Guarnieri, Michael; Tyler, Betty M; Detolla, Louis; Zhao, Ming; Kobrin, Barry
2014-01-01
Long-acting therapy in laboratory animals offers advantages over the current practice of 2-3 daily drug injections. Yet little is known about the disintegration of biodegradable drug implants in rodents. Compare bioavailability of buprenorphine with the biodegradation of lipid-encapsulated subcutaneous drug pellets. Pharmacokinetic and histopathology studies were conducted in BALB/c female mice implanted with cholesterol-buprenorphine drug pellets. Drug levels are below the level of detection (0.5 ng/mL plasma) within 4-5 days of implant. However, necroscopy revealed that interstitial tissues begin to seal implants within a week. Visual inspection of the implant site revealed no evidence of inflammation or edema associated with the cholesterol-drug residue. Chemical analyses demonstrated that the residues contained 10-13% of the initial opiate dose for at least two weeks post implant. The results demonstrate that biodegradable scaffolds can become sequestered in the subcutaneous space. Drug implants can retain significant and unintended reservoirs of drugs.
Guarnieri, Michael; Tyler, Betty M.; DeTolla, Louis; Zhao, Ming; Kobrin, Barry
2014-01-01
Background: Long-acting therapy in laboratory animals offers advantages over the current practice of 2-3 daily drug injections. Yet little is known about the disintegration of biodegradable drug implants in rodents. Objective: Compare bioavailability of buprenorphine with the biodegradation of lipid-encapsulated subcutaneous drug pellets. Methods: Pharmacokinetic and histopathology studies were conducted in BALB/c female mice implanted with cholesterol-buprenorphine drug pellets. Results: Drug levels are below the level of detection (0.5 ng/mL plasma) within 4-5 days of implant. However, necroscopy revealed that interstitial tissues begin to seal implants within a week. Visual inspection of the implant site revealed no evidence of inflammation or edema associated with the cholesterol-drug residue. Chemical analyses demonstrated that the residues contained 10-13% of the initial opiate dose for at least two weeks post implant. Discussion: The results demonstrate that biodegradable scaffolds can become sequestered in the subcutaneous space. Conclusion: Drug implants can retain significant and unintended reservoirs of drugs. PMID:24459402
21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for bladder evacuation. 882.5850 Section 882.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal...
21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for bladder evacuation. 882.5850 Section 882.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal...
21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for pain relief. 882.5880 Section 882.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator...
King, EB; Hartsock, JJ; O'Leary, SJ; Salt, AN
2013-01-01
Locally-applied drugs can protect residual hearing following cochlear implantation. The influence of cochlear implantation on drug levels in scala tympani (ST) after round window application was investigated in guinea pigs using the marker trimethylphenlyammonium (TMPA) measured in real-time with TMPA-selective microelectrodes. TMPA concentration in the upper basal turn of ST rapidly increased during implantation and then declined due to cerebrospinal fluid entering ST at the cochlear aqueduct and exiting at the cochleostomy. The TMPA increase was found to be caused by the cochleostomy drilling, if the burr tip partially entered ST. TMPA distribution in the second turn was less affected by implantation procedures. These findings show that basal turn drug levels may be changed during implantation and the changes may need to be considered in the interpretation of therapeutic effects of drugs in conjunction with implantation. PMID:24008355
21 CFR 522.1662 - Oxytetracycline hydrochloride implantation or injectable dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxytetracycline hydrochloride implantation or injectable dosage forms. 522.1662 Section 522.1662 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1662 Oxytetracycline hydrochloride implantation or injectable...
Characterization of drug-release kinetics in trabecular bone from titania nanotube implants
Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan
2012-01-01
Purpose The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Methods Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm) and horizontal (0–10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Results Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT–Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. Conclusion These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to optimize the delivery of specific therapies and to assist in the design of new drug delivery systems. This method has the potential to provide new knowledge to understand drug distribution in the bone environment and to considerably improve existing technologies for local administration in bone, including solving some critical problems in bone therapy and orthopedic implants. PMID:23028217
Characterization of drug-release kinetics in trabecular bone from titania nanotube implants.
Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan
2012-01-01
The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT-Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0-5 mm) and horizontal (0-10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT-Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT-Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to optimize the delivery of specific therapies and to assist in the design of new drug delivery systems. This method has the potential to provide new knowledge to understand drug distribution in the bone environment and to considerably improve existing technologies for local administration in bone, including solving some critical problems in bone therapy and orthopedic implants.
21 CFR 522.1696 - Penicillin G procaine implantation and injectable dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin G procaine implantation and injectable dosage forms. 522.1696 Section 522.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... DOSAGE FORM NEW ANIMAL DRUGS § 522.1696 Penicillin G procaine implantation and injectable dosage forms. ...
21 CFR 522.1696 - Penicillin G procaine implantation and injectable dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin G procaine implantation and injectable dosage forms. 522.1696 Section 522.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... DOSAGE FORM NEW ANIMAL DRUGS § 522.1696 Penicillin G procaine implantation and injectable dosage forms. ...
21 CFR 522.1696 - Penicillin G procaine implantation and injectable dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin G procaine implantation and injectable dosage forms. 522.1696 Section 522.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... DOSAGE FORM NEW ANIMAL DRUGS § 522.1696 Penicillin G procaine implantation and injectable dosage forms. ...
21 CFR 522.1696 - Penicillin G procaine implantation and injectable dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin G procaine implantation and injectable dosage forms. 522.1696 Section 522.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... DOSAGE FORM NEW ANIMAL DRUGS § 522.1696 Penicillin G procaine implantation and injectable dosage forms. ...
Free radicals generated by tantalum implants antagonize the cytotoxic effect of doxorubicin.
Chen, Muwan; Hein, San; Le, Dang Q S; Feng, Wenzhou; Foss, Morten; Kjems, Jørgen; Besenbacher, Flemming; Zou, Xuenong; Bünger, Cody
2013-05-01
Little is known about the interaction between antineoplastic drugs and implants in bone cancer patients. We investigated the interaction between commercially available porous tantalum (Ta) implants and the chemotherapeutic drug, Doxorubicin (DOX). DOX solutions were prepared in the presence of Ta implant. The changes in fluorescence intensity of the DOX chromophore were measured by spectrofluorometry and the efficacy of DOX was evaluated by viability of rabbit rectal tumor cells (VX2). After 5 min interaction of the DOX solution (5 μg/ml) with the Ta implant, the fluorescent intensity of the DOX solution was 85% degraded, and only 20% the drug efficacy to kill VX2 cells was retained. However, after adding a reducing agent, Dithiothreitol (DTT, 10 μg/ml), 80% of the original fluorescence and 50% of the drug efficacy were restored while UV irradiation enhanced drug degradation in the presence of Ta implant. The action of DTT and UV irradiation indicated that reactive oxygen species (ROS) were involved in the drug degradation mechanism. We detected that Ta implants in aqueous medium produced hydroxyl radicals. Cells showed higher intracellular ROS activity when culture medium was incubated with the Ta implant prior to cell culture. It is concluded that the porous Ta implant antagonizes the cytotoxicity of DOX via ROS generation of the porous Ta implant. Copyright © 2013 Elsevier B.V. All rights reserved.
21 CFR 882.5820 - Implanted cerebellar stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted cerebellar stimulator. 882.5820 Section 882.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820 Implanted...
21 CFR 882.5820 - Implanted cerebellar stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted cerebellar stimulator. 882.5820 Section 882.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820 Implanted...
21 CFR 882.5225 - Implanted malleable clip.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted malleable clip. 882.5225 Section 882.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5225 Implanted malleable clip...
21 CFR 882.5225 - Implanted malleable clip.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted malleable clip. 882.5225 Section 882.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5225 Implanted malleable clip...
21 CFR 876.3630 - Penile rigidity implant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Penile rigidity implant. 876.3630 Section 876.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3630 Penile rigidity implant. (a...
21 CFR 878.4750 - Implantable staple.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...
21 CFR 878.4750 - Implantable staple.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...
21 CFR 878.4750 - Implantable staple.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...
21 CFR 878.4300 - Implantable clip.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...
21 CFR 878.4300 - Implantable clip.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...
21 CFR 878.4300 - Implantable clip.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...
21 CFR 878.4300 - Implantable clip.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...
21 CFR 878.4300 - Implantable clip.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...
21 CFR 878.4750 - Implantable staple.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...
21 CFR 878.4750 - Implantable staple.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...
Li, DeXia; Guo, Gang; Deng, Xin; Fan, RangRang; Guo, QingFa; Fan, Min; Liang, Jian; Luo, Feng; Qian, ZhiYong
2013-01-01
Hot-melt extrusion (HME) plays an important role in preparing implants as local drug delivery systems in pharmaceutical fields. Here, a new PLA/PEG-PPG-PEG/Dexamethasone (PLA/F68/Dex) implant prepared by HME has been developed. Importantly, the implant was successfully achieved to control release of immunosuppressive drug to an implanted device. In particular, this implant has not been reported previously in pharmaceutical fields. FTIR and XRD were adopted to investigate the properties of the samples. The in vivo release study showed that the maximum value of Dex release from the implants was approximately 50% at 1 month. The in vivo degradation behavior was determined by UV spectrophotometer and scanning electron microscopy studies, and the weight loss rate of the implants were up to 25% at 1 month. Furthermore, complete blood count (CBC) test, serum chemistry and major organs were performed, and there is no significant lesion and side effects observed in these results. Therefore, the results elucidated that the new PLA/F68/Dex implant prepared by HME could deliver an immunosuppressive drug to control the inflammatory reaction at the implant site.
Biomedical Imaging in Implantable Drug Delivery Systems
Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.
2015-01-01
Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857
Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system.
Park, Young-Seok; Cho, Joo-Youn; Lee, Shin-Jae; Hwang, Chee Il
2014-01-01
The aim of this study was to investigate the efficacy of a proposed new implant mediated drug delivery system (IMDDS) in rabbits. The drug delivery system is applied through a modified titanium implant that is configured to be implanted into bone. The implant is hollow and has multiple microholes that can continuously deliver therapeutic agents into the systematic body. To examine the efficacy and feasibility of the IMDDS, we investigated the pharmacokinetic behavior of dexamethasone in plasma after a single dose was delivered via the modified implant placed in the rabbit tibia. After measuring the plasma concentration, the areas under the curve showed that the IMDDS provided a sustained release for a relatively long period. The result suggests that the IMDDS can deliver a sustained release of certain drug components with a high bioavailability. Accordingly, the IMDDS may provide the basis for a novel approach to treating patients with chronic diseases.
21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Interarticular disc prosthesis (interpositional implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... (interpositional implant) is a device that is intended to be an interface between the natural articulating surface...
21 CFR 886.3320 - Eye sphere implant.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye...
21 CFR 886.3320 - Eye sphere implant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... asynchronous devices implanted in the human body. (b) Classification. Class III (premarket approval). (c) Date... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... asynchronous devices implanted in the human body. (b) Classification. Class III (premarket approval). (c) Date... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...
21 CFR 874.3695 - Mandibular implant facial prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mandibular implant facial prosthesis. 874.3695 Section 874.3695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to be implanted for use in the functional reconstruction of mandibular deficits. The device is...
21 CFR 874.3695 - Mandibular implant facial prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mandibular implant facial prosthesis. 874.3695 Section 874.3695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to be implanted for use in the functional reconstruction of mandibular deficits. The device is...
21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...
Kilicarslan, Muge; Koerber, Martin; Bodmeier, Roland
2014-05-01
This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.
Microfabricated injectable drug delivery system
Krulevitch, Peter A.; Wang, Amy W.
2002-01-01
A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.
Biocompatible polymeric implants for controlled drug delivery produced by MAPLE
NASA Astrophysics Data System (ADS)
Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria
2011-10-01
Implants consisting of drug cores coated with polymeric films were developed for delivering drugs in a controlled manner. The polymeric films were produced using matrix assisted pulsed laser evaporation (MAPLE) and consist of poly(lactide-co-glycolide) (PLGA), used individually as well as blended with polyethylene glycol (PEG). Indomethacin (INC) was used as model drug. The implants were tested in vitro (i.e. in conditions similar with those encountered inside the body), for predicting their behavior after implantation at the site of action. To this end, they were immersed in physiological media (i.e. phosphate buffered saline PBS pH 7.4 and blood). At various intervals of PBS immersion (and respectively in blood), the polymeric films coating the drug cores were studied in terms of morphology, chemistry, wettability and blood compatibility. PEG:PLGA film exhibited superior properties as compared to PLGA film, the corresponding implant being thus more suitable for internal use in the human body. In addition, the implant containing PEG:PLGA film provided an efficient and sustained release of the drug. The kinetics of the drug release was consistent with a diffusion mediated mechanism (as revealed by fitting the data with Higuchi's model); the drug was gradually released through the pores formed during PBS immersion. In contrast, the implant containing PLGA film showed poor drug delivery rates and mechanical failure. In this case, fitting the data with Hixson-Crowell model indicated a release mechanism dominated by polymer erosion.
COMMUNICATION: Drug loading of nanoporous TiO2 films
NASA Astrophysics Data System (ADS)
Ayon, Arturo A.; Cantu, Michael; Chava, Kalpana; Mauli Agrawal, C.; Feldman, Marc D.; Johnson, Dave; Patel, Devang; Marton, Denes; Shi, Emily
2006-12-01
The loading of therapeutic amounts of drug on a nanoporous TiO2 surface is described. This novel drug-loading scheme on a biocompatible surface, when employed on medical implants, will benefit patients who require the deployment of drug-eluting implants. Anticoagulants, analgesics and antibiotics can be considered on the associated implants for drug delivery during the time of maximal pain or risk for patients undergoing orthopedic procedures. Therefore, this scheme will maximize the chances of patient recovery.
21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...
21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...
21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...
21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...
21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...
Rahman, Shafiur; Gulati, Karan; Kogawa, Masakazu; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan
2016-03-01
To treat skeletal conditions such as bone infections, osteoporotic fractures, and osteosarcoma, it would be ideal to introduce drugs directly to the affected site. Localized drug delivery from the bone implants is a promising alternative to systemic drug administration. In this study we investigated electrochemically nanoengineered Ti wire implants with titania nanotubes (TNTs), as minimally invasive drug-releasing implants for the delivery of drugs directly into the bone tissue. Since trabecular bone in vivo contains a highly interconnected bone marrow, we sought to determine the influence of marrow on drug release and diffusion. Electrochemical anodization of Ti wires (length 10 mm) was performed to create an oxide layer with TNTs on the surface, followed by loading with a fluorescent model drug, Rhodamine B (RhB). Cores of bovine trabecular bone were generated from the sternum of a young steer, and were processed to have an intact bone marrow, or the marrow was removed. RhB-loaded TNTs/Ti wires were inserted into the bone cores, which were then cultured ex vivo using the ZetOS™ bioreactor system to maintain bone viability. Release and diffusion of RhB inside the bone was monitored using fluorescence imaging and different patterns of drug transport in the presence or absence of marrow were observed. Scanning electron microscopy of the implants after retrieval from bone cores confirmed survival of the TNTs structures. Histological investigation showed the presence of bone cells adherent on the implants. This study shows a potential of Ti drug-releasing implants based on TNTs technology towards localized bone therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 714-725, 2016. © 2015 Wiley Periodicals, Inc.
Current manufacturing processes of drug-eluting sutures.
Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine
2017-11-01
Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.
Kempin, Wiebke; Franz, Christian; Koster, Lynn-Christine; Schneider, Felix; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne
2017-06-01
The 3D printing technique of fused deposition modeling® (FDM) has lately come into focus as a potential fabrication technique for pharmaceutical dosage forms and medical devices that allows the preparation of delivery systems with nearly any shape. This is particular promising for implants administered at application sites with a high anatomical variability where an individual shape adaption appears reasonable. In this work different polymers (Eudragit®RS, polycaprolactone (PCL), poly(l-lactide) (PLLA) and ethyl cellulose (EC)) were evaluated with respect to their suitability for FDM of drug loaded implants and their drug release behaviour was evaluated. The fluorescent dye quinine was used as a model drug to visualize drug distribution in filaments and implants. Quinine loaded filaments were produced by solvent casting and subsequent hot melt extrusion (HME) and model implants were printed as hollow cylinders using a standard FDM printer. Parameters were found at which model implants (hollow cylinders, outer diameter 4-5mm, height 3mm) could be produced from all tested polymers. The drug release which was examined by incubation of the printed implants in phosphate buffered saline solution (PBS) pH 7.4 was highly dependent on the used polymer. The fastest relative drug release of approximately 76% in 51days was observed for PCL and the lowest for Eudragit®RS and EC with less than 5% of quinine release in 78 and 100days, respectively. For PCL further filaments were prepared with different quinine loads ranging from 2.5% to 25% and thermal analysis proved the presence of a solid dispersion of quinine in the polymer for all tested concentrations. Increasing the drug load also increased the overall percentage of drug released to the medium since nearly the same absolute amount of quinine remained trapped in PCL at the end of drug release studies. This knowledge is valuable for future developments of printed implants with a desired drug release profile that might be controlled by the choice of the polymer and the drug load. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
Sircoglou, Julie; Gehrke, Maria; Tardivel, Meryem; Siepmann, Florence; Siepmann, Juergen; Vincent, Christophe
2015-09-01
The purpose of this study was to develop a new strategy to deliver drugs to the inner ear from dexamethasone (DXM)-loaded silicone implants and to evaluate the distribution of the drug in the cochlea with confocal microscopy. Systemic drug administration for the treatment of inner ear disorders is tricky because of the blood-cochlear barrier, a difficult anatomical access, the small size of the cochlea, and can cause significant adverse effects. An effective way to overcome these obstacles is to administer drugs locally. In vitro, the drug release from DXM-loaded silicone-based thin films and tiny implants into artificial perilymph was thoroughly analyzed by high-performance liquid chromatography. In vivo, a silicone implant loaded with 10% DXM and 5% polyethylene glycol 400 was implanted next to the stapes's footplate of gerbils. Delivery of DXM into the inner ear was proved by confocal microscopy imaging of the whole cochlea and the organ of Corti. The study showed a continuous and prolonged release during 90 days in vitro. This was confirmed by confocal microscopy that allowed detection of DXM by fluorescence labeling in the cell body of the hair cells for at least 30 days. Interestingly, fluorescence was already observed after 20 minutes of implantation, reached a climax at day 7, and could still be detected 30 days after implantation. Thus, we developed a new device for local corticosteroids delivery into the oval window with an extended drug release of DXM to the inner ear.
77 FR 4226 - Implantation or Injectable Dosage Form New Animal Drugs; Danofloxacin
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
.... FDA-2011-N-0003] Implantation or Injectable Dosage Form New Animal Drugs; Danofloxacin AGENCY: Food... amending the animal drug regulations to reflect approval of a supplemental new animal drug application.... 801-808. List of Subjects in 21 CFR Part 522 Animal drugs. Therefore, under the Federal Food, Drug...
McAvoy, Kathryn; Jones, David; Thakur, Raghu Raj Singh
2018-01-16
To investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents. Triamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin. Regardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period. Photocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2012 CFR
2012-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2013 CFR
2013-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2014 CFR
2014-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
Suppression of scarring in peripheral nerve implants by drug elution.
FitzGerald, James J
2016-04-01
Medical implants made of non-biological materials provoke a chronic inflammatory response, resulting in the deposition of a collagenous scar tissue (ST) layer on their surface, that gradually thickens over time. This is a critical problem for neural interfaces. Scar build-up on electrodes results in a progressive decline in signal level because the scar tissue gradually separates axons away from the recording contacts. In regenerative sieves and microchannel electrodes, progressive scar deposition will constrict and may eventually choke off the sieve hole or channel lumen. Interface designs need to address this issue if they are to be fit for long term use. This study examines a novel method of inhibiting the formation and thickening of the fibrous scar. Research to date has mainly focused on methods of preventing stimulation of the foreign body response by implant surface modification. In this paper a pharmacological approach using drug elution to suppress chronic inflammation is introduced. Microchannel implants made of silicone doped with the steroid drug dexamethasone were implanted in the rat sciatic nerve for periods of up to a year. Tissue from within the microchannels was compared to that from control devices that did not release any drug. In the drug eluting implants the scar layer was significantly thinner at all timepoints, and unlike the controls it did not continue to thicken after 6 months. Control implants supported axon regeneration well initially, but axon counts fell rapidly at later timepoints as scar thickened. Axon counts in drug eluting devices were initially much lower, but increased rather than declined and by one year were significantly higher than in controls. Drug elution offers a potential long term solution to the problem of performance degradation due to scarring around neural implants.
Suppression of scarring in peripheral nerve implants by drug elution
NASA Astrophysics Data System (ADS)
FitzGerald, James J.
2016-04-01
Objective. Medical implants made of non-biological materials provoke a chronic inflammatory response, resulting in the deposition of a collagenous scar tissue (ST) layer on their surface, that gradually thickens over time. This is a critical problem for neural interfaces. Scar build-up on electrodes results in a progressive decline in signal level because the scar tissue gradually separates axons away from the recording contacts. In regenerative sieves and microchannel electrodes, progressive scar deposition will constrict and may eventually choke off the sieve hole or channel lumen. Interface designs need to address this issue if they are to be fit for long term use. This study examines a novel method of inhibiting the formation and thickening of the fibrous scar. Approach. Research to date has mainly focused on methods of preventing stimulation of the foreign body response by implant surface modification. In this paper a pharmacological approach using drug elution to suppress chronic inflammation is introduced. Microchannel implants made of silicone doped with the steroid drug dexamethasone were implanted in the rat sciatic nerve for periods of up to a year. Tissue from within the microchannels was compared to that from control devices that did not release any drug. Main results. In the drug eluting implants the scar layer was significantly thinner at all timepoints, and unlike the controls it did not continue to thicken after 6 months. Control implants supported axon regeneration well initially, but axon counts fell rapidly at later timepoints as scar thickened. Axon counts in drug eluting devices were initially much lower, but increased rather than declined and by one year were significantly higher than in controls. Significance. Drug elution offers a potential long term solution to the problem of performance degradation due to scarring around neural implants.
Biodegradable implants from poly-(alpha-hydroxy acid) polymers for isoniazid delivery.
Hurley, L; Andersen, B R
1999-11-01
In vitro and in vivo study of an isoniazid (INH) drug delivery system. To develop a system for the treatment of tuberculosis using a subcutaneous polymer implant with a large drug load released slowly over a long period. INH delivery by biodegradable poly-(alpha-hydroxy acid) polymers was evaluated using ground polymer and compression molded implants. Rate of drug release and structural stability of the implant in an aqueous environment were measured, as were in vivo evaluations of the duration of measurable levels of INH in serum and urine. Factors that influenced the suitability of an implant in an in vitro system included polymer molecular weight and crystallinity, polymer and drug particle size, drug loading dose, and press temperature and pressure. The implant characteristics that most closely approached optimal conditions include a polymer of 100% L-lactide with low intrinsic viscosity, polymer particle size <75 micron, and INH particle = 126-180 micron, INH loading dose not to exceed 46%, and press conditions of 70 degrees C and 345000 kPa. Studies of subcutaneous implants in rabbits and baboons show that INH is released from the implant for 15 to 26 weeks. An INH-containing polymer was developed that was structurally stable in an aqueous environment and that released INH over a period of at least 15 weeks. Studies with infected animals will be necessary to determine the dose required for prophylaxis and treatment of active disease.
TiO2 nanotube platforms for smart drug delivery: a review
Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun
2016-01-01
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided. PMID:27703349
TiO2 nanotube platforms for smart drug delivery: a review.
Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.
Subcutaneous Implants of Buprenorphine-Cholesterol-Triglyceride Powder in Mice.
DeTolla, L; Sanchez, R; Khan, E; Tyler, B; Guarnieri, M
2014-01-01
Subcutaneous drug implants are convenient systems for the long-term delivery of drugs in animals. Lipid carriers are logical tools because they generally allow for higher doses and low toxicity. The present study used an US Food and Drug Administration Target Animal Safety test system to evaluate the safety of a subcutaneous implant of a cholesterol-triglyceride-buprenorphine powder in 120 BALB/c mice. Mice were evaluated in 4- and 12-day trials with 1- and 5-fold doses of the intended 3 mg/kg dose of drug. One male mouse treated with three 3 mg/kg doses and surgery on days 0, 4, and 8 died on day 9. The cause of death was not determined. In the surviving 119 mice there was no evidence of skin reaction at the site of the implant. Compared to control animals treated with saline, weight measurements, clinical pathology, histopathology, and clinical observations were unremarkable. These results demonstrate that the lipid carrier is substantially safe. Cholesterol-triglyceride-drug powders may provide a valuable research tool for studies of analgesic and inflammatory drug implants in veterinary medicine.
Subcutaneous Implants of Buprenorphine-Cholesterol-Triglyceride Powder in Mice
DeTolla, L.; Sanchez, R.; Khan, E.; Tyler, B.; Guarnieri, M.
2014-01-01
Subcutaneous drug implants are convenient systems for the long-term delivery of drugs in animals. Lipid carriers are logical tools because they generally allow for higher doses and low toxicity. The present study used an US Food and Drug Administration Target Animal Safety test system to evaluate the safety of a subcutaneous implant of a cholesterol-triglyceride-buprenorphine powder in 120 BALB/c mice. Mice were evaluated in 4- and 12-day trials with 1- and 5-fold doses of the intended 3 mg/kg dose of drug. One male mouse treated with three 3 mg/kg doses and surgery on days 0, 4, and 8 died on day 9. The cause of death was not determined. In the surviving 119 mice there was no evidence of skin reaction at the site of the implant. Compared to control animals treated with saline, weight measurements, clinical pathology, histopathology, and clinical observations were unremarkable. These results demonstrate that the lipid carrier is substantially safe. Cholesterol-triglyceride-drug powders may provide a valuable research tool for studies of analgesic and inflammatory drug implants in veterinary medicine. PMID:26464927
Laser sclerectomy and 5-FU controlled-drug-release biodegradable implant for glaucoma therapy
NASA Astrophysics Data System (ADS)
Villain, Franck L.; Parel, Jean-Marie A.; Kiss, Katalin; Parrish, Richard K.; Kuhne, Francois; Takesue, Yoshiko; Hostyn, Patrick
1993-06-01
Laser sclerectomy, a simple filtering procedure performed to alleviate high intraocular pressure in glaucoma patients, was taught to offer longer lasting effect and therefore improve the patient's outcome when compared with the standard trabeculectomy procedure. Recent clinical trials have shown that this was not the case and pharmacologic wound healing modulation is also required with this new procedure. Five-Fluorouracil (5-FU) is useful as an adjunct treatment for glaucoma filtering surgery. However, efficacy depends upon maintaining sustained drug levels, currently achieved by repeated daily injection of the drug for several weeks. To overcome this limitation, we designed a biodegradable implant for the sustained release of 5-FU. After laser sclerectomy, the implant is inserted through the same 1 mm wide conjunctival snip incision and positioned below the open channel. Implantation takes less than a minute. The implant releases the drug for over 15 days and totally biodegrades in less than 100 days. The combined laser surgery and implantation procedure show great potentials for the treatment of glaucoma.
Bhardwaj, Upkar; Papadimitrakopoulos, Fotios; Burgess, Diane J.
2008-01-01
A major obstacle to the development of implantable biosensors is the foreign body response (FBR) that results from tissue trauma during implantation and the continuous presence of the implant in the body. The in vivo stability and functionality of biosensors are compromised by damage to sensor components and decreased analyte transport to the sensor. This paper summarizes research undertaken by our group since 2001 to control the FBR toward implanted sensors. Localized and sustained delivery of the anti-inflammatory drug, dexamethasone, and the angiogenic growth factor, vascular endothelial growth factor (VEGF), was utilized to inhibit inflammation as well as fibrosis and provide a stable tissue–device interface without producing systemic adverse effects. The drug-loaded polylactic-co-glycolic acid (PLGA) microspheres were embedded in a polyvinyl alcohol (PVA) hydrogel composite to fabricate a drug-eluting, permeable external coating for implantable devices. The composites were fabricated using the freeze–thaw cycle method and had mechanical properties similar to soft body tissue. Dexamethasone-loaded microsphere/hydrogel composites were able to provide anti-inflammatory protection, preventing the FBR. Moreover, concurrent release of dexamethasone with VEGF induced neoangiogenesis in addition to providing anti-inflammatory protection. Sustained release of dexamethasone is required for the entire sensor lifetime, as a delayed inflammatory response developed after depletion of the drug from the composites. These studies have shown the potential of PLGA microsphere/PVA hydrogel-based composites as drug-eluting external coatings for implantable biosensors. PMID:19885291
76 FR 22610 - Implantation or Injectable Dosage Form New Animal Drugs; Enrofloxacin
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
.... FDA-2011-N-0003] Implantation or Injectable Dosage Form New Animal Drugs; Enrofloxacin AGENCY: Food... amending the animal drug regulations to reflect approval of a supplemental new animal drug application... INFORMATION: Bayer HealthCare LLC, Animal Health Division, P.O. Box 390, Shawnee Mission, KS 66201, filed a...
75 FR 13225 - Implantation or Injectable Dosage Form New Animal Drugs; Flunixin
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
.... FDA-2010-N-0002] Implantation or Injectable Dosage Form New Animal Drugs; Flunixin AGENCY: Food and... amending the animal drug regulations to reflect approval of an original abbreviated new animal drug... copy of BANAMINE-S, sponsored by Schering-Plough Animal Health Corp. under NADA 101-479. The ANADA is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0749] Implanted Blood Access Devices for Hemodialysis; Draft Guidance for Industry and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food...
Wu, Gui; Wu, Weigang; Zheng, Qixin; Li, Jingfeng; Zhou, Jianbo; Hu, Zhilei
2014-07-19
Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants' surfaces were observed with electron microscope. The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a "nest-shaped" way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day's release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic.
Weidenauer, U; Bodmer, D; Kissel, T
2004-03-01
The prolonged delivery of hydrophilic drug salts from hydrophobic polymer carriers at high drug loading is an ambitious goal. Pamidronate disodium salt (APD) containing implants prepared from spray-dried microparticles were investigated using a laboratory ram extruder. An APD-containing polymer matrix consisting of an APD-chitosan implant embedded in the biodegradable polymer D,L-poly(lactide-co-glycolide acid-glucose) (PLG-GLU) was compared with a matrix system with the micronized drug distributed in the PLG-GLU. The APD-chitosan matrix system showed a triphasic release behaviour at loading levels of 6.86 and 15.54% (w/w) over 36 days under in-vitro conditions. At higher loading (31.92%), a drug burst was observed within 6 days due to the formation of pores and channels in the polymeric matrix. In contrast, implants containing the micronized drug showed a more continuous release profile over 48 days up to a loading of 31.78% (w/w). At a drug loading of 46.17% (w/w), a drug burst was observed. Using micronized drug salts and reducing the surface area available for diffusion, parenteral delivery systems for highly water-soluble drug candidates were shown to be technically feasible at high drug loadings.
Li, Dan; Li, Litao; Ma, Yunlong; Zhuang, Yaping; Li, Dawei; Shen, Hong; Wang, Xing; Yang, Fei; Ma, Yuanzheng; Wu, Decheng
2017-03-28
Currently, the major issues in the treatment of osteoarticular tuberculosis (TB) after implant placement are low drug concentration at the infected focus and drug resistance resulting from the long-term chemotherapy. The application of drug-loaded polymeric multilayers on implantable devices offers a promising solution to the problems. Herein, a poly(ethylene glycol)-based hydrogel film embedded with isoniazid (INH)-loaded alginate microparticles was fixed to Ti implants via adhesive polydopamine, subsequently capped by poly(lactic-co-glycolic acid) membranes for the sustained and localized delivery of the anti-TB drug. The antibacterial efficacy of the released INH was confirmed by a 4.5 ± 0.8 cm inhibition zone formed in the fourth week after inoculation of Mycobacterium tuberculosis. The INH-loaded Ti implants showed no toxicity to the osteoblast cell and provided a consistent drug release for nearly one week in vitro. The release profile in vivo showed a high local concentration and low systemic exposure. The local INH concentration could be kept higher than its minimum inhibitory concentration over a period of 8 weeks, which proves that it is a promising strategy to improve the severe osteoarticular TB treatment.
NASA Astrophysics Data System (ADS)
Ramachandran, Ranjith; Junnuthula, Vijayabhaskar Reddy; Gowd, G. Siddaramana; Ashokan, Anusha; Thomas, John; Peethambaran, Reshmi; Thomas, Anoop; Unni, Ayalur Kodakara Kochugovindan; Panikar, Dilip; Nair, Shantikumar V.; Koyakutty, Manzoor
2017-03-01
Localized and controlled delivery of chemotherapeutics directly in brain-tumor for prolonged periods may radically improve the prognosis of recurrent glioblastoma. Here, we report a unique method of nanofiber by fiber controlled delivery of anti-cancer drug, Temozolomide, in orthotopic brain-tumor for one month using flexible polymeric nano-implant. A library of drug loaded (20 wt%) electrospun nanofiber of PLGA-PLA-PCL blends with distinct in vivo brain-release kinetics (hours to months) were numerically selected and a single nano-implant was formed by co-electrospinning of nano-fiber such that different set of fibres releases the drug for a specific periods from days to months by fiber-by-fiber switching. Orthotopic rat glioma implanted wafers showed constant drug release (116.6 μg/day) with negligible leakage into the peripheral blood (<100 ng) rendering ~1000 fold differential drug dosage in tumor versus peripheral blood. Most importantly, implant with one month release profile resulted in long-term (>4 month) survival of 85.7% animals whereas 07 day releasing implant showed tumor recurrence in 54.6% animals, rendering a median survival of only 74 days. In effect, we show that highly controlled drug delivery is possible for prolonged periods in orthotopic brain-tumor using combinatorial nanofibre libraries of bulk-eroding polymers, thereby controlling glioma recurrence.
MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight
NASA Astrophysics Data System (ADS)
Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Staicu, Angela; Dinescu, Maria
2012-09-01
Implantable devices consisting of indomethacin (INC) cores coated with poly(lactide-co-glycolide):polyethylene glycol films (i.e. PLGA:PEG films) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) were produced. To predict their behavior after implantation inside the body, the implants were studied in vitro, in media similar with those encountered inside the body (phosphate buffered saline (PBS) pH 7.4 and blood). The influence of the molecular weight of PEG (i.e. low (1450 Da) versus high (10 kDa) molecular weights) on the characteristics of the implants was investigated, in terms of morphology, blood compatibility and kinetics of the drug release. The use of PEG of high molecular weight resulted in larger pores on the implants surfaces, enhanced blood compatibility of the implants and higher drug delivery rates. For both molecular weights PEGs, sustained release of INC was maintained over a three weeks interval. Theoretical fitting of the drug release data with Higuchi's model indicated that the INC was released mainly by diffusion, most probably through the pores formed in PLGA:PEG films during PBS immersion.
Local strategies to prevent and treat osteoporosis.
Torstrick, F Brennan; Guldberg, Robert E
2014-03-01
Despite advances in systemic osteoporosis therapeutic outcomes, management of fragility fractures and implant fixation in osteoporotic bone remain difficult clinical challenges. Low initial bone density and a prolonged healing response can lead to fracture nonunion and aseptic implant loosening. Local treatment strategies could be used to prevent fracture, accelerate healing, and increase implant fixation by locally stimulating anabolic pathways or inhibiting catabolic pathways. Local strategies under investigation include direct drug release from injectable materials or implant surface coatings. Common locally delivered drugs include bisphosphonates, parathyroid hormone, and bone morphogenetic proteins, yet additional compounds targeting novel pathways in bone biology are also being actively explored. Mechanical stimulation via low intensity pulsed ultrasound, alone or in combination with drug therapy, may also prove effective to promote local bone healing and implant fixation within osteoporotic bone.
21 CFR 882.4545 - Shunt system implantation instrument.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shunt system implantation instrument. 882.4545 Section 882.4545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4545 Shunt system...
21 CFR 882.4545 - Shunt system implantation instrument.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Shunt system implantation instrument. 882.4545 Section 882.4545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4545 Shunt system...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5830...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5830...
NASA Technical Reports Server (NTRS)
Collins, E. R. J.
1983-01-01
Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...
76 FR 3488 - Implantation or Injectable Dosage Form New Animal Drugs; Oxytetracycline and Flunixin
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
.... FDA-2010-N-0002] Implantation or Injectable Dosage Form New Animal Drugs; Oxytetracycline and Flunixin... combination drug injectable solution containing oxytetracycline and flunixin meglumine in cattle. [[Page 3489... veterinary prescription use of HEXASOL (oxytetracycline and flunixin meglumine) Injection for the treatment...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... issue a proposed regulation addressing the Affordable Care Act provisions. Inhalation, Infusion..., infusion, instilled, implanted and injectable drugs that are not generally dispensed through retail... publish a list of drugs that meet the statutory definition of inhalation, infusion, instilled, implanted...
21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interarticular disc prosthesis (interpositional implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular...
Yehia, Soad A; Elshafeey, Ahmed H; Elsayed, Ibrahim
2012-06-01
One of the greatest challenges in in situ forming implant (ISFI) systems by polymer precipitation is the large burst release during the first 1-24 hours after implant injection. The aim of this study was to decrease the burst-release effect of a water-soluble model drug, donepezil HCl, with a molecular weight of 415.96 Da, from in situ forming implants using a novel in situ implant containing lipospheres (ISILs). In situ implant suspensions were prepared by dispersing cetyl alcohol and glyceryl stearate lipospheres in a solution of poly-DL-lactide (PDL) or DL-lactide/glycolide copolymer (PDLG). Also, in situ implant solutions were prepared using different concentrations of PDL or PDLG solutions in N-methyl-2-pyrrolidone (NMP). Triacetin and Pluronic L121 were used to modify the release pattern of donepezil from the in situ implant solutions. In vitro release, rheological measurement, and injectability measurement were used to evaluate the prepared in situ implant formulae. It was found that ISIL decreased the burst effect as well as the rate and extent of drug release, compared to lipospheres, PDL, and PDLG in situ implant. The amount of drug released in the first day was 37.75, 34.99, 48.57, 76.3, and 84.82% for ISIL in 20% PDL (IL-1), ISIL in 20% PDLG (IL-2), lipospheres (L), 20% PDL ISFI (I5), and 20% PDLG ISFI (I8), respectively. The prepared systems showed Newtonian flow behavior. ISIL (IL-1 and IL-2) had a flow rate of 1.94 and 1.40 mL/min, respectively. This study shows the potential of using in situ implants containing lipospheres in controlling the burst effect of ISFI.
Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper
2018-02-20
For poly (lactide-co-glycolide acid) (PLGA)-based in situ forming implants, the rate of implant formation plays an important role in determining the overall drug release kinetics. Currently, in vitro techniques capable of characterizing the processes of drug release and implant formation at the same time are not available. A hydrogel-based in vitro experimental setup was recently developed requiring only microliter of formulation and forming a closed system potentially suitable for interfacing with various spectroscopic techniques. The aim of the present proof-of-concept study was to investigate the feasibility of concomitant UV imaging, Vis imaging and light microscopy for detailed characterization of the behavior of in situ forming PLGA implants in the hydrogel matrix mimicking the subcutis. The model compounds, piroxicam and α-lactalbumin were added to PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin solutions. Upon bringing the PLGA-solvent-compound pre-formulation in contact with the hydrogel, Vis imaging and light microscopy were applied to visualize the depot formation and UV imaging was used to quantify drug transport in the hydrogel. As compared to piroxicam, the α-lactalbumin invoked an acceleration of phase separation and an increase of implant size. α-Lactalbumin was released faster from the PLGA-1-methyl-2-pyrrolidinone system than the PLGA-triacetin system opposite to the piroxicam release pattern. A linear relationship between the rate of implant formation and initial compound release within the first 4h was established for the PLGA-NMP systems. This implies that phase separation may be one of the controlling factors in drug release. The rate of implant formation may be an important parameter for predicting and tailoring drug release. The approach combining UV imaging, Vis imaging and light microscopy may facilitate understanding of release processes and holds potential for becoming a useful tool in formulation development of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming
2016-03-01
To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... 2010 OPPS/ASC final rule, we estimated that pass-through spending for both drugs and biologicals and... pass through drugs and non-implantable biologicals, and device categories and the proportion of... and implantable biologicals), ``policy packaged'' drugs (diagnostic radiopharmaceuticals and contrast...
21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...
21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...
21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...
21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...
21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...
Gulati, Karan; Ramakrishnan, Saminathan; Aw, Moom Sinn; Atkins, Gerald J; Findlay, David M; Losic, Dusan
2012-01-01
Bacterial infection, extensive inflammation and poor osseointegration have been identified as the major reasons for [early] orthopaedic implant failures based on titanium. Creating implants with drug-eluting properties to locally deliver drugs is an appealing way to address some of these problems. To improve properties of titanium for orthopaedic applications, this study explored the modification of titanium surfaces with titaniananotube (TNT) arrays, and approach that combines drug delivery into bone and potentially improved bone integration. A titania layer with an array of nanotube structures (∼120 nm in diameter and 50 μm in length) was synthesized on titanium surfaces by electrochemical anodization and loaded with the water-insoluble anti-inflammatory drug indomethacin. A simple dip-coating process of polymer modification formed thin biocompatible polymer films over the drug-loaded TNTs to create TNTs with predictable drug release characteristics. Two biodegradable and antibacterial polymers, chitosan and poly(lactic-co-glycolic acid), were tested for their ability to extend the drug release time of TNTs and produce favourable bone cell adhesion properties. Dependent on polymer thickness, a significant improvement in the drug release characteristics was demonstrated, with reduced burst release (from 77% to >20%) and extended overall release from 4 days to more than 30 days. Excellent osteoblast adhesion and cell proliferation on polymer-coated TNTs compared with uncoated TNTs were also observed. These results suggest that polymer-modified implants with a TNT layer are capable of delivering a drug to a bone site over an extended period and with predictable kinetics. In addition, favourable bone cell adhesion suggests that such an implant would have good biocompatibility. The described approach is broadly applicable to a wide range of drugs and implants currently used in orthopaedic practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
2014-01-01
Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic. PMID:25038793
Aw, Moom Sinn; Losic, Dusan
2013-02-25
A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Zhou, Chao-Xi; Li, Litao; Ma, Yi-Guang; Li, Bing-Nan; Li, Guang; Zhou, Zhihang; Shi, Feng; Weng, Jie; Zhang, Cong; Wang, Fenghua; Cui, Xu; Wang, Lei; Wang, Hao
2018-05-24
Anti-tuberculosis chemotherapy with a long duration and adequate dosing is the mainstay for treatment of osteoarticular tuberculosis (TB). However, it is difficult for systemic administration to reach adequate local drug concentrations and achieve effective treatment. Herein, a hydroxyapatite (HA) scaffold implant combined with a drug-releasing system was designed to achieve in situ and long-term anti-TB drug release and highly efficient therapeutic activity in vitro and in vivo. The clinical anti-TB drugs hydrophilic isoniazid (INH) and hydrophobic rifampicin (RFP) were molecularly dispersed into polyvinyl alcohol (PVA) through immersion-curing techniques and were steadily adhered onto the surfaces of HA scaffolds (HA-drug@PVA). The HA-drug@PVA scaffolds showed a long-term, sustained drug release profile and killed proliferating Mycobacteriumin vitro. In vivo experimental results revealed that the HA-drug@PVA scaffolds provided over 10- and 100-fold higher concentrations in muscles and bones, respectively, as well as a much lower concentration (<0.025) in blood. Furthermore, the HA-drug@PVA scaffold implanted in an osteoarticular TB rabbit model showed obvious bone regeneration and fusion due to the inhibition of TB-associated inflammatory changes. The excellent therapeutic effects indicate that in situ implant materials combined with a long-term drug release system are promising for the treatment of osteoarticular TB and other osteoarticular infections. Copyright © 2018. Published by Elsevier Ltd.
Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan
2016-12-01
There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. Copyright © 2016 Elsevier B.V. All rights reserved.
Maulvi, Furqan A; Lakdawala, Dhara H; Shaikh, Anjum A; Desai, Ankita R; Choksi, Harsh H; Vaidya, Rutvi J; Ranch, Ketan M; Koli, Akshay R; Vyas, Bhavin A; Shah, Dinesh O
2016-03-28
Glaucoma is commonly treated using eye drops, which is highly inefficient due to rapid clearance (low residence time) from ocular surface. Contact lenses are ideally suited for controlled drug delivery to cornea, but incorporation of any drug loaded particulate system (formulation) affect the optical and physical property of contact lenses. The objective of the present work was to implant timolol maleate (TM) loaded ethyl cellulose nanoparticle-laden ring in hydrogel contact lenses that could provide controlled drug delivery at therapeutic rates without compromising critical lens properties. TM-implant lenses were developed, by dispersing TM encapsulated ethyl cellulose nanoparticles in acrylate hydrogel (fabricated as ring implant) and implanted the same in hydrogel contact lenses (sandwich system). The TM-ethyl cellulose nanoparticles were prepared by double emulsion method at different ratios of TM to ethyl cellulose. The X-ray diffraction studies revealed the transformation of TM to amorphous state. In vitro release kinetic data showed sustained drug release within the therapeutic window for 168h (NP 1:3 batch) with 150μg loading. Cytotoxicity and ocular irritation study demonstrated the safety of TM-implant contact lenses. In vivo pharmacokinetic studies in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC), with TM-implant contact lenses in comparison to eye drop therapy. In vivo pharmacodynamic data in rabbit model showed sustained reduction in intra ocular pressure for 192h. The study demonstrated the promising potential of implantation technology to treat glaucoma using contact lenses, and could serve as a platform for other ocular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer
Belz, Jodi E.; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S.; Royce, Darlene B.; Zhang, Di; van de Ven, Anne L.; Liby, Karen T.; Sridhar, Srinivas
2017-01-01
Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1-deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1-deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1Co/Co;MMTV-Cre;p53+/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro. Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors. PMID:29158830
Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer.
Belz, Jodi E; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S; Royce, Darlene B; Zhang, Di; van de Ven, Anne L; Liby, Karen T; Sridhar, Srinivas
2017-01-01
Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1 -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1 -deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1 Co/Co ;MMTV-Cre;p53 +/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro . Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors.
Stein, Sandra; Auel, Tobias; Kempin, Wiebke; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne
2018-06-01
Sustained intravitreal dexamethasone (DX) administration with the FDA and EMA approved Ozurdex® implant is indicated for the treatment of macular edema and non-infectious uveitis. Since drug release after intravitreal application cannot be determined in vivo in human eyes, the characterization of drug release in vitro in addition to animal models is of great importance. The aim of this study was to provide information about the influence of the test method on the in vitro drug release from intravitreal model implants. The following test methods were used: a shaking incubator experiment in reagent tubes, the small volume USP apparatus 7, the Vitreous Model (VM) and a system simulating the impact of movement on the VM (Eye Movement System, EyeMoS). Cylindrical model implants composed of DX and PLGA (poly (d,l-lactide-co-glycolide)) and additional polycaprolactone (PCL) implants containing fluorescein sodium (FS) as a model substance were produced by hot melt extrusion and were cut to a length of approximately 6 mm. Drug release was studied in ringer buffer pH 7.4 and in a modified polyacrylamide gel (PAAG) as vitreous substitute. In combination with the VM, the shape, the gel structure and a partial liquefaction (50%) were simulated in vitro. Swelling, disintegration, fragmentation, surface enlargement and changes in shape of the PLGA model implants were observed during the drug release study. We experienced that not each of the test methods and media were suitable for drug release studies of the PLGA implants. Marked differences in the release profiles were observed depending on the employed test method. These results emphasize the necessity to understand the underlying in vivo processes and to transfer the knowledge about the release determining factors into reliable in vitro test systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Tan, Tsung; Watts, Stephanie W.; Davis, Robert Patrick
2011-01-01
Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO®, a programmable, refillable, and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD) in single animals. When combined with specialized catheters, specific administration sites have been selected. When combined with radiotelemetry, the physiologic gold standard, more sensitive and powerful means of detecting drug induced therapeutic, and/or adverse effects has been possible. Numerous application examples are cited from iPRECIO® use in Japan, United States, and Europe with iPRECIO® as an enabling drug delivery device where the refillable and programmability functionality were key benefits. The ability to start/stop drug delivery and to have control periods prior dosing made it possible to have equivalent effects at a much lower dose than previously studied. Five different iPRECIO® applications are described in detail with references to the original work where the implantable, refillable, and programmable benefits are demonstrated with their different end-points. PMID:21863140
Płaczek, Margin; Jacyna, Julia; Sznitowska, Małgorzata
2014-01-01
Microspheres and implants are injectable drug forms, which by special design and selection of appropriate excipients, provide for a long time constant release rate of an active substance in the body. Development of both would not be possible without advances in polymer technology and invention of safe and biocompatible polymers such as: polyesters, vinyl acetate derivatives or silicones. Polymeric matrices provide retardation of drug release--for some implants up to a few years. In addition, this paper presents examples of all commercially available medicinal products containing microspheres and implants, currently registered in Poland, together with their characteristics: composition, time course and frequency of administration. Comments are also enclosed on frequently occurring inconsistent terminology in pharmaceutical forms.
First-in-human testing of a wirelessly controlled drug delivery microchip.
Farra, Robert; Sheppard, Norman F; McCabe, Laura; Neer, Robert M; Anderson, James M; Santini, John T; Cima, Michael J; Langer, Robert
2012-02-22
The first clinical trial of an implantable microchip-based drug delivery device is discussed. Human parathyroid hormone fragment (1-34) [hPTH(1-34)] was delivered from the device in vivo. hPTH(1-34) is the only approved anabolic osteoporosis treatment, but requires daily injections, making patient compliance an obstacle to effective treatment. Furthermore, a net increase in bone mineral density requires intermittent or pulsatile hPTH(1-34) delivery, a challenge for implantable drug delivery products. The microchip-based devices, containing discrete doses of lyophilized hPTH(1-34), were implanted in eight osteoporotic postmenopausal women for 4 months and wirelessly programmed to release doses from the device once daily for up to 20 days. A computer-based programmer, operating in the Medical Implant Communications Service band, established a bidirectional wireless communication link with the implant to program the dosing schedule and receive implant status confirming proper operation. Each woman subsequently received hPTH(1-34) injections in escalating doses. The pharmacokinetics, safety, tolerability, and bioequivalence of hPTH(1-34) were assessed. Device dosing produced similar pharmacokinetics to multiple injections and had lower coefficients of variation. Bone marker evaluation indicated that daily release from the device increased bone formation. There were no toxic or adverse events due to the device or drug, and patients stated that the implant did not affect quality of life.
Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook.
Talebian, Sepehr; Foroughi, Javad; Wade, Samantha J; Vine, Kara L; Dolatshahi-Pirouz, Alireza; Mehrali, Mehdi; Conde, João; Wallace, Gordon G
2018-05-13
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted electrical urinary continence device...
NASA Astrophysics Data System (ADS)
Serbezov, Valery; Sotirov, Sotir; Serbezov, Svetlin
2013-03-01
Drug-eluting medical implants are active implants whose function is to create healing effects. The current requirements for active medical coatings for Drug-eluting medical implants are to be biocompatible, biodegradable, polymer free, mechanically stable and enable a controlled release of one or more drugs and defined degradation. This brings hybrid nanocomposite coatings into focus especially in the field of cardiovascular implants. We studied the properties of Metal (Mg alloy)-Paclitaxel coatings obtained by novel Laser Adaptive Ablation Deposition Technique (LAAD) onto cardiovascular stents from 316 LVM stainless steel material. The morphology and topology of coatings were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Comparative measurements were made of the morphology and topology of hybrid, polymer free nanocomposite coatings deposited by LAAD and polymerdrug coatings deposited by classical spray technique. The coatings obtained by LAAD are homogeneous without damages and cracks. Metal nanoparticles with sizes from 40 nm to 230 nm were obtained in drug matrixes. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of metal nanoparticles presence in hybrid nanocomposites coatings. The new technology opens up possibilities to obtain new hybrid nanocomposite coatings with applications in medicine, pharmacy and biochemistry.
Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark
2016-01-01
Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.
NASA Astrophysics Data System (ADS)
Milne, Peter J.; Gautier, Sandrine; Parel, Jean-Marie A.; Jallet, Valerie
1997-05-01
The antineoplastic drug 5-fluorouracil (5-fluoro- 2,4,(1H,3H)-pyrimidinedione; 5-FU) has been used to control proliferation of penetrating fibroblasts and to prevent channel closure following glaucoma filtration surgery (trabeculectomy) or laser sclerectomy. Because of the toxicity of the drug, administration of low dosages slowly over time, at the site of the desired treatment, is indicated for optimum efficacy. Repeated injections of low dosages of the drug represent an undesirable intervention and may also result in unwanted toxicity to the corneal epithelium. A suitable biocompatible and resorbable polymer matrix composed of a poly (D,L-lactic-co-glycolic acid: PLGA) has been admixed with varying amounts of 5-FU and cast as shapes suitable for intracorneal implantation. Slow biodegradation of this polymer over a one to two week period has been shown to result in an acceptably slow drug release mechanism. An issue arising during the clinical evaluation of the efficacy of this drug delivery system was how best to quantify the concentration of 5-FU and its distribution spatially in the solid implant. FT-IR and FT-Raman spectroscopies distinguishes between the drug and the polymer matrix and were used to differentiate and quantitate the 5-FU concentration of the implants.
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
Direct comparison of the short-term clinical performance of Z Guidant and Taxus stents.
Guildford, Anna; Colombo, Paola; Bruschi, Giuseppe; Bonacina, Edgardo; Klugmann, Silvio; Santin, Matteo
2010-12-03
The recent introduction of drug-eluting stents in angioplasty of atherosclerotic blood vessels has significantly reduced the risks of in-stent restenosis (ISR) [1]. Indeed, it is known that in conventional stents ISR takes place in over 20% of the cases and up to 60% when implanted in diabetic patients. Conversely, clinical trials have shown that drug-eluting stents have significantly reduced ISR. Among the drug-eluting stents available on the market, Taxus stents (Tax, Boston Scientific, USA) are among the most used devices [2]. Tax are stainless-steel stents coated with Translute, a poly(styrene-b-isobutylene-b-styrene) polymer (PSIBS) eluting Placlitaxel, an anti-mitotic drug. Clinical trials on this type of drug-eluting stents have shown an incidence of restenosis of approximately 4%. The majority of these trials were randomized studies where conventional stents and drug-eluting devices have been implanted in separate patients' cohorts. Such a randomized design, although fundamental to collect statistically-relevant data, does not allow a direct histological comparison of different stent types when implanted in the same patient and do not show the individual susceptibility to the host response especially at short-term implantation times. Here, an interesting case study is presented where two chrome-cobalt stents (Z Guidant, ZG, Guidant Corp.) and a Tax have been simultaneously implanted in the same patient in three separate coronary arteries, retrieved after only 8 weeks and histologically analysed. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...
21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...
21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...
21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...
21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...
21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port and...
21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port and...
Safely re-integrating silicone breast implants into the plastic surgery practice.
Gladfelter, Joanne
2006-01-01
In the early 1990s, it was reported that silicone breast implants were possibly responsible for serious damage to women's health. In January 1992, the Food and Drug Administration issued a voluntary breast implant moratorium and, in April, issued a ban on the use of silicone gel-filled implants for cosmetic breast augmentation. Since that time, silicone gel-filled breast implants have been available to women only for select cases: women seeking breast reconstruction or revision of an existing breast implant, women who have had breast cancer surgery, a severe injury to the breast, a birth defect that affects the breast, or a medical condition causing a severe breast deformity. Since the ban on the use of silicone gel-filled breast implants for cosmetic breast augmentation, numerous scientific studies have been conducted. To ensure patient safety, the American Board of Plastic Surgery believes that these scientific studies and the Food and Drug Administration's scrutiny of silicone gel-filled breast implants have been appropriate and necessary.
Microchips and controlled-release drug reservoirs.
Staples, Mark
2010-01-01
This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.
About Implantable Contraception
... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español About Implantable Contraception KidsHealth / For Parents / About Implantable Contraception Print What ...
Sex differences in the outcomes of stent implantation in mini-swine model.
Kunio, Mie; Wong, Gee; Markham, Peter M; Edelman, Elazer R
2018-01-01
Sex-related differences have been noted in cardiovascular anatomy, pathophysiology, and treatment responses, yet we continued to drive evaluation of vascular device development in animal models without consideration of animal sex. We aimed to understand sex-related differences in the vascular responses to stent implantation by analyzing the pooled data of endovascular interventions in 164 Yucatan mini-swine (87 female, 77 male). Bare metal stents (BMS) or drug-eluting stents (DES) were implanted in 212 coronary arteries (63 single BMS implantation, 68 single DES implantation, 33 overlapped BMS implantation, and 48 overlapped DES implantation). Histomorphological parameters were evaluated from vascular specimens at 3-365 days after stent implantation and evaluated values were compared between female and male groups. While neointima formation at all times after implantation was invariant to sex, statistically significant differences between female and male groups were observed in injury, inflammation, adventitial fibrosis, and neointimal fibrin deposition. These differences were observed independently, i.e., for different procedure types and at different follow-up timings. Only subtle temporal sex-related differences were observed in extent and timing of resolution of inflammation and fibrin clearance. These subtle sex-related differences may be increasingly important as interventional devices meld novel materials that erode and innovations in drug delivery. Erodible materials may act differently if inflammation has a different temporal sequence with sex, and drug distribution after balloon or stent delivery might be different if the fibrin clearance speaks to different modes of pharmacokinetics in male and female swine.
Antibiotic use during the intracoelomic implantation of electronic tags into fish
Mulcahy, D.M.
2011-01-01
The use of antibiotics, in particular, the use of a single dose of antibiotics during electronic tag implantation is of unproven value, and carries with it the potential for the development of antibiotic resistance in bacteria and the alteration of the immune response of the fish. Antibiotic use during electronic tag implantation must conform to relevant drug laws and regulations in the country where work is being done, including the requirements for withdrawal times before human consumption is a possibility. Currently, the choice of antibiotics (most often tetracycline or oxytetracycline) and the use of a single dose of the drug are decisions made without knowledge of the basic need for antibiotic usage and of the bacteria involved in infections that occur following electronic tag implantation. Correct perioperative use of an antibiotic is to apply the drug to the animal before surgery begins, to assure serum and tissue levels of the drug are adequate before the incision is made. However, the most common perioperative application of antibiotics during implantation of an electronic tag is to delay the administration of the drug, injecting it into the coelom after the electronic tag is inserted, just prior to closure of the incision. There is little empirical evidence that the present application of antibiotics in fish being implanted with electronic tags is of value. Improvements should first be made to surgical techniques, especially the use of aseptic techniques and sterilized instruments and electronic tags, before resorting to antibiotics. ?? 2010 Springer Science+Business Media B.V.(outside the USA).
21 CFR 1308.26 - Excluded veterinary anabolic steroid implant products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Excluded veterinary anabolic steroid implant... SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.26 Excluded veterinary anabolic steroid implant products. (a) Products containing an anabolic steroid, that are expressly...
21 CFR 1308.26 - Excluded veterinary anabolic steroid implant products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Excluded veterinary anabolic steroid implant... SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.26 Excluded veterinary anabolic steroid implant products. (a) Products containing an anabolic steroid, that are expressly...
21 CFR 1308.26 - Excluded veterinary anabolic steroid implant products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Excluded veterinary anabolic steroid implant... SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.26 Excluded veterinary anabolic steroid implant products. (a) Products containing an anabolic steroid, that are expressly...
21 CFR 1308.26 - Excluded veterinary anabolic steroid implant products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Excluded veterinary anabolic steroid implant... SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.26 Excluded veterinary anabolic steroid implant products. (a) Products containing an anabolic steroid, that are expressly...
21 CFR 1308.26 - Excluded veterinary anabolic steroid implant products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Excluded veterinary anabolic steroid implant... SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.26 Excluded veterinary anabolic steroid implant products. (a) Products containing an anabolic steroid, that are expressly...
75 FR 9333 - Implantation or Injectable Dosage Form New Animal Drugs; Tilmicosin
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
.... FDA-2010-N-0002] Implantation or Injectable Dosage Form New Animal Drugs; Tilmicosin AGENCY: Food and... dose range for use of an injectable solution of tilmicosin phosphate for treatment of respiratory... 300 (tilmicosin injection, USP) Injection, available by veterinary prescription for use in the...
21 CFR 872.3640 - Endosseous dental implant.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...
21 CFR 872.3640 - Endosseous dental implant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...
21 CFR 872.3640 - Endosseous dental implant.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...
21 CFR 872.3640 - Endosseous dental implant.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...
21 CFR 872.3640 - Endosseous dental implant.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...
21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve...
In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide.
Sheshala, Ravi; Hong, Gan Chew; Yee, Wong Pui; Meka, Venkata Srikanth; Thakur, Raghu Raj Singh
2018-02-26
The objectives of this study were to develop biodegradable poly-lactic-co-glycolic acid (PLGA) based injectable phase inversion in situ forming system for sustained delivery of triamcinolone acetonide (TA) and to conduct physicochemical characterisation including in vitro drug release of the prepared formulations. TA (at 0.5%, 1% and 2.5% w/w loading) was dissolved in N-methyl-2-pyrrolidone (NMP) solvent and then incorporated 30% w/w PLGA (50/50 and 75/25) polymer to prepare homogenous injectable solution. The formulations were evaluated for rheological behaviour using rheometer, syringeability by texture analyser, water uptake and rate of implant formation by optical coherence tomography (OCT) microscope. Phase inversion in situ forming formulations were injected into PBS pH 7.3 to form an implant and release samples were collected and analysed for drug content using a HPLC method. All formulations exhibited good syringeability and rheological properties (viscosity: 0.19-3.06 Pa.s) by showing shear thinning behaviour which enable them to remain as free-flowing solution for ease administration. The results from OCT microscope demonstrated that thickness of the implants were increased with the increase in time and the rate of implant formation indicated the fast phase inversion. The drug release from implants was sustained over a period of 42 days. The research findings demonstrated that PLGA/NMP-based phase inversion in situ forming implants can improve compliance in patient's suffering from ocular diseases by sustaining the drug release for a prolonged period of time and thereby reducing the frequency of ocular injections.
Bramstedt, Katrina A
2005-01-01
Although currently in the research stage, scientists argue that drug-releasing microchip implants are on the horizon for future patients. This paper presents ethical reflection on these implants and identifies specific areas of concern; namely, patient monitoring and tracking, and patient privacy and confidentiality. It is foreseeable that drug delivery chips could be multifunctional with the overt or covert addition of sensors that monitor more than just the bloodstream concentrations of prescribed drugs (e.g., cotinine and alcohol in non-compliant patients, patient location via radio frequency or global positioning satellite). Similarly, it is foreseeable that these chips could be embedded with a patient's protected health information that could potentially be accessed and used by unauthorized persons. While drug delivery microchips are theoretically convenient and accurate for dosing, and might offer faster drug delivery with fewer side effects, ethical issues loom and should be contemplated now, while the technology is still under development.
Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system
Al-Dubai, Haifa; Pittner, Gisela; Pittner, Fritz; Gabor, Franz
2011-01-01
Feasibility studies have been carried out for development of a biocompatible coating of medical implant materials allowing the binding of biodegradable drug-delivery systems in a way that their reloading might be possible. These novel coatings, able to bind biodegradable nanoparticles, may serve in the long run as drug carriers to mediate local pharmacological activity. After biodegradation of the nanoparticles, the binding sites could be reloaded with fresh drug-delivering particles. As a suitable receptor system for the nanoparticles, antibodies are anchored. The design of the receptor is of great importance as any bio- or chemorecognitive interaction with other components circulating in the blood has to be avoided. Furthermore, the binding between receptor and the particles has to be strong enough to keep them tightly bound during their lifetime, but on the other hand allow reloading after final degradation of the particles. The nanoparticles suggested as a drug-delivery system for medical implants can be loaded with different pharmaceuticals such as antibiotics, growth factors, or immunosuppressives. This concept may enable the changing of medication, even after implantation of the medical device, if afforded by patients’ needs. PMID:24198488
Borse, Vivek; Pawar, Vaishali; Shetty, Gautam; Mullaji, Arun; Srivastava, Rohit
2016-01-01
Implants are an inevitable part of orthopaedic surgery. However, implant associated infection remains a major challenge for orthopaedic surgeons and researchers. This review focuses on current options available for prevention of implant associated infection, their drawbacks and future promising applications of nanotechnology-based approaches. Nanobiotechnology has shown remarkable progress in recent years especially in biomaterials, diagnostics, and drug delivery system. Although several applications of nanobiotechnology in orthopaedics have been described, few have elaborated their role in the prevention of implant related infection in orthopaedics. Novel "smart" drug delivery systems that release antibiotics locally in response to stimuli such as pH, temperature, enzymes or antigens; implant surface modification on a nanoscale to inhibit bacterial adhesion and propagation at the surgical site and biological approaches such as gene therapy to neutralize bacterial virulence and biomolecules to inhibit the quorum sensing adhesion of bacteria and disruption of biofilms can be used effectively to prevent orthopaedic implant related bacterial infection.
21 CFR 1308.25 - Exclusion of a veterinary anabolic steroid implant product; application.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Exclusion of a veterinary anabolic steroid implant... OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.25 Exclusion of a veterinary anabolic steroid implant product; application. (a) Any person seeking...
21 CFR 1308.25 - Exclusion of a veterinary anabolic steroid implant product; application.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Exclusion of a veterinary anabolic steroid implant... OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.25 Exclusion of a veterinary anabolic steroid implant product; application. (a) Any person seeking...
21 CFR 1308.25 - Exclusion of a veterinary anabolic steroid implant product; application.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Exclusion of a veterinary anabolic steroid implant... OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.25 Exclusion of a veterinary anabolic steroid implant product; application. (a) Any person seeking...
21 CFR 1308.25 - Exclusion of a veterinary anabolic steroid implant product; application.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Exclusion of a veterinary anabolic steroid implant... OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.25 Exclusion of a veterinary anabolic steroid implant product; application. (a) Any person seeking...
21 CFR 1308.25 - Exclusion of a veterinary anabolic steroid implant product; application.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exclusion of a veterinary anabolic steroid implant... OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Excluded Veterinary Anabolic Steroid Implant Products § 1308.25 Exclusion of a veterinary anabolic steroid implant product; application. (a) Any person seeking...
Titanium wire implants with nanotube arrays: A study model for localized cancer treatment.
Kaur, Gagandeep; Willsmore, Tamsyn; Gulati, Karan; Zinonos, Irene; Wang, Ye; Kurian, Mima; Hay, Shelley; Losic, Dusan; Evdokiou, Andreas
2016-09-01
Adverse complications associated with systemic administration of anti-cancer drugs are a major problem in cancer therapy in current clinical practice. To increase effectiveness and reduce side effects, localized drug delivery to tumour sites requiring therapy is essential. Direct delivery of potent anti-cancer drugs locally to the cancer site based on nanotechnology has been recognised as a promising alternative approach. Previously, we reported the design and fabrication of nano-engineered 3D titanium wire based implants with titania (TiO2) nanotube arrays (Ti-TNTs) for applications such as bone integration by using in-vitro culture systems. The aim of present study is to demonstrate the feasibility of using such Ti-TNTs loaded with anti-cancer agent for localized cancer therapy using pre-clinical cancer models and to test local drug delivery efficiency and anti-tumour efficacy within the tumour environment. TNF-related apoptosis-inducing ligand (TRAIL) which has proven anti-cancer properties was selected as the model drug for therapeutic delivery by Ti-TNTs. Our in-vitro 2D and 3D cell culture studies demonstrated a significant decrease in breast cancer cell viability upon incubation with TRAIL loaded Ti-TNT implants (TRAIL-TNTs). Subcutaneous tumour xenografts were established to test TRAIL-TNTs implant performance in the tumour environment by monitoring the changes in tumour burden over a selected time course. TRAIL-TNTs showed a significant regression in tumour burden within the first three days of implant insertion at the tumour site. Based on current experimental findings these Ti-TNTs wire implants have shown promising capacity to load and deliver anti-cancer agents maintaining their efficacy for cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care
2009-06-01
controlled devices provide advantages over passive release devices, as the drug delivery process can be controlled actively after implantation and...mm, 5 μm, 100 Å, Alltech Associates, USA), with methanol and 0.1% trifluoroacetic acid (TFA) in water. The gradient used was 2 % TFA/min, starting
Pacemakers and implantable cardioverter defibrillators--general and anesthetic considerations.
Rapsang, Amy G; Bhattacharyya, Prithwis
2014-01-01
A pacemaking system consists of an impulse generator and lead or leads to carry the electrical impulse to the patient's heart. Pacemaker and implantable cardioverter defibrillator codes were made to describe the type of pacemaker or implantable cardioverter defibrillator implanted. Indications for pacing and implantable cardioverter defibrillator implantation were given by the American College of Cardiologists. Certain pacemakers have magnet-operated reed switches incorporated; however, magnet application can have serious adverse effects; hence, devices should be considered programmable unless known otherwise. When a device patient undergoes any procedure (with or without anesthesia), special precautions have to be observed including a focused history/physical examination, interrogation of pacemaker before and after the procedure, emergency drugs/temporary pacing and defibrillation, reprogramming of pacemaker and disabling certain pacemaker functions if required, monitoring of electrolyte and metabolic disturbance and avoiding certain drugs and equipments that can interfere with pacemaker function. If unanticipated device interactions are found, consider discontinuation of the procedure until the source of interference can be eliminated or managed and all corrective measures should be taken to ensure proper pacemaker function should be done. Post procedure, the cardiac rate and rhythm should be monitored continuously and emergency drugs and equipments should be kept ready and consultation with a cardiologist or a pacemaker-implantable cardioverter defibrillator service may be necessary. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Bisht, Rohit; Mandal, Abhirup; Jaiswal, Jagdish K; Rupenthal, Ilva D
2018-03-01
Effective drug delivery to the retina still remains a challenge due to ocular elimination mechanisms and complex barriers that selectively limit the entry of drugs into the eye. To overcome these barriers, frequent intravitreal injections are currently used to achieve high drug concentrations in vitreous and retina. However, these repetitive injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery could overcome some of these unmet needs and various preclinical studies conducted to date have demonstrated promising results of nanotherapies in the treatment of retinal diseases. Compared to the majority of commercially available ocular implants, the biodegradable nature of most nanoparticles (NPs) avoids the need for surgical implantation and removal after the release of the payload. In addition, the sustained drug release from NPs over an extended period of time reduces the need for frequent intravitreal injections and the risk of associated side effects. The nanometer size and highly modifiable surface properties make NPs excellent candidates for targeted ocular drug delivery. Studies have shown that nanocarriers enhance the intravitreal half-life and thus bioavailability of a number of drugs including proteins and peptides. In addition, they have shown promising results in delivering genetic material to the retinal tissues by protecting it from possible intravitreal degradation. This review covers the various challenges associated with drug delivery to the posterior segment of the eye, particularly the retina, and highlights the application of nanocarriers to overcome these challenges in context with recent advances in preclinical studies. WIREs Nanomed Nanobiotechnol 2018, 10:e1473. doi: 10.1002/wnan.1473 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals, Inc.
Experimental and theoretical studies of implant assisted magnetic drug targeting
NASA Astrophysics Data System (ADS)
Aviles, Misael O.
One way to achieve drug targeting in the body is to incorporate magnetic nanoparticles into drug carriers and then retain them at the site using an externally applied magnetic field. This process is referred to as magnetic drug targeting (MDT). However, the main limitation of MDT is that an externally applied magnetic field alone may not be able to retain a sufficient number of magnetic drug carrier particles (MDCPs) to justify its use. Such a limitation might not exist when high gradient magnetic separation (HGMS) principles are applied to assist MDT by means of ferromagnetic implants. It was hypothesized that an Implant Assisted -- MDT (IA-MDT) system would increase the retention of the MDCPs at a target site where an implant had been previously located, since the magnetic forces are produced internally. With this in mind, the overall objective of this work was to demonstrate the feasibility of an IA-MDT system through mathematical modeling and in vitro experimentation. The mathematical models were developed and used to demonstrate the behavior and limitations of IA-MDT, and the in vitro experiments were designed and used to validate the models and to further elucidate the important parameters that affect the performance of the system. IA-MDT was studied with three plausible implants, ferromagnetic stents, seed particles, and wires. All implants were studied theoretically and experimentally using flow through systems with polymer particles containing magnetite nanoparticles as MDCPs. In the stent studies, a wire coil or mesh was simply placed in a flow field and the capture of the MDCPs was studied. In the other cases, a porous polymer matrix was used as a surrogate capillary tissue scaffold to study the capture of the MDCPs using wires or particle seeds as the implant, with the seeds either fixed within the polymer matrix or captured prior to capturing the MDCPs. An in vitro heart tissue perfusion model was also used to study the use of stents. In general, all the results demonstrated that IA-MDT is indeed feasible and that careful modification of the MDCP properties and implant properties are fundamental to the success of this technology.
Gulati, Karan; Ivanovski, Sašo
2017-08-01
The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO 2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.
Tang, T B; Smith, S; Flynn, B W; Stevenson, J T M; Gundlach, A M; Reekie, H M; Murray, A F; Renshaw, D; Dhillon, B; Ohtori, A; Inoue, Y; Terry, J G; Walton, A J
2008-09-01
A wireless power transfer and communication system based on near-field inductive coupling has been designed and implemented. The feasibility of using such a system to remotely control drug release from an implantable drug delivery system is addressed. The architecture of the wireless system is described and the signal attenuation over distance in both water and phosphate buffered saline is studied. Additionally, the health risk due to exposure to radio frequency (RF) radiation is examined using a biological model. The experimental results demonstrate that the system can trigger the release of drug within 5 s, and that such short exposure to RF radiation does not produce any significant (
Trajkovski, Branko; Petersen, Ansgar; Strube, Patrick; Mehta, Manav; Duda, Georg N
2012-09-01
Bone is one of the few tissues in the human body with high endogenous healing capacity. However, failure of the healing process presents a significant clinical challenge; it is a tremendous burden for the individual and has related health and economic consequences. To overcome such healing deficits, various concepts for a local drug delivery to bone have been developed during the last decades. However, in many cases these concepts do not meet the specific requirements of either surgeons who must use these strategies or individual patients who might benefit from them. We describe currently available methods for local drug delivery and their limitations in therapy. Various solutions for drug delivery to bone focusing on clinical applications and intra-operative constraints are discussed and drug delivery by implant coating is highlighted. Finally, a new set of design and performance requirements for intra-operatively customized implant coatings for controlled drug delivery is proposed. In the future, these requirements may improve approaches for local and intra-operative treatment of patients. Copyright © 2012 Elsevier B.V. All rights reserved.
Nano-engineered titanium for enhanced bone therapy
NASA Astrophysics Data System (ADS)
Gulati, Karan; Atkins, Gerald J.; Findlay, David M.; Losic, Dusan
2013-09-01
Current treatment of a number of orthopaedic conditions, for example fractures, bone infection, joint replacement and bone cancers, could be improved if mechanical support could be combined with drug delivery. A very challenging example is that of infection following joint replacement, which is very difficult to treat, can require multiple surgeries and compromises both the implant and the patient's wellbeing. An implant capable of providing appropriate biomechanics and releasing drugs/proteins locally might ensure improved healing of the traumatized bone. We propose fabrication of nanoengineered titanium bone implants using bioinert titanium wires in order to achieve this goal. Titanium in the form of flat foils and wires were modified by fabrication of titania nanotubes (TNTs), which are hollow self-ordered cylindrical tubes capable of accommodating substantial drug amounts and releasing them locally. To further control the release of drug to over a period of months, a thin layer of biodegradable polymer PLGA poly(lactic-coglycolic acid) was coated onto the drug loaded TNTs. This delayed release of drug and additionally the polymer enhanced bone cell adhesion and proliferation.
Painting blood vessels and atherosclerotic plaques with an adhesive drug depot
Kastrup, Christian J.; Nahrendorf, Matthias; Figueiredo, Jose Luiz; Lee, Haeshin; Kambhampati, Swetha; Lee, Timothy; Cho, Seung-Woo; Gorbatov, Rostic; Iwamoto, Yoshiko; Dang, Tram T.; Dutta, Partha; Yeon, Ju Hun; Cheng, Hao; Pritchard, Christopher D.; Vegas, Arturo J.; Siegel, Cory D.; MacDougall, Samantha; Okonkwo, Michael; Thai, Anh; Stone, James R.; Coury, Arthur J.; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G.
2012-01-01
The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques. PMID:23236189
Moon, So-Hee; Lee, Seung-Jae; Park, Il-Song; Lee, Min-Ho; Soh, Yun-Jo; Bae, Tae-Sung; Kim, Hyung-Seop
2012-11-01
Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti-6Al-4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti-6Al-4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti-6Al-4V alloy surface in tibiae of rats. Ti-6Al-4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat-, and bisphosphonate-treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE-SEM and EDS. In vitro, the drug loading capacity of the Ti-6Al-4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate-treated Ti-6Al-4V alloy implants with nanotubular surfaces have positive effects in bone-to-implant contact. Copyright © 2012 Wiley Periodicals, Inc.
Vaidyanathan, Subramanian; Soni, Bakul; Singh, Gurpreet; Hughes, Peter; Selmi, Fahed; Mansour, Paul
2013-01-01
Any new clinical data, whether positive or negative, generated about a medical device should be published because health professionals should know which devices do not work, as well as those which do. We report three spinal cord injury patients in whom urological implants failed to work. In the first, paraplegic, patient, a sacral anterior root stimulator failed to produce erection, and a drug delivery system for intracavernosal administration of vasoactive drugs was therefore implanted; however, this implant never functioned (and, furthermore, such penile drug delivery systems to produce erection had effectively become obsolete following the advent of phosphodiesterase type 5 inhibitors). Subsequently, the sacral anterior root stimulator developed a malfunction and the patient therefore learned to perform self-catheterisation. In the second patient, also paraplegic, an artificial urinary sphincter was implanted but the patient developed a postoperative sacral pressure sore. Eight months later, a suprapubic cystostomy was performed as urethral catheterisation was very difficult. The pressure sore had not healed completely even after five years. In the third case, a sacral anterior root stimulator was implanted in a tetraplegic patient in whom, after five years, a penile sheath could not be fitted because of penile retraction. This patient was therefore established on urethral catheter drainage. Later, infection with Staphylococcus aureus around the receiver block necessitated its removal. In conclusion, spinal cord injury patients are at risk of developing pressure sores, wound infections, malfunction of implants, and the inability to use implants because of age-related changes, as well as running the risk of their implants becoming obsolete due to advances in medicine. Some surgical procedures such as dorsal rhizotomy are irreversible. Alternative treatments such as intermittent catheterisations may be less damaging than bladder stimulator in the long term.
21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...
Educational Interpreters: Meeting the Communication Needs of Children with Cochlear Implants
ERIC Educational Resources Information Center
Melton, Julie; Higbee, Renee
2013-01-01
Since the early 1990s, when the U.S. Food and Drug Administration approved cochlear implants for deaf and hard of hearing children, the number of children who have cochlear implants has increased in mainstream settings. Recent research suggests that these students, like their deaf and hard of hearing peers without implants who use sign language,…
21 CFR 882.5860 - Implanted neuromuscular stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted neuromuscular stimulator. 882.5860... neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a device that provides electrical stimulation to a patient's peroneal or femoral nerve to cause muscles in the leg to contract, thus...
Comparison of Sequential Drug Release in Vitro and in Vivo
Sundararaj, Sharath C.; Al-Sabbagh, Mohanad; Rabek, Cheryl L.; Dziubla, Thomas D.; Thomas, Mark V.; Puleo, David A.
2015-01-01
Development of drug delivery devices typically involves characterizing in vitro release performance with the inherent assumption that this will closely approximate in vivo performance. Yet, as delivery devices become more complex, for instance with a sequential drug release pattern, it is important to confirm that in vivo properties correlate with the expected “programming” achieved in vitro. In this work, a systematic comparison between in vitro and in vivo biomaterial erosion and sequential release was performed for a multilayered association polymer system comprising cellulose acetate phthalate and Pluronic F-127. After assessing the materials during incubation in phosphate-buffered saline, devices were implanted supracalvarially in rats. Devices with two different doses and with different erosion rates were harvested at increasing times post-implantation, and the in vivo thickness loss, mass loss, and the drug release profiles were compared with their in vitro counterparts. The sequential release of four different drugs observed in vitro was successfully translated to in vivo conditions. Results suggest, however, that the total erosion time of the devices was longer and release rates of the four drugs were different, with drugs initially released more quickly and then more slowly in vivo. Whereas many comparative studies of in vitro and in vivo drug release from biodegradable polymers involved a single drug, the present research demonstrated that sequential release of four drugs can be maintained following implantation. PMID:26111338
"Smart tattoo" glucose biosensors and effect of coencapsulated anti-inflammatory agents.
Srivastava, Rohit; Jayant, Rahul Dev; Chaudhary, Ayesha; McShane, Michael J
2011-01-01
Minimally invasive glucose biosensors with increased functional longevity form one of the most promising techniques for continuous glucose monitoring. In the present study, we developed a novel nanoengineered microsphere formulation comprising alginate microsphere glucose sensors and anti-inflammatory-drug-loaded alginate microspheres. The formulation was prepared and characterized for size, shape, in vitro drug release, biocompatibility, and in vivo acceptability. Glucose oxidase (GOx)- and Apo-GOx-based glucose sensors were prepared and characterized. Sensing was performed both in distilled water and simulated interstitial body fluid. Layer-by-layer self-assembly techniques were used for preventing drug and sensing chemistry release. Finally, in vivo studies, involving histopathologic examination of subcutaneous tissue surrounding the implanted sensors using Sprague-Dawley rats, were performed to test the suppression of inflammation and fibrosis associated with glucose sensor implantation. The drug formulation showed 100% drug release with in 30 days with zero-order release kinetics. The GOx-based sensors showed good enzyme retention and enzyme activity over a period of 1 month. Apo-GOx-based visible and near-infrared sensors showed good sensitivity and analytical response range of 0-50 mM glucose, with linear range up to 12 mM glucose concentration. In vitro cell line studies proved biocompatibility of the material used. Finally, both anti-inflammatory drugs were successful in controlling the implant-tissue interface by suppressing inflammation at the implant site. The incorporation of anti-inflammatory drug with glucose biosensors shows promise in improving sensor biocompatibility, thereby suggesting potential application of alginate microspheres as "smart tattoo" glucose sensors with increased functional longevity. © 2010 Diabetes Technology Society.
Gordon, Chad R; Santiago, Gabriel F; Huang, Judy; Bergey, Gregory K; Liu, Shuya; Armand, Mehran; Brem, Henry; Anderson, William S
2017-10-06
Neuromodulation devices have the potential to transform modern day treatments for patients with medicine-resistant neurological disease. For instance, the NeuroPace System (NeuroPace Inc, Mountain View, California) is a Food and Drug Administration (FDA)-approved device developed for closed-loop direct brain neurostimulation in the setting of drug-resistant focal epilepsy. However, current methods require placement either above or below the skull in nonanatomic locations. This type of positioning has several drawbacks including visible deformities and scalp pressure from underneath leading to eventual wound healing difficulties, micromotion of hardware with infection, and extrusion leading to premature explantation. To introduce complete integration of a neuromodulation device within a customized cranial implant for biocompatibility optimization and prevention of visible deformity. We report a patient with drug-resistant focal epilepsy despite previous seizure surgery and maximized medical therapy. Preoperative imaging demonstrated severe resorption of previous bone flap causing deformity and risk for injury. She underwent successful responsive neurostimulation device implantation via complete integration within a clear customized cranial implant. The patient has recovered well without complication and has been followed closely for 180 d. Device interrogation with electrocorticographic data transmission has been successfully performed through the clear implant material for the first time with no evidence of any wireless transmission interference. Cranial contour irregularities, implant site infection, and bone flap resorption/osteomyelitis are adverse events associated with implantable neurotechnology. This method represents a novel strategy to incorporate all future neuromodulation devices within the confines of a low-profile, computer-designed cranial implant and the newfound potential to eliminate contour irregularities, improve outcomes, and optimize patient satisfaction. Copyright © 2017 by the Congress of Neurological Surgeons
Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Kaffashi, Abbas; Çalamak, Semih; Ulubayram, Kezban; Palaska, Erhan; Çakmak, Hasan Basri; Ünlü, Nurşen
2016-11-01
Biodegradable implants are promising drug delivery systems for sustained release ocular drug delivery with the benefits such as minimum systemic side effects, constant drug concentration at the target site and getting cleared without surgical removal. Dry eye syndrome (DES) is a common disease characterized with the changes in ocular epithelia surface and results in inflammatory reaction that might lead to blindness. Cyclosporin A (CsA) is a cyclic peptide that is frequently employed for the treatment of DES and it needs to be applied several times a day in tear drops form. The aim of this study was to evaluate in vivo behavior and efficacy of the developed nano-decorated subconjunctival implant systems for sustained release CsA delivery. Biodegradable Poly-ɛ-caprolactone (PCL) implant or micro-fiber implants containing CsA loaded poly-lactide-co-glycolide (85:15) (PLGA) or PCL nanoparticles were prepared in order to achieve sustained release. Two of the formulations PCL-PLGA-NP-F and PCL-PCL-NP-I were selected for in vivo evaluation based on their in vitro characteristics determined in our previous study. In this study, formulations were implanted to Swiss Albino mice with induced dry eye syndrome to investigate the ocular distribution of CsA following subconjunctival implantation and to evaluate the efficacy. Tissue distribution study indicated that CsA was present in ocular tissues such as cornea, sclera and lens even 90 days after the application and blood CsA levels were found lower than ocular tissues. Efficacy studies also showed that application of CsA-loaded fiber implant formulation resulted in faster recovery based on their staining scores.
Wang, Lexi; Wang, Aiping; Zhao, Xiaolei; Liu, Ximing; Wang, Dan; Sun, Fengying; Li, Youxin
2012-05-10
Two kinds of in situ forming implants (ISFIs) of atypical antipsychotics, risperidone and its 9-hydroxy active metabolite, paliperidone, using poly(lactide-co-glycolide)(PLGA) as carrier, were investigated. Significant difference was observed in the solution-gel transition mechanism of the two systems: homogeneous system of N-methyl-2-pyrrolidone (NMP) ISFI, in which drug was dissolved, and heterogeneous system of dimethyl sulfoxide (DMSO) ISFI, in which drug was dispersed. Fast solvent extractions were found in both systems, but in comparison with the high drug release rate from homogeneous system of drug/polymer/NMP, a fast solvent extraction from the heterogeneous system of drug/polymer/DMSO was not accompanied by a high drug release rate but a rapid solidification of the implant, which resulted in a high drug retention, well-controlled initial burst and slow release of the drug. In vivo study on beagle dogs showed a more than 3-week sustained release with limited initial burst. Pharmacologic evaluation on optimized paliperidone ISFIs presented a sustained-suppressing effect from 1 day to 38 day on the MK-801 induced schizophrenic behavior mice model. A long sustained-release antipsychotic ISFI of 50% drug loading and controlled burst release was achieved, which indicated a good potential in clinic application. Copyright © 2012 Elsevier B.V. All rights reserved.
Meyer, Carsten H; Klein, Adrian; Alten, Florian; Liu, Zengping; Stanzel, Boris V; Helb, Hans M; Brinkmann, Christian K
2012-01-01
Ozurdex, a novel dexamethasone (DEX) implant, is released by a drug delivery system into the vitreous cavity. We analyzed the mechanical release aperture of the novel applicator, obtained real-time recordings using a high-speed camera system and performed kinematic analysis of the DEX application. Experimental study. : The application of intravitreal DEX implants (6 mm length, 0.46 mm diameter; 700 μg DEX mass, 0.0012 g total implant mass) was recorded by a high-speed camera (500 frames per second) in water (Group A: n = 7) or vitreous (Group B: n = 7) filled tanks. Kinematic analysis calculated the initial muzzle velocity as well as the impact on the retinal surface at approximately 15 mm of the injected drug delivery system implant in both groups. A series of drug delivery system implant positions was obtained and graphically plotted over time. High-speed real-time recordings revealed that the entire movement of the DEX implant lasted between 28 milliseconds and 55 milliseconds in Group A and 1 millisecond and 7 milliseconds in Group B. The implants moved with a mean muzzle velocity of 820 ± 350 mm/s (±SD, range, 326-1,349 mm/s) in Group A and 817 ± 307 mm/s (±SD, range, 373-1,185 mm/s) in Group B. In both groups, the implant gradually decelerated because of drag force. With greater distances, the velocity of the DEX implant decreased exponentially to a complete stop at 13.9 mm to 24.7 mm in Group A and at 6.4 mm to 8.0 mm in Group B. Five DEX implants in Group A reached a total distance of more than 15 mm, and their calculated mean velocity at a retinal impact of 15 mm was 408 ± 145 mm/s (±SD, range, 322-667 mm/s), and the consecutive normalized energy was 0.55 ± 0.44 J/m (±SD). In Group B, none of the DEX implants reached a total distance of 6 mm or more. An accidental application at an angle of 30 grade and consecutively reduced distance of approximately 6 mm may result in a mean velocity of 844 and mean normalized energy of 0.15 J/m (SD ± 0.47) in a water-filled eye. The muzzle velocity of DEX implants is approximately 0.8 m/s and decreases exponentially over distance. The drag over time in vitreous is faster than in water. The calculated retinal impact energy does not reach reported damage levels for direct foreign bodies or other projectiles.
Simon, C; Agier, M S; Béné, J; Muller, C; Vrignaud, L; Marret, H; Jonville-Bera, A P
2016-11-01
The aim of the study was to assess the incidence of adverse effects (AE) reported with etonogestrel contraceptive implant in France (Implanon ® and Nexplanon ® ). All cases of AE or unintended pregnancies reported to health authorities or to the firm were analyzed. During 10 years, 5433 AE and 789 unintended pregnancies were reported. Only 388 (7 %) were serious. There were 1137 reports of difficulties to remove, failure to locate or migration, 430 of insertion difficulties and 203 of deformation or expulsion of the implant. Among other AE, the most common were 1694 gynecological AE, 524 skin reactions and 437 metabolic AE. Since the marketing of Nexplanon ® which causes less deep insertions, the incidence of migrations, removal or insertion difficulties has decreased overall (0.92 vs. 1.31/1000 patients), particularly the incidence of removal difficulties, location failures or migrations (0.12 vs 1.01/1000). The infrequent but serious AE were infectious complications at the implant site and pregnancies. When the circumstances of the pregnancy were known, the contraceptive failure was due to the apparent inefficiency of the implant (n=224), to a technique failure (n=203) or to a drug-drug interaction (n=59). This study confirms that AE of this implant are frequent but not serious, except for the pregnancies. The incidence of complications related to insertion decreased with Nexplanon ® . Among other preventable AE, unintended pregnancies due to a drug-drug interaction would require to be better known by the practitioner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Fungal Biofilms, Drug Resistance, and Recurrent Infection
Desai, Jigar V.; Mitchell, Aaron P.; Andes, David R.
2014-01-01
A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance. PMID:25274758
A long-acting buprenorphine delivery system.
Pontani, R B; Misra, A L
1983-03-01
A subcutaneously implantable buprenorphine delivery system utilizing cholesterol-glyceryltristearate matrix for prolonged release of drug is described. Implantable cylindrical pellets of buprenorphine (cholesterol 36 mg, glyceryltristearate 4 mg, buprenorphine hydrochloride 10 mg), diameter 3 mm, length 6 mm blocked the antinociceptive action (hot plate, 55 degrees C) of 10 mg kg-1 SC challenge dose of morphine in rats for 12 weeks or more (longer periods not evaluated). The cumulative percent release of buprenorphine from the test devices 2, 4, 6, 10 and 12 weeks after implantation was 27.4, 35.9, 37.6, 39.9 and 43.1, respectively. The release of buprenorphine from 10 mg pellets approximated first-order kinetics with half-lives of 0.85 and 50.24 weeks, for alpha and beta phases, respectively. The test devices possess the desirable characteristics of simplicity, biocompatibility, nontoxicity, ease of sterilization with ethylene oxide, small size for ease of insertion and removal, minimal encapsulation by surrounding tissue and an extended period of drug release unaffected by body metabolism. No side effects were seen in implanted rats which fed well and gained weight during entire treatment. Neither deterioration of implant nor any gross anatomic changes at implant site were apparent 12 weeks after pellet implantation.
Koskimäki, Janne; Tarkia, Miikka; Ahtola-Sätilä, Tuula; Saloranta, Lasse; Laakso, Aki; Frantzén, Janek
2015-01-01
Nimodipine is a widely used medication for treating delayed cerebral ischemia (DCI) after subarachnoid hemorrhage. When administrated orally or intravenously, systemic hypotension is an undesirable side effect. Intracranial subarachnoid delivery of nimodipine during aneurysm clipping may be more efficient way of preventing vasospasm and DCI due to higher concentration of nimodipine in cerebrospinal fluid (CSF). The risk of systemic hypotension may also be decreased with intracranial delivery. We used animal models to evaluate the feasibility of surgically implanting a silica-based nimodipine releasing implant into the subarachnoid space through a frontotemporal craniotomy. Concentrations of released nimodipine were measured from plasma samples and CSF samples. Implant degradation was followed using CT imaging. After completing the recovery period, full histological examination was performed on the brain and meninges. The in vitro characteristics of the implant were determined. Our results show that the biodegradable silica-based implant can be used for an intracranial drug delivery system and no major histopathological foreign body reactions were observed. CT imaging is a feasible method for determining the degradation of silica implants in vivo. The sustained release profiles of nimodipine in CSF were achieved. Compared to a traditional treatment, higher nimodipine CSF/plasma ratios can be obtained with the implant. PMID:25685803
Long-term venous access using a subcutaneous implantable drug delivery system.
Soo, K. C.; Davidson, T. I.; Selby, P.; Westbury, G.
1985-01-01
To facilitate long-term venous access in patients receiving chemotherapy, a subcutaneous totally implantable system (Port-a-Cath, Phamacia) has been used in 14 patients. The method of implantation and the advantages over conventional central venous catheters are discussed. The expense of the system necessitates careful patient selection. PMID:4037644
Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation.
Lumetti, S; Ghiacci, G; Macaluso, G M; Amore, M; Galli, C; Calciolari, E; Manfredi, E
2016-01-01
Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation.
Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation
Amore, M.
2016-01-01
Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation. PMID:28050290
Buprenorphine implants in medical treatment of opioid addiction.
Chavoustie, Steven; Frost, Michael; Snyder, Ole; Owen, Joel; Darwish, Mona; Dammerman, Ryan; Sanjurjo, Victoria
2017-08-01
Opioid use disorder is a chronic, relapsing disease that encompasses use of both prescription opioids and heroin and is associated with a high annual rate of overdose deaths. Medical treatment has proven more successful than placebo treatment or psychosocial intervention, and the partial µ-opioid receptor agonist and κ-opioid receptor antagonist buprenorphine is similar in efficacy to methadone while offering lower risk of respiratory depression. However, frequent dosing requirements and potential for misuse and drug diversion contribute to significant complications with treatment adherence for available formulations. Areas covered: This review describes the development of and preliminary data from clinical trials of an implantable buprenorphine formulation. Efficacy and safety data from comparative studies with other administrations of buprenorphine, including tablets and sublingual film, will be described. Key premises of the Risk Evaluation and Mitigation Strategy program for safely administering buprenorphine implants, which all prescribing physicians must complete, are also discussed. Expert commentary: Long-acting implantable drug formulations that offer consistent drug delivery and lower risk of misuse, diversion, or accidental pediatric exposure over traditional formulations represent a promising development for the effective treatment of opioid use disorder.
Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui
2014-01-01
Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292
Allababidi, S; Shah, J C
1998-06-01
The overall objective of the study was to design an implantable delivery system based on glyceryl monostearate (GMS) for the site-specific delivery of antibiotics for the prevention of surgical wound infection. To design the implant, a release method had to be developed that simulate the in vivo implantation conditions to be able to predict the release characteristics from the implants when they are actually used in vivo. Also, identifying the release kinetics and mechanism and evaluating the factors that influence the release of drugs from the GMS-based matrix were necessary to allow further design of implants that could yield a desired release rate. The release of cefazolin was monitored from GMS matrixes implanted into agar gel, simulating subcutaneous tissues with respect to viscosity and water content. The gel method resulted in observation of spatial and temporal concentration profiles in the immediate vicinity of the implants, indicating the benefits of local drug delivery; however, there was no significant difference between the cumulative release profiles by the gel method or the vial release method. The release of cefazolin from the GMS-based matrix with the vial method followed Higuchi's square root of time kinetics. The release rate was found to be directly proportional to cefazolin load (A) and the surface area (SA) of the matrix as expressed by the following equation: = 0.24ASA. On the basis of this equation, one can design a variety of GMS matrixes that would result in a desired release rate or release duration. This also indicated that cefazolin release followed the release kinetics of a freely soluble drug from an insoluble matrix and hence it is a diffusion-controlled process. The effect of drug solubility on the release kinetics was determined by comparing the release kinetics of the poorly water soluble ciprofloxacin (0.16 mg/mL) to that of the highly water soluble cefazolin (325 mg/mL). The release duration of ciprofloxacin (80 h) was longer than that of cefazolin (25 h) from identical GMS matrixes. Although ciprofloxacin release was initially controlled by the matrix, agitation accelerated disintegration of the matrix and release due to its poor solubility, and ciprofloxacin release appeared to be a dissolution-controlled process following zero-order release kinetics.
Mitchell, Alison; McGhie, Jonathan; Owen, Margaret; McGinn, Gordon
2015-06-01
Intrathecal drug delivery is known to be effective in alleviating cancer pain in patients for whom the conventional World Health Organization approach has proved insufficient. A multidisciplinary interventional cancer pain service was established in the West of Scotland in 2008 with the aim of providing a safe and effective intrathecal drug delivery service for patients with difficult-to-control cancer pain. The aim of the intrathecal drug delivery service is to improve pain scores as evaluated by pain scores before and after insertion of an intrathecal drug delivery device. Pain is monitored before and after intrathecal drug delivery implantation using the Brief Pain Inventory. Following implantation, pumps are refilled fortnightly and repeat Brief Pain Inventory assessments are undertaken. This prospective case series analyses change in Brief Pain Inventory domains for patients who had an intrathecal drug delivery implanted using a paired sample t-test. Data are presented from 2008-2013 for 22 patients receiving an intrathecal drug delivery system who experienced an immediate improvement in their pain that was both clinically and statistically significant. One week after insertion, the average pain score on the Brief Pain Inventory fell from 6.8 (pre-intrathecal drug delivery) to 3.0 (post-intrathecal drug delivery). Improvement in pain scores was sustained over a 6-month period. Evaluation of results of this case series shows that with the appropriate use of intrathecal drug delivery systems, patients with difficult-to-control cancer pain can benefit from effective pain relief for many months. © The Author(s) 2015.
Chen, Yu; Xiong, Yan; Jiang, Wentao; Yan, Fei; Guo, Meng; Wang, Qingyuan; Fan, Yubo
2015-01-01
The changes of hemodynamics and drug concentration distribution caused by the implantation of drug eluting stents (DESs) in curved vessels have significant effects on In-Stent Restenosis. A 3D virtual stent with 90° curvature was modelled and the distribution of wall shear stress (WSS) and drug concentration in this model were numerically studied at Reynolds numbers of 200, 400, 600, 800. The results showed that (1) the intensity of secondary flow at the 45° cross-section was stronger than that at the 90° cross-section; (2) As the Reynolds number increases, the WSS decreases. When the Reynolds number reaches 600, the low-WSS region only accounts for 3% of the total area. (3) The effects of Reynolds number on drug concentration in the vascular wall decreases in proportionally and then the blood velocity increased 4 times, the drug concentration in the vascular wall decreased by about 30%. (4) The size of the high drug concentration region is inversely proportional to the Reynolds number. As the blood velocity increases, the drug concentration in the DES decreases, especially at the outer bend. It is beneficial for the patient to decrease vigorous activities and keep calm at the beginning of the stent implantation, because a substantial amount of the drug is released in the first two months of stent implantation, thus a calm status is conducive to drug release and absorption; Subsequently, appropriate exercise which increases the blood velocity is helpful in decreasing regions of low-WSS.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.147... for use. For reversal of the sedative and analgesic effects of dexmedetomidine hydrochloride or...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.147... for use. For reversal of the sedative and analgesic effects of dexmedetomidine hydrochloride or...
21 CFR 522.2220 - Sulfadimethoxine injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfadimethoxine injection. 522.2220 Section 522.2220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522...
21 CFR 522.2615 - Tripelennamine hydrochloride injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Tripelennamine hydrochloride injection. 522.2615 Section 522.2615 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 522.2220 - Sulfadimethoxine injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfadimethoxine injection. 522.2220 Section 522.2220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522...
21 CFR 522.1890 - Sterile prednisone suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile prednisone suspension. 522.1890 Section 522.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS...
Sasikala, Arathyram Ramachandra Kurup; Unnithan, Afeesh Rajan; Yun, Yeo-Heung; Park, Chan Hee; Kim, Cheol Sang
2016-02-01
The study describes the design and synthesis of an implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. This device is achieved using a two-component smart nanofiber matrix from monodisperse iron oxide nanoparticles (IONPs) as well as bortezomib (BTZ), a chemotherapeutic drug. The IONP-incorporated nanofiber matrix was developed by electrospinning a biocompatible and bioresorbable polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by exploiting mussel-inspired surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the borate-containing BTZ anticancer drug through a catechol metal binding in a pH-sensitive manner. Thus, an implantable smart magnetic nanofiber device can be exploited to both apply hyperthermia with an alternating magnetic field (AMF) and to achieve cancer cell-specific drug release to enable synergistic cancer therapy. These results confirm that the BTZ-loaded mussel-inspired magnetic nanofiber matrix (BTZ-MMNF) is highly beneficial not only due to the higher therapeutic efficacy and low toxicity towards normal cells but also, as a result of the availability of magnetic nanoparticles for repeated hyperthermia application and tumor-triggered controlled drug release. The current work report on the design and development of a smart nanoplatform responsive to a magnetic field to administer both hyperthermia and pH-dependent anticancer drug release for the synergistic anticancer treatment. The iron oxide nanoparticles (IONPs) incorporated nanofiber matrix was developed by electrospinning a biocompatible polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the boratecontaining anticancer drug bortezomib through a catechol metal binding in a pH-sensitive manner. This implantable magnetic nanofiber device can be exploited to apply hyperthermia with an alternating magnetic field and to achieve cancer cell-specific drug release to enable synergistic cancer therapy, which results in an improvement in both quality of life and patient compliance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Reservoir-Based Drug Delivery Systems Utilizing Microtechnology
Stevenson, Cynthia L.; Santini, John T.; Langer, Robert
2012-01-01
This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783
Fernandes-Cunha, Gabriella M; Rezende, Cíntia M F; Mussel, Wagner N; da Silva, Gisele R; de L Gomes, Elionai C; Yoshida, Maria I; Fialho, Sílvia L; Goes, Alfredo M; Gomes, Dawison A; de Almeida Vitor, Ricardo W; Silva-Cunha, Armando
2016-01-01
Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed an intravitreal polymeric implant to release clindamycin, a potent anti-Toxoplasma antibiotic. In this work, we used different techniques such as differential scanning calorimetry, thermogravimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared spectroscopy to investigate drug/polymer properties while manufacturing the delivery system. We showed that the lyophilization, hot molding process, and sterilization by gamma irradiation did not change drug/polymer physical-chemistry properties. The drug was found to be homogeneously dispersed into the poly lactic-co-glycolic acid (PLGA) chains and the profile release was characterized by an initial burst followed by prolonged release. The drug profile release was not modified after gamma irradiation and non-covalent interaction was found between the drug and the PLGA. We also observed the preservation of the drug activity by showing the potent anti-Toxoplasma effect of the implant, after 24-72 h in contact with cells infected by the parasite, which highlights this system as an alternative to treat toxoplasmic retinochoroiditis.
Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses.
Morris, Aaron H; Mahal, Rajwant S; Udell, Jillian; Wu, Michelle; Kyriakides, Themis R
2017-10-01
Pharmacological modulation of responses to injury is complicated by the need to deliver multiple drugs with spatiotemporal resolution. Here, a novel controlled delivery system containing three separate compartments with each releasing its contents over different timescales is fabricated. Core-shell electrospun fibers create two of the compartments in the system, while electrosprayed spheres create the third. Utility is demonstrated by targeting the foreign body response to implants because it is a dynamic process resulting in implant failure. Sequential delivery of a drug targeting nuclear factor-κB (NF-κB) and an antifibrotic is characterized in in vitro experiments. Specifically, macrophage fusion and p65 nuclear translocation in the presence of releasate or with macrophages cultured on the surfaces of the constructs are evaluated. In addition, releasate from pirfenidone scaffolds is shown to reduce transforming growth factor-β (TGF-β)-induced pSMAD3 nuclear localization in fibroblasts. In vivo, drug eluting constructs successfully mitigate macrophage fusion at one week and fibrotic encapsulation in a dose-dependent manner at four weeks, demonstrating effective release of both drugs over different timescales. Future studies can employ this system to improve and prolong implant lifetimes, or load it with other drugs to modulate other dynamic processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bijukumar, Divya; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness
2016-11-01
The purpose of this study was to develop an electro-responsive co-polymeric (ERP) implantable gel from polyethylene glycol (PEG), sodium polystyrene sulphonate (NaPss), polyvinyl alcohol (PVA), and diethyl acetomidomalonate (DAA) for electro-liberation of the model drug diclofenac sodium. Various physicochemical and physicomechanical characterization tests were undertaken on the synthesized drug-free gel (ERP G1) and drug-loaded gel (ERP G2). The ability of the gel to release diclofenac sodium following electrical stimulation was evaluated using a galvanostat while Molecular Mechanics (MM) simulations were performed to elucidate the experimental mechanisms. A stable electro-active gel exhibiting superior cycling stability was produced with desirable rheological properties, rigidity (BHN = 35.4 N ± 0.33 N/mm 2 ; resilience = 10.91 ± 0.11%), thermal properties (T g ≈ 70 °C; T c ≈ 200 °C) and homogeneous morphology. "ON-OFF" pursatile gradual drug release (37-94% from t 30 min -t 180 min ) kinetics was observed upon applying electric stimulation intermittently, indicating that drug release from the gel was electrically controlled. Overall, the galvanometric and MM evaluation ascertained the suitability of the PEG/NaPss/PVA ERP-Gel for application as a subcutaneously injectable drug delivery implant.
21 CFR 522.90b - Ampicillin trihydrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.90b..., gastrointestinal infections, skin infections, soft tissue infections, and postsurgical infections. (iii...
21 CFR 522.90b - Ampicillin trihydrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.90b..., gastrointestinal infections, skin infections, soft tissue infections, and postsurgical infections. (iii...
21 CFR 522.2240 - Sulfaethoxypyridazine.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2240... of respiratory infection (pneumonia, shipping fever), foot rot, calf scours; as adjunctive therapy in...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alfaprostol. 522.46 Section 522.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.46 Alfaprostol. (a...
21 CFR 522.2474 - Tolazoline hydrochloride injection.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Section 522.2474 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... a general anesthetic. This drug is for use in horses only and not for use in food-producing animals...
21 CFR 522.2474 - Tolazoline hydrochloride injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 522.2474 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... a general anesthetic. This drug is for use in horses only and not for use in food-producing animals...
21 CFR 522.2474 - Tolazoline hydrochloride injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Section 522.2474 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... a general anesthetic. This drug is for use in horses only and not for use in food-producing animals...
21 CFR 522.2474 - Tolazoline hydrochloride injection.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Section 522.2474 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... a general anesthetic. This drug is for use in horses only and not for use in food-producing animals...
21 CFR 522.1155 - Imidocarb dipropionate sterile powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Imidocarb dipropionate sterile powder. 522.1155 Section 522.1155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS...
A novel bioerodible deep scleral lamellar cyclosporine implant for uveitis.
Gilger, Brian C; Salmon, Jacklyn H; Wilkie, David A; Cruysberg, Lars P J; Kim, Jonghyeon; Hayat, Matt; Kim, Hyuncheol; Kim, Stephanie; Yuan, Peng; Lee, Susan S; Harrington, Susan M; Murray, Patrick R; Edelhauser, Henry F; Csaky, Karl G; Robinson, Michael R
2006-06-01
To determine the feasibility, safety, and effectiveness of an episcleral or deep scleral lamellar sustained release cyclosporine (CsA) device in a naturally occurring animal model of uveitis. A two-compartment perfusion chamber was used to assess in vitro human and equine scleral permeability of fluorescein, dexamethasone-fluorescein, or CsA. A biodegradable, matrix-reservoir CsA implant was designed, and release rates of CsA were determined in vitro. Tissue CsA levels were measured in eyes with the implant. Horses with equine recurrent uveitis (ERU) received episcleral or deep scleral lamellar CsA implants and were monitored for up to 3 years. Dexamethasone-fluorescein and CsA penetrated the in vitro equine sclera poorly; however, low but detectable levels of CsA were detected intraocularly in vivo. The implant placed episclerally failed to control inflammatory episodes in ERU. CsA implants placed in the deep sclera adjacent to the suprachoroidal space resulted in high levels of CsA in most ocular tissues. In clinical equine patients with ERU, frequency of uveitic flare-ups was significantly decreased after implantation of a deep scleral lamellar CsA implant. Diffusion of CsA across the sclera from the episcleral space was not a feasible method of drug delivery to the equine eye. However, placing a deep scleral lamellar CsA implant adjacent to the suprachoroidal space was effective in achieving therapeutic ocular drug concentrations and controlling uveitis in horses with ERU.
Cankaya, Deniz; Tabak, Yalcin; Ozturk, Akif Muhtar; Gunay, Muhammed Cuneyd
2015-07-01
Many factors affect implant stability and periprosthetic bone mineral density (BMD) following total joint arthroplasty. We asked whether perioperative alendronate, risedronate, calcitonin and indomethacine administration altered (1) femoral stem shear strength and periprosthetic bone mineral density BMD in ovariectomized rats and (2) whether there were differences in the effect of these drugs. Thirty overiectomized rats were divided into five groups and implanted with intramedullary mini-cortical screws in the femur. Four groups were treated with alendronate, risedronate, salmon calcitonin and indomethacin for 4 weeks preoperatively and 8 weeks postoperatively. Although alendronate and risedronate increased the periprosthetic BMD more than calcitonin, they did not alter implant fixation compared to calcitonin. Indomethacin significantly decreased the BMD around the stem and implant stability compared to all other groups. This study showed that perioperative treatment with bisphosphonates and calcitonin improved the BMD around the stems and implant stability. Although bisphosphonates increased the BMD more than calcitonin, there was no difference in implant stability. Indomethacin markedly decreased the periprosthetic BMD and implant stability. The main clinical significance of our study was the finding about the need to strictly avoid long-term use of high-dose nonsteroidal antiinflammatory drugs for patients who have major joint arthritis and a previous history of arthroplasty.
Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi
2015-02-21
We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.
Three-dimensional printing and nanotechnology for enhanced implantable materials
NASA Astrophysics Data System (ADS)
Tappa, Karthik Kumar
Orthopedic and oro-maxillofacial implants have revolutionized treatment of bone diseases and fractures. Currently available metallic implants have been in clinical use for more than 40 years and have proved medically efficacious. However, several drawbacks remain, such as excessive stiffness, accumulation of metal ions in surrounding tissue, growth restriction, required removal/revision surgery, inability to carry drugs, and susceptibility to infection. The need for additional revision surgery increases financial costs and prolongs recovery time for patients. These metallic implants are bulk manufactured and often do not meet patient's requirements. A surgeon must machine (cut, weld, trim or drill holes) them in order to best suit the patient specifications. Over the past few decades, attempts have been made to replace these metallic implants with suitable biodegradable materials to prevent secondary/revision surgery. Recent advances in biomaterials have shown multiple uses for lactic acid polymers in bone implant technology. However, a targeted/localized drug delivery system needs to be incorporated in these polymers, and they need to be customized to treat orthopedic implant-related infections and other bone diseases such as osteomyelitis, osteosarcoma and osteoporosis. Rapid Prototyping (RP) using additive manufacturing (AM) or 3D printing could allow customization of constructs for personalized medicine. The goal of this study was to engineer customizable and biodegradable implant materials that can elute bioactive compounds for personalized medicine and targeted drug delivery. Post-operative infections are the most common complications following dental, orthopedic and bone implant surgeries. Preventing post-surgical infections is therefore a critical need that current polymethylmethacrylate (PMMA) bone cements fail to address. Calcium Phosphate Cements (CPCs) are unique in their ability to crystallize calcium and phosphate salts into hydroxyapatite (HA) and hence is naturally osteoconductive. Due to its low mechanical strength, its use in implant fixation and bone repair is limited to nonload-bearing applications. Novel CPCs were formulated and were doped with drug loaded Halloysite Nanotubes (HNTs) to enhance their mechanical and anti-infective properties. In this study we also explored the use of customized biopolymer filaments and 3D printing technology to treat bone diseases such as osteomyelitis, osteosarcoma, and osteoporosis. Biopolymer filaments were successfully loaded with antibiotics, chemotherapeutics and hormones (female sex hormones). Using a Fused Deposition Modeling (FDM)-based 3D printer, these customized filaments were fabricating into 3D scaffolds. Constructs with variable mechanical strengths and porosities were successfully designed and 3D printed. Scanning electron microscopy was used to study the surface architecture of the scaffolds. Compression and flexural testing was conducted for testing the mechanical strength of the constructs. Bacterial and suitable cell culture studies were applied to test bioactivity of the constructs. From above experiments, this study showed that 3D printing technology can be used to fabricate bioactive biopolymers for personalized medicine and localized drug delivery.
Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.
Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon
2013-11-28
Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. © 2013 Elsevier B.V. All rights reserved.
Implantable drug therapy device: A concept
NASA Technical Reports Server (NTRS)
Feldstein, C.
1972-01-01
Design is described of small, rechargeable, implantable infusor which contains fluid medicament stored under pressure and which dispenses fluid continuously through catheter. Body of infusor is covered by pliable silicone rubber sheath attached to suture pad for securing device.
Osteogenic Activity of Locally Applied Small Molecule Drugs in a Rat Femur Defect Model
Cottrell, Jessica A.; Vales, Francis M.; Schachter, Deborah; Wadsworth, Scott; Gundlapalli, Rama; Kapadia, Rasesh; O'Connor, J. Patrick
2010-01-01
The long-term success of arthroplastic joints is dependent on the stabilization of the implant within the skeletal site. Movement of the arthroplastic implant within the bone can stimulate osteolysis, and therefore methods which promote rigid fixation or bone growth are expected to enhance implant stability and the long-term success of joint arthroplasty. In the present study, we used a simple bilateral bone defect model to analyze the osteogenic activity of three small-molecule drug implants via microcomputerized tomography (micro-CT) and histomorphometry. In this study, we show that local delivery of alendronate, but not lovastatin or omeprazole, led to significant new bone formation at the defect site. Since alendronate impedes osteoclast-development, it is theorized that alendronate treatment results in a net increase in bone formation by preventing osteoclast mediated remodeling of the newly formed bone and upregulating osteoblasts. PMID:20625499
Financial audit of antitachycardia pacing for the control of recurrent supraventricular tachycardia.
Griffith, M J; Bexton, R S; McComb, J M
1993-01-01
OBJECTIVE--To assess the financial implications of antitachycardia pacing in patients with frequent supraventricular tachycardia. PATIENTS--Intertach pacemakers were implanted in 25 patients (mean age 47 years, five men): 22 had atrioventricular nodal reentry tachycardia. The patients had failed a mean of 4.9 (range zero to eight) drugs and had been admitted to hospital 3.7 (zero to 31) times over a symptomatic period of 13.9 years (two months to 54 years). RESULTS--The mean admission time for implantation was 2.8 (two to seven) days. One patient with Wolff-Parkinson-White syndrome subsequently underwent surgery. Infection occurred in two patients, and pain over the pacemaker required its resiting in two. Two patients have had one admission each for tachycardia. Six patients remain on anti-arrhythmic drugs. Costs were calculated including value added tax, capital charges, and allocated overheads. The cost a year before pacing was 1174 pounds including drug costs, clinic visits, and hospital admissions. The mean cost of pacemaker implantation was 3364.22 pounds, including the pacemaker and lead, admission and procedure, readmissions and first pacing check. Subsequent annual follow up cost was 73.72 pounds including annual clinic visits and drug costs. The cost of pacing is 4241 pounds whereas medical management costs 7044 pounds assuming pacemaker life of six years: with a 10 year life the cost is 4537 pounds compared with 11,740 pounds: with a 12 year life the cost is 4685 pounds compared with 14,088 pounds. CONCLUSION--The excess cost of implantation of an antitachycardia pacemaker is minimal in patients with frequent supraventricular tachycardia despite drug treatment and is justified by excellent control of symptoms and reduction of drug use and hospital admissions. PMID:8461232
Financial audit of antitachycardia pacing for the control of recurrent supraventricular tachycardia.
Griffith, M J; Bexton, R S; McComb, J M
1993-03-01
To assess the financial implications of antitachycardia pacing in patients with frequent supraventricular tachycardia. Intertach pacemakers were implanted in 25 patients (mean age 47 years, five men): 22 had atrioventricular nodal reentry tachycardia. The patients had failed a mean of 4.9 (range zero to eight) drugs and had been admitted to hospital 3.7 (zero to 31) times over a symptomatic period of 13.9 years (two months to 54 years). The mean admission time for implantation was 2.8 (two to seven) days. One patient with Wolff-Parkinson-White syndrome subsequently underwent surgery. Infection occurred in two patients, and pain over the pacemaker required its resiting in two. Two patients have had one admission each for tachycardia. Six patients remain on anti-arrhythmic drugs. Costs were calculated including value added tax, capital charges, and allocated overheads. The cost a year before pacing was 1174 pounds including drug costs, clinic visits, and hospital admissions. The mean cost of pacemaker implantation was 3364.22 pounds, including the pacemaker and lead, admission and procedure, readmissions and first pacing check. Subsequent annual follow up cost was 73.72 pounds including annual clinic visits and drug costs. The cost of pacing is 4241 pounds whereas medical management costs 7044 pounds assuming pacemaker life of six years: with a 10 year life the cost is 4537 pounds compared with 11,740 pounds: with a 12 year life the cost is 4685 pounds compared with 14,088 pounds. The excess cost of implantation of an antitachycardia pacemaker is minimal in patients with frequent supraventricular tachycardia despite drug treatment and is justified by excellent control of symptoms and reduction of drug use and hospital admissions.
Current Trend of Antimicrobial Prescription for Oral Implant Surgery Among Dentists in India.
Datta, Rahul; Grewal, Yasmin; Batth, J S; Singh, Amandeep
2014-12-01
The aim of our study was to evaluate antimicrobial prescription behaviour amongst dentists performing oral implant surgery in India. Dentists performing oral implant surgery from different parts of India were personally approached during various national events such as conferences and academic meetings and information regarding their prescription habits for antimicrobial agents in routine oral implant surgery was collected using a structured questionnaire. Out of a total sample of 332 dentists, 85.5 % prescribed 17 different groups or combinations of antibiotics routinely for oral implant surgery in the normal healthy patient. Majority preferred the peri-operative protocol of drug therapy (72.2 %) with variable and prolonged duration of therapy after surgery, ranging from 3 to 10 days. An antimicrobial mouthwash was routinely prescribed by all the doctors (14.5 %) not in favour of prescribing antimicrobials in a normal healthy patient. Our findings suggest that there is a trend of antimicrobial agent misuse by dentists performing oral implant surgery in India, both in terms of drugs used and the protocols prescribed. The majority of these dentists prescribed a variety of antimicrobial agents for prolonged durations routinely even in the normal, healthy patients.
Novel drug delivery systems in pain therapy.
Al Malyan, M; Becchi, C; Boncinelli, S; Ashammakhi, N
2007-03-01
Pain is an unpleasant sensory experience resulting from damage to bodily tissues. It is considered a significant public health problem because it affects 1/5 of the world population and causes loss of great amounts of money. Pain reflects a mixture of pathological, psychological and genetic conditions that need deep understanding to be efficiently treated. If under-treated, pain results in serious immune and metabolic problems. Pain management faces many problems that limit its control. For instance, efficiency of pain killers is limited, pain killers give rise to serious side effects and inability of drug administration methods to help in pain control. Technology can overcome some of these problems and the introduction of implantable controlled drug delivery systems (CDDS), manufactured from biodegradable materials, offers a solution. Implantable CDDS provide good level of pain control, as they continuously provide drug, reduce side effects and improve patients' compliance. Biodegradable type of implantable CDDS are polymer based devices that are fabricated to locally deliver drugs in a pre-designed manner. They are currently a focus of research in the field of pain therapy in order to explore their chance to offer an alternative to the conventional methods for drug delivery. This paper aims to highlight the dimensions of pain issue and to overview the basics of drug release from polymers used for CDDS in pain management. In addition, it discusses the recent advances in the technologically designed drug delivery systems in the field of pain medicine and their clinical applications. Future perspectives are also presented.
Pattern of Antibiotic Prescription for Oral Implant Treatment Among Dentists in Saudi Arabia.
El-Kholey, Khalid E; Wali, Othman; Elkomy, Aamna; Almozayen, Ahmed
2018-06-01
To investigate antibiotic prophylaxis prescription behavior among dentists practicing dental implant surgery in Saudi Arabia. An observational questionnaire study was conducted in the period between October 2016 and December 2016. A link to an online previously validated questionnaire was sent to a convenience sample of dentists practicing dental implant placement in the different areas of Saudi Arabia. Absolute frequencies were used to describe the data. One hundred nine completed questionnaires were received. A total of 59.63% (n = 65) of the respondents routinely prescribed prophylactic antibiotics when performing implant surgery. There was a wide variation in the preoperative and postoperative prescription regimens with the majority (67%) starting the antibiotic immediately postoperatively for 3 to 5 days, with no preoperative antibiotic use. Amoxicillin and clavulanic acid combination was the drug of choice for 50.3% of the respondents, whereas 26.6% prescribed amoxicillin as the drug of choice. Although a small study with a low response rate, a wide variation in antibiotic prescribing patterns with respect to the drugs chosen, timing, and duration was found in implant surgery in Saudi Arabia. Dentists should be aware of the risk of antibiotic overuse and start to share in the efforts that aim to reserve the antibiotics to combat life-threatening infections and to reduce development of bacterial resistance to the available antibiotics.
21 CFR 522.1081 - Chorionic gonadotropin.
Code of Federal Regulations, 2012 CFR
2012-04-01
... if the animal's behavior or examination of the ovaries per rectum indicates retreatment. (A) 10,000... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1081...
21 CFR 522.1155 - Imidocarb powder for injection.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Staff, Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture... 522.1155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 522.1468 - Naproxen for injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1468.... Five milligrams per kilogram of body weight intravenously followed by maintenance oral therapy of 10...
Hatheway, John A; Caraway, David; David, Guy; Gunnarsson, Candace; Hinnenthal, Jennifer; Ernst, Amanda R; Saulino, Michael
2015-04-01
To compare health-care expenditures over a 12-month horizon for chronic pain patients with implanted intrathecal drug delivery systems (IDDS) who eliminated or continued systemic opioids postimplant. Claims data from commercial and Medicare databases were searched for patients who had an IDDS, used systemic opioids before implant, and had 12 months pre- and 13 months postimplant continuous medical and pharmacy coverage. The number and characteristics of patients who eliminated or continued systemic opioids were determined at four times postimplant: 30 days (allowing a systemic opioid washout period), 120 days, 150 days, and 210 days. Multivariable models evaluated the effect of eliminating opioids on health-care expenditures at each of those times. Three hundred eighty-nine patients met inclusion criteria, and 51% completely eliminated systemic opioids (12% within the 30-day washout and an additional 39% by the end of the one-year horizon). Systemic opioid elimination within 120 to 210 days postimplant was associated with a reduction of $3,388 to $4,465 in inpatient and outpatient expenditures, and $4,689 to $5,571 in inpatient, outpatient, and drug expenditures. Fifty-one percent of patients completely eliminated systemic opioids in the year after IDDS implant. This elimination resulted in a 10% to 17% reduction in yearly inpatient, outpatient, and drug expenditures. © 2015 International Neuromodulation Society.
Characterization of Porous, Dexamethasone-Releasing Polyurethane Coatings for Glucose Sensors
Vallejo-Heligon, Suzana G.; Klitzman, Bruce; Reichert, William M.
2014-01-01
Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release, and bioactivity characterization of tubular, porous dexamethasone (Dex) releasing polyurethane coatings designed to attenuate local inflammation in the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy (SEM) and Micro-computed tomography (Micro-CT) showed a controlled porosity and coating thickness. In vitro drug release from coatings monitored over two weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance. PMID:25065548
Management and outcome of topical beta-blockerinduced atrioventricular block
Özcan, Kazım Serhan; Güngör, Barış; Tekkeşin, Ahmet İlker; Altay, Servet; Ekmekçi, Ahmet; Toprak, Ercan; Yıldırım, Ersin; Çalık, Nazmi; Alper, Ahmet Taha; Gürkan, Kadir; Erdinler, İzzet; Osmonov, Damirbek
2015-01-01
Summary Background Topical beta-blockers have a well-established role in the treatment of glaucoma. We aimed to investigate the outcome of patients who developed symptomatic atrioventricular (AV) block induced by topical beta-blockers. Methods All patients admitted or discharged from our institution, the Siyami Ersek Training and Research Hospital, between January 2009 and January 2013 with a diagnosis of AV block were included in the study. Subjects using ophthalmic beta-blockers were recruited and followed for permanent pacemaker requirement during hospitalisation and for three months after discontinuation of the drug. A permanent pacemaker was implanted in patients in whom AV block persisted beyond 72 hours or recurred during the follow-up period. Results A total of 1 122 patients were hospitalised with a diagnosis of AV block and a permanent pacemaker was implanted in 946 cases (84.3%) during the study period. Thirteen patients using ophthalmic beta-blockers for the treatment of glaucoma and no other rate-limiting drugs were included in the study. On electrocardiography, eight patients had complete AV block and five had high-degree AV block. The ophthalmic beta-blockers used were timolol in seven patients (55%), betaxolol in four (30%), and cartelol in two cases (15%). The mean duration of ophthalmic beta-blocker treatment was 30.1 ± 15.9 months. After drug discontinuation, in 10 patients the block persisted and a permanent pacemaker was implanted. During follow up, one more patient required pacemaker implantation. Therefore in total, pacemakers were implanted in 11 out of 13 patients (84.6%). The pacemaker implantation rate did not differ according to the type of topical beta-blocker used (p = 0.37). The presence of infra-nodal block on electrocardiography was associated with higher rates of pacemaker implantation. Conclusion Our results indicate that topical beta-blockers for the treatment of glaucoma may cause severe conduction abnormalities and when AV block occurs, pacemaker implantation is required in a high percentage of the patients. PMID:26659434
Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs
Hartsock, Jared; Gill, Ruth; Smyth, Daniel; Kirk, Jonathon; Verhoeven, Kristien
2017-01-01
Patients undergoing cochlear implantation could benefit from a simultaneous application of drugs into the ear, helping preserve residual low-frequency hearing and afferent nerve fiber populations. One way to apply drugs is to incorporate a cannula into the implant, through which drug solution is driven. For such an approach, perilymph concentrations achieved and the distribution in the ear over time have not previously been documented. We used FITC-labeled dextran as a marker, delivering it into perilymph of guinea pigs at 10 or 100 nL/min though a cannula incorporated into a cochlear implant with the outlet in the mid basal turn. After injections of varying duration (2 hours, 1 day or 7 days) perilymph was collected from the cochlear apex using a sequential sampling technique, allowing dextran levels and gradients along scala tympani to be quantified. Data were interpreted quantitatively using computer simulations of the experiments. For injections of 2 hours duration, dextran levels were critically influenced by the presence or absence of fluid leakage at the cochleostomy site. When the cochleostomy was fluid-tight, substantially higher perilymph levels were achieved at the injection site, with concentration declining along scala tympani towards the apex. Contrary to expectations, large dextran gradients along scala tympani persisted after 24 hours of sustained injection and were still present in some animals after 7 days injection. Functional changes associated with implantation and dextran delivery, and the histological state of the implant and cannula were also documented. The persistent longitudinal gradients of dextan along the ear were not readily explained by computer simulations of the experiments based on prior pharmacokinetic data. One explanation is that inner ear pharmacokinetics are altered in the period after cochlear implantation, possibly by a permeabilization of the blood-labyrinth barrier as part of the immune response to the implant. PMID:28817653
Manna, Soumyarwit; Donnell, Anna M; Kaval, Necati; Al-Rjoub, Marwan F; Augsburger, James J; Banerjee, Rupak K
2018-05-29
Repetitive intravitreal injections of Methotrexate (MTX), a hydrophilic chemotherapeutic drug, are currently used to treat selected vitreoretinal (VR) diseases, such as intraocular lymphoma. To avoid complications associated with the rapid release of MTX from the injections, a Polylactic acid (PLA) and Chitosan (CS)-based MTX micro-implant prototype was fabricated in an earlier study, which showed a sustained therapeutic release rate of 0.2-2.0 µg/day of MTX for a period ∼1 month in vitro and in vivo. In the current study, different combinations of Poly(lactic-co-glycolic) acid (PLGA)/PLA coatings were used for lipophilic surface modification of the CS-MTX micro-implant, such as PLGA 5050, PLGA 6535 and PLGA 7525 (PLA: PGA - 50:50, 65:35, 75:25, respectively; M.W: 54,400 - 103,000) and different PLA, such as PLA 100 and PLA 250 (MW: 102,000 and 257,000, respectively). This improved the duration of total MTX release from the coated CS-MTX micro-implants to ∼3-5 months. With an increase in PLA content in PLGA and molecular weight of PLA, a) the initial burst of MTX and the mean release rate of MTX can be reduced; and b) the swelling and biodegradation of the micro-implants can be delayed. The controlled drug release mechanism is caused by a combination of diffusion process and hydrolysis of the polymer coating, which can be modulated by a) PLA content in PLGA and b) molecular weight of PLA, as inferred from Korsmeyer Peppas model, Zero order, First order and Higuchi model fits. This improved micro-implant formulation has the potential to serve as a platform for controlled release of hydrophilic drugs to treat selected VR diseases. Copyright © 2018. Published by Elsevier B.V.
[Silicone in autoimmune diseases and cancer].
Elejabeitia, J
1999-01-01
In 1992 the Food and Drug Administration (FDA) announced the restriction of silicone gel-filled breast implants until research protocol studies evaluate the relationship of silicone to connective tissue diseases, and the association of the silicone implants with breast carcinoma. Since them comprehensive epidemiologic studies have concluded that there is no connection between breast implants and the known connective tissue diseases or between the implants and breast carcinoma. During the same year, The American College of Rheumatology said that it have not been demonstrated the relationship between silicone gel breast implants and any systemic disease. Although this, the FDA restriction continues.
21 CFR 522.2690 - Zinc gluconate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter...
21 CFR 522.2690 - Zinc gluconate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter...
21 CFR 522.2690 - Zinc gluconate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter...
75 FR 1274 - Implantation or Injectable Dosage Form New Animal Drugs; Florfenicol and Flunixin
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 522 [Docket No... AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration... Veterinary Medicine (HFV-130), Food and Drug Administration, 7500 Standish Pl., Rockville, MD 20855, 240-276...
21 CFR 522.1081 - Chorionic gonadotropin.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Dosage may be repeated in 14 days if the animal's behavior or examination of the ovaries per rectum... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1081...
21 CFR 522.1081 - Chorionic gonadotropin.
Code of Federal Regulations, 2010 CFR
2010-04-01
... repeated in 14 days if the animal's behavior or examination of the ovaries per rectum indicates retreatment... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1081...
21 CFR 522.1081 - Chorionic gonadotropin.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Dosage may be repeated in 14 days if the animal's behavior or examination of the ovaries per rectum... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1081...
21 CFR 522.1081 - Chorionic gonadotropin.
Code of Federal Regulations, 2011 CFR
2011-04-01
... repeated in 14 days if the animal's behavior or examination of the ovaries per rectum indicates retreatment... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1081...
21 CFR 522.1885 - Prednisolone tertiary butylacetate suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prednisolone tertiary butylacetate suspension. 522.1885 Section 522.1885 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW...
Desai, Ankita R; Maulvi, Furqan A; Pandya, Mihir M; Ranch, Ketan M; Vyas, Bhavin A; Shah, Shailesh A; Shah, Dinesh O
2018-05-29
Glaucoma is a chronic disease, which is currently treated using frequent high dose applications of an eye drop solution; this method is tedious, and most of patients are non-compliant to it. Contact lenses are emerging as a convenient option to sustain the release of ophthalmic drugs. However, the incorporation of a drug/formulation changes the optical and physical properties of contact lenses. Contact lens users have also reported pink eye syndrome; this makes contact lenses unsuitable to be accepted as a medical device. The objective of the present study was to design novel timolol and hyaluronic acid (comfort agent)-loaded semi-circular ring-implanted contact lenses that could uphold the release at therapeutic rates without compromising the critical lens properties. The drug-loaded rings were individually implanted within the periphery of the contact lenses using modified cast-moulding technology. Atomic force microscopy showed an average roughness of 12.38 nm for the implanted lens that was significantly lower as compared to that of the Freshlook contact lenses (116.27 nm). A major amount of timolol was leached (from 46.47 to 58.79%) during the monomer extraction and moist sterilization (autoclave) steps; therefore, the lenses were sterilized by radiation and packaged under dry conditions (dehydrated). The in vitro release data showed sustained release of timolol and hyaluronic acid up to 96 h. The in vivo drug release study on rabbit eyes showed the presence of timolol in tear fluid up to 72 h. The in vivo pharmacodynamics studies showed a reduction in IOP till 144 h with a low drug loading (154 μg) as compared to the case of a single instillation eye drop solution (250 μg). This study has demonstrated the successful application of implantation technology to co-deliver timolol and hyaluronic acid from contact lenses for an extended period of time to treat glaucoma.
Dexamethasone intravitreal implant for the treatment of noninfectious uveitis
Hunter, Rebecca S; Lobo, Ann-Marie
2011-01-01
Uveitis can be a sight-threatening eye disease with significant morbidity. Corticosteroids remain the mainstay of treatment of uveitis and provide an effective treatment against ocular inflammation. However, the various modes available for corticosteroid drug delivery can carry significant ocular and systemic side effects which can limit their use in the treatment of uveitis. In an effort to avoid the damage to ocular structures that can ensue with recurrent episodes of ocular inflammation, the side effects associated with systemic steroids, and the need for repeated administration of both topical and locally injected corticosteroids, sustained-release intraocular corticosteroid implants have been developed. The dexamethasone (DEX) drug delivery system (Ozurdex®; Allergan Inc, Irvine, CA), is a biodegradable intravitreal implant. This implant has been shown to be effective in the treatment of macular edema and noninfectious posterior uveitis and has been approved by the FDA for these entities. This review will highlight the current methods available for corticosteroid delivery to the eye with a particular emphasis on the DEX intravitreal implant and the evidence currently available for its use in noninfectious uveitis. PMID:22140307
Nguyen, Yann; Bernardeschi, Daniele; Kazmitcheff, Guillaume; Miroir, Mathieu; Vauchel, Thomas; Ferrary, Evelyne; Sterkers, Olivier
2015-02-01
Loading otoprotective drug into cochlear implant might change its mechanical properties, thus compromising atraumatic insertion. This study evaluated the effect of incorporation of dexamethasone (DXM) in the silicone of cochlear implant arrays on insertion forces. Local administration of DXM with embedded array can potentially reduce inflammation and fibrosis after cochlear implantation procedure to improve hearing preservation and reduce long-term impedances. Four models of arrays have been tested: 0.5-mm distal diameter array (n = 5) used as a control, drug-free 0.4-mm distal diameter array (n = 5), 0.4-mm distal diameter array with 1% eluded DXM silicone (n = 5), and 0.4-mm distal diameter array with 10% eluded DXM silicone (n = 5). Via a motorized insertion bench, each array has been inserted into an artificial scala tympani model. The forces were recorded by a 6-axis force sensor. Each array was tested seven times for a total number of 140 insertions. During the first 10-mm insertion, no difference between the four models was observed. From 10- to 24-mm insertion, the 0.5-mm distal diameter array presented higher insertion forces than the drug-free 0.4-mm distal diameter arrays, with or without DXM. Friction forces for drug-free 0.4-mm distal diameter array and 0.4-mm distal diameter DXM eluded arrays were similar on all insertion lengths. Incorporation of DXM in silicone for cochlear implant design does not change electrode array insertion forces. It does not raise the risk of trauma during array insertion, making it suitable for long-term in situ administration to the cochlea.
75 FR 38699 - Implantation or Injectable Dosage Form New Animal Drugs; Propofol
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
...The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect approval of a new animal drug application (NADA) filed by Fort Dodge Animal Health, Division of Wyeth. The NADA provides for veterinary prescription use of propofol as an anesthetic in dogs and cats.
21 CFR 522.2470 - Tiletamine hydrochloride and zolazepam hydrochloride for injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Tiletamine hydrochloride and zolazepam hydrochloride for injection. 522.2470 Section 522.2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR...
21 CFR 522.84 - Beta-aminopropionitrile fumarate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 522.84 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.... Do not use in horses with dermal irritation or open skin lesions in the injection area. Do not...
21 CFR 522.84 - Beta-aminopropionitrile fumarate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 522.84 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.... Do not use in horses with dermal irritation or open skin lesions in the injection area. Do not...
21 CFR 522.90b - Ampicillin trihydrate powder for injection.
Code of Federal Regulations, 2014 CFR
2014-04-01
....90b Section 522.90b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.90b Ampicillin trihydrate powder for injection. (a) Specifications. Each milliliter of...
21 CFR 522.84 - Beta-aminopropionitrile fumarate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 522.84 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.... Do not use in horses with dermal irritation or open skin lesions in the injection area. Do not...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zeranol. 522.2680 Section 522.2680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS...) Beef cattle—(i) Amount. 36 mg zeranol (one implant consisting of 3 pellets, each pellet containing 12...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zeranol. 522.2680 Section 522.2680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS...) Beef cattle—(i) Amount. 36 mg zeranol (one implant consisting of 3 pellets, each pellet containing 12...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zeranol. 522.2680 Section 522.2680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS...) Beef cattle—(i) Amount. 36 mg zeranol (one implant consisting of 3 pellets, each pellet containing 12...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zeranol. 522.2680 Section 522.2680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS...) Beef cattle—(i) Amount. 36 mg zeranol (one implant consisting of 3 pellets, each pellet containing 12...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zeranol. 522.2680 Section 522.2680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS...) Beef cattle—(i) Amount. 36 mg zeranol (one implant consisting of 3 pellets, each pellet containing 12...
Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings
Shen, Jie; Burgess, Diane J.
2011-01-01
Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033
Shen, Jie; Burgess, Diane J
2012-01-17
Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Okamoto, Naotaka; Ueda, Hiroshi; Yoshimura, Takahiro; Chamaria, Surbhi; Bhatheja, Samit; Vengrenyuk, Yuliya; Rabiei, Samaneh; Barrientos, Yonandy; Kapur, Vishal; Barman, Nitin; Sweeny, Joseph; Baber, Usman; Mehran, Roxana; Sharma, Samin K; Kini, Annapoorna S
2018-04-15
The aim of the study was to compare the acute outcomes of Absorb bioresorbable vascular scaffolds (BVS) and second-generation drug-eluting stent (DES) implantation in routine clinical practice. There is a paucity of data regarding BVS use in a real-world patient population. The study population comprised 40 consecutive patients who underwent percutaneous coronary intervention (PCI) with BVS implantation at a tertiary-care center in New York, New York between July and December of 2016. An optimal implantation technique including adequate lesion preparation, mandatory postdilation, and optical coherence tomography (OCT) imaging was used in all cases. De novo lesions treated with BVS were compared to lesions treated with DES matched by OCT calcium arc, scaffold/stent size, use of atherectomy device, and lesion postdilation. Acute lumen gain, minimal device area, malapposition, eccentricity, and symmetry index were assessed using OCT. We analyzed OCT images of 40 BVS cases and 40 matching DES cases from 35 and 40 patients, respectively. Compared to the DES group, the BVS group demonstrated similar acute lumen gain, minimal scaffold/stent area, eccentricity index, and symmetry index after PCI. There were fewer malapposed struts detected after BVS implantation; however, malapposition distance and length were not different between the groups. BVS implantation in a real-world patient population with optimal implantation technique resulted in similar stent expansion and better strut apposition compared to DES implantation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.311 Cefovecin. (a... not complete. (ii) Indications for use. For the treatment of skin infections (secondary superficial...
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.311 Cefovecin. (a... not complete. (ii) Indications for use. For the treatment of skin infections (secondary superficial...
Code of Federal Regulations, 2014 CFR
2014-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.311 Cefovecin. (a... not complete. (ii) Indications for use. For the treatment of skin infections (secondary superficial...
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.311 Cefovecin. (a... not complete. (ii) Indications for use. For the treatment of skin infections (secondary superficial...
Magnetic resonance imaging of breast implants.
Shah, Mala; Tanna, Neil; Margolies, Laurie
2014-12-01
Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.
Hsu, Yung-Heng; Chen, Dave Wei-Chih; Tai, Chun-Der; Chou, Ying-Chao; Liu, Shih-Jung; Ueng, Steve Wen-Neng; Chan, Err-Cheng
2014-01-01
We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics. PMID:25246790
Electromagnetic irradiation may be a new approach to therapy for peri-implantitis.
Cao, Zhensheng; Chen, Yijia; Chen, Yuxue; Zhao, Qing; Xu, Xiaomei; Chen, Yangxi
2012-03-01
Peri-implantitis can lead to bone destruction around a dental implant through inflammation and immune reactions caused by bacteria adhering to the surface of the implant abutment. Electromagnetic irradiation can inhibit bacterial growth, increase bone formation, decrease bone resorption and reduce the inflammatory response. Our hypothesis is that electromagnetic irradiation may be a new treatment approach for peri-implantitis and may simultaneously maintain bone mass around the dental implant. The results would be more significant when combined with other agents, because the effect of some antibiotics and anti-inflammatory drugs is strengthened by electromagnetic irradiation. This non-invasive therapy is expected to be conducted in a convenient manner, and even by patients at home, thereby facilitating the prevention and treatment of peri-implantitis. Copyright © 2011 Elsevier Ltd. All rights reserved.
De Andres, Jose; Villanueva, Vicente; Palmisani, Stefano; Cerda-Olmedo, German; Lopez-Alarcon, Maria Dolores; Monsalve, Vicente; Minguez, Ana; Martinez-Sanjuan, Vicente
2011-05-01
It is common clinical practice to perform magnetic resonance imaging (MRI) in patients with indwelling programmable intrathecal drug delivery (IDD) systems, although the safety of the procedure has never been documented. We performed a single-center, 3-year, prospective evaluation in patients with a programmable implanted IDD to assess patient discomfort, IDD technical failures, and adverse effects during and after exposure to MRI. Forty-three consecutive patients with an implanted programmable IDD system (SynchroMed® EL Implantable Infusion Pump, Model 8626L-18, and SynchroMed® II Model 8637-20, 8637-40; Medtronic, Inc., Minneapolis, MN) requiring a scheduled MRI evaluation were studied during a 3-year period. All MRI scans were performed with a 1.5-tesla clinical use magnet and a specific absorption rate of no more than 0.9 W/kg. Radiograph control was used to confirm postexposure pump rotor movement and detect system dislocations. IDD system failures, patient satisfaction, and discomfort were recorded. None of the patients experienced signs of drug overinfusion that could lead to hemodynamic, respiratory, or neurologic alterations. Radiologic evaluation after MRI revealed no spatial displacements of the intrathecal catheter tip or body pump, and programmer telemetry confirmed the infusion recovery. Patients' satisfaction after the procedure was high. Performing an MRI scan with the proposed protocol in patients with an implanted Medtronic programmable IDD system resulted in virtually no technical or medical complications. © 2011 International Anesthesia Research Society
Iijima, Raisuke; Kougame, Norihiro; Hara, Hidehiko; Moroi, Masao; Nakamura, Masato
2018-06-12
The aim of this study was to investigate whether drug-coated balloon (DCB) treatment is effective for de novo coronary lesions that are unsuitable for drug-eluting stent (DES) implantation.Methods and Results:This retrospective study included 118 de novo lesions that were not suitable for DES implantation. Of the lesions, 40% was treated because of very small vessel disease. Patients with planned non-cardiac surgery and at high bleeding risk were 3% and 19%, respectively, and lesions that easily develop stent fracture comprised 26%. Clinically driven target lesion revascularization (TLR) was the primary endpoint. The rate of suboptimal lesion preparation before DCB treatment was set as the secondary endpoint. Optimal lesion preparation was defined as acquisition of Thrombolysis in Myocardial Infarction flow grade 3, minor coronary dissection, and residual stenosis ≤30%. The rate of suboptimal lesion preparation was 2.5% and 3 patients needed bail-out stenting. Accordingly, 115 patients were treated with a DCB. Clinically driven TLR had occurred in 8 patients (7.0%) at the 8-month follow-up. The presence of chronic total occlusion was identified as an independent predictor for TLR (odds 11.57; 95% confidence interval, 1.38-135.54; P=0.02). For lesions that are unsuitable for stent implantation, stent-less intervention using a DCB should be considered initially. The present study also highlighted that lesion preparation is key to a successful DCB strategy.
Transdermal power transfer for recharging implanted drug delivery devices via the refill port.
Evans, Allan T; Chiravuri, Srinivas; Gianchandani, Yogesh B
2010-04-01
This paper describes a system for transferring power across a transdermal needle into a smart refill port for recharging implantable drug delivery systems. The device uses a modified 26 gauge (0.46 mm outer diameter) Huber needle with multiple conductive elements designed to couple with mechanical springs in the septum of the refill port of a drug delivery device to form an electrical connection that can sustain the current required to recharge a battery during a reservoir refill session. The needle is fabricated from stainless steel coated with Parylene, and the refill port septum is made from micromachined stainless steel contact springs and polydimethylsiloxane. The device properties were characterized with dry and wet ambient conditions. The needle and port pair had an average contact resistance of less than 2 Omega when mated in either environment. Electrical isolation between the system, the liquid in the needle lumen, and surrounding material has been demonstrated. The device was used to recharge a NiMH battery with currents up to 500 mA with less than 15 degrees C of resistive heating. The system was punctured 100 times to provide preliminary information with regard to device longevity, and exhibited about 1 Omega variation in contact resistance. The results suggest that this needle and refill port system can be used in an implant to enable battery recharging. This allows for smaller batteries to be used and ultimately increases the volume efficiency of an implantable drug delivery device.
Kim, Hyuncheol; Lizak, Martin J; Tansey, Ginger; Csaky, Karl G; Robinson, Michael R; Yuan, Peng; Wang, Nam Sun; Lutz, Robert J
2005-02-01
Ensuring optimum delivery of therapeutic agents in the eye requires detailed information about the transport mechanisms and elimination pathways available. This knowledge can guide the development of new drug delivery devices. In this study, we investigated the movement of a drug surrogate, Gd-DTPA (Magnevist) released from a polymer-based implant in rabbit vitreous using T1-weighted magnetic resonance imaging (MRI). Intensity values in the MRI data were converted to concentration by comparison with calibration samples. Concentration profiles approaching pseudosteady state showed gradients from the implant toward the retinal surface, suggesting that diffusion was occurring into the retinal-choroidal-scleral (RCS) membrane. Gd-DTPA concentration varied from high values near the implant to lower values distal to the implant. Such regional concentration differences throughout the vitreous may have clinical significance when attempting to treat ubiquitous eye diseases using a single positional implant. We developed a finite element mathematical model of the rabbit eye and compared the MRI experimental concentration data with simulation concentration profiles. The model utilized a diffusion coefficient of Gd-DTPA in the vitreous of 2.8 x 10(-6) cm2 s(-1) and yielded a diffusion coefficient for Gd-DTPA through the simulated composite posterior membrane (representing the retina-choroidsclera membrane) of 6.0 x 10(-8) cm2 s(-1). Since the model membrane was 0.03-cm thick, this resulted in an effective membrane permeability of 2.0 x 10(-6) cm s(-1). Convective movement of Gd-DTPA was shown to have minimal effect on the concentration profiles since the Peclet number was 0.09 for this system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.56 Amikacin. (a... Escherichia coli and Proteus spp. and skin and soft tissue infections caused by susceptible strains of...
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.46 Alfaprostol. (a... the skin and can cause abortion and/or bronchial spasms. Women of childbearing age, asthmatics, and...
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.56 Amikacin. (a... of Escherichia coli and Proteus spp. and skin and soft tissue infections caused by susceptible...
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.56 Amikacin. (a... of Escherichia coli and Proteus spp. and skin and soft tissue infections caused by susceptible...
Saveleva, M S; Ivanov, A N; Kurtukova, M O; Atkin, V S; Ivanova, A G; Lyubun, G P; Martyukova, A V; Cherevko, E I; Sargsyan, A K; Fedonnikov, A S; Norkin, I A; Skirtach, A G; Gorin, D A; Parakhonskiy, B V
2018-04-01
Designing advanced biomaterials for tissue regeneration with drug delivery and release functionalities remains a challenge in regenerative medicine. In this research, we have developed novel composite scaffolds based on polymeric polycaprolactone fibers coated with porous calcium carbonate structures (PCL/CaCO 3 ) for tissue engineering and have shown their drug delivery and release in rats. In vivo biocompatibility tests of PCL/CaCO 3 scaffolds were complemented with in vivo drug release study, where tannic acid (TA) was used as a model drug. Release of TA from the scaffolds was realized by recrystallization of the porous vaterite phase of calcium carbonate into the crystalline calcite. Cell colonization and tissue vascularization as well as transplantability of developed PCL/CaCO 3 +TA scaffolds were observed. Detailed study of scaffold transformations during 21-day implantation period was followed by scanning electron microscopy and X-ray diffraction studies before and after in vivo implantation. The presented results demonstrate that PCL/CaCO 3 scaffolds are attractive candidates for implants in bone regeneration and tissue engineering with a possibility of loading biologically active molecules and controlled release. Copyright © 2017 Elsevier B.V. All rights reserved.
Advantages and disadvantages of biodegradable platforms in drug eluting stents.
Rodriguez-Granillo, Agustina; Rubilar, Bibiana; Rodriguez-Granillo, Gaston; Rodriguez, Alfredo E
2011-03-26
Coronary angioplasty with drug-eluting stent (DES) implantation is currently the most common stent procedure worldwide. Since the introduction of DES, coronary restenosis as well as the incidence of target vessel and target lesion revascularization have been significantly reduced. However, the incidence of very late stent thrombosis beyond the first year after stent deployment has more commonly been linked to DES than to bare-metal stent (BMS) implantation. Several factors have been associated with very late stent thrombosis after DES implantation, such as delayed healing, inflammation, stent mal-apposition and endothelial dysfunction. Some of these adverse events were associated with the presence of durable polymers, which were essential to allow the elution of the immunosuppressive drug in the first DES designs. The introduction of erodable polymers in DES technology has provided the potential to complete the degradation of the polymer simultaneously or immediately after the release of the immunosuppressive drug, after which a BMS remains in place. Several DES designs with biodegradable (BIO) polymers have been introduced in preclinical and clinical studies, including randomized trials. In this review, we analyze the clinical results from 6 observational and randomized studies with BIO polymers and discuss advantages and disadvantages of this new technology.
A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer
Cobo, Angelica; Sheybani, Roya; Tu, Heidi; Meng, Ellis
2016-01-01
We present an implantable micropump with a miniature form factor and completely wireless operation that enables chronic drug administration intended for evaluation and development of cancer therapies in freely moving small research animals such as rodents. The low power electrolysis actuator avoids the need for heavy implantable batteries. The infusion system features a class E inductive powering system that provides on-demand activation of the pump as well as remote adjustment of the delivery regimen without animal handling. Micropump performance was demonstrated using a model anti-cancer application in which daily doses of 30 μL were supplied for several weeks with less than 6% variation in flow rate within a single pump and less than 8% variation across different pumps. Pumping under different back pressure, viscosity, and temperature conditions were investigated; parameters were chosen so as to mimic in vivo conditions. In benchtop tests under simulated in vivo conditions, micropumps provided consistent and reliable performance over a period of 30 days with less than 4% flow rate variation. The demonstrated prototype has potential to provide a practical solution for remote chronic administration of drugs to ambulatory small animals for research as well as drug discovery and development applications. PMID:26855476
Ordikhani, F; Tamjid, E; Simchi, A
2014-08-01
Orthopaedic implant-associated infections are one of the most serious complications in orthopaedic surgery and a major cause of implant failure. In the present work, drug-eluting coatings based on chitosan containing various amounts of vancomycin were prepared by a cathodic electrophoretic deposition process on titanium foils. A three-step release mechanism of the antibiotic from the films in a phosphate-buffered saline solution was noticed. At the early stage, physical encapsulation of the drug in the hydrogel network controlled the release rate. At the late stage, however, in vitro degradation/deattachment of chitosan was responsible for the controlled release. Cytotoxicity evaluation of the drug-eluting coatings via culturing in human osteosarcoma cells (MG-63 osteoblast-like cell line) showed no adverse effect on the biocompatibility. Antibacterial tests against Gram-positive Staphylococcus aureus also demonstrated that the infection risk of titanium foils was significantly reduced due to the antibiotic release. Additionally, in vitro electrochemical corrosion studies by polarization technique revealed that the corrosion current density was significantly lower for the titanium foils with drug-eluting coatings compared to that of uncoated titanium. Copyright © 2014 Elsevier B.V. All rights reserved.
Mathur, Vijay; Mudnaik, Rajesh; Barde, Laxmikant; Roy, Arghya; Shivhare, Umesh; Bhusari, Kishore
2010-03-01
Biodegradable implants of ciprofloxacin hydrochloride for post operative site delivery were prepared using glyceryl monostearate and different concentrations of polyethylene glycol (PEG 6000), glycerol and Tween 80 as erosion enhancers by compression and molding technique. Formulations were subjected to in vitro drug release by the USP dissolution method, while promising formulations were subjected to in vitro drug release by the agar gel method and also to stability studies. It was observed that glyceryl monostearate formed hydrophobic matrix and delayed the drug delivery. Antibiotic release profile was controlled by using different combinations of erosion enhancers. The formulation prepared by the compression method showed more delayed release compared to formulations prepared by the molding method.
Previous coronary stent implantation and cardiac events in patients undergoing noncardiac surgery.
Cruden, Nicholas L M; Harding, Scott A; Flapan, Andrew D; Graham, Cat; Wild, Sarah H; Slack, Rachel; Pell, Jill P; Newby, David E
2010-06-01
Noncardiac surgery performed after coronary stent implantation is associated with an increased risk of stent thrombosis, myocardial infarction, and death. The influence of stent type and period of risk still have to be defined. We linked the Scottish Coronary Revascularisation Register with hospital admission data to undertake a Scotland-wide retrospective cohort study examining cardiac outcomes in all patients who received drug-eluting or bare-metal stents between April 2003 and March 2007 and subsequently underwent noncardiac surgery. Of 1953 patients, 570 (29%) were treated with at least 1 drug-eluting stent and 1383 (71%) with bare-metal stents only. There were no differences between drug-eluting and bare-metal stents in the primary end point of in-hospital mortality or ischemic cardiac events (14.6% versus 13.3%; P=0.3) or the secondary end points of in-hospital mortality (0.7% versus 0.6%; P=0.8) and acute myocardial infarction (1.2% versus 0.7%; P=0.3). Perioperative death and ischemic cardiac events occurred more frequently when surgery was performed within 42 days of stent implantation (42.4% versus 12.8% beyond 42 days; P<0.001), especially in patients revascularized after an acute coronary syndrome (65% versus 32%; P=0.037). There were no temporal differences in outcomes between the drug-eluting and bare-metal stent groups. Patients undergoing noncardiac surgery after recent coronary stent implantation are at increased risk of perioperative myocardial ischemia, myocardial infarction, and death, particularly after an acute coronary syndrome. For at least 2 years after percutaneous coronary intervention, cardiac outcomes after noncardiac surgery are similar for both drug-eluting and bare-metal stents.
NASA Astrophysics Data System (ADS)
Peterson, Aaron; Lopez, Tessy; Islas, Emma Ortiz; Gonzalez, Richard D.
2007-04-01
Several process variables, which may be helpful in optimizing the rate at which drugs are released from implantable, sol-gel titania devices have been identified in this study. The controlled rate of drug release is compared for two different anticonvulsant drugs, valproic acid and sodic phenytoin. Contrary to what one might expect, when the concentration is increased in the titania reservoir the rate of initial drug delivery decreases. This is a desirable result, because it may reduce the danger of a high initial discharge, which may harm the epileptic rat. The structure of the porous structure within the titania network has been studied using a generalized form of the BET equation which considers only n layers. In general, following an initial discharge, the rate at which the drug is released will increase with the increasing concentration. Pore mouth blocking can present a problem. However, this problem tends to disappear following the initial discharge. The extent of drug loading is a useful variable parameter, which can be adjusted in order to deliver the amount of drug required in a given application.
Gastroenterology-urology devices; reclassification of implanted blood access devices. Final rule.
2014-07-25
The Food and Drug Administration (FDA) is issuing a final order to reclassify implanted blood access devices, a preamendments class III device, into class II (special controls) based on new information and subject to premarket notification and to further clarify the identification.
Novel Biomaterials Used in Medical 3D Printing Techniques.
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-02-07
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.
Chadha, Vandana Srikrishna; Bhat, Khandige Mahalinga
2012-01-01
Background: Investigators have sought different methods to deliver antimicrobials to periodontal pockets. This study was designed to assess the efficacy of locally made doxycycline gel versus locally made doxycycline implant as biodegradable controlled local delivery systems, by evaluating the pharmacological drug release and improvement in gingival status, gain in attachment, and reduction in pocket depth. Materials and Methods: Thirty patients with localized periodontal pockets ≥5 mm were randomly divided into three groups. The first group received the doxycycline gel, the second the doxycycline implant, and the third received only scaling and root planing (the control group). The patients in the first two groups were selected for the drug release. Clinical parameters such as gingival index, plaque index, probing depth, and attachment levels were recorded at baseline and the 90th day. Gingival crevicular fluid (GCF) and saliva samples were collected 1 hour following gel and implant placement and then on the 10th, 30th, and 60th days. Results: There was a statistically significant difference in the release of doxycycline from the gel when compared with the implant in the GCF and saliva on the 10th and 30th days. All the three groups showed improvement in clinical parameters. The improvements in both gel and implant groups were greater when compared with the control group with no statistically significant difference between the implant and gel systems. Conclusion: The use of local delivery of doxycycline through gel and Implant media further enhances the positive changes obtained following scaling and root planing. The release of doxycycline from the implant and the gel was comparable. PMID:23055585
Stevens, W Grant; Harrington, Jennifer; Alizadeh, Kaveh; Berger, Lewis; Broadway, David; Hester, T Roderick; Kress, Donald; dʼIncelli, Rosalyn; Kuhne, JoAnn; Beckstrand, Maggi
2012-11-01
In March of 2012, the U.S. Food and Drug Administration approved Sientra's application for premarket approval for its Silimed brand silicone gel implants, based on data from the largest silicone gel breast implant study to date. This was the first approval for shaped silicone gel breast implants. This article presents the results of Sientra's study through 5 years. Sientra's study is an ongoing, 10-year, open-label, prospective, multicenter clinical study designed to assess the safety and effectiveness of Sientra's implants in patients undergoing augmentation and reconstruction. A total of 1788 subjects were implanted with 3506 implants, including 1116 primary augmentation, 363 revision-augmentation, 225 primary reconstruction, and 84 revision-reconstruction subjects. Physical evaluations and complications were recorded at each visit. Effectiveness was measured by postimplantation bra cup size and assessment of subject satisfaction and quality of life. Of the 1788 subjects, 571 underwent magnetic resonance imaging to assess silent rupture. Safety endpoints were analyzed using the Kaplan-Meier method. Across all cohorts, the risk of rupture was 1.8 percent (95 percent CI, 1.2 to 2.6 percent), the risk of capsular contracture (Baker grade III/IV) was 9.0 percent (95 percent CI, 7.6 to 10.6 percent), and the risk of reoperation was 23.8 percent (95 percent CI, 21.8 to 26.0 percent). Over 99 percent of surgeons reported satisfaction with the postoperative results, and subject satisfaction remained high 5 years after implantation. The 5-year results of Sientra's study continue to provide a comprehensive safety and effectiveness profile of Sientra's portfolio of Silimed brand shaped and round implants. Therapeutic, IV.
21 CFR 522.2063 - Pyrilamine maleate injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522... treating horses in conditions in which antihistaminic therapy may be expected to lead to alleviation of...
Gollwitzer, Hans; Ibrahim, Karim; Meyer, Henriette; Mittelmeier, Wolfram; Busch, Raymonde; Stemberger, Axel
2003-03-01
Biomaterial-associated bacterial infections present common and challenging complications with medical implants. The purpose of this study was to determine the antibacterial properties of a low molecular weight biodegradable poly(D,L-lactic acid) coating with integrated antibiotics gentamicin and teicoplanin. Coating of Kirschner-wires was carried out by a solvent casting technique under aseptic conditions with and without incorporated antibiotics. Release kinetics of gentamicin and teicoplanin were studied in phosphate-buffered saline. Initial bacterial adhesion of Staphylococcus epidermidis on coated and bare implants was determined by radiolabelling and counts of detached viable organisms. The incorporated antibiotics showed a continuous release over a period of at least 96 h with an initial peak of release in the first 6 h. Attachment of non-viable microorganisms, detected by radiolabelled bacteria, was increased significantly by the polymer coatings (P < 0.05). In contrast, the number of viable bacteria was reduced by the pure polymer (P < 0.01) and further by the polymer-antibiotic combinations (P < 0.05). Poly(D,L-lactic acid) coating of implants could offer new perspectives in preventing biomaterial-associated infections. Combinations with other drugs to formulate custom-tailored implant surfaces are feasible.
Recent developments in drug eluting devices with tailored interfacial properties.
Sanchez-Rexach, Eva; Meaurio, Emilio; Sarasua, Jose-Ramon
2017-11-01
Drug eluting devices have greatly evolved during past years to become fundamental products of great marketing importance in the biomedical field. There is currently a large diversity of highly specialized devices for specific applications, making the development of these devices an exciting field of research. The replacement of the former bare metal devices by devices loaded with drugs allowed the sustained and controlled release of drugs, to achieve the desired local therapeutic concentration of drug. The newer devices have been "engineered" with surfaces containing micro- and nanoscale features in a well-controlled manner, that have shown to significantly affect cellular and subcellular function of various biological systems. For example, the topography can be structured to form an antifouling surface mimicking the defense mechanisms found in nature, like the skin of the shark. In the case of bone implants, well-controlled nanostructured interfaces can promote osteoblast differentiation and matrix production, and enhance short-term and long-term osteointegration. In any case, the goal of current research is to design implants that induce controlled, guided, and rapid healing. This article reviews recent trends in the development of drug eluting devices, as well as recent developments on the micro/nanotechnology scales, and their future challenges. For this purpose medical devices have been divided according to the different systems of the body they are focused to: orthopedic devices, breathing stents, gastrointestinal and urinary systems, devices for cardiovascular diseases, neuronal implants, and wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.
Kempe, Sabine; Metz, Hendrik; Pereira, Priscila G C; Mäder, Karsten
2010-01-01
In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals. Copyright 2009 Elsevier B.V. All rights reserved.
Ahmed, Tarek A; Ibrahim, Hany M; Samy, Ahmed M; Kaseem, Alaa; Nutan, Mohammad T H; Hussain, Muhammad Delwar
2014-06-01
The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.
21 CFR 522.810 - Embutramide, chloroquine, and lidocaine solution.
Code of Federal Regulations, 2013 CFR
2013-04-01
... euthanasia. (3) Limitations. Not for use in animals intended for food. Federal law restricts this drug to use... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.810 Embutramide, chloroquine, and lidocaine solution. (a) Specifications. Each...
21 CFR 522.810 - Embutramide, chloroquine, and lidocaine solution.
Code of Federal Regulations, 2011 CFR
2011-04-01
... euthanasia. (3) Limitations. Not for use in animals intended for food. Federal law restricts this drug to use... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.810 Embutramide, chloroquine, and lidocaine solution. (a) Specifications. Each...
21 CFR 522.810 - Embutramide, chloroquine, and lidocaine solution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... euthanasia. (3) Limitations. Not for use in animals intended for food. Federal law restricts this drug to use... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.810 Embutramide, chloroquine, and lidocaine solution. (a) Specifications. Each...
21 CFR 522.810 - Embutramide, chloroquine, and lidocaine solution.
Code of Federal Regulations, 2014 CFR
2014-04-01
... euthanasia. (3) Limitations. Not for use in animals intended for food. Federal law restricts this drug to use... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.810 Embutramide, chloroquine, and lidocaine solution. (a) Specifications. Each...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ketamine. 522.1222 Section 522.1222 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222 Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg) ketamine base...
75 FR 60307 - Implantation or Injectable Dosage Form New Animal Drugs; Dexmedetomidine
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 522 [Docket No... (NADA) filed by Orion Corp. The supplemental NADA provides for veterinary prescription use of... Veterinary Medicine (HFV-110), Food and Drug Administration, 7500 Standish Pl., [[Page 60308
Code of Federal Regulations, 2010 CFR
2010-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.311 Cefovecin. (a.... A second subcutaneous injection of 3.6 mg/lb (8 mg/kg) may be administered if response to therapy is...
Siminiak, Tomasz; Link, Rafał; Wołoszyn, Maciej; Kałmucki, Piotr; Baszko, Artur
2012-01-01
There is certain experimental and clinical evidence indicating that the covering of bare metal stents (BMS) with drug eluting polymers to produce drug eluting stents (DES) results in increased stent stiffness and modifies the mechanical properties of the stent platform. In addition, it has been speculated that the mechanical performance of DES, compared to BMS, may be related to the type of polymer used to cover stents. We aimed at evaluating the deliverability of DES with a lactate based biodegradable polymer and BMS in patients with stable coronary artery disease in a prospective randomised study. One hundred eleven consecutive patients (age: 36-77, mean 58.8 years) scheduled for routine angioplasty due to stable coronary disease were randomised to receive BMS (Chopin II(TM), Balton, Poland) or paclitaxel eluting stent (Chopin Luc(TM), Balton, Poland) using the same metal platform. Only patients scheduled for angioplasty using the direct implantation technique of a single stent were randomised. The exclusion criteria included patients 〉 80 years, multivessel disease and reference diameter of the target vessel 〉 3.5 mm. In the BMS group (n = 55; 35 males and 20 females), the mean diameter of implanted stents was 3.09 ± 0.40 and the mean length was 11.37 ± 2.80, whereas in the DES group (n = 56; 34 males and 22 females) the mean stent sizes were 3.02 ± 0.34 and 17.90 ± 7.38 mm, respectively (p 〉 0.05 for length). The groups did not significantly differ regarding the frequency of stent implantation to particular coronary vessels. The direct stenting technique was attempted and failed, leading to the stents' implantation after predilatation in five patients in the BMS group and six patients in the DES group. Failure of stent implantation and subsequent implantation of another stent type was observed in no BMS patients and in one DES patient (NS). Although stent covering with lactate based drug eluting polymer may increase its stiffness, it does not affect its deliverability in patients with stable coronary disease.
2010-06-29
posterior segment of the eye and include posterior uveitis , age-related macular degeneration, and macular edema (Hsu 2007). Long term drug therapy may be...device for local and controlled delivery of drugs; as a protective carrier to transport labile drugs; and as an implant for treatment of various chronic
Hammoud, Abbas; Chamseddine, Ahmad; Nguyen, Dang K; Sawan, Mohamad
2016-08-01
The need of continuous real-time monitoring device for in-vivo drug level detection has been widely articulated lately. Such monitoring could guide drug posology and timing of intake, detect low or high drug levels, in order to take adequate measures, and give clinicians a valuable window into patients' health and their response to therapeutics. This paper presents a novel implantable bio-sensor based on impedance measurement capable of continuously monitoring various antiepileptic drug levels. This portable point-of-care microsystem replaces large and stationary conventional macrosystems, and is a one of a kind system designed with an array of electrodes to monitor various anti-epileptic drugs rather than one drug. The micro-system consists of (i) the front-end circuit including an inductive coil to receive energy from an external base station, and to exchange data with the latter; (ii) the power management block; (iii) the readout and control block; and (iv) the biosensor array. The electrical circuitry was designed using the 0.18-um CMOS process technology intended to be miniature and consume ultra-low power.
Halliday, Amy J; Campbell, Toni E; Nelson, Timothy S; McLean, Karen J; Wallace, Gordon G; Cook, Mark J
2013-01-01
Approximately one-third of people with epilepsy receive insufficient benefit from currently available anticonvulsant medication, and some evidence suggests that this may be due to a lack of effective penetration into brain parenchyma. The current study investigated the ability of biodegradable polymer implants loaded with levetiracetam to ameliorate seizures following implantation above the motor cortex in the tetanus toxin model of temporal lobe epilepsy in rats. The implants led to significantly shorter seizures and a trend towards fewer seizures for up to 1 week. The results of this study indicate that drug-eluting polymer implants represent a promising evolving treatment option for intractable epilepsy. Future research is warranted to investigate issues of device longevity and implantation site. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sabbah, Mahmoud; Kadota, Kazushige; El-Eraky, Azza; Kamal, Hanan M; Abdellah, Ahmed-Tageldien; El Hawary, Ahmed
2017-06-01
Differences in stent platform, polymer coatings, and antirestenotic drugs among the current in use second-generation drug-eluting stents (G2-DESs) may induce significant variations in neointimal response and vascular healing, which may impact the prevalence of neoatherosclerosis (NA) and morphological appearance of the restenotic tissue. Utilizing Optical frequency domain imaging, two independent reviewers, retrospectively compared the prevalence of neoatherosclerosis (NA), and the morphological differences, and tissue characteristics of 50 G2-DESs in-stent restenosis (ISR) lesions (35 everolimus-eluting stent [22 cobalt-chromium (CoCr), 13 platinum-chromium (PtCr)], and 15 biolimus-eluting stent [BES]) implanted liberally in unrestricted coronary lesions. More than half of the stents were implanted in type C lesions, while 40% of the stents were implanted primarily in lesions with recanalized chronic total occlusion. NA, defined as a neointima formation with the presence of lipids or calcification, was observed in fewer than half (24/50) of all ISR lesions with no significant in-between group differences (41%, 69%, and 40% in CoCr, PtCr, and BES respectively, P = 0.22), nor were there any significant differences in the morphological appearance or tissue characteristics between all G2-DESs subtypes. Acknowledging some limitations, our results may suggest that the prevalence of NA and the morphological appearance of restenotic lesions might not differ when G2-DESs are implanted in unrestricted, rather complex, coronary lesions. © 2017, Wiley Periodicals, Inc.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Boldenone. 522.204 Section 522.204 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.204 Boldenone. (a) Specifications. Each milliliter of solution contains 25 or 50 milligrams (mg) boldenone undecylenate. (b) Sponsor...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Boldenone. 522.204 Section 522.204 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.204 Boldenone. (a) Specifications. Each milliliter of solution contains 25 or 50 milligrams (mg) boldenone undecylenate. (b) Sponsor...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Boldenone. 522.204 Section 522.204 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.204 Boldenone. (a) Specifications. Each milliliter of solution contains 25 or 50 milligrams (mg) boldenone undecylenate. (b) Sponsor...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Boldenone. 522.204 Section 522.204 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.204 Boldenone. (a) Specifications. Each milliliter of solution contains 25 or 50 milligrams (mg) boldenone undecylenate. (b) Sponsor...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Boldenone. 522.204 Section 522.204 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.204 Boldenone. (a) Specifications. Each milliliter of solution contains 25 or 50 milligrams (mg) boldenone undecylenate. (b) Sponsor...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carprofen. 522.304 Section 522.304 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.304 Carprofen. (a) Specifications. Each milliliter of solution contains 50 milligrams (mg) carprofen. (b) Sponsor. See No. 000069 in...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carprofen. 522.304 Section 522.304 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.304 Carprofen. (a) Specifications. Each milliliter of solution contains 50 milligrams (mg) carprofen. (b) Sponsor. See No. 000069 in...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carprofen. 522.304 Section 522.304 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.304 Carprofen. (a) Specifications. Each milliliter of solution contains 50 milligrams (mg) carprofen. (b) Sponsor. See No. 054771 in...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carprofen. 522.304 Section 522.304 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.304 Carprofen. (a) Specifications. Each milliliter of solution contains 50 milligrams (mg) carprofen. (b) Sponsor. See No. 000069 in...
Code of Federal Regulations, 2013 CFR
2013-04-01
... cavity of the human body. A device is regarded as an implant for the purpose of this part only if it is... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... and Drugs, Food and Drug Administration, United States Department of Health and Human Services, or the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... cavity of the human body. A device is regarded as an implant for the purpose of this part only if it is... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... and Drugs, Food and Drug Administration, United States Department of Health and Human Services, or the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... cavity of the human body. A device is regarded as an implant for the purpose of this part only if it is... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... and Drugs, Food and Drug Administration, United States Department of Health and Human Services, or the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... cavity of the human body. A device is regarded as an implant for the purpose of this part only if it is... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... and Drugs, Food and Drug Administration, United States Department of Health and Human Services, or the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... cavity of the human body. A device is regarded as an implant for the purpose of this part only if it is... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... and Drugs, Food and Drug Administration, United States Department of Health and Human Services, or the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Oxytocin. 522.1680 Section 522.1680 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1680 Oxytocin. (a) Specifications. Each milliliter (mL) of solution contains 20 USP units oxytocin. (b) Sponsors. See Nos. , 000859...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carprofen. 522.304 Section 522.304 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.304 Carprofen. (a) Specifications. Each milliliter of solution contains 50 milligrams (mg) carprofen. (b) Sponsor. See No. 000069 in...
21 CFR 874.3495 - Total ossicular replacement prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Total ossicular replacement prosthesis. 874.3495 Section 874.3495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... be implanted for the total functional reconstruction of the ossicular chain and facilitates the...
21 CFR 874.3450 - Partial ossicular replacement prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Partial ossicular replacement prosthesis. 874.3450 Section 874.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... be implanted for the functional reconstruction of segments of the ossicular chain and facilitates the...
75 FR 59610 - Implantation and Injectable Dosage Form New Animal Drugs; Firocoxib
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 522 [Docket No...) filed by Merial Ltd. The NADA provides for the veterinary prescription use of firocoxib injectable... Veterinary Medicine (HFV-110), Food and Drug Administration, 7500 Standish Pl., Rockville, MD 20855, 240-276...
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
21 CFR 874.3495 - Total ossicular replacement prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Total ossicular replacement prosthesis. 874.3495 Section 874.3495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... be implanted for the total functional reconstruction of the ossicular chain and facilitates the...
21 CFR 874.3450 - Partial ossicular replacement prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Partial ossicular replacement prosthesis. 874.3450 Section 874.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... be implanted for the functional reconstruction of segments of the ossicular chain and facilitates the...
Putting the Brakes on Muscle Breakdown
2018-01-15
Rodent Research-6 is a two-fold investigation aboard the International Space Station into the treatment of muscle loss in spaceflight, which may have implications for patients on Earth with muscle-wasting diseases. The experiment will study the effectiveness of a drug compound as well as the nano-channel drug delivery implant, a device implanted beneath the skin of the patient allowing for a constant, steady delivery of the drug. Rodent Research: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7423 HD Download: https://archive.org/details/jsc2018m000072_Putting_the_Brakes_on_Muscle_Breakdown_MXF _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Sörensen, Jan H; Lilja, Mirjam; Åstrand, Maria; Sörensen, Torben C; Procter, Philip; Strømme, Maria; Steckel, Hartwig
2014-01-01
The migration, loosening and cut-out of implants and nosocomial infections are current problems associated with implant surgery. New innovative strategies to overcome these issues are emphasized in today's research. The current work presents a novel strategy involving co-precipitation of tobramycin with biomimetic hydroxyapatite (HA) formation to produce implant coatings that control local drug delivery to prevent early bacterial colonization of the implant. A submicron- thin HA layer served as seed layer for the co-precipitation process and allowed for incorporation of tobramycin in the coating from a stock solution of antibiotic concentrations as high as 20 mg/ml. Concentrations from 0.5 to 20 mg/ml tobramycin and process temperatures of 37 °C and 60 °C were tested to assess the optimal parameters for a thin tobramycin- delivering HA coating on discs and orthopedic fixation pins. The morphology and thickness of the coating and the drug-release profile were evaluated via scanning electron microscopy and high performance liquid chromatography. The coatings delivered pharmaceutically relevant amounts of tobramycin over a period of 12 days. To the best of our knowledge, this is the longest release period ever observed for a fast-loaded biomimetic implant coating. The presented approach could form the foundation for development of combination device/antibiotic delivery vehicles tailored to meet well-defined clinical needs while combating infections and ensuring fast implant in-growth.
Mohammed, Salma I; Eldabe, Sam; Simpson, Karen H; Brookes, Morag; Madzinga, Grace; Gulve, Ashish; Baranidharan, Ganesan; Radford, Helen; Crowther, Tracey; Buchser, Eric; Perruchoud, Christophe; Batterham, Alan Mark
2013-01-01
This study evaluated efficacy and safety of bolus doses of ziconotide (Prialt®, Eisai Limited, Hertfordshire, UK) to assess the option of continuous administration of this drug via an implanted intrathecal drug delivery system. Twenty adults with severe chronic pain who were under consideration for intrathecal (IT) therapy were enrolled in this open label, nonrandomized, pilot study. Informed consent was obtained. Demographics, medical/pain history, pain scores, and concomitant medications were recorded. A physical examination was performed. Creatine kinase was measured. Initial visual analog scale (VAS), blood pressure, heart rate, and respiratory rate were recorded. All patients received an initial bolus dose of 2.5 mcg ziconotide; the dose in the subsequent visits was modified according to response. Subsequent doses were 2.5 mcg, 1.2 mcg, or 3.75 mcg as per protocol. A good response (≥30% reduction in baseline pain VAS) with no side-effects on two occasions was considered a successful trial. Data were analyzed using a generalized estimating equations model, with pain VAS as the outcome and time (seven time points; preinjection and one to six hours postinjection) as the predictor. Generalized estimating equations analysis of summary measures showed a mean reduction of pain VAS of approximately 25% at the group level; of 11 responders, seven underwent pump implantation procedure, two withdrew because of adverse effects, one refused an implant, and one could not have an implant (lack of funding from the Primary Care Trust). Our data demonstrated that mean VAS was reduced by approximately 25% at the group level after IT ziconotide bolus. Treatment efficacy did not vary with sex, center, age, or pain etiology. Ziconotide bolus was generally well tolerated. Larger studies are needed to determine if bolus dosing with ziconotide is a good predictor of response to continuous IT ziconotide via an intrathecal drug delivery system. © 2012 International Neuromodulation Society.
Technical tips during implantation of selective upper airway stimulation.
Heiser, Clemens; Thaler, Erica; Soose, Ryan J; Woodson, B Tucker; Boon, Maurits
2018-03-01
Selective upper airway stimulation is now well-established in the United States and in several European countries, with more than 1,000 patients implanted since U.S. Food and Drug Administration approval in April 2014. The authors herein, all head and neck surgeons, account for approximately one of every five implants completed to date. Several of the authors also provide comprehensive longitudinal care of their patients as dual-specialty sleep medicine physicians. Multi-center, retrospective clinical analysis. More than 300 implants have been evaluated and reviewed in five different implant centers (Germany, United States). This analysis shares tips and techniques from the collective experiences with more than 300 implants, which can help newer implanters learn vicariously both for standard practices in executing routine implants through activation and, importantly, for working through more challenging encounters with anatomy, special patient phenotypes, system testing, and troubleshooting. These tips should help new implanters handle most of the situations arising during implantation and avoid common pitfalls. Laryngoscope, 128:756-762, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Towards soft robotic devices for site-specific drug delivery.
Alici, Gursel
2015-01-01
Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.
Recent advances in ophthalmic drug delivery
Kompella, Uday B; Kadam, Rajendra S; Lee, Vincent HL
2011-01-01
Topical ocular drug bioavailability is notoriously poor, in the order of 5% or less. This is a consequence of effective multiple barriers to drug entry, comprising nasolacrimal drainage, epithelial drug transport barriers and clearance from the vasculature in the conjunctiva. While sustained drug delivery to the back of the eye is now feasible with intravitreal implants such as Vitrasert™ (~6 months), Retisert™ (~3 years) and Iluvien™ (~3 years), currently there are no marketed delivery systems for long-term drug delivery to the anterior segment of the eye. The purpose of this article is to summarize the resurgence in interest to prolong and improve drug entry from topical administration. These approaches include mucoadhesives, viscous polymer vehicles, transporter-targeted prodrug design, receptor-targeted functionalized nanoparticles, iontophoresis, punctal plug and contact lens delivery systems. A few of these delivery systems might be useful in treating diseases affecting the back of the eye. Their effectiveness will be compared against intravitreal implants (upper bound of effectiveness) and trans-scleral systems (lower bound of effectiveness). Refining the animal model by incorporating the latest advances in microdialysis and imaging technology is key to expanding the knowledge central to the design, testing and evaluation of the next generation of innovative ocular drug delivery systems. PMID:21399724
Rapid implantation of dissolving microneedles on an electrospun pillar array.
Yang, Huisuk; Kim, Soyoung; Huh, Inyoung; Kim, Suyong; Lahiji, Shayan F; Kim, Miroo; Jung, Hyungil
2015-09-01
Dissolving microneedles (DMNs), designed to release drugs and dissolve after skin insertion, have been spotlighted as a novel transdermal delivery system due to their advantages such as minimal pain and tissue damage, ability to self-administer, and no associated hazardous residues. The drug delivery efficacy of DMNs, however, is limited by incomplete insertion and the extended period required for DMN dissolution. Here, we introduce a novel DMN delivery system, DMN on an electrospun pillar array (DEPA), which can rapidly implant DMNs into skin. DMNs were fabricated on a pillar array covered by a fibrous sheet produced by electrospinning PLGA solution (14%, w/v). DMNs were implanted into the skin by manual application (press and vibration for 10 s) by tearing of the fibers hung on the 300-μm pillars. Separation of DMNs from the fibrous sheet was dependent on both pillar height and the properties of the fibrous sheet. After evaluation of the implantation and dissolution of DMNs with diffusion of red dye by taking cross-sectional images of porcine skin, the hypoglycemic effect of insulin loaded DEPA was examined using a healthy mouse model. This DMN array overcomes critical issues associated with the low penetration efficiency of flat patch-based DMNs, and will allow realization of patient convenience with the desired drug efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.
In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments.
Kasinathan, Narayanan; Amirthalingam, Muthukumar; Reddy, Neetinkumar D; Jagani, Hitesh V; Volety, Subrahmanyam M; Rao, Josyula Venkata
2016-01-01
Polymeric delivery system is useful in reducing pharmacokinetic limitations viz., poor absorption and rapid elimination associated with clinical use of curcumin. Design of experiment is a precise and cost effective tool useful in analyzing the effect of independent variables and their interaction on the product attributes. To evaluate the effect of process variables involved in preparation of curcumin-loaded polycaprolactone (PCL) nanoparticles (CPN). In the present experiment, CPNs were prepared by emulsification solvent evaporation technique. The effect of independent variables on the dependent variable was analyzed using design of experiments. Anticancer activity of CPN was studied using Ehrlich ascites carcinoma (EAC) model. In-situ implant was developed using PLGA as polymer. The effect of independent variables was studied in two stages. First, the effect of drug-polymer ratio, homogenization speed and surfactant concentration on size was studied using factorial design. The interaction of homogenization speed with homogenization time on mean particle size of CPN was then evaluated using central composite design. In the second stage, the effect of these variables (under the conditions optimized for producing particles <500 nm) on percentage drug encapsulation was evaluated using factorial design. CPN prepared under optimized conditions were able to control the development of EAC in Swiss albino mice and enhanced their survival time. PLGA based in-situ implant containing CPN prepared under optimized conditions showed sustained drug release. This implant could be further evaluated for pharmacological activities.
Subcutaneous Implants of a Cholesterol-Triglyceride-Buprenorphine Suspension in Rats.
Guarnieri, M; Brayton, C; Sarabia-Estrada, R; Tyler, B; McKnight, P; DeTolla, L
2017-01-01
A Target Animal Safety protocol was used to examine adverse events in male and female Fischer F344/NTac rats treated with increasing doses of a subcutaneous implant of a lipid suspension of buprenorphine. A single injection of 0.65 mg/kg afforded clinically significant blood levels of drug for 3 days. Chemistry, hematology, coagulation, and urinalysis values with 2- to 10-fold excess doses of the drug-lipid suspension were within normal limits. Histopathology findings were unremarkable. The skin and underlying tissue surrounding the drug injection were unremarkable. Approximately 25% of a cohort of rats given the excess doses of 1.3, 3.9, and 6.5 mg/kg displayed nausea-related behavior consisting of intermittent and limited excess grooming and self-gnawing. These results confirm the safety of cholesterol-triglyceride carrier systems for subcutaneous drug delivery of buprenorphine in laboratory animals and further demonstrate the utility of lipid-based carriers as scaffolds for subcutaneous, long-acting drug therapy.
Subcutaneous Implants of a Cholesterol-Triglyceride-Buprenorphine Suspension in Rats
Brayton, C.; Sarabia-Estrada, R.; McKnight, P.; DeTolla, L.
2017-01-01
A Target Animal Safety protocol was used to examine adverse events in male and female Fischer F344/NTac rats treated with increasing doses of a subcutaneous implant of a lipid suspension of buprenorphine. A single injection of 0.65 mg/kg afforded clinically significant blood levels of drug for 3 days. Chemistry, hematology, coagulation, and urinalysis values with 2- to 10-fold excess doses of the drug-lipid suspension were within normal limits. Histopathology findings were unremarkable. The skin and underlying tissue surrounding the drug injection were unremarkable. Approximately 25% of a cohort of rats given the excess doses of 1.3, 3.9, and 6.5 mg/kg displayed nausea-related behavior consisting of intermittent and limited excess grooming and self-gnawing. These results confirm the safety of cholesterol-triglyceride carrier systems for subcutaneous drug delivery of buprenorphine in laboratory animals and further demonstrate the utility of lipid-based carriers as scaffolds for subcutaneous, long-acting drug therapy. PMID:28492060
An Overview of Clinical and Commercial Impact of Drug Delivery Systems
Anselmo, Aaron C.; Mitragotri, Samir
2014-01-01
Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. PMID:24747160
Novel Biomaterials Used in Medical 3D Printing Techniques
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-01-01
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail. PMID:29414913
NASA Astrophysics Data System (ADS)
Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng
2016-05-01
Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.
Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng
2016-05-27
Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.
Issa, Ziad F
2007-09-01
Atrioventricular junction (AVJ) ablation combined with permanent pacemaker implantation (the "ablate and pace" approach) remains an acceptable alternative treatment strategy for symptomatic, drug-refractory atrial fibrillation (AF) with rapid ventricular response. This case series describes the feasibility and safety of catheter ablation of the AVJ via a superior vena caval approach performed during concurrent dual-chamber pacemaker implantation. A total of 17 consecutive patients with symptomatic, drug-refractory, paroxysmal AF underwent combined AVJ ablation and dual-chamber pacemaker implantation procedure using a left axillary venous approach. Two separate introducer sheaths were placed into the axillary vein. The first sheath was used for implantation of the pacemaker ventricular lead, which was then connected to the pulse generator. Subsequently, a standard ablation catheter was introduced through the second axillary venous sheath and used for radiofrequency (RF) ablation of the AVJ. After successful ablation, the catheter was withdrawn and the pacemaker atrial lead was advanced through that same sheath and implanted in the right atrium. Catheter ablation of the AVJ was successfully achieved in all patients. The median number of RF applications required to achieve complete AV block was three (range 1-10). In one patient, AV conduction recovered within the first hour after completion of the procedure, and AVJ ablation was then performed using the conventional femoral venous approach. There were no procedural complications. Catheter ablation of the AVJ can be performed successfully and safely via a superior vena caval approach in patients undergoing concurrent dual-chamber pacemaker implantation.
21 CFR 895.101 - Prosthetic hair fibers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic hair fibers. 895.101 Section 895.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES BANNED DEVICES Listing of Banned Devices § 895.101 Prosthetic hair fibers. Prosthetic hair fibers are devices intended for implantation...
Code of Federal Regulations, 2010 CFR
2010-04-01
... is intended to be implanted in the human body for more than 1 year; or the device is a life... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scope. 821.1 Section 821.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE...
Code of Federal Regulations, 2011 CFR
2011-04-01
... is intended to be implanted in the human body for more than 1 year; or the device is a life... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scope. 821.1 Section 821.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE...
21 CFR 522.300 - Carfentanil citrate injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... recommend use in pregnant animals. Avoid use during breeding season. Federal law restricts this drug to use...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522... animals intended for food. Do not use 30 days before or during hunting season. Do not use in animals that...
[Polymer ocular implants for controlled release of drugs. I. Animal testing of the materials].
Czechowicz-Janicka, K; Romaniuk, I; Piekarniak, A; Wicha-Brzuchalska, A; Galant, S; Rosiak, J
1992-01-01
Presented are the results of trials with hydrogel inserts received by radiation method and applied into the conjunctival sac of rabbits. In the future they can serve for incorporation of some definite drugs.
Drug Delivery to the Inner Ear
Wise, Andrew K; Gillespie, Lisa N
2012-01-01
Bionic devices electrically activate neural populations to partially restore lost function. Of fundamental importance is the functional integrity of the targeted neurons. However, in many conditions the ongoing pathology can lead to continued neural degeneration and death that may compromise the effectiveness of the device and limit future strategies to improve performance. The use of drugs that can prevent nerve cell degeneration and promote their regeneration may improve clinical outcomes. In this paper we focus on strategies of delivering neuroprotective drugs to the auditory system in a way that is safe and clinically relevant for use in combination with a cochlear implant. The aim of this approach is to prevent neural degeneration and promote nerve regrowth in order to improve outcomes for cochlear implant recipients using techniques that can be translated to the clinic. PMID:23186937
Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases.
Son, Donghee; Lee, Jongha; Lee, Dong Jun; Ghaffari, Roozbeh; Yun, Sumin; Kim, Seok Joo; Lee, Ji Eun; Cho, Hye Rim; Yoon, Soonho; Yang, Shixuan; Lee, Seunghyun; Qiao, Shutao; Ling, Daishun; Shin, Sanghun; Song, Jun-Kyul; Kim, Jaemin; Kim, Taeho; Lee, Hakyong; Kim, Jonghoon; Soh, Min; Lee, Nohyun; Hwang, Cheol Seong; Nam, Sangwook; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong
2015-06-23
Implantable endovascular devices such as bare metal, drug eluting, and bioresorbable stents have transformed interventional care by providing continuous structural and mechanical support to many peripheral, neural, and coronary arteries affected by blockage. Although effective in achieving immediate restoration of blood flow, the long-term re-endothelialization and inflammation induced by mechanical stents are difficult to diagnose or treat. Here we present nanomaterial designs and integration strategies for the bioresorbable electronic stent with drug-infused functionalized nanoparticles to enable flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and hyperthermia therapy. In vivo and ex vivo animal experiments as well as in vitro cell studies demonstrate the previously unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system.
Localized Cell and Drug Delivery for Auditory Prostheses
Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.
2011-01-01
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323
Animal derived products may conflict with religious patients’ beliefs
2013-01-01
Background Implants and drugs with animal and human derived content are widely used in medicine and surgery, but information regarding ingredients is rarely obtainable by health practitioners. A religious perspective concerning the use of animal and human derived drug ingredients has not thoroughly been investigated. The purpose of this study was to clarify which parts of the medical and surgical treatments offered in western world-hospitals that conflicts with believers of major religions. Methods Religious and spiritual leaders of the six largest religions worldwide (18 branches) were contacted. A standardised questionnaire was sent out regarding their position on the use of human and animal derived products in medical and surgical treatments. Results Of the 18 contacted religious branches, 10 replied representing the 6 largest religions worldwide. Hindus and Sikhs did not approve of the use of bovine or porcine derived products, and Muslims did not accept the use of porcine derived drugs, dressings or implants. Christians (including Jehovah’s Witnesses), Jews and Buddhists accepted the use of all animal and human derived products. However, all religions accepted the use of all these products in case of an emergency and only if alternatives were not available. Conclusions The views here suggest that religious codes conflict with some treatment regimens. It is crucial to obtain informed consent from patients for the use of drugs and implants with animal or human derived content. However, information on the origin of ingredients in drugs is not always available to health practitioners. PMID:24289542
Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao
2016-01-01
Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240
Animal derived products may conflict with religious patients' beliefs.
Eriksson, Axelina; Burcharth, Jakob; Rosenberg, Jacob
2013-12-01
Implants and drugs with animal and human derived content are widely used in medicine and surgery, but information regarding ingredients is rarely obtainable by health practitioners. A religious perspective concerning the use of animal and human derived drug ingredients has not thoroughly been investigated. The purpose of this study was to clarify which parts of the medical and surgical treatments offered in western world-hospitals that conflicts with believers of major religions. Religious and spiritual leaders of the six largest religions worldwide (18 branches) were contacted. A standardised questionnaire was sent out regarding their position on the use of human and animal derived products in medical and surgical treatments. Of the 18 contacted religious branches, 10 replied representing the 6 largest religions worldwide. Hindus and Sikhs did not approve of the use of bovine or porcine derived products, and Muslims did not accept the use of porcine derived drugs, dressings or implants. Christians (including Jehovah's Witnesses), Jews and Buddhists accepted the use of all animal and human derived products. However, all religions accepted the use of all these products in case of an emergency and only if alternatives were not available. The views here suggest that religious codes conflict with some treatment regimens. It is crucial to obtain informed consent from patients for the use of drugs and implants with animal or human derived content. However, information on the origin of ingredients in drugs is not always available to health practitioners.
Sayed, Dawood; Monroe, Forrest; Orr, Walter N; Phadnis, Milind; Khan, Talal W; Braun, Edward; Manion, Smith; Nicol, Andrea
2018-02-14
Cancer pain is common and difficult to treat, as conservative medical management fails in approximately 20% of patients for reasons such as intolerable side-effects or failure to control pain. Intrathecal drug delivery systems (IDDS), while underutilized, can be effective tools to treat intractable cancer pain. This study aims to determine the degree of pain relief, efficacy, and safety of patients who underwent IDDS implantation at a multidisciplinary pain clinic. A retrospective review was conducted of patients with an intrathecal pain pump implanted for malignant pain. Charts were reviewed for demographics, cancer type, pain scores before and after implantation, and intrathecal drugs utilized. A Wilcoxon Signed-Rank test was conducted on the paired differences of pain scores before and after implant. A regression analysis was conducted using a linear model to assess effects of demographic variables on change in pain scores. 160 patients were included in analysis. The median pain score was 7.1 at time of implantation and 5.0 at one-month postimplantation. For patients with both baseline and one-month pain scores available, the median decrease in pain was 2.5 (p < 0.0001). Pain scores three-month postimplantation did not significantly differ from one-month postimplantation. Median longevity was 65 days. Five patients had pumps explanted due to infection with a median time to pump extraction of 28 days. IDDS has the potential to improve cancer pain in a variety of patients and should be strongly considered as an option for those with cancer pain intractable to conservative medical management. © 2018 International Neuromodulation Society.
Zhou, Chengxin; Robert, Marie-Claude; Kapoulea, Vassiliki; Lei, Fengyang; Stagner, Anna M; Jakobiec, Frederick A; Dohlman, Claes H; Paschalis, Eleftherios I
2017-01-01
Tumor necrosis factor (TNF)-α is upregulated in eyes following corneal alkali injury and contributes to corneal and also retinal damage. Prompt TNF-α inhibition by systemic infliximab ameliorates retinal damage and improves corneal wound healing. However, systemic administration of TNF-α inhibitors carries risk of significant complications, whereas topical eye-drop delivery is hindered by poor ocular bioavailability and the need for patient adherence. This study investigates the efficacy of subconjunctival delivery of TNF-α antibodies using a polymer-based drug delivery system (DDS). The drug delivery system was prepared using porous polydimethylsiloxane/polyvinyl alcohol composite fabrication and loaded with 85 μg of infliximab. Six Dutch-belted pigmented rabbits received ocular alkali burn with NaOH. Immediately after the burn, subconjunctival implantation of anti-TNF-α DDS was performed in three rabbits while another three received sham DDS (without antibody). Rabbits were followed with photography for 3 months. After 3 months, the device was found to be well tolerated by the host and the eyes exhibited less corneal damage as compared to eyes implanted with a sham DDS without drug. The low dose treatment suppressed CD45 and TNF-α expression in the burned cornea and inhibited retinal ganglion cell apoptosis and optic nerve degeneration, as compared to the sham DDS treated eyes. Immunolocalization revealed drug penetration in the conjunctiva, cornea, iris, and choroid, with residual infliximab in the DDS 3 months after implantation. This reduced-risk biologic DDS improves corneal wound healing and provides retinal neuroprotection, and may be applicable not only to alkali burns but also to other inflammatory surgical procedures such as penetrating keratoplasty and keratoprosthesis implantation.
de la Torre Hernández, José M; Oteo Domínguez, Juan F; Hernández, Felipe; García Camarero, Tamara; Abdul-Jawad Altisent, Omar; Rivero Crespo, Fernando; Cascón, José D; Zavala, Germán; Gimeno, Federico; Arrebola Moreno, Antonio L; Andraka, Leire; Gómez Menchero, Antonio; Bosa, Francisco; Carrillo, Xavier; Sánchez Recalde, Ángel; Alfonso, Fernando; Pérez de Prado, Armando; López Palop, Ramón; Sanchis, Juan; Diarte de Miguel, José A; Jiménez Navarro, Manuel; Muñoz, Luz; Ramírez Moreno, Antonio; Tizón Marcos, Helena
2015-10-01
The recommendation for dual antiplatelet therapy following drug-eluting stent implantation ranges from 6 months to 12 months or beyond. Recent trials have suggested the safety of a 6-month dual antiplatelet therapy regimen, yet certain caveats to these studies limit the applicability of this shorter duration dual antiplatelet therapy strategy in real world settings. A registry was constructed with consecutive recruitment of patients undergoing new-generation drug-eluting stent implantation and prescribed 6 months of dual antiplatelet therapy. Propensity score matching was undertaken with a historical cohort of patients treated with second-generation drug-eluting stents who received 12 months of dual antiplatelet therapy from the ESTROFA-2 registry. The sample size was calculated using a noninferiority basis and the primary endpoint was the combination of cardiac death, myocardial infarction, revascularization, or major bleeding at 12 months. The analysis included 1286 patients in each group, with no significant differences in baseline characteristics. The primary endpoint occurred in 5.0% and 6.6% in the 6-month and 12-month groups, respectively (P = .001 for noninferiority). The incidence of definite or probable stent thrombosis was 0.5% and 0.7% in the 6-month and 12-month groups, respectively (P = .4). Major bleeding events were lower in the 6-month group than in the 12-month group (0.8% vs 1.4%; P = .2) CONCLUSIONS: In selected patients in this large multicenter study, the safety and efficacy of a 6-month dual antiplatelet therapy regimen after implantation of new-generation drug-eluting stents appeared to be noninferior to those of a 12-month dual antiplatelet therapy regimen. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
McNicholas, Colleen; Maddipati, Ragini; Zhao, Qiuhong; Swor, Erin; Peipert, Jeffrey F.
2014-01-01
Objective To evaluate the effectiveness of the contraceptive implant and the 52mg hormonal intrauterine device (IUD) in women using the method beyond the current U.S. Food and Drug Administration–approved duration of 3 and 5 years respectively. Methods Women willing to continue using their implant or 52mg levonorgestrel IUD (LNG-IUD) beyond the FDA-approved duration were followed prospectively for contraceptive effectiveness. Unintended pregnancy rate per 100 women-years was calculated. Implant users are offered periodic venipuncture for analysis of serum etonogestrel levels. The Kruskal-Wallis test was used to compare the etonogestrel levels across BMI groups. Results Implant users (n=237) have contributed 229.4 women-years of follow-up, with 123 using the etonogestrel implant for 4 years, and 34 using it for 5 years. Zero pregnancies have been documented, for a failure rate of 0 (one-sided 97.5% CI: 0, 1.61) per 100 women-years. Among 263 LNG-IUD users, 197.7 women-years of follow-up have been completed. One pregnancy was confirmed, for a failure rate of 0.51 (95% CI: 0.01, 2.82) per 100 women-years. Among implant users with serum etonogestrel results, the median and range of etonogestrel level at 3 years of use was 188.8 pg/mL (range 63.8, 802.6) and 177.0 pg/mL (67.9, 470.5) at 4 years of use. Etonogestrel levels did not differ by BMI at either time point (3 years: p=0.79; 4 years: p=0.47). Conclusion Preliminary findings indicate the contraceptive implant and 52mg hormonal IUD continue to be highly-effective for an additional year, beyond the FDA approved 3 and 5 years.. Serum etonogestrel levels indicate the implant contains adequate hormone for ovulation suppression at the end of both 3 and 4 years of use. PMID:25730221
Ma, Jian; Yang, Weiwei; Singh, Manpreet; Peng, Tianqing; Fang, Ningyuan; Wei, Meng
2011-01-01
In the treatment of chronic total occlusions (CTOs), some uncertainty exists regarding the effect of drug-eluting stents (DESs) compared with the effects of bare mental stents (BMSs). We reviewed outcomes of DES vs. BMS implantation for CTO lesions, to evaluate the risk-benefit ratio of DES implantation. Relevant studies of long-term clinical outcomes or angiographic outcomes of both BMS and DES implantation were examined. The primary endpoint comprised major adverse cardiovascular events (MACEs), including all-cause deaths, myocardial infarctions (MIs), and target lesion revascularizations (TLRs). A fixed-effect model and random-effect model were used to analyze the pooling results. Ten studies were included according to the selection criteria. Eight were nonrandomized controlled trials, and two consisted of a randomized controlled comparison between DES and BMS implantation. No significant difference was evident for in-hospital MACE rates between the two groups (odds ratio [OR], 1.07; 95% confidence interval [CI], .53 to 2.13), but the long-term MACE rates in the DES group were significantly lower than in the BMS group (OR, .22; 95% CI, .13 to .38; P < .00001). The rates of stent restenosis and reocclusions were also significantly lower in the DES group (OR, .14; 95% CI, .09 to .20; and OR, .23; 95% CI, .12 to .41, respectively). Implantation of the DES improves long-term angiographic and clinical outcomes compared with BMS in the treatment of CTO lesions. Copyright © 2011 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... triggered, inhibited, and asynchronous modes and is implanted in the human body. * * * * * (c) Date PMA or... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 870 [Docket No..., established a comprehensive system for the regulation of medical devices intended for human use. Section 513...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... triggered, inhibited, and asynchronous devices implanted in the human body. B. Summary of Data The... human body. * * * * * (c) Date PMA or notice of completion of PDP is required. A PMA or notice of... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 870 [Docket No...
21 CFR 822.1 - What does this part cover?
Code of Federal Regulations, 2012 CFR
2012-04-01
...; (b) The device is intended to be implanted in the human body for more than 1 year; or (c) The device... 21 Food and Drugs 8 2012-04-01 2012-04-01 false What does this part cover? 822.1 Section 822.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...
21 CFR 822.1 - What does this part cover?
Code of Federal Regulations, 2013 CFR
2013-04-01
...; (b) The device is intended to be implanted in the human body for more than 1 year; or (c) The device... 21 Food and Drugs 8 2013-04-01 2013-04-01 false What does this part cover? 822.1 Section 822.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...
21 CFR 822.1 - What does this part cover?
Code of Federal Regulations, 2014 CFR
2014-04-01
...; (b) The device is intended to be implanted in the human body for more than 1 year; or (c) The device... 21 Food and Drugs 8 2014-04-01 2014-04-01 false What does this part cover? 822.1 Section 822.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...
21 CFR 822.1 - What does this part cover?
Code of Federal Regulations, 2011 CFR
2011-04-01
...; (b) The device is intended to be implanted in the human body for more than 1 year; or (c) The device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false What does this part cover? 822.1 Section 822.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...
21 CFR 822.1 - What does this part cover?
Code of Federal Regulations, 2010 CFR
2010-04-01
...; (b) The device is intended to be implanted in the human body for more than 1 year; or (c) The device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false What does this part cover? 822.1 Section 822.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...
Zhang, Zixin; Tang, Jianxiong; Wang, Heran; Xia, Qinghua; Xu, Shanshan; Han, Charles C
2015-12-09
Implantation of sustained antibacterial system after abdominal surgery could effectively prevent complicated intra-abdominal infection. In this study, a simple blended electrospun membrane made of poly(D,L-lactic-co-glycolide) (PLGA)/poly(dioxanone) (PDO)/Ciprofloxacin hydrochloride (CiH) could easily result in approximately linear drug release profile and sustained antibacterial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The addition of PDO changed the stack structure of PLGA, which in turn influenced the fiber swelling and created drug diffusion channels. It could be a good candidate for reducing postoperative infection or be associated with other implant to resist biofilm formation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
..., 2010. As provided in the regulatory text of this document, the agency is amending the regulations in 21... ponies--(1) Amount. One implant per mare subcutaneously in the neck. (2) Indications for use. For...
Peripheral nerve field stimulation for chronic neuropathic pain: a single institution experience.
D'Ammando, A; Messina, G; Franzini, A; Dones, I
2016-04-01
Peripheral nerve field stimulation (PNFS) is a novel neurosurgical procedure consisting of implantation of subcutaneous leads in specific painful areas in different types of painful, drug-resistant syndromes. The objective of this study was to evaluate the efficacy of PNFS in several patients affected by different chronic neuropathic pain syndromes, along with its risks, limits and possible correlation between the results achieved and the patients' main symptoms. Twenty-two patients affected by different types of chronic neuropathic pain were submitted to PNFS at the Department of Neurosurgery of the Istituto Neurologico "C. Besta" in Milan between July 2009 and July 2013. The visual analog scale (VAS) and variations in the use of analgesic drugs, along with complications, were considered to assess results. In 59 % of our patients, an average pain reduction of 5.50 points on the visual analog scale was observed (average pre-implant score 8.86 and average post-implant score 3.36). These patients reduced their analgesic drug use after PNFS. We observed no early or long-term complications after our last follow-up evaluation. PNFS can be considered an effective and safe option to treat carefully selected, drug-resistant and chronic neuropathic pain patients; the reversibility of the procedure and its lack, at least in our hands, of long-term complications may contribute to wider use of this procedure.
An overview of clinical and commercial impact of drug delivery systems.
Anselmo, Aaron C; Mitragotri, Samir
2014-09-28
Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Friedl, Alexander; Bauer, Wilhelm; Rom, Maximilian; Kivaranovic, Danijel; Lüftenegger, Werner; Brössner, Clemens
2016-01-14
To investigate erectile function and sexuality before/after implantation of the ATOMS device including continence outcome, pain perception and co-morbidities. We collected data from 34 patients (2010-2014) who were provided with an ATOMS implant due to mild or moderate stress urinary incontinence (SUI) after radical prostatectomy (RPE), transurethral resection (TURP) or radiotherapy. Previous failed implants were no contraindication. Sexuality was evaluated with the International Index of Erectile Function (IIEF-5). The Visual Analog Scale (VAS) and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) were used to analyse pain perception. Results regarding continence, influence of co-morbidities and drug intake were interpreted. IIEF-5 score increased 6 months after ATOMS implantation with a mean difference of 2.18 (Cl: 1.22, 3.14), p < 0,001). Non-sexually active patients had the greatest benefit. However, 50% of patients achieved a mean IIEF-5 of 10.1 and 38% of patients reported a new onset of sexual activity at follow up (mean IIEF-5 score of 12.9). This is in accordance with reduced SUI and absence of persistent pain syndrome. Overall success rate regarding 24h pad-use was 88% (no pad rate 38%). Previous failed implants did not influence results but diabetes, obesity and drug intake (beta-blockers, antidepressants) led to poorer outcomes. Sexuality and erectile function improves significantly 6 months after ATOMS implantation. We postulate that reduced SUI (also during sexual activity) and absence of chronic pain are the improving factors. ATOMS should be offered to men with mild to moderate SUI who are interested in regaining their erectile function and sexual activity.
Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.
Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C
2017-08-01
Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and -negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma.
Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research
Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C
2017-01-01
Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and ‑negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma. PMID:28830577
Sigler, Matthias; Klötzer, Julia; Quentin, Thomas; Paul, Thomas; Möller, Oliver
2015-12-01
Stent implantation into the tracheo-bronchial system may be life-saving in selected pediatric patients with otherwise intractable stenosis of the upper airways. Following implantation, significant tissue proliferation may occur, requiring re-interventions. We sought to evaluate the effect of immunosuppressive coating of the stents on the extent of tissue proliferation in an animal model. Bare metal and sirolimus-coated stents (Bx Sonic and Cypher Select, Johnson & Johnson, Cordis) were implanted into non-stenotic lower airways of New Zealand white rabbits (weight 3.1 to 4.8 kg). Three stents with sirolimus coating and six bare metal stents could be analyzed by means of histology and immunohistochemistry 12 months after implantation. On a macroscopic evaluation, all stents were partially covered with a considerable amount of whitish tissue. Histologically, these proliferations contained fiber-rich connective tissue and some fibromuscular cells without significant differences between both stent types. The superficial tissue layer was formed by typical respiratory epithelium and polygonal cells. Abundant lymphocyte infiltrations and moderate granulocyte infiltrations were found in both groups correspondingly, whereas foreign-body reaction was more pronounced around sirolimus-eluting stents. After stent implantation in the tracheo-bronchial system of rabbits, we found tissue reactions comparable to those seen after stent implantation into the vascular system. There was no difference between coated and uncoated stents with regard to quality and quantity of tissue proliferation. We found, however, a significantly different inflammatory reaction with a more pronounced foreign-body reaction in sirolimus-coated stents. In our small series, drug-eluting stents did not exhibit any benefit over bare metal stents in an experimental setting.
In vivo biocompatibility of three potential intraperitoneal implants.
Defrère, Sylvie; Mestagdt, Mélanie; Riva, Raphaël; Krier, Fabrice; Van Langendonckt, Anne; Drion, Pierre; Jérôme, Christine; Evrard, Brigitte; Dehoux, Jean-Paul; Foidart, Jean-Michel; Donnez, Jacques
2011-10-10
The intraperitoneal biocompatibility of PDMS, polyHEMA and pEVA was investigated in rats, rabbits and rhesus monkeys. No inflammation was evidenced by hematological analyses and measurement of inflammatory markers throughout the experiment and by post-mortem examination of the pelvic cavity. After 3 or 6 months, histological analysis revealed fibrous tissue encapsulating PDMS and PEVA implants in all species and polyHEMA implants in rabbits and monkeys. Calcium deposits were observed inside polyHEMA implants. The intraperitoneal biocompatibility of all 3 polymers makes them suitable for the design of drug delivery systems, which may be of great interest for pathologies confined to the pelvic cavity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tom, James
2016-01-01
The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias.
Tom, James
2016-01-01
The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias. PMID:27269668
Alghamdi, Hamdan S; Bosco, Ruggero; Both, Sanne K; Iafisco, Michele; Leeuwenburgh, Sander C G; Jansen, John A; van den Beucken, Jeroen J J P
2014-07-01
The prevalence of osteoporosis will increase within the next decades due to the aging world population, which can affect the bone healing response to dental and orthopedic implants. Consequently, local drug targeting of peri-implant bone has been proposed as a strategy for the enhancement of bone-implant integration in osteoporotic conditions. In the present study, an established in-vivo femoral condyle implantation model in osteoporotic and healthy bone is used to analyze the osteogenic capacity of titanium implants coated with bisphosphonate (BP)-loaded calcium phosphate nanoparticles (nCaP) under compromised medical conditions. After 4 weeks of implantation, peri-implant bone volume (%BV; by μCT) and bone area (%BA; by histomorphometry) were significantly increased within a distance of 500 μm from implant surfaces functionalized with BP compared to control implants in osteoporotic and healthy conditions. Interestingly, the deposition of nCaP/BP coatings onto implant surfaces increased both peri-implant bone contact (%BIC) and volume (%BV) compared to the deposition of nCaP or BP coatings individually, in osteoporotic and healthy conditions. The results of real-time PCR revealed similar osteogenic gene expression levels to all implant surfaces at 4-weeks post-implantation. In conclusion, simultaneous targeting of bone formation (by nCaP) and bone resorption (by BP) using nCaP/BP surface coatings represents an effective strategy for synergistically improvement of bone-implant integration, especially in osteoporotic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
An implantable thermoresponsive drug delivery system based on Peltier device.
Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury
2013-04-15
Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.
Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène
2017-04-28
Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.
Bruno, Giacomo; Canavese, Giancarlo; Liu, Xuewu; Filgueira, Carly S; Sacco, Adriano; Demarchi, Danilo; Ferrari, Mauro; Grattoni, Alessandro
2016-11-10
We report an electro-nanofluidic membrane for tunable, ultra-low power drug delivery employing an ionic field effect transistor. Therapeutic release from a drug reservoir was successfully modulated, with high energy efficiency, by actively adjusting the surface charge of slit-nanochannels 50, 110, and 160 nm in size, by the polarization of a buried gate electrode and the consequent variation of the electrical double layer in the nanochannel. We demonstrated control over the transport of ionic species, including two relevant hypertension drugs, atenolol and perindopril, that could benefit from such modulation. By leveraging concentration-driven diffusion, we achieve a 2 to 3 order of magnitude reduction in power consumption as compared to other electrokinetic phenomena. The application of a small gate potential (±5 V) in close proximity (150 nm) of 50 nm nanochannels generated a sufficiently strong electric field, which doubled or blocked the ionic flux depending on the polarity of the voltage applied. These compelling findings can lead to next generation, more reliable, smaller, and longer lasting drug delivery implants with ultra-low power consumption.
Development of a Microfluidics-Based Intracochlear Drug Delivery Device
Sewell, William F.; Borenstein, Jeffrey T.; Chen, Zhiqiang; Fiering, Jason; Handzel, Ophir; Holmboe, Maria; Kim, Ernest S.; Kujawa, Sharon G.; McKenna, Michael J.; Mescher, Mark M.; Murphy, Brian; Leary Swan, Erin E.; Peppi, Marcello; Tao, Sarah
2009-01-01
Background Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. Methods We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. Results We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. Conclusion We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases. PMID:19923811
NASA Astrophysics Data System (ADS)
Dai, Jiamu; Jin, Junhong; Yang, Shenglin; Li, Guang
2017-07-01
A drug-loaded implantable scaffold is a promising substitute for the treatment of tissue defects after a tumor resection operation. In this work, natural pearl powder with good biocompatibility and osteoconductivity was incorporated into polylactic (PLA) nanofibers via electrospinning, and doxorubicin hydrochloride (DOX) was also loaded in the PLA/pearl scaffold, resulting in a drug-loaded composite nanofibrous scaffold (DOX@PLA/pearl). In vitro drug delivery of DOX from a PLA/pearl composite scaffold was measured and in vitro anti-tumor efficacy was also examined, in particular the effect of the pearl content on both key properties were studied. The results showed that DOX was successfully loaded into PLA/pearl composite nanofibrous scaffolds with different pearl content. More importantly, the delivery rate of DOX kept rising as the pearl content increased, and the anti-tumor efficacy of the drug-loaded scaffold on HeLa cells was improved at an appropriate pearl powder concentration. Thus, we expect that the prepared DOX@PLA/pearl powder nanofibrous mat is a highly promising implantable scaffold that has great potential in postoperative cancer treatment.
New developments in managing opioid addiction: impact of a subdermal buprenorphine implant
Itzoe, MariaLisa; Guarnieri, Michael
2017-01-01
Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT). For decades, oral or intravenous (IV) MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone), antagonists (naltrexone, naloxone), and combinations of the two (buprenorphine/naloxone). While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016) is Probuphine®, which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed. PMID:28546740
New developments in managing opioid addiction: impact of a subdermal buprenorphine implant.
Itzoe, MariaLisa; Guarnieri, Michael
2017-01-01
Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT). For decades, oral or intravenous (IV) MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone), antagonists (naltrexone, naloxone), and combinations of the two (buprenorphine/naloxone). While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016) is Probuphine ® , which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed.
Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng
2016-01-01
Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification. PMID:27229174
Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery
NASA Astrophysics Data System (ADS)
Zhou, Hui-Yun; Zhou, Dong-Ju; Zhang, Wei-Fen; Jiang, Ling-Juan; Li, Jun-Bo; Chen, Xi-Guang
2011-12-01
In this work, chitosan/cellulose acetate microspheres (CCAM) were prepared by the method of W/O/W emulsion with no toxic reagents. The microspheres were spherical, free flowing, and non-aggregated, which had a narrow size distribution. More than 90% of the microspheres had the diameter ranging from 200 to 280 μm. The hemolytic analysis indicated that CCAM was safe and had no hemolytic effect. The implanted CCAM did not produce any significant changes in the hematology of Sprague-Dawley (SD) rats, such as white blood cell, red blood cell, platelet, and the volume of hemoglobin. In addition, the levels of serum alanine aminotransferase, blood urea nitrogen, and creatinine had no obvious changes in SD rats implanted with CCAM, surger thread, or normal SD rats without any implantation. Thus, the CCAM had good blood compatibility and had no hepatotoxicity or renal toxicity to SD rats. Furthermore, CCAM with or without the model drug had good tissue compatibility with respect to the inflammatory reaction in SD rats and showed no significant difference from that of SD rats implanted with surgery thread. CCAM shows promise as a long-acting delivery system, which had good biocompatibility and biodegradability.
Regulatory Requirements for Devices for the Handicapped.
ERIC Educational Resources Information Center
Stigi, John, Ed.; Rivera, Richard J., Ed.
This booklet explains in question/answer form the basic regulatory requirements established by the Food and Drug Administration (FDA) of the federal government concerning the manufacture, marketing and distribution of medical devices (including implantable devices and devices previously regulated as drugs) for persons with disabilities. Topics…
21 CFR 522.535 - Desoxycorticosterone pivalate.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522... variable and must be individualized on the basis of the response of the patient to therapy. Initial dose of... as replacement therapy for the mineralocorticoid deficit in dogs with primary adrenocortical...
75 FR 20268 - Implantation or Injectable Dosage Form New Animal Drugs; Change of Sponsor; Propofol
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-19
... use in dogs and cats--(1) Amount. The drug is administered by intravenous injection as follows: (i) Dogs. For induction of general anesthesia without the use of preanesthetics the dosage is 5.5 to 7.0 mg...
Current State of Bioabsorbable Polymer-Coated Drug-Eluting Stents
Akinapelli, Abhilash; Chen, Jack P.; Roy, Kristine; Donnelly, Joseph; Dawkins, Keith; Huibregtse, Barbara; Hou, Dongming
2017-01-01
Drug-eluting stents (DES) have been shown to significantly reduce clinical and angiograph-ic restenosis compared to bare metal stents (BMS). The polymer coatings on DES elute antiproliferative drugs to inhibit intimal proliferation and prevent restenosis after stent implantation. Permanent poly-mers which do not degrade in vivo may increase the likelihood of stent-related delayed arterial healing or polymer hypersensitivity. In turn, these limitations may contribute to an increased risk of late clinical events. Intuitively, a polymer which degrades after completion of drug release, leaving an inert metal scaffold in place, may improve arterial healing by removing a chronic source of inflammation, neoath-erosclerosis, and/or late thrombosis. In this way, a biodegradable polymer may reduce late ischemic events. Additionally, improved healing after stent implantation could reduce the requirement for long-term dual antiplatelet therapy and the associated risk of bleeding and cost. This review will focus on bioabsorbable polymer-coated DES currently being evaluated in clinical trials.
Halliday, Amy J; Campbell, Toni E; Razal, Joselito M; McLean, Karen J; Nelson, Timothy S; Cook, Mark J; Wallace, Gordon G
2012-02-01
Epilepsy is a chronic neurological disorder characterized by recurrent seizures, and is highly resistant to medication with up to 40% of patients continuing to experience seizures whilst taking oral antiepileptic drugs. Recent research suggests that this may be due to abnormalities in the blood-brain barrier, which prevent the passage of therapeutic substances into the brain. We sought to develop a drug delivery material that could be implanted within the brain at the origin of the seizures to release antiepileptic drugs locally and avoid the blood brain barrier. We produced poly-lactide-co-glycolide drop-cast films and wet-spun fibers loaded with the novel antiepileptic drug Levetiracetam, and investigated their morphology, in vitro drug release characteristics, and brain biocompatibility in adult rats. The best performing structures released Levetiracetam constantly for at least 5 months in vitro, and were found to be highly brain biocompatible following month-long implantations in the motor cortex of adult rats. These results demonstrate the potential of polymer-based drug delivery devices in the treatment of epilepsy and warrant their investigation in animal models of focal epilepsy. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza
2016-04-01
Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.
Highly porous drug-eluting structures
Elsner, Jonathan J.; Kraitzer, Amir; Grinberg, Orly; Zilberman, Meital
2012-01-01
For many biomedical applications, there is need for porous implant materials. The current article focuses on a method for preparation of drug-eluting porous structures for various biomedical applications, based on freeze drying of inverted emulsions. This fabrication process enables the incorporation of any drug, to obtain an “active implant” that releases drugs to the surrounding tissue in a controlled desired manner. Examples for porous implants based on this technique are antibiotic-eluting mesh/matrix structures used for wound healing applications, antiproliferative drug-eluting composite fibers for stent applications and local cancer treatment, and protein-eluting films for tissue regeneration applications. In the current review we focus on these systems. We show that the release profiles of both types of drugs, water-soluble and water-insoluble, are affected by the emulsion's formulation parameters. The former's release profile is affected mainly through the emulsion stability and the resulting porous microstructure, whereas the latter's release mechanism occurs via water uptake and degradation of the host polymer. Hence, appropriate selection of the formulation parameters enables to obtain desired controllable release profile of any bioactive agent, water-soluble or water-insoluble, and also fit its physical properties to the application. PMID:23507890
Ross, Astin M.; Rahmani, Sahar; Prieskorn, Diane M.; Dishman, Acacia F; Miller, Josef M.; Lahann, Joerg; Altschuler, Richard A.
2016-01-01
Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. PMID:26841263
Biomaterials for drug delivery systems.
Buckles, R G
1983-01-01
Drug delivery systems have unusual materials requirements which derive mainly from their therapeutic role: to administer drugs over prolonged periods of time at rates that are independent of patient-to-patient variables. The chemical nature of the surfaces of such devices may stimulate biorejection processes which can be enhanced or suppressed by the simultaneous presence of the drug that is being administered. Selection of materials for such systems is further complicated by the need for compatibility with the drug contained within the system. A review of selected drug delivery systems is presented. This leads to a definition of the technologies required to develop successfully such systems as well as to categorize the classes of drug delivery systems available to the therapist. A summary of the applications of drug delivery systems will also be presented. There are five major challenges to the biomaterials scientist: (1) how to minimize the influence on delivery rate of the transient biological response that accompanies implantation of any object; (2) how to select a composition, size, shape, and flexibility that optimizes biocompatibility; (3) how to make an intravascular delivery system that will retain long-term functionality; (4) how to make a percutaneous lead for those delivery systems that cannot be implanted but which must retain functionality for extended periods; and (5) how to make biosensors of adequate compatibility and stability to use with the ultimate drug delivery system-a system that operates with feedback control.
Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki
2014-02-01
This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.
Antibacterial effect of royal jelly for preservation of implant-related spinal infection in rat.
Gunaldi, Omur; Daglioglu, Yusuf Kenan; Tugcu, Bekir; Kizilyildirim, Suna; Postalci, Lutfi; Ofluoglu, Ender; Koksal, Fatih
2014-01-01
Implant-related infections are still a significant problem in spinal surgical procedures. Many drugs and methods have been tried to prevent implant-related infections. Our objective in this study was to evaluate whether royal jelly, which was found to hinder the growth of MRSA, has any preventive role in the prognosis of an infection in rats in an implant-related infection model. Rats were divided into 3 groups of eight rats. Group-1 consisted of rats that underwent only a spinal implant, group-2 included those rats that were inoculated bacteria together with a spinal implant and group-3 was administered royal jelly in addition to a spinal implant and infection. The amount of bacteria that grew in vertebral columns and implants was more in Group-2 than in Group-3, which meant that the number of bacteria colonies that grew was more quantitatively. This difference was found to be statistically significant in vertebral columns, but not in implants. Royal jelly could not fully prevent the MRSA infection in this model, but decreased the severity of infection noticeably. More objective and promising results may be obtained if royal jelly can be used at regular intervals in a different model to be designed with respect to implant-related infections.
Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite.
Mondal, Sudip; Dorozhkin, Sergy V; Pal, Umapada
2018-07-01
Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale. © 2017 Wiley Periodicals, Inc.
Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing.
Bezuidenhout, Martin B; Dimitrov, Dimitar M; van Staden, Anton D; Oosthuizen, Gert A; Dicks, Leon M T
2015-01-01
Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research.
Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang
2015-01-01
Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications.
Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang
2015-01-01
Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications. PMID:26090449
Potential applications of biphosphonates in dental surgical implants.
Berardi, D; Carlesi, T; Rossi, F; Calderini, M; Volpi, R; Perfetti, G
2007-01-01
Biphosphonates are largely used for their unquestionable properties of inhibiting bone resorption by osteoclasts in the treatment of various osteometabolic illnesses such as osteoporosis, multiple myeloma, tumors which metastasize to the bone and malignant hypercalcemia. In this literature review the physico-chemical properties, biologic activities and the mechanisms of action of biphosphonates are described. The use of these drugs is discussed, analyzing the quantity of results which have emerged through in vitro and in vivo experiments on animal models. In this study the efficiency of these drugs is demonstrated in contrasting the osteolitic processes of the alveolar bone, in promoting the neoformation and in bettering the quality of bone implants. However, it is important to draw attention to a worrying correlation which has emerged during the last 3-4 years, between osteonecrosis of the jaw (ONJ) and the systemic administration of aminobiphosphonates. This collateral effect did not emerge following the use of non-aminobiphosphonates. The aim of this review is to identify the guidelines for the use of biphosphonates in oral implant surgery.
Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing
Bezuidenhout, Martin B.; Dimitrov, Dimitar M.; van Staden, Anton D.; Oosthuizen, Gert A.; Dicks, Leon M. T.
2015-01-01
Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research. PMID:26504776
Bioresorbable Vascular Scaffold Korean Expert Panel Report
Park, Duk-Woo; Ahn, Young Keun; Kim, Won-Jang; Hong, Soon Jun; Kang, Do-Yoon; Chun, Woo Jung; Heo, Jung Ho; Cho, Deok-Kyu; Kim, Jin Won; Her, Sung-Ho; Kim, Sang Wook; Yoo, Sang-Yong; Tahk, Seung-Jea; Kim, Kee-Sik; Kim, Moo Hyun
2017-01-01
Bioresorbable vascular scaffold (BRS) is an innovative device that provides structural support and drug release to prevent early recoil or restenosis, and then degrades into nontoxic compounds to avoid late complications related with metallic drug-eluting stents (DESs). BRS has several putative advantages. However, recent randomized trials and registry studies raised clinical concerns about the safety and efficacy of first generation BRS. In addition, the general guidance for the optimal practice with BRS has not been suggested due to limited long-term clinical data in Korea. To address the safety and efficacy of BRS, we reviewed the clinical evidence of BRS implantation, and suggested the appropriate criteria for patient and lesion selection, scaffold implantation technique, and management. PMID:29171214
Doty, Amy C; Hirota, Keiji; Olsen, Karl F; Sakamoto, Naoya; Ackermann, Rose; Feng, Meihua R; Wang, Yan; Choi, Stephanie; Qu, Wen; Schwendeman, Anna; Schwendeman, Steven P
2016-12-01
Here we describe development of a silicone rubber/stainless steel mesh cage implant system, much like that used to assess biocompatibility of biomaterials [1], for easy removal of injectable polymer microspheres in vivo. The sterile cage has a type 316 stainless steel mesh size (38 μm) large enough for cell penetration and free fluid flow in vivo but small enough for microsphere retention, and a silicone rubber shell for injection of the microspheres. Two model drugs, the poorly soluble steroid, triamcinolone acetonide, and the highly water-soluble luteinizing hormone-releasing hormone (LHRH) peptide superagonist, leuprolide, were encapsulated in PLGA microspheres large enough (63-90 μm) to be restrained by the cage implant in vivo. The in vitro release from both formulations was followed by ultra-performance liquid chromatography (UPLC) with and without the cage in a standard release media, PBS pH 7.4 + 0.02% Tween 80 + 0.05% sodium azide, at 37 °C. Pharmacokinetics (PK) in rats was assessed after SC injection or SC in-cage implantation of microspheres with plasma analysis by LC-MS/MS or EIA. Tr-A and leuprolide in vitro release was largely unaffected after the initial burst irrespective of the cage or test tube incubation vessel and release was much slower than observed in vivo for both drugs. Moreover, Tr-A and leuprolide pharmacokinetics with and without the cage were highly similar during the 2-3 week release duration before a significant inflammatory response was caused by the cage implant. Hence, the PK-validated cage implant provides a simple means to recover and evaluate the microsphere drug carriers in vivo during a time window of at least a few weeks in order to characterize the polymer microsphere release and erosion behavior in vivo. This approach may facilitate development of mechanism-based in vitro/in vivo correlations and enable development of more accurate and useful in vitro release tests. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scale-up of water-based spider silk film casting using a film applicator.
Agostini, Elisa; Winter, Gerhard; Engert, Julia
2017-10-30
Spider silk proteins for applications in drug delivery have attracted an increased interest during the past years. Some possible future medical applications for this biocompatible and biodegradable material are scaffolds for tissue engineering, implantable drug delivery systems and coatings for implants. Recently, we reported on the preparation of water-based spider silk films for drug delivery applications. In the current study, we describe the development of a manufacturing technique for casting larger spider silk films from aqueous solution employing a film applicator. Films were characterized in terms of morphology, water solubility, protein secondary structure, thermal stability, and mechanical properties. Different post-treatments were evaluated (phosphate ions, ethanol, steam sterilization and water vapor) to increase the content of β-sheets thereby achieving water insolubility of the films. Finally, the mechanical properties of the spider silk films were improved by incorporating 2-pyrrolidone as plasticizer. Copyright © 2017 Elsevier B.V. All rights reserved.
[Bilateral Pallidotomy for Tardive Dystonia:A Case Report].
Kohara, Kotaro; Taira, Takaomi; Horisawa, Shiro; Hanada, Tomoko; Kawamata, Takakazu
2017-11-01
Tardive dystonia is a movement disorder related to the use of dopamine-receptor-blocking drugs. Several reports have shown that deep brain stimulation of the globus pallidus internus(GPi-DBS)is effective in treating tardive dystonia. However, a few reports demonstrated the efficacy of ablation of the GPi(pallidotomy). We herein report a case of tardive dystonia successfully treated with bilateral pallidotomy. A 32-year-old man developed severe tardive dystonia 10 years after the chronic use of antipsychotic drugs. Withdrawal of the drugs and botulinum toxin injections were ineffective. The patient underwent bilateral pallidotomy for tardive dystonia because of rejection of the implanted DBS devices. Significant improvement was observed, with a 95% decrease in the Burke-Fahn-Marsden Dystonia Rating Scale(BFMDRS)movement score, and no severe adverse events occurred. Symptomatic relief persisted for nine months. Pallidotomy is a feasible and efficacious procedure for tardive dystonia treatment without the use of hardware implantations.
[Cochlear implant in children: rational, indications and cost/efficacy].
Martini, A; Bovo, R; Trevisi, P; Forli, F; Berrettini, S
2013-06-01
A cochlear implant (CI) is a partially implanted electronic device that can help to provide a sense of sound and support speech to severely to profoundly hearing impaired patients. It is constituted by an external portion, that usually sits behind the ear and an internal portion surgically placed under the skin. The external components include a microphone connected to a speech processor that selects and arranges sounds pucked up by the microphone. This is connected to a transmitter coil, worn on the side of the head, which transmits data to an internal receiver coil placed under the skin. The received data are delivered to an array of electrodes that are surgically implanted within the cochlea. The primary neural targets of the electrodes are the spiral ganglion cells which innervate fibers of the auditory nerve. When the electrodes are activated by the signal, they send a current along the auditory nerve and auditory pathways to the auditory cortex. Children and adults who are profoundly or severely hearing impaired can be fitted with cochlear implants. According to the Food and Drug Administration, approximately 188,000 people worldwide have received implants. In Italy it is extimated that there are about 6-7000 implanted patients, with an average of 700 CI surgeries per year. Cochlear implantation, followed by intensive postimplantation speech therapy, can help young children to acquire speech, language, and social skills. Early implantation provides exposure to sounds that can be helpful during the critical period when children learn speech and language skills. In 2000, the Food and Drug Administration lowered the age of eligibility to 12 months for one type of CI. With regard to the results after cochlear implantation in relation to early implantation, better linguistic results are reported in children implanted before 12 months of life, even if no sufficient data exist regarding the relation between this advantage and the duration of implant use and how long this advantage persists in the subsequent years. With regard to cochlear implantation in children older than 12 months the studies show better hearing and linguistic results in children implanted at earlier ages. A sensitive period under 24-36 months has been identified over which cochlear implantation is reported to be less effective in terms of improvement in speech and hearing results. With regard to clinical effectiveness of bilateral cochlear implantation, greater benefits from bilateral implants compared to monolateral ones when assessing hearing in quiet and in noise and in sound localization abilities are reported to be present in both case of simultaneous or sequential bilateral implantation. However, with regard to the delay between the surgeries in sequential bilateral implantation, although benefit is reported to be present even after very long delays, on average long delays between surgeries seems to negatively affect the outcome with the second implant. With regard to benefits after cochlear implantation in children with multiple disabilities, benefits in terms of speech perception and communication as well as in quality of the daily life are reported even if benefits are slower and lower in comparison to those generally attained by implanted children without additional disabilities. Regarding the costs/efficacy ratio, the CI is expensive, in particular because of the cost of the high technological device, long life support, but even if healthcare costs are high, the savings in terms of indirect costs and quality of life are important. The CI, in fact, has a positive impact in terms of quality of life.
Gao, Li; Xia, Lunyang; Zhang, Ruhui; Duan, Dandan; Liu, Xiuxiu; Xu, Jianjian; Luo, Lan
2017-01-01
Purpose Methotrexate is widely used in chemotherapy for a variety of malignancies. However, severe toxicity, poor pharmacokinetics, and narrow safety margin of methotrexate limit its clinical application. The aim of this study was to develop sustained-release methotrexate-loaded implants and evaluate antitumor activity of the implants after intratumoral implantation. Materials and methods We prepared the implants containing methotrexate, poly(D,L-lactide-co-glycolide), and polyethylene glycol 4000 with the melt-molding technique. The implants were characterized with regards to drug content, morphology, in vitro, and in vivo release profiles. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were carried out to investigate the physicochemical properties of the implants. Furthermore, the antitumor activity of the implants was tested in a sarcoma 180 mouse model. Results The implants were prepared as solid rods. Scanning electron microscopy images showed a smooth surface of the implant, suggesting that methotrexate was homogeneously dispersed in the polymeric matrix. The results of DSC and FTIR indicated that no significant interaction between methotrexate and the polymer was observed in the implants. Both in vitro and in vivo release profiles of the implants were characterized by burst release followed by sustained release of methotrexate. Intratumoral implantation of methotrexate-loaded implants could efficiently delay tumor growth. Moreover, an increase in the dose of implants led to a higher tumor suppression rate without additional systemic toxicity. Conclusion These results demonstrate that methotrexate-loaded implants had significant antitumor efficacy in a sarcoma 180 mouse model without dose-limiting side effects, and suggest that the implants could be potentially applied as an intratumoral delivery system to treat cancer. PMID:29118572
Implantation of Vascular Grafts Lined with Genetically Modified Endothelial Cells
NASA Astrophysics Data System (ADS)
Wilson, James M.; Birinyi, Louis K.; Salomon, Robert N.; Libby, Peter; Callow, Allan D.; Mulligan, Richard C.
1989-06-01
The possibility of using the vascular endothelial cell as a target for gene replacement therapy was explored. Recombinant retroviruses were used to transduce the lacZ gene into endothelial cells harvested from mongrel dogs. Prosthetic vascular grafts seeded with the genetically modified cells were implanted as carotid interposition grafts into the dogs from which the original cells were harvested. Analysis of the graft 5 weeks after implantation revealed genetically modified endothelial cells lining the luminal surface of the graft. This technology could be used in the treatment of atherosclerosis disease and the design of new drug delivery systems.
Prenzler, Nils K; Salcher, Rolf; Timm, Max; Gaertner, Lutz; Lenarz, Thomas; Warnecke, Athanasia
2018-05-14
Suppression of foreign body reaction, improvement of electrode-nerve interaction, and preservation of residual hearing are essential research topics in cochlear implantation. Intracochlear pharmaco- or cell-based therapies can open new horizons in this field. Local drug delivery strategies are desirable as higher local concentrations of agents can be realized and side effects can be minimized compared to systemic administrations. When administered locally at accessible, basal parts of the cochlea, drugs reach apical regions later and in much lower concentrations due to poor diffusion patterns in cochlear fluids. Therefore, new devices are needed to warrant rapid distribution of agents into all parts of the cochlea. Five patients received a deep intracochlear injection of triamcinolone with a specifically designed cochlear catheter during cochlear implantation right before inserting a cochlear implant electrode. As a measure for formation of fibrous tissue around the electrode, electrical impedances were measured in the operation room and over 4 months thereafter. No adverse events were observed peri- and postoperatively. The handling of the device was easy. Severe damage to the microstructure of the cochlea was excluded as far as possible by cone beam computed tomography and vestibular testing. A delayed rise of the impedances was seen in the catheter group compared to controls over all regions of the cochlea. A statistical significance, however, was only obtained at the midregion of the cochlea. Consequently, the cochlear catheter is a safe and feasible device for local drug delivery of pharmaceutical agents into deeper regions of the cochlea.
Sherwood, Leslie C; Aqil, Farrukh; Vadhanam, Manicka V; Jeyabalan, Jeyaprakash; Munagala, Radha; Hoetker, David; Srivastava, Sanjay; Singh, Inder P; Cambron, Scott; O'Toole, Martin; Spencer, Wendy; Parker, Lynn P; Gupta, Ramesh C
2017-12-01
Cervical cancer is caused by human papillomavirus (HPV). The disease develops over many years through a series of precancerous lesions. Cervical cancer can be prevented by HPV-vaccination, screening and treatment of precancer before development of cervical cancer. The treatment of high-grade cervical dysplasia (CIN 2+ ) has traditionally been by cervical conization. Surgical procedures are associated with increased risk of undesirable side effects including bleeding, infection, scarring (stenosis), infertility and complications in later pregnancies. An inexpensive, non-invasive method of delivering therapeutics locally will be favorable to treat precancerous cervical lesions without damaging healthy tissue. The feasibility and safety of a sustained, continuous drug-releasing cervical polymeric implant for use in clinical trials was studied using a large animal model. The goat (Capra hircus), non-pregnant adult female Boer goats, was chosen due to similarities in cervical dimensions to the human. Estrus was induced with progesterone CIDR® vaginal implants for 14days followed by the administration of chorionic gonadotropins 48h prior to removal of the progesterone implants to relax the cervix to allow for the placement of the cervical implant. Cervical implants, containing 2% and 4% withaferin A (WFA), with 8 coats of blank polymer, provided sustained release for a long duration and were used for the animal study. The 'mushroom'-shaped cervical polymeric implant, originally designed for women required redesigning to be accommodated within the goat cervix. The cervical implants were well tolerated by the animals with no obvious evidence of discomfort, systemic or local inflammation or toxicity. In addition, we developed a new method to analyze tissue WFA levels by solvent extractions and LS/MS-MS. WFA was found to be localized to the target and adjacent tissues with 12-16ng WFA/g tissue, with essentially no detectable WFA in distant tissues. This study suggests that the goat is a good large animal model for the future development and evaluation of therapeutic efficacy of continuous local drug delivery by cervical polymeric implants to treat precancerous cervical lesions. Copyright © 2017. Published by Elsevier Inc.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...
The Use of Lithium Batteries in Biomedical Devices
1989-06-15
bone growth stimulator (12) implantable sensor (6) drug infusion system (13) neurostimulator (7) gait assist device (14) pain suppressor The preferred...1000-2000 defibrillator 10-80 2000 neurostimulator 10-20 1-5 drug pump 20-50 1-2 tachyarrythmia control 20-100 2 dual cliamber paceinaker 20-100 single
21 CFR 1271.45 - What requirements does this subpart contain?
Code of Federal Regulations, 2011 CFR
2011-04-01
....45 Section 1271.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.45 What... oocyte donor and the semen donor. (c) Prohibition on use. An HCT/P must not be implanted, transplanted...
21 CFR 522.2690 - Zinc gluconate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...
21 CFR 522.2690 - Zinc gluconate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...
21 CFR 522.300 - Carfentanil citrate injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522... effect, use 7 milligrams of diprenorphine for each milligram of carefentanil citrate, given intravenously... animals intended for food. Do not use 30 days before or during hunting season. Do not use in animals that...
76 FR 57905 - Implantation or Injectable Dosage Form New Animal Drugs; Ivermectin
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... solution for treatment and control of various internal and external parasites in cattle, swine, reindeer...: John K. Harshman, Center for Veterinary Medicine (HFV-170), Food and Drug Administration, 7500 Standish... of BIMECTIN (ivermectin) Injection for Cattle and Swine for treatment and control of various internal...
75 FR 26647 - Implantation or Injectable Dosage Form New Animal Drugs; Ivermectin
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... solution in cattle and swine for treatment and control of various internal and external parasites. DATES... Veterinary Medicine (HFV-170), Food and Drug Administration, 7500 Standish Pl., Rockville, MD 20855, 240-276... and swine for treatment and control of various internal and external parasites. Sparhawk Laboratories...
75 FR 22524 - Implantation or Injectable Dosage Form New Animal Drugs; Butorphanol
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 522 [Docket No... application (ANADA) filed by Modern Veterinary Therapeutics, LLC. The ANADA provides for use of an injectable..., 2010. FOR FURTHER INFORMATION CONTACT: John K. Harshman, Center for Veterinary Medicine (HFV-170), Food...
21 CFR 522.650 - Dihydrostreptomycin sulfate injection.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... 055529 in § 510.600(c) of this chapter. (c) National Academy of Sciences/National Research Council (NAS... dihydrostreptomycin resistant organisms. Discontinue use 30 days before slaughter for food. Not for use in animals...
21 CFR 522.650 - Dihydrostreptomycin sulfate injection.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... 055529 in § 510.600(c) of this chapter. (c) National Academy of Sciences/National Research Council (NAS... dihydrostreptomycin resistant organisms. Discontinue use 30 days before slaughter for food. Not for use in animals...
21 CFR 522.480 - Repository corticotropin injection.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... refrigerated. With prolonged use supplement daily diet with potassium chloride at one gram for small animals and from 5 to 10 grams for large animals. (4) Conditions of use. (i) It is used as an intramuscular or...
21 CFR 522.480 - Repository corticotropin injection.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS... refrigerated. With prolonged use supplement daily diet with potassium chloride at one gram for small animals and from 5 to 10 grams for large animals. (4) Conditions of use. (i) It is used as an intramuscular or...
Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly
Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen
2017-01-01
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462
Karlsson, Johan; Atefyekta, Saba; Andersson, Martin
2015-01-01
The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding-diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments.
Moore, R M; Hamburger, S; Jeng, L L; Hamilton, P M
1991-01-01
National population-based estimates on the magnitude and distribution of orthopedic implant devices in the United States have not been available to date. The Food and Drug Administration's Center for Devices and Radiological Health (FDA/CDRH) collaborated with the Centers for Disease Control's National Center for Health Statistics (CDC/NCHS) in the design and conduct of a nationwide medical device implant survey to generate the first national population-based prevalence estimates of orthopedic implant devices. A Medical Device Implant Supplement to the 1988 National Health Interview Survey was administered in personal household interviews to a national sample of 47,485 households, which included 122,310 individuals. An estimated 6.5 million orthopedic implants were in use in the general US population in 1988, including 1.6 million artificial joints and 4.9 million fixation devices. As a group, orthopedic implants comprised nearly half of all medical device implants in use, 43.4%. The majority of artificial joint recipients were 65 years of age or older, white, and male. The majority of fixation device recipients were less than 45 years of age, white, and male. The limitations and strengths of these population-based estimates are discussed.
Lin, Yanjuan; Xu, Le; Huang, Xizhen; Jiang, Fei; Lin, Fen; Ye, Qingyang; Lin, Jianling
2016-01-01
To investigate the effects of non-drug interventions on the sleep quality of patients after mechanical cardiac valve implantation. In this prospective, randomized, controlled trial, 64 patients scheduled for mechanical mitral valve replacement were recruited. Patients underwent cognitive behavioral therapy and wore noise cancelling earplugs and eye mask. Sleep quality was evaluated on the 4th after admission and the 5th days after operation. The primary outcome was the total sleep quality score differences between the 4th day after admission and the 5th day after operation. All patients had been suffering from poor sleep quality for a month before admission. There was no difference between both groups on the 4th day after admission. Overall sleep quality in the intervention group was better than in the control group on the 5th day after operation. The subjective sleep quality of the patients in each group was significantly lower on the 5th day after the operation than on the 4th day after admission (P <0.05). Non-drug intervention could improve the sleep quality of patients after mechanical cardiac valve implantation and help the postoperative recovery of the patients. ( ChiCTR-TRC-14004405, 21 March 2014.).
Scholten, Kee; Meng, Ellis
2018-06-15
Closed-loop drug delivery promises autonomous control of pharmacotherapy through the continuous monitoring of biomarker levels. For decades, researchers have strived for portable closed-loop systems capable of treating ambulatory patients with chronic conditions such as diabetes mellitus. After years of development, the first of these systems have left the laboratory and entered commercial use. This long-awaited advance reflects recent development of chronically stable implantable biosensors able to accurately measure biomarker levels in vivo. This review discusses the role of implantable biosensors in closed-loop drug delivery applications, with the intent to provide a resource for engineers and researchers studying such systems. We provide an overview of common biosensor designs and review the principle challenges in implementing long indwelling sensors: namely device sensitivity, selectivity, and lifetime. This review examines novel advances in transducer design, biological interface, and material biocompatibility, with a focus on recent academic and commercial work which provide successful strategies to overcome perennial challenges. This review focuses primarily on the topics of closed-loop glucose control and continuous glucose monitoring biosensors, which make up the overwhelming majority of published research in this area. We conclude with an overview of recent advances in closed-loop systems targeting applications outside blood glucose management. Copyright © 2018 Elsevier B.V. All rights reserved.
Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi
2017-07-24
In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.
Zhang, Guo-Jun; Chen, Tsing-Bau; Bednar, Bohumil; Connolly, Brett M; Hargreaves, Richard; Sur, Cyrille; Williams, David L
2007-08-01
The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.
NASA Astrophysics Data System (ADS)
Sanbhal, Noor; Mao, Ying; Sun, Gang; Xu, Rui Fang; Zhang, Qian; Wang, Lu
2018-05-01
Light weight polypropylene (PP) mesh is the most widely used implant among all other synthetic meshes for hernia repair. However, infection is the complication associated to all synthetic meshes after hernia repair. Thus, to manage mesh related infection; antibacterial drug is generally loaded to surgical implants to supply drug locally in mesh implanted site. Nevertheless, PP mesh restricts the loading of antibacterial drug at operated area due to its low wettability. The aim of this study was to introduce a novel antimicrobial PP mesh modified with β-cyclodextrine (CD) and loaded with antimicrobial agent for infection prevention. A cold oxygen plasma treatment was able to activate the surfaces of polypropylene fibers, and then CD was incorporated onto the surfaces of PP fibers. Afterward, triclosan, as a model antibacterial agent, was loaded into CD cavity to provide desired antibacterial functions. The modified polypropylene mesh samples CD-Tric-1, CD-Tric-3 exhibited excellent inhibition zone and continuous antibacterial efficacy against E. coli and S. aureus up to 6 and 7 days respectively. Results of AFM, SEM, FTIR and antibacterial tests evidenced that oxygen plasma process is necessary to increase chemical connection between CD molecules and PP fibers. The samples were also characterized by using EDX, XRD, TGA, DSC and water contact angle.
Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia
2016-01-01
Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945
Carro, Cristina; Cereda, Alberto Francesco; Annoni, Giuseppe; Marianeschi, Stefano Maria
2017-11-01
Implantable cardioverter-defibrillator (ICD) is the gold standard therapy for the prevention of sudden cardiac death. Nevertheless, ICD placement in the paediatric population is still limited because of several technical difficulties. Several implantation techniques have been proposed but experience in infants with very low weight and less than 6 months is very limited. We herein describe a case of a minimally invasive ICD epicardial implantation in a 4-month-old infant weighing 5 kg. A diagnosis of arrhythmic cardiomyopathy with left ventricular non-compaction disease with ventricular tachycardia storms, QT prolongation and Wolff-Parkinson-White pattern was made. Antiarrhythmic drugs, radiofrequency ablation and sympathetic denervation were not effective. ICD implantation was successful allowing the infant to survive and bridging to heart transplantation. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Naltrexone implants compared to methadone: outcomes six months after prison release.
Lobmaier, Philipp P; Kunøe, Nikolaj; Gossop, Michael; Katevoll, Tormod; Waal, Helge
2010-01-01
After prison release, offenders with heroin use problems are at high risk of relapse and overdose death. There is a particular need for treatments that can be initiated in prison and continued after release into the community. Methadone maintenance treatment has been shown to reduce heroin use, criminality and mortality. Naltrexone implant treatment has not previously been evaluated in prison settings. This study compares the effects of naltrexone implants and methadone treatment on heroin and other illicit drug use, and criminality among heroin-dependent inmates after release from prison. Forty-six volunteers were randomly allocated to naltrexone implants or methadone before release. Intention-to-treat analyses showed reductions in both groups in frequency of use of heroin and benzodiazepines, as well as criminality, 6 months after prison release. Naltrexone implants may be a valuable treatment option in prison settings. 2010 S. Karger AG, Basel.
An implantable blood pressure and flow transmitter.
NASA Technical Reports Server (NTRS)
Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.
1973-01-01
A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.
Antibiotic prophylaxis patterns of Finnish dentists performing dental implant surgery.
Pyysalo, Mikko; Helminen, Mika; Antalainen, Anna-Kaisa; Sándor, George K; Wolff, Jan
2014-11-01
The peri-operative use of prophylactic antibiotics in clinically healthy patients undergoing dental implant surgery is very common in Finland. While antibiotics are prescribed with the hope of preventing both local and systemic complications, their application and utilization is not uniform. The aim of this study was to assess the variation in prescribing patterns among Finnish dentists performing dental implant placement operations. This study also aimed to examine the possible relationship between early implant removal and the use of the prophylactic antibiotics in Finland. The National Institute for Health and Welfare in Finland granted permission to access the Finnish Dental Implant Register. The peri-operative antibiotic prophylaxis prescribing patterns were assessed in a total of 110 543 dental implant placement procedures and 1038 dental implant removal operations performed in Finland between April 1994 and April 2012. A total of 61 different antibiotics or combinations were prescribed peri-operatively during implant placements in Finland between 1994-2012. Phenoxymethylpenicillin was the most commonly prescribed drug (72.2%). No statistically significant difference in early implant removal rates could be found between patients who had or had not received peri-operative prophylaxis. However, patients who had received peri-operative prophylaxis had statistically significant longer implant survival rates. There is a variation in antibiotic prescribing patterns among Finnish dentists placing dental implants. The results suggest that the use of prophylactic antibiotics has little effect on the prevention of primary implant surgery-related complications and, hence, success rates.
Rajagopal, Karthikan; Wood, Joseph; Tran, Benjamin; Patapoff, Thomas W; Nivaggioli, Thierry
2013-08-01
Polymer implants are promising systems for sustained release applications but their utility for protein delivery has been hindered because of concerns over drug stability at elevated temperatures required for processing. Using bovine serum albumin (BSA) as a model, we have assessed whether proteins can be formulated for processing at elevated temperatures. Specifically, the effect of trehalose and histidine-HCl buffer on BSA stability in a spray-dried formulation has been investigated at temperatures ranging from 80°C to 110°C. When both the sugar and buffer are present, aggregation is suppressed even when exposed to 100°C, the extrusion temperature of poly(lactide-co-glycolide) (PLGA), a bioresorbable polymer. Estimation of aggregation rate constants (k) indicate that though both trehalose and histidine-HCl buffer contribute to BSA stability, the effect because of trehalose alone is more pronounced. BSA-loaded PLGA implants were prepared using hot-melt extrusion process and in vitro release was conducted in phosphate buffered saline at 37°C. Comparison of drug released from implants prepared using four different formulations confirmed that maximal release was achieved from the formulation in which BSA was least aggregated. These studies demonstrate that when trehalose and histidine-HCl buffer are included in spray-dried formulations, BSA stability is maintained both during processing at 100°C and long-term residence within implants. Copyright © 2013 Wiley Periodicals, Inc.
Somsanith, Nithideth; Jang, Young-Seok; Lee, Young-Hee; Yi, Ho-Keun; Kim, Kyoung-A; Bae, Tae-Sung; Lee, Min-Ho
2018-01-01
TiO2 nanotubes (TNT) formation is beneficial for improving bone cell–material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes. This study concludes that TNT loaded with a propolis (PL-TNT-Ti) dental implant has the ability to improve osseointegration. The propolis particles were embedded within the TNT or adhered to the top. In a cytotoxicity test using osteoblast, PL-TNT-Ti group exhibited an increased cell proliferation and differentiation. A Sprague Dawley rat mandibular model was used to evaluate the osseointegration and bone bonding of TNT or PL-TNT-Ti. From the µ-CT and hematoxylin and eosin (HE) histological results after implantation at 1 and 4 weeks to rat mandibular, an increase in the extent of new bone formation and mineral density around the PL-TNT-Ti implant was confirmed. The Masson’s trichrome staining showed the expression of well-formed collagenous for bone formation on the PL-TNT-Ti. Immunohistochemistry staining indicate that bone morphogenetic proteins (BMP-2 and BMP-7) around the PL-TNT-Ti increased the expression of collagen fibers and of osteogenic differentiation whereas the expression of inflammatory cytokine such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) is decreased. PMID:29301269
Loch, Christian; Zakelj, Simon; Kristl, Albin; Nagel, Stefan; Guthoff, Rudolf; Weitschies, Werner; Seidlitz, Anne
2012-08-30
To treat ophthalmic diseases like glaucoma or inflammatory disorders topically applied ophthalmic formulations such as eye drops are usually used. In addition, novel ophthalmic implants releasing drug substances locally into different parts of the eye are available today. In the work presented here, the permeability coefficients of selected drugs (ciprofloxacin hydrochloride, lidocaine hydrochloride, timolol maleate) for ophthalmic tissues were determined using side-by-side diffusion chambers (so-called Ussing chambers). Sclera, conjunctiva, cornea, choroidea-retina-complex and a complex of conjunctiva-sclera-choroidea-retina were excised from fresh porcine, rabbit and bovine eyes. In the porcine eye tissues the highest P(app) values were obtained for conjunctiva with the exception of lidocaine. Therefore, it can be estimated that a certain amount of drug diffuses or is transported through conjunctiva after application. The P(app) values for sclera were also higher than those for cornea and even more, the surface area of sclera which is available for drug absorption is much larger than that of cornea when applying an implant. The obtained permeability coefficients for sclera and conjunctiva indicate that the administration of periocular implants can be an alternative to topically applied formulations. The complexes of the tissues were a significantly (p<0.01) stronger barrier to the investigated substances than the separated tissues. Distinct differences in permeability coefficients between the investigated animal tissues were observed. Overall the highest P(app) values for all mounted tissues were obtained with the rabbit, followed by porcine and bovine eyes. Because of these distinct interspecies differences one must be very careful when selecting the proper animal model for the permeability experiments. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Tao; Wang, Na; Chen, Su; Lu, Ran; Li, Hongyi; Zhang, Zhenting
2017-01-01
Prevention of implant-associated infections at an early stage of surgery is highly desirable for the long-term efficacy of implants in dentistry and orthopedics. Infection prophylaxis using conventional antibiotics is becoming less effective due to the development of bacteria resistant to multiple antibiotics. An ideal strategy to conquer bacterial infections is the local delivery of antibacterial agents. Therefore, antimicrobial peptide (AMP) eluting coatings on implant surfaces is a promising alternative. In this study, the feasibility of utilizing TiO 2 nanotubes (TNTs), processed using anodization, as carriers to deliver a candidate AMP on titanium surfaces for the prevention of implant-associated infections is assessed. The broad-spectrum GL13K (GKIIKLKASLKLL-CONH2) AMP derived from human parotid secretory protein was selected and immobilized to TNTs using a simple soaking technique. Field emission scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometry analyses confirmed the successful immobilization of GL13K to anatase TNTs. The drug-loaded coatings demonstrated a sustained and slow drug release profile in vitro and eradicated the growth of Fusobacterium nucleatum and Porphyromonas gingivalis within 5 days of culture, as assessed by disk-diffusion assay. The GL13K-immobilized TNT (GL13K-TNT) coating demonstrated greater biocompatibility, compared with a coating produced by incubating TNTs with equimolar concentrations of metronidazole. GL13K-TNTs produced no observable cytotoxicity to preosteoblastic cells (MC3T3-E1). The coating may also have an immune regulatory effect, in support of rapid osseointegration around implants. Therefore, the combination of TNTs and AMP GL13K may achieve simultaneous antimicrobial and osteoconductive activities.
2008-02-01
goal to develop artificial skins for robots . Thermoelectric devices and miniature blowers and fans were reviewed for cooling applications. The ability of...including medical (e.g., drug delivery, implants), aerospace, textile, robotics (i.e., artificial muscles), and sensors. The technology survey to...implants. ILC Dover is developing a self - repairing space suit that incorporates a pressure sensitive gel (Shiga, 2006). The polymer gel is contained between
NASA Astrophysics Data System (ADS)
Widmer, Markus; von Felten-Rösler, Ursula; Wintermantel, Erich
Die Hüftgelenk-Endoprothese wird im vorliegenden Buch als herausragendes Beispiel eines lasttragenden orthopädischen Implantates aufgeführt. Lasttragende Implantate werden in dieser Monographie den metabolisch induktiven Implantaten gegenübergestellt, bei denen Kräfte eine untergeordnete Rolle sowohl in der Werkstoffentwicklung als auch beim späteren Einsatz im Empfängerorganismus darstellen. Zu den metabolisch induktiven Implantaten werden beispielsweise Zellträger und “drug-release”-Systeme gerechnet.
The role of lithium batteries in modern health care
NASA Astrophysics Data System (ADS)
Holmes, Curtis F.
Since the implantation of the first lithium-powered pacemaker in 1972, biomedical devices powered by lithium batteries have played a significant role in saving lives and providing health-improving therapy. Today a wide variety of devices performing functions from managing cardiac rhythm to relieving pain and administering drugs is available to clinicians. Newer devices such as ventricular assist devices and implantable hearing devices are powered by lithium ion secondary batteries.
Liu, Jinsong; Wu, Zuosu; He, Hongli; Cai, Kaiyong; Zhang, Hualin; Xu, Lihua
2017-06-01
Over the last few decades, a wide variety of dental implants have been successfully placed in jaw bones to restore tooth function. But major challenges still remain in patients with osteoporosis involving compromised osseointegration, and the therapeutic methods is far from optimism. Gallium can directly inhibit bone osteolysis, prevent bone calcium release and augment bone mass, which makes Ga unique among the potential antiresorptive drugs. Silicon, as an indispensable modulator in bone formation, presents its bone anabolic effects, while reduces, at least doesn't increase, bone resorption. We hypothesize that the combination of bone anabolic effects of Si and antiresorptive effects of Ga will result in synergistic effects on the improvement of osteointegration under osteoporotic condition. In our strategy, in order to maximize the efficacy while minimize the side effects of ions, a novel titania mesoporous layer fabricated by electrochemical anodization on the surface of titanium implant will be employed as a promising local drug delivery system. The synergistic effects of Ga and Si on improving osseointegration will be verified by animal experiments, and be furthered by clinical trials. Our hypothesis could help to create an option to improve success rate of dental implants in osteoporotic patients. Copyright © 2017. Published by Elsevier Ltd.
Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices.
Genina, Natalja; Holländer, Jenny; Jukarainen, Harri; Mäkilä, Ermei; Salonen, Jarno; Sandler, Niklas
2016-07-30
The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug in this study. Out of the twelve tested grades of the EVA five were printable. One of them showed superior print quality and was further investigated by printing drug-loaded filaments, containing 5% and 15% indomethacin. The feedstock filaments were fabricated by hot-melt extrusion (HME) below the melting point of the drug substance and the IUS and SR were successfully printed at the temperature above the melting point of the drug. As a result, the drug substance in the printed prototypes showed to be at least partly amorphous, while the drug in the corresponding HME filaments was crystalline. This difference affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable prototypes. Copyright © 2015 Elsevier B.V. All rights reserved.
TOPICAL REVIEW: Microsystem technologies for implantable applications
NASA Astrophysics Data System (ADS)
Receveur, Rogier A. M.; Lindemans, Fred W.; de Rooij, Nicolaas F.
2007-05-01
Microsystem technologies (MST) have become the basis of a large industry. The advantages of MST compared to other technologies provide opportunities for application in implantable biomedical devices. This paper presents a general and broad literature review of MST for implantable applications focused on the technical domain. A classification scheme is introduced to order the examples, basic technological building blocks relevant for implantable applications are described and finally a case study on the role of microsystems for one clinical condition is presented. We observe that the microfabricated parts span a wide range for implantable applications in various clinical areas. There are 94 active and 67 commercial 'end items' out of a total of 142. End item refers to the total concept, of which the microsystem may only be a part. From the 105 active end items 18 (13% of total number of end items) are classified as products. From these 18 products, there are only two for chronic use. The number of active end items in clinical, animal and proto phase for chronic use is 17, 13 and 20, respectively. The average year of first publication of chronic end items that are still in the animal or clinical phase is 1994 (n = 7) and 1993 (n = 11), respectively. The major technology market combinations are sensors for cardiovascular, drug delivery for drug delivery and electrodes for neurology and ophthalmology. Together these form 51% of all end items. Pressure sensors form the majority of sensors and there is just one product (considered to be an implantable microsystem) in the neurological area. Micro-machined ceramic packages, glass sealed packages and polymer encapsulations are used. Glass to metal seals are used for feedthroughs. Interconnection techniques such as flip chip, wirebonding or conductive epoxy as used in the semiconductor packaging and assembly industry are also used for manufacturing of implantable devices. Coatings are polymers or metal. As an alternative to implantable primary batteries, rechargeable batteries were introduced or concepts in which energy is provided from the outside based on inductive coupling. Long-term developments aiming at autonomous power are, for example, based on electrostatic conversion of mechanical vibrations. Communication with the implantable device is usually done using an inductive link. A large range of materials commonly used in microfabrication are also used for implantable microsystems.
Patel, Rena C; Morroni, Chelsea; Scarsi, Kimberly K; Sripipatana, Tabitha; Kiarie, James; Cohen, Craig R
2017-05-11
Preventing unintended pregnancies is important among all women, including those living with HIV. Increasing numbers of women, including HIV-positive women, choose progestin-containing subdermal implants, which are one of the most effective forms of contraception. However, drug-drug interactions between contraceptive hormones and efavirenz-based antiretroviral therapy (ART) may reduce implant effectiveness. We present four inter-related perspectives on this issue. First, as a case study, we discuss how limited data prompted country-level guidance against the use of implants among women concomitantly using efavirenz in South Africa and its subsequent negative effects on the use of implants in general. Second, we discuss the existing clinical data on this topic, including the observational study from Kenya showing women using implants plus efavirenz-based ART had three-fold higher rates of pregnancy than women using implants plus nevirapine-based ART. However, the higher rates of pregnancy in the implant plus efavirenz group were still lower than the pregnancy rates among women using common alternative contraceptive methods, such as injectables. Third, we discuss the four pharmacokinetic studies that show 50-70% reductions in plasma progestin concentrations in women concurrently using efavirenz-based ART as compared to women not on any ART. These pharmacokinetic studies provide the biologic basis for the clinical findings. Fourth, we discuss how data on this topic have marked implications for both family planning and HIV programmes and policies globally. This controversy underlines the importance of integrating family planning services into routine HIV care, counselling women appropriately on increased risk of pregnancy with concomitant implant and efavirenz use, and expanding contraceptive method mix for all women. As global access to ART expands, greater research is needed to explore implant effectiveness when used concomitantly with newer ART regimens. Data on how HIV-positive women and their partners choose contraceptives, as well as information from providers on how they present and counsel patients on contraceptive options are needed to help guide policy and service delivery. Lastly, greater collaboration between HIV and reproductive health experts at all levels are needed to develop successful strategies to ensure the best HIV and reproductive health outcomes for women living with HIV.
Guo, Ya-Ping; Long, Teng; Song, Zhen-Fu; Zhu, Zhen-An
2014-04-01
The bone graft-associated infection is widely considered in orthopedic surgery, which may lead to implant failure, extensive bone debridement, and increased patient morbidity. In this study, we fabricated ZSM-5 zeolites for drug delivery systems by hydrothermal method. The structure, morphology, biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites were investigated. The ZSM-5 zeolites have mordenite framework inverted-type structure and exhibit the disk-like shape with the diameter of ∼350 nm and thickness of ∼165 nm. The biocompatibility tests indicate that human bone marrow stromal cells spread out well on the surfaces of the ZSM-5 zeolites and proliferate significantly with increasing culture time. As compared with the conventional hydroxyapatite particles, the ZSM-5 zeolites possess greater drug loading efficiency and drug sustained release property because of the ordered micropores, large Brunauer-Emmett-Teller (BET) surface areas, and functional groups. For the gentamicin-loaded ZSM-5 zeolites, the sustained release of gentamicin minimizes significantly bacterial adhesion and prevents biofilm formation against Staphylococcus epidermidis. The excellent biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites suggest that they have great application potentials for treating implant-associated infections. Copyright © 2013 Wiley Periodicals, Inc.
Kundu, Biswanath; Nandi, Samit Kumar; Dasgupta, Sudip; Datta, Someswar; Mukherjee, Prasenjit; Roy, Subhasis; Singh, Aruna Kumari; Mandal, Tapan Kumar; Das, Partha; Bhattacharya, Rupnarayan; Basu, Debabrata
2011-03-01
A systematic and extensive approach incorporating in vitro and in vivo experimentation to treat chronic osteomyelitis in animal model were made using antibiotic loaded special bioactive glass porous scaffolds. After thorough characterization for porosity, distribution, surface charge, a novel drug composite were infiltrated by using vacuum infiltration and freeze-drying method which was subsequently analyzed by SEM-EDAX and studied for in vitro drug elution in PBS and SBF. Osteomyelitis in rabbit was induced by inoculation of Staphylococcus aureus and optimum drug-scaffold were checked for its efficacy over control and parenteral treated animals in terms of histopathology, radiology, in vivo drug concentration in bone and serum and implant-bone interface by SEM. It was optimized that 60P samples with 60-65% porosity (bimodal distribution of macro- to micropore) with average pore size ~60 μm and higher interconnectivity, moderately high antibiotic adsorption efficiency (~49%) was ideal. Results after 42 days showed antibiotic released higher than MIC against S. aureus compared to parenteral treatment (2 injections a day for 6 weeks). In vivo drug pharmacokinetics and SEM on bone-defect interface proved superiority of CFS loaded porous bioactive glass implants over parenteral group based on infection eradication and new bone formation.
Biofilm on dental implants: a review of the literature.
Subramani, Karthikeyan; Jung, Ronald E; Molenberg, Aart; Hammerle, Christoph H F
2009-01-01
The aim of this article was to review the current literature with regard to biofilm formation on dental implants and the influence of surface characteristics (chemistry, surface free energy, and roughness) of dental implant and abutment materials and their design features on biofilm formation and its sequelae. An electronic MEDLINE literature search was conducted of studies published between 1966 and June 2007. The following search terms were used: biofilm and dental implants, biofilm formation/plaque bacterial adhesion and implants, plaque/biofilm and surface characteristics/roughness/surface free energy of titanium dental implants, implant-abutment interface and plaque/biofilm, biofilm and supragingival/subgingival plaque microbiology, biofilm/plaque and implant infection, antibacterial/bacteriostatic titanium, titanium nanocoating/nanopatterning, antimicrobial drug/titanium implant. Both in vitro and in vivo studies were included in this review. Fifty-three articles were identified in this review process. The articles were categorized with respect to their context on biofilm formation on teeth and dental implant surfaces and with regard to the influence of surface characteristics of implant biomaterials (especially titanium) and design features of implant and abutment components on biofilm formation. The current state of literature is more descriptive, rather than providing strong data that could be analyzed through meta-analysis. Basic research articles on surface modification of titanium were also included in the review to analyze the applications of such studies on the fabrication of implant surfaces that could possibly decrease early bacterial colonization and biofilm formation. Increase in surface roughness and surface free energy facilitates biofilm formation on dental implant and abutment surfaces, although this conclusion is derived from largely descriptive literature. Surface chemistry and the design features of the implant-abutment configuration also play a significant role in biofilm formation.
Singh, Navin; Picha, George J; Hardas, Bhushan; Schumacher, Andrew; Murphy, Diane K
2017-10-01
The U.S. Food and Drug Administration has required postapproval studies of silicone breast implants to evaluate the incidence of rare adverse events over 10 years after implantation. The Breast Implant Follow-Up Study is a large 10-year study (>1000 U.S. sites) evaluating long-term safety following primary augmentation, revision-augmentation, primary reconstruction, or revision-reconstruction with Natrelle round silicone breast implants compared with national norms and outcomes with saline implants. Targeted adverse events in subjects followed for 5 to 8 years included connective tissue diseases, neurologic diseases, cancer, and suicide. The safety population comprised 55,279 women (primary augmentation, n = 42,873; revision-augmentation, n = 6837; primary reconstruction, n = 4828; and revision-reconstruction, n = 741). No targeted adverse events occurred at significantly greater rates in silicone implant groups versus national norms across all indications. The standardized incidence rate (observed/national norm) for all indications combined was 1.4 for cervical/vulvar cancer, 0.8 for brain cancer, 0.3 for multiple sclerosis, and 0.1 for lupus/lupus-like syndrome. Silicone implants did not significantly increase the risk for any targeted adverse events compared with saline implants. The risk of death was similar with silicone versus saline implants across all indications. The suicide rate (10.6 events per 100,000 person-years) was not significantly higher than the national norm. No implant-related deaths occurred. Results from 5 to 8 years of follow-up for a large number of subjects confirmed the safety of Natrelle round silicone implants, with no increased risk of systemic disease or suicide versus national norms or saline implants. Therapeutic, II.
[Biodegradable synthetic implant materials : clinical applications and immunological aspects].
Witte, F; Calliess, T; Windhagen, H
2008-02-01
In the last decade biodegradable synthetic implant materials have been established for various clinical applications. Ceramic materials such as calcium phosphate, bioglass and polymers are now routinely used as degradable implants in the clinical practice. Additionally these materials are now also used as coating materials or as microspheres for controlled drug release and belong to a series of examples for applications as scaffolds for tissue engineering. Because immense local concentrations of degradation products are produced during biodegradation, this review deals with the question whether allergic immune reactions, which have been reported for classical metallic and organic implant materials, also play a role in the clinical routine for synthetic biodegradable materials. Furthermore, possible explanatory theories will be developed to clarify the lack of clinical reports on allergy or sensitization to biodegradable synthetic materials.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
...] Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance... availability of the draft guidance entitled ``Class II Special Controls Guidance Document: Implanted Blood... blood access devices may comply with the requirement of special controls for class II devices. This...
Disease-responsive drug delivery: the next generation of smart delivery devices.
Wanakule, Prinda; Roy, Krishnendu
2012-01-01
With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.
Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness
2017-06-01
The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.
Krukiewicz, Katarzyna; Zak, Jerzy K
2016-05-01
Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Direct writing of bio-functional coatings for cardiovascular applications.
Perkins, Jessica; Hong, Yi; Ye, Sang-Ho; Wagner, William R; Desai, Salil
2014-12-01
The surface modification of metallic biomaterials is of critical importance to enhance the biocompatibility of surgical implant materials and devices. This article investigates the use of a direct-write inkjet technique for multilayer coatings of a biodegradable polymer (polyester urethane urea (PEUU)) embedded with an anti-proliferation drug paclitaxel (Taxol). The direct-write inkjet technique provides selective patterning capability for depositing multimaterial coatings on three-dimensional implant devices such as pins, screws, and stents for orthopedic and vascular applications. Drug release profiles were studied to observe the influence of drug loading and coating thickness for obtaining tunable release kinetics. Platelet deposition studies were conducted following ovine blood contact and significant reduction in platelet deposition was observed on the Taxol loaded PEUU substrate compared with the unloaded control. Rat smooth muscle cells were used for cell proliferation studies. Significant reduction in cell growth was observed following the release of anti-proliferative drug from the biopolymer thin film. This research provides a basis for developing anti-proliferative biocompatible coatings for different biomedical device applications. © 2014 Wiley Periodicals, Inc.
Lipid nanoparticles as drug/gene delivery systems to the retina.
del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles
2013-03-01
This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.
Chen, Muwan; Le, Dang Q S; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody
2012-01-01
Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug.
Chen, Muwan; Le, Dang QS; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody
2012-01-01
Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug. PMID:22904634
MRI information for commonly used otologic implants: review and update.
Azadarmaki, Roya; Tubbs, Rhonda; Chen, Douglas A; Shellock, Frank G
2014-04-01
To review information on magnetic resonance imaging (MRI) issues for commonly used otologic implants. Manufacturing companies, National Library of Medicine's online database, and an additional online database (www.MRIsafety.com). A literature review of the National Library of Medicine's online database with focus on MRI issues for otologic implants was performed. The MRI information on implants provided by manufacturers was reviewed. Baha and Ponto Pro osseointegrated implants' abutment and fixture and the implanted magnet of the Sophono Alpha 1 and 2 abutment-free systems are approved for 3-Tesla magnetic resonance (MR) systems. The external processors of these devices are MR Unsafe. Of the implants tested, middle ear ossicular prostheses, including stapes prostheses, except for the 1987 McGee prosthesis, are MR Conditional for 1.5-Tesla (and many are approved for 3-Tesla) MR systems. Cochlear implants with removable magnets are approved for patients undergoing MRI at 1.5 Tesla after magnet removal. The MED-EL PULSAR, SONATA, CONCERT, and CONCERT PIN cochlear implants can be used in patients undergoing MRI at 1.5 Tesla with application of a protective bandage. The MED-EL COMBI 40+ can be used in 0.2-Tesla MR systems. Implants made from nonmagnetic and nonconducting materials are MR Safe. Knowledge of MRI guidelines for commonly used otologic implants is important. Guidelines on MRI issues approved by the US Food and Drug Administration are not always the same compared with other parts of the world. This monograph provides a current reference for physicians on MRI issues for commonly used otologic implants.
Impact of Dental Implant Surface Modifications on Osseointegration
Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max
2016-01-01
Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833
Hollow fiber: a biophotonic implant for live cells
NASA Astrophysics Data System (ADS)
Silvestre, Oscar F.; Holton, Mark D.; Summers, Huw D.; Smith, Paul J.; Errington, Rachel J.
2009-02-01
The technical objective of this study has been to design, build and validate biocompatible hollow fiber implants based on fluorescence with integrated biophotonics components to enable in fiber kinetic cell based assays. A human osteosarcoma in vitro cell model fiber system has been established with validation studies to determine in fiber cell growth, cell cycle analysis and organization in normal and drug treated conditions. The rationale for implant development have focused on developing benchmark concepts in standard monolayer tissue culture followed by the development of in vitro hollow fiber designs; encompassing imaging with and without integrated biophotonics. Furthermore the effect of introducing targetable biosensors into the encapsulated tumor implant such as quantum dots for informing new detection readouts and possible implant designs have been evaluated. A preliminary micro/macro imaging approach has been undertaken, that could provide a mean to track distinct morphological changes in cells growing in a 3D matrix within the fiber which affect the light scattering properties of the implant. Parallel engineering studies have showed the influence of the optical properties of the fiber polymer wall in all imaging modes. Taken all together, we show the basic foundation and the opportunities for multi-modal imaging within an in vitro implant format.
A novel antiproliferative drug coating for glaucoma drainage devices.
Ponnusamy, Thiruselvam; Yu, Haini; John, Vijay T; Ayyala, Ramesh S; Blake, Diane A
2014-01-01
The implantation of a glaucoma drainage device (GDD) is often necessary for intractable cases of glaucoma. Currently, the success rate of GDD implants is relatively low because fibrosis that develops during the wound-healing process ultimately blocks fluid drainage. We describe herein a novel porous coating for Ahmed glaucoma valves based on biodegradable poly(lactic-co-glycolic acid) (PLGA). Thin films of PLGA were fabricated using a spin-coating technique. The procedure led to an asymmetric pore structure that was exploited to control the rate of dissolution. Double-layered porous films were constructed to achieve continuous drug release. A cell culture system was used to test the efficacy of these coatings. Double-layered films were manufactured to provide a burst of mitomycin C (MMC) release followed by a slow release of 5-fluorouracil (5-FU), which together prevented fibrosis over the most active period of postoperative wound healing (0 to 28 d). Double-layered films containing 5-FU only in the bottom layer showed a 3- to 5-day delay in drug release, followed by a sharp increase that continued for ~28 days. MMC was stable only when surface-loaded, and this drug was therefore surface-loaded onto the top PLGA layer to provide a continuous release of antifibrotics over the wound-healing period. The combined use of both MMC and 5-FU in a biodegradable device inhibits cell proliferation in a tissue culture model and has the potential to reduce fibrosis and increase the success rate of GDD implants. The design is simple and can be scaled for commercial production.
Verhoeven, Rozemarijn S; Garcia, Andres; Robeson, RiLee; Gilger, Brian C; Culp, David; Struble, Craig; Hamm, Lee; Navratil, Tomas; Yerxa, Benjamin
Topical corticosteroids are widely used in the treatment of inflammation and pain after ocular surgery, but they possess several shortcomings, including frequent dosing and low patient adherence. We evaluated the efficacy and pharmacokinetics of ENV905 (difluprednate or DFBA) Ophthalmic Implant, a single-dose drug delivery system, compared with 0.05% Durezol. PRINT ® technology was used to fabricate ENV905 implants for either intracameral (IC) or subconjunctival (SCJ) delivery of extended-release DFBA. A postoperative inflammation model and ocular pharmacokinetics studies of ENV905 or Durezol were conducted in albino rabbits for a maximum of 12 weeks. Suppression of ocular inflammation was marked for both IC and SJC ENV905 compared with placebo, and it was superior or equivalent to that observed with QID Durezol. Concentrations of desacetyl difluprednate (DFB, active metabolite) peaked on day 1 and tapered over time for ENV905, with IC ENV905 delivering DFB to the target tissue at the time of greatest inflammation, whereas SJC produced a longer duration of exposure. Durezol eyes demonstrated consistent exposure over time with maximal exposure in the cornea. Although the pharmacokinetic profile differed for the two routes, efficacy was similar. ENV905 was well tolerated and demonstrated a robust reduction in ocular inflammation with targeted drug delivery. The results from these studies show that ENV905 provides a sustained therapeutic effect after a single dose. By resolving low patient compliance and eliminating the peaks and troughs in drug concentration, sustained drug delivery via ENV905 may further improve the overall control of postoperative inflammation and pain.
Celik, Onder; Acet, Mustafa; Celik, Sudenaz; Sahin, Levent; Koc, Onder; Celik, Nilufer
2017-06-01
As with other organs endometrial functions are altered with the advancing age. Age related decrease in reproductive functions leads to decline in the number of oocytes retrieved and the synthesis of endometrial receptivity molecules. Despite the significant improvement in assisted reproductive technologies we do not have so many options to enhance endometrial receptivity. Due to lack of drugs having endometrium receptivity enhancement properties, oocyte donation seems to be the only solution for women with implantation failure. The euploid oocytes come from young and healthy donors may overcome age associated endometrial receptivity defect. Nevertheless, many reasons restrict us from using oocyte donation in women with implantation failure. We, therefore, hypothesized that by mimicking a young blastocyst's effect on endometrium, the transfer of genuine embryos and implantation-promoting compounds together might be the new treatment option for infertile women with recurrent implantation failure. Artificial beads, MI or GV oocytes, and empty zona can be used as a container for intrauterine replacement of implantation-promoting compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Long-term efficacy of biomodeled polymethyl methacrylate implants for orbitofacial defects.
Groth, Michael J; Bhatnagar, Aparna; Clearihue, William J; Goldberg, Robert A; Douglas, Raymond S
2006-01-01
To report the long-term efficacy of custom polymethyl methacrylate implants using high-resolution computed tomographic modeling in the reconstruction of complex orbitofacial defects secondary to trauma. Nine patients with complex orbitofacial bone defects after trauma were evaluated for this retrospective, nonrandomized, noncomparative study. All the patients underwent reconstruction using custom, heat-cured polymethyl methacrylate implants. Patients were followed up postoperatively and evaluated for complications. Nine consecutive patients (5 men and 4 women) aged 28 to 63 years who underwent surgical reconstruction using prefabricated, heat-cured polymethyl methacrylate implants were included in the study. The interval between injury and presentation ranged from 1 month to 40 years. There were no significant complications, including infection, extrusion, or displacement of the implant. In all of the patients, wound healing was uneventful, with antibiotic drugs administered perioperatively. Mean follow-up was 4.3 years from the first visit (range, 6 months to 10 years). Computed tomographic biomodeled, prefabricated, heat-cured polymethyl methacrylate implants are well tolerated in the long term. Their advantages include customized design, long-term biocompatibility, and excellent aesthetic results.
Souza, Marcy J; Redig, Patrick; Cox, Sherry K
2017-06-01
Aspergillosis is a common fungal infection in both wild and pet birds. Although effective antifungal medications are available, treatment of aspergillosis can require months of medication administration, which entails stressful handling one or more times per day. This study examined the delivery of the antifungal drugs itraconazole, voriconazole, and terbinafine to Japanese quail ( Coturnix japonica ) via an impregnated implant. Implants contained 0.5, 3, 8, or 24 mg of itraconazole, voriconazole, or terbinafine. The implants were administered subcutaneously over the dorsum and between the scapulae. Blood was collected from birds before and 2, 7, 21, 42, and 56 days after implant placement. Plasma was analyzed by high-performance liquid chromatography for concentrations of itraconazole, voriconazole, or terbinafine, as appropriate. During the course of the study, targeted terbinafine concentrations were achieved in some birds at various time points, but concentrations were inconsistent. Itraconazole and voriconazole concentrations were also inconsistent and did not reach targeted concentrations. Currently, the implant examined in this study cannot be recommended for treatment of aspergillosis in avian species.
Preparation and biocompatibility study of in situ forming polymer implants in rat brains.
Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol
2012-02-01
We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.
Dong, Yiwen; Ye, Hui; Liu, Yi; Xu, Lihua; Wu, Zuosu; Hu, Xiaohui; Ma, Jianfeng; Pathak, Janak L; Liu, Jinsong; Wu, Gang
2017-10-01
Peri-implant infection control is crucial for implant fixation and durability. Antimicrobial administration approaches to control peri-implant infection are far from satisfactory. During bacterial infection, pH level around the peri-implant surface decreases as low as pH 5.5. This change of pH can be used as a switch to control antimicrobial drug release from the implant surface. Silver nanoparticles (AgNPs) have broad-spectrum antimicrobial properties. In this study, we aimed to design a pH-dependent AgNPs releasing titania nanotube arrays (TNT) implant for peri-implant infection control. The nanotube arrays were fabricated on the surface of titanium implant as containers; AgNPs were grafted on TNT implant surface via a low pH-sensitive acetal linker (TNT-AL-AgNPs). SEM, TEM, AFM, FTIR as well as XPS data showed that AgNPs have been successfully linked to TNT via acetal linker without affecting the physicochemical characteristics of TNT. The pH 5.5 enhanced AgNPs release from TNT-AL-AgNPs implant compared with pH 7.4. AgNPs released at pH 5.5 robustly increased antimicrobial activities against gram-positive and gram-negative bacteria compared with AgNPs released at pH 7.4. TNT-AL-AgNPs implant enhanced osteoblast proliferation, differentiation, and did not affect osteoblast morphology in vitro. In conclusion, incorporation of AgNPs in TNT via acetal linker maintained the surface characteristics of TNT. TNT-AL-AgNPs implant was biocompatible to osteoblasts and showed osteoinductive properties. AgNPs were released from TNT-AL-AgNPs implant in high dose at pH 5.5, and this release showed strong antimicrobial properties in vitro. Therefore, this novel design of low pH-triggered AgNPs releasing TNT-AL-AgNPs could be an infection-triggered antimicrobial releasing implant model to control peri-implant infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Dayyoub, Eyas; Hobler, Christian; Nonnweiler, Pierina; Keusgen, Michael; Bakowsky, Udo
2013-07-01
Here we present a new method for providing nanostructured drug-loaded polymer films which enable control of film surface morphology and delivery of therapeutic agents. Silicon wafers were employed as models for implanted biomaterials and poly(lactic-co-glycolic acid) (PLGA) nanoparticles were assembled onto the silicon surface by electrostatic interaction. Monolayers of the PLGA particles were deposited onto the silicon surface upon incubation in an aqueous particle suspension. Particle density and surface coverage of the silicon wafers were varied by altering particle concentration, incubation time in nanoparticle suspension and ionic strength of the suspension. Dye loaded nanoparticles were prepared and assembled to silicon surface to form nanoparticle films. Fluorescence intensity measurements showed diffusion-controlled release of the dye over two weeks and atomic force microscopy (AFM) analysis revealed that these particles remained attached to the surface during the incubation time. This work suggests that coating implants with PLGA nanoparticles is a versatile technique which allows drug release from the implant surface and modulation of surface morphology. Copyright © 2013 Elsevier B.V. All rights reserved.
Vaithilingam, Jayasheelan; Kilsby, Samuel; Goodridge, Ruth D; Christie, Steven D R; Edmondson, Steve; Hague, Richard J M
2015-01-01
Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications. Copyright © 2014. Published by Elsevier B.V.
Kobayashi, Norihiro; Yamawaki, Masahiro; Nakano, Masatsugu; Hirano, Keisuke; Araki, Motoharu; Takimura, Hideyuki; Sakamoto, Yasunari; Mori, Shinsuke; Tsutsumi, Masakazu; Ito, Yoshiaki
2016-11-15
No scoring system for evaluating the bleeding risk of atrial fibrillation (AF) patients after drug-eluting stent (DES) implantation with triple antithrombotic therapy (TAT) is available. We aimed to develop a new scoring system for predicting bleeding complications in AF patients after DES implantation with TAT. Between April 2007 and April 2014, 227 AF patients undergoing DES implantation with TAT were enrolled. Bleeding incidence defined as Bleeding Academic Research Consortium criteria≥2 was investigated and predictors of bleeding complications were evaluated using multivariate analysis. Bleeding complications occurred in 58 patients (25.6%) during follow-up. Multivariate analysis revealed dual antiplatelet therapy (DAPT) continuation (OR 3.33, P=0.01), age>75 (OR 2.14, P=0.037), international normalized ratio>2.2 (OR 5.82, P<0.001), gastrointestinal ulcer history (OR 3.06, P=0.037), and anemia (OR 2.15, P=0.042) as predictors of major bleeding complications. A score was created using the weighted points proportional to the beta regression coefficient of each variable. The DAIGA score showed better predictive ability for bleeding complications than the HAS-BLED score (AUC: 0.79 vs. 0.62, P=0.0003). Bleeding incidence was well stratified: 17.8% in low-risk (scores 0-1), 55.5% in moderate-risk (2-3), and 83.0% in high-risk (4-7) patients (P<0.001). This scoring system is useful for predicting bleeding complications and risk stratification of AF patients after DES implantation with TAT. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes.
Zaher, A; Li, S; Wolf, K T; Pirmoradi, F N; Yassine, O; Lin, L; Khashab, N M; Kosel, J
2015-09-01
Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5-2 μg/h for higher release rate designs, and 12-40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.
Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes
Zaher, A.; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, O.; Lin, L.; Khashab, N. M.; Kosel, J.
2015-01-01
Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source. PMID:26487899
Multicomponent Implant Releasing Dexamethasone
NASA Astrophysics Data System (ADS)
Nikkola, L.; Vapalahti, K.; Ashammakhi, N.
2008-02-01
Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.
Collins, R; Paul, Z; Reynolds, D B; Short, R F; Wasuwanich, S
1997-01-01
Chronic diseases and pathological medical conditions requiring the administration of longterm pharmaceutical dosages have in the past been treated by oral administrations of tablets, pills and capsules or through the use of creams and ointments, suppositories, aerosols, and injectables. Such forms of drug delivery, which are still currently used today, provide a prompt release of the drug, but with significant fluctuations in the drug levels within various regions of the body. Repeated administrations of the drug are often needed, at rather precise intervals of time, in order to maintain these levels within a relatively narrow therapeutic range as a means of assuring effectiveness at the low end and of minimizing adverse effects at the higher end of the fluctuation spectrum. Recent technical advances now permit one to control the rate of drug delivery. The required therapeutic levels may thus be maintained over long periods of months and years through implanted rate-controlled drug release capsules. Two such novel drug delivery systems currently employed are implanted erodible polymeric and ceramic capsules. Mathematical modeling and computer simulations can be very effective in improving and optimizing the performance of the self-regulating release of therapeutic drugs into specific regions of the body. Further development is needed for the optimal design of such capsules. It is in this area, in particular, that a review will be presented of the mathematical modeling techniques susceptible to refine the development of a reliable tool for designing and predicting the resulting pharmaceutical dosages as a function of time and space. Of primary importance in such models are the time-varying effective permeability of the capsule to the various molecules composing the drug, the effective solubility and diffusion coefficients of the drug and its metabolites in the surrounding tissues and fluids and, finally, the uptake of the drug at the target organ. Mathematical models are presented for the diffusional release of a solute from an erodible matrix in which the initial drug loading c0 is greater than the solubility limit cs. An inward moving diffusional front separates the reservoir (unextracted region) containing the undissolved drug from the partially extracted region. The mathematical formulation of such moving boundary problems has wide application to heat transfer with melting phase transitions and diffusion-controlled growth of particles, in addition to our topic of controlled-release drug delivery. In spite of this diversity of applications, only a very few mathematical descriptions have been published for the analysis of release kinetics of a dispersed solute from polymeric or ceramic matrices. In these rare instances, perfect sink conditions are assumed, while matrix swelling, concentration-dependence of the solute diffusion coefficient and the external mass transfer resistance have been largely neglected. The ultimate goal of such an investigation is to provide a reliable design tool for the fabrication of specialized implantable capsule/drug combinations which will deliver pre-specified and reproducible dosages over a wide spectrum of conditions and required durations of therapeutic treatment. Such a mathematical/computational tool can also prove effective in the prediction of suitable dosages for other drugs of differing chemical and molecular properties which have not been subjected to time-consuming animal laboratory testing. Finally, such models may permit more realistic scaling of the required dosages of therapeutic drug for variations in diverse factors such as body weight or organ size and capacity of the patient (clinical medicine) or animal (veterinary medicine for farm animals). Additional applications of controlled-release drug delivery for insecticide and pesticide use in agriculture, and the control of pollution in lakes, rivers, marshes, etc. in which a pre-programmed dose-time schedule is necessary, further
Bisphosphonate-Based Strategies for Bone Tissue Engineering and Orthopedic Implants
Cattalini, Juan Pablo; Boccaccini, Aldo R.; Lucangioli, Silvia
2012-01-01
Bisphosphonates (BPs) are a group of well-established drugs that are applied in the development of metabolic bone disorder-related therapies. There is increasing interest also in the application of BPs in the context of bone tissue engineering, which is the topic of this review, in which an extensive overview of published studies on the development and applications of BPs-based strategies for bone regeneration is provided with special focus on the rationale for the use of different BPs in three-dimensional (3D) bone tissue scaffolds. The different alternatives that are investigated to address the delivery and sustained release of these therapeutic drugs in the nearby tissues are comprehensively discussed, and the most significant published approaches on bisphosphonate-conjugated drugs in multifunctional 3D scaffolds as well as the role of BPs within coatings for the improved fixation of orthopedic implants are presented and critically evaluated. Finally, the authors' views regarding the remaining challenges in the fields and directions for future research efforts are highlighted. PMID:22440082
McNicholas, Colleen; Swor, Erin; Wan, Leping; Peipert, Jeffrey F
2017-06-01
The subdermal contraceptive implant and the 52-mg levonorgestrel intrauterine device are currently Food and Drug Administration approved for 3 and 5 years of use, respectively. Limited available data suggested both of these methods are effective beyond that time. Demonstration of prolonged effectiveness will improve the cost-effectiveness of the device, and potentially patient continuation and satisfaction. We sought to evaluate the effectiveness of the contraceptive implant and the 52-mg hormonal intrauterine device in women using the method for 2 years beyond the current Food and Drug Administration-approved duration. We initiated this ongoing prospective cohort study in January 2012. We are enrolling women using the contraceptive implant or 52-mg levonorgestrel intrauterine device for a minimum of 3 and 5 years, respectively (started intrauterine device in ≥2007 or implant in ≥2009). Demographic and reproductive health histories, as well as objective body mass index, were collected. Implant users were offered periodic venipuncture for analysis of serum etonogestrel levels. The primary outcome, unintended pregnancy rate, was calculated per 100 woman-years. We analyzed baseline demographic characteristics using χ 2 test and Fisher exact test, and compared serum etonogestrel levels stratified by body mass index using the Kruskal-Wallis test. Implant users (n = 291) have contributed 444.0 woman-years of follow-up. There have been no documented pregnancies in implant users during the 2 years of postexpiration follow-up. Calculated failure rates in the fourth and fifth years for the implant are calculated as 0 (1-sided 97.5% confidence interval, 0-1.48) per 100 woman-years at 4 years and 0 (1-sided 97.5% confidence interval, 0-2.65) per 100 woman-years at 5 years. Among 496 levonorgestrel intrauterine device users, 696.9 woman-years of follow-up have been completed. Two pregnancies have been reported. The failure rate in the sixth year of use of the levonorgestrel intrauterine device is calculated as 0.25 (95% confidence interval, 0.04-1.42) per 100 woman-years; failure rate during the seventh year is 0.43 (95% confidence interval, 0.08-2.39) per 100 woman-years. Among implant users with serum etonogestrel results, the median etonogestrel level was 207.7 pg/mL (range 63.8-802.6 pg/mL) at the time of method expiration, 166.1 pg/mL (range 67.9 25.0-470.5 pg/mL) at the end of the fourth year, and 153.0 pg/mL (range 72.1-538.8 pg/mL) at the end of the fifth year. Median etonogestrel levels were compared by body mass index at each time point and a statistical difference was noted at the end of 4 years of use with overweight women having the highest serum etonogestrel (195.9; range 25.0-450.5 pg/mL) when compared to normal (178.9; range 87.0-463.7 pg/mL) and obese (137.9; range 66.0-470.5 pg/mL) women (P = .04). This study indicates that the contraceptive implant and 52-mg hormonal intrauterine device continue to be highly effective for at least 2 additional years of use. Serum etonogestrel evaluation demonstrates median levels remain above the ovulation threshold of 90 pg/mL for women in all body mass index classes. Copyright © 2017 Elsevier Inc. All rights reserved.
Ashbaugh, Alyssa G.; Jiang, Xuesong; Zheng, Jesse; Tsai, Andrew S.; Kim, Woo-Shin; Thompson, John M.; Miller, Robert J.; Shahbazian, Jonathan H.; Wang, Yu; Dillen, Carly A.; Ordonez, Alvaro A.; Chang, Yong S.; Jain, Sanjay K.; Jones, Lynne C.; Sterling, Robert S.; Mao, Hai-Quan; Miller, Lloyd S.
2016-01-01
Bacterial biofilm formation is a major complication of implantable medical devices that results in therapeutically challenging chronic infections, especially in cases involving antibiotic-resistant bacteria. As an approach to prevent these infections, an electrospun composite coating comprised of poly(lactic-coglycolic acid) (PLGA) nanofibers embedded in a poly(ε-caprolactone) (PCL) film was developed to locally codeliver combinatorial antibiotics from the implant surface. The release of each antibiotic could be adjusted by loading each drug into the different polymers or by varying PLGA:PCL polymer ratios. In a mouse model of biofilm-associated orthopedic-implant infection, three different combinations of antibiotic-loaded coatings were highly effective in preventing infection of the bone/joint tissue and implant biofilm formation and were biocompatible with enhanced osseointegration. This nanofiber composite-coating technology could be used to tailor the delivery of combinatorial antimicrobial agents from various metallic implantable devices or prostheses to effectively decrease biofilm-associated infections in patients. PMID:27791154
Transdermal Photopolymerization for Minimally Invasive Implantation
NASA Astrophysics Data System (ADS)
Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer, R.
1999-03-01
Photopolymerizations are widely used in medicine to create polymer networks for use in applications such as bone restorations and coatings for artificial implants. These photopolymerizations occur by directly exposing materials to light in "open" environments such as the oral cavity or during invasive procedures such as surgery. We hypothesized that light, which penetrates tissue including skin, could cause a photopolymerization indirectly. Liquid materials then could be injected s.c. and solidified by exposing the exterior surface of the skin to light. To test this hypothesis, the penetration of UVA and visible light through skin was studied. Modeling predicted the feasibility of transdermal polymerization with only 2 min of light exposure required to photopolymerize an implant underneath human skin. To establish the validity of these modeling studies, transdermal photopolymerization first was applied to tissue engineering by using "injectable" cartilage as a model system. Polymer/chondrocyte constructs were injected s.c. and transdermally photopolymerized. Implants harvested at 2, 4, and 7 weeks demonstrated collagen and proteoglycan production and histology with tissue structure comparable to native neocartilage. To further examine this phenomenon and test the applicability of transdermal photopolymerization for drug release devices, albumin, a model protein, was released for 1 week from photopolymerized hydrogels. With further study, transdermal photpolymerization potentially could be used to create a variety of new, minimally invasive surgical procedures in applications ranging from plastic and orthopedic surgery to tissue engineering and drug delivery.