to strengthen the studies on Aconitum drug safety assessment and establish a scientific and standardized safety evaluation system as soon as possible, in order to make the national treasure more useful.

  18. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.

    2017-03-01

    The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.

  19. Synthetic Tumor Networks for Screening Drug Delivery Systems

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Nichols, Joseph B.; Garson, Charles J.; Mills, Ivy R.; Matar, Majed M.; Fewell, Jason G.; Pant, Kapil

    2015-01-01

    Tumor drug delivery is a complex phenomenon affected by several elements in addition to drug or delivery vehicle’s physico-chemical properties. A key factor is tumor microvasculature with complex effects including convective transport, high interstitial pressure and enhanced vascular permeability due to the presence of “leaky vessels”. Current in vitro models of the tumor microenvironment for evaluating drug delivery are oversimplified and, as a result, show poor correlation with in vivo performance. In this study, we report on the development of a novel microfluidic platform that models the tumor microenvironment more accurately, with physiologically and morphologically realistic microvasculature including endothelial cell lined leaky capillary vessels along with 3D solid tumors. Endothelial cells and 3D spheroids of cervical tumor cells were co-cultured in the networks. Drug vehicle screening was demonstrated using GFP gene delivery by different formulations of nanopolymers. The synthetic tumor network was successful in predicting in vivo delivery efficiencies of the drug vehicles. The developed assay will have critical applications both in basic research, where it can be used to develop next generation delivery vehicles, and in drug discovery where it can be used to study drug transport and delivery efficacy in realistic tumor microenvironment, thereby enabling drug compound and/or delivery vehicle screening. PMID:25599856

  20. Aging Biology and Novel Targets for Drug Discovery

    PubMed Central

    McLachlan, Andrew J.; Quinn, Ronald J.; Simpson, Stephen J.; de Cabo, Rafael

    2012-01-01

    Despite remarkable technological advances in genetics and drug screening, the discovery of new pharmacotherapies has slowed and new approaches to drug development are needed. Research into the biology of aging is generating many novel targets for drug development that may delay all age-related diseases and be used long term by the entire population. Drugs that successfully delay the aging process will clearly become “blockbusters.” To date, the most promising leads have come from studies of the cellular pathways mediating the longevity effects of caloric restriction (CR), particularly target of rapamycin and the sirtuins. Similar research into pathways governing other hormetic responses that influence aging is likely to yield even more targets. As aging becomes a more attractive target for drug development, there will be increasing demand to develop biomarkers of aging as surrogate outcomes for the testing of the effects of new agents on the aging process. PMID:21693687

  1. Drug Development for Pediatric Populations: Regulatory Aspects

    PubMed Central

    Zisowsky, Jochen; Krause, Andreas; Dingemanse, Jasper

    2010-01-01

    Pediatric aspects are nowadays integrated early in the development process of a new drug. The stronger enforcement to obtain pediatric information by the regulatory agencies in recent years resulted in an increased number of trials in children. Specific guidelines and requirements from, in particular, the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) form the regulatory framework. This review summarizes the regulatory requirements and strategies for pediatric drug development from an industry perspective. It covers pediatric study planning and conduct, considerations for first dose in children, appropriate sampling strategies, and different methods for data generation and analysis to generate knowledge about the pharmacokinetics (PK) and pharmacodynamics (PD) of a drug in children. The role of Modeling and Simulation (M&S) in pediatrics is highlighted—including the regulatory basis—and examples of the use of M&S are illustrated to support pediatric drug development. PMID:27721363

  2. Drug development for breast, colorectal, and non-small cell lung cancers from 1979 to 2014.

    PubMed

    Nixon, Nancy A; Khan, Omar F; Imam, Hasiba; Tang, Patricia A; Monzon, Jose; Li, Haocheng; Sun, Gavin; Ezeife, Doreen; Parimi, Sunil; Dowden, Scot; Tam, Vincent C

    2017-12-01

    Understanding the drug development pathway is critical for streamlining the development of effective cancer treatments. The objective of the current study was to delineate the drug development timeline and attrition rate of different drug classes for common cancer disease sites. Drugs entering clinical trials for breast, colorectal, and non-small cell lung cancer were identified using a pharmaceutical business intelligence database. Data regarding drug characteristics, clinical trials, and approval dates were obtained from the database, clinical trial registries, PubMed, and regulatory Web sites. A total of 411 drugs met the inclusion criteria for breast cancer, 246 drugs met the inclusion criteria for colorectal cancer, and 315 drugs met the inclusion criteria for non-small cell lung cancer. Attrition rates were 83.9% for breast cancer, 87.0% for colorectal cancer, and 92.0% for non-small cell lung cancer drugs. In the case of non-small cell lung cancer, there was a trend toward higher attrition rates for targeted monoclonal antibodies compared with other agents. No tumor site-specific differences were noted with regard to cytotoxic chemotherapy, immunomodulatory, or small molecule kinase inhibitor drugs. Drugs classified as "others" in breast cancer had lower attrition rates, primarily due to the higher success of hormonal medications. Mean drug development times were 8.9 years for breast cancer, 6.7 years for colorectal cancer, and 6.6 years for non-small cell lung cancer. Overall oncologic drug attrition rates remain high, and drugs are more likely to fail in later-stage clinical trials. The refinement of early-phase trial design may permit the selection of drugs that are more likely to succeed in the phase 3 setting. Cancer 2017;123:4672-4679. © 2017 American Cancer Society. © 2017 American Cancer Society.

  3. PBPK Modeling - A Predictive, Eco-Friendly, Bio-Waiver Tool for Drug Research.

    PubMed

    De, Baishakhi; Bhandari, Koushik; Mukherjee, Ranjan; Katakam, Prakash; Adiki, Shanta K; Gundamaraju, Rohit; Mitra, Analava

    2017-01-01

    The world has witnessed growing complexities in disease scenario influenced by the drastic changes in host-pathogen- environment triadic relation. Pharmaceutical R&Ds are in constant search of novel therapeutic entities to hasten transition of drug molecules from lab bench to patient bedside. Extensive animal studies and human pharmacokinetics are still the "gold standard" in investigational new drug research and bio-equivalency studies. Apart from cost, time and ethical issues on animal experimentation, burning questions arise relating to ecological disturbances, environmental hazards and biodiversity issues. Grave concerns arises when the adverse outcomes of continued studies on one particular disease on environment gives rise to several other pathogenic agents finally complicating the total scenario. Thus Pharma R&Ds face a challenge to develop bio-waiver protocols. Lead optimization, drug candidate selection with favorable pharmacokinetics and pharmacodynamics, toxicity assessment are vital steps in drug development. Simulation tools like Gastro Plus™, PK Sim®, SimCyp find applications for the purpose. Advanced technologies like organ-on-a chip or human-on-a chip where a 3D representation of human organs and systems can mimic the related processes and activities, thereby linking them to major features of human biology can be successfully incorporated in the drug development tool box. PBPK provides the State of Art to serve as an optional of animal experimentation. PBPK models can successfully bypass bio-equivalency studies, predict bioavailability, drug interactions and on hyphenation with in vitro-in vivo correlation can be extrapolated to humans thus serving as bio-waiver. PBPK can serve as an eco-friendly bio-waiver predictive tool in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. QbD-Enabled Development of Novel Stimuli-Responsive Gastroretentive Systems of Acyclovir for Improved Patient Compliance and Biopharmaceutical Performance.

    PubMed

    Singh, Bhupinder; Kaur, Anterpreet; Dhiman, Shashi; Garg, Babita; Khurana, Rajneet Kaur; Beg, Sarwar

    2016-04-01

    The current studies entail systematic quality by design (QbD)-based development of stimuli-responsive gastroretentive drug delivery systems (GRDDS) of acyclovir using polysaccharide blends for attaining controlled drug release profile and improved patient compliance. The patient-centric quality target product profile was defined and critical quality attributes (CQAs) earmarked. Risk assessment studies, carried out through Ishikawa fish bone diagram and failure mode, effect, and criticality analysis, helped in identifying the plausible risks or failure modes affecting the quality attributes of the drug product. A face-centered cubic design was employed for systematic development and optimization of the concentration of sodium alginate (X 1) and gellan (X 2) as the critical material attributes (CMAs) in the stimuli-responsive formulations, which were evaluated for CQAs viz. viscosity, gel strength, onset of floatation, and drug release characteristics. Mathematical modeling was carried out for generation of design space, and optimum formulation was embarked upon, exhibiting formulation characteristics marked by excellent floatation and bioadhesion characteristics along with promising drug release control up to 24 h. Drug-excipient compatibility studies through FTIR and DSC revealed absence of any interaction(s) among the formulation excipients. In vivo pharmacokinetic studies in Wistar rats corroborated extension in the drug absorption profile from the optimized stimuli-responsive GR formulations vis-à-vis the marketed suspension (ZOVIRAX®). Establishment of in vitro/in vivo correlation (IVIVC) revealed a high degree of correlation between the in vitro and in vivo data. In a nutshell, the present investigations report the successful development of stimuli-responsive GRDDS of acyclovir, which can be applicable as a platform approach for other drugs too.

  5. Microdosing: Concept, Application and Relevance

    PubMed Central

    Tewari, Tushar; Mukherjee, Shoibal

    2010-01-01

    The use of microdose pharmacokinetic studies as an essential tool in drug development is still to catch on. While this approach promises potential cost savings and a quantum leap in efficiencies of the drug development process, major hurdles still need to be overcome before the technique becomes commonplace and part of routine practice. Clear regulations in Europe and the USA have had an enabling effect. The lack of enabling provisions for microdosing studies in Indian regulation, despite low risk and manifest relevance for the local drug development industry, is inconsistent with the country's aspirations to be among the leaders in pharmaceutical research. PMID:21829784

  6. Microdosing: concept, application and relevance.

    PubMed

    Tewari, Tushar; Mukherjee, Shoibal

    2010-04-01

    The use of microdose pharmacokinetic studies as an essential tool in drug development is still to catch on. While this approach promises potential cost savings and a quantum leap in efficiencies of the drug development process, major hurdles still need to be overcome before the technique becomes commonplace and part of routine practice. Clear regulations in Europe and the USA have had an enabling effect. The lack of enabling provisions for microdosing studies in Indian regulation, despite low risk and manifest relevance for the local drug development industry, is inconsistent with the country's aspirations to be among the leaders in pharmaceutical research.

  7. Fertility drug use and the risk of ovarian tumors in infertile women: a case-control study.

    PubMed

    Asante, Albert; Leonard, Phoebe H; Weaver, Amy L; Goode, Ellen L; Jensen, Jani R; Stewart, Elizabeth A; Coddington, Charles C

    2013-06-01

    To assess the influence of infertility and fertility drugs on risk of ovarian tumors. Case-control study (Mayo Clinic Ovarian Cancer Study). Ongoing academic study of ovarian cancer. A total of 1,900 women (1,028 with ovarian tumors and 872 controls, frequency matched on age and region of residence) who had provided complete information in a self-report questionnaire about history of infertility and fertility drug use. None. Effect of infertility history, use of fertility drugs and oral contraception, and gravidity on the risk of ovarian tumor development, after controlling for potential confounders. Among women who had a history of infertility, use of fertility drugs was reported by 44 (24%) of 182 controls and 38 (17%) of 226 cases. Infertile women who used fertility drugs were not at increased risk of developing ovarian tumors compared with infertile women who did not use fertility drugs; the adjusted odds ratio was 0.64 (95% CI, 0.37, 1.11). The findings were similar when stratified by gravidity and when analyzed separately for borderline versus invasive tumors. We found no statistically significant association between fertility drug use and risk of ovarian tumors. Further larger, prospective studies are needed to confirm this observation. Published by Elsevier Inc.

  8. Early development of infants exposed to drugs prenatally.

    PubMed

    Eyler, F D; Behnke, M

    1999-03-01

    This article includes a summary and critique of methodological limitations of the peer-reviewed studies of developmental outcome during the first 2 years in children prenatally exposed to the most commonly used drugs of abuse: tobacco, alcohol, marijuana, heroin/methadone, and cocaine. Reported effects vary by specific drug or drug combinations and amount and timing of exposure; however, few thresholds have been established. Drug effects also appear to be exacerbated in children with multiple risks, including poverty, and nonoptimal caregiving environments. Although prenatal exposure to any one drug cannot reliably predict the outcome of an individual child, it may be a marker for an array of variables that can impact development. Appropriate intervention strategies require future research that determines which factors place exposed children at risk and which are protective for optimal development.

  9. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development.

    PubMed

    Alam, Fahmida; Islam, Md Asiful; Kamal, M A; Gan, Siew Hua

    2016-08-13

    Over the years, natural products have shown success as antidiabetics in vitro, in vivo and in clinical trials. Because natural product-derived drugs are more affordable and effective with fewer side-effects compared to conventional therapies, pharmaceutical research is increasingly leaning towards the discovery of new antidiabetic drugs from natural products targeting pathways or components associated with type 2 diabetes mellitus (T2DM) pathophysiology. However, the drug discovery process is very lengthy and costly with significant challenges. Therefore, various techniques are currently being developed for the preclinical research phase of drug discovery with the aim of drug development with less time and efforts from natural products. In this review, we have provided an update on natural products including fruits, vegetables, spices, nuts, beverages and mushrooms with potential antidiabetic activities from in vivo, in vitro and clinical studies. Synergistic interactions between natural products and antidiabetic drugs; and potential antidiabetic active compounds from natural products are also documented to pave the way for combination treatment and new drug discovery, respectively. Additionally, a brief idea of the drug discovery process along with the challenges that arise during drug development from natural products and the methods to conquer those challenges are discussed to create a more convenient future drug discovery process.

  10. Non-clinical studies required for new drug development - Part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies.

    PubMed

    Andrade, E L; Bento, A F; Cavalli, J; Oliveira, S K; Freitas, C S; Marcon, R; Schwanke, R C; Siqueira, J M; Calixto, J B

    2016-10-24

    This review presents a historical overview of drug discovery and the non-clinical stages of the drug development process, from initial target identification and validation, through in silico assays and high throughput screening (HTS), identification of leader molecules and their optimization, the selection of a candidate substance for clinical development, and the use of animal models during the early studies of proof-of-concept (or principle). This report also discusses the relevance of validated and predictive animal models selection, as well as the correct use of animal tests concerning the experimental design, execution and interpretation, which affect the reproducibility, quality and reliability of non-clinical studies necessary to translate to and support clinical studies. Collectively, improving these aspects will certainly contribute to the robustness of both scientific publications and the translation of new substances to clinical development.

  11. [Development of antituberculous drugs: current status and future prospects].

    PubMed

    Tomioka, Haruaki; Namba, Kenji

    2006-12-01

    Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (MTB), the etiologic agent of TB. The World Health Organization estimates that about eight to ten million new TB cases occur annually worldwide and the incidence of TB is currently increasing. In this context, TB is in the top three, with malaria and HIV being the leading causes of death from a single infectious agent, and approximately two million deaths are attributable to TB annually. In particular, pulmonary TB, the most common form of TB, is a highly contagious and life-threatening infection. Moreover, enhanced susceptibility to TB in HIV-infected populations is another serious health problem throughout the world. In addition, multidrug-resistant TB (MDR-TB) has been increasing in incidence in many areas, not only in developing countries but industrialized countries as well, during the past decade. These situations, particularly the global resurgence of TB and the rapid emergence of MDR-TB, underscore the importance of the development of new antituberculous drugs and new protocols for efficacious clinical control of TB patients using ordinary antimycobacterial drugs. Concerning the development of new antituberculous drugs, the following points are of particular importance. (1) Development of drugs which display lasting antimycobacterial activity in vivo is desirable, since they can be administered with long intervals and consequently facilitate directly observed therapy and enhance patient compliance. (2) Development of novel antituberculosis compounds to combat MDR-TB is urgently needed. (3) The eradication of slowly metabolizing and, if possible, dormant populations of MTB organisms that cause relapse, using new classes of anti-TB drugs is very promising for prevention of TB incidence, because it will markedly reduce the incidence of active TB from persons who are latently infected with MTB. Unfortunately, no new drugs except rifabutin and rifapentine has been marketed for TB in the US and other countries during the 40 years after release of rifampicin. There are a number of constraints that have deterred companies from investing in new anti-TB drugs. The research is expensive, slow and difficult, and requires specialized facilities for handling MTB. There are few animal models that closely mimic the human TB disease. Development time of any anti-TB drug will be long. In fact, clinical trials will require the minimum six-month therapy, with a follow-up period of one year or more. In addition, it is hard to demonstrate obvious benefit of a new anti-TB agents over pre-existing drugs, since clinical trials involve multidrug combination therapy using highly effective ordinary anti-TB drugs. Finaly, there is the perceived lack of commercial return to companies engaged in the development of new anti-TB drugs, because over 95% of TB cases worldwide are in developing countries. In this symposium, we reviewed the following areas. 1. Critical new information on the entire genome of MTB recently obtained and increasing knowledge of various mycobacterial virulence genes are greatly promoting the identification of genes that code for new drug targets. In this context, Dr. Namba reviewed the status of new types of compounds which are being developed as anti-TB drug. He also discussed the development of new antimycobacterial drugs according to new and potential pharmacological targets and the best clinical development plans for new-TB drugs in relation to corporate strategy. 2. Using such findings for mycobacterial genomes, bioinformatics/genomics/proteomics-based drug design and drug development using quantitative structure-activity relationships may be possible in the near future. In this context, Dr. Suwa and Dr. Suzuki reviewed the usefulness of chemical genomics in searching novel drug targets for development of new antituberculous drugs. The authors reviewed (1) the history and present status of chemical genomics that is defined as the systemic search for a selective small molecular modulator for each function of all gene products, (2) recent studies of the authors on profiles of the interactions between various kinds of human proteins and small molecule modulators using the new technology devised by Reverse Proteomics Research Institute, and (3) future prospects of the development of new antituberculous drugs based on chemical genomics. 3. It appears also promising to develop new types of drug administration systems using drug vehicles, which enable efficacious drug delivery to their target in vivo. Dr. Izumikawa, Dr. Ohno and Dr. Kohno reviewed the usefulness of liposome- and polymer-based technologies, which enable efficacious delivery of encapsulated drugs at required doses for prolonged periods of time with only a single shot without toxicity, and also enable highly targeted delivery of drugs to their target in vivo. They indicated that the applications of drug delivery system using conventional anti-mycobacterial agents are challenging to improve the compliance of treatment and better clinical outcome. 4. Immunoadjunctive therapy appears to be promising in improving outcome of clinical control of refractory mycobacterial infections, including MDR-TB and M. avium complex infection. Dr. Shimizu, Dr. Sato and Dr. Tomioka reviewed the present status of immunotherapy of mycobacterial infections in combination with antimycobacterial drugs. They indicated that the development of new classes of immunomodulators other than cytokines (IL-2, IFN-gamma, GM-CSF, IL-12, etc.) particularly those with no severe side-effects, are urgently needed. Their review dealed with some promising immunoadjunctive agents, especially ATP and its analogues, which potentiate macrophage antimycobacterial activity via purinergic P2 receptors. The aim of this symposium is to address the future prospects of the development of new drugs and drug regimens for anti-TB chemotherapy. There are a number of difficulties in drug-design for the development of new drug formulations with increased potential for antimycobacterial effects, excellent pharmacokinetics, and tolerability. It should be emphasized that the most urgent goal of chemotherapy of TB and MAC infections, especially that associated with HIV infection, is to develop highly active, low-cost drugs which can be used not only in industrialized countries but also in developing countries, since the incidences of AIDS-associated intractable TB and MAC infections are rapidly increasing in the latter. We strongly wish a great advance of fundametal and practical studies in developing such kinds of new anti-TB drugs in the near future. 1. Prospects for non-clinical or clinical development of new antituberculous drugs in relation to corporate strategy: Kenji NAMBA (New Product Research Laboratories I, Daiichi Pharmaceutical Co., Ltd.) Tuberculosis (TB) remains one of the deadliest threats to public health. No new anti-TB drugs have been brought into the clinic in the past 40 years. Current non-clinical works with progressed technology and Global Alliance for TB Drug Development, a non-profit organization established in 2000, accelerate research and development of faster-acting anti-TB compounds. We reviewed the status of new types of compounds which are being developed as anti-TB drug, such as diarylquinoline (TMC 207), nitroimidazole (PA-824 and OPC-67683), and moxifloxacin (MFLX). We also discussed the best clinical development plans for new-TB drugs in relation to corporate strategy. 2. Exploring novel drug targets through the chemical genomics approach and its possible application to the development of anti-tuberculosis drugs: Yorimasa SUWA (Reverse Proteomics Research Institute Co., Ltd.), Yohji SUZUKI (Teijin Ltd.) Recently, chemical genomics approach has been focused as an emerging technology for the drug discovery. In advance to a very large scale national project in US started last year, Reverse Proteomics Research Institute Co., Ltd. (REPRORI) has developed the core technologies for chemical genomics. Here we describe the outline of chemical genomics study, especially that of REPRORI, and discuss about its possible application to the development of anti-tuberculosis drugs. 3. Anti-mycobacterial agents and drug delivery: Koichi IZUMIKAWA, Hideaki OHNO, Shigeru KOHNO (Second Department of Internal Medicine, Nagasaki University School of Medicine) Mycobacterium infection is a major clinical concern in whole world. Since the newly developed anti-mycobacterial agents are few and still unavailable in clinical settings, the applications of drug delivery system using conventional anti-mycobacterial agents are challenging to improve the compliance of treatment and better efficacy. The efficacy of anti-mycobacterial agents modified by liposome or polymer based technology have been investigated and reported using various animal models. Drug delivery system increased and prolonged the drug concentrations at the blood and targeted organs and the duration of sustained drug release, respectively. These effects lead to decrease in the frequency of drug administrations dramatically and better efficacy rates. The studies, however, were performed only in animal models, the further investigations and evaluations in human are required for practical use. 4. Adjunctive immunotherapy of mycobacterial infections: Toshiaki SHIMIZU, Katsumasa SATO, Haruaki TOMIOKA (Department of Microbiology and Immunology, Shimane University School of Medicine) There is an urgent need to develop new antimicrobials and protocols for the administration of drugs that are potently efficacious against intractable mycobacterial infections. Unfortunately, development of the new drugs for solving this problem is not progressing. (ABSTRACT TRUNCATED)

  12. Fertility drugs and ovarian cancer.

    PubMed

    Ali, Aus Tariq

    2017-06-20

    The aetiology of ovarian cancer is multifactorial with both endogenous and exogenous risk factors playing an important role. The exact pathogenesis of ovarian cancer is still not well understood, despite the number of hypotheses published. Due to an increase in the number of women using fertility drugs, much attention has been focused on the long-term health effects of such drugs. Although fertility drugs facilitate the ovulation process, it is however associated with a significant increase in hormone concentrations, placing exposed women at increased risk of gynaecological cancer. Many clinical and epidemiological studies have examined the association between fertility drugs and ovarian cancer risk. Results from these studies have been contradictory, as some studies have reported an increased risk of ovarian cancer while others reported no increased risk. Nevertheless, recent studies have shown that women who used fertility drugs and did not conceive had a higher risk of developing ovarian cancer, compared to women who used fertility drugs and conceived and delivered successfully. This review discusses the effect of fertility drugs on the risk of developing ovarian cancer, providing details on four possible scenarios associated with fertility treatment. In addition, the limitations of previous studies and their impact on our understanding of the association between fertility drugs and ovarian cancer also have been highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Clinical Trials in a Dish: A Perspective on the Coming Revolution in Drug Development.

    PubMed

    Fermini, Bernard; Coyne, Shawn T; Coyne, Kevin P

    2018-05-01

    The pharmaceutical industry is facing unprecedented challenges as the cost of developing new drugs has reached unsustainable levels, fueled in large parts by a high attrition rate in clinical development. Strategies to bridge studies between preclinical testing and clinical trials are needed to reduce the knowledge gap and allow earlier decisions to be made on the continuation or discontinuation of further development of drugs. The discovery and development of human induced pluripotent stem cells (hiPSCs) have opened up new avenues that support the concept of screening for cell-based safety and toxicity at the level of a population. This approach, termed "Clinical Trials in a Dish" (CTiD), allows testing medical therapies for safety or efficacy on cells collected from a representative sample of human patients, before moving into actual clinical trials. It can be applied to the development of drugs for specific populations, and it allows predicting not only the magnitude of effects but also the incidence of patients in a population who will benefit or be harmed by these drugs. This, in turn, can lead to the selection of safer drugs to move into clinical development, resulting in a reduction in attrition. The current article offers a perspective of this new model for "humanized" preclinical drug development.

  14. MALDI imaging facilitates new topical drug development process by determining quantitative skin distribution profiles.

    PubMed

    Bonnel, David; Legouffe, Raphaël; Eriksson, André H; Mortensen, Rasmus W; Pamelard, Fabien; Stauber, Jonathan; Nielsen, Kim T

    2018-04-01

    Generation of skin distribution profiles and reliable determination of drug molecule concentration in the target region are crucial during the development process of topical products for treatment of skin diseases like psoriasis and atopic dermatitis. Imaging techniques like mass spectrometric imaging (MSI) offer sufficient spatial resolution to generate meaningful distribution profiles of a drug molecule across a skin section. In this study, we use matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to generate quantitative skin distribution profiles based on tissue extinction coefficient (TEC) determinations of four different molecules in cross sections of human skin explants after topical administration. The four drug molecules: roflumilast, tofacitinib, ruxolitinib, and LEO 29102 have different physicochemical properties. In addition, tofacitinib was administrated in two different formulations. The study reveals that with MALDI-MSI, we were able to observe differences in penetration profiles for both the four drug molecules and the two formulations and thereby demonstrate its applicability as a screening tool when developing a topical drug product. Furthermore, the study reveals that the sensitivity of the MALDI-MSI techniques appears to be inversely correlated to the drug molecules' ability to bind to the surrounding tissues, which can be estimated by their Log D values. Graphical abstract.

  15. How do drug users define their progress in harm reduction programs? Qualitative research to develop user-generated outcomes

    PubMed Central

    Ruefli, Terry; Rogers, Susan J

    2004-01-01

    Background Harm reduction is a relatively new and controversial model for treating drug users, with little formal research on its operation and effectiveness. In order to advance the study of harm reduction programs and our understanding of how drug users define their progress, qualitative research was conducted to develop outcomes of harm reduction programming that are culturally relevant, incremental, (i.e., capable of measuring change), and hierarchical (i.e., capable of showing how clients improve over time). Methods The study used nominal group technique (NGT) to develop the outcomes (phase 1) and focus group interviews to help validate the findings (phase 2). Study participants were recruited from a large harm-reduction program in New York City and involved approximately 120 clients in 10 groups in phase 1 and 120 clients in 10 focus groups in phase 2. Results Outcomes of 10 life areas important to drug users were developed that included between 10 to 15 incremental measures per outcome. The outcomes included ways of 1) making money; 2) getting something good to eat; 3) being housed/homeless; 4) relating to families; 5) getting needed programs/benefits/services; 6) handling health problems; 7) handling negative emotions; 8) handling legal problems; 9) improving oneself; and 10) handling drug-use problems. Findings also provided insights into drug users' lives and values, as well as a window into understanding how this population envisions a better quality of life. Results challenged traditional ways of measuring drug users based solely on quantity used and frequency of use. They suggest that more appropriate measures are based on the extent to which drug users organize their lives around drug use and how much drug use is integrated into their lives and negatively impacts other aspects of their lives. Conclusions Harm reduction and other programs serving active drug users and other marginalized people should not rely on institutionalized, provider-defined solutions to problems in living faced by their clients. PMID:15333130

  16. Enzyme-Responsive Nanomaterials for Controlled Drug Delivery

    PubMed Central

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2015-01-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials for controlled drug release have achieved significant development and been studied as an important class of drug delivery devices in nanomedicine. In this review, we describe enzymes such as proteases, phospholipase and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area. PMID:25251024

  17. Enzyme-responsive nanomaterials for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2014-10-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.

  18. Acid-activatable oxidative stress-inducing polysaccharide nanoparticles for anticancer therapy.

    PubMed

    Yoo, Wooyoung; Yoo, Donghyuck; Hong, Eunmi; Jung, Eunkyeong; Go, Yebin; Singh, S V Berwin; Khang, Gilson; Lee, Dongwon

    2018-01-10

    Drug delivery systems have been extensively developed to enhance the therapeutic efficacy of drugs by altering their pharmacokinetics and biodistribution. However, the use of high quantities of drug delivery systems can cause toxicity due to their poor metabolism and elimination. In this study, we developed polysaccharide-based drug delivery systems which exert potent therapeutic effects and could display synergistic therapeutic effects with drug payloads, leading to dose reduction. Cinnamaldehyde, a major component of cinnamon is known to induce anticancer activity by generating ROS (reactive oxygen species). We developed cinnamaldehyde-conjugated maltodextrin (CMD) as a polymeric prodrug of cinnamaldehyde and a drug carrier. Cinnamaldehyde was conjugated to the hydroxyl groups of maltodextrin via acid-cleavable acetal linkages, allowing facile formulation of nanoparticles and drug encapsulation. CMD nanoparticles induced acid-triggered ROS generation to induce apoptotic cell death. Camptothecin (CPT) was used as a model drug to investigate the potential of CMD nanoparticles as a drug carrier and also evaluate the synergistic anticancer effects with CMD nanoparticles. CPT-loaded CMD nanoparticles exhibited significantly higher anticancer activity than empty CMD nanoparticles and CPT alone in the study of mouse xenograft models, demonstrating the synergistic therapeutic effects of CMD with CPT. Taken together, we believe that CMD nanoparticles hold tremendous potential as a polymeric prodrug of cinnamaldehyde and a drug carrier in anticancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies

    PubMed Central

    McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance. PMID:24639951

  20. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  1. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  2. Accelerating Drug Development: Antiviral Therapies for Emerging Viruses as a Model.

    PubMed

    Everts, Maaike; Cihlar, Tomas; Bostwick, J Robert; Whitley, Richard J

    2017-01-06

    Drug discovery and development is a lengthy and expensive process. Although no one, simple, single solution can significantly accelerate this process, steps can be taken to avoid unnecessary delays. Using the development of antiviral therapies as a model, we describe options for acceleration that cover target selection, assay development and high-throughput screening, hit confirmation, lead identification and development, animal model evaluations, toxicity studies, regulatory issues, and the general drug discovery and development infrastructure. Together, these steps could result in accelerated timelines for bringing antiviral therapies to market so they can treat emerging infections and reduce human suffering.

  3. Research and Development Spending to Bring a Single Cancer Drug to Market and Revenues After Approval.

    PubMed

    Prasad, Vinay; Mailankody, Sham

    2017-11-01

    A common justification for high cancer drug prices is the sizable research and development (R&D) outlay necessary to bring a drug to the US market. A recent estimate of R&D spending is $2.7 billion (2017 US dollars). However, this analysis lacks transparency and independent replication. To provide a contemporary estimate of R&D spending to develop cancer drugs. Analysis of US Securities and Exchange Commission filings for drug companies with no drugs on the US market that received approval by the US Food and Drug Administration for a cancer drug from January 1, 2006, through December 31, 2015. Cumulative R&D spending was estimated from initiation of drug development activity to date of approval. Earnings were also identified from the time of approval to the present. The study was conducted from December 10, 2016, to March 2, 2017. Median R&D spending on cancer drug development. Ten companies and drugs were included in this analysis. The 10 companies had a median time to develop a drug of 7.3 years (range, 5.8-15.2 years). Five drugs (50%) received accelerated approval from the US Food and Drug Administration, and 5 (50%) received regular approval. The median cost of drug development was $648.0 million (range, $157.3 million to $1950.8 million). The median cost was $757.4 million (range, $203.6 million to $2601.7 million) for a 7% per annum cost of capital (or opportunity costs) and $793.6 million (range, $219.1 million to $2827.1 million) for a 9% opportunity costs. With a median of 4.0 years (range, 0.8-8.8 years) since approval, the total revenue from sales of these 10 drugs since approval was $67.0 billion compared with total R&D spending of $7.2 billion ($9.1 billion, including 7% opportunity costs). The cost to develop a cancer drug is $648.0 million, a figure significantly lower than prior estimates. The revenue since approval is substantial (median, $1658.4 million; range, $204.1 million to $22 275.0 million). This analysis provides a transparent estimate of R&D spending on cancer drugs and has implications for the current debate on drug pricing.

  4. Cost-effectiveness analysis of microdose clinical trials in drug development.

    PubMed

    Yamane, Naoe; Igarashi, Ataru; Kusama, Makiko; Maeda, Kazuya; Ikeda, Toshihiko; Sugiyama, Yuichi

    2013-01-01

    Microdose (MD) clinical trials have been introduced to obtain human pharmacokinetic data early in drug development. Here we assessed the cost-effectiveness of microdose integrated drug development in a hypothetical model, as there was no such quantitative research that weighed the additional effectiveness against the additional time and/or cost. First, we calculated the cost and effectiveness (i.e., success rate) of 3 types of MD integrated drug development strategies: liquid chromatography-tandem mass spectrometry, accelerator mass spectrometry, and positron emission tomography. Then, we analyzed the cost-effectiveness of 9 hypothetical scenarios where 100 drug candidates entering into a non-clinical toxicity study were selected by different methods as the conventional scenario without MD. In the base-case, where 70 drug candidates were selected without MD and 30 selected evenly by one of the three MD methods, incremental cost-effectiveness ratio per one additional drug approved was JPY 12.7 billion (US$ 0.159 billion), whereas the average cost-effectiveness ratio of the conventional strategy was JPY 24.4 billion, which we set as a threshold. Integrating MD in the conventional drug development was cost-effective in this model. This quantitative analytical model which allows various modifications according to each company's conditions, would be helpful for guiding decisions early in clinical development.

  5. Pharmacotherapies for decreasing maladaptive choice in drug addiction: Targeting the behavior and the drug.

    PubMed

    Perkins, Frank N; Freeman, Kevin B

    2018-01-01

    Drug addiction can be conceptualized as a disorder of maladaptive decision making in which drugs are chosen at the expense of pro-social, nondrug alternatives. The study of decision making in drug addiction has focused largely on the role of impulsivity as a facilitator of addiction, in particular the tendency for drug abusers to choose small, immediate gains over larger but delayed outcomes (i.e., delay discounting). A parallel line of work, also focused on decision making in drug addiction, has focused on identifying the determinants underlying the choice to take drugs over nondrug alternatives (i.e., drug vs. nondrug choice). Both tracks of research have been valuable tools in the development of pharmacotherapies for treating maladaptive decision making in drug addiction, and a number of common drugs have been studied in both designs. However, we have observed that there is little uniformity in the administration regimens of potential treatments between the designs, which hinders congruence in the development of single treatment strategies to reduce both impulsive behavior and drug choice. The current review provides an overview of the drugs that have been tested in both delay-discounting and drug-choice designs, and focuses on drugs that reduced the maladaptive choice in both designs. Suggestions to enhance congruence between the findings in future studies are provided. Finally, we propose the use of a hybridized, experimental approach that may enable researchers to test the effectiveness of therapeutics at decreasing impulsive and drug choice in a single design. Published by Elsevier Inc.

  6. Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Dong, Zhongqi; Ekins, Sean; Polli, James E

    2013-03-04

    The hepatic bile acid uptake transporter sodium taurocholate cotransporting polypeptide (NTCP) is less well characterized than its ileal paralog, the apical sodium dependent bile acid transporter (ASBT), in terms of drug inhibition requirements. The objectives of this study were (a) to identify FDA approved drugs that inhibit human NTCP, (b) to develop pharmacophore and Bayesian computational models for NTCP inhibition, and (c) to compare NTCP and ASBT transport inhibition requirements. A series of NTCP inhibition studies were performed using FDA approved drugs, in concert with iterative computational model development. Screening studies identified 27 drugs as novel NTCP inhibitors, including irbesartan (Ki = 11.9 μM) and ezetimibe (Ki = 25.0 μM). The common feature pharmacophore indicated that two hydrophobes and one hydrogen bond acceptor were important for inhibition of NTCP. From 72 drugs screened in vitro, a total of 31 drugs inhibited NTCP, while 51 drugs (i.e., more than half) inhibited ASBT. Hence, while there was inhibitor overlap, ASBT unexpectedly was more permissive to drug inhibition than was NTCP, and this may be related to NTCP possessing fewer pharmacophore features. Findings reflected that a combination of computational and in vitro approaches enriched the understanding of these poorly characterized transporters and yielded additional chemical probes for possible drug-transporter interaction determinations.

  7. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases.

    PubMed

    Mello, Juliana da Fonseca Rezende E; Gomes, Renan Augusto; Vital-Fujii, Drielli Gomes; Ferreira, Glaucio Monteiro; Trossini, Gustavo Henrique Goulart

    2017-12-01

    Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs. © 2017 John Wiley & Sons A/S.

  8. Reconsidering Japan's underperformance in pharmaceuticals: evidence from Japan's anticancer drug sector.

    PubMed

    Umemura, Maki

    2010-01-01

    Unlike its automobile or electronics industries, Japan's pharmaceutical industry did not become a global leader. Japan remains a net importer of pharmaceuticals and has introduced few global blockbuster drugs. Alfred Chandler argued that Japan's pharmaceutical firms remained relatively weak because Western firms enjoyed an insurmountable first first-mover advantage. However, this case study of the anticancer drug sector illustrates that Chandler's explanation is incomplete. Japanese medical culture, government policy, and research environment also played a substantial role in shaping the industry. In the 1970s and 1980s, these factors encouraged firms to develop little few effective drugs with low side effects, and profit from Japan's domestic market. But, these drugs were unsuitable to foreign markets with more demanding efficacy standards. As a result, Japan not only lost more than a decade in developing ineffective drugs, but also neglected to create the infrastructure necessary to develop innovative drugs and build a stronger pharmaceutical industry.

  9. Big Data Mining and Adverse Event Pattern Analysis in Clinical Drug Trials

    PubMed Central

    Federer, Callie; Yoo, Minjae

    2016-01-01

    Abstract Drug adverse events (AEs) are a major health threat to patients seeking medical treatment and a significant barrier in drug discovery and development. AEs are now required to be submitted during clinical trials and can be extracted from ClinicalTrials.gov (https://clinicaltrials.gov/), a database of clinical studies around the world. By extracting drug and AE information from ClinicalTrials.gov and structuring it into a database, drug-AEs could be established for future drug development and repositioning. To our knowledge, current AE databases contain mainly U.S. Food and Drug Administration (FDA)-approved drugs. However, our database contains both FDA-approved and experimental compounds extracted from ClinicalTrials.gov. Our database contains 8,161 clinical trials of 3,102,675 patients and 713,103 reported AEs. We extracted the information from ClinicalTrials.gov using a set of python scripts, and then used regular expressions and a drug dictionary to process and structure relevant information into a relational database. We performed data mining and pattern analysis of drug-AEs in our database. Our database can serve as a tool to assist researchers to discover drug-AE relationships for developing, repositioning, and repurposing drugs. PMID:27631620

  10. Big Data Mining and Adverse Event Pattern Analysis in Clinical Drug Trials.

    PubMed

    Federer, Callie; Yoo, Minjae; Tan, Aik Choon

    2016-12-01

    Drug adverse events (AEs) are a major health threat to patients seeking medical treatment and a significant barrier in drug discovery and development. AEs are now required to be submitted during clinical trials and can be extracted from ClinicalTrials.gov ( https://clinicaltrials.gov/ ), a database of clinical studies around the world. By extracting drug and AE information from ClinicalTrials.gov and structuring it into a database, drug-AEs could be established for future drug development and repositioning. To our knowledge, current AE databases contain mainly U.S. Food and Drug Administration (FDA)-approved drugs. However, our database contains both FDA-approved and experimental compounds extracted from ClinicalTrials.gov . Our database contains 8,161 clinical trials of 3,102,675 patients and 713,103 reported AEs. We extracted the information from ClinicalTrials.gov using a set of python scripts, and then used regular expressions and a drug dictionary to process and structure relevant information into a relational database. We performed data mining and pattern analysis of drug-AEs in our database. Our database can serve as a tool to assist researchers to discover drug-AE relationships for developing, repositioning, and repurposing drugs.

  11. Juvenile Animal Testing: Assessing Need and Use in the Drug Product Label.

    PubMed

    Baldrick, Paul

    2018-01-01

    Juvenile animal testing has become an established part of drug development to support safe clinical use in the human pediatric population and for eventual drug product label use. A review of European Paediatric Investigation Plan decisions showed that from 2007 to mid-2017, 229 drugs had juvenile animal work requested, almost exclusively incorporating general toxicology study designs, in rat (57.5%), dog (8%), mouse (4.5%), monkey (4%), pig (2%), sheep (1%), rabbit (1%), hamster (0.5%), and species not specified (21.5%). A range of therapeutic areas were found, but the most common areas were infectious diseases (15%), endocrinology (13.5%), oncology (13%), neurology (11%), and cardiovascular diseases (10%). Examination of major clinical indications within these therapeutic areas showed some level of consistency in the species of choice for testing and the pediatric age that required support. Examination of juvenile animal study findings presented in product labels raises questions around how useful the data are to allow prescribing the drug to a child. It is hopeful that the new ICH S11 guideline "Nonclinical Safety Testing in Support of Development of Pediatric Medicines" currently in preparation will aid drug developers in clarifying the need for juvenile animal studies as well as in promoting a move away from toxicology studies with a conventional design. This would permit more focused testing to examine identified areas of toxicity or safety concerns and clarify the presentation/interpretation of juvenile animal study findings for proper risk assessment by a drug prescriber.

  12. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates.

    PubMed

    Lauschke, Volker M; Hendriks, Delilah F G; Bell, Catherine C; Andersson, Tommy B; Ingelman-Sundberg, Magnus

    2016-12-19

    The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity. Yet, these models are far from satisfactory due to extensive species differences and because hepatocytes in 2D cultures rapidly dedifferentiate resulting in the loss of their hepatic phenotype and functionality. With the increasing comprehension that 3D cell culture systems more accurately reflect in vivo physiology, in the recent decade more and more research has focused on the development and optimization of various 3D culture strategies in an attempt to preserve liver properties in vitro. In this contribution, we critically review these developments, which have resulted in an arsenal of different static and perfused 3D models. These systems include sandwich-cultured hepatocytes, spheroid culture platforms, and various microfluidic liver or multiorgan biochips. Importantly, in many of these models hepatocytes maintain their phenotype for prolonged times, which allows probing the potential of newly developed chemical entities to cause chronic hepatotoxicity. Moreover, some platforms permit the investigation of drug action in specific genetic backgrounds or diseased hepatocytes, thereby significantly expanding the repertoire of tools to detect drug-induced liver injuries. It is concluded that the development of 3D liver models has hitherto been fruitful and that systems are now at hand whose sensitivity and specificity in detecting hepatotoxicity are superior to those of classical 2D culture systems. For the future, we highlight the need to develop more integrated coculture model systems to emulate immunotoxicities that arise due to complex interactions between hepatocytes and immune cells.

  13. Role of pharmacoeconomic analysis in R&D decision making: when, where, how?

    PubMed

    Miller, Paul

    2005-01-01

    Pharmacoeconomics is vitally important to drug manufacturers in terms of communicating to external decision-makers (payers, prescribers, patients) the value of their products, achieving regulatory and reimbursement approval and contributing to commercial success. Since development of new drugs is long, costly and risky, and decisions must be made how to allocate considerable research and development (R&D) resources, pharmacoeconomics also has an essential role informing internal decision-making (within a company) during drug development. The use of pharmacoeconomics in early development phases is likely to enhance the efficiency of R&D resource use and also provide a solid foundation for communicating product value to external decision-makers further downstream, increasing the likelihood of regulatory (reimbursement) approval and commercial success. This paper puts the case for use of pharmacoeconomic analyses earlier in the development process and outlines five techniques (clinical trial simulation [CTS], option pricing [OP], investment appraisal [IA], threshold analysis [TA] and value of information [VOI] analysis) that can provide useful input into the design of clinical development programmes, portfolio management and optimal pricing strategy. CTS can estimate efficacy and tolerability profiles before clinical data are available. OP can show the value of different clinical programme designs, sequencing of studies and stop decisions. IA can compare expected net present value (NPV) of different product profiles or study designs. TA can be used to understand development drug profile requirements given partial data. VOI can assist risk management by quantifying uncertainty and assessing the economic viability of gathering further information on the development drug. No amount of pharmacoeconomic data can make a bad drug good; what it can do is enhance the drug developers understanding of the characteristics of that drug. Decision-making, in light of this information, is likely to be better than that without it, whether it leads to faster termination of uneconomic projects or the allocation of more appropriate resources to attractive projects.

  14. Role of Statistical Random-Effects Linear Models in Personalized Medicine.

    PubMed

    Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose

    2012-03-01

    Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization.

  15. Using Social Media Data to Identify Potential Candidates for Drug Repurposing: A Feasibility Study.

    PubMed

    Rastegar-Mojarad, Majid; Liu, Hongfang; Nambisan, Priya

    2016-06-16

    Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates. Patients today report their experiences with medications on social media and reveal side effects as well as beneficial effects of those medications. Our aim was to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this is the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in patient comments. Our preliminary study shows that social media has the potential to be used in drug repurposing.

  16. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  17. Cystic Fibrosis Treatment: A Paradigm for New Pediatric Medicines, Globalization of Drug Development and the Role of the European Medicines Agency.

    PubMed

    Rose, Klaus; Spigarelli, Michael G

    2015-03-23

    The European Pediatric Pharmaceutical Legislation wants children to benefit more from pharmaceutical progress. In rare diseases, concerns have been raised that this legislation might damage research and stymie drug development. We discuss the role of the European Medicines Agency (EMA) and its Pediatric Committee (PDCO) in the development of ivacaftor, first-in-class for cystic fibrosis (CF) patients with the G551D mutation (and eight other mutations later) and of lumacaftor and ataluren, two more potential break-through CF medications. Ivacaftor was USA-approved early 2012 and six months later in the EU. Registration was based on the same data. We analyzed these drugs' EU pediatric investigation plans (PIPs) and compared the PIP-studies with the pediatric CF studies listed in www.clinicaltrials.gov. The ivacaftor PIP studies appear to reflect what the developer planned anyway, apart from a study in 1-23-month-olds, which has not yet started. The total negotiation time for the current PIP version was approximately 5.5 years. For companies that develop drugs in pediatric diseases, e.g., CF, PIPs represent considerable additional procedural workload with minimal or no additional benefit for the patients. New drugs for pediatric diseases should not be hampered by additional, unnecessary and costly bureaucracy, but be registered as rapidly as possible without compromising safety.

  18. The worldwide trend of using botanical drugs and strategies for developing global drugs.

    PubMed

    Ahn, Kyungseop

    2017-03-01

    Natural product drugs, or botanical drugs, are drugs composed of natural substances which have constituents with healthenhancing or medicinal activities. In Korea, government-led projects brought attention to botanical drugs invigorating domestic botanical drug industry. Foreign markets, as well, are growing bigger as the significance of botanical drugs stood out. To follow along with the tendency, Korea puts a lot of effort on developing botanical drugs suitable for global market. However, standards for approving drug sales vary by countries. And also, thorough standardization, certification, clinical studies and data of these will be required as well as data confirming safety and effectiveness. Meanwhile, as an international exchange in botanical drug market continues, the importance of plant resources was emphasized. Thus countries' ownership of domestic natural resources became vital. Not only establishing a systematic method to secure domestic plant resources, but also cooperation with other countries on sharing natural resources is essential to procure natural resources effectively. Korea started to show visible results with botanical drugs, and asthma/COPD treatment made out of speedwell is one example. Sufficient investment and government's active support for basic infrastructure for global botanical drugs will bring Korea to much higher level of botanical drug development. [BMB Reports 2017; 50(3): 111-116].

  19. Evaluating cardiac risk: exposure response analysis in early clinical drug development.

    PubMed

    Grenier, Julie; Paglialunga, Sabina; Morimoto, Bruce H; Lester, Robert M

    2018-01-01

    The assessment of a drug's cardiac liability has undergone considerable metamorphosis by regulators since International Council for Harmonization of Technical Requirement for Pharmaceuticals for Human Use E14 guideline was introduced in 2005. Drug developers now have a choice in how proarrhythmia risk can be evaluated; the options include a dedicated thorough QT (TQT) study or exposure response (ER) modeling of intensive electrocardiogram (ECG) captured in early clinical development. The alternative approach of ER modeling was incorporated into a guidance document in 2015 as a primary analysis tool which could be utilized in early phase dose escalation studies as an option to perform a dedicated TQT trial. This review will describe the current state of ER modeling of intensive ECG data collected during early clinical drug development; the requirements with regard to the use of a positive control; and address the challenges and opportunities of this alternative approach to assessing QT liability.

  20. Program to Manage New and Expensive Drugs in Pediatrics: Profile of a New Drug Policy and a 12-Month Descriptive Study.

    PubMed

    Corny, Jennifer; Cotteret, Camille; Pelletier, Élaine; Ovetchkine, Philippe; Bussières, Jean-François

    2017-01-01

    With growing financial pressure and the range of new and expensive drugs, hospital administrators, clinicians, and pharmacy directors are facing tough decisions on how to manage drug budgets. At a Canadian mother-child hospital, a policy for new and expensive drugs was developed, with the goal of managing their use and costs. To describe the development and implementation of a policy for new and expensive drugs in a mother-child teaching hospital and to describe the profile of requests for these therapies over a 12-month period. A brainstorming session was conducted with members of the pharmacy and therapeutics committee to define the criteria for new and expensive drugs at the study hospital and a new process to evaluate requests for these drugs. Over the 12-month period following implementation of the policy, all requests for new and expensive drugs were evaluated through collection and analysis of relevant data. The new drug policy was launched on October 1, 2014. Over the following 12-month period, a total of 58 requests for new and expensive drugs were discussed, but only 47 request forms were completed and signed by a physician and a clinical pharmacist. New and expensive drugs represent a challenge for clinicians and hospital stakeholders. This study illustrates the implementation of a new policy for these drugs in a mother-child teaching hospital over a 12-month period.

  1. Modeling the role of environment in addiction.

    PubMed

    Caprioli, Daniele; Celentano, Michele; Paolone, Giovanna; Badiani, Aldo

    2007-11-15

    The aim of this review is to provide an overview of the main types of animal models used to investigate the modulatory role of environment on drug addiction. The environment can alter the responsiveness to addictive drugs in at least three major ways. First, adverse life experiences can make an individual more vulnerable to develop drug addiction or to relapse into drug seeking. Second, neutral environmental cues can acquire, through Pavlovian conditioning, the ability to trigger drug seeking even after long periods of abstinence. Third, the environment immediately surrounding drug taking can alter the behavioral, subjective, and rewarding effects of a given drug, thus influencing the propensity to use the same drug again. We have focused in particular on the results obtained using an animal model we have developed to study the latter type of drug-environment interaction.

  2. [Categories and characteristics of BPH drug evaluation models: a comparative study].

    PubMed

    Huang, Dong-Yan; Wu, Jian-Hui; Sun, Zu-Yue

    2014-02-01

    Benign prostatic hyperplasia (BPH) is a worldwide common disease in men over 50 years old, and the exact cause of BPH remains largely unknown. In order to elucidate its pathogenesis and screen effective drugs for the treatment of BPH, many BPH models have been developed at home and abroad. This article presents a comprehensive analysis of the categories and characteristics of BPH drug evaluation models, highlighting the application value of each model, to provide a theoretical basis for the development of BPH drugs.

  3. Development of poloxamer gel formulations via hot-melt extrusion technology.

    PubMed

    Mendonsa, Nicole S; Murthy, S Narasimha; Hashemnejad, Seyed Meysam; Kundu, Santanu; Zhang, Feng; Repka, Michael A

    2018-02-15

    Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques. Published by Elsevier B.V.

  4. Points to consider: efficacy and safety evaluations in the clinical development of ultra-orphan drugs.

    PubMed

    Maeda, Kojiro; Kaneko, Masayuki; Narukawa, Mamoru; Arato, Teruyo

    2017-08-23

    The unmet medical needs of individuals with very rare diseases are high. The clinical trial designs and evaluation methods used for 'regular' drugs are not applicable in the clinical development of ultra-orphan drugs (<1000 patients) in many cases. In order to improve the clinical development of ultra-orphan drugs, we examined several points regarding the efficient evaluations of drug efficacy and safety that could be conducted even with very small sample sizes, based on the review reports of orphan drugs approved in Japan. The clinical data packages of 43 ultra-orphan drugs approved in Japan from January 2001 to December 2014 were investigated. Japanese clinical trial data were not included in the clinical data package for eight ultra-orphan drugs, and non-Japanese clinical trial data were included for six of these eight drug. Japanese supportive data that included retrospective studies, published literature, clinical research and Japanese survey results were clinical data package attachments in 22 of the 43 ultra-orphan drugs. Multinational trials were conducted for three ultra-orphan drugs. More than two randomized controlled trials (RCTs) were conducted for only 11 of the 43 ultra-orphan drugs. The smaller the number of patients, the greater the proportion of forced titration and optional titration trials were conducted. Extension trials were carried out for enzyme preparations and monoclonal antibodies with high ratio. Post-marketing surveillance of all patients was required in 36 of the 43 ultra-orphan drugs. For ultra-orphan drugs, clinical endpoints were used as the primary efficacy endpoint of the pivotal trial only for two drugs. The control groups in RCTs were classified as follows: placebo groups different dosage groups, and active controls groups. Sample sizes have been determined on the basis of feasibility for some ultra-orphan drugs. We provide "Draft Guidance on the Clinical Development of Ultra-Orphan Drugs" based on this research. The development of ultra-orphan drugs requires various arrangements regarding evidence collection, data sources and the clinical trial design. We expect that this draft guidance is useful for ultra-orphan drugs developments in future.

  5. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB

    PubMed Central

    Vaddady, Pavan K; Lee, Richard E; Meibohm, Bernd

    2011-01-01

    For rapid anti-tuberculosis (TB) drug development in vitro pharmacokinetic/pharmacodynamic (PK/PD) models are useful in evaluating the direct interaction between the drug and the bacteria, thereby guiding the selection of candidate compounds and the optimization of their dosing regimens. Utilizing in vivo drug-clearance profiles from animal and/or human studies and simulating them in an in vitro PK/PD model allows the in-depth characterization of antibiotic activity of new and existing antibacterials by generating time–kill data. These data capture the dynamic interplay between mycobacterial growth and changing drug concentration as encountered during prolonged drug therapy. This review focuses on important PK/PD parameters relevant to anti-TB drug development, provides an overview of in vitro PK/PD models used to evaluate the efficacy of agents against mycobacteria and discusses the related mathematical modeling approaches of time–kill data. Overall, it provides an introduction to in vitro PK/PD models and their application as critical tools in evaluating anti-TB drugs. PMID:21359155

  6. Cytokines in cancer drug resistance: Cues to new therapeutic strategies.

    PubMed

    Jones, Valerie Sloane; Huang, Ren-Yu; Chen, Li-Pai; Chen, Zhe-Sheng; Fu, Liwu; Huang, Ruo-Pan

    2016-04-01

    The development of oncoprotein-targeted anticancer drugs is an invaluable weapon in the war against cancer. However, cancers do not give up without a fight. They may develop multiple mechanisms of drug resistance, including apoptosis inhibition, drug expulsion, and increased proliferation that reduce the effectiveness of the drug. The collective work of researchers has highlighted the role of cytokines in the mechanisms of cancer drug resistance, as well as in cancer cell progression. Furthermore, recent studies have described how specific cytokines secreted by cancer stromal cells confer resistance to chemotherapeutic treatments. In order to gain a better understanding of mechanism of cancer drug resistance and a prediction of treatment outcome, it is imperative that correlations are established between global cytokine profiles and cancer drug resistance. Here we discuss the recent discoveries in this field of research and discuss their implications for the future development of effective anti-cancer medicines. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    PubMed

    Covell, David G

    2015-01-01

    Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE) and Sanger Cancer Genome Project (CGP). The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a) evaluate drug responses of compounds with similar mechanism of action (MOA), b) examine measures of gene expression (GE), copy number (CN) and mutation status (MUT) biomarkers, combined with gene set enrichment analysis (GSEA), for hypothesizing biological processes important for drug response, c) conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d) assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  8. Effect of ingested lipids on drug dissolution and release with concurrent digestion: a modeling approach

    PubMed Central

    Buyukozturk, Fulden; Di Maio, Selena; Budil, David E.; Carrier, Rebecca L.

    2014-01-01

    Purpose To mechanistically study and model the effect of lipids, either from food or self-emulsifying drug delivery systems (SEDDS), on drug transport in the intestinal lumen. Methods Simultaneous lipid digestion, dissolution/release, and drug partitioning were experimentally studied and modeled for two dosing scenarios: solid drug with a food-associated lipid (soybean oil) and drug solubilized in a model SEDDS (soybean oil and Tween 80 at 1:1 ratio). Rate constants for digestion, permeability of emulsion droplets, and partition coefficients in micellar and oil phases were measured, and used to numerically solve the developed model. Results Strong influence of lipid digestion on drug release from SEDDS and solid drug dissolution into food-associated lipid emulsion were observed and predicted by the developed model. 90 minutes after introduction of SEDDS, there was 9% and 70% drug release in the absence and presence of digestion, respectively. However, overall drug dissolution in the presence of food-associated lipids occurred over a longer period than without digestion. Conclusion A systems-based mechanistic model incorporating simultaneous dynamic processes occurring upon dosing of drug with lipids enabled prediction of aqueous drug concentration profile. This model, once incorporated with a pharmacokinetic model considering processes of drug absorption and drug lymphatic transport in the presence of lipids, could be highly useful for quantitative prediction of impact of lipids on bioavailability of drugs. PMID:24234918

  9. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process.

    PubMed

    Huang, Shiew-Mei; Strong, John M; Zhang, Lei; Reynolds, Kellie S; Nallani, Srikanth; Temple, Robert; Abraham, Sophia; Habet, Sayed Al; Baweja, Raman K; Burckart, Gilbert J; Chung, Sang; Colangelo, Philip; Frucht, David; Green, Martin D; Hepp, Paul; Karnaukhova, Elena; Ko, Hon-Sum; Lee, Jang-Ik; Marroum, Patrick J; Norden, Janet M; Qiu, Wei; Rahman, Atiqur; Sobel, Solomon; Stifano, Toni; Thummel, Kenneth; Wei, Xiao-Xiong; Yasuda, Sally; Zheng, Jenny H; Zhao, Hong; Lesko, Lawrence J

    2008-06-01

    Predicting clinically significant drug interactions during drug development is a challenge for the pharmaceutical industry and regulatory agencies. Since the publication of the US Food and Drug Administration's (FDA's) first in vitro and in vivo drug interaction guidance documents in 1997 and 1999, researchers and clinicians have gained a better understanding of drug interactions. This knowledge has enabled the FDA and the industry to progress and begin to overcome these challenges. The FDA has continued its efforts to evaluate methodologies to study drug interactions and communicate recommendations regarding the conduct of drug interaction studies, particularly for CYP-based and transporter-based drug interactions, to the pharmaceutical industry. A drug interaction Web site was established to document the FDA's current understanding of drug interactions (http://www.fda.gov/cder/drug/drugInteractions/default.htm). This report provides an overview of the evolution of the drug interaction guidances, includes a synopsis of the steps taken by the FDA to revise the original drug interaction guidance documents, and summarizes and highlights updated sections in the current guidance document, Drug Interaction Studies-Study Design, Data Analysis, and Implications for Dosing and Labeling.

  10. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE PAGES

    Burt, T.; Yoshida, K.; Lappin, G.; ...

    2016-02-26

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  11. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, T.; Yoshida, K.; Lappin, G.

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  12. The discovery of drug-induced illness.

    PubMed

    Jick, H

    1977-03-03

    The increased use of drugs (and the concurrent increased risks of drug-induced illness) require definition of relevant research areas and strategy. For established marketed drugs, research needs depend on the magnitudes of risk of an illness from a drug and the base-line risk. With the drug risk high and the base-line risk low, the problem surfaces in premarketing studies or through the epidemic that develops after marketing. If the drug adds slightly to a high base-line risk, the effect is undetectable. When both risks are low, adverse effects can be discovered by chance, but systematic case-referent studies can speed discovery. If both risks are high, clinical trials and nonexperimental studies may be used. With both risks intermediate, systematic evaluations, especially case-referent studies are needed. Newly marketed drugs should be routinely evaluated through compulsory registration and follow-up study of the earliest users.

  13. Development of solid dispersion systems of dapivirine to enhance its solubility.

    PubMed

    Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay

    2013-06-01

    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.

  14. Scale development on consumer behavior toward counterfeit drugs in a developing country: a quantitative study exploiting the tools of an evolving paradigm

    PubMed Central

    2013-01-01

    Background Although desperate need and drug counterfeiting are linked in developing countries, little research has been carried out to address this link, and there is a lack of proper tools and methodology. This study addresses the need for a new methodological approach by developing a scale to aid in understanding the demand side of drug counterfeiting in a developing country. Methods The study presents a quantitative, non-representative survey conducted in Sudan. A face-to-face structured interview survey methodology was employed to collect the data from the general population (people in the street) in two phases: pilot (n = 100) and final survey (n = 1003). Data were analyzed by examining means, variances, squared multiple correlations, item-to-total correlations, and the results of an exploratory factor analysis and a confirmatory factor analysis. Results As an approach to scale purification, internal consistency was examined and improved. The scale was reduced from 44 to 41 items and Cronbach’s alpha improved from 0.818 to 0.862. Finally, scale items were assessed. The result was an eleven-factor solution. Convergent and discriminant validity were demonstrated. Conclusion The results of this study indicate that the “Consumer Behavior Toward Counterfeit Drugs Scale” is a valid, reliable measure with a solid theoretical base. Ultimately, the study offers public health policymakers a valid measurement tool and, consequently, a new methodological approach with which to build a better understanding of the demand side of counterfeit drugs and to develop more effective strategies to combat the problem. PMID:24020730

  15. Scale development on consumer behavior toward counterfeit drugs in a developing country: a quantitative study exploiting the tools of an evolving paradigm.

    PubMed

    Alfadl, Abubakr A; Ibrahim, Mohamed Izham b Mohamed; Hassali, Mohamed Azmi Ahmad

    2013-09-11

    Although desperate need and drug counterfeiting are linked in developing countries, little research has been carried out to address this link, and there is a lack of proper tools and methodology. This study addresses the need for a new methodological approach by developing a scale to aid in understanding the demand side of drug counterfeiting in a developing country. The study presents a quantitative, non-representative survey conducted in Sudan. A face-to-face structured interview survey methodology was employed to collect the data from the general population (people in the street) in two phases: pilot (n = 100) and final survey (n = 1003). Data were analyzed by examining means, variances, squared multiple correlations, item-to-total correlations, and the results of an exploratory factor analysis and a confirmatory factor analysis. As an approach to scale purification, internal consistency was examined and improved. The scale was reduced from 44 to 41 items and Cronbach's alpha improved from 0.818 to 0.862. Finally, scale items were assessed. The result was an eleven-factor solution. Convergent and discriminant validity were demonstrated. The results of this study indicate that the "Consumer Behavior Toward Counterfeit Drugs Scale" is a valid, reliable measure with a solid theoretical base. Ultimately, the study offers public health policymakers a valid measurement tool and, consequently, a new methodological approach with which to build a better understanding of the demand side of counterfeit drugs and to develop more effective strategies to combat the problem.

  16. Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials.

    PubMed

    Zheng, Nan; Sun, Dajun D; Zou, Peng; Jiang, Wenlei

    2017-05-01

    In the past few decades, the development of medicine at the nanoscale has been applied to oral and parenteral dosage forms in a wide range of therapeutic areas to enhance drug delivery and reduce toxicity. An obvious response to these benefits is reflected in higher market shares of complex drug products containing nanomaterials than that of conventional formulations containing the same active ingredient. The surging market interest has encouraged the pharmaceutical industry to develop cost-effective generic versions of complex drug products based on nanotechnology when the associated patent and exclusivity on the reference products have expired. Due to their complex nature, nanotechnology-based drugs present unique challenges in determining equivalence standards between generic and innovator products. This manuscript attempts to provide the scientific rationales and regulatory considerations of key equivalence standards (e.g., in vivo studies and in vitro physicochemical characterization) for oral drugs containing nanomaterials, iron-carbohydrate complexes, liposomes, protein-bound drugs, nanotube-forming drugs, and nano emulsions. It also presents active research studies in bridging regulatory and scientific gaps for establishing equivalence of complex products containing nanomaterials. We hope that open communication among industry, academia, and regulatory agencies will accelerate the development and approval processes of generic complex products based on nanotechnology.

  17. Clinical pharmacokinetics of non-opiate abused drugs.

    PubMed

    Busto, U; Bendayan, R; Sellers, E M

    1989-01-01

    The present review discusses the available data on the kinetic properties of non-opiate abused drugs including psychomotor stimulants, hallucinogens and CNS-depressants. Some of the drugs of abuse reviewed here are illicit drugs (e.g. cannabis, cocaine), while others are effective pharmacological agents but have the potential to be abused (e.g. benzodiazepines). Although some of the drugs mentioned in this review have been in use for centuries (e.g. caffeine, nicotine, cocaine, cannabis), knowledge of their kinetics and metabolism is very recent and in some cases still incomplete. This is partially due to the difficulties inherent in studying drugs of abuse in humans, and to the complex metabolism of some of these drugs (e.g. cannabis, caffeine) which has made it difficult to develop sensitive assays to determine biological pathways. Although drugs of abuse may have entirely different intrinsic pharmacological effects, the kinetic properties of such drugs are factors contributing to abuse and dependence. The pharmacokinetic properties that presumably contribute to self-administration and drug abuse include rapid delivery of the drug into the central nervous system and high free drug clearance. Kinetic characteristics also play an important role in the development of physical dependence and on the appearance of a withdrawal syndrome: the longer the half-life, the greater the likelihood of the development of physical dependence; the shorter the half-life, the earlier and more severe the withdrawal. The balance between these 2 factors, which has not yet been carefully studied, will also influence abuse patterns. The clinical significance of kinetic characteristics with respect to abuse is discussed where possible.

  18. Applied metabolomics in drug discovery.

    PubMed

    Cuperlovic-Culf, M; Culf, A S

    2016-08-01

    The metabolic profile is a direct signature of phenotype and biochemical activity following any perturbation. Metabolites are small molecules present in a biological system including natural products as well as drugs and their metabolism by-products depending on the biological system studied. Metabolomics can provide activity information about possible novel drugs and drug scaffolds, indicate interesting targets for drug development and suggest binding partners of compounds. Furthermore, metabolomics can be used for the discovery of novel natural products and in drug development. Metabolomics can enhance the discovery and testing of new drugs and provide insight into the on- and off-target effects of drugs. This review focuses primarily on the application of metabolomics in the discovery of active drugs from natural products and the analysis of chemical libraries and the computational analysis of metabolic networks. Metabolomics methodology, both experimental and analytical is fast developing. At the same time, databases of compounds are ever growing with the inclusion of more molecular and spectral information. An increasing number of systems are being represented by very detailed metabolic network models. Combining these experimental and computational tools with high throughput drug testing and drug discovery techniques can provide new promising compounds and leads.

  19. Drug target identification in protozoan parasites.

    PubMed

    Müller, Joachim; Hemphill, Andrew

    2016-08-01

    Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.

  20. Social contexts of drug offers among American Indian youth and their relationship to substance use: an exploratory study.

    PubMed

    Kulis, Stephen; Okamoto, Scott K; Rayle, Andrea Dixon; Sen, Soma

    2006-01-01

    In this exploratory study the authors examined the social contexts of American Indian youths' encounters with drug offers and their relationship to substance use. Using an inventory of drug use-related problem situations developed specifically for American Indian youth, questionnaires were completed by 71 American Indian youth at public middle schools in a Southwest metropolitan area. Regression analyses highlight the importance of situational and relational contexts in understanding substance use among the youth in this sample. Exposure to drug offers through parents, other adults, cousins, friends and other peers was associated with different types of substance use. Exposure through parents was particularly salient in predicting the drug use of female respondents. The study underscores the need for development of culturally grounded prevention programs in schools, reservations, and nonreservation communities. Copyright (c) 2006 APA, all rights reserved.

  1. Pharmacological treatment of severe psychiatric disorders in the developing world : lessons from India.

    PubMed

    Patel, Vikram; Andrade, Chittaranjan

    2003-01-01

    Severe psychiatric disorders (schizophrenia, bipolar disorder and major depressive disorder) cause much morbidity and disability in developing countries. Most of the evidence on the efficacy and effectiveness of drug treatments for these disorders is based on trials conducted in Western countries. Cultural, biological and health system factors may profoundly influence the applicability of such evidence in developing countries. Attitudes towards, and concepts about, psychiatric disorders vary across cultures, and these may influence the acceptability of drug treatments. Genetic and environmental factors may lead to variations in the pharmacodynamics and pharmacokinetics of psychotropic drugs across ethnic groups. This may explain why lower doses of psychotropic drugs tend to be used for non-Caucasian patients. There is a dearth of mental health professionals and care facilities in developing countries, especially in rural areas. Epidemiological studies show that, despite this lack of services, the outcome of schizophrenia is favourable in developing countries. This suggests that cultural, genetic or environmental factors may play as much of a role in influencing outcome as access to antipsychotic treatment. Regional drug policies may influence the availability and cost of psychotropic drugs. In particular, the Indian experience, where drugs are manufactured by several local pharmaceutical firms, thus bringing their cost down, may represent a unique deregulated drug industry. However, the impending impact of the Trade-Related Aspects of Intellectual Property Rights (TRIPS) agreement, with the strict enforcement of patent laws, will almost certainly lead to a rise in drug costs in the coming years. This may influence the choice and cost effectiveness of various drugs. The implications of these cross-cultural variations for policy and practice are the need to ensure a reliable supply of affordable psychotropic drugs in developing countries, trained healthcare professionals to use these drugs rationally, a concerted advocacy campaign to exclude drugs for severe psychiatric disorders from patent protection, and the development of psychosocial programmes to improve global outcomes.

  2. Delays in clinical development of neurological drugs in Japan.

    PubMed

    Ikeda, Masayuki

    2017-06-28

    The delays in the approval and development of neurological drugs between Japan and other countries have been a major issue for patients with neurological diseases. The objective of this study was to analyze factors contributing to the delay in the launching of neurological drugs in Japan. We analyzed data from Japan and the US for the approval of 42 neurological drugs, all of which were approved earlier in the US than in Japan, and examined the potential factors that may cause the delay of their launch. Introductions of the 42 drugs in Japan occurred at a median of 87 months after introductions in the US. The mean review time of new drug applications for the 20 drugs introduced in Japan in January 2011 or later (15 months) was significantly shorter than that for the other 22 drugs introduced in Japan in December 2010 or earlier (24 months). The lag in the Japan's review time behind the US could not explain the approval delays. In the 31 of the 42 drugs, the application data package included overseas data. The mean review time of these 31 drugs (17 months) was significantly shorter than that of the other 11 drugs without overseas data (26 months). The mean approval lag behind the US of the 31 drugs (78 months) was also significantly shorter than that of the other 11 drugs (134 months). These results show that several important reforms in the Japanese drug development and approval system (e.g., inclusion of global clinical trial data) have reduced the delays in the clinical development of neurological drugs.

  3. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments.

    PubMed

    McGivern, Jered V; Ebert, Allison D

    2014-04-01

    In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: A step towards personalized medicine

    PubMed Central

    Gupta, Sudheer; Chaudhary, Kumardeep; Kumar, Rahul; Gautam, Ankur; Nanda, Jagpreet Singh; Dhanda, Sandeep Kumar; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.

    2016-01-01

    In this study, we investigated drug profile of 24 anticancer drugs tested against a large number of cell lines in order to understand the relation between drug resistance and altered genomic features of a cancer cell line. We detected frequent mutations, high expression and high copy number variations of certain genes in both drug resistant cell lines and sensitive cell lines. It was observed that a few drugs, like Panobinostat, are effective against almost all types of cell lines, whereas certain drugs are effective against only a limited type of cell lines. Tissue-specific preference of drugs was also seen where a drug is more effective against cell lines belonging to a specific tissue. Genomic features based models have been developed for each anticancer drug and achieved average correlation between predicted and actual growth inhibition of cell lines in the range of 0.43 to 0.78. We hope, our study will throw light in the field of personalized medicine, particularly in designing patient-specific anticancer drugs. In order to serve the scientific community, a webserver, CancerDP, has been developed for predicting priority/potency of an anticancer drug against a cancer cell line using its genomic features (http://crdd.osdd.net/raghava/cancerdp/). PMID:27030518

  5. Proteomic study of acute respiratory distress syndrome: current knowledge and implications for drug development

    PubMed Central

    Levitt, Joseph E.; Rogers, Angela J.

    2017-01-01

    The acute respiratory distress syndrome (ARDS) is a common cause of acute respiratory failure, and is associated with substantial mortality and morbidity. Dozens of clinical trials targeting ARDS have failed, with no drug specifically targeting lung injury in widespread clinical use. Thus, the need for drug development in ARDS is great. Targeted proteomic studies in ARDS have identified many key pathways in the disease, including inflammation, epithelial injury, endothelial injury or activation, and disordered coagulation and repair. Recent studies reveal the potential for proteomic changes to identify novel subphenotypes of ARDS patients who may be most likely to respond to therapy and could thus be targeted for enrollment in clinical trials. Nontargeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in the disease. Proteomics will play an important role in phenotyping of patients and developing novel therapies for ARDS in the future. PMID:27031735

  6. Animal studies of addictive behavior.

    PubMed

    Vanderschuren, Louk J M J; Ahmed, Serge H

    2013-04-01

    It is increasingly recognized that studying drug taking in laboratory animals does not equate to studying genuine addiction, characterized by loss of control over drug use. This has inspired recent work aimed at capturing genuine addiction-like behavior in animals. In this work, we summarize empirical evidence for the occurrence of several DSM-IV-like symptoms of addiction in animals after extended drug use. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, increased motivation for drugs, preference for drugs over nondrug rewards, and resistance to punishment. The fact that addiction-like behavior can occur and be studied in animals gives us the exciting opportunity to investigate the neural and genetic background of drug addiction, which we hope will ultimately lead to the development of more effective treatments for this devastating disorder.

  7. Animal Studies of Addictive Behavior

    PubMed Central

    Ahmed, Serge H.

    2013-01-01

    It is increasingly recognized that studying drug taking in laboratory animals does not equate to studying genuine addiction, characterized by loss of control over drug use. This has inspired recent work aimed at capturing genuine addiction-like behavior in animals. In this work, we summarize empirical evidence for the occurrence of several DSM-IV-like symptoms of addiction in animals after extended drug use. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, increased motivation for drugs, preference for drugs over nondrug rewards, and resistance to punishment. The fact that addiction-like behavior can occur and be studied in animals gives us the exciting opportunity to investigate the neural and genetic background of drug addiction, which we hope will ultimately lead to the development of more effective treatments for this devastating disorder. PMID:23249442

  8. [Development and effectiveness of a drug dosage calculation training program using cognitive loading theory based on smartphone application].

    PubMed

    Kim, Myoung Soo; Park, Jung Ha; Park, Kyung Yeon

    2012-10-01

    This study was done to develop and evaluate a drug dosage calculation training program using cognitive loading theory based on a smartphone application. Calculation ability, dosage calculation related self-efficacy and anxiety were measured. A nonequivalent control group design was used. Smartphone application and a handout for self-study were developed and administered to the experimental group and only a handout was provided for control group. Intervention period was 4 weeks. Data were analyzed using descriptive analysis, χ²-test, t-test, and ANCOVA with the SPSS 18.0. The experimental group showed more 'self-efficacy for drug dosage calculation' than the control group (t=3.82, p<.001). Experimental group students had higher ability to perform drug dosage calculations than control group students (t=3.98, p<.001), with regard to 'metric conversion' (t=2.25, p=.027), 'table dosage calculation' (t=2.20, p=.031) and 'drop rate calculation' (t=4.60, p<.001). There was no difference in improvement in 'anxiety for drug dosage calculation'. Mean satisfaction score for the program was 86.1. These results indicate that this drug dosage calculation training program using smartphone application is effective in improving dosage calculation related self-efficacy and calculation ability. Further study should be done to develop additional interventions for reducing anxiety.

  9. A Study on Drug Safety Monitoring Program in India

    PubMed Central

    Ahmad, A.; Patel, Isha; Sanyal, Sudeepa; Balkrishnan, R.; Mohanta, G. P.

    2014-01-01

    Pharmacovigilance is useful in assuring the safety of medicines and protecting the consumers from their harmful effects. A number of single drugs as well as fixed dose combinations have been banned from manufacturing, marketing and distribution in India. An important issue about the availability of banned drugs over the counter in India is that sufficient adverse drug reactions data about these drugs have not been reported. The most common categories of drugs withdrawn in the last decade were nonsteroidal antiinflammatory drugs (28%), antidiabetics (14.28%), antiobesity (14.28%), antihistamines (14.28%), gastroprokinetic drugs (7.14%), breast cancer and infertility drugs (7.14%), irritable bowel syndrome and constipation drugs (7.14%) and antibiotics (7.14%). Drug withdrawals from market were made mainly due to safety issues involving cardiovascular events (57.14%) and liver damage (14.28%). Majority of drugs have been banned since 3-5 years in other countries but are still available for sale in India. The present study compares the drug safety monitoring systems in the developed countries such as the USA and UK and provides implications for developing a system that can ensure the safety and efficacy of drugs in India. Absence of a gold standard for a drug safety surveillance system, variations in culture and clinical practice across countries makes it difficult for India to completely adopt another country's practices. There should be a multidisciplinary approach towards drug safety that should be implemented throughout the entire duration spanning from drug discovery to usage by consumers. PMID:25425751

  10. A study on drug safety monitoring program in India.

    PubMed

    Ahmad, A; Patel, Isha; Sanyal, Sudeepa; Balkrishnan, R; Mohanta, G P

    2014-09-01

    Pharmacovigilance is useful in assuring the safety of medicines and protecting the consumers from their harmful effects. A number of single drugs as well as fixed dose combinations have been banned from manufacturing, marketing and distribution in India. An important issue about the availability of banned drugs over the counter in India is that sufficient adverse drug reactions data about these drugs have not been reported. The most common categories of drugs withdrawn in the last decade were nonsteroidal antiinflammatory drugs (28%), antidiabetics (14.28%), antiobesity (14.28%), antihistamines (14.28%), gastroprokinetic drugs (7.14%), breast cancer and infertility drugs (7.14%), irritable bowel syndrome and constipation drugs (7.14%) and antibiotics (7.14%). Drug withdrawals from market were made mainly due to safety issues involving cardiovascular events (57.14%) and liver damage (14.28%). Majority of drugs have been banned since 3-5 years in other countries but are still available for sale in India. The present study compares the drug safety monitoring systems in the developed countries such as the USA and UK and provides implications for developing a system that can ensure the safety and efficacy of drugs in India. Absence of a gold standard for a drug safety surveillance system, variations in culture and clinical practice across countries makes it difficult for India to completely adopt another country's practices. There should be a multidisciplinary approach towards drug safety that should be implemented throughout the entire duration spanning from drug discovery to usage by consumers.

  11. The Development of Videos in Culturally Grounded Drug Prevention for Rural Native Hawaiian Youth

    ERIC Educational Resources Information Center

    Okamoto, Scott K.; Helm, Susana; McClain, Latoya L.; Dinson, Ay-Laina

    2012-01-01

    The purpose of this study was to adapt and validate narrative scripts to be used for the video components of a culturally grounded drug prevention program for rural Native Hawaiian youth. Scripts to be used to film short video vignettes of drug-related problem situations were developed based on a foundation of pre-prevention research funded by the…

  12. Parenting Children Who Have Been Prenatally Exposed to Drugs or Alcohol: A Handbook for Foster and Adoptive Parents.

    ERIC Educational Resources Information Center

    Bauer, Anne M.; And Others

    This manual provides an overview of the early child development of normal children with low birthweight who have been exposed to drugs before birth. The research on children exposed to cocaine and alcohol during the prenatal period is reviewed, as are the results of studies showing deficiencies in language and social development of drug-exposed…

  13. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllynen, Paeivi; Pienimaeki, Paeivi; Vaehaekangas, Kirsi

    2005-09-01

    Epilepsy is one of the most common neurological diseases, affecting about 0.5 to 1% of pregnant women. It is commonly accepted that older antiepileptic drugs bear teratogenic potential. So far, no agreement has been reached about the safest antiepileptic drug during pregnancy. It is known that nearly all drugs cross the placenta at least to some extent. Nowadays, there is very little information available of the pharmacokinetics of drugs in the feto-placental unit. Detailed information about drug transport across the placenta would be valuable for the development of safe and effective treatments. For reasons of safety, human studies on placentalmore » transfer are restricted to a limited number of drugs. Interspecies differences limit the extrapolation of animal data to humans. Several in vitro methods for the study of placental transfer have been developed over the past decades. The placental perfusion method is the only experimental method that has been used to study human placental transfer of substances in organized placental tissue. The aim of this article is to review human placental perfusion data on antiepileptic drugs. According to perfusion data, it seems that most of the antiepileptic drugs are transferred across the placenta meaning significant fetal exposure.« less

  14. Leveraging model-informed approaches for drug discovery and development in the cardiovascular space.

    PubMed

    Dockendorf, Marissa F; Vargo, Ryan C; Gheyas, Ferdous; Chain, Anne S Y; Chatterjee, Manash S; Wenning, Larissa A

    2018-06-01

    Cardiovascular disease remains a significant global health burden, and development of cardiovascular drugs in the current regulatory environment often demands large and expensive cardiovascular outcome trials. Thus, the use of quantitative pharmacometric approaches which can help enable early Go/No Go decision making, ensure appropriate dose selection, and increase the likelihood of successful clinical trials, have become increasingly important to help reduce the risk of failed cardiovascular outcomes studies. In addition, cardiovascular safety is an important consideration for many drug development programs, whether or not the drug is designed to treat cardiovascular disease; modeling and simulation approaches also have utility in assessing risk in this area. Herein, examples of modeling and simulation applied at various stages of drug development, spanning from the discovery stage through late-stage clinical development, for cardiovascular programs are presented. Examples of how modeling approaches have been utilized in early development programs across various therapeutic areas to help inform strategies to mitigate the risk of cardiovascular-related adverse events, such as QTc prolongation and changes in blood pressure, are also presented. These examples demonstrate how more informed drug development decisions can be enabled by modeling and simulation approaches in the cardiovascular area.

  15. Development and optimization of locust bean gum and sodium alginate interpenetrating polymeric network of capecitabine.

    PubMed

    Upadhyay, Mansi; Adena, Sandeep Kumar Reddy; Vardhan, Harsh; Pandey, Sureshwar; Mishra, Brahmeshwar

    2018-03-01

    The objective of the study was to develop interpenetrating polymeric network (IPN) of capecitabine (CAP) using natural polymers locust bean gum (LBG) and sodium alginate (NaAlg). The IPN microbeads were optimized by Box-Behnken Design (BBD) to provide anticipated particle size with good drug entrapment efficiency. The comparative dissolution profile of IPN microbeads of CAP with the marketed preparation proved an excellent sustained drug delivery vehicle. Ionotropic gelation method utilizing metal ion calcium (Ca 2+ ) as a cross-linker was used to prepare IPN microbeads. The optimization study was done by response surface methodology based Box-Behnken Design. The effect of the factors on the responses of optimized batch was exhibited through response surface and contour plots. The optimized batch was analyzed for particle size, % drug entrapment, pharmacokinetic study, in vitro drug release study and further characterized by FTIR, XRD, and SEM. To study the water uptake capacity and hydrodynamic activity of the polymers, swelling studies and viscosity measurement were performed, respectively. The particle size and % drug entrapment of the optimized batch was 494.37 ± 1.4 µm and 81.39 ± 2.9%, respectively, closer to the value predicted by Minitab 17 software. The in vitro drug release study showed sustained release of 92% for 12 h and followed anomalous drug release pattern. The derived pharmacokinetic parameters of optimized batch showed improved results than pure CAP. Thus, the formed IPN microbeads of CAP proved to be an effective extended drug delivery vehicle for the water soluble antineoplastic drug.

  16. SEIIrR: Drug abuse model with rehabilitation

    NASA Astrophysics Data System (ADS)

    Sutanto, Azizah, Afina; Widyaningsih, Purnami; Saputro, Dewi Retno Sari

    2017-05-01

    Drug abuse in the world quite astonish and tend to increase. The increase and decrease on the number of drug abusers showed a pattern of spread that had the same characteristics with patterns of spread of infectious disease. The susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR) epidemic models for infectious disease was developed to study social epidemic. In this paper, SEIR model for disease epidemic was developed to study drug abuse epidemic with rehabilitation treatment. The aims of this paper were to analogize susceptible exposed infected isolated recovered (SEIIrR) model on the drug abusers, to determine solutions of the model, to determine equilibrium point, and to do simulation on β. The solutions of SEIIrR model was determined by using fourth order of Runge-Kutta algorithm, equilibrium point obtained was free-drug equilibrium point. Solutions of SEIIrR showed that the model was able to suppress the spread of drug abuse. The increasing value of contact rate was not affect the number of infected individuals due to rehabilitation treatment.

  17. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS

    PubMed Central

    Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766

  18. Drug repurposing in cancer.

    PubMed

    Sleire, Linda; Førde, Hilde Elise; Netland, Inger Anne; Leiss, Lina; Skeie, Bente Sandvei; Enger, Per Øyvind

    2017-10-01

    Cancer is a major health issue worldwide, and the global burden of cancer is expected to increase in the coming years. Whereas the limited success with current therapies has driven huge investments into drug development, the average number of FDA approvals per year has declined since the 1990s. This unmet need for more effective anti-cancer drugs has sparked a growing interest for drug repurposing, i.e. using drugs already approved for other indications to treat cancer. As such, data both from pre-clinical experiments, clinical trials and observational studies have demonstrated anti-tumor efficacy for compounds within a wide range of drug classes other than cancer. Whereas some of them induce cancer cell death or suppress various aspects of cancer cell behavior in established tumors, others may prevent cancer development. Here, we provide an overview of promising candidates for drug repurposing in cancer, as well as studies describing the biological mechanisms underlying their anti-neoplastic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effectiveness of Culturally Appropriate Initiative on Drug-Related Harm Reduction for Sex Workers on the Thai/Malaysian Border.

    PubMed

    Nunun, Worapol; Kanato, Manop

    2015-07-01

    Drug use can harm to sex workers. Abstinence intervention, however, may not be appropriate since drug use fosters their career performance. The objective was to develop the culturally appropriate model for sex workers participation on drug demand reduction at the Thailand/Malaysian border This study was a pre-post quasi-experimental design. Tripartite participation was used to develop the model aiming to reduce harm regarding drug use. The study carried out during June 2010-May 2011. Data were collected from 150 key informant interviews, 56 focus group discussions, 22 participant observations in various situations, and numerous related materials. Descriptive statistics, survival analysis and 95% confidence interval were utilizedfor quantitative data. Qualitative data were analyzed by content analysis. Drug related harm reduction was evaluated at two-week time along implementation period of 12 months. 89.5% of all sessions introduced could decrease drug related harm. Of all sex workers participated in the study, intended to treat analysis showed 86.9% success rate (95% CI; 77.1, 96.7). Of these, 32.6% became abstinence, 39.1% reduced most of drug related harm. 13.0% reduced partial drug related harm either lessfrequency, less quantity, less concentration, decrease types of drugs/switch to safe drugs or safer method of administration. 2.2% was infancy stage, which needed further support. Key success ofthe model was tripartite participation. With active leaders and strong support, sex workers were continually motivated to reduce harm regarding drug use.

  20. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    PubMed

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Incentives for orphan drug research and development in the United States.

    PubMed

    Seoane-Vazquez, Enrique; Rodriguez-Monguio, Rosa; Szeinbach, Sheryl L; Visaria, Jay

    2008-12-16

    The Orphan Drug Act (1983) established several incentives to encourage the development of orphan drugs (ODs) to treat rare diseases and conditions. This study analyzed the characteristics of OD designations, approvals, sponsors, and evaluated the effective patent and market exclusivity life of orphan new molecular entities (NMEs) approved in the US between 1983 and 2007. Primary data sources were the FDA Orange Book, the FDA Office of Orphan Drugs Development, and the US Patent and Trademark Office. Data included all orphan designations and approvals listed by the FDA and all NMEs approved by the FDA during the study period. The FDA listed 1,793 orphan designations and 322 approvals between 1983 and 2007. Cancer was the main group of diseases targeted for orphan approvals. Eighty-three companies concentrated 67.7% of the total orphan NMEs approvals. The average time from orphan designation to FDA approval was 4.0 +/- 3.3 years (mean +/- standard deviation). The average maximum effective patent and market exclusivity life was 11.7 +/- 5.0 years for orphan NME. OD market exclusivity increased the average maximum effective patent and market exclusivity life of ODs by 0.8 years. Public programs, federal regulations, and policies support orphan drugs R&D. Grants, research design support, FDA fee waivers, tax incentives, and orphan drug market exclusivity are the main incentives for orphan drug R&D. Although the 7-year orphan drug market exclusivity provision had a positive yet relatively modest overall effect on effective patent and market exclusivity life, economic incentives and public support mechanisms provide a platform for continued orphan drug development for a highly specialized market.

  2. Open Access Could Transform Drug Discovery: A Case Study of JQ1.

    PubMed

    Arshad, Zeeshaan; Smith, James; Roberts, Mackenna; Lee, Wen Hwa; Davies, Ben; Bure, Kim; Hollander, Georg A; Dopson, Sue; Bountra, Chas; Brindley, David

    2016-01-01

    The cost to develop a new drug from target discovery to market is a staggering $1.8 billion, largely due to the very high attrition rate of drug candidates and the lengthy transition times during development. Open access is an emerging model of open innovation that places no restriction on the use of information and has the potential to accelerate the development of new drugs. To date, no quantitative assessment has yet taken place to determine the effects and viability of open access on the process of drug translation. This need is addressed within this study. The literature and intellectual property landscapes of the drug candidate JQ1, which was made available on an open access basis when discovered, and conventionally developed equivalents that were not are compared using the Web of Science and Thomson Innovation software, respectively. Results demonstrate that openly sharing the JQ1 molecule led to a greater uptake by a wider and more multi-disciplinary research community. A comparative analysis of the patent landscapes for each candidate also found that the broader scientific diaspora of the publically released JQ1 data enhanced innovation, evidenced by a greater number of downstream patents filed in relation to JQ1. The authors' findings counter the notion that open access drug discovery would leak commercial intellectual property. On the contrary, JQ1 serves as a test case to evidence that open access drug discovery can be an economic model that potentially improves efficiency and cost of drug discovery and its subsequent commercialization.

  3. Human neuroscience at National Institute on Drug Abuse: Implications for genetics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, H.W.

    It is becoming clear that there is a genetic component to drug abuse. Family studies, adoption studies, and critical twin studies have all pointed to some genetic vulnerability or risk factors for an individual to abuse psychoactive drugs depending on certain psychopathologies in the biological parents and/or parents` own drug use. The question for the next generation of research at the National Institute on Drug Abuse (NIDA) is to apply the rapidly developing technology in molecular genetics in an effort to determine the candidate genes contributing to the risk. 19 refs.

  4. Design and syntheses of MMP inhibitors and photosensitive lipid nanoparticle formulations for drug delivery

    NASA Astrophysics Data System (ADS)

    Subramaniam, Rajesh

    Drug administration without any compromise to the quality of life and lifespan is the ideal goal for disease management. The molecular mechanisms of several pathologies have shown that site-specific delivery of target-specific drugs seems to be a promising avenue to achieve this goal. This thesis describes the initial steps that we have taken toward that goal. Matrix metalloproteinases (MMPs) are a family of about 23 isozymes in humans that were actively targeted for treating a multitude of pathologies. Clinical studies carried out on cancer patients have revealed the complexity of the working of this enzyme family and necessitated the development of isozyme-specific MMP inhibitors. Our studies toward the development of isozyme-specific inhibitors have resulted in the development of several inhibitors that seem to be selective toward some MMP isozymes. Our understanding on the molecular mechanism that confers this selectivity is documented in this thesis. Another aspect of discussion in the thesis is the development of photosensitive liposomes for drug delivery that could be triggered to release the drug by irradiation with light of appropriate wavelength. Development of such delivery vehicles, in principle, would confer external spatiotemporal control on drug delivery. This could potentially lead to better disease management by minimizing side effects and enhancing patient compatibility. The thesis discusses our attempts toward the development of photosensitive liposomes. These liposomes incorporated a photosensitive lipid (PSL) that would be cleaved upon irradiation with UV light, causing liposomal destabilization and release of the enclosed drug. The discussion includes: (i) the syntheses of the PSLs, (ii) formulation of the photosensitive liposomes that contained a model drug, (iii) light-mediated release of the drug and (iv) the mechanism of photocleavage of the PSL that leads to content release from liposomes. The thesis concludes with suggestions toward the development of isozyme-specific inhibitors for MMPs and a PSL that could be potentially cleaved with near infrared light by two-photon absorption. Liposomes incorporating such a PSL could, in principle, confer precise spatiotemporally controlled drug delivery at greater tissue depths if the technology could find ways to mitigate light intensity loss due to scattering by tissues.

  5. Benefit and risk information in prescription drug advertising: review of empirical studies and marketing implications.

    PubMed

    Kopp, S W; Bang, H K

    2000-01-01

    As pharmaceutical companies began to advertise prescription drugs directly to consumers as well as to physicians, understanding the impact of benefit and risk information in drug advertising on physicians and consumers has become more critical. This paper reviews previous empirical studies that examined the content of benefit and risk information in drug advertising and its potential effects on physicians' subsequent prescribing behaviors. It also reviews studies that investigated how consumers process information on a drug's efficacy and side effects. Based on the findings of these studies, implications are discussed for effective marketing information development as well as for government regulation.

  6. Uso del Registro de Solicitudes de Medicamentos no Incluidos en el Listado de Medicamentos Esenciales como Nueva Fuente de Información en los Sistemas Nacionales de Farmacovigilancia.

    PubMed

    Buendía, Jefferson Antonio; Zuluaga Salazar, Andrés Felipe; Vacca González, Claudia Patricia

    2013-12-01

    To describe the frequency of adverse drugs events (ADEs) as possible causes of request of drugs not included in national essential Medicines list in Colombia. This was a descriptive study developed in a private medical insurance company in Bogota, Colombia. Data were obtained from drug request form of drugs not included in a national essential Medicines list. We analyzed the content of the notes to identify the records related to the occurrence of ADEs in the period 2008 to 2009. Information concerning the adverse event and the drug involved was recorded in a data collection instrument developed by the researchers. The pharmacological classification of drugs was performed according to the Anatomical Therapeutic Chemical Classification System (ATC). We study 3,336 request forms of drugs not included in a national essential Medicines list. The level 1 groups of the ATC of drugs with greater frequency of ADEs were the cardiovascular agents (47%), nervous system agents (24%) and antineoplastic and immunomodulating agents (15%). The great majority was cases of light severity (62.7%) and classified as possible (48.4%). The results of this study support the innovative approach of using request form of drug not included in national essential Medicines list to obtain information regarding ADEs in developing countries; recognizing the importance of looking for new sources of report of adverse reactions to diminish the under-notification of ADEs. © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Published by International Society for Pharmacoeconomics and Outcomes Research (ISPOR) All rights reserved.

  7. Improved Skin Penetration Using In Situ Nanoparticulate Diclofenac Diethylamine in Hydrogel Systems: In Vitro and In Vivo Studies.

    PubMed

    Sengupta, Soma; Banerjee, Sarita; Sinha, Biswadip; Mukherjee, Biswajit

    2016-04-01

    Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163-165 cps for hydrogel containing microsize drug particles and 171-173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.

  8. The biopharmaceutics risk assessment roadmap for optimizing clinical drug product performance.

    PubMed

    Selen, Arzu; Dickinson, Paul A; Müllertz, Anette; Crison, John R; Mistry, Hitesh B; Cruañes, Maria T; Martinez, Marilyn N; Lennernäs, Hans; Wigal, Tim L; Swinney, David C; Polli, James E; Serajuddin, Abu T M; Cook, Jack A; Dressman, Jennifer B

    2014-11-01

    The biopharmaceutics risk assessment roadmap (BioRAM) optimizes drug product development and performance by using therapy-driven target drug delivery profiles as a framework to achieve the desired therapeutic outcome. Hence, clinical relevance is directly built into early formulation development. Biopharmaceutics tools are used to identify and address potential challenges to optimize the drug product for patient benefit. For illustration, BioRAM is applied to four relatively common therapy-driven drug delivery scenarios: rapid therapeutic onset, multiphasic delivery, delayed therapeutic onset, and maintenance of target exposure. BioRAM considers the therapeutic target with the drug substance characteristics and enables collection of critical knowledge for development of a dosage form that can perform consistently for meeting the patient's needs. Accordingly, the key factors are identified and in vitro, in vivo, and in silico modeling and simulation techniques are used to elucidate the optimal drug delivery rate and pattern. BioRAM enables (1) feasibility assessment for the dosage form, (2) development and conduct of appropriate "learning and confirming" studies, (3) transparency in decision-making, (4) assurance of drug product quality during lifecycle management, and (5) development of robust linkages between the desired clinical outcome and the necessary product quality attributes for inclusion in the quality target product profile. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Metastatic melanoma - a review of current and future drugs.

    PubMed

    Velho, Tiago Rodrigues

    2012-11-19

    Melanoma is one of the most aggressive cancers, and it is estimated that 76,250 men and women will be diagnosed with melanoma of the skin in the USA in 2012. Over the last few decades many drugs have been developed but only in 2011 have new drugs demonstrated an impact on survival in metastatic melanoma. A systematic search of literature was conducted, and studies providing data on the effectiveness of current and/or future drugs used in the treatment of metastatic melanoma were selected for review. This review discusses the advantages and limitations of these agents, evaluating past, current and future clinical trials designed to overcome such limitations. To date, there are four drugs approved by the Food and Drug Administration for melanoma (dacarbazine, interleukin-2, ipilimumab and vemurafenib). Despite efforts to develop new drugs, few of them have demonstrated any clinical benefits. Approved in 1975, dacarbazine remains the gold standard in chemotherapy, although ipilimumab and vemurafenib have raised many hopes in the last few years. Combining dacarbazine or other chemotherapy agents with new pharmacological agents may be a new way to achieve better clinical responses in patients with metastatic melanoma. Advances in the molecular knowledge of melanoma have led to major improvements in the treatment of patients with metastatic melanoma, providing new targets and insights. However, heterogeneity amongst study populations, different approaches to treatment and the different melanoma types and localisations included in the trials makes their comparison difficult. New studies focusing on drugs developed in recent decades are warranted.

  10. Top 200 Prescribed Drugs Mostly Prescribed by the Physician in Pharmacies at Medan City

    NASA Astrophysics Data System (ADS)

    Tanjung, H. R.; Nasution, E. S.

    2017-03-01

    The drug information literatures usually contains thousands of drugs, which much of them were rare or never prescribed by the physicians. It caused pharmacy students must learn thousands of drugs that will depleted resources and the study result was not effective. The aim of the study was to identify 200 items of drugs that mostly prescribed by the physicians in the pharmacies at Medan City. The study was a descriptive study that used a cross sectional survey methodology. The 200 items of drugs that mostly prescribed by the physician obtained from the pharmacies selected regarding to random sampling method. The study was conducted from August to September 2016. The 200 items of drugs that mostly prescribed by the physician resulted from 21.962 prescribed drugs item of 16.352 prescriptions of 100 pharmacies. The list revealed that the most prescribed drugs was amoxicilline (5.55 %), followed by dexamethasone (4.44%), mefenamic acid (3.73%), cetirizine (3.16%), and ciprofloxacine (2.97%). It shows that the antibiotic drug was the most prescribed drug by the physician in pharmacies at Medan City. Further studies are required to develop the study card from the list.

  11. Postmarketing surveillance in developing countries.

    PubMed

    Meirik, O

    1988-01-01

    Authorities in developing countries need to monitor the possible adverse consequences of the increasing use of drugs in their countries. Definite differences exist in the risk-benefit ratios for developed and developing countries, particularly with fertility-regulating drugs. Some physicians believe that the increased risk of thrombosis associated with oral contraceptives (OCs) should not be considered as important in developing countries due to the fact that the background level of venous thrombosis is so low in developing countries that even a 50- or 100-fold increase in relative risk would neither be detectable nor important compared to the risk of unwanted pregnancy. In addition, evidence exists of geographically linked factors in the etiology of some adverse drug reactions (ADRs). Authorities in Brazil, India, Indonesia, Pakistan, the Philippines, Thailand, and Venezuela have established voluntary ADR reporting systems. Several developing countries also actively follow the World Health Organization's International Drug Monitoring Program and have access to its data base. A number of other methodological approaches to postmarketing surveillance are in use in addition to voluntary ADR reporting systems. These include cross-sectional surveys, studies of temporal and geographic correlations of diseases and drug use, and case-control and cohort studies. Each of these approaches offers specific advantages. Postmarketing surveillance should begin at the time new drugs, including contraceptive methods are introduced. Surveillance needs to be an integral part of plans for the introduction of new contraceptive methods in settings where the infrastructure to carry out such surveillance is in place. 3 major public sector agencies, Family Health International, the Population Council, and the World Health Organization, developed a plan to obtain funding for the postmarketing surveillance of a contraceptive implant, Norplant-R. A controlled cohort study will be conducted in 6-10 developing countries. The pilot phase of the surveillance began in 1987. The project objective is to detect possible adverse effects of Norplant-R as well as any health benefits of the method. It also will assess the feasibility of the cohort methodology for postmarketing surveillance in developing countries.

  12. The role of chromatographic and chiroptical spectroscopic techniques and methodologies in support of drug discovery for atropisomeric drug inhibitors of Bruton's tyrosine kinase.

    PubMed

    Dai, Jun; Wang, Chunlei; Traeger, Sarah C; Discenza, Lorell; Obermeier, Mary T; Tymiak, Adrienne A; Zhang, Yingru

    2017-03-03

    Atropisomers are stereoisomers resulting from hindered bond rotation. From synthesis of pure atropisomers, characterization of their interconversion thermodynamics to investigation of biological stereoselectivity, the evaluation of drug candidates subject to atropisomerism creates special challenges and can be complicated in both early drug discovery and later drug development. In this paper, we demonstrate an array of analytical techniques and systematic approaches to study the atropisomerism of drug molecules to meet these challenges. Using a case study of Bruton's tyrosine kinase (BTK) inhibitor drug candidates at Bristol-Myers Squibb, we present the analytical strategies and methodologies used during drug discovery including the detection of atropisomers, the determination of their relative composition, the identification of relative chirality, the isolation of individual atropisomers, the evaluation of interconversion kinetics, and the characterization of chiral stability in the solid state and in solution. In vivo and in vitro stereo-stability and stereo-selectivity were investigated as well as the pharmacological significance of any changes in atropisomer ratios. Techniques applied in these studies include analytical and preparative enantioselective supercritical fluid chromatography (SFC), enantioselective high performance liquid chromatography (HPLC), circular dichroism (CD), and mass spectrometry (MS). Our experience illustrates how atropisomerism can be a very complicated issue in drug discovery and why a thorough understanding of this phenomenon is necessary to provide guidance for pharmaceutical development. Analytical techniques and methodologies facilitate key decisions during the discovery of atropisomeric drug candidates by characterizing time-dependent physicochemical properties that can have significant biological implications and relevance to pharmaceutical development plans. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Success rates for product development strategies in new drug development.

    PubMed

    Dahlin, E; Nelson, G M; Haynes, M; Sargeant, F

    2016-04-01

    While research has examined the likelihood that drugs progress across phases of clinical trials, no research to date has examined the types of product development strategies that are the most likely to be successful in clinical trials. This research seeks to identify the strategies that are most likely to reach the market-those generated using a novel product development strategy or strategies that combine a company's expertise with both drugs and indications, which we call combined experience strategies. We evaluate the success of product development strategies in the drug development process for a sample of 2562 clinical trials completed by 406 US pharmaceutical companies. To identify product development strategies, we coded each clinical trial according to whether it consisted of an indication or a drug that was new to the firm. Accordingly, a clinical trial that consists of both an indication and a drug that were both new to the firm represents a novel product development strategy; indication experience is a product development strategy that consists of an indication that a firm had tested previously in a clinical trial, but with a drug that was new to the firm; drug experience is a product development strategy that consists of a drug that the firm had prior experience testing in clinical trials, but with an indication that was new to the firm; combined experience consists of both a drug and an indication that the firm had experience testing in clinical trials. Success rates for product development strategies across clinical phases were calculated for the clinical trials in our sample. Combined experience strategies had the highest success rate. More than three and a half percent (0·036) of the trials that combined experience with drugs and indications eventually reached the market. The next most successful strategy is drug experience (0·025) with novel strategies trailing closely (0·024). Indication experience strategies are the least successful (0·008). These differences are statistically significant. The primary contribution of this study is that product development strategies combining experience with drugs and indications strategies are the most likely to reach the market, even though they are least common strategy. Therefore, combined experience strategies remain underutilized. The findings also suggest a promising path for pursuing combined experience strategies: gaining expertise with drugs is likely to be a more effective path to gaining the expertise necessary for developing subsequent recombination strategies. © 2016 John Wiley & Sons Ltd.

  14. Pharmacogenomics and its potential impact on drug and formulation development.

    PubMed

    Regnstrom, Karin; Burgess, Diane J

    2005-01-01

    Recent advances in genomic research have provided the basis for new insights into the importance of genetic and genomic markers during the different stages of drug development. A new field of research, pharmacogenomics, which studies the relationship between drug effects and the genome, has emerged. Structural pharmacogenomics maps the complete DNA sequences of whole genomes (genotypes) including individual variations, and functional pharmacogenomics assesses the expression levels of thousands of genes in one single experiment. Together, these two areas of pharmacogenomics have generated massive databases, which have become a challenge for the research field of informatics and have fostered a new branch of research, bioinformatics. If skillfully used, the databases generated by pharmacogenomics together with data mining on the Web promise to improve the drug development process in a variety of areas: identification of drug targets, evaluation of toxicity, classification of diseases, evaluation of formulations, assessment of drug response and treatment, post-marketing applications, and development of personalized medicines.

  15. Recoverable hearing loss with amphetamines and other drugs.

    PubMed

    Iqbal, Nayyer

    2004-06-01

    Prolonged and sustained consumption of alcohol, heroin and volatiles had been reported to impair hearing. Amphetamine related hearing loss is clinically different from the hearing loss seen with other agents. It seems that illicit drug use could result in two clinically different types of hearing losses. In May and June of 2001, 183 men aged 18 and above who met DSM-IV criteria for substance dependence were studied in a hospital in Saudia Arabia. The purpose of the study was to ascertain the prevalence of amphetamine-related recoverable hearing loss, establish whether similar hearing loss also occurred with other drugs of abuse and determine if drug-related psychosis was more prevalent in those amphetamine users who developed this type of hearing loss. Recoverable type of hearing loss was not just seen in amphetamine users but also occurred with cannabis, heroin, alcohol, dextromethorphan and glue use. Drug-induced psychosis was three and a half times more common in those amphetamine users who developed a hearing loss. Major depression and suicidality was also more common in these individuals. This association of major depression and subsequent development of hearing loss was also found in those using other type of drugs. It was concluded that a history of major depression was a good predictor of later development of both drug-induced psychosis and hearing loss in amphetamine users, and hypoperfusion was proposed as the possible explanation.

  16. AMS in drug development at GSK

    NASA Astrophysics Data System (ADS)

    Young, G. C.; Ellis, W. J.

    2007-06-01

    A history of the use of AMS in GSK studies spanning the last 8 years (1998-2005) is presented, including use in pilot studies through to clinical, animal and in vitro studies. A brief summary of the status of GSK's in-house AMS capability is outlined and views on the future of AMS in GSK are presented, including potential impact on drug development and potential advances in AMS technology.

  17. The pediatric studies initiative: after 15 years have we reached the limits of the law?

    PubMed

    Milne, Christopher-Paul; Davis, Jonathan

    2014-02-01

    Despite considerable disincentives for conducting drug studies in children, 15 years ago the Food and Drug Administration, pediatric health advocates and congressional sponsors created a carrot-and-stick policy approach of voluntary and mandatory programs to encourage the pharmaceutical industry to include children in the drug development process. After several rounds of reauthorization of the laws on a temporary basis, the enabling statutes have been made permanent. The purpose of this analysis is to review the advances that resulted from the law and the areas where further progress is needed. A brief review of the history and results of the pediatric studies initiative was conducted by the authors and a determination made about the accomplishments of the law and remaining challenges. Indicators of the changes that resulted from this pediatric studies initiative are both indirect, such as the increase in the number of indication supplements for new populations, and direct, such as the decrease in the percentage of medicines used off-label in children. Although the pediatric studies initiative has significantly improved therapeutic options for children, concern still exists that drug companies are reluctant to include children in drug development unless continuously incentivized, whether positively or negatively. Two challenges are particularly problematic: neonatal studies and child-friendly formulations. Although the latest round of legislation should provide opportunities to address these problems, significantly more effort will be needed to achieve real culture change. Ultimately, the solution will require full program implementation by the Food and Drug Administration and close collaboration by many key stakeholders to ensure that pediatric studies become a routine part of the drug development process. © 2013 Elsevier HS Journals, Inc. All rights reserved.

  18. [In silico, in vitro, in omic experimental models and drug safety evaluation].

    PubMed

    Claude, Nancy; Goldfain-Blanc, Françoise; Guillouzo, André

    2009-01-01

    Over the last few decades, toxicology has benefited from scientific, technical, and bioinformatic developments relating to patient safety assessment during clinical and drug marketing studies. Based on this knowledge, new in silico, in vitro, and "omic" experimental models are emerging. Although these models cannot currently replace classic safety evaluations performed on laboratory animals, they allow compounds with unacceptable toxicity to be rejected in the early stages of drug development, thereby reducing the number of laboratory animals needed. In addition, because these models are particularly adapted to mechanistic studies, they can help to improve the relevance of the data obtained, thus enabling better prevention and screening of the adverse effects that may occur in humans. Much progress remains to be done, especially in the field of validation. Nevertheless, current efforts by industrial, academic laboratories, and regulatory agencies should, in coming years, significantly improve preclinical drug safety evaluation thanks to the integration of these new methods into the drug research and development process.

  19. Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    PubMed

    Germovsek, Eva; Barker, Charlotte I S; Sharland, Mike; Standing, Joseph F

    2018-04-19

    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies.

  20. Investigational Drugs for Visceral Leishmaniasis

    PubMed Central

    Sundar, Shyam; Chakravarty, Jaya

    2014-01-01

    Introduction The armamentarium of antileishmanials is small. It is further being threatened by development of resistance and decreasing sensitivity to the available drugs. Development of newer drugs are sorely needed. Areas covered Literature search on investigational drugs for visceral leishmaniasis (VL) was done on PubMed. Those candidates with at least in vitro and in vivo activity against leishmania species causing VL were reviewed. Among the investigational drugs the nitroimidazole compound fexinidazole is the one of the few drugs which has reached phase II trials. Although the (S)-PA-824 is in phase II trials for the treatment of tuberculosis its R enantiomer has shown good antileishmanial activity. Development of sitamaquin, which has completed phase II studies has been stopped for VL due to its low efficacy. Many novel delivery system and oral formulations of Amphotericin B which are cheap and less toxic are in investigational stages, and will go a long way in improving the treatment of VL. Expert opinion Very few new drugs have reached the clinical stage in the treatment of this neglected tropical disease. Thus, there is an urgent need for support from public private partnerships to ensure that drug candidates are promptly taken forward into development. PMID:25409760

  1. The Flavivirus Protease As a Target for Drug Discovery

    PubMed Central

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2014-01-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures. PMID:24242363

  2. The flavivirus protease as a target for drug discovery.

    PubMed

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2013-12-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.

  3. Some aspects of doping and medication control in equine sports.

    PubMed

    Houghton, Ed; Maynard, Steve

    2010-01-01

    This chapter reviews drug and medication control in equestrian sports and addresses the rules of racing, the technological advances that have been made in drug detection and the importance of metabolism studies in the development of effective drug surveillance programmes. Typical approaches to screening and confirmatory analysis are discussed, as are the quality processes that underpin these procedures. The chapter also addresses four specific topics relevant to equestrian sports: substances controlled by threshold values, the approach adopted recently by European racing authorities to control some therapeutic substances, anabolic steroids in the horse and LC-MS analysis in drug testing in animal sports and metabolism studies. The purpose of discussing these specific topics is to emphasise the importance of research and development and collaboration to further global harmonisation and the development and support of international rules.

  4. Structure Activity Relationship for FDA Approved Drugs as Inhibitors of the Human Sodium Taurocholate Co-transporting Polypeptide (NTCP)

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2013-01-01

    The hepatic bile acid uptake transporter Sodium Taurocholate Cotransporting Polypeptide (NTCP) is less well characterized than its ileal paralog, the Apical Sodium Dependent Bile Acid Transporter (ASBT), in terms of drug inhibition requirements. The objectives of this study were a) to identify FDA approved drugs that inhibit human NTCP, b) to develop pharmacophore and Bayesian computational models for NTCP inhibition, and c) to compare NTCP and ASBT transport inhibition requirements. A series of NTCP inhibition studies were performed using FDA approved drugs, in concert with iterative computational model development. Screening studies identified 27 drugs as novel NTCP inhibitors, including irbesartan (Ki =11.9 μM) and ezetimibe (Ki = 25.0 μM). The common feature pharmacophore indicated that two hydrophobes and one hydrogen bond acceptor were important for inhibition of NTCP. From 72 drugs screened in vitro, a total of 31 drugs inhibited NTCP, while 51 drugs (i.e. more than half) inhibited ASBT. Hence, while there was inhibitor overlap, ASBT unexpectedly was more permissive to drug inhibition than was NTCP, and this may be related to NTCP’s possessing fewer pharmacophore features. Findings reflected that a combination of computational and in vitro approaches enriched the understanding of these poorly characterized transporters and yielded additional chemical probes for possible drug-transporter interaction determinations. PMID:23339484

  5. Core drug-drug interaction alerts for inclusion in pediatric electronic health records with computerized prescriber order entry.

    PubMed

    Harper, Marvin B; Longhurst, Christopher A; McGuire, Troy L; Tarrago, Rod; Desai, Bimal R; Patterson, Al

    2014-03-01

    The study aims to develop a core set of pediatric drug-drug interaction (DDI) pairs for which electronic alerts should be presented to prescribers during the ordering process. A clinical decision support working group composed of Children's Hospital Association (CHA) members was developed. CHA Pharmacists and Chief Medical Information Officers participated. Consensus was reached on a core set of 19 DDI pairs that should be presented to pediatric prescribers during the order process. We have provided a core list of 19 high value drug pairs for electronic drug-drug interaction alerts to be recommended for inclusion as high value alerts in prescriber order entry software used with a pediatric patient population. We believe this list represents the most important pediatric drug interactions for practical implementation within computerized prescriber order entry systems.

  6. [The activity of drug addiction service of the Russian Federation: an assessment of statistical parameters and an analysis of results].

    PubMed

    Koshkina, E A; Kirzhanova, V V; Babicheva, L P; Mugantseva, L A

    2013-01-01

    The authors studied changes in the structure of drug addiction services, the dynamics of outpatient and inpatient referrals for drug addiction treatment and effectiveness of drug addiction services in 2011 compared to the preceding period. There was a reduction of availability of drug treatment services due to the reduction of the number of drug addiction units and the depletion of human resource potential. The lack of structural development of rehabilitation sector of drug care services and low rates of its development as well as the decrease in the number of patients seeking treatment are highlighted. It has been concluded that the drug addiction services require reorganization of its regulatory and legal framework and need innovative organizational and management decisions and human resources trained in innovative thinking and technologies.

  7. The Development of Teaching Efficacy for Drug-Dosage Calculation Instruction: A Nursing Faculty Perspective

    ERIC Educational Resources Information Center

    Vitale, Gail A.

    2011-01-01

    The purpose of this study was to examine how nursing efficacy for drug-dosage calculation instruction is determined. Medication administration is a critical function of nurses in healthcare settings. An essential component of safe medication administration is accurate drug-dosage calculation, but instruction in drug-dosage calculation methods…

  8. Condoning Drug Education Programs at Colleges and Universities.

    ERIC Educational Resources Information Center

    Kaczynski, Daniel J.

    This report presents the evaluation results gathered from a 2-year study of a drug prevention program involving a consortia of nine colleges and universities located in Alabama and Florida. The consortia effort was intended to: (1) strengthen their respective drug prevention activities; (2) develop policies governing alcohol and drugs; (3)…

  9. Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions.

    PubMed

    Sullivan, A; Watkinson, J; Waddington, J; Park, B K; Naisbitt, D J

    2018-03-01

    Type IV drug hypersensitivity remains an important clinical problem and an obstacle to the development of new drugs. Several forms of drug hypersensitivity are associated with expression of specific HLA alleles. Furthermore, drug-specific T-lymphocytes have been isolated from patients with reactions. Despite this, controversy remains as to how drugs interact with immune receptors to stimulate a T-cell response. Areas covered: This article reviews the pathways of T-cell activation by drugs and how the ever increasing number of associations between expression of HLA alleles and susceptibility to hypersensitivity is impacting on our research effort to understanding this form of iatrogenic disease. Expert opinion: For a drug to activate a T-cell, a complex is formed between HLA molecules, an HLA binding peptide, the drug and the T-cell receptor. T-cell responses can involve drugs and stable or reactive metabolites bound covalently or non-covalently to any component of this complex. Recent research has linked the HLA associations to the disease through the characterization of drug-specific T-cell responses restricted to specific alleles. However, there is now a need to identify the additional genetic or environment factors that determine susceptibility and use our increased knowledge to develop predictive immunogenicity tests that offer benefit to Pharma developing new drugs.

  10. Guidelines for research on drugged driving

    PubMed Central

    Walsh, J. Michael; Verstraete, Alain G.; Huestis, Marilyn A.; Mørland, Jørg

    2009-01-01

    Aim A major problem in assessing the true public health impact of drug-use on driving and overall traffic safety is that the variables being measured across studies vary significantly. In studies reported in a growing global literature, basic parameters assessed, analytical techniques and drugs tested are simply not comparable due to lack of standardization in the field. These shortcomings severely limit the value of this research to add knowledge to the field. A set of standards to harmonize research findings is sorely needed. This project was initiated by several international organizations to develop guidelines for research on drugged driving. Methods A September 2006 meeting of international experts discussed the harmonization of protocols for future research on drugged driving. The principal objective of the meeting was to develop a consensus report setting guidelines, standards, core data variables and other controls that would form the basis for future international research. A modified Delphi method was utilized to develop draft guidelines. Subsequently, these draft guidelines were posted on the internet for global review, and comments received were integrated into the final document. Results The Guidelines Document is divided into three major sections, each focusing upon different aspects of drugged driving research (e.g. roadside surveys, prevalence studies, hospital studies, fatality and crash investigations, etc.) within the critical issue areas of ‘behavior’, ‘epidemiology’ and ‘toxicology’. The behavioral section contains 32 specific recommendations; (2) epidemiology 40 recommendations; and (3) toxicology 64 recommendations. Conclusions It is anticipated that these guidelines will improve significantly the overall quality of drugged driving research and facilitate future cross-study comparisons nationally and globally. PMID:18855814

  11. [Microdose clinical trial--impact of PET molecular imaging].

    PubMed

    Yano, Tsuneo; Watanabe, Yasuyoshi

    2010-10-01

    Microdose (MD) clinical trial and exploratory IND study including sub-therapeutic dose and therapeutic dose which are higher than microdoses are expected to bring about innovations in drug development. The outlines of guidances for microdose clinical trial and ICH-M3 (R2) issued by the MHLW in June, 2008, and February, 2010, are first explained, respectively, and some examples of their application to clinical developments of therapeutic drugs in the infection and cancer fields are introduced. Especially, thanks to the progress of molecular imaging research, a new field of drug development is explored by using imaging biomarkers for efficacy or safety evaluation which visualize biomarkers by PET imaging agents. Finally, the roadmap for drug development in infection and cancer fields utilizing PET molecular imaging is discussed.

  12. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    PubMed

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A Drug-Centric View of Drug Development: How Drugs Spread from Disease to Disease.

    PubMed

    Rodriguez-Esteban, Raul

    2016-04-01

    Drugs are often seen as ancillary to the purpose of fighting diseases. Here an alternative view is proposed in which they occupy a spearheading role. In this view, drugs are technologies with an inherent therapeutic potential. Once created, they can spread from disease to disease independently of the drug creator's original intentions. Through the analysis of extensive literature and clinical trial records, it can be observed that successful drugs follow a life cycle in which they are studied at an increasing rate, and for the treatment of an increasing number of diseases, leading to clinical advancement. Such initial growth, following a power law on average, has a degree of momentum, but eventually decelerates, leading to stagnation and decay. A network model can describe the propagation of drugs from disease to disease in which diseases communicate with each other by receiving and sending drugs. Within this model, some diseases appear more prone to influence other diseases than be influenced, and vice versa. Diseases can also be organized into a drug-centric disease taxonomy based on the drugs that each adopts. This taxonomy reflects not only biological similarities across diseases, but also the level of differentiation of existing therapies. In sum, this study shows that drugs can become contagious technologies playing a driving role in the fight against disease. By better understanding such dynamics, pharmaceutical developers may be able to manage drug projects more effectively.

  14. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-05-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  15. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-04-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  16. Development and evaluation of a sublingual film of the antiemetic granisetron hydrochloride.

    PubMed

    Kalia, Vani; Garg, Tarun; Rath, Gautam; Goyal, Amit Kumar

    2016-05-01

    The objective of this study was to develop an oral transmucosal formulation of an antiemetic drug that can not only serve in the active form but also provide a controlled release profile. In this study, sublingual films based on the biodegradable and water-soluble polymers, that is HPMCK-4M and PVPK-30, were developed by the solvent casting method, and were loaded with the antiemetic drug granisetron hydrochloride (granisetron HCl). The entrapment efficiency of the developed formulation was found to be 86%. The in vitro profile showed an instant release of the drug from the sublingual film, in a pattern following the first order kinetics array. The in vivo studies showed that granisetron HCl was delivered in its active state and showed effective results, as compared to its activity in the marketed formulation.

  17. A Systematic Review of Physicians' and Pharmacists' Perspectives on Generic Drug Use: What are the Global Challenges?

    PubMed

    Toverud, Else-Lydia; Hartmann, Katrin; Håkonsen, Helle

    2015-08-01

    Generic substitution has been introduced in most countries in order to reduce costs and improve access to drugs. However, regulations and the generic drugs available vary between countries. It is the prescriber or dispenser of the drug who is the final decision maker. Nevertheless, physicians' and pharmacists' perceptions of generic drug use are not well documented to date. This study presents a systematic review of physicians' and pharmacists' perspectives on generic drug use worldwide. A systematic literature search was performed to retrieve all articles published between 2002 and 2012 regarding physicians' and/or pharmacists' experiences with generic drugs and generic substitution. Of 1322 publications initially identified, 24 were eligible for inclusion. Overall, the studies revealed that physicians and pharmacists were aware of the cost-saving function of generic drugs and their role in improving global access to drugs. Nevertheless, marked differences were observed between countries when studying physicians' and pharmacists' perceptions of the available generic drugs. In less mature healthcare systems, large variations regarding, for example, control routines, bioequivalence requirements, and manufacturer standards were reported. A lack of reliable information and mistrust in the efficacy and quality were also mentioned by these participants. In the most developed healthcare systems, the participants trusted the quality of the generic drugs and did not hesitate to offer them to all patients regardless of socioeconomic status. In general, pharmacists seemed to have better knowledge of the concept of bioequivalence and generic drug aspects than physicians. The present study indicates that physicians and pharmacists are aware of the role of generic drugs in the improvement of global access to drugs. However, there are marked differences regarding how these health professionals view the quality of generic drugs depending on the maturity of their country's healthcare system. This can be attributed to the fact that developed healthcare systems have more reliable public control routines for drugs in general as well as better bioequivalence requirements concerning generics in particular.

  18. Drug Exposure and the Risk of Microscopic Colitis: A Critical Update.

    PubMed

    Lucendo, Alfredo J

    2017-03-01

    A variety of luminal antigens, including a wide range of drugs, have been associated with the still little-known pathophysiology of microscopic colitis (MC), with variable evidence suggesting causality. This article aims to review the aspects related to drugs as potential triggers of MC; to discuss the most commonly identified associations between drugs and MC; and to analyze the limitations of the studies currently available. A literature search was performed in PubMed combining the search terms 'drug exposure', 'drug consumption', and 'risk factors' with 'microscopic colitis', 'lymphocytic colitis', and 'collagenous colitis', with no language restrictions. Reference lists of retrieved documents were also reviewed. A handful of case-control studies have demonstrated significant associations between some commonly used drugs and a higher risk of developing MC. No universally accepted criteria for establishing cause-effect relationships in adverse reactions to drugs are available, but several methods that can be applied to MC, can provide degrees of the likelihood of an association. A high probability imputation in the development of MC as a drug adverse effect has only been demonstrated for individual cases by applying chronological (challenge, de-challenge, and relapse with re-challenge) and semiological criteria. Several case-control studies have shown significant associations between exposure to drugs and MC, but the variability in their design, the reference populations used, and the definitions for drug exposure considered require specific analyses. It can be concluded that drug exposure and MC as a likely cause-effect relationship has only been described for a handful of drugs and in individual cases.

  19. Role of Statistical Random-Effects Linear Models in Personalized Medicine

    PubMed Central

    Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose

    2012-01-01

    Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization. PMID:23467392

  20. Regional intestinal drug permeation: biopharmaceutics and drug development.

    PubMed

    Lennernäs, Hans

    2014-06-16

    Over the last 25 years, profound changes have been seen in both the development and regulation of pharmaceutical dosage forms, due primarily to the extensive use of the biopharmaceutical classification system (BCS) in both academia and industry. The BCS and the FDA scale-up and post-approval change guidelines were both developed during the 1990s and both are currently widely used to claim biowaivers. The development of the BCS and its wide acceptance were important steps in pharmaceutical science that contributed to the more rational development of oral dosage forms. The effective permeation (Peff) of drugs through the intestine often depends on the combined outcomes of passive diffusion and multiple parallel transport processes. Site-specific jejunal Peff cannot reflect the permeability of the whole intestinal tract, since this varies along the length of the intestine, but is a useful approximation of the fraction of the oral dose that is absorbed. It appears that drugs with a jejunal Peff>1.5×10(-4)cm/s will be completely absorbed no matter which transport mechanisms are utilized. In this paper, historical clinical data originating from earlier open, single-pass perfusion studies have been used to calculate the Peff of different substances from sites in the jejunum and ileum. More exploratory in vivo studies are required in order to obtain reliable data on regional intestinal drug absorption. The development of experimental and theoretical methods of assessing drug absorption from both small intestine and various sites in the colon is encouraged. Some of the existing human in vivo data are discussed in relation to commonly used cell culture models. It is crucial to accurately determine the input parameters, such as the regional intestinal Peff, as these will form the basis for the expected increase in modeling and simulation of all the processes involved in GI drug absorption, thus facilitating successful pharmaceutical development in the future. It is suggested that it would be feasible to use open, single-pass perfusion studies for the in vivo estimation of regional intestinal Peff, but that care should be taken in the study design to optimize the absorption conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. An Assessment of the Oral Bioavailability of Three Ca-Channel Blockers Using a Cassette-Microdose Study: A New Strategy for Streamlining Oral Drug Development.

    PubMed

    Yamashita, Shinji; Kataoka, Makoto; Suzaki, Yuki; Imai, Hiromitsu; Morimoto, Takuya; Ohashi, Kyoichi; Inano, Akihiro; Togashi, Kazutaka; Mutaguchi, Kuninori; Sugiyama, Yuichi

    2015-09-01

    A cassette-microdose (MD) clinical study was performed to demonstrate its usefulness for identifying the most promising compound for oral use. Three Ca-channel blockers (nifedipine, nicardipine, and diltiazem) were chosen as model drugs. In the MD clinical study, a cassette-dose method was employed in which three model drugs were administered simultaneously. Both intravenous (i.v.) and oral (p.o.) administration studies were conducted to calculate the oral bioavailability (BA). For comparison, p.o. studies with therapeutic dose (ThD) levels were also performed. In all studies, blood concentrations of each drug were successfully determined using liquid chromatography-mass spectrometry with the lower limit of quantification of 0.2-2.0 pg/mL. Oral BA of nifedipine in the MD study was approximately 50% and in the same range with that obtained in the ThD study, whereas other two drugs showed significantly lower BA in the MD study, indicating a dose-dependent absorption. In addition, compared with the ThD study, absorption of nicardipine was delayed in the MD study. As a result, nifedipine was considered to be most promising for oral use. In conclusion, a cassette-MD clinical study is of advantage for oral drug development that enables to identify the candidate having desired properties for oral use. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Development and Reliability of Items Measuring the Nonmedical Use of Prescription Drugs for the Youth Risk Behavior Survey: Results Froman Initial Pilot Test

    ERIC Educational Resources Information Center

    Howard, Melissa M.; Weiler, Robert M.; Haddox, J. David

    2009-01-01

    Background: The purpose of this study was to develop and test the reliability of self-report survey items designed to monitor the nonmedical use of prescription drugs among adolescents. Methods: Eighteen nonmedical prescription drug items designed to be congruent with the substance abuse items in the US Centers for Disease Control and Prevention's…

  3. New directions in cancer research 2003: technological advances in biology, drug resistance, and molecular pharmacology.

    PubMed

    Franks, Michael E; Macpherson, Gordon R; Lepper, Erin R; Figg, William D; Sparreboom, Alex

    2003-12-01

    The 94th Annual Meeting of the American Association for Cancer Research (AACR) was held from July 11 to 14, 2003 in Washington, DC, and provided an overview of the latest developments in the field of cancer. This report provides highlights of presentations on array-based and RNA-interference technologies to study cancer biology and molecular pharmacology of anticancer drugs, mechanisms and modulation of drug resistance patterns, recent developments in the treatment of prostate cancer, and the medicinal chemistry of established and novel anticancer drugs.

  4. Anticancer drug development from traditional cytotoxic to targeted therapies: evidence of shorter drug research and development time, and shorter drug lag in Japan.

    PubMed

    Kawabata-Shoda, E; Masuda, S; Kimura, H

    2012-10-01

    Concern about the drug lag, the delay in marketing approval between one country and another, for anticancer drugs has increased in Japan. Although a number of studies have investigated the drug lag, none has investigated it in relation to the transition of anticancer therapy from traditional cytotoxic drugs to molecularly targeted agents. Our aim was to investigate current trend in oncology drug lag between the US and Japan and identify oncology drugs approved in only one of the two countries. Publicly and commercially available data sources were used to identify drugs approved in the US and Japan as of 31 December 2010 and the data used to calculate the drug lag for individual drugs. Fifty-one drugs were approved in both the US and Japan, whereas 34 and 19 drugs were approved only in the US or Japan, respectively. Of the 19 drugs approved only in Japan, 12 had not been subject to development for a cancer indication in the US, and all were approved before 1996 in Japan. Of the 34 drugs approved only in the US, 20 had not been subject to development in Japan, and none was in the top 25 by annual US anticancer drug-class sales. For drugs approved in both countries, the mean approval lag of the molecularly targeted drugs (MTDs) was significantly shorter than that of the non-molecularly targeted drugs (non-MTDs) (3·3 vs. 5·4 years). Further, mean R&D time of the MTDs was significantly shorter than that of non-MTDs (10·0 vs. 13·7 years). The price of MTDs had increased on average by 6·6% annually in the US, whereas it had decreased on average by 4·3% biyearly in Japan. The emergence of new molecularly targeted agents has contributed to reducing the approval lag, most likely due to improvements in R&D strategy. © 2012 Blackwell Publishing Ltd.

  5. Research and Development of Hepatitis B Drugs: An Analysis Based on Technology Flows Measured by Patent Citations

    PubMed Central

    Wan, Jian-bo; He, Chengwei; Hu, Yuanjia

    2016-01-01

    Despite the existence of available therapies, the Hepatitis B virus infection continues to be one of the most serious threats to human health, especially in developing countries such as China and India. To shed light on the improvement of current therapies and development of novel anti-HBV drugs, we thoroughly investigated 212 US patents of anti-HBV drugs and analyzed the technology flow in research and development of anti-HBV drugs based on data from IMS LifeCycle databases. Moreover, utilizing the patent citation method, which is an effective indicator of technology flow, we constructed patent citation network models and performed network analysis in order to reveal the features of different technology clusters. As a result, we identified the stagnant status of anti-HBV drug development and pointed the way for development of domestic pharmaceuticals in developing countries. We also discussed about therapeutic vaccines as the potential next generation therapy for HBV infection. Lastly, we depicted the cooperation between entities and found that novel forms of cooperation added diversity to the conventional form of cooperation within the pharmaceutical industry. In summary, our study provides inspiring insights for investors, policy makers, researchers, and other readers interested in anti-HBV drug development. PMID:27727319

  6. Discovery and development of antiviral drugs for biodefense: experience of a small biotechnology company.

    PubMed

    Bolken, Tove C; Hruby, Dennis E

    2008-01-01

    The unmet need for effective antivirals against potential agents of bioterrorism and emerging infections is obvious; however, the challenges to develop such drugs are daunting. Even with the passage of Project BioShield and more recently the BARDA legislation, there is still not a clear market for these types of drugs and limited federal funding available to support expensive drug development studies. SIGA Technologies, Inc. is a small biotech company committed to developing novel products for the prevention and treatment of severe infectious diseases, with an emphasis on products for diseases that could result from bioterrorism. Through trials and error SIGA has developed an approach to this problem in order to establish the infrastructure necessary to successfully advance new antiviral drugs from the discovery stage on through to licensure. The approach that we have taken to drug development is biology driven and dependent on a dispersive development model utilizing essential collaborations with academic, federal, and private sector partners. This consortium approach requires success in acquiring grants and contracts as well as iterative communication with the government and regulatory agencies. However, it can work as evidenced by the rapid progress of our lead antiviral against smallpox, ST-246, and should serve as the template for development of new antivirals against important biological pathogens.

  7. Mendelian randomisation in cardiovascular research: an introduction for clinicians

    PubMed Central

    Bennett, Derrick A; Holmes, Michael V

    2017-01-01

    Understanding the causal role of biomarkers in cardiovascular and other diseases is crucial in order to find effective approaches (including pharmacological therapies) for disease treatment and prevention. Classical observational studies provide naïve estimates of the likely role of biomarkers in disease development; however, such studies are prone to bias. This has direct relevance for drug development as if drug targets track to non-causal biomarkers, this can lead to expensive failure of these drugs in phase III randomised controlled trials. In an effort to provide a more reliable indication of the likely causal role of a biomarker in the development of disease, Mendelian randomisation studies are increasingly used, and this is facilitated by the availability of large-scale genetic data. We conducted a narrative review in order to provide a description of the utility of Mendelian randomisation for clinicians engaged in cardiovascular research. We describe the rationale and provide a basic description of the methods and potential limitations of Mendelian randomisation. We give examples from the literature where Mendelian randomisation has provided pivotal information for drug discovery including predicting efficacy, informing on target-mediated adverse effects and providing potential new evidence for drug repurposing. The variety of the examples presented illustrates the importance of Mendelian randomisation in order to prioritise drug targets for cardiovascular research. PMID:28596306

  8. Enhanced gastric retention and drug release via development of novel floating microspheres based on Eudragit E100 and polycaprolactone: synthesis and in vitro evaluation

    PubMed Central

    Farooq, Umar; Khan, Samiullah; Nawaz, Shahid; Ranjha, Nazar Mohammad; Haider, Malik Salman; Khan, Muhammad Muzamil; Dar, Eshwa; Nawaz, Ahmad

    2017-01-01

    Abstract Eudragit E 100 and polycaprolactone (PCL) floating microspheres for enhanced gastric retention and drug release were successfully prepared by oil in water solvent evaporation method. Metronidazole benzoate, an anti-protozoal drug, was used as a model drug. Polyvinyl alcohol was used as an emulsifier. The prepared microspheres were observed for % recovery, % degree of hydration, % water uptake, % drug loading, % buoyancy and % drug release. The physico-chemical properties of the microspheres were studied by calculating encapsulation efficiency of microspheres and drug release kinetics. Drug release characteristics of microspheres were studied in simulated gastric fluid and simulated intestinal fluid i.e., at pH 1.2 and 7.4 respectively. Fourier transform infrared spectroscopy was used to reveal the chemical interaction between drug and polymers. Scanning electron microscopy was conducted to study the morphology of the synthesized microspheres. PMID:29491813

  9. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir

    PubMed Central

    Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman

    2017-01-01

    To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257

  10. Free software to analyse the clinical relevance of drug interactions with antiretroviral agents (SIMARV®) in patients with HIV/AIDS.

    PubMed

    Giraldo, N A; Amariles, P; Monsalve, M; Faus, M J

    Highly active antiretroviral therapy has extended the expected lifespan of patients with HIV/AIDS. However, the therapeutic benefits of some drugs used simultaneously with highly active antiretroviral therapy may be adversely affected by drug interactions. The goal was to design and develop a free software to facilitate analysis, assessment, and clinical decision making according to the clinical relevance of drug interactions in patients with HIV/AIDS. A comprehensive Medline/PubMed database search of drug interactions was performed. Articles that recognized any drug interactions in HIV disease were selected. The publications accessed were limited to human studies in English or Spanish, with full texts retrieved. Drug interactions were analyzed, assessed, and grouped into four levels of clinical relevance according to gravity and probability. Software to systematize the information regarding drug interactions and their clinical relevance was designed and developed. Overall, 952 different references were retrieved and 446 selected; in addition, 67 articles were selected from the citation lists of identified articles. A total of 2119 pairs of drug interactions were identified; of this group, 2006 (94.7%) were drug-drug interactions, 1982 (93.5%) had an identified pharmacokinetic mechanism, and 1409 (66.5%) were mediated by enzyme inhibition. In terms of clinical relevance, 1285 (60.6%) drug interactions were clinically significant in patients with HIV (levels 1 and 2). With this information, a software program that facilitates identification and assessment of the clinical relevance of antiretroviral drug interactions (SIMARV ® ) was developed. A free software package with information on 2119 pairs of antiretroviral drug interactions was designed and developed that could facilitate analysis, assessment, and clinical decision making according to the clinical relevance of drug interactions in patients with HIV/AIDS. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Review on research of suppression male fertility and male contraceptive drug development by natural products.

    PubMed

    Bajaj, Vijay Kumar; Gupta, Radhey S

    2013-08-01

    Male contraceptive development in the present scenario is most viable aspect of research due to uncontrolled population growth in the world. In this respect investigators are busy to find out a safe male contraceptive drug. Researchers have started their finding for a suitable drug from natural sources because these are safe and easily acceptable for common man, most of natural sources are plants and their products. In this review 137 plants and their effects on reproduction and reproductive physiology are summarized. Some of them have intense effect on male reproductive system and do not produce any side effects. Reproductive toxicological studies are also important aspects of these kinds of researches, so it is important that drugs are safe and widely acceptable. An ideal male contraceptive can influence semen, testes, hormone level, accessory reproductive organs and general physiology of animals and produced some alterations. Many plants in this review are showing antifertility as well as antispermatogenic effects, so these may be used for further study for contraceptives development but it is important to find out the mechanism of reaction and further laboratory and clinical research on some plants are needed for final male contraceptive drug development. In conclusion this review will help for finding suitable plant products for male contraceptive clinical and laboratory studies.

  12. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    PubMed

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p < 0.05, p < 0.01, and p < 0.001) in the zebrafish model. The larval zebrafish heart failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  13. Application of metabonomics in a compound ranking study in early drug development revealing drug-induced excretion of choline into urine.

    PubMed

    Dieterle, Frank; Schlotterbeck, Götz; Ross, Alfred; Niederhauser, Urs; Senn, Hans

    2006-09-01

    Selecting drug candidates based on toxicity is an important step in early drug development. In this case study, it is shown how metabonomics is applied to a ranking study, in which drug candidates with equal pharmacological activities are selected based on least toxic side effects. The metabonomic analyses were carried out on an animal study that followed an established protocol for pilot toxicology/ranking studies in rats, however, not specifically modified for a metabonomic assessment. It is shown how conditions not specificially adopted for metabonomics investigations can significantly influence the metabolic profiles recorded by NMR. Furthermore, it is shown how the multivariate analysis of the NMR spectra identified an extreme excretion of an endogenous metabolite into urine induced by two out of the five drug candidates. The subsequent structure elucidation by two-dimensional NMR experiments and a subsequent validation by spiking experiments identified the metabolite as choline. The discussion of the mechanistic background for the excretion of choline, which is usually well-conserved in the body, results in two hypotheses of either a massive degradation of cell membranes or an inhibition of the choline oxidation. Although the validation of these hypotheses needs a follow-up study, the finding of a increased excretion of the important metabolite choline warrants exclusion of these two compounds as viable drug candidates from a metabonomics point of view.

  14. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com; Novik, Eric I.; Gerets, Helga H.

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine modelmore » along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.« less

  15. Adverse Drug Reactions Related to Drug Administration in Hospitalized Patients.

    PubMed

    Gallelli, Luca; Siniscalchi, Antonio; Palleria, Caterina; Mumoli, Laura; Staltari, Orietta; Squillace, Aida; Maida, Francesca; Russo, Emilio; Gratteri, Santo; De Sarro, Giovambattista

    2017-01-01

    Drug treatment may be related to the development of adverse drug reactions (ADRs). In this paper, we evaluated the ADRs in patients admitted to Catanzaro Hospital. After we obtained the approval by local Ethical Committee, we performed a retrospective study on clinical records from March 01, 2013 to April 30, 2015. The association between drug and ADR or between drug and drug-drug-interactions (DDIs) was evaluated using the Naranjo's probability scale and Drug Interaction Probability Scale (DIPS), respectively. During the study period, we analyzed 2870 clinical records containing a total of 11,138 prescriptions, and we documented the development of 770 ADRs. The time of hospitalization was significantly higher (P<0.05) in women with ADRs (12.6 ± 1.2 days) with respect to men (11.8± 0.83 days). Using the Naranjo score, we documented a probable association in 78% of these reactions, while DIPS revealed that about 22% of ADRs were related to DDIs. Patients with ADRs received 3052 prescriptions on 11,138 (27.4%) having a mean of 6.1±0.29 drugs that was significantly higher (P<0.01) with respect to patients not experiencing ADRs (mean of 3.4±0.13 drugs). About 19% of ADRs were not diagnosed and were treated as new diseases. Our results indicate that drug administration induces the development of ADRs also during the hospitalization, particularly in elderly women. Moreover, we also documented that ADRs in some patients are under-diagnosed, therefore, it is important to motivate healthcare to report the ADRs in order to optimize the patients' safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Food intake attenuates the drug interaction between new quinolones and aluminum.

    PubMed

    Imaoka, Ayuko; Abiru, Kosuke; Akiyoshi, Takeshi; Ohtani, Hisakazu

    2018-01-01

    Intestinal absorption of new quinolones is decreased by oral administration of polyvalent metal cations. Some clinical studies have demonstrated this drug - drug interaction is more prominent under fasted condition. However, the effect of food intake on the extent of drug - drug interaction between new quinolones and metal cations remains to be investigated quantitatively and systematically. The aim of this study was to develop an animal model that enables to evaluate the effect of food intake on the extent of drug - drug interaction in the gastrointestinal tract by chelation and to apply the model to evaluate quantitatively the effect of food intake on the drug - drug interaction between two new quinolones, ofloxacin or ciprofloxacin and sucralfate. The rats were orally administered new quinolones (5.3 mg/kg of ofloxacin or 10 mg/kg of ciprofloxacin) with or without 13.3 mg/kg of sucralfate under fasted or fed condition and plasma concentration profiles of new quinolones were monitored. To the fed group, standard breakfast used in human studies was pasted and administered at a dose of 8.8 g/kg. The area under the plasma concentration - time curves (AUC 0-6 ) of ofloxacin and ciprofloxacin under the fasted condition were significantly decreased to 28.8 and 17.1% by co-administration of sucralfate, respectively. On the contrary, sucralfate moderately decreased the AUC 0-6 of ofloxacin and ciprofloxacin to 54.9 and 33.2%, respectively, under fed condition. The effects of sucralfate and food intake on the kinetics of ofloxacin in this study were well consistent with the results of previous clinical trial. The developed animal model quantitatively reproduced the effect of food intake on the drug - drug interaction between ofloxacin and sucralfate. The similar influences were observed for the drug - drug interaction between ciprofloxacin and sucralfate, suggesting that the extent of drug - drug interaction caused by chelation is generally attenuated by food intake.

  17. Cognitive processing of drug-related stimuli: the role of memory and attention.

    PubMed

    Weinstein, Aviv; Cox, W Miles

    2006-11-01

    Recent studies have investigated the role of attentional biases and memory in alcohol and other drugs of dependence and the relationship between the motivation to use alcohol or other drugs and vigilance for relevant stimuli in alcohol and drug dependence. Based on this research, we describe relationships among motivation, memory, and attentional biases in order to enable better understanding of their multiple and interacting roles in the maintenance and development of alcohol and other drug dependence. We argue that memory and attentional processes are critical in the development and maintenance of addiction processes. Furthermore, we assume that attentional bias is not simply a by-product of an addiction disorder but plays a vital role in its development and maintenance, and it serves to enhance actual drug use. Finally, we predict that the motivation to use alcohol or other drugs will increase vigilance for substance-related stimuli, which in turn can lead to actual use. Future research is needed to ll gaps in our knowledge and lead to a more defined and articulated cognitive-behavioural model of drug dependence.

  18. Use of Pharmacogenomics and Biomarkers in the Development of New Drugs for Alzheimer Disease in Japan.

    PubMed

    Otsubo, Yasuto

    2015-08-01

    Pharmacogenomics (PGx) and biomarkers have been utilized for improving the benefit/risk ratios of drugs and the efficiency of drug development. In the development of drugs for Alzheimer disease (AD), a number of clinical trials have failed to demonstrate clinical efficacy. To overcome this circumstance, the importance of using PGx/biomarkers for enhancing recruitment into clinical trials and for evaluating the efficacy of treatments has been increasingly recognized. In this article, the current status and examples of the use of PGx/biomarkers in Japan for drug development are explained. Guidelines, notifications, and administrative notices related to PGx/biomarkers were downloaded from the Web sites of the Pharmaceuticals and Medical Devices Agency (PMDA), the US Food and Drug Administration, and the European Medicines Agency. Data from clinical studies of AD drugs were obtained from the review reports of the PMDA. To analyze the current status of the use of PGx/biomarkers in Japan, "Issues to Consider in the Clinical Evaluation and Development of Drugs for Alzheimer's Disease (Interim Summary)" was also downloaded from PMDA Web site. There are 2 major measures of utilizing PGx/biomarkers for drug development: (1) biomarker qualification and (2) companion diagnostics. Recently, the PMDA issued a number of guidelines and notifications for their practical use. Although examples of qualified PGx/biomarkers and approved companion diagnostics are limited at present, it is expected that the use of PGx/biomarkers for the development of drugs against AD would increase. For promoting the use of PGx/biomarkers in the development of drugs against AD, PGx/biomarkers should be qualified as early as possible. To that end, accumulating data on PGx/biomarkers from nonclinical or clinical trials and the concurrent development of reliable diagnostics in the early stage of the development process are indispensable. It is important to strengthen collaboration among the academia, industries, and regulatory agencies, followed by the establishment of an effective guideline in the area of AD. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  19. Rational drug design paradigms: the odyssey for designing better drugs.

    PubMed

    Kellici, Tahsin; Ntountaniotis, Dimitrios; Vrontaki, Eleni; Liapakis, George; Moutevelis-Minakakis, Panagiota; Kokotos, George; Hadjikakou, Sotiris; Tzakos, Andreas G; Afantitis, Antreas; Melagraki, Georgia; Bryant, Sharon; Langer, Thierry; Di Marzo, Vincenzo; Mavromoustakos, Thomas

    2015-01-01

    Due to the time and effort requirements for the development of a new drug, and the high attrition rates associated with this developmental process, there is an intense effort by academic and industrial researchers to find novel ways for more effective drug development schemes. The first step in the discovery process of a new drug is the identification of the lead compound. The modern research tendency is to avoid the synthesis of new molecules based on chemical intuition, which is time and cost consuming, and instead to apply in silico rational drug design. This approach reduces the consumables and human personnel involved in the initial steps of the drug design. In this review real examples from our research activity aiming to discover new leads will be given for various dire warnings diseases. There is no recipe to follow for discovering new leads. The strategy to be followed depends on the knowledge of the studied system and the experience of the researchers. The described examples constitute successful and unsuccessful efforts and reflect the reality which medicinal chemists have to face in drug design and development. The drug stability is also discussed in both organic molecules and metallotherapeutics. This is an important issue in drug discovery as drug metabolism in the body can lead to various toxic and undesired molecules.

  20. Drug target identification in protozoan parasites

    PubMed Central

    Müller, Joachim; Hemphill, Andrew

    2016-01-01

    Introduction Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Areas covered Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Expert opinion Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses. PMID:27238605

  1. How modeling and simulation have enhanced decision making in new drug development.

    PubMed

    Miller, Raymond; Ewy, Wayne; Corrigan, Brian W; Ouellet, Daniele; Hermann, David; Kowalski, Kenneth G; Lockwood, Peter; Koup, Jeffrey R; Donevan, Sean; El-Kattan, Ayman; Li, Cheryl S W; Werth, John L; Feltner, Douglas E; Lalonde, Richard L

    2005-04-01

    The idea of model-based drug development championed by Lewis Sheiner, in which pharmacostatistical models of drug efficacy and safety are developed from preclinical and available clinical data, offers a quantitative approach to improving drug development and development decision-making. Examples are presented that support this paradigm. The first example describes a preclinical model of behavioral activity to predict potency and time-course of response in humans and assess the potential for differentiation between compounds. This example illustrates how modeling procedures expounded by Lewis Sheiner provided the means to differentiate potency and the lag time between drug exposure and response and allow for rapid decision making and dose selection. The second example involves planning a Phase 2a dose-ranging and proof of concept trial in Alzheimer's disease (AD). The issue was how to proceed with the study and what criteria to use for a go/no go decision. The combined knowledge of AD disease progression, and preclinical and clinical information about the drug were used to simulate various clinical trial scenarios to identify an efficient and effective Phase 2 study. A design was selected and carried out resulting in a number of important learning experiences as well as extensive financial savings. The motivation for this case in point was the "Learn-Confirm" paradigm described by Lewis Sheiner. The final example describes the use of Pharmacokinetic and Pharmacodynamic (PK/PD) modeling and simulation to confirm efficacy across doses. In the New Drug Application for gabapentin, data from two adequate and well-controlled clinical trials was submitted to the Food and Drug Administration (FDA) in support of the approval of the indication for the treatment of post-herpetic neuralgia. The clinical trial data was not replicated for each of the sought dose levels in the drug application presenting a regulatory dilemma. Exposure response analysis submitted in the New Drug Application was applied to confirm the evidence of efficacy across these dose levels. Modeling and simulation analyses showed that the two studies corroborate each other with respect to the pain relief profiles. The use of PK/PD information confirmed evidence of efficacy across the three studied doses, eliminating the need for additional clinical trials and thus supporting the approval of the product. It can be speculated that the work by Lewis Sheiner reflected in the FDA document titled "Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products" made this scientific approach to the drug approval process possible.

  2. Development of a new delivery system consisting in 'drug-in cyclodextrin-in PLGA nanoparticles'.

    PubMed

    Mura, Paola; Maestrelli, Francesca; Cecchi, Matteo; Bragagni, Marco; Almeida, Antonio

    2010-01-01

    A combined approach based on drug cyclodextrin (CD) complexation and loading into PLGA nanoparticles (NP) has been developed to improve oxaprozin therapeutic efficiency. This strategy exploits the solubilizing and stabilizing properties of CDs and the prolonged-release and targeting properties of PLGA NPs. Drug-loaded NPs, prepared by double-emulsion, were examined for dimensions, zeta-potential and entrapment efficiency. Solid-state studies demonstrated the absence of drug-polymer interactions and assessed the amorphous state of the drug-CD complex loaded into NPs. Drug release rate from NPs was strongly influenced by the presence and kind of CD used. The percentage released at 24 h varied from 16% (plain drug-loaded NPs) to 50% (drug-betaCD-loaded NPs) up to 100% (drug-methylbetaCD-loaded NPs). This result suggests the possibility of using CD complexation not only to promote, but also to regulate drug release rate from NPs, by selecting the proper type of CD or CD combination.

  3. Stress Levels of Recovering Drug Addicts.

    ERIC Educational Resources Information Center

    LaMon, Brent C.; Alonzo, Anthony

    It appears that chronic drug use may develop as a means of coping in which individuals use self-medication to produce a more desirable state of being. Because drugs are often used to cope with stress, this study examined stress among recovering male drug addicts (N=23) from an urban substance abuse program by administering a self-report inventory…

  4. Drug Abuse Information, Teacher Resource Material.

    ERIC Educational Resources Information Center

    Bowen, Haskell, Comp.

    This informational publication is to be used as an aid for teachers, bringing them basic facts regarding drugs and drug abuse. Its purpose is to (1) give additional teacher background information and (2) enrich any course of study that has been developed on drug abuse. To use the material most effectively, it is suggested the teacher have an…

  5. A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging

    PubMed Central

    Giordano, Silvia; Pifferi, Valentina; Morosi, Lavinia; Morelli, Melinda; Falciola, Luigi; Cappelletti, Giuseppe; Visentin, Sonja; Licandro, Simonetta A.; Frapolli, Roberta; Zucchetti, Massimo; Pastorelli, Roberta; Brunelli, Laura; D’Incalci, Maurizio; Davoli, Enrico

    2017-01-01

    The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice. PMID:28336905

  6. Leveraging consumer's behaviour to promote generic drugs in Italy.

    PubMed

    Zerbini, Cristina; Luceri, Beatrice; Vergura, Donata Tania

    2017-04-01

    The aim of this study was to fill the lack of knowledge regarding a more grounded exploration of the consumer's decision-making process in the context of generic drugs. In this perspective, a model, within the theoretical framework of the Theory of Planned Behaviour (TPB), for studying the consumers' purchase intention of generic drugs was developed. An online survey on 2,222 Italian people who bought drugs in the past was conducted. The proposed model was tested through structural equation modelling (SEM). Almost all the constructs considered in the model, except the perceived behavioural control, contribute to explain the consumer's purchase intention of generic drugs, after controlling for demographic variables (age, income, education). Specifically, attitude, subjective norm, past behaviour, self-identity and trust in the pharmacist have a positive influence on the intention to buy generic drugs. On the contrary, perceived risk towards products and brand sensitivity act negatively. The results of the present study could be useful to public policy makers in developing effective policies and educational campaigns aimed at promoting generic drugs. Specifically, marketing efforts should be directed to inform consumers about the generic drugs' characteristics to mitigate the perceived risk towards these products and to raise awareness during their decision-making process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The influence of common free radicals and antioxidants on development of Alzheimer's Disease.

    PubMed

    Wojtunik-Kulesza, Karolina A; Oniszczuk, Anna; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika

    2016-03-01

    Alzheimer's Disease (AD) is one of the most important neurodegenerative disorders in the 21st century for the continually aging population. Despite an increasing number of patients, there are only few drugs to treat the disease. Numerous studies have shown several causes of the disorder, one of the most important being oxidative stress. Oxidative stress is connected with a disturbance between the levels of free radicals and antioxidants in organisms. Solutions to this problem are antioxidants, which counteract the negative impact of the reactive molecules. Unfortunately, the currently available drugs against AD do not exhibit activity toward these structures. Due to the fact that natural substances are extremely significant in new drug development, numerous studies are focused on substances which exhibit a few activities including antioxidants and other anti-AD behaviors. This review article presents the most important studies connected with the influence of free radicals on development of AD and antioxidants as potential drugs toward AD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Development of biopolymers based interpenetrating polymeric network of capecitabine: A drug delivery vehicle to extend the release of the model drug.

    PubMed

    Upadhyay, Mansi; Adena, Sandeep Kumar Reddy; Vardhan, Harsh; Yadav, Sarita K; Mishra, Brahmeshwar

    2018-04-27

    The research aims the development and optimization of capecitabine loaded interpenetrating polymeric network by ionotropic gelation method using polymers locust bean gum and sodium alginate by QbD approach. FMEA was performed to recognize the risks influencing CQAs. BBD was applied to study the effect of factors (polymer ratio, amount of cross-linker and curing time) on responses (particle size, % drug entrapment and % drug release). Polynomial equations and 3-D graphs were plotted to relate between factors and responses. The results of the optimized batch viz. particle size (457.92 ± 1.6 μm), % drug entrapment (74.11 ± 3.1%) and % drug release (90.23 ± 2.1%) were close to the predicted values generated by Minitab® 17. Characterization techniques SEM, EDX, FTIR, DSC and XRD were also performed for the optimized batch. To study the water transport inside IPN microbeads, swelling study was done. In vitro drug release of optimized batch showed controlled drug release for 12 h. Pharmacokinetic study carried out following oral administration in Albino Wistar rats exhibited that optimized microbeads had better PK parameters than free drug. In vitro cytotoxicity against HT-29 cells revealed significant reduction of the cell growth when treated with optimized formulation indicating IPN microbeads as effective dosage form for treating colon cancer. Copyright © 2018. Published by Elsevier B.V.

  9. Formulation and Optimization of Polymeric Nanoparticles for Intranasal Delivery of Lorazepam Using Box-Behnken Design: In Vitro and In Vivo Evaluation

    PubMed Central

    Sharma, Deepak; Maheshwari, Dipika; Rana, Ravish; Bhatia, Shanu; Singh, Manisha; Gabrani, Reema; Sharma, Sanjeev K.; Ali, Javed; Sharma, Rakesh Kumar; Dang, Shweta

    2014-01-01

    The aim of the present study was to optimize lorazepam loaded PLGA nanoparticles (Lzp-PLGA-NPs) by investigating the effect of process variables on the response using Box-Behnken design. Effect of four independent factors, that is, polymer, surfactant, drug, and aqueous/organic ratio, was studied on two dependent responses, that is, z-average and % drug entrapment. Lzp-PLGA-NPs were successfully developed by nanoprecipitation method using PLGA as polymer, poloxamer as surfactant and acetone as organic phase. NPs were characterized for particle size, zeta potential, % drug entrapment, drug release behavior, TEM, and cell viability. Lzp-PLGA-NPs were characterized for drug polymer interaction using FTIR. The developed NPs showed nearly spherical shape with z-average 167–318 d·nm, PDI below 0.441, and −18.4 mV zeta potential with maximum % drug entrapment of 90.1%. In vitro drug release behavior followed Korsmeyer-Peppas model and showed initial burst release of 21.7 ± 1.3% with prolonged drug release of 69.5 ± 0.8% from optimized NPs up to 24 h. In vitro drug release data was found in agreement with ex vivo permeation data through sheep nasal mucosa. In vitro cell viability study on Vero cell line confirmed the safety of optimized NPs. Optimized Lzp-PLGA-NPs were radiolabelled with Technitium-99m for scintigraphy imaging and biodistribution studies in Sprague-Dawley rats to establish nose-to-brain pathway. PMID:25126544

  10. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery

    PubMed Central

    2018-01-01

    Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3′ positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids. PMID:29468872

  11. Study of polymorphism using patterned self-assembled monolayers approach on metal substrates

    NASA Astrophysics Data System (ADS)

    Quiñones, Rosalynn; Brown, Ryanne T.; Searls, Noah; Richards-Waugh, Lauren

    2018-01-01

    Polymorphism is a molecule's ability to possess altered physical crystalline structures and has become an active interest in pharmaceuticals due to its ability to influence a drug's physical and chemical properties. Crystal stability and solubility are crucial in determining a drug's pharmacokinetics and pharmacodynamics. Changes in these properties due to polymorphisms have contributed to recalls and modifications in industrial production. For this study, the effects of surface interactions with pharmaceuticals were examined through surface modification methodology using organic phosphonic and sulfonic acid self-assembled monolayers (SAMs) developed on a nickel or zinc oxide metal substrate. Drugs analyzed included carbamazepine, cimetidine, tolfenamic acid, and flufenamic acid. All drugs were thermodynamically applied to the reformed surface to aid in recrystallization. It was hypothesized and confirmed that intermolecular bonds, especially hydrogen bonds between the SAMs and pharmaceutical drugs, were the force that assisted in polymorph development. The study was successful in revealing multiple forms for each drug, including their commercial form and at least one additional form using micro FT-IR, Raman spectroscopy, and PXRD. Visual comparisons of crystal polymorphisms were performed with IR microscopy.

  12. The effects of Psychotropic drugs On Developing brain (ePOD) study: methods and design.

    PubMed

    Bottelier, Marco A; Schouw, Marieke L J; Klomp, Anne; Tamminga, Hyke G H; Schrantee, Anouk G M; Bouziane, Cheima; de Ruiter, Michiel B; Boer, Frits; Ruhé, Henricus G; Denys, Damiaan; Rijsman, Roselyne; Lindauer, Ramon J L; Reitsma, Hans B; Geurts, Hilde M; Reneman, Liesbeth

    2014-02-19

    Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of different approaches to determine whether there are related findings in humans. Animal studies were carried out to investigate age-related effects of psychotropic drugs and to validate new neuroimaging techniques. In addition, we set up two double-blind placebo controlled clinical trials with MPH in 50 boys (10-12 years) and 50 young men (23-40 years) suffering from ADHD (ePOD-MPH) and with FLX in 40 girls (12-14 years) and 40 young women (23-40 years) suffering from depression and anxiety disorders (ePOD-SSRI). Trial registration numbers are: Nederlands Trial Register NTR3103 and NTR2111. A cross-sectional cohort study on age-related effects of these psychotropic medications in patients who have been treated previously with MPH or FLX (ePOD-Pharmo) is also ongoing. The effects of psychotropic drugs on the developing brain are studied using neuroimaging techniques together with neuropsychological and psychiatric assessments of cognition, behavior and emotion. All assessments take place before, during (only in case of MPH) and after chronic treatment. The combined results of these approaches will provide new insight into the modulating effect of MPH and FLX on brain development.

  13. The effects of Psychotropic drugs On Developing brain (ePOD) study: methods and design

    PubMed Central

    2014-01-01

    Background Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of different approaches to determine whether there are related findings in humans. Methods/Design Animal studies were carried out to investigate age-related effects of psychotropic drugs and to validate new neuroimaging techniques. In addition, we set up two double-blind placebo controlled clinical trials with MPH in 50 boys (10–12 years) and 50 young men (23–40 years) suffering from ADHD (ePOD-MPH) and with FLX in 40 girls (12–14 years) and 40 young women (23–40 years) suffering from depression and anxiety disorders (ePOD-SSRI). Trial registration numbers are: Nederlands Trial Register NTR3103 and NTR2111. A cross-sectional cohort study on age-related effects of these psychotropic medications in patients who have been treated previously with MPH or FLX (ePOD-Pharmo) is also ongoing. The effects of psychotropic drugs on the developing brain are studied using neuroimaging techniques together with neuropsychological and psychiatric assessments of cognition, behavior and emotion. All assessments take place before, during (only in case of MPH) and after chronic treatment. Discussion The combined results of these approaches will provide new insight into the modulating effect of MPH and FLX on brain development. PMID:24552282

  14. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.

    PubMed

    Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can

    2012-05-01

    A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. Copyright © 2012 Wiley Periodicals, Inc.

  15. Organotypic cultures as tools for testing neuroactive drugs - link between in-vitro and in-vivo experiments.

    PubMed

    Drexler, B; Hentschke, H; Antkowiak, B; Grasshoff, C

    2010-01-01

    The development of neuroactive drugs is a time consuming procedure. Candidate drugs must be run through a battery of tests, including receptor studies and behavioural tests on animals. As a rule, numerous substances with promising properties as assessed in receptor studies must be eliminated from the development pipeline in advanced test phases because of unforeseen problems like intolerable side-effects or unsatisfactory performance in the whole organism. Clearly, test systems of intermediate complexity would alleviate this inefficiency. In this review, we propose cultured organotypic brain slices as model systems that could bridge the 'interpolation gap' between receptors and the brain, with a focus on the development of new general anaesthetics with lesser side effects. General anaesthesia is based on the modulation of neurotransmitter receptors and other conductances located on neurons in diverse brain regions, including cerebral cortex and spinal cord. It is well known that different components of general anaesthesia, e.g. hypnosis and immobility, are produced by the depression of neuronal activity in distinct brain regions. The ventral horn of the spinal cord is an important structure for the induction of immobility. Thus, the potentially immobilizing effects of a newly designed drug can be estimated from its depressant effect on neuronal network activity in cultured spinal slices. A drug's sedative and hypnotic potential can be examined in cortical cultures. Combined with genetically engineered mice, this approach can point to receptor subtypes most relevant to the drug's intended net effect and in return can help in the design of more selective drugs. In conclusion, the use of organotypic cultures permits predictions of neuroactive properties of newly designed drugs on an intermediate level, and should therefore open up avenues for a more creative and economic drug development process.

  16. Development of drug resistance in patients receiving combinations of zidovudine, didanosine and nevirapine.

    PubMed

    Conway, B; Wainberg, M A; Hall, D; Harris, M; Reiss, P; Cooper, D; Vella, S; Curry, R; Robinson, P; Lange, J M; Montaner, J S

    2001-07-06

    To evaluate the development of phenotypic and genotypic resistance to zidovudine, didanosine and nevirapine as a function of the virologic response to therapy in a group of drug-naive individuals receiving various combinations of these agents. All patients were enrolled in a double-blind controlled randomized trial (the INCAS study) and were selected for detailed resistance studies based on specimen availability and virologic response. Within the three study groups (zidovudine/nevirapine, zidovudine/didanosine or zidovudine/nevirapine/didanosine), 16, 19 and 24 patients, respectively, had evaluable baseline isolates and remained in the study > 24 weeks. Phenotypic resistance to all three drugs was evaluated using the VIRCO recombinant virus assay. Genotypic sequencing was done on selected specimens from patients receiving zidovudine/nevirapine/didanosine. After 24 weeks, all available isolates taken from patients receiving nevirapine were resistant to this agent, while 18/21 (86%) patients receiving triple therapy carried such isolates at 30--60 weeks. At 24 weeks, zidovudine resistance developed in 4/40 isolates but was more frequent after 30--60 weeks, especially in patients on two drugs. The degree of zidovudine resistance (rise in concentration required for 50% inhibition) appeared lower in the triple therapy group compared with zidovudine/didanosine (P = 0.0004). All nevirapine-resistant isolates that were sequenced carried at least one mutation associated with resistance, most often K103N and/or Y181C. The use of highly active drug therapies may be associated with a beneficial effect on the development of antiretroviral drug resistance. The characteristics of virologic suppression that must be maintained to avoid resistance are currently being studied in hypothesis-driven clinical trials.

  17. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening.

    PubMed

    Lu, Hong Fang; Leong, Meng Fatt; Lim, Tze Chiun; Chua, Ying Ping; Lim, Jia Kai; Du, Chan; Wan, Andrew C A

    2017-05-11

    Cardiotoxicity is one of the major reasons for clinical drug attrition. In vitro tissue models that can provide efficient and accurate drug toxicity screening are highly desired for preclinical drug development and personalized therapy. Here, we report the fabrication and characterization of a human cardiac tissue model for high throughput drug toxicity studies. Cardiac tissues were fabricated via cellular self-assembly of human transgene-free induced pluripotent stem cells-derived cardiomyocytes in pre-fabricated polydimethylsiloxane molds. The formed tissue constructs expressed cardiomyocyte-specific proteins, exhibited robust production of extracellular matrix components such as laminin, collagen and fibronectin, aligned sarcomeric organization, and stable spontaneous contractions for up to 2 months. Functional characterization revealed that the cardiac cells cultured in 3D tissues exhibited higher contraction speed and rate, and displayed a significantly different drug response compared to cells cultured in age-matched 2D monolayer. A panel of clinically relevant compounds including antibiotic, antidiabetic and anticancer drugs were tested in this study. Compared to conventional viability assays, our functional contractility-based assays were more sensitive in predicting drug-induced cardiotoxic effects, demonstrating good concordance with clinical observations. Thus, our 3D cardiac tissue model shows great potential to be used for early safety evaluation in drug development and drug efficiency testing for personalized therapy.

  18. Drug-gene modeling in pediatric T-cell acute lymphoblastic leukemia highlights importance of 6-mercaptopurine for outcome.

    PubMed

    Beesley, Alex H; Firth, Martin J; Anderson, Denise; Samuels, Amy L; Ford, Jette; Kees, Ursula R

    2013-05-01

    Patients relapsing with T-cell acute lymphoblastic leukemia (T-ALL) face a dismal outcome. The aim of this study was to identify new markers of drug resistance and clinical response in T-ALL. We measured gene expression and drug sensitivity in 15 pediatric T-ALL cell lines to find signatures predictive of resistance to 10 agents used in therapy. These were used to generate a model for outcome prediction in patient cohorts using microarray data from diagnosis specimens. In three independent T-ALL cohorts, the 10-drug model was able to accurately identify patient outcome, indicating that the in vitro-derived drug-gene profiles were clinically relevant. Importantly, predictions of outcome within each cohort were linked to distinct drugs, suggesting that different mechanisms contribute to relapse. Sulfite oxidase (SUOX) expression and the drug-transporter ABCC1 (MRP1) were linked to thiopurine sensitivity, suggesting novel pathways for targeting resistance. This study advances our understanding of drug resistance in T-ALL and provides new markers for patient stratification. The results suggest potential benefit from the earlier use of 6-mercaptopurine in T-ALL therapy or the development of adjuvants that may sensitize blasts to this drug. The methodology developed in this study could be applied to other cancers to achieve patient stratification at the time of diagnosis.

  19. Examining the production costs of antiretroviral drugs.

    PubMed

    Pinheiro, Eloan; Vasan, Ashwin; Kim, Jim Yong; Lee, Evan; Guimier, Jean Marc; Perriens, Joseph

    2006-08-22

    To present direct manufacturing costs and price calculations of individual antiretroviral drugs, enabling those responsible for their procurement to have a better understanding of the cost structure of their production, and to indicate the prices at which these antiretroviral drugs could be offered in developing country markets. Direct manufacturing costs and factory prices for selected first and second-line antiretroviral drugs were calculated based on cost structure data from a state-owned company in Brazil. Prices for the active pharmaceutical ingredients (API) were taken from a recent survey by the World Health Organization (WHO). The calculated prices for antiretroviral drugs are compared with quoted prices offered by privately-owned, for-profit manufacturers. The API represents the largest component of direct manufacturing costs (55-99%), while other inputs, such as salaries, equipment costs, and scale of production, have a minimal impact. The calculated prices for most of the antiretroviral drugs studied fall within the lower quartile of the range of quoted prices in developing country markets. The exceptions are those drugs, primarily for second-line therapy, for which the API is either under patent, in short supply, or in limited use in developing countries (e.g. abacavir, lopinavir/ritonavir, nelfinavir, saquinavir). The availability of data on the cost of antiretroviral drug production and calculation of factory prices under a sustainable business model provide benchmarks that bulk purchasers of antiretroviral drugs could use to negotiate lower prices. While truly significant price decreases for antiretroviral drugs will depend largely on the future evolution of API prices, the present study demonstrates that for several antiretroviral drugs price reduction is currently possible. Whether or not these reductions materialize will depend on the magnitude of indirect cost and profit added by each supplier over the direct production costs. The ability to achieve price reductions in line with production costs will have critical implications for sustainable treatment for HIV/AIDS in the developing world.

  20. Challenges in the clinical development of new antiepileptic drugs.

    PubMed

    Franco, Valentina; French, Jacqueline A; Perucca, Emilio

    2016-01-01

    Despite the current availability in the market of over two dozen antiepileptic drugs (AEDs), about one third of people with epilepsy fail to achieve complete freedom from seizures with existing medications. Moreover, currently available AEDs have significant limitations in terms of safety, tolerability and propensity to cause or be a target for clinically important adverse drug interactions. A review of the evidence shows that there are many misperceptions about the viability of investing into new therapies for epilepsy. In fact, there are clear incentives to develop newer and more efficacious medications. Developing truly innovative drugs requires a shift in the paradigms for drug discovery, which is already taking place by building on greatly expanded knowledge about the mechanisms involved in epileptogenesis, seizure generation, seizure spread and development of co-morbidities. AED development can also benefit by a review of the methodology currently applied in clinical AED development, in order to address a number of ethical and scientific concerns. As discussed in this article, many processes of clinical drug development, from proof-of-concept-studies to ambitious programs aimed at demonstrating antiepileptogenesis and disease-modification, can be facilitated by a greater integration of preclinical and clinical science, and by application of knowledge acquired during decades of controlled epilepsy trials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. During pregnancy, recreational drug-using women stop taking ecstasy (3,4-methylenedioxy-N-methylamphetamine) and reduce alcohol consumption, but continue to smoke tobacco and cannabis: initial findings from the Development and Infancy Study.

    PubMed

    Moore, Derek G; Turner, John D; Parrott, Andrew C; Goodwin, Julia E; Fulton, Sarah E; Min, Meeyoung O; Fox, Helen C; Braddick, Fleur M B; Axelsson, Emma L; Lynch, Stephanie; Ribeiro, Helena; Frostick, Caroline J; Singer, Lynn T

    2010-09-01

    While recreational drug use in UK women is prevalent, to date there is little prospective data on patterns of drug use in recreational drug-using women immediately before and during pregnancy. A total of 121 participants from a wide range of backgrounds were recruited to take part in the longitudinal Development and Infancy Study (DAISY) study of prenatal drug use and outcomes. Eighty-six of the women were interviewed prospectively while pregnant and/or soon after their infant was born. Participants reported on use immediately before and during pregnancy and on use over their lifetime. Levels of lifetime drug use of the women recruited were high, with women reporting having used at least four different illegal drugs over their lifetime. Most users of cocaine, 3,4-methylenedioxy-N-methylamphetamine (MDMA) and other stimulants stopped using these by the second trimester and levels of use were low. However, in pregnancy, 64% of the sample continued to use alcohol, 46% tobacco and 48% cannabis. While the level of alcohol use reduced substantially, average tobacco and cannabis levels tended to be sustained at pre-pregnancy levels even into the third trimester (50 cigarettes and/or 11 joints per week). In sum, while the use of 'party drugs' and alcohol seems to reduce, levels of tobacco and cannabis use are likely to be sustained throughout pregnancy. The data provide polydrug profiles that can form the basis for the development of more realistic animal models.

  2. From the Test Tube to the Treatment Room: Fundamentals of Boron-containing Compounds and their Relevance to Dermatology.

    PubMed

    Del Rosso, James Q; Plattner, Jacob J

    2014-02-01

    The development of new drug classes and novel molecules that are brought to the marketplace has been a formidable challenge, especially for dermatologic drugs. The relative absence of new classes of antimicrobial agents is also readily apparent. Several barriers account for slow drug development, including regulatory changes, added study requirements, commercial pressures to bring drugs to market quickly by developing new generations of established compounds, and the greater potential for failure and higher financial risk when researching new drug classes. In addition, the return on investment is usually much lower with dermatologic drugs as compared to the potential revenue from "blockbuster" drugs for cardiovascular or gastrointestinal disease, hypercholesterolemia, and mood disorders. Nevertheless, some researchers are investigating new therapeutic platforms, one of which is boron-containing compounds. Boron-containing compounds offer a wide variety of potential applications in dermatology due to their unique physical and chemical properties, with several in formal phases of development. Tavaborole, a benzoxaborole compound, has been submitted to the United States Food and Drug Administration for approval for treatment of onychomycosis. This article provides a thorough overview of the history of boron-based compounds in medicine, their scientific rationale, physiochemical and pharmacologic properties, and modes of actions including therapeutic targets. A section dedicated to boron-based compounds in development for treatment of various skin disorders is also included.

  3. From the Test Tube to the Treatment Room

    PubMed Central

    Del Rosso, James Q.; Plattner, Jacob J.

    2014-01-01

    The development of new drug classes and novel molecules that are brought to the marketplace has been a formidable challenge, especially for dermatologic drugs. The relative absence of new classes of antimicrobial agents is also readily apparent. Several barriers account for slow drug development, including regulatory changes, added study requirements, commercial pressures to bring drugs to market quickly by developing new generations of established compounds, and the greater potential for failure and higher financial risk when researching new drug classes. In addition, the return on investment is usually much lower with dermatologic drugs as compared to the potential revenue from “blockbuster” drugs for cardiovascular or gastrointestinal disease, hypercholesterolemia, and mood disorders. Nevertheless, some researchers are investigating new therapeutic platforms, one of which is boron-containing compounds. Boron-containing compounds offer a wide variety of potential applications in dermatology due to their unique physical and chemical properties, with several in formal phases of development. Tavaborole, a benzoxaborole compound, has been submitted to the United States Food and Drug Administration for approval for treatment of onychomycosis. This article provides a thorough overview of the history of boron-based compounds in medicine, their scientific rationale, physiochemical and pharmacologic properties, and modes of actions including therapeutic targets. A section dedicated to boron-based compounds in development for treatment of various skin disorders is also included. PMID:24578778

  4. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention. In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds. The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively. This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. In Silico Knockout Screening of Plasmodium falciparum Reactions and Prediction of Novel Essential Reactions by Analysing the Metabolic Network

    PubMed Central

    Isewon, Itunuoluwa; Aromolaran, Olufemi; Oladipupo, Olufunke

    2018-01-01

    Malaria is an infectious disease that affects close to half a million individuals every year and Plasmodium falciparum is a major cause of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted. Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility. In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier, and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with biological evidence and one (1) has been with computational evidence. The results from our study were compared with an extensive list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31) potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug targets. PMID:29789805

  6. Development of Novel Warfarin-Silica Composite for Controlled Drug Release.

    PubMed

    Parfenyuk, Elena V; Dolinina, Ekaterina S

    2017-04-01

    The work is devoted to synthesis and study of warfarin composites with unmodified, methyl and phenyl modified silica in order to develop controlled release formulation of the anticoagulant. The composites were prepared by two routes, adsorption and sol-gel, and characterized with FTIR spectroscopy, dynamic light scattering and DSC methods. The drug release behavior from the composites in media with pH 1.6, 6.8 and 7.4 was analyzed in vitro. The release kinetics of the warfarin - silica composites prepared by the two routes was compared among each other and with analogous silica composites with water soluble drug molsidomine. The comparative analysis showed that in general the kinetic regularities and mechanisms of release for both drugs are similar and determined by nonuniform distribution of the drugs over the silica matrixes and stability of the matrixes in the studied media for the adsorbed composites and uniformly distributed drug and more brittle structure for the sol-gel composites. The sol-gel composite of warfarin - phenyl modified silica is perspective for further development of novel warfarin formulation with controlled release because it releases warfarin according to zero-order kinetic law with approximately equal rate in the media imitating different segments of gastrointestinal tract.

  7. A rapid situation assessment of drug use in Papua New Guinea.

    PubMed

    McDonald, David

    2005-01-01

    Papua New Guinea (PNG) is an Asia Pacific country that we hear little about in the drug and alcohol area. Recently at the APEC meeting in Chile, the Australian Prime Minister, Mr John Howard, announced that PNG would be one of the countries of focus with regards to public health programs and HIV AIDS assistance by Australia in the future. This is a timely report of a rapid situation assessment (RSA) of drug use and drug-related harm in Papua New Guinea (PNG) conducted in 1998-1999, with comments on developments since that time. The author of this paper, David McDonald, was appointed as the international consultant to work with the PNG National Narcotics Bureau to undertake an assessment of drug use in PNG, and is well-equipped to report on the drug and alcohol situation in that country. The rapid assessment study was conducted to provide up-to-date, factual information about drugs in PNG that could contribute to the development of a national drug strategy for PNG. The focus was on illegal drugs in accordance with the mandates of the auspicing bodies--namely cannabis and home-brewed alcohol. In keeping with the methodology for rapid assessment, the author utilised multiple information sources including published literature, administrative by-product data, case studies, a key informants' study and structured interviews with drug users. It was found that alcohol--both licit and home brew, as well as high potency cannabis, were the major substance problems in PNG. This paper, based on a more detailed report available through the author, provides a snap-shot of substance use problems in PNG. However, the author reports that problems in public sector management within and external to the sponsoring agency, the National Narcotics Bureau, have meant that the proposed national drug control strategy has not yet been developed.

  8. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations.

    PubMed

    Jin, Xiannu; Luong, Thu-Lan; Reese, Necole; Gaona, Heather; Collazo-Velez, Vanessa; Vuong, Chau; Potter, Brittney; Sousa, Jason C; Olmeda, Raul; Li, Qigui; Xie, Lisa; Zhang, Jing; Zhang, Ping; Reichard, Greg; Melendez, Victor; Marcsisin, Sean R; Pybus, Brandon S

    2014-01-01

    Malaria is a major health concern and affects over 300million people a year. Accordingly, there is an urgent need for new efficacious anti-malarial drugs. A major challenge in developing new anti-malarial drugs is to design active molecules that have preferable drug-like characteristics. These "drug-like" characteristics include physiochemical properties that affect drug absorption, distribution, metabolism, and excretion (ADME). Compounds with poor ADME profiles will likely fail in vivo due to poor pharmacokinetics and/or other drug delivery related issues. There have been numerous assays developed in order to pre-screen compounds that would likely fail in further development due to poor absorption properties including PAMPA, Caco-2, and MDCK permeability assays. The use of cell-based permeability assays such as Caco-2 and MDCK serve as surrogate indicators of drug absorption and transport, with the two approaches often used interchangeably. We sought to evaluate both approaches in support of anti-malarial drug development. Accordingly, a comparison of both assays was conducted utilizing apparent permeability coefficient (Papp) values determined from liquid chromatography/tandem mass spectrometry (LC-MS) analyses. Both Caco-2 and MDCK permeability assays produced similar Papp results for potential anti-malarial compounds with low and medium permeability. Differences were observed for compounds with high permeability and compounds that were P-gp substrates. Additionally, the utility of MDCK-MDR1 permeability measurements was demonstrated in probing the role of P-glycoprotein transport in Primaquine-Chloroquine drug-drug interactions in comparison with in vivo pharmacokinetic changes. This study provides an in-depth comparison of the Caco-2 and MDCK-MDR1 cell based permeability assays and illustrates the utility of cell-based permeability assays in anti-malarial drug screening/development in regard to understanding transporter mediated changes in drug absorption/distribution. Published by Elsevier Inc.

  9. Commentary: Why Pharmaceutical Scientists in Early Drug Discovery Are Critical for Influencing the Design and Selection of Optimal Drug Candidates.

    PubMed

    Landis, Margaret S; Bhattachar, Shobha; Yazdanian, Mehran; Morrison, John

    2018-01-01

    This commentary reflects the collective view of pharmaceutical scientists from four different organizations with extensive experience in the field of drug discovery support. Herein, engaging discussion is presented on the current and future approaches for the selection of the most optimal and developable drug candidates. Over the past two decades, developability assessment programs have been implemented with the intention of improving physicochemical and metabolic properties. However, the complexity of both new drug targets and non-traditional drug candidates provides continuing challenges for developing formulations for optimal drug delivery. The need for more enabled technologies to deliver drug candidates has necessitated an even more active role for pharmaceutical scientists to influence many key molecular parameters during compound optimization and selection. This enhanced role begins at the early in vitro screening stages, where key learnings regarding the interplay of molecular structure and pharmaceutical property relationships can be derived. Performance of the drug candidates in formulations intended to support key in vivo studies provides important information on chemotype-formulation compatibility relationships. Structure modifications to support the selection of the solid form are also important to consider, and predictive in silico models are being rapidly developed in this area. Ultimately, the role of pharmaceutical scientists in drug discovery now extends beyond rapid solubility screening, early form assessment, and data delivery. This multidisciplinary role has evolved to include the practice of proactively taking part in the molecular design to better align solid form and formulation requirements to enhance developability potential.

  10. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: Preparation, surface characterization, and in vitro drug release studies

    NASA Astrophysics Data System (ADS)

    Gallo, Annemarie; Mani, Gopinath

    2013-08-01

    Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel - PAT) and an endothelial cell promoting agent (nitric oxide - NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.

  11. Social costs of illegal drugs, alcohol and tobacco in the European Union: A systematic review.

    PubMed

    Barrio, Pablo; Reynolds, Jillian; García-Altés, Anna; Gual, Antoni; Anderson, Peter

    2017-09-01

    Drug use accounts for one of the main disease groups in Europe, with relevant consequences to society. There is an increasing need to evaluate the economic consequences of drug use in order to develop appropriate policies. Here, we review the social costs of illegal drugs, alcohol and tobacco in the European Union. A systematic search of relevant databases was conducted. Grey literature and previous systematic reviews were also searched. Studies reporting on social costs of illegal drugs, alcohol and tobacco were included. Methodology, cost components as well as costs were assessed from individual studies. To compare across studies, final costs were transformed to 2014 Euros. Forty-five studies reported in 43 papers met the inclusion criteria (11 for illegal drugs, 26 for alcohol and 8 for tobacco). While there was a constant inclusion of direct costs related to treatment of substance use and comorbidities, there was a high variability for the rest of cost components. Total costs showed also a great variability. Price per capita for the year 2014 ranged from €0.38 to €78 for illegal drugs, from €26 to €1500 for alcohol and from €10.55 to €391 for tobacco. Drug use imposes a heavy economic burden to Europe. However, given the high existing heterogeneity in methodologies, and in order to better assess the burden and thus to develop adequate policies, standardised methodological guidance is needed. [Barrio P, Reynolds J, García-Altés A, Gual A, Anderson P. Social costs of illegal drugs, alcohol and tobacco in the European Union: A systematic review. Drug Alcohol Rev 2017;00:000-000]. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  12. Methacrylate-Stitched β-Cyclodextrin Embedded with Nanogold/Nanotitania: A Skin Adhesive Device for Enhanced Transdermal Drug Delivery.

    PubMed

    Anirudhan, T S; Nair, Syam S; Sasidharan, Athira V

    2017-12-27

    Transdermal (TD) drug delivery is a more attractive technique for drug delivery compared to oral and intravenous injection. However, the permeation of drug molecules across the skin is difficult due to the presence of highly ordered lipid barrier. This study details the development of a novel TD system, which has the potential to simultaneously enhance the skin permeability and adhesion behavior. Ibuprofen (IP) was selected as model drug. The ability of gold nanoparticle (AuNP) and hydrophobic titanium nanotube (TNT) to enhance the skin permeability was explored. Additionally, β-cyclodextrin (βCD), which can exceptionally encapsulate poorly water-soluble drugs, is grafted with methacrylates to improve the skin adhesion property. Finally, Au-TNT nanocomposite was deposited onto methacrylate-grafted βCD matrix. The developed material was characterized through NMR spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The characteristics of the film, including water vapor permeability (WVP), thermomechanical properties, etc., were examined in terms of Au-TNT content. The TD delivery of IP with different concentrations of Au-TNT was evaluated via an in vitro skin permeation study through rat skin. It is revealed that the prepared TD film exhibited an improved drug-delivery performance due to the synergistic action of AuNP and hydrophobic TNT. The cumulative percent of IP delivered across the skin is extremely depending on nanofiller content, lipophilicity, and thickness of the membrane, and the device incorporated with 4.0% Au-TNT displayed the best performance. In addition, a study on storage stability was performed by storing the films for 2 months at different temperatures. The study revealed that the device possessed excellent storage stability when stored at low temperature. The developed film offers excellent WVP, drug encapsulation efficiency, thermomechanical properties, and skin adhesion behavior. Moreover, the device was cosmetically attractive, noncytotoxic, and resistant to microbial growth and hence extremely reliable for skin application. The developed skin permeation strategy may open new avenues in TD drug delivery.

  13. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models

    PubMed Central

    Bondarenko, Maryna; Laluce, Nahuel Cesatti; Rozados, Viviana; Nicolas, André; Carré, Manon; Scharovsky, O. Graciela; Márquez, Mauricio Menacho

    2017-01-01

    Discovery of new drugs for cancer treatment is an expensive and time-consuming process and the percentage of drugs reaching the clinic remains quite low. Drug repositioning refers to the identification and development of new uses for existing drugs and represents an alternative drug development strategy. In this work, we evaluated the antitumor effect of metronomic treatment with a combination of two repositioned drugs, metformin and propranolol, in triple negative breast cancer models. By in vitro studies with five different breast cancer derived cells, we observed that combined treatment decreased proliferation (P < 0.001), mitochondrial activity (P < 0.001), migration (P < 0.001) and invasion (P < 0.001). In vivo studies in immunocompetent mice confirmed the potential of this combination in reducing tumor growth (P < 0.001) and preventing metastasis (P < 0.05). Taken together our results suggest that metformin plus propranolol combined treatment might be beneficial for triple negative breast cancer control, with no symptoms of toxicity. PMID:27926515

  14. Early child development and exposure to antiepileptic drugs prenatally and through breastfeeding: a prospective cohort study on children of women with epilepsy.

    PubMed

    Veiby, Gyri; Engelsen, Bernt A; Gilhus, Nils Erik

    2013-11-01

    Exposure to antiepileptic drugs during pregnancy is associated with adverse effects on psychomotor development. To determine whether signs of impaired development appear already during the first months of life in children exposed prenatally to antiepileptic drugs, and to explore potential adverse effects of antiepileptic drug exposure through breastfeeding. Mothers at 13 to 17 weeks of pregnancy were recruited in the population-based, prospective Norwegian Mother and Child Cohort Study from 1999 to 2009. The mothers reported on their child's motor and social skills, language, and behavior using items from standardized screening tools at 6 months (n = 78,744), 18 months (n = 61,351), and 36 months (n = 44,147) of age. The mothers also provided detailed information on breastfeeding during the first year. MAIN OUTCOMES AND MEASURES The risk of adverse development in children according to maternal or paternal epilepsy was estimated as the odds ratio with corresponding 95% confidence interval, adjusted for maternal age, parity, education, smoking, breastfeeding, depression/anxiety, folate supplementation, and congenital malformation in the child. At age 6 months, infants of mothers using antiepileptic drugs (n = 223) had a higher risk of impaired fine motor skills compared with the reference group (11.5% vs 4.8%, respectively; odds ratio = 2.1; 95% CI, 1.3-3.2). Use of multiple antiepileptic drugs compared with the reference group was associated with adverse outcome for both fine motor skills (25.0% vs 4.8%, respectively; odds ratio = 4.3; 95% CI, 2.0-9.1) and social skills (22.5% vs 10.2%, respectively; odds ratio = 2.6; 95% CI, 1.2-5.5). Continuous breastfeeding in children of women using antiepileptic drugs was associated with less impaired development at ages 6 and 18 months compared with those with no breastfeeding or breastfeeding for less than 6 months. At 36 months, prenatal antiepileptic drug exposure was associated with adverse development regardless of breastfeeding status during the first year. Children of women with epilepsy who did not use antiepileptic drugs and children of fathers with epilepsy had normal development at 6 months. Prenatal exposure to antiepileptic drugs was associated with impaired fine motor skills already at age 6 months, especially when the child was exposed to multiple drugs. There were no harmful effects of breastfeeding. Women with epilepsy should be encouraged to breastfeed their children irrespective of antiepileptic drug treatment.

  15. Patient- and physician-related risk factors for hyperkalaemia in potassium-increasing drug-drug interactions.

    PubMed

    Eschmann, Emmanuel; Beeler, Patrick E; Kaplan, Vladimir; Schneemann, Markus; Zünd, Gregor; Blaser, Jürg

    2014-02-01

    Hyperkalaemia due to potassium-increasing drug-drug interactions (DDIs) is a clinically important adverse drug event. The purpose of this study was to identify patient- and physician-related risk factors for the development of hyperkalaemia. The risk for adult patients hospitalised in the University Hospital Zurich between 1 December 2009 and 31 December 2011 of developing hyperkalaemia was correlated with patient characteristics, number, type and duration of potassium-increasing DDIs and frequency of serum potassium monitoring. The 76,467 patients included in this study were prescribed 8,413 potentially severe potassium-increasing DDIs. Patient-related characteristics associated with the development of hyperkalaemia were pulmonary allograft [relative risk (RR) 5.1; p < 0.0001), impaired renal function (RR 2.7; p < 0.0001), diabetes mellitus (RR 1.6; p = 0.002) and female gender (RR 1.5; p = 0.007). Risk factors associated with medication were number of concurrently administered potassium-increasing drugs (RR 3.3 per additional drug; p < 0.0001) and longer duration of the DDI (RR 4.9 for duration ≥6 days; p < 0.0001). Physician-related factors associated with the development of hyperkalaemia were undetermined or elevated serum potassium level before treatment initiation (RR 2.2; p < 0.001) and infrequent monitoring of serum potassium during a DDI (interval >48 h: RR 1.6; p < 0.01). Strategies for reducing the risk of hyperkalaemia during potassium-increasing DDIs should consider both patient- and physician-related risk factors.

  16. [Addictive potential in man: methodological aspects].

    PubMed

    Warot, D; Marra, D

    1995-01-01

    Different methods have been developed in clinical abuse liability testing in man. Tolerance, psychic and/or physical dependence must be investigated through clinical studies during drug development of a new substance. Adequate methodology is needed using double-blind, time-blind evaluations, comparisons of different dose levels and duration of treatment for a given drug, abrupt and gradual interruption of treatment, appropriate period of observation after treatment cessation ... The optimal scale to evaluate properly the symptoms occurring after drug discontinuation is still under investigation. These studies will or should permit the differentiation of rebound, withdrawal and recurrence. Methods developed to study reinforcing effects in post-addicts and healthy subjects are self-administration and choice procedures. In addition, the more traditional approach has been through assessing self-reported effects in which standardized questionnaires are used (Addiction Research Center Inventory or A.R.C.I.; Single Dose Questionnaire or S.D.Q.). A third focus of measurement has been discrimination studies performed in individuals with histories of drug abuse as well as healthy subjects. Abuse-liability testing of a new compound needs a multidimensional assessment to optimize the predictivity in defining the relative risk.

  17. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules

    PubMed Central

    Choudhary, Sonam; Gupta, Lokesh; Rani, Sarita; Dave, Kaushalkumar; Gupta, Umesh

    2017-01-01

    Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed. PMID:28559844

  18. Drug metabolism and hypersensitivity reactions to drugs.

    PubMed

    Agúndez, José A G; Mayorga, Cristobalina; García-Martin, Elena

    2015-08-01

    The aim of the present review was to discuss recent advances supporting a role of drug metabolism, and particularly of the generation of reactive metabolites, in hypersensitivity reactions to drugs. The development of novel mass-spectrometry procedures has allowed the identification of reactive metabolites from drugs known to be involved in hypersensitivity reactions, including amoxicillin and nonsteroidal antiinflammatory drugs such as aspirin, diclofenac or metamizole. Recent studies demonstrated that reactive metabolites may efficiently bind plasma proteins, thus suggesting that drug metabolites, rather than - or in addition to - parent drugs, may elicit an immune response. As drug metabolic profiles are often determined by variability in the genes coding for drug-metabolizing enzymes, it is conceivable that an altered drug metabolism may predispose to the generation of reactive drug metabolites and hence to hypersensitivity reactions. These findings support the potential for the use of pharmacogenomics tests in hypersensitivity (type B) adverse reactions, in addition to the well known utility of these tests in type A adverse reactions. Growing evidence supports a link between genetically determined drug metabolism, altered metabolic profiles, generation of highly reactive metabolites and haptenization. Additional research is required to developing robust biomarkers for drug-induced hypersensitivity reactions.

  19. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    NASA Astrophysics Data System (ADS)

    Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-04-01

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.

  20. 3D Nanoporous Anodic Alumina Structures for Sustained Drug Release

    PubMed Central

    Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep

    2017-01-01

    The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654

  1. In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method.

    PubMed

    Zhang, Hui; Yu, Peng; Zhang, Teng-Guo; Kang, Yan-Li; Zhao, Xiao; Li, Yuan-Yuan; He, Jia-Hui; Zhang, Ji

    2015-11-01

    Drug-induced myelotoxicity usually leads to decrease the production of platelets, red cells, and white cells. Thus, early identification and characterization of myelotoxicity hazard in drug development is very necessary. The purpose of this investigation was to develop a prediction model of drug-induced myelotoxicity by using a Naïve Bayes classifier. For comparison, other prediction models based on support vector machine and single-hidden-layer feed-forward neural network  methods were also established. Among all the prediction models, the Naïve Bayes classification model showed the best prediction performance, which offered an average overall prediction accuracy of [Formula: see text] for the training set and [Formula: see text] for the external test set. The significant contributions of this study are that we first developed a Naïve Bayes classification model of drug-induced myelotoxicity adverse effect using a larger scale dataset, which could be employed for the prediction of drug-induced myelotoxicity. In addition, several important molecular descriptors and substructures of myelotoxic compounds have been identified, which should be taken into consideration in the design of new candidate compounds to produce safer and more effective drugs, ultimately reducing the attrition rate in later stages of drug development.

  2. QbD-Oriented Development and Characterization of Effervescent Floating-Bioadhesive Tablets of Cefuroxime Axetil.

    PubMed

    Bansal, Sanjay; Beg, Sarwar; Garg, Babita; Asthana, Abhay; Asthana, Gyati S; Singh, Bhupinder

    2016-10-01

    The objective of the present studies was systematic development of floating-bioadhesive gastroretentive tablets of cefuroxime axetil employing rational blend of hydrophilic polymers for attaining controlled release drug delivery. As per the QbD-based approach, the patient-centric target product profile and quality attributes of tablet were earmarked, and preliminary studies were conducted for screening the suitability of type of polymers, polymer ratio, granulation technique, and granulation time for formulation of tablets. A face-centered cubic design (FCCD) was employed for optimization of the critical material attributes, i.e., concentration of release controlling polymers, PEO 303 and HPMC K100 LV CR, and evaluating in vitro buoyancy, drug release, and ex vivo mucoadhesion strength. The optimized formulation was embarked upon through numerical optimization, which yield excellent floatation characteristic with drug release control (i.e., T 60% > 6 h) and bioadhesion strength. Drug-excipient compatibility studies through FTIR and P-XRD revealed the absence of any interaction between the drug and polymers. In vivo evaluation of the gastroretentive characteristics through X-ray imaging and in vivo pharmacokinetic studies in rabbits revealed significant extension in the rate of drug absorption (i.e., T max, K a, and MRT) from the optimized tablet formulation as compared to the marketed formulation. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC) substantiated high degree of prognostic ability of in vitro dissolution conditions in predicting the in vivo performance. In a nutshell, the studies demonstrate successful development of the once-a-day gastroretentive formulations of cefuroxime axetil with controlled drug release profile and improved compliance.

  3. Statistical evaluation for stability studies under stress storage conditions.

    PubMed

    Gil-Alegre, M E; Bernabeu, J A; Camacho, M A; Torres-Suarez, A I

    2001-11-01

    During the pharmaceutical development of a new drug, it is necessary to select as soon as possible the formulation with the best stability characteristics. The current International Commission for Harmonisation (ICH) regulations regarding stability testing requirements for a Registration Application provide the stress testing conditions with the aim of assessing the effect of severe conditions on the drug product. In practice, the well-known Arrhenius theory is still used to make a rapid stability prediction, to estimate a drug product shelf life during early stages of its pharmaceutical development. In this work, both the planning of a stress stability study to obtain a correct stability prediction from a temperature extrapolation and the suitable data treatment to discern the reliability of the stability results are discussed. The study was focused on the early formulation step of a very stable drug, Mitonafide (antineoplastic agent), formulated in a parenteral solution and in tablets. It was observed, for the solid system, that the extrapolated results using Arrhenius theory might be statistically good, but far from the real situation if the stability study is not designed in a correct way. The statistical data treatment and the stress-stability test proposed in this work are suitable to make a reliable stability prediction of different formulations with the same drug, within its pharmaceutical development.

  4. A Drug-Centric View of Drug Development: How Drugs Spread from Disease to Disease

    PubMed Central

    Rodriguez-Esteban, Raul

    2016-01-01

    Drugs are often seen as ancillary to the purpose of fighting diseases. Here an alternative view is proposed in which they occupy a spearheading role. In this view, drugs are technologies with an inherent therapeutic potential. Once created, they can spread from disease to disease independently of the drug creator’s original intentions. Through the analysis of extensive literature and clinical trial records, it can be observed that successful drugs follow a life cycle in which they are studied at an increasing rate, and for the treatment of an increasing number of diseases, leading to clinical advancement. Such initial growth, following a power law on average, has a degree of momentum, but eventually decelerates, leading to stagnation and decay. A network model can describe the propagation of drugs from disease to disease in which diseases communicate with each other by receiving and sending drugs. Within this model, some diseases appear more prone to influence other diseases than be influenced, and vice versa. Diseases can also be organized into a drug-centric disease taxonomy based on the drugs that each adopts. This taxonomy reflects not only biological similarities across diseases, but also the level of differentiation of existing therapies. In sum, this study shows that drugs can become contagious technologies playing a driving role in the fight against disease. By better understanding such dynamics, pharmaceutical developers may be able to manage drug projects more effectively. PMID:27124390

  5. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Prasanth, R.; Nair, Greshma; Girish, C. M.

    2011-10-01

    Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells.

  6. Exploring the role of socioeconomic factors in the development and spread of anti-malarial drug resistance: a qualitative study.

    PubMed

    Anyanwu, Philip Emeka; Fulton, John; Evans, Etta; Paget, Timothy

    2017-05-18

    Malaria remains a global health issue with the burden unevenly distributed to the disadvantage of the developing countries of the world. Poverty contributes to the malaria burden as it has the ability to affect integral aspects of malaria control. There have been renewed efforts in the global malaria control, resulting in reductions in the global malaria burden over the last decade. However, the development of resistance to artemisinin-based combination therapy threatens the sustainability of the present success in malaria control. Anti-malarial drug use practices/behaviours remain very important drivers of drug resistance. This study adopted a social epidemiological stance in exploring the underlying socioeconomic factors that determine drug use behaviours promoting anti-malarial drug resistance. A qualitative approach, involving the use of interviews, was used in this inquiry to explore the existing anti-malarial drug use practices in the Nigerian population; and the different socioeconomic factors influencing the behaviours. The significant malaria treatment behaviours influenced by socioeconomic factors in this study were the practice of 'mixing' drugs for malaria treatment, presumptive treatment, sharing of malaria treatment course, and the use of anti-malaria monotherapies. All the rural dwellers in this study reported they have mixed drugs for malaria treatment. When symptoms were experienced, socio-economic factors, like type of settlement, income level and occupation, tended to determine the treatment behaviour and, therefore, informed and determined the experience of the illness. Social and economic contexts can influence behaviours as they contribute in shaping norms and in creating opportunities that promote certain behaviours. As shown in this study, income level and type of settlement, as structural factors, affect the decision on where to seek malaria treatment and whether or not a malaria diagnostic test will be used prior to treatment. One of the dangers of using the mixed anti-malarial drugs is that it offers a safe route for the sale of expired and fake anti-malarial drugs as the mixed drugs are not sold or dispensed in their original packets. Population-wide improvements in income, education, environmental and structural conditions of rural dwellers in malaria-endemic settings will encourage behavioural change on how anti-malarial drugs are used.

  7. Affordable orphan drugs: a role for not-for-profit organizations.

    PubMed

    Davies, Elin H; Fulton, Emma; Brook, Daniel; Hughes, Dyfrig A

    2017-07-01

    The success of the Regulation on Orphan Medicinal Products in the European Union is evidenced by the 127 orphan drugs that have had market authorization since 2000. However, the incentives aimed at stimulating research and development have had the unintended consequence of increasing drug cost, resulting in many orphan drugs not being cost-effective. Orphan drugs command an increasing share of the pharmaceutical market and account for a disproportionate amount of healthcare expenditure. Orphan drug ownership by socially motivated, not-for-profit organizations may facilitate access to more affordable orphan drugs, for the benefit of patients and healthcare systems alike. This study aims to describe opportunities for such organizations to become orphan drug Market Authorization Holders. We reviewed data on the ownership of EMA designated and approved orphan drugs, identified funding opportunities and business models for not-for-profit organizations, and summarised relevant legal and policy documents concerning intellectual property rights and drug regulation. Using repurposed drugs as a paradigm, this narrative review navigates the regulatory hurdles, describes the legal context and identifies funding opportunities, in a bid to facilitate and encourage not-for-profit organizations to lead on the development of affordable orphan drugs. Although the regulatory steps required to obtain an MA for an orphan drug are numerous and challenging, they are not insurmountable and can be achieved by not-for-profit organizations that are socially motivated to reduce the costs of orphan drugs to the payers of healthcare. Opportunities for orphan drug development resulting in affordable products lie mainly with repurposed drugs. © 2017 The British Pharmacological Society.

  8. Recent strategies for drug development in fibromyalgia syndrome.

    PubMed

    Blumenthal, David E; Malemud, Charles J

    2016-12-01

    The US Federal Drug Administration (FDA) approved 3 medications for treating fibromyalgia syndrome (FMS). There have been no additional FDA approvals since January 2009 and the efficacy of the FDA-approved medications for FMS has been questioned. Areas covered: The "search for studies" tool using clinicaltrials.gov and PubMed were employed. The term, "fibromyalgia" was used for clinicaltrials.gov. The terms employed for PubMed were "Name-of-Drug Fibromyalgia", "Fibromyalgia Treatment" or "Fibromyalgia Drug Treatment." Clinical trials were reviewed if they were prospective and blinded, and if they employed a comparator, either placebo or another pharmaceutical. Expert commentary: Progress toward standardizing the outcome measures for FMS clinical trials have been made but challenges remain. Several pharmaceutical candidates for FMS have been tested since 2009. The results of these studies with potential novel targets for drug development for FMS were reviewed including the results of trials with sodium oxybate, quetiapine, esreboxetine, nabilone, memantine, naltrexone, and melatonin.

  9. A new approach to accelerated drug-excipient compatibility testing.

    PubMed

    Sims, Jonathan L; Carreira, Judith A; Carrier, Daniel J; Crabtree, Simon R; Easton, Lynne; Hancock, Stephen A; Simcox, Carol E

    2003-01-01

    The purpose of this study was to develop a method of qualitatively predicting the most likely degradants in a formulation or probing specific drug-excipient interactions in a significantly shorter time frame than the typical 1 month storage testing. In the example studied, accelerated storage testing of a solid dosage form at 50 degrees C, the drug substance SB-243213-A degraded via the formation of two oxidative impurities. These impurities reached a level of 1% PAR after 3 months. Various stressing methods were examined to try to recreate this degradation and in doing so provide a practical and reliable method capable of predicting drug-excipient interactions. The technique developed was able to mimic the 1-month's accelerated degradation in just 1 hr. The method was suitable for automated analysis, capable of multisample stressing, and ideal for use in drug-excipient compatibility screening.

  10. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems

    PubMed Central

    KRAFT, JOHN C.; FREELING, JENNIFER P.; WANG, ZIYAO; HO, RODNEY J. Y.

    2014-01-01

    Liposomes are spherical-enclosed membrane vesicles mainly constructed with lipids. Lipid nanoparticles are loaded with therapeutics and may not contain an enclosed bilayer. The majority of those clinically approved have diameters of 50–300 nm. The growing interest in nanomedicine has fueled lipid–drug and lipid–protein studies, which provide a foundation for developing lipid particles that improve drug potency and reduce off-target effects. Integrating advances in lipid membrane research has enabled therapeutic development. At present, about 600 clinical trials involve lipid particle drug delivery systems. Greater understanding of pharmacokinetics, biodistribution, and disposition of lipid–drug particles facilitated particle surface hydration technology (with polyethylene glycol) to reduce rapid clearance and provide sufficient blood circulation time for drug to reach target tissues and cells. Surface hydration enabled the liposome-encapsulated cancer drug doxorubicin (Doxil) to gain clinical approval in 1995. Fifteen lipidic therapeutics are now clinically approved. Although much research involves attaching lipid particles to ligands selective for occult cells and tissues, preparation procedures are often complex and pose scale-up challenges. With emerging knowledge in drug target and lipid–drug distribution in the body, a systems approach that integrates knowledge to design and scale lipid–drug particles may further advance translation of these systems to improve therapeutic safety and efficacy. PMID:24338748

  11. [Does the public sector have an independent research role in the development of drugs?].

    PubMed

    Poulsen, Henrik Enghusen; Grønlykke, Thor Buch

    2003-04-14

    Exclusively private companies do drug development. The State contributes with education of academics and basic research constituting the basis of half of the drugs developed by the private companies. The Danish private drug research amounts to six billion DKK per year, corresponding to the estimated price of the development of one new drug. The development shows a negative tendency. There are doubts about the scientific credibility, the number of new drugs is declining, drug development costs are rising, and the competitiveness in Europe is declining compared with the one of The United States. Continued improvement of Danish drug development can be achieved by stimulation of the public research related to drug development.

  12. Bringing liraglutide to market: a CER case study.

    PubMed

    Oderda, Gary; Sifford-Wilson, S Monet

    2012-06-01

    Faced with competition from other drugs and therapies, drug manufacturers may be able to use comparative effectiveness research (CER) to help reduce barriers to a new drug's adoption and integration into formularies. But few examples exist to show how CER can be used effectively and whether the data can make a difference. To examine how CER can help strengthen a new drug's entry into the market and integration into formularies, and how ongoing CER might be valuable as a drug is implemented in the real world. A roundtable of 9 representatives from health plans, including formulary decision makers, evaluated how CER in phase 3 development of a new drug can add to the drug's strength of evidence, helping decision makers understand how and where to integrate that drug into a formulary. The round table participants viewed, as a case study, the development of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist for adults with type 2 diabetes that was approved by the FDA in January 2010. With this drug, CER was incorporated into an extensive type 2 diabetes clinical development program, comparing how the drug worked in comparison with other established therapies. Although there are many antidiabetic drugs available for use, patients with type 2 diabetes often need additional agents. The FDA approved liraglutide with the conclusion that benefits of the drug outweighed potential risks but noted the association with pancreatitis in humans and animal data that showed rare medullary thyroid cancer associated with liraglutide. Roundtable participants agreed that while pre-launch CER can be valuable, ongoing real-world research is also important for confirming expected results, identifying additional uses and indications and managing risks. The participants also suggested opportunities for additional CER studies and made recommendations for manufacturers. Roundtable thought leaders agreed that well-planned trial designs incorporating CER result in high-quality evidence that may provide sufficient data to support adoption of a new therapy onto the formulary. When more real-world data become available and confirm the phase 3 clinical trial results, decision makers may be able to use the results to change the drug's position and either lessen or extend its use.

  13. Evaluation of the “Pipeline” for Development of Medications for Cocaine Use Disorder: A Review of Translational Preclinical, Human Laboratory, and Clinical Trial Research

    PubMed Central

    Stoops, William W.; Rush, Craig R.

    2016-01-01

    Cocaine use disorder is a persistent public health problem for which no widely effective medications exist. Self-administration procedures, which have shown good predictive validity in estimating the abuse potential of drugs, have been used in rodent, nonhuman primate, and human laboratory studies to screen putative medications. This review assessed the effectiveness of the medications development process regarding pharmacotherapies for cocaine use disorder. The primary objective was to determine whether data from animal and human laboratory self-administration studies predicted the results of clinical trials. In addition, the concordance between laboratory studies in animals and humans was assessed. More than 100 blinded, randomized, fully placebo-controlled studies of putative medications for cocaine use disorder were identified. Of the 64 drugs tested in these trials, only 10 had been examined in both human and well-controlled animal laboratory studies. Within all three stages, few studies had been conducted for each drug and when multiple studies had been conducted conclusions were sometimes contradictory. Overall, however, there was good concordance between animal and human laboratory results when the former assessed chronic drug treatment. Although only seven of the ten reviewed drugs showed fully concordant results across all three types of studies reviewed, the analysis revealed several subject-related, procedural, and environmental factors that differ between the laboratory and clinical trial settings that help explain the disagreement for other drugs. The review closes with several recommendations to enhance translation and communication across stages of the medications development process that will ultimately speed the progress toward effective pharmacotherapeutic strategies for cocaine use disorder. PMID:27255266

  14. Drug interactions evaluation: An integrated part of risk assessment of therapeutics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Reynolds, Kellie S.; Zhao, Ping

    2010-03-01

    Pharmacokinetic drug interactions can lead to serious adverse events or decreased drug efficacy. The evaluation of a new molecular entity's (NME's) drug-drug interaction potential is an integral part of risk assessment during drug development and regulatory review. Alteration of activities of enzymes or transporters involved in the absorption, distribution, metabolism, or excretion of a new molecular entity by concomitant drugs may alter drug exposure, which can impact response (safety or efficacy). The recent Food and Drug Administration (FDA) draft drug interaction guidance ( (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf)) highlights the methodologies and criteria that may be used to guide drug interaction evaluation by industrymore » and regulatory agencies and to construct informative labeling for health practitioner and patients. In addition, the Food and Drug Administration established a 'Drug Development and Drug Interactions' website to provide up-to-date information regarding evaluation of drug interactions ( (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm)). This review summarizes key elements in the FDA drug interaction guidance and new scientific developments that can guide the evaluation of drug-drug interactions during the drug development process.« less

  15. Pharmacogenetics of drugs withdrawn from the market.

    PubMed

    Zhang, Wei; Roederer, Mary W; Chen, Wang-Qing; Fan, Lan; Zhou, Hong-Hao

    2012-01-01

    The safety and efficacy of candidate compounds are critical factors during the development of drugs, and most drugs have been withdrawn from the market owing to severe adverse reactions. Individuals/populations with different genetic backgrounds may show significant differences in drug metabolism and efficacy, which can sometimes manifest as severe adverse drug reactions. With an emphasis on the mechanisms underlying abnormal drug effects caused by genetic mutations, pharmacogenetic studies may enhance the safety and effectiveness of drug use, provide more comprehensive delineations of the scope of usage, and change the fates of drugs withdrawn from the market.

  16. Lifestyle Drugs: Concept and Impact on Society

    PubMed Central

    Rahman, S. Z.; Gupta, V.; Sukhlecha, Anupama; Khunte, Y.

    2010-01-01

    Lifestyle has changed from being an indicator of the overall well being of an individual to a cause of disease and now “lifestyle” has itself become an object of medical attention. Alcohol has been used enormously as one of the oldest ‘lifestyle’ drugs, and currently sildenafil citrate (Viagra), the drug of choice for erectile dysfunction, exemplifies a turning point in the era of modern lifestyle drugs. This drug has transformed the lifestyles of millions and greatly increased the revenue of many pharmaceutical companies. With the Indian economy growing rapidly at an annual rate of 8-9%, a new era of drug discovery and development coupled with an enormous increase in the marketing of new drugs is being seen. This has certainly made the Indian public vulnerable to issues related to lifestyle drugs. There is a need to study this concept deeply and the impact of these drugs on Indian society, particularly since this topic has already been the centre of many discussions in other developed nations. PMID:21218048

  17. Biomarkers for Cystic Fibrosis Drug Development

    PubMed Central

    Muhlebach, Marianne S.; Clancy, JP; Heltshe, Sonya L.; Ziady, Assem; Kelley, Tom; Accurso, Frank; Pilewski, Joseph; Mayer-Hamblett, Nicole; Joseloff, Elizabeth; Sagel, Scott D.

    2016-01-01

    Purpose To provide a review of the status of biomarkers in cystic fibrosis drug development, including regulatory definitions and considerations, a summary of biomarkers in current use with supportive data, current gaps, and future needs. Methods Biomarkers are considered across several areas of CF drug development, including cystic fibrosis transmembrane conductance regulator modulation, infection, and inflammation. Results Sweat chloride, nasal potential difference, and intestinal current measurements have been standardized and examined in the context of multicenter trials to quantify CFTR function. Detection and quantification of pathogenic bacteria in CF respiratory cultures (e.g.: Pseudomonas aeruginosa) is commonly used in early phase antimicrobial clinical trials, and to monitor safety of therapeutic interventions. Sputum (e.g.: neutrophil elastase, myeloperoxidase, calprotectin) and blood biomarkers (e.g.: C reactive protein, calprotectin, serum amyloid A) have had variable success in detecting response to inflammatory treatments. Conclusions Biomarkers are used throughout the drug development process in CF, and many have been used in early phase clinical trials to provide proof of concept, detect drug bioactivity, and inform dosing for later-phase studies. Advances in the precision of current biomarkers, and the identification of new biomarkers with ‘omics-based technologies, are needed to accelerate CF drug development. PMID:28215711

  18. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction

    PubMed Central

    Kutlu, Munir Gunes

    2016-01-01

    It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. PMID:27634143

  19. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-10-01

    It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. © 2016 Kutlu and Gould; Published by Cold Spring Harbor Laboratory Press.

  20. Laser based synthesis of nanofunctionalized particulates for pulmonary based controlled drug delivery applications

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Kim, W.-S.; Ollinger, M.; Craciun, V.; Coowantwong, I.; Hochhaus, G.; Koshizaki, N.

    2002-09-01

    There is an urgent need to develop controlled drug release systems for the delivery of drugs via the pulmonary route. A key issue in pulmonary dry delivery systems is to reduce the amount of biodegradable polymers that are added to control the drug release. We have synthesized nanofunctionalized drug particles using the pulsed laser deposition on particles (PLDP) (e.g. budesonide) in an effort to control the architecture and thickness of a nanoscale polymer coating on the drug particles. In vitro studies indicated that the dry half-life release for budesonide can be enhanced from 1.2 to over 60 min by a nanoscale coating on the drug particle. Extensive studies have been conducted to characterize the bonding and composition of the polymer film deposited on drug particles.

  1. The problem with repurposing: Is there really an alternative to Big Pharma for developing new drugs for multiple sclerosis?

    PubMed

    Giovannoni, Gavin; Baker, David; Schmierer, Klaus

    2015-01-01

    If it is not feasible to develop licensed drugs to the stage that they can actually be prescribed for a new indication, can we justify, either ethically or economically, the undertaking of proof-of-concept studies using off-patent medications? Without a financial incentive it is very difficult to repurpose off patent drugs for a new indication. Therefore, we need a political solution to allow the repurposing of off-patent drugs by other stakeholders or Big Pharma. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Availability of Oral Formulations Labeled for Use in Young Children in Serbia, Germany and the USA.

    PubMed

    Bajcetic, Milica; Kearns, Gregory L; Jovanovic, Ida; Brajovic, Milan; van den Anker, John N

    2015-01-01

    The paucity of marketed drug products that have been adequately studied in infants and children and subsequently, licensed (or labeled) for pediatric use has caused abundant use of off-label and unauthorized products in this patient population. In those instances where insufficient pharmacologic or therapeutic information exists for children, the potential for off-label use of medicines to result in therapeutic misadventure does as well. In the USA, a series of regulatory measures have been introduced since 1997 which have increased both the number and scope of pediatric drug trials and also, fostered the development of ageappropriate drug formulations by pharmaceutical companies. Provisions of these regulations for previously marketed drugs include the potential for a company to be granted 6 months of marketing exclusivity, thereby providing them with a financial incentive. For new drugs being developed that have potential pediatric use, the regulations mandate the inclusion of children in the drug development process. In the EU comparable measures have been very recently (Jan 2007) signed into European law to overcome the therapeutic orphan status of the infants and children of Europe. The aims of this study was to compare the availability of age-appropriate oral formulations labeled for use in children less than 12 years of age in Serbia, Germany and USA in 2007, and to investigate if certain drug groups of therapeutic importance to children had fewer medicines appropriately labeled for pediatric patients available. The primary sources of information for determining the ageappropriate oral dosage forms, and their licensing and labeling status were the official manuals on drug information and national formularies in 2007. The general availability of oral drugs was the highest in the USA (304), followed by Germany (235) and Serbia (156). From all these oral drugs the availability of labeled age-appropriate pediatric dosage formulations was only between 21.2% and 47.7%. Moreover, there were striking differences between the three countries in the availability of labeled age-appropriate formulations for certain drug groups such as cardiovascular (absent in Serbia) and antiparasitic drugs (absent in Serbia and Germany). Our data suggest that significant country-to-country differences continue to exist in both the number and type of oral drug formulations that have pediatric labeling. Potential contributing factors include country-specific differences in the drug regulatory process, capacity for pharmaceutical development and the regulatory lag time associated with the implementation of drug regulation specifically addressing pediatric product development and labeling. We hypothesize that the new European regulation concerning medicines and children will improve the current unacceptable situation.

  3. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    PubMed

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  4. A novel, bottom-up approach to promote evidence-based HIV prevention for people who inject drugs in Ukraine: protocol for the MICT (‘Bridge’) HIV prevention exchange project

    PubMed Central

    2014-01-01

    Background Ukraine has one of the most severe HIV epidemics in Eastern Europe, with an estimated 1.6% of the adult population living with the virus. Injection drug use accounts for 36% of new HIV cases. Nongovernmental organizations in Ukraine have little experience with effective, theory-based behavioral risk reduction interventions necessary to reduce the scope of the HIV epidemic among Ukrainians who inject drugs. This study seeks to promote the use of evidence-based HIV prevention strategies among Ukrainian organizations working with drug users. Methods/design This study combines qualitative and quantitative methods to explore a model of HIV prevention intervention development and implementation that disseminates common factors of effective behavioral risk reduction interventions and enables service providers to develop programs that reflect their specific organizational contexts. Eight agencies, located in regions of Ukraine with the highest HIV and drug use rates and selected to represent key organizational context criteria (e.g., agency size, target population, experience with HIV prevention), will be taught common factors as the basis for intervention development. We will use qualitative methods, including interviews and observations, to document the process of intervention development and implementation at each agency. Using risk assessments with intervention participants, we will also assess intervention effectiveness. The primary outcome analyses will determine the extent to which agencies develop and implement an intervention for drug users that incorporates common factors of effective behavioral interventions. Effectiveness analyses will be conducted, and effect size of each intervention will be compared to that of published HIV prevention interventions for drug users with demonstrated effectiveness. This study will explore the role of organizational context on intervention development and implementation, including resource allocation decisions, problem-solving around intervention development, and barriers and facilitators to inclusion of common factors and delivery of a high quality intervention. Discussion This innovative approach to HIV prevention science dissemination and intervention development draws on providers’ ability to quickly develop innovative programs and reach populations in greatest need of services. It has the potential to enhance providers’ ability to use HIV prevention science to develop sustainable interventions in response to a rapidly changing epidemic. PMID:24491185

  5. Rationale and uses of a public HIV drug-resistance database.

    PubMed

    Shafer, Robert W

    2006-09-15

    Knowledge regarding the drug resistance of human immunodeficiency virus (HIV) is critical for surveillance of drug resistance, development of antiretroviral drugs, and management of infections with drug-resistant viruses. Such knowledge is derived from studies that correlate genetic variation in the targets of therapy with the antiretroviral treatments received by persons from whom the variant was obtained (genotype-treatment), with drug-susceptibility data on genetic variants (genotype-phenotype), and with virological and clinical response to a new treatment regimen (genotype-outcome). An HIV drug-resistance database is required to represent, store, and analyze the diverse forms of data underlying our knowledge of drug resistance and to make these data available to the broad community of researchers studying drug resistance in HIV and clinicians using HIV drug-resistance tests. Such genotype-treatment, genotype-phenotype, and genotype-outcome correlations are contained in the Stanford HIV RT and Protease Sequence Database and have specific usefulness.

  6. Ophthalmic drug dosage forms: characterisation and research methods.

    PubMed

    Baranowski, Przemysław; Karolewicz, Bożena; Gajda, Maciej; Pluta, Janusz

    2014-01-01

    This paper describes hitherto developed drug forms for topical ocular administration, that is, eye drops, ointments, in situ gels, inserts, multicompartment drug delivery systems, and ophthalmic drug forms with bioadhesive properties. Heretofore, many studies have demonstrated that new and more complex ophthalmic drug forms exhibit advantage over traditional ones and are able to increase the bioavailability of the active substance by, among others, reducing the susceptibility of drug forms to defense mechanisms of the human eye, extending contact time of drug with the cornea, increasing the penetration through the complex anatomical structure of the eye, and providing controlled release of drugs into the eye tissues, which allows reducing the drug application frequency. The rest of the paper describes recommended in vitro and in vivo studies to be performed for various ophthalmic drugs forms in order to assess whether the form is acceptable from the perspective of desired properties and patient's compliance.

  7. Ophthalmic Drug Dosage Forms: Characterisation and Research Methods

    PubMed Central

    Baranowski, Przemysław; Karolewicz, Bożena; Gajda, Maciej; Pluta, Janusz

    2014-01-01

    This paper describes hitherto developed drug forms for topical ocular administration, that is, eye drops, ointments, in situ gels, inserts, multicompartment drug delivery systems, and ophthalmic drug forms with bioadhesive properties. Heretofore, many studies have demonstrated that new and more complex ophthalmic drug forms exhibit advantage over traditional ones and are able to increase the bioavailability of the active substance by, among others, reducing the susceptibility of drug forms to defense mechanisms of the human eye, extending contact time of drug with the cornea, increasing the penetration through the complex anatomical structure of the eye, and providing controlled release of drugs into the eye tissues, which allows reducing the drug application frequency. The rest of the paper describes recommended in vitro and in vivo studies to be performed for various ophthalmic drugs forms in order to assess whether the form is acceptable from the perspective of desired properties and patient's compliance. PMID:24772038

  8. An investigation to find strategies to improve student nurses' maths skills.

    PubMed

    Wright, Kerri

    Being able to perform drug calculations accurately is an essential skill for nurses. Many studies, however, have demonstrated that nurses need to improve this area of their practice and in particular their mathematical skills. Several strategies have been implemented to develop the drug calculation skills of nurses, with mixed success. This article reports on a study that was carried out to investigate whether strategies implemented within a second-year pre-registration course were perceived by students to be helpful in improving their mathematical skills for drug calculations. The results demonstrated that students felt their mathematics and confidence improved as a result of these strategies. The students' evaluation of the learning strategy that they found most helpful in learning drug calculation gave a mixed result, indicating that students have differing learning styles and needs. The study also indicates that student nurses were able to integrate the mathematical skills into their nursing practice by having different strategies that allowed them to develop conceptual, mathematical and practical skills concurrently. The study recommends the implementation of integrated strategies to address drug calculation skills in student nurses, although further research is still required.

  9. A portfolio-based approach to optimize proof-of-concept clinical trials.

    PubMed

    Mallinckrodt, Craig; Molenberghs, Geert; Persinger, Charles; Ruberg, Stephen; Sashegyi, Andreas; Lindborg, Stacy

    2012-01-01

    Improving proof-of-concept (PoC) studies is a primary lever for improving drug development. Since drug development is often done by institutions that work on multiple drugs simultaneously, the present work focused on optimum choices for rates of false positive (α) and false negative (β) results across a portfolio of PoC studies. Simple examples and a newly derived equation provided conceptual understanding of basic principles regarding optimum choices of α and β in PoC trials. In examples that incorporated realistic development costs and constraints, the levels of α and β that maximized the number of approved drugs and portfolio value varied by scenario. Optimum choices were sensitive to the probability the drug was effective and to the proportion of total investment cost prior to establishing PoC. Results of the present investigation agree with previous research in that it is important to assess optimum levels of α and β. However, the present work also highlighted the need to consider cost structure using realistic input parameters relevant to the question of interest.

  10. New drugs for pain management in advanced cancer patients.

    PubMed

    Mercadante, Sebastiano

    2017-04-01

    Advanced cancer patients represent a frail population, often requiring aggressive pain management, particularly in the late stage of disease, when untreated pain is one the most important causes of suffering. Areas covered: In the last decade, a series of new analgesics have been introduced in the market to offer additional options amongst existent drugs. The characteristics of these drugs, their efficacy and tolerability are examined on the basis of existent studies. Expert opinion: Although new analgesic preparations have been developed in recent years, no specific drug has provided a better analgesic performance in comparison with others. Some technologies have been developed to increase the safety or decrease the opioid-related adverse effects, with some molecules providing extra-opioid analgesia. However, existing studies did not present relevant advantages over traditional opioids. The new formulations developed to provide a rapid and non-invasive analgesia for breakthrough pain have really changed the approach to this phenomenon, characterized by a specific temporal pattern requiring a short onset, and duration of the analgesic effect. The availability of new drugs, indeed, may enlarge the possibilities of individualizing treatment, according to specific clinical needs and individual response.

  11. Ontology-based literature mining and class effect analysis of adverse drug reactions associated with neuropathy-inducing drugs.

    PubMed

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2018-06-07

    Adverse drug reactions (ADRs), also called as drug adverse events (AEs), are reported in the FDA drug labels; however, it is a big challenge to properly retrieve and analyze the ADRs and their potential relationships from textual data. Previously, we identified and ontologically modeled over 240 drugs that can induce peripheral neuropathy through mining public drug-related databases and drug labels. However, the ADR mechanisms of these drugs are still unclear. In this study, we aimed to develop an ontology-based literature mining system to identify ADRs from drug labels and to elucidate potential mechanisms of the neuropathy-inducing drugs (NIDs). We developed and applied an ontology-based SciMiner literature mining strategy to mine ADRs from the drug labels provided in the Text Analysis Conference (TAC) 2017, which included drug labels for 53 neuropathy-inducing drugs (NIDs). We identified an average of 243 ADRs per NID and constructed an ADR-ADR network, which consists of 29 ADR nodes and 149 edges, including only those ADR-ADR pairs found in at least 50% of NIDs. Comparison to the ADR-ADR network of non-NIDs revealed that the ADRs such as pruritus, pyrexia, thrombocytopenia, nervousness, asthenia, acute lymphocytic leukaemia were highly enriched in the NID network. Our ChEBI-based ontology analysis identified three benzimidazole NIDs (i.e., lansoprazole, omeprazole, and pantoprazole), which were associated with 43 ADRs. Based on ontology-based drug class effect definition, the benzimidazole drug group has a drug class effect on all of these 43 ADRs. Many of these 43 ADRs also exist in the enriched NID ADR network. Our Ontology of Adverse Events (OAE) classification further found that these 43 benzimidazole-related ADRs were distributed in many systems, primarily in behavioral and neurological, digestive, skin, and immune systems. Our study demonstrates that ontology-based literature mining and network analysis can efficiently identify and study specific group of drugs and their associated ADRs. Furthermore, our analysis of drug class effects identified 3 benzimidazole drugs sharing 43 ADRs, leading to new hypothesis generation and possible mechanism understanding of drug-induced peripheral neuropathy.

  12. Application of Proteomic Approaches to Accelerate Drug Development for Psychiatric Disorders.

    PubMed

    Rahmoune, Hassan; Martins-de-Souza, Daniel; Guest, Paul C

    2017-01-01

    Proteomic-based biomarkers are now an integral part of the drug development process. This chapter covers the role of proteomic biomarker tests as useful tools for improving preclinical research and clinical development. One medical area that has been lagging behind this process is the study of psychiatric disorders, and this is most likely due to the complexity of these diseases. The potential of incorporating biomarkers in the clinical pipeline to improve decision-making, accelerate drug development, improve translation and reduce development costs is also discussed, with a focus on psychiatric diseases like schizophrenia. This chapter will also discuss the next steps that must be taken to keep moving this process forwards.

  13. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space.

    PubMed

    Cheng, Feixiong; Li, Weihua; Wu, Zengrui; Wang, Xichuan; Zhang, Chen; Li, Jie; Liu, Guixia; Tang, Yun

    2013-04-22

    Prediction of polypharmacological profiles of drugs enables us to investigate drug side effects and further find their new indications, i.e. drug repositioning, which could reduce the costs while increase the productivity of drug discovery. Here we describe a new computational framework to predict polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. On the basis of our previous developed drug side effects database, named MetaADEDB, a drug side effect similarity inference (DSESI) method was developed for drug-target interaction (DTI) prediction on a known DTI network connecting 621 approved drugs and 893 target proteins. The area under the receiver operating characteristic curve was 0.882 ± 0.011 averaged from 100 simulated tests of 10-fold cross-validation for the DSESI method, which is comparative with drug structural similarity inference and drug therapeutic similarity inference methods. Seven new predicted candidate target proteins for seven approved drugs were confirmed by published experiments, with the successful hit rate more than 15.9%. Moreover, network visualization of drug-target interactions and off-target side effect associations provide new mechanism-of-action of three approved antipsychotic drugs in a case study. The results indicated that the proposed methods could be helpful for prediction of polypharmacological profiles of drugs.

  14. European Medicines Agency initiatives and perspectives on pharmacogenomics

    PubMed Central

    Ehmann, Falk; Caneva, Laura; Papaluca, Marisa

    2014-01-01

    Pharmacogenomics, the study of variations of DNA and RNA characteristics as related to drug response, has become an integral part of drug development and pharmacovigilance, as reflected by the incorporation of pharmacogenomic data in EU product information. In this short review article, we describe recent European Medicines Agency initiatives intended to support further the implementation of pharmacogenomics in drug development and surveillance so that patients and the public can benefit from advances in genomic science and technology. PMID:24433361

  15. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    PubMed

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  16. Frances Kelsey and Thalidomide in the US: A Case Study Relating to Pharmaceutical Regulations.

    ERIC Educational Resources Information Center

    Seidman, Lisa A.; Warren, Noreen

    2002-01-01

    Presents a case study on the story of Dr. Frances Kelsey and the drug thalidomide, which was widely used in Europe for its therapeutic effects in the 1960s and later identified as having multiple effects on the body during development by the Food and Drug Administration (FDA). Describes the drug approval process in the United States and…

  17. Advancing tuberculosis drug regimen development through innovative quantitative translational pharmacology methods and approaches.

    PubMed

    Hanna, Debra; Romero, Klaus; Schito, Marco

    2017-03-01

    The development of novel tuberculosis (TB) multi-drug regimens that are more efficacious and of shorter duration requires a robust drug development pipeline. Advances in quantitative modeling and simulation can be used to maximize the utility of patient-level data from prior and contemporary clinical trials, thus optimizing study design for anti-TB regimens. This perspective article highlights the work of seven project teams developing first-in-class translational and quantitative methodologies that aim to inform drug development decision-making, dose selection, trial design, and safety assessments, in order to achieve shorter and safer therapies for patients in need. These tools offer the opportunity to evaluate multiple hypotheses and provide a means to identify, quantify, and understand relevant sources of variability, to optimize translation and clinical trial design. When incorporated into the broader regulatory sciences framework, these efforts have the potential to transform the development paradigm for TB combination development, as well as other areas of global health. Copyright © 2016. Published by Elsevier Ltd.

  18. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release.

    PubMed

    Khutale, Ganesh V; Casey, Alan

    2017-10-01

    A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Assessing the Impact of Drug Use and Drug Selling on Violent Offending in a Panel of Delinquent Youth

    PubMed Central

    Phillips, Matthew D.

    2016-01-01

    Despite a vast number of empirical studies arguing for or against a causal relationship between illegal drug use and selling and violent behavior, the debate continues. In part this is due to methodological weaknesses of previous research. Using data from the Rochester Youth Development Study, the current study seeks to improve on prior research designs to allow for a more precise examination of the mechanisms that lead from an individual’s drug use (chiefly, marijuana use in the current sample) and drug selling to violent action. Results will allow for greater confidence in making causal inference regarding a long-standing concern in the discipline. PMID:26889079

  20. Drug use and the role of patients and prescribers.

    PubMed

    Sterky, G; Tomson, G; Diwan, V K; Sachs, L

    1991-01-01

    In order to move towards rational drug use in any national or local setting the methods of inquiry have to be expanded. Both the public and private sector have to be addressed. In the latter the pharmacists might be studied using a tracer, fictitious client. One important factor influencing prescribing, drug information, has rarely been assessed scientifically. Experimental studies using group randomization are, however feasible even in developing countries. The individual human being must be in the focus of drug studies and health care and health in the foreground. The combination of qualitative and quantitative methods will assist us to achieve rational drug use that is culturally acceptable, economically feasible and pharmacologically sound.

  1. Re-inventing drug development: A case study of the I-SPY 2 breast cancer clinical trials program.

    PubMed

    Das, Sonya; Lo, Andrew W

    2017-11-01

    In this case study, we profile the I-SPY 2 TRIAL (Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And molecular anaLysis 2), a unique breast cancer clinical trial led by researchers at 20 leading cancer centers across the US, and examine its potential to serve as a model of drug development for other disease areas. This multicenter collaboration launched in 2010 to reengineer the drug development process to be more efficient and patient-centered. We conduct several interviews with the I-SPY leadership as well as a literature review of relevant publications to assess the I-SPY 2 initiative. To date, six drugs have graduated from I-SPY 2, identified as excellent candidates for phase 3 trials in their corresponding tumor subtype, and several others have been or are still being evaluated. These trials are also more efficient, typically involving fewer subjects and reaching conclusions more quickly, and candidates have more than twice the predicted likelihood of success in a smaller phase 3 setting compared to traditional trials. We observe that I-SPY 2 possesses several novel features that could be used as a template for more efficient and cost effective drug development, namely its adaptive trial design; precompetitive network of stakeholders; and flexible infrastructure to accommodate innovation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nanomedicine Drug Delivery across Mucous Membranes

    NASA Astrophysics Data System (ADS)

    Lancina, Michael George, III

    Control over the distribution of therapeutic compounds is a complex and somewhat overlooked field of pharmaceutical research. When swallowing a pill or receiving an injection, it is commonly assumed that drug will spread throughout the body in a more or less uniform concentration and find its way to wherever it is needed. In truth, drug biodistribuition is highly non-uniform and dependent on a large number of factors. The development of advanced drug delivery systems to control biodistribution can produce significant advances in clinical treatments without the need to discover new therapeutic compounds. This work focuses on a number of nanostructured materials designed to improve drug delivery by direct and efficient transfer of drugs across one of the body's external mucous membranes. Chapter 1 outlines the central concept that unites these studies: nanomaterials and cationic particles can be used to delivery therapeutic compounds across mucous membranes. Special attention is given to dendritic nanoparticles. In chapter 2, uses for dendrimers in ocular drug delivery are presented. The studies are divided into two main groups: topical and injectable formulations. Chapter 3 does not involve dendrimers but instead another cationic particle used in transmembrane drug delivery, chitosan. Next, a dendrimer based nanofiber mat was used to deliver anti-glaucoma drugs in chapter 4. A three week in vivo efficacy trial showed dendrimer nanofiber mats outperformed traditional eye drops in terms of intra-ocular pressure decrease in a normotensive rat model. Finally, we have developed a new dendrimer based anti-glaucoma drug in chapter 5. Collectively, these studies demonstrate some of the potential applications for nanotechnology to improve transmembrane drug delivery. These particles and fibers are able to readily adhere and penetrate across epithelial cell lays. Utilizing these materials to improve drug absorption through these portals has the potential to improve the clinical treatment of wide variety of diseases.

  3. Pharmacogenomics in the assessment of therapeutic risks versus benefits: inside the United States Food and Drug Administration.

    PubMed

    Zineh, Issam; Pacanowski, Michael A

    2011-08-01

    Pharmacogenomics is the study of how genetic variations influence responses to drugs, diagnostics, or biologic agents. The field of pharmacogenomics has significant potential to enhance drug development and aid in making regulatory decisions. The United States Food and Drug Administration (FDA) has supported pharmacogenomics for nearly a decade by providing regulatory advice and reviewing applications, with the intent of discovering and applying genetic determinants of treatment effects. The FDA will continue to develop policies and processes centered on genomics and individualized therapeutics to guide rational drug development. It will also continue to inform the public of clinically relevant pharmacogenomic issues through various mechanisms of communication, such as drug labeling. In this review, we provide a perspective on several pharmacogenomic activities at the FDA. In addition, we attempt to clarify what we believe are several misperceptions regarding the FDA's pharmacogenomic initiatives. We hope this perspective provides a window into some ways in which the FDA is enabling individualized therapeutics through its mission-critical activities.

  4. Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin.

    PubMed

    Pai, Rohan V; Jain, Rajesh R; Bannalikar, Anilkumar S; Menon, Mala D

    2016-04-01

    The lung is the primary entry site and target for Mycobacterium tuberculosis; more than 80% of the cases reported worldwide are of pulmonary tuberculosis. Hence, direct delivery of anti-tubercular drugs to the lung would be beneficial in reducing both, the dose required, as well as the duration of therapy for pulmonary tuberculosis. In the present study, microsphere-based dry powder inhalation systems of the anti-tubercular drugs, rifampicin and rifabutin, were developed and evaluated, with a view to achieve localized and targeted delivery of these drugs to the lung. The drug-loaded chitosan microparticles were prepared by an ionic gelation method, followed by spray-drying to obtain respirable particles. The microparticles were evaluated for particle size and drug release. The drug-loaded microparticles were then adsorbed onto an inhalable lactose carrier and characterized for in vitro lung deposition on an Andersen Cascade Impactor (ACI) followed by in vitro uptake study in U937 human macrophage cell lines. In vivo toxicity of the developed formulations was evaluated using Sprague Dawley rats. Both rifampicin and rifabutin-loaded microparticles had MMAD close to 5 μm and FPF values of 21.46% and 29.97%, respectively. In vitro release study in simulated lung fluid pH 7.4 showed sustained release for 12 hours for rifampicin microparticles and up to 96 hours for rifabutin microparticles, the release being dependent on both swelling of the polymer and solubility of the drugs in the dissolution medium. In vitro uptake studies in U937 human macrophage cell line suggested that microparticles were internalized within the macrophages. In vivo acute toxicity study of the microparticles in Sprague Dawley rats revealed no significant evidence for local adverse effects. Thus, spray-dried microparticles of the anti-tubercular drugs, rifampicin and rifabutin, could prove to be an improved, targeted, and efficient system for treatment of tuberculosis.

  5. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC.

    PubMed

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria; Nielsen, Line Hagner; Sandau, Martin; Andersen, Klaus; Müllertz, Anette; Rades, Thomas

    2017-12-04

    Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.

  6. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development

    PubMed Central

    Ribas, João; Sadeghi, Hossein; Manbachi, Amir; Leijten, Jeroen; Brinegar, Katelyn; Zhang, Yu Shrike; Ferreira, Lino

    2016-01-01

    Abstract Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system—in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development. PMID:28971113

  7. A review of drug-induced liver injury databases.

    PubMed

    Luo, Guangwen; Shen, Yiting; Yang, Lizhu; Lu, Aiping; Xiang, Zheng

    2017-09-01

    Drug-induced liver injuries have been a major focus of current research in drug development, and are also one of the major reasons for the failure and withdrawal of drugs in development. Drug-induced liver injuries have been systematically recorded in many public databases, which have become valuable resources in this field. In this study, we provide an overview of these databases, including the liver injury-specific databases LiverTox, LTKB, Open TG-GATEs, LTMap and Hepatox, and the general databases, T3DB, DrugBank, DITOP, DART, CTD and HSDB. The features and limitations of these databases are summarized and discussed in detail. Apart from their powerful functions, we believe that these databases can be improved in several ways: by providing the data about the molecular targets involved in liver toxicity, by incorporating information regarding liver injuries caused by drug interactions, and by regularly updating the data.

  8. The impact of a multiple intelligences teaching approach drug education programme on drug refusal skills of Nigerian pupils.

    PubMed

    Nwagu, Evelyn N; Ezedum, Chuks E; Nwagu, Eric K N

    2015-09-01

    The rising incidence of drug abuse among youths in Nigeria is a source of concern for health educators. This study was carried out on primary six pupils to determine the effect of a Multiple Intelligences Teaching Approach Drug Education Programme (MITA-DEP) on pupils' acquisition of drug refusal skills. A programme of drug education based on the Multiple Intelligences Teaching Approach (MITA) was developed. An experimental group was taught using this programme while a control group was taught using the same programme but developed based on the Traditional Teaching Approach. Pupils taught with the MITA acquired more drug refusal skills than those taught with the Traditional Teaching Approach. Urban pupils taught with the MITA acquired more skills than rural pupils. There was no statistically significant difference in the mean refusal skills of male and female pupils taught with the MITA. © The Author(s) 2014.

  9. Using Pill Identification Calls to Poison Centers as a Marker of Drug Abuse at Three Texas Military Bases.

    PubMed

    Ng, Patrick C; Maddry, Joseph K; Sessions, Daniel; Borys, Douglas J; Bebarta, Vikhyat S

    2017-11-01

    Opioid abuse is a growing problem in civilian communities, and it has developed in the military as well. Telephone calls to poison centers requesting pill identification (ID) is a marker of drug abuse. This study identifies the number of pill ID calls made to the poison centers from areas containing and surrounding three Texas military bases during an 8-year period. We performed a retrospective observational study identifying calls to certified poison centers in Texas from 2002 to 2009 that identified hydrocodone tablets and other pain medications. We noted the calls made from ZIP codes containing and surrounding the three largest military bases in Texas. We reviewed 75,537 drug ID calls for any drug from the ZIP codes of interest. Total drug ID calls increased 105% and the number of calls for hydrocodone increased 463%. In our study most of the drug ID calls from military communities in Texas were for hydrocodone. The rate of calls for hydrocodone increased more than the rate of calls for other analgesics from 2002 to 2009. Using drug ID calls as a surrogate of drug abuse, our results suggest that hydrocodone abuse has increased within military communities and that poison center data can be a reliable surrogate for prescription drug abuse near military bases. Future studies are needed to further understand the extent of this problem in military and civilian communities. We can use this information to heighten awareness, influence prescription practices, establish practice guidelines, and develop educational programs to mitigate the increasing rate of prescription analgesic abuse in the United States.

  10. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy.

    PubMed

    Davaran, Soodabeh; Fazeli, Hamed; Ghamkhari, Aliyeh; Rahimi, Fariborz; Molavi, Ommoleila; Anzabi, Maryam; Salehi, Roya

    2018-08-01

    A Novel poly [2-hydroxyethyl methacrylate-Lactide-dimethylaminoethyl methacrylate quaternary ammonium alkyl halide] [P(HEMA-LA-MADQUAT)] copolymer was synthesized through combination of ring opening polymerization (ROP) and 'free' radical initiated polymerization methods. This newly developed copolymer was fully characterized by FT-IR, 1 HNMR and 13 CNMR spectroscopy. Micellization of the copolymer was performed by dialysis membrane method and obtained micelles were characterized by FESEM, dynamic light scattering (DLS), zeta potential (ξ), and critical micelle concentration (CMC) measurements. This copolymer was developed with the aim of co-delivering two different anticancer drugs: methotrexate (MTX) and chrysin. In vitro cytotoxicity effect of MTX@Chrysin-loaded P(HEMA-LA-MADQUAT) was also studied through assessing the survival rate of breast cancer cell line (MCF-7) and DAPI staining assays. Cationic micelle (and surface charge of + 7.6) with spherical morphology and an average diameter of 55 nm and CMC of 0.023 gL -1 was successfully obtained. Micelles showed the drug loaded capacity around 87.6 and 86.5% for MTX and Chrysin, respectively. The cytotoxicity assay of a drug-free nanocarrier on MCF-7 cell lines indicated that this developed micelles were suitable nanocarriers for anticancer drugs. Furthermore, the MTX@Chrysin-loaded micelle had more efficient anticancer performance than free dual anticancer drugs (MTX @ chrysin), confirmed by MTT assay and DAPI stainingmethods. Therefore, we envision that this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies. Therefore, this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies.

  11. A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the 'rule-of-two' model.

    PubMed

    Chen, Minjun; Tung, Chun-Wei; Shi, Qiang; Guo, Lei; Shi, Leming; Fang, Hong; Borlak, Jürgen; Tong, Weida

    2014-07-01

    Drug-induced liver injury (DILI) is a major cause of drug failures in both the preclinical and clinical phase. Consequently, improving prediction of DILI at an early stage of drug discovery will reduce the potential failures in the subsequent drug development program. In this regard, high-content screening (HCS) assays are considered as a promising strategy for the study of DILI; however, the predictive performance of HCS assays is frequently insufficient. In the present study, a new testing strategy was developed to improve DILI prediction by employing in vitro assays that was combined with the RO2 model (i.e., 'rule-of-two' defined by daily dose ≥100 mg/day & logP ≥3). The RO2 model was derived from the observation that high daily doses and lipophilicity of an oral medication were associated with significant DILI risk in humans. In the developed testing strategy, the RO2 model was used for the rational selection of candidates for HCS assays, and only the negatives predicted by the RO2 model were further investigated by HCS. Subsequently, the effects of drug treatment on cell loss, nuclear size, DNA damage/fragmentation, apoptosis, lysosomal mass, mitochondrial membrane potential, and steatosis were studied in cultures of primary rat hepatocytes. Using a set of 70 drugs with clear evidence of clinically relevant DILI, the testing strategy improved the accuracies by 10 % and reduced the number of drugs requiring experimental assessment by approximately 20 %, as compared to the HCS assay alone. Moreover, the testing strategy was further validated by including published data (Cosgrove et al. in Toxicol Appl Pharmacol 237:317-330, 2009) on drug-cytokine-induced hepatotoxicity, which improved the accuracies by 7 %. Taken collectively, the proposed testing strategy can significantly improve the prediction of in vitro assays for detecting DILI liability in an early drug discovery phase.

  12. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings.

    PubMed

    Le Foll, Bernard; Collo, Ginetta; Rabiner, Eugenii A; Boileau, Isabelle; Merlo Pich, Emilio; Sokoloff, Pierre

    2014-01-01

    The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction. © 2014 Elsevier B.V. All rights reserved.

  13. Development and evaluation of a novel biodegradable sustained release microsphere formulation of paclitaxel intended to treat breast cancer

    PubMed Central

    Shiny, Jacob; Ramchander, Thadkapally; Goverdhan, Puchchakayala; Habibuddin, Mohammad; Aukunuru, Jithan Venkata

    2013-01-01

    Objective: The objective of this study was to develop a novel 1 month depot paclitaxel (PTX) microspheres that give a sustained and complete drug release. Materials and Methods: PTX loaded microspheres were prepared by o/w emulsion solvent evaporation technique using the blends of poly(lactic-co-glycolic acid) (PLGA) 75/25, polycaprolactone 14,000 and polycaprolactone 80,000. Fourier transform infrared spectroscopy was used to investigate drug excipient compatibility. Compatible blends were used to prepare F1-F6 microspheres, the process was characterised and the optimum formulation was selected based on the release. Optimised formulation was characterised for solid state of the drug using the differential scanning calorimetry (DSC) studies, surface morphology using the scanning electron microscopy (SEM), in vivo drug release, in vitro in vivo correlation (IVIVC) and anticancer activity. Anticancer activity of release medium was determined using the cell viability assay in Michigan Cancer Foundation (MCF-7) cell line. Results: Blend of PLGA with polycaprolactone (Mwt 14,000) at a ratio of 1:1 (F5) resulted in complete release of the drug in a time frame of 30 days. F5 was considered as the optimised formulation. Incomplete release of the drug resulted from other formulations. The surface of the optimised formulation was smooth and the drug changed its solid state upon fabrication. The formulation also resulted in 1-month drug release in vivo. The released drug from F5 demonstrated anticancer activity for 1-month. Cell viability was reduced drastically with the release medium from F5 formulation. A 100% IVIVC was obtained with F5 formulation suggesting the authenticity of in vitro release, in vivo release and the use of the formulation in breast cancer. Conclusions: From our study, it was concluded that with careful selection of different polymers and their combinations, PTX 1 month depot formulation with 100% drug release and that can be used in breast cancer was developed. PMID:24167783

  14. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma

    PubMed Central

    de la Puente, Pilar; Muz, Barbara; Gilson, Rebecca C; Azab, Feda; Luderer, Micah; King, Justin; Achilefu, Samuel; Vij, Ravi; Azab, Abdel Kareem

    2016-01-01

    Purpose Multiple myeloma (MM) is the second most prevalent hematological malignancy and it remains incurable despite the introduction of several novel drugs. The discrepancy between preclinical and clinical outcomes can be attributed to the failure of classic two-dimensional (2D) culture models to accurately recapitulate the complex biology of MM and drug responses observed in patients. Experimental design We developed 3D tissue engineered bone marrow (3DTEBM) cultures derived from the BM supernatant of MM patients to incorporate different BM components including MM cells, stromal cells, and endothelial cells. Distribution and growth were analyzed by confocal imaging, and cell proliferation of cell lines and primary MM cells was tested by flow cytometry. Oxygen and drug gradients were evaluated by immunohistochemistry and flow cytometry, and drug resistance was studied by flow cytometry. Results 3DTEBM cultures allowed proliferation of MM cells, recapitulated their interaction with the microenvironment, recreated 3D aspects observed in the bone marrow niche (such as oxygen and drug gradients), and induced drug resistance in MM cells more than 2D or commercial 3D tissue culture systems. Conclusions 3DTEBM cultures not only provide a better model for investigating the pathophysiology of MM, but also serve as a tool for drug development and screening in MM. In the future, we will use the 3DTEBM cultures for developing personalized therapeutic strategies for individual MM patients. PMID:26402156

  15. The relationship between the prescription of psychotropic drugs and suicide rates in older people in England and Wales.

    PubMed

    Shah, Ajit; Zhinchin, Galina; Zarate-Escudero, Sofia; Somyaji, Manjunath

    2014-02-01

    Several studies have reported an inverse correlation between general population and elderly suicide rates and antidepressant prescribing rates. Correlations between general population and elderly suicide rates and prescribing rates of other psychotropic drugs have also been reported. All studies of elderly suicide rates have used data over a decade old. The relationship between elderly suicide rates and prescription rates of psychotropic drugs by the broad British National Formulary (BNF) categories, for individual psychotropic drug groups within the BNF categories (e.g. SSRIs), and for individual psychotropic drugs was examined over a 12-year period (1995-2006) using Spearman's rank correlation. All data were ascertained from the archives of the National Statistics Office. There was an absence of significant correlations between elderly suicides rates and rates of prescriptions of psychotropic drugs in the broad BNF categories, individual psychotropic drug groups and individual psychotropic drugs. The findings may be due to methodological flaws. However, if they are genuine, then the following approaches require consideration to further reduce suicide rates: (1) development of strategies to ensure continued prescription of psychotropic drugs at the current level; (2) development of strategies to improve non-pharmacological measures, including improved mental health services provision for older people, improved assessment of suicide risk, increased availability of psychosocial interventions and restricting the availability of methods of suicide; and (3) development of strategies to implement improvement in distal risk (e.g. societal socio-economic status) and protective (e.g. societal educational attainment) factors for suicide at a societal level.

  16. Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems.

    PubMed

    Yang, Yang; Manda, Prashanth; Pavurala, Naresh; Khan, Mansoor A; Krishnaiah, Yellela S R

    2015-07-28

    The objective of this study was to develop a level A in vitro-in vivo correlation (IVIVC) for drug-in-adhesive (DIA) type estradiol transdermal drug delivery systems (TDDS). In vitro drug permeation studies across human skin were carried out to obtain the percent of estradiol permeation from marketed products. The in vivo time versus plasma concentration data of three estradiol TDDS at drug loadings of 2.0, 3.8 and 7.6mg (delivery rates of 25, 50 and 100μg/day, respectively) was deconvoluted using Wagner-Nelson method to obtain percent of in vivo drug absorption in postmenopausal women. The IVIVC between the in vitro percent of drug permeation (X) and in vivo percent of drug absorption (Y) for these three estradiol TDDS was constructed using GastroPlus® software. There was a high correlation (R(2)=1.0) with a polynomial regression of Y=-0.227X(2)+0.331X-0.001. These three estradiol TDDS were used for internal validation whereas another two products of the same formulation design (with delivery rates of 60 and 100μg/day) were used for external validation. The predicted estradiol serum concentrations (convoluted from in vitro skin permeation data) were compared with the observed serum concentrations for the respective products. The developed IVIVC model passed both the internal and external validations as the prediction errors (%PE) for Cmax and AUC were less than 15%. When another marketed estradiol TDDS with a delivery rate of 100μg/day but with a slight variation in formulation design was chosen, it did not pass external validation indicating the product-specific nature of IVIVC model. Results suggest that the IVIVC model developed in this study can be used to successfully predict the in vivo performance of the same estradiol TDDS with in vivo delivery rates ranging from 25 to 100μg/day. Published by Elsevier B.V.

  17. Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis.

    PubMed

    Sriraman, Kalpana; Nilgiriwala, Kayzad; Saranath, Dhananjaya; Chatterjee, Anirvan; Mistry, Nerges

    2018-04-01

    Alternate mechanisms of drug resistance involving intrinsic defense pathways play an important role in development of drug resistance. Deregulation of drug efflux, cellular metabolism, and DNA repair have been indicated to have effect on drug tolerance and persistence. Here we chose eight genes from these pathways to investigate their association with development of multidrug resistance (MDR). We generated mono drug resistant and MDR strains of rifampicin and isoniazid and examined the differential expression of genes belonging to efflux, DNA repair and cell wall lipid synthesis pathways. Rv1687c, recB, ppsD and embC genes showed significant (P <0.05) upregulation in mono-resistant (both rifampicin and isoniazid) as well as MDR strains. mmr showed significant upregulation with rifampicin resistance while Rv1457c showed significant upregulation only with mono-resistant strains. Highest expression change was observed with Rv1687c and ppsD. The study identified potential key genes that are significantly associated with development of drug resistance in vitro. These genes may help identify clinical strains predisposed to acquiring drug resistance in patients during the course of treatment or help in management of MDR forms of tuberculosis.

  18. The intersection of stress, drug abuse and development.

    PubMed

    Thadani, Pushpa V

    2002-01-01

    Use or abuse of licit and illicit substances is often associated with environmental stress. Current clinical evidence clearly demonstrates neurobehavioral, somatic growth and developmental deficits in children born to drug-using mothers. However, the effects of environmental stress and its interaction with prenatal drug exposure on a child's development is unknown. Studies in pregnant animals under controlled conditions show drug-induced long-term alterations in brain structures and functions of the offspring. These cytoarchitecture alterations in the brain are often associated with perturbations in neurotransmitter systems that are intimately involved in the regulation of the stress responses. Similar abnormalities have been observed in the brains of animals exposed to other adverse exogenous (e.g., environmental stress) and/or endogenous (e.g., glucocorticoids) experiences during early life. The goal of this article is to: (1) provide evidence and a perspective that common neural systems are influenced during development both by perinatal drug exposure and early stress exposure; and (2) identify gaps and encourage new research examining the effects of early stress and perinatal drug exposure, in animal models, that would elucidate how stress- and drug-induced perturbations in neural systems influence later vulnerability to abused drugs in adult offspring.

  19. Pharmacogenomics in cardiovascular clinical trials.

    PubMed

    Shah, R; Darne, B; Atar, D; Abadie, E; Adams, K F; Zannad, F

    2004-12-01

    Genomics - having quickly emerged as the central discipline in basic science and biomedical research - is poised to take the center stage in clinical medicine as well over the next few decades. Although there is no specific regulatory guideline on the application of pharmacogenetics to drug development, some recommendations are already included in several published guidelines on drug development. The patients more likely to provide the most valuable information on the specific contribution of a given gene or its variant are those who fail to respond to a drug ('therapeutic failures') and those who develop toxicity to the drug. However, before drawing definite conclusions on subgroups following pharmacogenomic analyses, one must be aware of disease classification, data collection, and how much is known about the disease process. It seems reasonable to collect genomic DNA from all patients enrolled in clinical drug trials (along with appropriate consent to permit pharmacogenetic studies) for the purpose of post hoc analyses. One exception to post hoc genomic analysis is when patients with a specific genotype are excluded from randomization into a clinical trial. Physicians will need to understand the concept of genetic variability, its interactions with the environment (e.g. drug-drug or drug-disease interactions), and its implication for patient care.

  20. [Psychotropic drugs in the Family Health Strategy: profile of use, access and strategies to promote rational use].

    PubMed

    da Rocha, Bruno Simas; Werlang, Maria Cristina

    2013-11-01

    The use of psychotropic drugs is on the increase, and there are few studies in Brazil investigating their use in the population and in Primary Health Care (PHC). This study aimed to determine the prevalence and patterns of psychotropic drug use by patients of a Family Health Unit in Porto Alegre, through an observational, descriptive, retrospective and cross-sectional study. The sample consisted of patients who received prescriptions for controlled psychotropic drugs and the data collected from medical records. The study included 329 patients, with prevalence of the use of psychotropic drugs of 7.30%, mean age of 53.14 (SD = 18.58) years and 72% female. The average number of prescribed drugs and psychotropic drugs per user was 3.56 (SD = 2.36) and 1.66 (SD = 0.90), respectively. The most widely used class was antidepressants, followed by antiepileptics, anxiolytics and antipsychotics. It is necessary to develop strategies to improve access, treatment of patients and rational use of psychotropic drugs, including the revision of lists of essential drugs and training of professionals in PHC.

  1. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    PubMed

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model

    PubMed Central

    Yao, X; Anderson, D L; Ross, S A; Lang, D G; Desai, B Z; Cooper, D C; Wheelan, P; McIntyre, M S; Bergquist, M L; MacKenzie, K I; Becherer, J D; Hashim, M A

    2008-01-01

    Background and purpose: Drug-induced prolongation of the QT interval can lead to torsade de pointes, a life-threatening ventricular arrhythmia. Finding appropriate assays from among the plethora of options available to predict reliably this serious adverse effect in humans remains a challenging issue for the discovery and development of drugs. The purpose of the present study was to develop and verify a reliable and relatively simple approach for assessing, during preclinical development, the propensity of drugs to prolong the QT interval in humans. Experimental approach: Sixteen marketed drugs from various pharmacological classes with a known incidence—or lack thereof—of QT prolongation in humans were examined in hERG (human ether a-go-go-related gene) patch-clamp assay and an anaesthetized guinea-pig assay for QT prolongation using specific protocols. Drug concentrations in perfusates from hERG assays and plasma samples from guinea-pigs were determined using liquid chromatography-mass spectrometry. Key results: Various pharmacological agents that inhibit hERG currents prolong the QT interval in anaesthetized guinea-pigs in a manner similar to that seen in humans and at comparable drug exposures. Several compounds not associated with QT prolongation in humans failed to prolong the QT interval in this model. Conclusions and implications: Analysis of hERG inhibitory potency in conjunction with drug exposures and QT interval measurements in anaesthetized guinea-pigs can reliably predict, during preclinical drug development, the risk of human QT prolongation. A strategy is proposed for mitigating the risk of QT prolongation of new chemical entities during early lead optimization. PMID:18587422

  3. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) Self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres

    PubMed Central

    El-Sherbiny, I. M.; Smyth, H. D. C.

    2012-01-01

    Design of appropriate inhaled carriers with adequate aerodynamic properties, drug release, biodegradation and evasion of macrophage uptake is a major challenge for controlled release pulmonary drug delivery. In this study, PEG graft copolymerized onto N-phthaloyl chitosan (NPHCs) was synthesized then characterized using FTIR, EA, DSC and 2D-XRD. The resulting PEG-g-NPHCs copolymers were self-assembled into drug loaded nanoparticles and encapsulated in respirable/swellable sodium alginate semi-IPN hydrogel microspheres as novel biodegradable carriers for controlled release pulmonary drug delivery. The developed nano-/microspheres carrier systems were formed via spray drying followed by ionotropic crosslinking in mild aqueous medium. The size of the developed self-assembled nanoparticles and the microspheres was measured using dynamic light scattering and laser diffraction, respectively. Morphology, moisture content, in-vitro biodegradation and dynamic swelling studies were also investigated for the developed carriers. A model protein was entrapped and the in-vitro release profiles were determined in PBS, pH 7.4 at 37°C. A dry powder aerosolization study was conducted using a Next Generation Impactor (NGI). The developed microspheres had suitable aerodynamic diameters (1.02–2.63 μm) and an excellent fine particle fraction, FPF of 31.52%. The microspheres showed also a very fast initial swelling within the first 2 min and started to enzymatically degrade within the first two hours. Moreover, the microspheres entrapped up 90% of the model drug and showed promising in-vitro sustained release profiles as compared to the control formulation. PMID:20580794

  4. Classification of nervous system withdrawn and approved drugs with ToxPrint features via machine learning strategies.

    PubMed

    Onay, Aytun; Onay, Melih; Abul, Osman

    2017-04-01

    Early-phase virtual screening of candidate drug molecules plays a key role in pharmaceutical industry from data mining and machine learning to prevent adverse effects of the drugs. Computational classification methods can distinguish approved drugs from withdrawn ones. We focused on 6 data sets including maximum 110 approved and 110 withdrawn drugs for all and nervous system diseases to distinguish approved drugs from withdrawn ones. In this study, we used support vector machines (SVMs) and ensemble methods (EMs) such as boosted and bagged trees to classify drugs into approved and withdrawn categories. Also, we used CORINA Symphony program to identify Toxprint chemotypes including over 700 predefined chemotypes for determination of risk and safety assesment of candidate drug molecules. In addition, we studied nervous system withdrawn drugs to determine the key fragments with The ParMol package including gSpan algorithm. According to our results, the descriptors named as the number of total chemotypes and bond CN_amine_aliphatic_generic were more significant descriptors. The developed Medium Gaussian SVM model reached 78% prediction accuracy on test set for drug data set including all disease. Here, bagged tree and linear SVM models showed 89% of accuracies for phycholeptics and psychoanaleptics drugs. A set of discriminative fragments in nervous system withdrawn drug (NSWD) data sets was obtained. These fragments responsible for the drugs removed from market were benzene, toluene, N,N-dimethylethylamine, crotylamine, 5-methyl-2,4-heptadiene, octatriene and carbonyl group. This paper covers the development of computational classification methods to distinguish approved drugs from withdrawn ones. In addition, the results of this study indicated the identification of discriminative fragments is of significance to design a new nervous system approved drugs with interpretation of the structures of the NSWDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Development of nanostructured lipid carrier for dacarbazine delivery

    NASA Astrophysics Data System (ADS)

    Almousallam, Musallam; Moia, Claudia; Zhu, Huijun

    2015-09-01

    Dacarbazine (Dac) is one of the most commonly used chemotherapy drugs for treating various cancers. However, its poor water solubility, short half-life in blood circulation, low response rate and high side effect limit its application. This study aimed to improve the drug solubility and prolong drug release by developing nanostructured lipid carriers (NLCs) for Dac delivery. The NLC and Dac-encapsulated NLC were synthesized with precirol ATO 5 and isopropyl myristate as lipids, tocopheryl polyethylene glycol succinate, soybean lecithin and Kolliphor P 188 as co-surfactants. The NLCs with controlled size were achieved using high shear dispersion following solidification of oil-in-water emulsion. For Dac encapsulation, the smallest NLC with 155 ± 10 nm in size, 0.2 ± 0.01 polydispersion index and -43.4 ± 2 mV zeta potential was selected. The resultant DLC-Dac possessed size, polydispersion index and zeta potential of 190 ± 10, 0.2 ± 0.01, and -43.5 ± 1.2, respectively. The drug encapsulation efficiency and drug loading were 98.5 % and 14 %, respectively. In vitro drug release study showed a biphasic pattern, with 50 % released in the first 2 h, and the remaining released sustainably for up to 30 h. This is the first report on the development of NLC for Dac delivery, implying that NLC could be a new potential candidate as drug carrier to improve the therapeutic profile of Dac.

  6. The Chinese Youth Attitudes toward Young Drug Users scale: an initial scale development and refinement.

    PubMed

    Chui, Wing Hong; Chan, Heng Choon Oliver

    2012-06-01

    Little is known about adolescents' perspectives of young drug users, especially in the Chinese context. This study aimed to develop a scale to measure Chinese youth attitudes toward young drug users. Initially, a total of 26 non-at-risk and at-risk adolescents (15 male and 11 female) aged 13 to 20 years were interviewed in five separate focus group sessions to explore their general views of young drug users. At-risk youths recruited in this study were adolescents who previously had contact with the juvenile justice system. The responses of these 26 adolescents were documented, and subsequently 25 items were generated out of the respondents' common themes. These 25 items were then surveyed in a group of 137 secondary school-aged adolescents (68 male and 69 female), ranging 13 to 17 years, to examine its underlying factor structure for further scale refinement, with the use of the exploratory factor analysis. A five-factor structure with 12 items was ultimately selected for the Chinese Youth Attitudes toward Young Drug Users (CYAYDU) scale. This newly developed scale is anticipated to provide utility in the social work settings, especially for youth social workers to assist in providing effective social services to young drug users. Despite the promising strength of the CYAYDU scale, further validation with large sample size is needed. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  7. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  8. The development of a stable, coated pellet formulation of a water-sensitive drug, a case study: development of a stable core formulation.

    PubMed

    Fitzpatrick, Shaun; Taylor, Scott; Booth, Steven W; Newton, Michael J

    2006-01-01

    A development program has been carried out to provide a stable extrusion/spheronisation pellet formulation for a highly water-soluble drug, sitagliptin, which undergoes a change in physical form on processing and is subject to hydrolytic decomposition. A conventional extrusion/spheronization formulation resulted in significant degradation of the drug. The inclusion of glyceryl monostearate into the formulation was found to reduce the water levels required to such a level that there was no significant degradation of the drug during processing to form pellets. The use of a ram extruder to screen formulations with small quantities minimizes the need for the drug in the formulation-screening process, and the results from this method of extrusion were found to be translatable to the use of a screen extruder, which allowed scale-up of the process.

  9. The Influence of Big (Clinical) Data and Genomics on Precision Medicine and Drug Development.

    PubMed

    Denny, Joshua C; Van Driest, Sara L; Wei, Wei-Qi; Roden, Dan M

    2018-03-01

    Drug development continues to be costly and slow, with medications failing due to lack of efficacy or presence of toxicity. The promise of pharmacogenomic discovery includes tailoring therapeutics based on an individual's genetic makeup, rational drug development, and repurposing medications. Rapid growth of large research cohorts, linked to electronic health record (EHR) data, fuels discovery of new genetic variants predicting drug action, supports Mendelian randomization experiments to show drug efficacy, and suggests new indications for existing medications. New biomedical informatics and machine-learning approaches advance the ability to interpret clinical information, enabling identification of complex phenotypes and subpopulations of patients. We review the recent history of use of "big data" from EHR-based cohorts and biobanks supporting these activities. Future studies using EHR data, other information sources, and new methods will promote a foundation for discovery to more rapidly advance precision medicine. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  10. Drug transporters, the blood–testis barrier, and spermatogenesis

    PubMed Central

    Su, Linlin; Mruk, Dolores D; Cheng, C Yan

    2015-01-01

    The blood–testis barrier (BTB), which is created by adjacent Sertoli cells near the basement membrane, serves as a ‘gatekeeper’ to prohibit harmful substances from reaching developing germ cells, most notably postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and adluminal (apical) compartment so that postmeiotic spermatid development, namely spermiogenesis, can take place in a specialized microenvironment in the apical compartment behind the BTB. The BTB also contributes, at least in part, to the immune privilege status of the testis, so that anti-sperm antibodies are not developed against antigens that are expressed transiently during spermatogenesis. Recent studies have shown that numerous drug transporters are expressed by Sertoli cells. However, many of these same drug transporters are also expressed by spermatogonia, spermatocytes, round spermatids, elongating spermatids, and elongated spermatids, suggesting that the developing germ cells are also able to selectively pump drugs ‘in’ and/or ‘out’ via influx or efflux pumps. We review herein the latest developments regarding the role of drug transporters in spermatogenesis. We also propose a model utilized by the testis to protect germ cell development from ‘harmful’ environmental toxicants and xenobiotics and/or from ‘therapeutic’ substances (e.g. anticancer drugs). We also discuss how drug transporters that are supposed to protect spermatogenesis can work against the testis in some instances. For example, when drugs (e.g. male contraceptives) that can perturb germ cell adhesion and/or maturation are actively pumped out of the testis or are prevented from entering the apical compartment, such as by efflux pumps. PMID:21134990

  11. Portugal's 2001 Drugs Liberalisation Policy: A UK Service Provider's Perspective on the Psychoactive Substances Act (2016)

    ERIC Educational Resources Information Center

    Banbury, Samantha; Lusher, Joanne; Guedelha, Francisco

    2018-01-01

    The Misuse of Drugs Act (1971) and the Psychoactive Substances Act (2016) both reinforce the criminalisation of drug use in the UK. The Psychoactive Substances Act (2016) has been developed to control and monitor the use of legal highs, particularly in institutions. This study aimed to establish drug service providers' viewpoints on how effective…

  12. A Delphi Study to Develop a Standard List of Activities that Comprise Routine Clinical Pharmacy Services

    DTIC Science & Technology

    2012-06-08

    The 2009 ASHP national survey on monitoring and patient education incorporates this generalist concept in its description of the three hospital...counseling Intravenous-to-oral medication conversion Drug selection recommendation Patient education Prospective order review Provider encounters...of Drug Information to Health Professionals Drug selection recommendation Decision to Prescribe a Medicine Patient education Provision of Drug

  13. Quantitative NTCP Pharmacophore and Lack of Association between DILI and NTCP Inhibition

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2014-01-01

    The human sodium taurocholate cotransporting polypeptide (NTCP) is a hepatic bile acid transporter. Inhibition of NTCP uptake may potentially also prevent hepatitis B virus (HBV) infection. The first objective was to develop a quantitative pharmacophore for NTCP inhibition. Recent studies showed that hepatotoxic drugs could inhibit bile acid uptake into hepatocytes, without inhibiting canalicular efflux, and cause bile acid elevation in plasma. Hence, a second objective was to examine whether NTCP inhibition is associated with drug induced liver injury (DILI). Twenty-seven drugs from our previous study were used as the training set to develop a quantitative pharmacophore. From secondary screening from a drug database, six retrieved drugs and three drugs not retrieved by the model were tested for NTCP inhibition. Tertiary screening involved drugs known to cause DILI and not cause DILI. Overall, ninety-four drugs were assessed for hepatotoxicity and were assessed relative to NTCP inhibition. The quantitative pharmacophore possessed one hydrogen bond acceptor, one hydrogen bond donor, a hydrophobic feature, and excluded volumes. From 94 drugs, NTCP inhibitors and non-inhibitors were approximately equally distributed across the drugs of most DILI concern, less DILI concern, and no DILI concern, indicating no relationship between NTCP inhibition and DILI risk. Hence, an approach to treat HBV via NTCP inhibition is not expected to be associated with DILI. PMID:25220493

  14. Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition.

    PubMed

    Dong, Zhongqi; Ekins, Sean; Polli, James E

    2015-01-23

    The human sodium taurocholate cotransporting polypeptide (NTCP) is a hepatic bile acid transporter. Inhibition of NTCP uptake may potentially also prevent hepatitis B virus (HBV) infection. The first objective was to develop a quantitative pharmacophore for NTCP inhibition. Recent studies showed that hepatotoxic drugs could inhibit bile acid uptake into hepatocytes, without inhibiting canalicular efflux, and cause bile acid elevation in plasma. Hence, a second objective was to examine whether NTCP inhibition is associated with drug induced liver injury (DILI). Twenty-seven drugs from our previous study were used as the training set to develop a quantitative pharmacophore. From secondary screening from a drug database, six retrieved drugs and three drugs not retrieved by the model were tested for NTCP inhibition. Tertiary screening involved drugs known to cause DILI and not cause DILI. Overall, ninety-four drugs were assessed for hepatotoxicity and were assessed relative to NTCP inhibition. The quantitative pharmacophore possessed one hydrogen bond acceptor, one hydrogen bond donor, a hydrophobic feature, and excluded volumes. From 94 drugs, NTCP inhibitors and non-inhibitors were approximately equally distributed across the drugs of most DILI concern, less DILI concern, and no DILI concern, indicating no relationship between NTCP inhibition and DILI risk. Hence, an approach to treat HBV via NTCP inhibition is not expected to be associated with DILI. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The clinical development of p53-reactivating drugs in sarcomas - charting future therapeutic approaches and understanding the clinical molecular toxicology of Nutlins.

    PubMed

    Biswas, Swethajit; Killick, Emma; Jochemsen, Aart G; Lunec, John

    2014-05-01

    The majority of human sarcomas, particularly soft tissue sarcomas, are relatively resistant to traditional cytotoxic therapies. The proof-of-concept study by Ray-Coquard et al., using the Nutlin human double minute (HDM)2-binding antagonist RG7112, has recently opened a new chapter in the molecular targeting of human sarcomas. In this review, the authors discuss the challenges and prospective remedies for minimizing the significant haematological toxicities of the cis-imidazole Nutlin HDM2-binding antagonists. Furthermore, they also chart the future direction of the development of p53-reactivating (p53-RA) drugs in 12q13-15 amplicon sarcomas and as potential chemopreventative therapies against sarcomagenesis in germ line mutated TP53 carriers. Drawing lessons from the therapeutic use of Imatinib in gastrointestinal tumours, the authors predict the potential pitfalls, which may lie in ahead for the future clinical development of p53-RA agents, as well as discussing potential non-invasive methods to identify the development of drug resistance. Medicinal chemistry strategies, based on structure-based drug design, are required to re-engineer cis-imidazoline Nutlin HDM2-binding antagonists into less haematologically toxic drugs. In silico modelling is also required to predict toxicities of other p53-RA drugs at a much earlier stage in drug development. Whether p53-RA drugs will be therapeutically effective as a monotherapy remains to be determined.

  16. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi drug resistant Mycobacterium tuberculosis.

    PubMed

    Kaur, Divneet; Mathew, Shalu; Nair, Chinchu G S; Begum, Azitha; Jainanarayan, Ashwin K; Sharma, Mukta; Brahmachari, Samir K

    2017-12-21

    The problem of drug resistance and bacterial persistence in tuberculosis is a cause of global alarm. Although, the UN's Sustainable Development Goals for 2030 has targeted a Tb free world, the treatment gap exists and only a few new drug candidates are in the pipeline. In spite of large information from medicinal chemistry to 'omics' data, there has been a little effort from pharmaceutical companies to generate pipelines for the development of novel drug candidates against the multi drug resistant Mycobacterium tuberculosis. In the present study, we describe an integrated methodology; utilizing systems level information to optimize ligand selection to lower the failure rates at the pre-clinical and clinical levels. In the present study, metabolic targets (Rv2763c, Rv3247c, Rv1094, Rv3607c, Rv3048c, Rv2965c, Rv2361c, Rv0865, Rv0321, Rv0098, Rv0390, Rv3588c, Rv2244, Rv2465c and Rv2607) in M. tuberculosis, identified using our previous Systems Biology and data-intensive genome level analysis, have been used to design potential lead molecules, which are likely to be non-toxic. Various in silico drug discovery tools have been utilized to generate small molecular leads for each of the 15 targets with available crystal structures. The present study resulted in identification of 20 novel lead molecules including 4 FDA approved drugs (droxidropa, tetroxoprim, domperidone and nemonapride) which can be further taken for drug repurposing. This comprehensive integrated methodology, with both experimental and in silico approaches, has the potential to not only tackle the MDR form of Mtb but also the most important persister population of the bacterium, with a potential to reduce the failures in the Tb drug discovery. We propose an integrated approach of systems and structural biology for identifying targets that address the high attrition rate issue in lead identification and drug development We expect that this system level analysis will be applicable for identification of drug candidates to other pathogenic organisms as well.

  17. Development of a Course of Study in FDA Drug Regulatory Procedures

    ERIC Educational Resources Information Center

    Jacobs, Robin Wills; King, James C.

    1977-01-01

    It is evident that more colleges of pharmacy should establish some major course of study in the area of governmental drug regulatory procedures. This study is aimed at expanding cooperative educational programs through an FDA residency for pharmacy students and preparing a didactic course in FDA procedures. (LBH)

  18. Cystic Fibrosis Treatment: A Paradigm for New Pediatric Medicines, Globalization of Drug Development and the Role of the European Medicines Agency

    PubMed Central

    Rose, Klaus; Spigarelli, Michael G.

    2015-01-01

    The European Pediatric Pharmaceutical Legislation wants children to benefit more from pharmaceutical progress. In rare diseases, concerns have been raised that this legislation might damage research and stymie drug development. We discuss the role of the European Medicines Agency (EMA) and its Pediatric Committee (PDCO) in the development of ivacaftor, first-in-class for cystic fibrosis (CF) patients with the G551D mutation (and eight other mutations later) and of lumacaftor and ataluren, two more potential break-through CF medications. Ivacaftor was USA-approved early 2012 and six months later in the EU. Registration was based on the same data. We analyzed these drugs’ EU pediatric investigation plans (PIPs) and compared the PIP-studies with the pediatric CF studies listed in www.clinicaltrials.gov. The ivacaftor PIP studies appear to reflect what the developer planned anyway, apart from a study in 1–23-month-olds, which has not yet started. The total negotiation time for the current PIP version was approximately 5.5 years. For companies that develop drugs in pediatric diseases, e.g., CF, PIPs represent considerable additional procedural workload with minimal or no additional benefit for the patients. New drugs for pediatric diseases should not be hampered by additional, unnecessary and costly bureaucracy, but be registered as rapidly as possible without compromising safety. PMID:27417354

  19. Talking to Youth about Drugs: What Do Late Adolescents Say about Parental Strategies?

    ERIC Educational Resources Information Center

    Miller-Day, Michelle

    2008-01-01

    This research, comprised of 2 studies, extends current knowledge of parent-child communication about drugs. The first study developed a typology of parental strategies used to deter children's substance use. The second study examined relationships among the parental strategies identified in the first study, which included family communication…

  20. Inhibition of the development of myringosclerosis by local administration of fenspiride, an anti-inflammatory drug.

    PubMed

    Mattsson, C; Hellström, S

    1997-01-01

    Earlier studies have revealed a relationship between the development of myringosclerosis and oxygen-derived free radicals. The latter can be blocked by the anti-inflammatory drug fenspiride. The present study was undertaken to test the ability of fenspiride to prevent myringosclerosis from developing during healing of the tympanic membrane. Myringotomized rats were treated with either topical applications or intraperitoneal injections of fenspiride for 12 days, after which the tympanic membranes were examined by otomicroscopy and studied histologically by light microscopy. Topically applied fenspiride was found to inhibit the development of sclerotic lesions, whereas intraperitoneal injections were ineffective.

  1. Severe Cutaneous Adverse Drug Reactions in Pediatric Patients: A Multicenter Study.

    PubMed

    Dibek Misirlioglu, Emine; Guvenir, Hakan; Bahceci, Semiha; Haktanir Abul, Mehtap; Can, Demet; Usta Guc, Belgin Emine; Erkocoğlu, Mustafa; Toyran, Muge; Nacaroglu, Hikmet Tekin; Civelek, Ersoy; Buyuktiryaki, Betul; Ginis, Tayfur; Orhan, Fazil; Kocabas, Can Naci

    The severe cutaneous adverse drug reactions (SCARs) are rare but could be life-threatening. These include drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome, toxic epidermal necrolysis (TEN), and acute generalized exanthematous pustulosis. The purpose of this study was the evaluation of the clinical characteristics of patients with the diagnosis of SCARs. Patients who were diagnosed with SCARs between January 2011 and May 2016 by pediatric allergy clinics in the provinces of Ankara, Trabzon, Izmir, Adana, and Bolu were included in this multicenter study. Clinical and laboratory findings, the time between suspected drug intake and development of clinical findings, treatments they have received, and length of recovery time were recorded. Fifty-eight patients with SCARs were included in this study. The median age of the patients was 8.2 years (interquartile range, 5.25-13 years) and 50% (n = 29) were males. Diagnosis was Stevens-Johnson syndrome/TEN in 60.4% (n = 35), DRESS in 27.6% (n = 16), and acute generalized exanthematous pustulosis in 12% (n = 7) of the patients. In 93.1% of the patients, drugs were the cause of the reactions. Antibiotics ranked first among the drugs (51.7%) and antiepileptic drugs were the second (31%) most common. A patient who was diagnosed with TEN developed lagophthalmos and a patient who was diagnosed with DRESS developed secondary diabetes mellitus. Only 1 patient with the diagnosis of TEN died. SCARs in children are not common but potentially serious. Early diagnosis and appropriate treatment of SCARs will reduce the incidence of morbidity and mortality. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Developing New Treatments for Heart Failure: Focus on the Heart.

    PubMed

    Gheorghiade, Mihai; Larson, Christopher J; Shah, Sanjiv J; Greene, Stephen J; Cleland, John G F; Colucci, Wilson S; Dunnmon, Preston; Epstein, Stephen E; Kim, Raymond J; Parsey, Ramin V; Stockbridge, Norman; Carr, James; Dinh, Wilfried; Krahn, Thomas; Kramer, Frank; Wahlander, Karin; Deckelbaum, Lawrence I; Crandall, David; Okada, Shunichiro; Senni, Michele; Sikora, Sergey; Sabbah, Hani N; Butler, Javed

    2016-05-01

    Compared with heart failure (HF) care 20 to 30 years ago, there has been tremendous advancement in therapy for ambulatory HF with reduced ejection fraction with the use of agents that block maladaptive neurohormonal pathways. However, during the past decade, with few notable exceptions, the frequency of successful drug development programs has fallen as most novel therapies have failed to offer incremental benefit or raised safety concerns (ie, hypotension). Moreover, no therapy has been approved specifically for HF with preserved ejection fraction or for worsening chronic HF (including acutely decompensated HF). Across the spectrum of HF, preliminary results from many phase II trials have been promising but are frequently followed by unsuccessful phase III studies, highlighting a disconnect in the translational process between basic science discovery, early drug development, and definitive clinical testing in pivotal trials. A major unmet need in HF drug development is the ability to identify homogeneous subsets of patients whose underlying disease is driven by a specific mechanism that can be targeted using a new therapeutic agent. Drug development strategies should increasingly consider therapies that facilitate reverse remodeling by directly targeting the heart itself rather than strictly focusing on agents that unload the heart or target systemic neurohormones. Advancements in cardiac imaging may allow for more focused and direct assessment of drug effects on the heart early in the drug development process. To better understand and address the array of challenges facing current HF drug development, so that future efforts may have a better chance for success, the Food and Drug Administration facilitated a meeting on February 17, 2015, which was attended by clinicians, researchers, regulators, and industry representatives. The following discussion summarizes the key takeaway dialogue from this meeting. © 2016 American Heart Association, Inc.

  3. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism

    PubMed Central

    Pi, Fengmei; Zhao, Zhengyi; Chelikani, Venkata; Yoder, Kristine; Kvaratskhelia, Mamuka

    2016-01-01

    The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially. PMID:27356896

  4. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research.

    PubMed

    Li, Ming; de Graaf, Inge A M; Groothuis, Geny M M

    2016-01-01

    The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, precision-cut intestinal slices (PCIS) are discussed and highlighted as model for ADME-tox studies. This review provides an overview of the applications and an update of the most recent research on PCIS as an ex vivo model to study the transport, metabolism and toxicology of drugs and other xenobiotics. The unique features of PCIS and the differences with other models as well as the translational aspects are also discussed. PCIS are a simple, fast, and reliable ex vivo model for drug ADME-tox research. Therefore, PCIS are expected to become an indispensable link in the in vitro-ex vivo-in vivo extrapolation, and a bridge in translation of animal data to the human situation. In the future, this model may be helpful to study the effects of interorgan interactions, intestinal bacteria, excipients and drug formulations on the ADME-tox properties of drugs. The optimization of culture medium and the development of a (cryo)preservation technique require more research.

  5. Pharmacogenetic aspects of drug-induced torsade de pointes: potential tool for improving clinical drug development and prescribing.

    PubMed

    Shah, Rashmi R

    2004-01-01

    Drug-induced torsade de pointes (TdP) has proved to be a significant iatro-genic cause of morbidity and mortality and a major reason for the withdrawal of a number of drugs from the market in recent times. Enzymes that metabolise many of these drugs and the potassium channels that are responsible for cardiac repolarisation display genetic polymorphisms. Anecdotal reports have suggested that in many cases of drug-induced TdP, there may be a concealed genetic defect of either these enzymes or the potassium channels, giving rise to either high plasma drug concentrations or diminished cardiac repolarisation reserve, respectively. The presence of either of these genetic defects may predispose a patient to TdP, a potentially fatal adverse reaction, even at therapeutic dosages of QT-prolonging drugs and in the absence of other risk factors. Advances in pharmacogenetics of drug metabolising enzymes and pharmacological targets, together with the prospects of rapid and inexpensive genotyping procedures, promise to individualise and improve the benefit/risk ratio of therapy with drugs that have the potential to cause TdP. The qualitative and the quantitative contributions of these genetic defects in clinical cases of TdP are unclear because not all of the patients with TdP are routinely genotyped and some relevant genetic mutations still remain to be discovered. There are regulatory guidelines that recommend strategies aimed at uncovering the risk of TdP associated with new chemical entities during their development. There are also a number of guidelines that recommend integrating pharmacogenetics in this process. This paper proposes a strategy for integrating pharmacogenetics into drug development programmes to optimise association studies correlating genetic traits and endpoints of clinical interest, namely failure of efficacy or development of repolarisation abnormalities. Until pharmacogenetics is carefully integrated into all phases of development of QT-prolonging drugs and large-scale studies are undertaken during their post-marketing use to determine the genetic components involved in induction of TdP, routine genotyping of patients remains unrealistic. Even without this pharmacogenetic data, the clinical risk of TdP can already be greatly minimised. Clinically, a substantial proportion of cases of TdP are due to the use of either high or usual dosages of drugs with potential to cause TdP in the presence of factors that inhibit drug metabolism. Therefore, choosing the lowest effective dose and identifying patients with these non-genetic risk factors are important means of minimising the risk of TdP. In view of the common secondary pharmacology shared by these drugs, a standard set of contraindications and warnings have evolved over the last decade. These include factors responsible for pharmacokinetic or pharmacodynamic drug interactions. Among the latter, the more important ones are bradycardia, electrolyte imbalance, cardiac disease and co-administration of two or more QT-prolonging drugs. In principle, if large scale prospective studies can demonstrate a substantial genetic component, pharmacogenetically driven prescribing ought to reduce the risk further. However, any potential benefits of pharmacogenetics will be squandered without any reduction in the clinical risk of TdP if physicians do not follow prescribing and monitoring recommendations.

  6. Factors associated with failure of oncology drugs in late-stage clinical development: A systematic review.

    PubMed

    Jardim, Denis L; Groves, Eric S; Breitfeld, Philip P; Kurzrock, Razelle

    2017-01-01

    We aimed to describe the reasons for failure of experimental anticancer drugs in late-stage clinical development. We searched the PharmaProjects database (https://citeline.com/products/pharmaprojects/) for anticancer drugs discontinued between 01/01/2009 and 06/30/2014. Drug programs that reached phase III trials, but never gained Food and Drug Administration (FDA) approval were compared to 37 anti-cancer drugs achieving FDA approval in this time period. Forty-two drugs fit our criteria for development failures. These failed drugs (49% targeted, 23% cytotoxics, and 28% other) were tested in 43 cancer indications (drug programs). Only 16% (7/43) of failed drug programs adopted a biomarker-driven rationale for patient selection versus 57% (21/37) of successful drug programs (P<0.001). Phase II trial information was available in 32 of 43 failed drug programs and in 32 of 37 successful programs. Nine of the 32 trials (28%) of failed drugs versus 28 of 32 trials (87%) of successful drugs (P<0.001) achieved proof of concept (single agent response rate (RR) ⩾20% or combination therapy showing a ⩾20% RR increase above the median historical RR without the experimental agent (with a minimal absolute increase of 5%) or a randomized phase II trial showing significance (P⩽0.05) for its primary outcome). No pattern of study sites, trial design or funding characteristics emerged from the failed drug analysis. For drugs that reached Phase III, lack of a biomarker-driven strategy and failure to attain proof of concept in phase II are potential risk factors for later discontinuation, especially for targeted agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Latent tuberculosis infections in hard-to-reach drug using population-detection, prevention and control.

    PubMed

    Hwang, Lu-Yu; Grimes, Carolyn Z; Beasley, R Palmer; Graviss, Edward A

    2009-12-01

    Interferon-gamma release assays (IGRAs) need be evaluated for effectiveness as screening tests for tuberculosis (TB) infection in drug users. These tests have demonstrated improved sensitivity and specificity, but have not been studied in drug users. These one step blood tests are intended to replace the tuberculin skin test (TST), which is difficult to use and requires 48 hour follow-up, so they are expected to be particularly suitable for risk groups, like drug users, in whom follow-up is problematic. Drug users have traditionally been identified as being at increased risk for acquiring TB disease. The results of our pilot study using the TST and simpler and more sensitive interferon-gamma release assays showed that about 45% of current drug users in Houston tested have at least one test positive for latent tuberculosis infection (LTBI). These preliminary data suggest that there is an important reservoir of LTBI in drug using populations, and the risk of progression to active TB disease with other infections is great. However, LTBI in drug using populations has not been studied in depth and deserves further investigation. We need to evaluate the validity of IGRAs for detection of latent TB infection, the factors associated with LTBI, the incidence and risk for developing active TB disease in drug users and the effectiveness of early treatment of LTBI. We believe that using better tuberculosis screening tools will allow us to more accurately measure the prevalence of latent TB infection and incidence of active TB disease in drug using populations and develop more effective TB prevention and treatment interventions in the community.

  8. Has Malaysia's antidrug effort been effective?

    PubMed

    Scorzelli, J F

    1992-01-01

    It is a common belief that a massive effort in law enforcement, preventive education and rehabilitation will result in the elimination of a country's drug problem. Based on this premise. Malaysia in 1983 implemented such a multifaceted anti-drug strategy, and the results of a 1987 study by the author suggested that Malaysia's effort had begun to contribute to a steady decrease in the number of identified drug abusers. Although the number of drug-addicted individuals declined, the country's recidivism rates were still high. Because of this high relapse rate, Malaysia expanded their rehabilitation effort and developed a community transition program. In order to determine the impact of these changes on the country's battle against drug abuse, a follow-up study was conducted in 1990. The results of this study did not clearly demonstrate that the Malaysian effort had been successful in eliminating the problem of drug abuse, and raised some questions concerning the effectiveness of the country's drug treatment programs.

  9. Population-based studies of antithyroid drugs and sudden cardiac death

    PubMed Central

    van Noord, Charlotte; Sturkenboom, Miriam C J M; Straus, Sabine M J M; Hofman, Albert; Witteman, Jacqueline C M; Stricker, Bruno H Ch

    2009-01-01

    AIM Thyroid free T4 is associated with QTc-interval prolongation, which is a risk factor for sudden cardiac death (SCD). Hyperthyroidism has been associated with SCD in case reports, but there are no population-based studies confirming this. The aim was to investigate whether use of antithyroid drugs (as a direct cause or as an indicator of poorly controlled hyperthyroidism) is associated with an increased risk of SCD. METHODS We studied the occurrence of SCD in a two-step procedure in two different Dutch populations. First, the prospective population-based Rotterdam Study including 7898 participants (≥55 years old). Second, we used the Integrated Primary Care Information (IPCI) database, which is a longitudinal general practice research database to see whether we could replicate results from the first study. Drug use at the index date was assessed with prescription information from automated pharmacies (Rotterdam Study) or drug prescriptions from general practices (IPCI). We used a Cox proportional hazards model in a cohort analysis, adjusted for age, gender and use of QTc prolonging drugs (Rotterdam Study) and conditional logistic regression analysis in a case–control analysis, matched for age, gender, practice and calendar time and adjusted for arrhythmia and cerebrovascular ischaemia (IPCI). RESULTS In the Rotterdam Study, 375 participants developed SCD during follow-up. Current use of antithyroid drugs was associated with SCD [adjusted hazard ratio 3.9; 95% confidence interval (CI) 1.7, 8.7]. IPCI included 1424 cases with SCD and 14 443 controls. Also in IPCI, current use of antithyroid drugs was associated with SCD (adjusted odds ratio 2.9; 95% CI 1.1, 7.4). CONCLUSIONS Use of antithyroid drugs was associated with a threefold increased risk of SCD. Although this might be directly caused by antithyroid drug use, it might be more readily explained by underlying poorly controlled hyperthyroidism, since treated patients who developed SCD still had low thyroid-stimulating hormone levels shortly before death. PMID:19740403

  10. Public and private sector contributions to the discovery and development of "impact" drugs.

    PubMed

    Reichert, Janice M; Milne, Christopher-Paul

    2002-01-01

    Recently, well-publicized reports by Public Citizen and the Joint Economic Committee (JEC) of the US Congress questioned the role of the drug industry in the discovery and development of therapeutically important drugs. To gain a better understanding of the relative roles of the public and private sectors in pharmaceutic innovation, the Tufts Center for the Study of Drug Development evaluated the underlying National Institutes of Health (NIH) and academic research cited in the Public Citizen and JEC reports and performed its own assessment of the relationship between the private and public sectors in drug discovery and development of 21 "impact" drugs. We found that, ultimately, any attempt to measure the relative contribution of the public and private sectors to the research and development (R&D) of therapeutically important drugs by output alone, such as counting publications or even product approvals, is flawed. Several key factors (eg, degree of uncertainty, expected market value, potential social benefit) affect investment decisions and determine whether public or private sector funds, or both, are most appropriate. Because of the competitiveness and complexity of today's R&D environment, both sectors are increasingly challenged to show returns on their investment and the traditional boundaries separating the roles of the private and public research spheres have become increasingly blurred. What remains clear, however, is that the process still starts with good science and ends with good medicine.

  11. Critical Evaluation of Human Oral Bioavailability for Pharmaceutical Drugs by Using Various Cheminformatics Approaches

    PubMed Central

    Kim, Marlene; Sedykh, Alexander; Chakravarti, Suman K.; Saiakhov, Roustem D.; Zhu, Hao

    2014-01-01

    Purpose Oral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time -consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process. Methods We employed Combinatorial Quantitative Structure-Activity Relationship approach to develop several computational %F models. We compiled a %F dataset of 995 drugs from public sources. After generating chemical descriptors for each compound, we used random forest, support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR models. The resulting models were validated using five-fold cross-validation. Results The external predictivity of %F values was poor (R2=0.28, n=995, MAE=24), but was improved (R2=0.40, n=362, MAE=21) by filtering unreliable predictions that had a high probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the compounds according to the %F values (%F<50% as “low”, %F≥50% as ‘high”) and developing category QSAR models resulted in an external accuracy of 76%. Conclusions In this study, we developed predictive %F QSAR models that could be used to evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits the resulting models. PMID:24306326

  12. Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets.

    PubMed

    Vasaikar, Suhas; Bhatia, Pooja; Bhatia, Partap G; Chu Yaiw, Koon

    2016-11-21

    In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach as one of the factors. Although a number of drugs have been developed with an emphasis on a single protein target, yet identification of valid target is complex. The approach focuses on an in vitro single target, which overlooks the complexity of cell and makes process of validation drug targets uncertain. Thus, it is imperative to search for alternatives rather than looking at success stories of target-based drug discovery. It would be beneficial if the drugs were developed to target multiple components. New approaches like reverse engineering and translational research need to take into account both system and target-based approach. This review evaluates the strengths and limitations of known drug discovery approaches and proposes alternative approaches for increasing efficiency against treatment.

  13. Drugs and You. Grade Five, Unit Three, 5.3. Comprehensive Social Studies Curriculum for the Inner City.

    ERIC Educational Resources Information Center

    Shalmo, Margaret

    This fifth grade unit is one of a sequential learning series of the Focus on Inner City Social Studies (FICSS) project developed in accordance with the needs and problems of an urban society. A description of the project is provided in SO 008 271. This specific unit examines the personal and social problems of drug abuse. The use of drugs is…

  14. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran.

    PubMed

    Sanjeewa, K K Asanka; Lee, Jung-Suck; Kim, Won-Suck; Jeon, You-Jin

    2017-12-01

    In recent decades, attention to cancer-preventive treatments and studies on the development of anticancer drugs have sharply increased owing to the increase in cancer-related death rates in every region of the world. However, due to the adverse effects of synthetic drugs, much attention has been given to the development of anticancer drugs from natural sources because of fewer side effects of natural compounds than those of synthetic drugs. Recent studies on compounds and crude extracts from marine algae have shown promising anticancer properties. Among those compounds, polysaccharides extracted from brown seaweeds play a principal role as anticancer agents. Especially, a number of studies have revealed that polysaccharides isolated from brown seaweeds, such as fucoidan and laminaran, have promising effects against different cancer cell types in vitro and in vivo. Herein, we reviewed in vitro and in vivo anticancer properties reported for fucoidan and laminaran toward various cancer cells from 2013 to 2016. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of berberine as a multi-target antimicrobial: a multi-omics study for drug discovery and repositioning.

    PubMed

    Karaosmanoglu, Kubra; Sayar, Nihat Alpagu; Kurnaz, Isil Aksan; Akbulut, Berna Sariyar

    2014-01-01

    Postgenomics drug development is undergoing major transformation in the age of multi-omics studies and drug repositioning. Rather than applications solely in personalized medicine, omics science thus additionally offers a better understanding of a broader range of drug targets and drug repositioning. Berberine is an isoquinoline alkaloid found in many medicinal plants. We report here a whole genome microarray study in tandem with proteomics techniques for mining the plethora of targets that are putatively involved in the antimicrobial activity of berberine against Escherichia coli. We found DNA replication/repair and transcription to be triggered by berberine, indicating that nucleic acids, in general, are among its targets. Our combined transcriptomics and proteomics multi-omics findings underscore that, in the presence of berberine, cell wall or cell membrane transport and motility-related functions are also specifically regulated. We further report a general decline in metabolism, as seen by repression of genes in carbohydrate and amino acid metabolism, energy production, and conversion. An involvement of multidrug efflux pumps, as well as reduced membrane permeability for developing resistance against berberine in E. coli was noted. Collectively, these findings offer original and significant leads for omics-guided drug discovery and future repositioning approaches in the postgenomics era, using berberine as a multi-omics case study.

  16. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications

    PubMed Central

    Stewart, Sarah; Ervine, Michael; Al-Kasasbeh, Rehan; Donnelly, Ryan F.

    2018-01-01

    Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections. PMID:29364833

  17. A novel in silico approach to drug discovery via computational intelligence.

    PubMed

    Hecht, David; Fogel, Gary B

    2009-04-01

    A computational intelligence drug discovery platform is introduced as an innovative technology designed to accelerate high-throughput drug screening for generalized protein-targeted drug discovery. This technology results in collections of novel small molecule compounds that bind to protein targets as well as details on predicted binding modes and molecular interactions. The approach was tested on dihydrofolate reductase (DHFR) for novel antimalarial drug discovery; however, the methods developed can be applied broadly in early stage drug discovery and development. For this purpose, an initial fragment library was defined, and an automated fragment assembly algorithm was generated. These were combined with a computational intelligence screening tool for prescreening of compounds relative to DHFR inhibition. The entire method was assayed relative to spaces of known DHFR inhibitors and with chemical feasibility in mind, leading to experimental validation in future studies.

  18. Polymeric anticancer drugs with pH-controlled activation.

    PubMed

    Ulbrich, Karel; Subr, Vladimír

    2004-04-23

    Use of macromolecular water-soluble carriers of anti-cancer drugs represents a promising approach to cancer therapy. Release of drugs from the carrier system is a prerequisite for therapeutic activity of most macromolecular anti-cancer conjugates. Incorporation of acid-sensitive spacers between the drug and carrier enables release of an active drug from the carrier in a tumor tissue, either in slightly acidic extracellular fluids or, after endocytosis, in endosomes or lysosomes of cancer cells. This paper reviews advances in development and study of properties of various acid-sensitive macromolecular drug delivery systems, starting from simple polymer-drug conjugates to ending with site-specific antibody-targeted polymer-drug conjugates.

  19. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    PubMed

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A new exposure model to evaluate smoked illicit drugs in rodents: A study of crack cocaine.

    PubMed

    Hueza, Isis M; Ponce, Fernando; Garcia, Raphael C T; Marcourakis, Tânia; Yonamine, Maurício; Mantovani, Cínthia de C; Kirsten, Thiago B

    2016-01-01

    The use of smoked illicit drugs has spread dramatically, but few studies use proper devices to expose animals to inhalational abused drugs despite the availability of numerous smoking devices that mimic tobacco exposure in rodents. Therefore, the present study developed an inexpensive device to easily expose laboratory animals to smoked drugs. We used crack cocaine as the drug of abuse, and the cocaine plasma levels and the behaviors of animals intoxicated with the crack cocaine were evaluated to prove inhaled drug absorption and systemic activity. We developed an acrylic device with two chambers that were interconnected and separated by a hatch. Three doses of crack (100, 250, or 500 mg), which contained 63.7% cocaine, were burned in a pipe, and the rats were exposed to the smoke for 5 or 10 min (n=5/amount/period). Exposure to the 250-mg dose for 10 min achieved cocaine plasma levels that were similar to those of users (170 ng/mL). Behavioral evaluations were also performed to validate the methodology. Rats (n=10/group) for these evaluations were exposed to 250 mg of crack cocaine or air for 10 min, twice daily, for 28 consecutive days. Open-field evaluations were performed at three different periods throughout the experimental design. Exposed animals exhibited transient anorexia, increased motor activity, and shorter stays in central areas of the open field, which suggests reduced anxiety. Therefore, the developed model effectively exposed animals to crack cocaine, and this model may be useful for the investigation of other inhalational abused drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Glycerogelatin-based ocular inserts of aceclofenac: physicochemical, drug release studies and efficacy against prostaglandin E₂-induced ocular inflammation.

    PubMed

    Mathurm, Manish; Gilhotra, Ritu Mehra

    2011-01-01

    An attempt has been made in the present study to formulate soluble ocular inserts of aceclofenac to facilitate the bioavailability of the drug into the eye, as no eye drop solution could be formulated. Glycero-gelatin ocular inserts/films were prepared and physicochemical parameters and drug release profiles of glycerol-gelatin films of aceclofenac were compared with surface cross-linked films of similar compositions. Ocular irritation of the developed formulation was also checked by HET-CAM test and efficacy of the developed formulation against prostaglandin-induced ocular inflammation in rabbit eye was determined. The non-cross-linked films showed poor mechanical, physicochemical properties, and very little potential of sustaining drug release, however cross-linking the films enhanced tensile strength by 70%, but elasticity decreased by 95%. The cross-linked ocular inserts showed less swelling than non-cross-linked. Formulation AF8 (20% gelatin and 70% glycerin, treated by cross-linker for 1 h) demonstrated the longest drug release for 24 h. As per the kinetic models all films showed a constant drug release with Higuchi diffusion mechanism. Formulation was found to be practically non-irritant. The optimized formulation was tested and compared with eye drops of aceclofenac for anti-inflammatory activity in rabbits against PGE₂-induced inflammation. In vivo studies with developed formulation indicated a significant inhibition of PGE₂-induced PMN migration as compared to eye drops. In conclusion, ocular inserts of aceclofenac was found promising as it achieved sustained drug release and better pharmacodynamic activity.

  2. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    PubMed Central

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  3. Prevention and treatment of college student drug use: A review of the literature.

    PubMed

    Dennhardt, Ashley A; Murphy, James G

    2013-10-01

    Drug use during the college years is a significant public health concern. The primary goal of this paper is to provide a comprehensive review of prevention and treatment studies of college student drug use in order to guide college prevention efforts and to inform and stimulate new research in this area. First, established risk factors for drug use were reviewed. High levels of personality traits including, impulsivity, sensation-seeking, negative emotionality, emotional dysregulation, and personality disorder symptoms increase risk for drug use. Drug use has also been linked to overestimating normative levels of drug use and experiencing negative life events, and specific motives for drug use are linked to more problematic patterns. There have been very few studies examining prevention and treatment, but parent-based and in-person brief motivational interventions appear to be promising. Longitudinal studies of the development and course of drug use among college students, as well as clinical trials to evaluate novel theoretically-based intervention and prevention programs that take into account established risk factors for drug abuse are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. All-atomistic molecular dynamics (AA-MD) studies and pharmacokinetic performance of PAMAM-dendrimer-furosemide delivery systems.

    PubMed

    Otto, Daniel P; de Villiers, Melgardt M

    2018-06-13

    Improvement of problematic dissolution and solubility properties of a model drug, furosemide, was investigated for poly(amidoamine) (PAMAM) dendrimer complexes of the drug. Full and half generation dendrimers with amino and ester terminals respectively, were studied. In vitro release performance of these complexes was investigated at drug loads ranging 5-60% using simulated gastric fluids. Full generation dendrimers accommodated higher drug loads, outperformed half-generation complexes, and free drug. Pharmacokinetic studies in rats indicated that the dendrimer complexes markedly improved in the bioavailability of the drug compared to the unformulated drug. The G3.0-PAMAM dendrimer complex showed a two-fold increase in C max and a 1.75-fold increase in AUC over the free drug. Additionally, T max was shortened from approximately 25 to 20 min. One of the first all-atomistic molecular dynamics (AA-MD) simulation studies was performed to evaluate low-generation dendrimer-drug complexes as well as its pharmacokinetic performance. AA-MD provided insight into the intermolecular interactions that take place between the dendrimer and drug. It is suggested that the dendrimer not only encapsulates the drug, but can also orientate the drug in stabilized dispersion to prevent drug clustering which could impact release and bioavailability negatively. AA-MD can be a useful tool to develop dendrimer-based drug delivery systems. Copyright © 2018. Published by Elsevier B.V.

  5. The delivery of poly(lactic acid)-poly(ethylene glycol) nanoparticles loaded with non-toxic drug to overcome drug resistance for the treatment of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Dhulekar, Jhilmil

    Neuroblastoma is a rare cancer of the sympathetic nervous system. A neuroblastoma tumor develops in the nerve tissue and is diagnosed in infants and children. Approximately 10.2 per million children under the age of 15 are affected in the United States and is slightly more common in boys. Neuroblastoma constitutes 6% of all childhood cancers and has a long-term survival rate of only 15%. There are approximately 700 new cases of neuroblastoma each year in the United States. With such a low rate of survival, the development of more effective treatment methods is necessary. A number of therapies are available for the treatment of these tumors; however, clinicians and their patients face the challenges of systemic side effects and drug resistance of the tumor cells. The application of nanoparticles has the potential to provide a safer and more effective method of delivery drugs to tumors. The advantage of using nanoparticles for drug delivery is the ability to specifically or passively target tumors while reducing the harmful side effects of chemotherapeutics. Drug delivery via nanoparticles can also allow for lower dosage requirements with controlled release of the drugs, which can further reduce systemic toxicity. The aim of this research was to develop a polymeric nanoparticle drug delivery system for the treatment of high-risk neuroblastoma. Nanoparticles composed of a poly(lactic acid)-poly(ethylene glycol) block copolymer were formulated to deliver a non-toxic drug in combination with Temozolomide, a commonly used chemotherapeutic drug for the treatment of neuroblastoma. The non-toxic drug acts as an inhibitor to the DNA-repair protein present in neuroblastoma cells that is responsible for inducing drug resistance in the cells, which would potentially allow for enhanced temozolomide activity. A variety of studies were completed to prove the nanoparticles' low toxicity, loading abilities, and uptake into cells. Additionally, studies were performed to determine the individual effect on cell toxicity of each drug and in combination. Finally, nanoparticles were loaded with the non-toxic drug and delivered with free temozolomide to determine the overall efficacy of the drugs in reducing neuroblastoma cell viability.

  6. Heat effects on drug delivery across human skin

    PubMed Central

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  7. Development and evaluation of controlled porosity osmotic pump for Nifedipine and Metoprolol combination

    PubMed Central

    2011-01-01

    Background A system that can deliver multi-drug at a prolonged rate is very important for the treatment of various chronic diseases such as diabetes, asthma and heart disease. Controlled porosity osmotic pump tablet (CPOP) system was designed to deliver Nifedipine (NP) and Metoprolol (MP) in a controlled manner up to 12 h. It was prepared by incorporating drugs in the core and coated with various types (PVP, PEG-400 and HPMC) and levels (30, 40 and 50% w/w of polymer) of pore former at a weight gain of 8, 12 & 15%. Results Formulation variables like type and level of pore former and percent weight gain of membrane was found to affect the drug release from the developed formulations. Drug release was inversely proportional to the membrane weight but directly related to the level of pore former. Burst strength of the exhausted shell was inversely proportional to the level of pore former, but directly affected by the membrane weight. Results of scanning electron microscopy (SEM) studies showed the formation of pores in the membrane from where the drug release occurred. Dissolution models were applied to drug release data in order to establish the mechanism of drug release kinetics. In vitro release kinetics was subjected to superposition method to predict in vivo performance of the developed formulation. Conclusion The developed osmotic system is effective in the multi-drug therapy of hypertension by delivering both drugs in a controlled manner. PMID:21477386

  8. An evaluation framework for funding drugs for rare diseases.

    PubMed

    Winquist, Eric; Bell, Chaim M; Clarke, Joe T R; Evans, Gerald; Martin, Janet; Sabharwal, Mona; Gadhok, Anita; Stevenson, Helen; Coyle, Doug

    2012-01-01

    For rare diseases it may be difficult to generate data from randomized trials to support funding of a drug. Enzyme replacement therapies for diseases of inherited metabolic enzyme deficiency provide an example of this dilemma. The Ontario Public Drug Programs convened the Drugs for Rare Diseases Working Group to develop a policy for assessing these drugs. The Drugs for Rare Diseases Working Group developed terms of reference expecting that the ideal policy product would be transparent and consistent and address unique aspects of the treatment of a specific rare condition while being adaptable to other dissimilar conditions. The perspective was that of a public payer addressing requests for funding generated for a specific drug, and included respect for the principles of "accountability for reasonableness" of Daniels and Sabin. A seven-step framework was developed and tested by using the case study of idursulfase for mucopolysaccharidosis II (Hunter disease). Estimation of clinical effectiveness was done by using decision modeling. The model developed informed funding recommendations and ultimately led to an agreement with the manufacturer allowing funding of idursulfase in Ontario. This policy framework attempts to address the policy challenges of funding drugs for rare diseases. The framework will be used to assess other drugs in future and will inevitably require modification with experience. It is hoped that it may be of value to other policymakers. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. A peek into the drug development scenario of endometriosis - A systematic review.

    PubMed

    Goenka, Luxitaa; George, Melvin; Sen, Maitrayee

    2017-06-01

    Endometriosis is a gynaecological disease that is characterised by the presence of endometrium like tissue-epithelium and stroma that develops outside the uterine cavity, which is responsible for pelvic pain and infertility. Even though several medical therapies exist for the treatment of endometriosis, each of the drug class has its own limitations such as cost of treatment, side-effects and its short-term effect on the symptoms of endometriosis. In this review, we have attempted to summarize the current status and challenges of drug development for endometriosis. A systematic review was done and all the RCTs were selected from the identified hits. We included studies that explored the usage of therapeutic drugs on endometriosis patients from inception till November 2016. The search term used was 'Endometriosis' using PubMed and Clinicaltrials.gov. For the final analysis, 60 articles were analyzed and we identified the newly emerging drug therapies for endometriosis treatment and have briefed their current status and challenges in drug development for endometriosis. The quality of the selected studies was assessed based on the degree of bias. The current classes of drugs that have shown promising therapeutic results include Gonadotropin- releasing hormone (GnRH) antagonists, aromatase inhibitors (AI), and selective progesterone and estrogen receptor modulators, dopamine receptor-2-agonists and statins. The drugs that failed midway during development include tanezumab, rosiglitazone, infliximab, pentoxifylline, telapristone acetate, asoprisnil and raloxifene. From the literature review, it appears that the most promising molecules for the treatment of endometriosis in the near future include elagolix, mifepristone, TAK-385, KLH-2109 and ASP1707 and cabergoline. It remains to be seen if these molecules would succeed large phase 3 clinical trials and overcome the regulatory hurdles to become an essential tool in the gynaecologist's armamentarium against endometriosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays.

    PubMed

    Navarrete, Enrique G; Liang, Ping; Lan, Feng; Sanchez-Freire, Verónica; Simmons, Chelsey; Gong, Tingyu; Sharma, Arun; Burridge, Paul W; Patlolla, Bhagat; Lee, Andrew S; Wu, Haodi; Beygui, Ramin E; Wu, Sean M; Robbins, Robert C; Bers, Donald M; Wu, Joseph C

    2013-09-10

    Drug-induced arrhythmia is one of the most common causes of drug development failure and withdrawal from market. This study tested whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with a low-impedance microelectrode array (MEA) system could improve on industry-standard preclinical cardiotoxicity screening methods, identify the effects of well-characterized drugs, and elucidate underlying risk factors for drug-induced arrhythmia. hiPSC-CMs may be advantageous over immortalized cell lines because they possess similar functional characteristics as primary human cardiomyocytes and can be generated in unlimited quantities. Pharmacological responses of beating embryoid bodies exposed to a comprehensive panel of drugs at 65 to 95 days postinduction were determined. Responses of hiPSC-CMs to drugs were qualitatively and quantitatively consistent with the reported drug effects in literature. Torsadogenic hERG blockers, such as sotalol and quinidine, produced statistically and physiologically significant effects, consistent with patch-clamp studies, on human embryonic stem cell-derived cardiomyocytes hESC-CMs. False-negative and false-positive hERG blockers were identified accurately. Consistent with published studies using animal models, early afterdepolarizations and ectopic beats were observed in 33% and 40% of embryoid bodies treated with sotalol and quinidine, respectively, compared with negligible early afterdepolarizations and ectopic beats in untreated controls. We found that drug-induced arrhythmias can be recapitulated in hiPSC-CMs and documented with low impedance MEA. Our data indicate that the MEA/hiPSC-CM assay is a sensitive, robust, and efficient platform for testing drug effectiveness and for arrhythmia screening. This system may hold great potential for reducing drug development costs and may provide significant advantages over current industry standard assays that use immortalized cell lines or animal models.

  11. Drug Resistance Profiles of Mycobacterium tuberculosis Complex and Factors Associated with Drug Resistance in the Northwest and Southwest Regions of Cameroon

    PubMed Central

    Meriki, Henry D.; Tufon, Kukwah A.; Atanga, Pascal N.; Ane-Anyangwe, Irene N.; Anong, Damian N.; Cho-Ngwa, Fidelis; Nkuo-Akenji, Theresa

    2013-01-01

    Background Anti-tuberculosis drug resistance continues to be a major obstacle to tuberculosis (TB) control programmes with HIV being a major risk factor in developing TB. We investigated anti-TB drug resistance profiles and the impact of socioeconomic as well as behavioural factors on the prevalence of TB and drug resistance in two regions of Cameroon with such data paucity. Methods This was a hospital-based study in which 1706 participants, comprising 1133 females and 573 males consecutively enrolled from selected TB and HIV treatment centres of the Northwest and Southwest regions. Demographic, clinical and self-reported risk behaviours and socioeconomic data were obtained with the consent of participants using questionnaires. Culture and drug resistance testing were performed according to standard procedures. Results The prevalence of resistance to at least one anti-TB drug was 27.7% and multi-drug resistance was 5.9%. Smoking, concurrent alcohol consumption and smoking, being on antiretroviral therapy for ≤ 12 months and previous household contact with TB patient were independently associated with tuberculosis prevalence, while only previous tuberculosis infection was associated with drug resistance in a univariate analysis. Conclusion The study showed a high prevalence of drug resistance TB in the study population with only previous TB infection associated with drug resistance in a univariate analysis. It also provides evidence in our context, of the role of alcohol and smoking in increasing the risk of developing TB, which is more likely in people living with HIV/AIDS. Therefore, it is important for public health authorities to integrate and intensify alcohol/smoking abstention interventions in TB and HIV control programs in Cameroon. PMID:24146991

  12. [Collaborative projects with academia for regulatory science studies on biomarkers].

    PubMed

    Saito, Yoshiro; Nakamura, Ryosuke; Maekawa, Keiko

    2014-01-01

    Biomarkers are useful tools to be utilized as indicators/predictors of disease severity and drug responsiveness/safety, and thus are expected to promote efficient drug development and to accelerate proper use of approved drugs. Many academic achievements have been reported, but only a small number of biomarkers are used in clinical trials and drug treatments. Regulatory sciences on biomarkers for their secure development and proper qualification are necessary to facilitate their practical application. We started to collaborate with Tohoku University and Nagoya City University for sample quality, biomarker identification, evaluation of their usage, and making guidances. In this short review, scheme and progress of these projects are introduced.

  13. Ecological Assessment of Substance-abuse Experiences (EASE): findings from a new instrument development pilot study.

    PubMed

    Matto, Holly C; Miller, Keith; Spera, Christopher

    2005-08-01

    A newly developed instrument that assesses a client's orientation to addiction or recovery communities using social context referents was pilot tested with a sample of 103 adults seeking treatment for substance abuse at outpatient and residential treatment facilities on the East Coast. Preliminary findings show promising subscale reliabilities, and suggest that drug- and recovery-related social identities are related to drug-use severity and drug-use concern; and drug-related attitudinal congruence between the treatment-seeker and family and treatment-seeker and other significant persons are related to intention to make behavioral changes in reducing substance abuse.

  14. Process evaluation and in vitro selectivity analysis of aptamer-drug polymeric formulation for targeted pharmaceutical delivery.

    PubMed

    Tan, Kei X; Lau, Sie Yon; Danquah, Michael K

    2018-05-01

    Targeted drug delivery is a promising strategy to promote effective delivery of conventional and emerging pharmaceuticals. The emergence of aptamers as superior targeting ligands to direct active drug molecules specifically to desired malignant cells has created new opportunities to enhance disease therapies. The application of biodegradable polymers as delivery carriers to develop aptamer-navigated drug delivery system is a promising approach to effectively deliver desired drug dosages to target cells. This study reports the development of a layer-by-layer aptamer-mediated drug delivery system (DPAP) via a w/o/w double emulsion technique homogenized by ultrasonication or magnetic stirring. Experimental results showed no significant differences in the biophysical characteristics of DPAP nanoparticles generated using the two homogenization techniques. The DPAP formulation demonstrated a strong targeting performance and selectivity towards its target receptor molecules in the presence of non-targets. The DPAP formulation demonstrated a controlled and sustained drug release profile under the conditions of pH 7 and temperature 37 °C. Also, the drug release rate of DPAP formulation was successfully accelerated under an endosomal acidic condition of ∼pH 5.5, indicating the potential to enhance drug delivery within the endosomal micro-environment. The findings from this work are useful to understanding polymer-aptamer-drug relationship and their impact on developing effective targeted delivery systems. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Diagnostic accuracy of a two-item Drug Abuse Screening Test (DAST-2).

    PubMed

    Tiet, Quyen Q; Leyva, Yani E; Moos, Rudolf H; Smith, Brandy

    2017-11-01

    Drug use is prevalent and costly to society, but individuals with drug use disorders (DUDs) are under-diagnosed and under-treated, particularly in primary care (PC) settings. Drug screening instruments have been developed to identify patients with DUDs and facilitate treatment. The Drug Abuse Screening Test (DAST) is one of the most well-known drug screening instruments. However, similar to many such instruments, it is too long for routine use in busy PC settings. This study developed and validated a briefer and more practical DAST for busy PC settings. We recruited 1300 PC patients in two Department of Veterans Affairs (VA) clinics. Participants responded to a structured diagnostic interview. We randomly selected half of the sample to develop and the other half to validate the new instrument. We employed signal detection techniques to select the best DAST items to identify DUDs (based on the MINI) and negative consequences of drug use (measured by the Inventory of Drug Use Consequences). Performance indicators were calculated. The two-item DAST (DAST-2) was 97% sensitive and 91% specific for DUDs in the development sample and 95% sensitive and 89% specific in the validation sample. It was highly sensitive and specific for DUD and negative consequences of drug use in subgroups of patients, including gender, age, race/ethnicity, marital status, educational level, and posttraumatic stress disorder status. The DAST-2 is an appropriate drug screening instrument for routine use in PC settings in the VA and may be applicable in broader range of PC clinics. Published by Elsevier Ltd.

  16. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    PubMed Central

    Dai, Jing; Hamon, Morgan; Jambovane, Sachin

    2016-01-01

    The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing. PMID:28952587

  17. Important role of translational science in rare disease innovation, discovery, and drug development.

    PubMed

    Pariser, Anne R; Gahl, William A

    2014-08-01

    Rare diseases play a leading role in innovation and the advancement of medical and pharmaceutical science. Most rare diseases are genetic disorders or atypical manifestations of infectious, immunologic, or oncologic diseases; they all provide opportunities to study extremes of human pathology and provide insight into both normal and aberrant physiology. Recently, drug development has become increasingly focused on classifying diseases largely on genetic grounds; this has allowed the identification of molecularly defined targets and the development of targeted therapies. Clinical trials are now focusing on progressively smaller subgroups within both common and rare disease populations, often based on genetic tests or biomarkers. Drug developers, researchers, and regulatory agencies face a variety of challenges throughout the life cycle of drug research and development for rare diseases. These include the small numbers of patients available for study, lack of knowledge of the disease's natural history, incomplete understanding of the basic mechanisms causing the disorder, and variability in disease severity, expression, and course. Traditional approaches to rare disease clinical research have not kept pace with advances in basic science, and increased attention to translational science is needed to address these challenges, especially diagnostic testing, registries, and novel trial designs.

  18. Pharmaceutical Product Lead Optimization for Better In vivo Bioequivalence Performance: A case study of Diclofenac Sodium Extended Release Matrix Tablets.

    PubMed

    Shahiwala, Aliasgar; Zarar, Aisha

    2018-01-01

    In order to prove the validity of a new formulation, a considerable amount of effort is required to study bioequivalence, which not only increases the burden of carrying out a number of bioequivalence studies but also eventually increases the cost of the optimization process. The aim of the present study was to develop sustained release matrix tablets containing diclofenac sodium using natural polymers and to demonstrate step by step process of product development till the prediction of in vivo marketed product equivalence of the developed product. Different batches of tablets were prepared by direct compression. In vitro drug release studies were performed as per USP. The drug release data were assessed using model-dependent, modelindependent and convolution approaches. Drug release profiles showed that extended release action were in the following order: Gum Tragacanth > Sodium Alginate > Gum Acacia. Amongst the different batches prepared, only F1 and F8 passed the USP criteria of drug release. Developed formulas were found to fit Higuchi kinetics model with Fickian (case I) diffusion-mediated release mechanism. Model- independent kinetics confirmed that total of four batches were passed depending on the similarity factors based on the comparison with the marketed Diclofenac. The results of in vivo predictive convolution model indicated that predicted AUC, Cmax and Tmax values for batch F8 were similar to that of marketed product. This study provides simple yet effective outline of pharmaceutical product development process that will minimize the formulation development trials and maximize the product success in bioequivalence studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Microemulsion-Based Topical Hydrogels of Tenoxicam for Treatment of Arthritis.

    PubMed

    Goindi, Shishu; Narula, Manleen; Kalra, Atin

    2016-06-01

    Tenoxicam (TNX) is a non-steroidal anti-inflammatory drug (NSAID) used for the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, backache and pain. However, prolonged oral use of this drug is associated with gastrointestinal adverse events like peptic ulceration, thus necessitating its development as topical formulation that could obviate the adverse effects and improve patient compliance. The present study was aimed at development of microemulsion-based formulations of TNX for topical delivery at the affected site. The pseudoternary phase diagrams were developed and microemulsion formulations were prepared using Captex 300/oleic acid as oil, Tween 80 as surfactant and n-butanol/ethanol as co-surfactant. Optimized microemulsions were characterized for drug content, droplet size, viscosity, pH and zeta potential. The ex vivo permeation studies through Laca mice skin were performed using Franz diffusion cell assembly, and the permeation profile of the microemulsion formulation was compared with aqueous suspension of drug and drug incorporated in conventional cream. Microemulsion formulations of TNX showed significantly higher (p < 0.001) mean cumulative percent permeation values in comparison to conventional cream and suspension of drug. In vivo anti-arthritic and anti-inflammatory activity of the developed TNX formulations was evaluated using various inflammatory models such as air pouch model, xylene-induced ear edema, cotton pellet granuloma and carrageenan-induced inflammation. Microemulsion formulations were found to be superior in controlling inflammation as compared to conventional topical dosage forms and showed efficacy equivalent to oral formulation. Results suggest that the developed microemulsion formulations may be used for effective topical delivery of TNX to treat various inflammatory conditions.

  20. 76 FR 57057 - International Cooperation on Harmonisation of Technical Requirements for Registration of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... Drugs in Food-Producing Animals: Comparative Metabolism Studies in Laboratory Animals; Availability...: Comparative Metabolism Studies in Laboratory Animals'' (VICH GL47). This guidance has been developed for... Metabolism and Residue Kinetics of Veterinary Drugs in Food- Producing Animals: Comparative Metabolism...

  1. In Silico Augmentation of the Drug Development Pipeline: Examples from the study of Acute Inflammation.

    PubMed

    An, Gary; Bartels, John; Vodovotz, Yoram

    2011-03-01

    The clinical translation of promising basic biomedical findings, whether derived from reductionist studies in academic laboratories or as the product of extensive high-throughput and -content screens in the biotechnology and pharmaceutical industries, has reached a period of stagnation in which ever higher research and development costs are yielding ever fewer new drugs. Systems biology and computational modeling have been touted as potential avenues by which to break through this logjam. However, few mechanistic computational approaches are utilized in a manner that is fully cognizant of the inherent clinical realities in which the drugs developed through this ostensibly rational process will be ultimately used. In this article, we present a Translational Systems Biology approach to inflammation. This approach is based on the use of mechanistic computational modeling centered on inherent clinical applicability, namely that a unified suite of models can be applied to generate in silico clinical trials, individualized computational models as tools for personalized medicine, and rational drug and device design based on disease mechanism.

  2. Criterion for excipients screening in the development of nanoemulsion formulation of three anti-inflammatory drugs.

    PubMed

    Shakeel, Faiyaz

    2010-01-01

    The present study was undertaken for screening of different excipients in the development of nanoemulsion formulations of three anti-inflammatory drugs namely ketoprofen, celecoxib (CXB) and meloxicam. Based on solubility profiles of each drug in oil, Triacetin (ketoprofen and CXB) and Labrafil (meloxicam) were selected as the oil phase. Based on maximum solubilization potential of oil in different surfactants, Cremophor-EL (ketoprofen and CXB) and Tween-80 (meloxicam) were selected as surfactants. Based on maximum nanoemulsion region in the pseudoternary phase diagrams, Transcutol-HP was selected as cosurfactant for all three drugs. 1:1 (ketoprofen and CXB) and 2:1 (meloxicam) mass ratio of surfactant to cosurfactant was selected for selection of different nanoemulsions on the basis of maximum nanoemulsion region in the phase diagrams. All selected nanoemulsion formulations were found thermodynamically stable. Results of these studies showed that all excipients were properly optimized for the development of nanoemulsion formulation of ketoprofen, CXB and meloxicam.

  3. Formulation development of physiological environment responsive periodontal drug delivery system for local delviery of metronidazole benzoate.

    PubMed

    Dabhi, Mahesh R; Sheth, Navin R

    2013-03-01

    The objective of the present investigation was to develop and evaluate physiological environment responsive periodontal drug delivery system (PERPDDS) for local delivery of metronidazole benzoate. Poly-ϵ-caprolactone an in situ precipitating polymer was used in combination with, carbopol 934P, a pH simulative polymer to develop PERPDDS. The prepared PERPDDS was evaluated for various parameters such as in vitro gelling capacity, viscosity, rheology, compatibility study, and in vitro diffusion study. A 3(2) full factorial design was used to investigate the influence of formulation variables. Drug release data from all formulations were fitted to different kinetic models and the korsemeyer-peppas model was found the best fit model. The value of diffusional exponent (n) was in between 0.3283 and 0.3979 indicating purely fickian diffusion release mechanism. Increasing the concentration of each polymeric component increases viscosity, and time for 50% and 90% drug release was observed and graphically represented by the surface response and contour plots.

  4. Biopharmaceutical considerations and characterizations in development of colon targeted dosage forms for inflammatory bowel disease.

    PubMed

    Malayandi, Rajkumar; Kondamudi, Phani Krishna; Ruby, P K; Aggarwal, Deepika

    2014-04-01

    Colon targeted dosage forms have been extensively studied for the localized treatment of inflammatory bowel disease. These dosage forms not only improve the therapeutic efficacy but also reduce the incidence of adverse drug reactions and hence improve the patient compliance. However, complex and highly variable gastro intestinal physiology limits the clinical success of these dosage forms. Biopharmaceutical characteristics of these dosage forms play a key role in rapid formulation development and ensure the clinical success. The complexity in product development and clinical success of colon targeted dosage forms are based on the biopharmaceutical characteristics such as physicochemical properties of drug substances, pharmaceutical characteristics of dosage form, physiological conditions and pharmacokinetic properties of drug substances as well as drug products. Various in vitro and in vivo techniques have been employed in past to characterize the biopharmaceutical properties of colon targeted dosage forms. This review focuses on the factors influencing the biopharmaceutical performances of the dosage forms, in vitro characterization techniques and in vivo studies.

  5. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    PubMed

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected p<0.05), highly ranked gene-sets reaching suggestive significance including the dopamine receptor antagonists metoclopramide and trifluoperazine and the tyrosine kinase inhibitor neratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  6. Motives for using: a comparison of prescription opioid, marijuana and cocaine dependent individuals.

    PubMed

    Hartwell, Karen J; Back, Sudie E; McRae-Clark, Aimee L; Shaftman, Stephanie R; Brady, Kathleen T

    2012-04-01

    Identification of the motives for drug use is critical to the development of effective interventions. Furthermore, consideration of the differences in motives for drug use across substance dependent populations may assist in tailoring interventions. To date, few studies have systematically compared motives for substance use across drug classes. The current study examined motives for drug use between non-treatment seeking individuals with current prescription opioid, marijuana, or cocaine dependence. Participants (N=227) completed the Inventory of Drug-Taking Situations (IDTS; Annis, Turner & Sklar,1997), which contains eight subscales assessing motives for drug use. The findings revealed that prescription opioid dependent individuals scored significantly higher than all other groups on the Physical Discomfort, Testing Personal Control and Conflict with Others subscales. Both the prescription opioid and cocaine dependent groups scored significantly higher than the marijuana group on the Urges or a Temptation to Use subscale. In contrast, marijuana dependent individuals scored highest on the Pleasant Emotions and Pleasant Times with Others subscales. The marked differences revealed in motives for drug use could be used in the development and implementation of specific treatment interventions for prescription opioid, marijuana and cocaine dependent individuals. Published by Elsevier Ltd.

  7. Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug-Drug Interactions.

    PubMed

    de Kanter, Ruben; Sidharta, Patricia N; Delahaye, Stéphane; Gnerre, Carmela; Segrestaa, Jerome; Buchmann, Stephan; Kohl, Christopher; Treiber, Alexander

    2016-03-01

    Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. A physiological-based pharmacokinetic (PBPK) model was developed by combining observations from clinical studies and physicochemical parameters as well as absorption, distribution, metabolism and excretion parameters determined in vitro. The model predicted the observed pharmacokinetics of macitentan and its active metabolite ACT-132577 after single and multiple dosing. It performed well in recovering the observed effect of the CYP3A4 inhibitors ketoconazole and cyclosporine, and the CYP3A4 inducer rifampicin, as well as in predicting interactions with S-warfarin and sildenafil. The model was robust enough to allow prospective predictions of macitentan-drug combinations not studied, including an alternative dosing regimen of ketoconazole and nine other CYP3A4-interacting drugs. Among these were the HIV drugs ritonavir and saquinavir, which were included because HIV infection is a known risk factor for the development of PAH. This example of the application of PBPK modeling to predict drug-drug interactions was used to support the labeling of macitentan (Opsumit).

  8. Mechanistic systems modeling to guide drug discovery and development

    PubMed Central

    Schmidt, Brian J.; Papin, Jason A.; Musante, Cynthia J.

    2013-01-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. PMID:22999913

  9. Mechanistic systems modeling to guide drug discovery and development.

    PubMed

    Schmidt, Brian J; Papin, Jason A; Musante, Cynthia J

    2013-02-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Leflunomide biodegradable microspheres intended for intra-articular administration: Development, anti-inflammatory activity and histopathological studies.

    PubMed

    El-Setouhy, Doaa Ahmed; Abdelmalak, Nevine Shawky; Anis, Shady E; Louis, Dina

    2015-11-30

    Leflunomide, the disease-modifying anti-rheumatic drug was formulated as microspheres for prolonged drug release in the form of intraarticular injection. Eight formulations were developed using three biodegradable PDLG polymers (lactide/glycolide copolymer) and polycaprolactone (PLC) at two drug:polymer ratios (1:2 and 1:4). Solvent evaporation method was employed using polyvinyl alcohol or hydropxypropyl methylcellulose as stabilizers. Formulations were assessed for encapsulation efficiency, yield, particle size, release pattern and SEM. F6 (PDLG 5010), with appropriate particle size and prolonged drug release, was chosen for in-vivo studies using arthritis induced rats, which were intrarticularly injected with F6 or took oral Avara(®). Nuclear factor-kappa B measurements and histopathologic studies were conducted. There was significant reduction of inflammation caused by both F6 and oral Avara(®). Histopathologic studies showed minimal infiltration by chronic inflammatory cells and no angiogenesis in F6 compared to Avara(®). Results also revealed biocompatibility of the polymer used. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Methods in Clinical Pharmacology Series

    PubMed Central

    Beaumont, Claire; Young, Graeme C; Cavalier, Tom; Young, Malcolm A

    2014-01-01

    Human radiolabel studies are traditionally conducted to provide a definitive understanding of the human absorption, distribution, metabolism and excretion (ADME) properties of a drug. However, advances in technology over the past decade have allowed alternative methods to be employed to obtain both clinical ADME and pharmacokinetic (PK) information. These include microdose and microtracer approaches using accelerator mass spectrometry, and the identification and quantification of metabolites in samples from classical human PK studies using technologies suitable for non-radiolabelled drug molecules, namely liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. These recently developed approaches are described here together with relevant examples primarily from experiences gained in support of drug development projects at GlaxoSmithKline. The advantages of these study designs together with their limitations are described. We also discuss special considerations which should be made for a successful outcome to these new approaches and also to the more traditional human radiolabel study in order to maximize knowledge around the human ADME properties of drug molecules. PMID:25041729

  12. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage.

    PubMed

    Rosenholm, Jessica M; Mamaeva, Veronika; Sahlgren, Cecilia; Lindén, Mika

    2012-01-01

    Nanotechnology may help overcome persisting limitations of current cancer treatment and thus contribute to the creation of more effective, safer and more affordable therapies. While some nanotechnology-based drug delivery systems are already being marketed and others are in clinical trial, most still remain in the preclinical development stage. Mesoporous silica nanoparticles have been highlighted as an interesting drug delivery platform, due to their flexibility and high drug load potential. Although numerous reports demonstrate sophisticated drug delivery mechanisms in vitro, the therapeutic benefit of these systems for in vivo applications have been under continuous debate. This has been due to nontranslatable conditions used in the in vitro studies, as well as contradictory conclusions drawn from preclinical (in vivo) studies. However, recent studies have indicated that the encouraging cellular studies could in fact be repeated also in vivo. Here, we report on these recent advances regarding therapeutic efficacy, targeting and safety issues related to the application of mesoporous silica nanoparticles in cancer therapy.

  13. HIV testing experience of drug users in Bali, Indonesia.

    PubMed

    Sagung Sawitri, A A; Sumantera, G M; Wirawan, D N; Ford, K; Lehman, E

    2006-08-01

    Recently, large increases have been noted in injection drug use and HIV prevalence among drug users in Indonesia. The objective of this study was to examine the experience of drug users with HIV testing in Bali, Indonesia. In-depth interviews were conducted with a sample of 40 drug users who had injected heroin in the Denpasar, Bali area. The users' experience with testing highlighted the importance of pre- and post-test counselling that provides clear information, confidentiality and assistance in developing social support.

  14. The influence of the European paediatric regulation on marketing authorisation of orphan drugs for children

    PubMed Central

    2014-01-01

    Background Drug development for rare diseases is challenging, especially when these orphan drugs (OD) are intended for children. In 2007 the EU Paediatric Drug Regulation was enacted to improve the development of high quality and ethically researched medicines for children through the establishment of Paediatric Investigation Plans (PIPs). The effect of the EU Paediatric Drug Regulation on the marketing authorisation (MA) of drugs for children with rare diseases was studied. Methods Data on all designated orphan drugs, their indication, MA, PIPs and indication group (adult or child) were obtained from the European Medicines Agency (EMA). The outcome and duration of the process from orphan drug designation (ODD) to MA, was compared, per indication, by age group. The effect of the Paediatric Drug Regulation, implemented in 2007, on the application process was assessed with survival analysis. Results Eighty-one orphan drugs obtained MA since 2000 and half are authorised for (a subgroup of) children; another 34 are currently undergoing further investigations in children through agreed PIPs. The Paediatric Drug Regulation did not significantly increase the number of ODDs with potential paediatric indications (58% before vs 64% after 2007 of ODDs, p = 0.1) and did not lead to more MAs for ODs with paediatric indications (60% vs 43%, p = 0.22). ODs authorised after 2007 had a longer time to MA than those authorised before 2007 (Hazard ratio (95% CI) 2.80 (1.84-4.28), p < 0.001); potential paediatric use did not influence the time to MA (Hazard ratio (95% CI) 1.14 (0.77-1.70), p = 0.52). Conclusions The EU Paediatric Drug Regulation had a minor impact on development and availability of ODs for children, was associated with a longer time to MA, but ensured the further paediatric development of drugs still off-label to children. The impact of the Paediatric Drug Regulation on research quantity and quality in children through PIPs is not yet clear. PMID:25091201

  15. The influence of the European paediatric regulation on marketing authorisation of orphan drugs for children.

    PubMed

    Kreeftmeijer-Vegter, Annemarie Rosan; de Boer, Anthonius; van der Vlugt-Meijer, Roselinda H; de Vries, Peter J

    2014-08-05

    Drug development for rare diseases is challenging, especially when these orphan drugs (OD) are intended for children. In 2007 the EU Paediatric Drug Regulation was enacted to improve the development of high quality and ethically researched medicines for children through the establishment of Paediatric Investigation Plans (PIPs). The effect of the EU Paediatric Drug Regulation on the marketing authorisation (MA) of drugs for children with rare diseases was studied. Data on all designated orphan drugs, their indication, MA, PIPs and indication group (adult or child) were obtained from the European Medicines Agency (EMA). The outcome and duration of the process from orphan drug designation (ODD) to MA, was compared, per indication, by age group. The effect of the Paediatric Drug Regulation, implemented in 2007, on the application process was assessed with survival analysis. Eighty-one orphan drugs obtained MA since 2000 and half are authorised for (a subgroup of) children; another 34 are currently undergoing further investigations in children through agreed PIPs. The Paediatric Drug Regulation did not significantly increase the number of ODDs with potential paediatric indications (58% before vs 64% after 2007 of ODDs, p = 0.1) and did not lead to more MAs for ODs with paediatric indications (60% vs 43%, p = 0.22). ODs authorised after 2007 had a longer time to MA than those authorised before 2007 (Hazard ratio (95% CI) 2.80 (1.84-4.28), p < 0.001); potential paediatric use did not influence the time to MA (Hazard ratio (95% CI) 1.14 (0.77-1.70), p = 0.52). The EU Paediatric Drug Regulation had a minor impact on development and availability of ODs for children, was associated with a longer time to MA, but ensured the further paediatric development of drugs still off-label to children. The impact of the Paediatric Drug Regulation on research quantity and quality in children through PIPs is not yet clear.

  16. Diagnostic accuracy of a two-item screen for drug use developed from the alcohol, smoking and substance involvement screening test (ASSIST).

    PubMed

    Tiet, Quyen Q; Leyva, Yani; Moos, Rudolf H; Smith, Brandy

    2016-07-01

    The Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) is a screening instrument to detect substance use in primary care (PC). To screen for illicit substances (excluding tobacco and alcohol), the ASSIST consists of 8-57 questions and requires complicated scoring. To improve the efficiency of screening of drug misuse in PC, this study constructed and validated a two-item screen for drug use from the ASSIST. Guided by previous reviews, the ASSIST was revised. Patients were recruited in VA primary care clinics (N=1283). Half of the sample was used to develop the ASSIST-Drug; the other half was used to validate it. The Mini International Neuropsychiatric Interview (MINI) and the Inventory of Drug Use Consequences were the criterion measures. A brief, two-item ASSIST-Drug was constructed. Based on the development sample, the ASSIST-Drug was 94.1% sensitive and 89.6% specific for drug use disorders. Based on the validation sample, it was 95.4% sensitive and 87.8% specific. The ASSIST-Drug also had comparable sensitivity and specificity to identify drug use negative consequences, as well as for diverse subgroups of patients in terms of gender, age, race/ethnicity, marital status, educational levels, and post traumatic stress disorder status. The ASSIST-Drug may be a useful screening tool for PC settings. It is reliable, brief, and easy to remember, administer and score. It is sensitive and specific for drug use disorders and drug use negative consequences, and the predictive properties are consistent across subgroup of patients. Published by Elsevier Ireland Ltd.

  17. Comparison of global versus Asian clinical trial strategies supportive of registration of drugs in Japan.

    PubMed

    Shirotani, Mari; Kurokawa, Tatsuo; Chiba, Koji

    2014-07-01

    The number of worldwide and Asian multiregional clinical trials (MRCTs) submitted for Japanese New Drug Applications increased markedly between 2009 and 2013, with an increasing number performed for simultaneously submission in the USA, EU, and Japan. Asian studies accounted for 32% of MRCTs (14/44 studies) and had comparatively small sample sizes (<500 subjects). Moreover, the number of Japanese subjects in Asian studies was 2.1- to 13.4-fold larger than the sample size estimated using the method described in Japanese MRCT guidelines, whereas the ratio for worldwide studies was 0.05- to 4.9-fold. Before the introduction of this guidelines, bridging or domestic clinical development strategies were used as the regional development strategy in accordance with ICH E5 guidelines. The results presented herein suggest that Asian studies were conducted when the drug had already been approved in the US/EU, when phase 3 clinical trials were not be planned in the USA/EU, when there was insufficient knowledge of ethnic differences in drug efficacy and safety, or when Caucasian data could not be extrapolated to the Japanese population. New strategies with Asian studies including the Japanese population could be conducted instead of Japanese domestic development strategy. © 2014, The American College of Clinical Pharmacology.

  18. Are Cocaine-Seeking "Habits" Necessary for the Development of Addiction-Like Behavior in Rats?

    PubMed

    Singer, Bryan F; Fadanelli, Monica; Kawa, Alex B; Robinson, Terry E

    2018-01-03

    Drug self-administration models of addiction typically require animals to make the same response (e.g., a lever-press or nose-poke) over and over to procure and take drugs. By their design, such procedures often produce behavior controlled by stimulus-response (S-R) habits. This has supported the notion of addiction as a "drug habit," and has led to considerable advances in our understanding of the neurobiological basis of such behavior. However, to procure such drugs as cocaine, addicts often require considerable ingenuity and flexibility in seeking behavior, which, by definition, precludes the development of habits. To better model drug-seeking behavior in addicts, we first developed a novel cocaine self-administration procedure [puzzle self-administration procedure (PSAP)] that required rats to solve a new puzzle every day to gain access to cocaine, which they then self-administered on an intermittent access (IntA) schedule. Such daily problem-solving precluded the development of S-R seeking habits. We then asked whether prolonged PSAP/IntA experience would nevertheless produce "symptoms of addiction." It did, including escalation of intake, sensitized motivation for drug, continued drug use in the face of adverse consequences, and very robust cue-induced reinstatement of drug seeking, especially in a subset of "addiction-prone" rats. Furthermore, drug-seeking behavior continued to require dopamine neurotransmission in the core of the nucleus accumbens (but not the dorsolateral striatum). We conclude that the development of S-R seeking habits is not necessary for the development of cocaine addiction-like behavior in rats. SIGNIFICANCE STATEMENT Substance-use disorders are often characterized as "habitual" behaviors aimed at obtaining and administering drugs. Although the actions involved in consuming drugs may involve a rigid repertoire of habitual behaviors, evidence suggests that addicts must be very creative and flexible when trying to procure drugs, and thus drug seeking cannot be governed by habit alone. We modeled flexible drug-seeking behavior in rats by requiring animals to solve daily puzzles to gain access to cocaine. We find that habitual drug-seeking isn't necessary for the development of addiction-like behavior, and that our procedure doesn't result in transfer of dopaminergic control from the ventral to dorsal striatum. This approach may prove useful in studying changes in neuropsychological function that promote the transition to addiction. Copyright © 2018 the authors 0270-6474/18/380060-14$15.00/0.

  19. The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design

    PubMed Central

    Cozza, Giorgio

    2017-01-01

    Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial and error testing”. In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising. PMID:28230762

  20. Biological Evidence for Paradoxical Improvement of Psychiatric Disorder Symptoms by Addictive Drugs.

    PubMed

    Müller, Christian P; Kornhuber, Johannes

    2017-06-01

    Addiction biology has focused on the mechanisms of the positive and negative reinforcing actions of addictive drugs but neglected potential benefits. Two new studies provide the first insights into a neurobiology of psychoactive drug instrumentalization. This may help us design better models for addiction neuroscience and opens a new dimension for the development of personalized pharmacotherapy of drug addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In vivo performance of a microelectrode neural probe with integrated drug delivery

    PubMed Central

    Rohatgi, Pratik; Langhals, Nicholas B.; Kipke, Daryl R.; Patil, Parag G.

    2014-01-01

    Object The availability of sophisticated neural probes is a key prerequisite in the development of future brain machine interfaces (BMI). In this study, we developed and validated a neural probe design capable of simultaneous drug delivery and electrophysiology recordings in vivo. Focal drug delivery has promise to dramatically extend the recording lives of neural probes, a limiting factor to clinical adoption of BMI technology. Methods To form the multifunctional neural probe, we affixed a 16-channel microfabricated silicon electrode array to a fused silica catheter. Three experiments were conducted to characterize the performance of the device. Experiment 1 examines cellular damage from probe insertion and the drug distribution in tissue. Experiment 2 measures the effects of saline infusions delivered through the probe on concurrent electrophysiology. Experiment 3 demonstrates that a physiologically relevant amount of drug can be delivered in a controlled fashion. For these experiments, Hoechst and propidium iodide were used to assess insertion trauma and the tissue distribution of the infusate. Artificial cerebral spinal fluid and tetrodotoxin were injected to determine the efficacy of drug delivery. Results The newly developed multifunctional neural probes were successfully inserted into rat cortex and were able to deliver fluids and drugs that resulted in the expected electrophysiological and histological responses. The damage from insertion of the device into brain tissue was substantially less than the volume of drug dispersion in tissue. Electrophysiological activity, including both individual spikes as well as local field potentials, was successfully recorded with this device during real-time drug delivery. No significant changes were seen in response to delivery of artificial cerebral spinal fluid as a control experiment, whereas delivery of tetrodotoxin produced the expected result of suppressing all spiking activity in the vicinity of the catheter outlet. Conclusions Multifunctional neural probes such as the ones developed and validated within this study have great potential to help further understand the design space and criteria for the next generation of neural probe technology. By incorporating integrated drug delivery functionality into the probes, new treatment options for neurological disorders and regenerative neural interfaces utilizing localized and feedback controlled delivery of drugs can be realized in the near future. PMID:19569896

  2. Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast.

    PubMed

    Peters, Frank T; Bureik, Matthias; Maurer, Hans H

    2009-07-01

    Cytochrome P450 mono-oxygenases (CYPs) are the major enzymes involved in the metabolism of drugs and poisons in humans. The variation of their activity - due to genetic polymorphisms or enzyme inhibition/induction - potentially increases the risk of side effects or toxicity. Studies on CYP-dependent metabolism are important in drug-development or toxicity studies. Reference standards of drug metabolites required for such studies, especially in the context of metabolites in safety testing (MIST), are often not commercially available and their classical chemical synthesis can be cumbersome. Recently, a biotechnological approach using human CYP isozymes heterologously expressed in fission yeast was developed for the synthesis of drug metabolites. Among other aspects, this approach has the distinct advantages that the reactions run under mild conditions and that only the final product must be isolated and characterized. This review overviews the first practical applications of this new approach and discusses the selection of substrates, metabolites and fission yeast strains as well as important aspects of incubation, product isolation and clean-up.

  3. Society and its influences on drug use among young individuals in Tehran, Iran.

    PubMed

    Mirlashari, Jila; Demirkol, Apo; Salsali, Mahvash; Rafiey, Hassan; Jahanbani, Jahanfar

    2013-01-01

    Illicit Drug use poses a substantial public health problem around the world, mainly affecting young people. Current estimates suggest that Iran has the highest rate of opium addiction per capita in the world. It has been suggested that multiple elements contribute to the process of drug use. The aim of this study is to explore the probable components in the society that might play a role in the initiation of drug use among young adults. The study is qualitative in nature. Twenty four in-depth interviews were conducted with drug-using young men (n = 10) and women (n = 10) and their family members (n = 4). Based on our data analysis, developing a pro-drug attitude, conformist attitude of society toward treating youth and young individuals, and having weak approach toward prevention were identified as important determinants of substance use. We recommend the need for early intervention, especially for at-risk communities. The results of this research suggest that dealing with a major problem such as drug use needs a comprehensive assessment of the context in which young people live and use substances. According to our findings, exploring young drug users experiences is not only important but also useful for policy makers to develop more effective prevention and intervention programs.

  4. Development of performance matrix for generic product equivalence of acyclovir topical creams.

    PubMed

    Krishnaiah, Yellela S R; Xu, Xiaoming; Rahman, Ziyaur; Yang, Yang; Katragadda, Usha; Lionberger, Robert; Peters, John R; Uhl, Kathleen; Khan, Mansoor A

    2014-11-20

    The effect of process variability on physicochemical characteristics and in vitro performance of qualitatively (Q1) and quantitatively (Q2) equivalent generic acyclovir topical dermatological creams was investigated to develop a matrix of standards for determining their in vitro bioequivalence with reference listed drug (RLD) product (Zovirax®). A fractional factorial design of experiment (DOE) with triplicate center point was used to create 11 acyclovir cream formulations with manufacturing variables such as pH of aqueous phase, emulsification time, homogenization speed, and emulsification temperature. Three more formulations (F-12-F-14) with drug particle size representing RLD were also prepared where the pH of the final product was adjusted. The formulations were subjected to physicochemical characterization (drug particle size, spreadability, viscosity, pH, and drug concentration in aqueous phase) and in vitro drug release studies against RLD. The results demonstrated that DOE formulations were structurally and functionally (e.g., drug release) similar (Q3) to RLD. Moreover, in vitro drug permeation studies showed that extent of drug bioavailability/retention in human epidermis from F-12-F-14 were similar to RLD, although differed in rate of permeation. The results suggested generic acyclovir creams can be manufactured to obtain identical performance as that of RLD with Q1/Q2/Q3. Published by Elsevier B.V.

  5. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    PubMed

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  6. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    PubMed

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  7. Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines.

    PubMed

    Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella

    2017-04-01

    Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA+SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of a stable low-dose aglycosylated antibody formulation to minimize protein loss during intravenous administration.

    PubMed

    Morar-Mitrica, Sorina; Puri, Manasi; Beumer Sassi, Alexandra; Fuller, Joshua; Hu, Ping; Crotts, George; Nesta, Douglas

    2015-01-01

    The physical and chemical integrity of a biopharmaceutical must be maintained not only during long-term storage but also during administration. Specifically for the intravenous (i.v.) delivery of a protein drug, loss of stability can occur when the protein formulation is compounded with i.v. bag diluents, thus modifying the original composition of the drug product. Here we present the challenges associated with the delivery of a low-dose, highly potent monoclonal antibody (mAb) via the i.v. route. Through parallel in-use stability studies and conventional formulation development, a drug product was developed in which adsorptive losses and critical oxidative degradation pathways were effectively controlled. This development approach enabled the i.v. administration of clinical doses in the range of 0.1 to 0.5 mg total protein, while ensuring liquid drug product storage stability under refrigerated conditions.

  9. Development of a stable low-dose aglycosylated antibody formulation to minimize protein loss during intravenous administration

    PubMed Central

    Morar-Mitrica, Sorina; Puri, Manasi; Beumer Sassi, Alexandra; Fuller, Joshua; Hu, Ping; Crotts, George; Nesta, Douglas

    2015-01-01

    The physical and chemical integrity of a biopharmaceutical must be maintained not only during long-term storage but also during administration. Specifically for the intravenous (i.v.) delivery of a protein drug, loss of stability can occur when the protein formulation is compounded with i.v. bag diluents, thus modifying the original composition of the drug product. Here we present the challenges associated with the delivery of a low-dose, highly potent monoclonal antibody (mAb) via the i.v. route. Through parallel in-use stability studies and conventional formulation development, a drug product was developed in which adsorptive losses and critical oxidative degradation pathways were effectively controlled. This development approach enabled the i.v. administration of clinical doses in the range of 0.1 to 0.5 mg total protein, while ensuring liquid drug product storage stability under refrigerated conditions. PMID:26073995

  10. Long-Acting Antiretrovirals: Where Are We now?

    PubMed

    Nyaku, Amesika N; Kelly, Sean G; Taiwo, Babafemi O

    2017-04-01

    Current HIV treatment options require daily use of combination antiretroviral drugs. Many persons living with HIV experience treatment fatigue and suboptimal adherence as a result. Long-acting antiretroviral drugs are being developed to expand options for HIV treatment. Here, we review the agents in development, and evaluate data from recent clinical trials. In addition, we anticipate challenges to successful widespread use of long-acting antiretrovirals. Parenteral nanosuspensions of cabotegravir and rilpivirine, and dapivirine vaginal ring are the farthest in clinical development. Long-acting modalities in earlier development stages employ drug-loaded implants, microparticles, or targeted mutagenesis, among other innovations. Long-acting antiretroviral drugs promise new options for HIV prevention and treatment, and ways to address poor adherence and treatment fatigue. Further studies will identify the long-acting agents or combinations that are suitable for routine use. Creative solutions will be needed for anticipated implementation challenges.

  11. Drug and alcohol-impaired driving among electronic music dance event attendees

    PubMed Central

    Furr-Holden, Debra; Voas, Robert B.; Kelley-Baker, Tara; Miller, Brenda

    2011-01-01

    Background Drug-impaired driving has received increased attention resulting from development of rapid drug-screening procedures used by police and state laws establishing per se limits for drug levels in drivers. Venues that host electronic music dance events (EMDEs) provide a unique opportunity to assess drug-impaired driving among a high proportion of young adult drug users. EMDEs are late-night dance parties marked by a substantial number of young adult attendees and elevated drug involvement. No studies to date have examined drug-impaired driving in a natural environment with active drug and alcohol users. Methods Six EMDEs were sampled in San Diego, California, and Baltimore, Maryland. A random sample of approximately 40 attendees per event were administered surveys about alcohol and other drug (AOD) use and driving status, given breath tests for alcohol, and asked to provide oral fluid samples to test for illicit drug use upon entering and exiting the events. Results Driving status reduced the level of alcohol use (including abstaining) but the impact on drug-taking was not significant. However, 62% of individuals who reported their intention to drive away from the events were positive for drugs or alcohol upon leaving. This suggests that these events and settings are appropriate ones for developing interventions for reducing risks for young adults. PMID:16675160

  12. Drug and alcohol-impaired driving among electronic music dance event attendees.

    PubMed

    Furr-Holden, Debra; Voas, Robert B; Kelley-Baker, Tara; Miller, Brenda

    2006-10-15

    Drug-impaired driving has received increased attention resulting from development of rapid drug-screening procedures used by police and state laws establishing per se limits for drug levels in drivers. Venues that host electronic music dance events (EMDEs) provide a unique opportunity to assess drug-impaired driving among a high proportion of young adult drug users. EMDEs are late-night dance parties marked by a substantial number of young adult attendees and elevated drug involvement. No studies to date have examined drug-impaired driving in a natural environment with active drug and alcohol users. Six EMDEs were sampled in San Diego, California, and Baltimore, Maryland. A random sample of approximately 40 attendees per event were administered surveys about alcohol and other drug (AOD) use and driving status, given breath tests for alcohol, and asked to provide oral fluid samples to test for illicit drug use upon entering and exiting the events. Driving status reduced the level of alcohol use (including abstaining) but the impact on drug-taking was not significant. However, 62% of individuals who reported their intention to drive away from the events were positive for drugs or alcohol upon leaving. This suggests that these events and settings are appropriate ones for developing interventions for reducing risks for young adults.

  13. Design of a potential colonic drug delivery system of mesalamine.

    PubMed

    Gohel, Mukesh C; Parikh, Rajesh K; Nagori, Stavan A; Dabhi, Mahesh R

    2008-01-01

    The aim of the present investigation was to develop a site-specific colonic drug delivery system, built on the principles of the combination of pH and time sensitivity. Press-coated mesalamine tablets with a coat of HPMC E-15 were over-coated with Eudragit S100. The in vitro drug release study was conducted using sequential dissolution technique at pH 1.2, 6.0, 7.2 and 6.4 mimicking different regions of gastrointestinal tract. The optimized batch (F2) showed less than 6% of drug release before reaching colonic pH 6.4 and complete drug release was obtained thereafter within 2 hr. A short-term dissolution stability study demonstrated statistical insignificant difference in drug release.

  14. Drug utilization and medication costs at the end of life.

    PubMed

    Pont, Lisa; Jansen, Kristian; Schaufel, Margrete Aase; Haugen, Dagny Faksvåg; Ruths, Sabine

    2016-01-01

    In the end stages of life, drug treatment goals shift to symptom control and quality of life and as such changes in drug utilization are expected. The aim of this paper is to review the extent to which costs are considered in drug utilization research at the end of life, with a particular focus on the outcome measures being used. This systematic review identified seven studies across varied settings studies reporting both drug utilization and medication cost outcome measures. The main factors identified that impacted medication use and cost were the time period considered and the provision of specialist palliative care services. Combining drug utilization and medication cost outcomes is critical for the allocation of healthcare resources and the development of a sound health policy.

  15. Older adults' drug benefit beliefs: construct definition and measure development.

    PubMed

    Cline, Richard R; Gupta, Kiran; Singh, Reshmi L

    2008-03-01

    The Medicare Prescription Drug, Improvement and Modernization Act of 2003 provides coverage of outpatient prescription drugs for Medicare beneficiaries. Although much has been learned since the program's implementation, a context within which this information can be understood is lacking. The purpose of this study was to develop a reliable and valid multi-item instrument measuring beliefs about Medicare prescription drug benefits. Survey items were generated using focus group transcripts, other surveys on the Medicare Part "D" program, and past studies of choice and satisfaction in drug insurance programs. Using data from the survey pilot test, item and reliability analyses were used to reduce and refine an initial pool of items. Data then were collected from a cross-sectional, mail survey of older adults living in Minnesota. Data were analyzed using exploratory factor analysis. Summated rating scales then were constructed and assessed further using reliability analyses. Construct validity of summated scales was examined by comparing scale scores across response categories of survey items that collected information on general political attitudes, perceptions of the Medicare Part "D" program, health status, and health care utilization and demographics. The adjusted response rate for the main survey was 55.98% (744/1329). Iterative factor analysis produced 2 interpretable scales. The first, termed "access/equity" (13 items, Cronbach's alpha=0.89) measures beliefs that a Medicare drug benefit should both provide affordable prescription drugs for beneficiaries and do this in a manner that is equitable for all participants. The second, termed "comprehensibility" (6 items, Cronbach's alpha=0.80) assesses beliefs that regulations governing a Medicare drug benefit should be easily understood. Discriminant validity tests suggest that these measures behave in a manner consistent with related research in these areas. Measures of 2 facets of older adults' drug benefit beliefs were developed using a multiple step procedure. Future research could focus on developing a better understanding of other facets of these beliefs and sound methods of measurement.

  16. The chicken chorioallantoic membrane model in biology, medicine and bioengineering

    PubMed Central

    Nowak-Sliwinska, Patrycja; Segura, Tatiana; Iruela-Arispe, M. Luisa

    2015-01-01

    The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and / or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology. PMID:25138280

  17. Characterization of 12 GnRH peptide agonists - a kinetic perspective.

    PubMed

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak-Reppel, Katrin; Fernández-Montalván, Amaury E; IJzerman, Adriaan P; Heitman, Laura H

    2016-01-01

    Drug-target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin-releasing hormone (GnRH) receptor for the treatment of hormone-dependent diseases. Surprisingly, the kinetic receptor-binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor-binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. A novel radioligand-binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [(125) I]-triptorelin. In addition to radioligand-binding studies, a homogeneous time-resolved FRET Tag-lite™ method was developed as an alternative assay for the same purpose. Two novel competition association assays were successfully developed and applied to determine the kinetic receptor-binding characteristics of 12 high-affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. © 2015 The British Pharmacological Society.

  18. Preformulation and Vaginal Film Formulation Development of Microbicide Drug Candidate CSIC for HIV prevention

    PubMed Central

    Gong, Tiantian; Zhang, Wei; Parniak, Michael A.; Graebing, Phillip W.; Moncla, Bernard; Gupta, Phalguni; Empey, Kerry M.; Rohan, Lisa C.

    2017-01-01

    Purpose 5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. Methods Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. Results Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. Conclusions The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform. PMID:28983328

  19. Preformulation and Vaginal Film Formulation Development of Microbicide Drug Candidate CSIC for HIV prevention.

    PubMed

    Gong, Tiantian; Zhang, Wei; Parniak, Michael A; Graebing, Phillip W; Moncla, Bernard; Gupta, Phalguni; Empey, Kerry M; Rohan, Lisa C

    2017-06-01

    5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w ) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform.

  20. 75 FR 10487 - International Conference on Harmonisation; Guidance on S9 Nonclinical Evaluation for Anticancer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... drugs and biotechnology derived products, intended to treat patients with advanced cancer. The... studies for the development of pharmaceuticals, including both drugs and biotechnology derived products...

  1. Value of shared preclinical safety studies - The eTOX database.

    PubMed

    Briggs, Katharine; Barber, Chris; Cases, Montserrat; Marc, Philippe; Steger-Hartmann, Thomas

    2015-01-01

    A first analysis of a database of shared preclinical safety data for 1214 small molecule drugs and drug candidates extracted from 3970 reports donated by thirteen pharmaceutical companies for the eTOX project (www.etoxproject.eu) is presented. Species, duration of exposure and administration route data were analysed to assess if large enough subsets of homogenous data are available for building in silico predictive models. Prevalence of treatment related effects for the different types of findings recorded were analysed. The eTOX ontology was used to determine the most common treatment-related clinical chemistry and histopathology findings reported in the database. The data were then mined to evaluate sensitivity of established in vivo biomarkers for liver toxicity risk assessment. The value of the database to inform other drug development projects during early drug development is illustrated by a case study.

  2. New treatments for the motor symptoms of Parkinson's disease.

    PubMed

    Vijverman, Anne-Catherine; Fox, Susan H

    2014-11-01

    Levodopa remains the most potent drug to treat motor symptoms in Parkinson's disease (PD); however, motor fluctuations and levodopa-induced dyskinesia that occur with long-term use restrict some of its therapeutic value. Despite these limitations, the medical treatment of PD strives for continuous relief of symptoms using different strategies throughout the course of the illness: increasing the half-life of levodopa, using 'levodopa-sparing agents' and adding non-dopaminergic drugs. New options to 'improve' delivery of levodopa are under investigation, including long-acting levodopa, nasal inhalation and continuous subcutaneous or intrajejunal administration of levodopa. Long-acting dopamine agonists were recently developed and are undergoing further comparative studies to investigate potential superiority over the immediate-release formulations. Non-dopaminergic drugs acting on adenosine receptors, cholinergic, adrenergic, serotoninergic and glutamatergic pathways are newly developed and many are being evaluated in Phase II and Phase III trials. This article focuses on promising novel therapeutic approaches for the management of PD motor symptoms and motor complications. We will provide an update since 2011 on new formulations of current drugs, new drugs with promising results in Phase II and Phase III clinical trials, old drugs with new possibilities and some new potential strategies that are currently in Phase I and II of development (study start date may precede 2011 but are included as study is still ongoing or full data have not yet been published). Negative Phase II and Phase III clinical trials published since 2011 will also be briefly mentioned.

  3. Atropinic burden of drugs during pregnancy and psychological development of children: a cohort study in the EFEMERIS database.

    PubMed

    Beau, Anna-Belle; Montastruc, Jean-Louis; Lacroix, Isabelle; Montastruc, François; Hurault-Delarue, Caroline; Damase-Michel, Christine

    2016-08-01

    The aim of this study was to evaluate the potential effect of in utero exposure to drugs with atropinic properties on infant psychological development using atropinic burden (AB) scales. Women from the EFEMERIS cohort, a French database including prescribed and dispensed reimbursed drugs during pregnancy and pregnancy outcomes, delivering between 2004 and 2010 were included (n = 43 740). Each drug was classified as having no (score = 0), few (score = 1) or strong (score = 3) atropinic properties. AB per woman was calculated by adding the atropinic scores of drugs prescribed during pregnancy. AB was categorized as exposure or no exposure. Secondary analyses were performed by dividing the exposure into four scores = [0], [1-8], [9-17] and [≥18]. Data for psychological development were extracted from children's medical certificates completed at 9 and 24 months. Thirty-four% (n = 14 925) of women received at least one atropinic drug during pregnancy. Women with AB ≥1 were older and received more drugs during pregnancy than unexposed women. At 24 months, more infants of mothers with AB ≥1 had difficulties to 'name a picture' (ORa , 1.18, 95% CI 1.03, 1.36) and to 'understand instructions' (ORa , 1.61, 95% CI 1.13, , 2.30]) compared with infants of unexposed women. Analyses of four groups of exposure and analyses excluding women receiving psychotropics led to similar results. The study showed significant association between in utero exposure to drugs with atropinic properties and fewer infant cognitive acquisitions at 24 months. Further exploring the potential effect of simultaneous use of drugs with atropinic effects among pregnant women will bring into consideration whether such prescriptions could be inappropriate for the child. © 2016 The British Pharmacological Society.

  4. A quantitative benefit-risk assessment approach to improve decision making in drug development: Application of a multicriteria decision analysis model in the development of combination therapy for overactive bladder.

    PubMed

    de Greef-van der Sandt, I; Newgreen, D; Schaddelee, M; Dorrepaal, C; Martina, R; Ridder, A; van Maanen, R

    2016-04-01

    A multicriteria decision analysis (MCDA) approach was developed and used to estimate the benefit-risk of solifenacin and mirabegron and their combination in the treatment of overactive bladder (OAB). The objectives were 1) to develop an MCDA tool to compare drug effects in OAB quantitatively, 2) to establish transparency in the evaluation of the benefit-risk profile of various dose combinations, and 3) to quantify the added value of combination use compared to monotherapies. The MCDA model was developed using efficacy, safety, and tolerability attributes and the results of a phase II factorial design combination study were evaluated. Combinations of solifenacin 5 mg and mirabegron 25 mg and mirabegron 50 (5+25 and 5+50) scored the highest clinical utility and supported combination therapy development of solifenacin and mirabegron for phase III clinical development at these dose regimens. This case study underlines the benefit of using a quantitative approach in clinical drug development programs. © 2015 The American Society for Clinical Pharmacology and Therapeutics.

  5. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  6. Functional and unmodified MWNTs for delivery of the water-insoluble drug Carvedilol - A drug-loading mechanism

    NASA Astrophysics Data System (ADS)

    Li, Yuting; Wang, Tianyi; Wang, Jing; Jiang, Tongying; Cheng, Gang; Wang, Siling

    2011-04-01

    The purpose of this study was to develop carboxyl multi-wall carbon nanotubes (MWNTs) and unmodified MWNTs loaded with a poorly water-soluble drug, intended to improve the drug loading capacity, dissolubility and study the drug-loading mechanism. MWNTs were modified with a carboxyl group through the acid treatment. MWNTs as well as the resulting functionalized MWNTs were investigated as scaffold for loading the model drug, Carvedilol (CAR), using three different methods (the fusion method, the incipient wetness impregnation method, and the solvent method). The effects of different pore size, specific surface area and physical state were systematically studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The functional MWNTs allowed a higher drug loading than the unmodified preparations. The methods used to load the drug had a marked effect on the drug-loading, dissolution, and physical state of the drug as well as its distribution. In addition, the solubility of the drug was increased when carried by both MWNTs and functional MWNTs, and this might help to improve the bioavailability.

  7. Prevalence of anthelmintic resistance on Lithuanian sheep farms assessed by in vitro methods.

    PubMed

    Kupčinskas, Tomas; Stadalienė, Inga; Šarkūnas, Mindaugas; Riškevičienė, Vita; Várady, Marian; Höglund, Johan; Petkevičius, Saulius

    2015-12-16

    This study examines the prevalence of drug resistance in gastrointestinal nematodes to macrocyclic lactones (ML) and benzimidazoles (BZ) in Lithuanian sheep using sensitive and precise in vitro methods. The survey was conducted from August 2013 to November 2014. Thirty-three farms with sheep previously treated with BZ and ivermectin (IVM) were included in the study. On 12 farms where only BZ were used, egg hatch discrimination dose testing (EHDDT) was conducted to detect anthelmintic resistance (AR) to BZ. On eight farms where only ML were used, micro agar larval development testing (MALDT) was conducted to detect AR to ivermectin (IVM). On the remaining 13 farms, where both classes of drugs were used, EHDDT and MALDT were both applied to detect multidrug resistance to BZ and IVM. BZ-resistant gastrointestinal nematodes were found on all 25 farms with a previous history of BZ use. High levels of resistance (>40 % of hatching) were recorded on 36 % of these farms, and low levels (<20 % of hatching) on 40 % of farms. IVM-resistant populations were found on 13 out of 21 sheep farms using this drug. Of these 13 farms with AR to IVM, low levels of resistance (<30 % development) were recorded on 84.6 % of farms and high levels (>30 % development) on 15.4 % of farms. No resistance to IVM was recorded on 38.1 % of farms. Multi-drug resistance was detected on five farms out of 13 (38.5 %) using both classes of drugs. The present study demonstrates the existence of AR to BZ and ML on Lithuanian sheep farms thus confirming results in a previous in vivo study. Cases of multi-drug resistance were recorded in the present study and require further consideration. An appropriate strategy for anthelmintic treatment, measures to prevent gastrointestinal nematode infection and a better understanding of the management practices associated with resistance may slow down further development of AR.

  8. Opioids in Preclinical and Clinical Trials

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    Since 1952, when Gates determined the stereo structure of morphine, numerous groups have focused on discovering a nonnarcotic opioid drug [1]. Although several natural, semisynthetic, and synthetic opioid ligands (alkaloids and peptides) have been developed in clinical studies, very few were nonnarcotic opioid drugs [2]. One of the most important studies in the opioid field appeared in 1976, when Martin and colleagues [3] established types of opioid receptors (these are now classified into μ, δ, and κ types). Later, Portoghese discovered a highly selective μ type opioid receptor antagonist, β-funaltrexamine [4]. This led to the finding that the μ type opioid receptor was correlated to drug dependence [5]. Consequently, δ, and particularly κ, opioid agonists were expected to lead to ideal opioid drugs. Moreover, opioid antagonists were evaluated for the treatment of symptoms related to undesirable opioid system activation. In this chapter, we provide a short survey of opioid ligands in development and describe the discovery of the two most promising drugs, TRK-851 [6] and TRK-820 (nalfurafine hydrochloride) [7].

  9. Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi

    PubMed Central

    Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; Amaral, André Correa; Paccez, Juliano Domiraci; Borges, Clayton Luiz

    2017-01-01

    Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs. PMID:28694566

  10. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    PubMed

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-05

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a Chemogenomics Approach

    PubMed Central

    Cao, Dong-Sheng; Liang, Yi-Zeng; Deng, Zhe; Hu, Qian-Nan; He, Min; Xu, Qing-Song; Zhou, Guang-Hua; Zhang, Liu-Xia; Deng, Zi-xin; Liu, Shao

    2013-01-01

    The identification of interactions between drugs and target proteins plays a key role in genomic drug discovery. In the present study, the quantitative binding affinities of drug-target pairs are differentiated as a measurement to define whether a drug interacts with a protein or not, and then a chemogenomics framework using an unbiased set of general integrated features and random forest (RF) is employed to construct a predictive model which can accurately classify drug-target pairs. The predictability of the model is further investigated and validated by several independent validation sets. The built model is used to predict drug-target associations, some of which were confirmed by comparing experimental data from public biological resources. A drug-target interaction network with high confidence drug-target pairs was also reconstructed. This network provides further insight for the action of drugs and targets. Finally, a web-based server called PreDPI-Ki was developed to predict drug-target interactions for drug discovery. In addition to providing a high-confidence list of drug-target associations for subsequent experimental investigation guidance, these results also contribute to the understanding of drug-target interactions. We can also see that quantitative information of drug-target associations could greatly promote the development of more accurate models. The PreDPI-Ki server is freely available via: http://sdd.whu.edu.cn/dpiki. PMID:23577055

  12. Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review.

    PubMed

    Mane, Uttam Rajaram; Gupta, Ramesh C; Nadkarni, Sunil Sadanand; Giridhar, Rajani R; Naik, Prashant Prakash; Yadav, Mange R

    2013-02-01

    There is an urgent need to discover new antimalarial drugs due to emergence of resistance in the parasite to the existing drugs. Malarial cysteine proteases falcipin-2 (FP-2) and falcipain-3 (FP-3) are attractive targets for antimalarial chemotherapy. The structures and functions of FP-2/3, their binding domains and their interactions with small- and macro-molecules are well studied. These studies could provide important insight into rational designing of FP inhibitors as potential antimalarial drugs. This review is focused on a selection of interesting patents published during 1999 - 2011 on peptidic and nonpeptidic chemotypes of the FP-2/FP-3 inhibitors. It is a known fact that malaria is a serious health problem worldwide due to the emergence of resistant strains. Hence, development of novel, potent and affordable antimalarial drugs devoid of side effects is of great significance and in great demand. FPs, the malarial cysteine proteases are potential targets for development of new antimalarial drugs. Assessing the available literature on FP-2/3 and their inhibitors it could be speculated that these inhibitors have the potential to enter the clinical stages of development for the treatment of malaria in the years to come.

  13. Comparative study of dihydroartemisinin and artesunate safety in healthy Thai volunteers.

    PubMed

    Kongpatanakul, S; Chatsiricharoenkul, S; Khuhapinant, A; Atipas, S; Kaewkungwal, J

    2009-09-01

    As part of new drug development initiatives in Thailand, a new tablet formulation of dihydroartemisinin (DHA, an antimalarial drug) has been developed. Our previous bioequivalence study indicated that the new and reference DHA formulations were well tolerated; however, a significant decrease in hemoglobin was detected after a single 200-mg oral dose. To explore further, a clinical study with an emphasis on hematological parameters was conducted. A single-center, randomized, single-blind, cross-over clinical study was conducted in 18 healthy volunteers with a dosage of 300 mg daily for 2 days. Artesunate was used as a comparator. Adverse events were monitored and laboratory parameters on study Days 0, 2, 5, and 7 post drug administrations were analyzed. Eighteen volunteers completed both rounds of the study. Both drugs were well tolerated. All adverse events were mild. Significant decrease in hemoglobin compared to baseline was detected for both drugs 7 days after administration (DHA: 0.48 g/dl, p = 0.007; artesunate 0.38 g/dl, p = 0.001). Transient bone marrow suppression was evidenced by reduction of reticulocytes with a lowest number on study Day 5 (artesunate 75% reduction in reticulocyte count; DHA 47%, p < 0.001 for both drugs compared to baseline). The present study confirmed our previous finding on significant decrease in hemoglobin. Artesunate appeared to have more negative effects on the numbers of reticulocytes and white blood cells than DHA. Systemic laboratory and toxicity profiles presented in this study may be used as a framework for future clinical studies of artemisinin and its derivatives.

  14. Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide.

    PubMed

    Awasthi, Rajendra; Kulkarni, Giriraj T; Ramana, Malipeddi Venkata; de Jesus Andreoli Pinto, Terezinha; Kikuchi, Irene Satiko; Molim Ghisleni, Daniela Dal; de Souza Braga, Marina; De Bank, Paul; Dua, Kamal

    2017-04-01

    Repaglinide, an oral antidiabetic agent, has a rapid onset of action and short half-life of approximately 1h. Developing a controlled and prolonged release delivery system is required to maintain its therapeutic plasma concentration and to eliminate its adverse effects particularly hypoglycemia. The present study aimed to develop controlled release repaglinide loaded beads using sodium alginate and pectin with dual cross-linking for effective control of drug release. The prepared beads were characterized for size, percentage drug entrapment efficiency, in vitro drug release and the morphological examination using scanning electron microscope. For the comparative study, the release profile of a marketed conventional tablet of repaglinide (Prandin ® tablets 2mg, Novo Nordisk) was determined by the same procedure as followed for beads. The particle size of beads was in the range of 698±2.34-769±1.43μm. The drug entrapment efficiency varied between 55.24±4.61 to 82.29±3.42%. The FTIR results suggest that there was no interaction between repaglinide and excipients. The XRD and DSC results suggest partial molecular dispersion and amorphization of the drug throughout the system. These results suggest that repaglinide did not dissolve completely in the polymer composition and seems not to be involved in the cross-linking reaction. The percent drug release was decreased with higher polymer concentrations. In conclusion, the developed beads could enhance drug entrapment efficiency, prolong the drug release and enhance bioavailability for better control of diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Competence of medical students in communicating drug therapy: Value of role-play demonstrations.

    PubMed

    Tayem, Yasin I; Altabtabaei, Abdulaziz S; Mohamed, Mohamed W; Arrfedi, Mansour M; Aljawder, Hasan S; Aldebous, Fahad A; James, Henry; Al Khaja, Khalid A J; Sequeira, Reginald P

    2016-01-01

    This study used role-play demonstrations to train medical students to communicate drug therapy and evaluated the perceptions on this instructional approach. The second-year medical students who attended a prescription writing session (n = 133), participated in this study. Prescription communication was introduced by using role-play demonstrations. Participant's perceptions were explored by a self-administered questionnaire and focus group discussion. The academic achievement of attendees and nonattendees was compared with an objective structured performance evaluation (OSPE) station that tested students' competence in this skill. Most attendees responded to the questionnaire (81.2%). Almost all respondents expressed their desire to have similar demonstrations in other units. A large proportion of participants reported that role-play demonstrations helped them develop their communication skills, in general, confidence to communicate drug-related information in a prescription, and the ability to explain the aim of drug therapy to patients. Most trainees thought also that they developed skills to communicate instructions on drug use including drug dose, frequency of administration, duration of therapy, adverse drug reactions, and warnings. During the focus group interviews, students thought that role-play was useful but would be more beneficial if conducted frequently in small group as part of the curriculum implementation. The majority of students also reported improved competence in writing a complete prescription. Analysis of attendees and nonattendees grades in the OSPE showed that the former scored higher than the latter group (P = 0.016). Role-play demonstrations were well accepted by medical students and led to the development of their competence in communicating drug therapy to patients.

  16. Exploring brand-name drug mentions on Twitter for pharmacovigilance.

    PubMed

    Carbonell, Pablo; Mayer, Miguel A; Bravo, Àlex

    2015-01-01

    Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.

  17. Update on the evaluation of a new drug for effects on cardiac repolarization in humans: issues in early drug development

    PubMed Central

    Salvi, Vaibhav; Karnad, Dilip R; Panicker, Gopi Krishna; Kothari, Snehal

    2010-01-01

    Following reports of death from cardiac arrhythmias with drugs like terfenadine and cisapride, the International Conference for Harmonization formulated a guidance (E14) document. This specifies that all new drugs must undergo a ‘thorough QT/QTc’ (TQT) study to detect drug-induced QT prolongation, a surrogate marker of ventricular tachycardia, especially torsades de pointes (TdPs). With better understanding of data from several completed TQT studies, regulatory requirements have undergone some changes since the E14 guidance was implemented in October 2005. This article reviews the implications of the E14 guidance and the changes in its interpretation including choice of baseline QT, demonstration of assay sensitivity, statistical analysis of the effect of new drug and positive control, and PK-PD modelling. Some issues like use of automated QT measurements remain unresolved. Pharmaceutical companies too are modifying Phase 1 studies to detect QTc liability early in order to save time and resources. After the E14 guidance, development of several drugs that prolong QTc by >5 ms is being abandoned by sponsors. However, all drugs that prolong the QT interval do not increase risk of TdP. Researchers in regulatory agencies, academia and industry are working to find better biomarkers of drug-induced TdP which could prevent many useful drugs from being prematurely abandoned. Drug-induced TdP is a rare occurrence. With fewer drugs that prolong QT interval reaching the licensing stage, knowing which of these drugs are torsadogenic is proving to be elusive. Thus, paradoxically, the effectiveness of the E14 guidance itself has made prospective validation of new biomarkers difficult. This article is part of a themed section on QT safety. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2010 PMID:19775279

  18. Psychotropic drugs in Nepal: perceptions on use and supply chain management.

    PubMed

    Upadhaya, Nawaraj; Jordans, Mark J D; Gurung, Dristy; Pokhrel, Ruja; Adhikari, Ramesh P; Komproe, Ivan H

    2018-01-24

    Psychotropic drugs play an important role in the treatment of mental, neurological and substance use disorders. Despite the advancement of the use of psycho-pharmaceuticals in the developed countries, the psychotropic drug production and supply chain management in low- and middle- income countries are still poorly developed. This study aims to explore the perceptions of stakeholders involved in all stages of the psychotropic drug supply chain about the need, quality, availability and effectiveness of psychotropic drugs, as well as barriers to their supply chain management. The study was conducted among 65 respondents from the Kathmandu, Chitwan and Pyuthan districts, grouped into four categories: producers, promoters and distributors (N = 22), policy makers and government actors (N = 8), service providers (N = 21) and service users/family members (N = 14). The respondents reported that psychotropic drugs, despite having side effects, are 1) needed, 2) available in major regional centers and 3) are effective for treating mental health problems. The stigma associated with mental illness, however, forces patients and family members to hide their use of psychotropic drugs. The study found that the process of psychotropic drug supply chain management is similar to other general drugs, with the exceptions of strict pre-approval process, quantity restriction (for production and import), and mandatory record keeping. Despite these regulatory provisions, respondents believed that the misuse of psychotropic drugs is widespread and companies are providing incentives to prescribers and retailers to retain their brand in the market. The production and supply chain management of psychotropic drugs is influenced by the vested interests of pharmaceutical companies, prescribers and pharmacists. In the context of the government of Nepal's policy of integrating mental health into primary health care and increased consumption of psychotropic drugs in Nepal, there is a need for massive education and awareness as well as strict monitoring and supervision to avoid the misuse of psychotropic drugs.

  19. Drug Labeling and Exposure in Neonates

    PubMed Central

    Laughon, Matthew M.; Avant, Debbie; Tripathi, Nidhi; Hornik, Christoph P.; Cohen-Wolkowiez, Michael; Clark, Reese H.; Smith, P. Brian; Rodriguez, William

    2014-01-01

    Importance Federal legislation has led to a notable increase in pediatric studies submitted to the Food and Drug Administration (FDA), resulting in new pediatric information in product labeling. However, approximately 50% of drug labels still have insufficient information on safety, efficacy, or dosing in children. Neonatal information in labeling is even scarcer because neonates comprise a vulnerable subpopulation for which end point development is lagging and studies are more challenging. Objective To quantify progress made in neonatal studies and neonatal information in product labeling as result of recent legislation. Design 1. Cohort of neonatal drug studies; and 2. Cohort of infants exposed to these drugs.. Setting 1. Neonatal drug studies: FDA website; 2. National review: infants admitted to a neonatal intensive care unit (NICU) Participants 1) We identified drug studies between 1997 and 2010 that included neonates as a result of pediatric legislation using information available on the FDA website. We determined what studies were published in the medical literature, the legislation responsible for the studies, and the resulting neonatal labeling changes. 2) We then examined the use of these drugs in neonates admitted to 290 NICUs (the Pediatrix Data Warehouse) in the United States from 2005–2010. Exposures Infants exposed to a drug studied in neonates as identified by the FDA website Main outcome measures Number of drug studies with neonates and rate of exposure per 1000 admission among infants admitted to a NICU Results In a review of the FDA databases, we identified 28 drugs studied in neonates and 24 related labeling changes. Forty-one studies encompassed the 28 drugs, and 31 (76%) of these were published. Eleven (46%) of the 24 neonatal labeling changes established safety and effectiveness. In a review of a cohort of 446,335 hospitalized infants, we identified 399 drugs used and 1,525,739 drug exposures in the first 28 postnatal days. Thirteen (46%) of the 28 drugs studied in neonates were not used in NICUs; 8 (29%) were used in fewer than 60 neonates. Of the drugs studied, ranitidine was used most often (15,627 neonates, 35 exposures per 1000 admissions). Conclusions and Relevance Few drug labeling changes made under pediatric legislation include neonates. Most drugs studied are either not used or rarely used in U.S. NICUs. Strategies to increase the study of safe and effective drugs for neonates are needed. PMID:24322269

  20. Qualitative Phenomenological Examination of IT Project Management in Pharmaceutical Industry

    ERIC Educational Resources Information Center

    Ly, Phil

    2013-01-01

    The purpose of this study was to examine what caused IT projects to fail at a high rate in the pharmaceutical industry. IT projects failures delayed development of new drugs that can help save lives. It was imperative to evaluate what caused project failures because the collateral damage was delay in drug development. This qualitative…

Top