Science.gov

Sample records for drug induced parkinsonism

  1. Visual contrast sensitivity in drug-induced Parkinsonism.

    PubMed Central

    Bulens, C; Meerwaldt, J D; van der Wildt, G J; Keemink, C J

    1989-01-01

    The influence of stimulus orientation on contrast sensitivity function was studied in 10 patients with drug-induced Parkinsonism. Nine of the 10 patients had at least one eye with contrast sensitivity deficit for vertical and/or horizontal stimuli. Only generalised contrast sensitivity loss, observed in two eyes, was stimulus orientation independent. All spatial frequency-selective contrast deficits in 15 eyes were orientation dependent. The striking similarity between the pattern of contrast sensitivity loss in drug-induced Parkinsonism and that in idiopathic Parkinson's disease, suggests that generalised dopaminergic deficiency, from whatever cause, affects visual function in an analogous way. PMID:2926418

  2. Visual contrast sensitivity in drug-induced Parkinsonism.

    PubMed

    Bulens, C; Meerwaldt, J D; van der Wildt, G J; Keemink, C J

    1989-03-01

    The influence of stimulus orientation on contrast sensitivity function was studied in 10 patients with drug-induced Parkinsonism. Nine of the 10 patients had at least one eye with contrast sensitivity deficit for vertical and/or horizontal stimuli. Only generalised contrast sensitivity loss, observed in two eyes, was stimulus orientation independent. All spatial frequency-selective contrast deficits in 15 eyes were orientation dependent. The striking similarity between the pattern of contrast sensitivity loss in drug-induced Parkinsonism and that in idiopathic Parkinson's disease, suggests that generalised dopaminergic deficiency, from whatever cause, affects visual function in an analogous way.

  3. Cardiovascular Autonomic Dysfunction in Patients with Drug-Induced Parkinsonism

    PubMed Central

    Ryu, Dong-Woo; Oh, Ju-Hee; Lee, Yang-Hyun; Park, Sung-Jin; Jeon, Kipyung; Lee, Jong-Yun; Ho, Seong Hee; So, Jungmin; Im, Jin Hee; Lee, Kwang-Soo

    2017-01-01

    Background and Purpose Recent studies have shown that several nonmotor symptoms differ between Parkinson's disease (PD) and drug-induced parkinsonism (DIP). However, there have been no reports on cardiovascular autonomic function in DIP, and so this study investigated whether cardiovascular autonomic function differs between PD and DIP patients. Methods This study consecutively enrolled 20 DIP patients, 99 drug-naïve PD patients, and 25 age-matched healthy controls who underwent head-up tilt-table testing and 24-h ambulatory blood pressure monitoring. Results Orthostatic hypotension was more frequent in patients with PD or DIP than in healthy controls. In DIP, orthostatic hypotension was associated with the underlying psychiatric diseases and neuroleptics use, whereas prokinetics were not related to orthostatic hypotension. The supine blood pressure, nighttime blood pressure, and nocturnal blood pressure dipping did not differ significantly between the DIP and control groups. Supine hypertension and nocturnal hypertension were more frequent in PD patients than in controls. Conclusions The included DIP patients frequently exhibited orthostatic hypotension that was associated with the underlying diseases as well as the nature of and exposure time to the offending drugs. Clinicians should individualize the manifestations of DIP according to underlying diseases as well as the action mechanism of and exposure time to each offending drug. PMID:27730767

  4. Nicotine and Nicotinic Receptor Drugs: Potential for Parkinson's Disease and Drug-Induced Movement Disorders.

    PubMed

    Quik, Maryka; Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A

    2015-01-01

    Parkinson's disease is a progressive neurodegenerative disorder associated with tremor, rigidity, and bradykinesia, as well as nonmotor symptoms including autonomic impairments, olfactory dysfunction, sleep disturbances, depression, and dementia. Although the major neurological deficit is a loss of nigrostriatal dopaminergic neurons, multiple neurotransmitters systems are compromised in Parkinson's disease. Consistent with this observation, dopamine replacement therapy dramatically improves Parkinson's disease motor symptoms. Additionally, drugs targeting the serotonergic, glutamatergic, adenosine, and other neurotransmitter systems may be beneficial. Recent evidence also indicates that nicotinic cholinergic drugs may be useful for the management of Parkinson's disease. This possibility initially arose from the results of epidemiological studies, which showed that smoking was associated with a decreased incidence of Parkinson's disease, an effect mediated in part by the nicotine in smoke. Further evidence for this idea stemmed from preclinical studies which showed that nicotine administration reduced nigrostriatal damage in parkinsonian rodents and monkeys. In addition to a potential neuroprotective role, emerging work indicates that nicotinic receptor drugs improve the abnormal involuntary movements or dyskinesias that arise as a side effect of l-dopa treatment, the gold standard therapy for Parkinson's disease. Both nicotine and nicotinic receptor drugs reduced l-dopa-induced dyskinesias by over 50% in parkinsonian rodent and monkey models. Notably, nicotine also attenuated the abnormal involuntary movements or tardive dyskinesias that arise with antipsychotic treatment. These observations, coupled with reports that nicotinic receptor drugs have procognitive and antidepressant effects, suggest that central nervous system (CNS) nicotinic receptors may represent useful targets for the treatment of movement disorders.

  5. Pyridoxine improves drug-induced parkinsonism and psychosis in a schizophrenic patient.

    PubMed

    Sandyk, R; Pardeshi, R

    1990-06-01

    Drug-induced Parkinsonism is a common serious side-effect of neuroleptic therapy. In cases of irreversible drug-induced Parkinsonism, pharmacological management is notoriously difficult. A schizophrenic patient with severe neuroleptic-induced Parkinsonism and Tardive Dyskinesia is presented in whom administration of pyridoxine (vitamin B6) (100 mg/d) resulted in dramatic and persistent attenuation of the movement disorders as well as reduction of psychotic behavior. Since pyridoxine deficiency is associated with marked reduction of cerebral serotonin concentrations and pineal melatonin production in rats, the effects of pyridoxine on the movement disorder and psychosis may have been mediated largely by enhancing serotonin and melatonin functions. An additional effect of excess pyridoxine administration on GABA and dopamine activity cannot be excluded. Pyridoxine has been reported to attenuate the severity of levodopa-induced dyskinesias in patients with Parkinson's disease and it is suggested that pyridoxine supplementation should be considered in psychiatric patients with drug-induced movement disorders including persistent Parkinsonism. An underlying pyridoxine deficiency in these patients may exacerbate the psychotic behavior and additionally, potentially increase the risk of drug-induced movement disorders.

  6. Drug-induced Parkinsonism versus Idiopathic Parkinson Disease: Utility of Nigrosome 1 with 3-T Imaging.

    PubMed

    Sung, Young Hee; Noh, Young; Lee, Jongho; Kim, Eung Yeop

    2016-06-01

    Purpose To explore the utility of nigrosome 1 with 3-T magnetic resonance (MR) imaging to differentiate idiopathic Parkinson disease (IPD) from drug-induced parkinsonism (DIP). Materials and Methods The institutional review board approved this study, and participants gave informed consent. This study enrolled patients with DIP (n = 20) and IPD (n = 29) who underwent N-3-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl)nortropane ((18)F-FP-CIT) positron emission tomography (PET) and healthy participants (n = 20). All participants underwent 0.5 × 0.5 × 1.0 mm(3) oblique axial three-dimensional multiecho-data image combination imaging to view the nigrosome 1 with 3-T imaging. Two reviewers independently assessed the nigrosome 1 without clinical information. DIP was diagnosed when no abnormality was seen at (18)F-FP-CIT PET. Diagnostic sensitivity, specificity, and accuracy of the nigrosome 1 imaging were evaluated between the IPD and DIP patients and between the IPD patients and healthy participants. Interrater agreement was assessed with Cohen κ. Results Both reviewers agreed in 63 of 69 participants (91.3%) for the presence of any abnormality on either side of the nigrosome 1 (κ = 0.825). Findings in all 29 IPD patients (100%) and three of 20 DIP patients (15%) were rated as abnormal and in 17 of 20 DIP patients (85%) they were interpreted as normal on the basis of imaging of the nitgrosome 1 (sensitivity, 100% (29 of 29); specificity, 85.0% (17 of 20); accuracy, 93.9% (46 of 49) between IPD and DIP patients). Findings in 3 of 20 healthy participants (15.0%) were interpreted as abnormal on the basis of imaging the nigrosome 1 while in the other 17 of 20 healthy participants (85.0%) they were rated as normal (sensitivity, 100% [29 of 29]; specificity, 85.0% [17 of 20]; accuracy, 93.9% [46 of 49] between IPD patients and healthy participants [κ = 0.831]). Conclusion The imaging of nigrosome 1 with 3-T imaging can differentiate DIP from IPD with high accuracy and

  7. Quantitative measurement of handwriting in the assessment of drug-induced parkinsonism.

    PubMed

    Caligiuri, Michael P; Teulings, Hans-Leo; Filoteo, J Vincent; Song, David; Lohr, James B

    2006-10-01

    Monitoring drug-induced side effects is especially important for patients who undergo treatment with antipsychotic medications, as these drugs often produce extrapyramidal side effects (EPS) resulting in movement abnormalities similar to parkinsonism. Scientists have developed several objective laboratory tests to measure and research drug-induced movement disorders, but equipment and tests are complex and costly and have not become accepted in large-scale, multi-site clinical trials. The goals of this study were to test whether a simple handwriting measure can discriminate between individuals with psychotropic-induced parkinsonism, Parkinson's disease, and healthy individuals, and to examine some of the psychometric properties of the measure. We examined pen movement kinematics during cursive writing of a standard word in 13 patients with idiopathic Parkinson's disease (PD), 10 schizophrenia patients with drug-induced parkinsonism (SZ), and 12 normal healthy control participants (NC). Participants were instructed to write the word "hello" in cursive twice, at three vertical height scales. Software was used for data acquisition and analysis of vertical stroke velocities, velocity scaling, and smoothness. There were four important results from this study: (1) both SZ patients with drug-induced EPS and PD participants exhibited impaired movement velocities and velocity scaling; (2) performance on the velocity scaling measure distinguished drug-induced EPS from normal with 90% accuracy; (3) SZ, but not PD participants displayed abnormalities in movement smoothness; and (4) there was a positive correlation between age and magnitude of the velocity scaling deficit in PD participants. This study demonstrates that kinematic analyses of pen movements during handwriting may be useful in detecting and monitoring subtle changes in motor control related to the adverse effects of psychotropic medications.

  8. Seborrheic dermatitis in neuroleptic-induced parkinsonism.

    PubMed

    Binder, R L; Jonelis, F J

    1983-06-01

    An increased prevalence of seborrheic dermatitis has previously been noted in idiopathic Parkinson's disease and in postencephalitic parkinsonism. Our study of 42 hospitalized patients with drug-induced parkinsonism and 47 hospitalized psychiatric patients without that disorder showed a statistically significant higher prevalence of clinically diagnosed seborrheic dermatitis in the group with drug-induced parkinsonism (59.5% v 15%). To our knowledge, this is the first report of an increased prevalence of seborrheic dermatitis with drug-induced parkinsonism.

  9. Not all drug-induced parkinsonism are the same: the effect of drug class on motor phenotype.

    PubMed

    Munhoz, Renato P; Bertucci Filho, Delcio; Teive, Hélio A G

    2017-02-01

    Drug-induced parkinsonism (DIP) is classically described as acute/subacute, bilateral symmetric syndrome in which tremor is infrequent compared to Parkinson's disease. Most DIP cases are caused by classic (CN) and second-generation neuroleptics (SN), and calcium channel blockers (CCB). We evaluated potentially distinctive demographic and clinical features in DIP among different drug classes. This was a prospective study of reversible DIP related to single selected drugs on each class. Baseline assessment included demographic, clinical data, and scales for staging, severity of motor signs of parkinsonism, tremor, and other involuntary movements. Six months after medication withdrawal, patients were reassessed. Those with no parkinsonian signs were included in the final sample. 157 cases were included after strict criteria were applied. Most common agents were haloperidol, levomepromazine, and chlorpromazine for the CN-DIP group, flunarizine and cinnarizine for the CCB-DIP group, and risperidone and olanzapine for the SN-DIP group. Drug exposure was shorter for CN-DIP cases; duration of parkinsonism was longer in the CCB-DIP group. CN-DIP had worse bradykinesia, rigidity, axial, total motor, and disease stage scores, with higher frequency of rigid-akinetic parkinsonism. Tremor scores were worse for CCB-DIP cases. SN-DIP presented as a less severe but similar form of CN-DIP. Tardive-type involuntary movements were less common in the SN-DIP group. DIP profile differs significantly depending on drug class involved, not only in terms of severity, but also regarding the differential combination of signs. These findings may help guiding clinicians in screening and diagnosing DIP in patients exposed to these drugs.

  10. Subjective cognitive dysfunction associated with drug-induced parkinsonism in schizophrenia.

    PubMed

    Kim, Jong-Hoon; Kim, Seong-Youn; Byun, Hee-Jung

    2008-01-01

    The authors investigated the subjective cognitive dysfunction associated with drug-induced parkinsonism (DIP) among 58 stabilized schizophrenic outpatients. Subjective cognitive dysfunction was comprehensively assessed using the Frankfurt Complaint Questionnaire (FCQ). Multivariate analysis revealed that the DIP group scored significantly higher on the total FCQ score than the non-DIP group. In phenomenological subscale scores, the DIP group had significantly higher scores on "deterioration of discrimination", "psychomotor disorder", and "perceptual disorder" than the non-DIP group. These results suggest that DIP is significantly associated with subjective cognitive-perceptual dysfunction, reflecting the complex nature of DIP that includes motor and cognitive aspects.

  11. Persistent Drug-Induced Parkinsonism in Patients with Normal Dopamine Transporter Imaging

    PubMed Central

    Sunwoo, Mun Kyung; Oh, Jungsu S.; Kim, Jae Seung; Sohn, Young H.; Lee, Phil Hyu

    2016-01-01

    Functional neuroimaging for the dopamine transporter (DAT) is used to distinguish drug-induced parkinsonism (DIP) from subclinical Parkinson’s disease (PD). Although DIP patients who show a normal DAT image are expected to recover completely, some do not. We investigated whether these patients showed changes in striatal DAT activity using semi-quantitative analysis of 18F-FP-CIT PET data. DIP patients with visually normal DAT images were selected from medical records. The subjects were classified as patients who recovered partially (PR) or completely within 12 months (CR). The 18F-FP-CIT uptake in each striatal subregion was compared between the CR and the PR groups. In total, 41 and 9 patients of the CR and PR groups were assessed, respectively. The two patient groups were comparable in terms of clinical characteristics including age, sex, and severity of parkinsonism. From semi-quantitative analysis of the PET image, the PR patients showed a relatively lower ligand uptake in the ventral striatum, the anterior putamen and the posterior putamen compared with the CR patients. This result suggests that persistent DIP in patients with visually normal DAT imaging may be associated with subtle decrement of DAT activity. PMID:27294367

  12. Quantifying drug induced dyskinesia in Parkinson's disease patients using standardized videos.

    PubMed

    Rao, Anusha S; Bodenheimer, Robert E; Davis, Thomas L; Li, Rui; Voight, Cissy; Dawant, Benoit M

    2008-01-01

    This paper presents a video based method to quantify drug induced dyskinesias in Parkinson's disease (PD) patients. Dyskinetic movement in standard clinical videos of patients is analyzed by tracking landmark points on the video frames using non-rigid image registration. The novel application of Point Distribution Models (PDM) allows geometric variations and covariations of the landmark points to be captured from each video sequence. The PDM parameters represent quantifiable information that can be used to rate dyskinesia effectively, analogously to a neurologist's strategy of assessing the movement of multiple body parts simultaneously to effectively rate dyskinesia. A heuristic decision function is then developed using the PDM parameters to quantify the severity of the dyskinesia. The severity score using our decision function showed a high correlation to the dyskinesia rating of a neurologist on the corresponding patient videos.

  13. Clinical Features Indicating Nigrostriatal Dopaminergic Degeneration in Drug-Induced Parkinsonism

    PubMed Central

    Lee, Seung Ha; Kim, Han Kyeol; Lee, Young Gun; Lyoo, Chul Hyoung; Ahn, Sung Jun; Lee, Myung Sik

    2017-01-01

    Objective Patients with drug-induced parkinsonism (DIP) may have nigrostriatal dopaminergic degeneration. We studied the clinical features that may indicate nigrostriatal dopaminergic degeneration in patients with DIP. Methods Forty-one DIP patients were classified into normal and abnormal [18F] FP-CIT scan groups. Differences in 32 clinical features and drug withdrawal effects were studied. Results Twenty-eight patients had normal (Group I) and 13 patients had abnormal (Group II) scans. Eight patients of Group I, but none of Group II, had taken calcium channel blockers (p = 0.040). Three patients of Group I and six of Group II had hyposmia (p = 0.018). After drug withdrawal, Group I showed greater improvement in Unified Parkinson’s Disease Rating Scale total motor scores and subscores for bradykinesia and tremors than Group II. Only hyposmia was an independent factor associated with abnormal scans, but it had suboptimal sensitivity. Conclusion None of the clinical features were practical indicators of nigrostriatal dopaminergic degeneration in patients with DIP. PMID:28122428

  14. Neuroleptic‐induced Parkinsonism: Clinicopathological study

    PubMed Central

    Shuaib, Umar A.; Rajput, Ali H.; Robinson, Christopher A.; Rajput, Alex

    2015-01-01

    ABSTRACT Background Drug‐induced parkinsonism is a well‐known complication of several different drugs—the most common being neuroleptic‐induced parkinsonism. However, very few autopsies have been reported in such cases. Methods Patients assessed at Movement Disorders Clinic Saskatchewan are offered brain autopsy. Detailed clinical records are kept. Results Brains were obtained from 7 drug‐induced parkinsonism patients with parkinsonian symptom onset coinciding with use of drugs known to produce parkinsonism. Six were on antipsychotics and 1 was on metoclopramide. Three cases were treated with levodopa for parkinsonism. In two cases, parkinsonian features reversed after stopping the offending agent. Both had autopsy evidence of preclinical PD. In 4 of the remaining 5, dopamine‐blocking drugs were continued until death. In 4 of those 5, brain histology revealed no cause for the parkinsonism, but 1 had mild SN neuronal loss without Lewy bodies. Conclusion This study shows that reversal of parkinsonism after discontinuing offending drugs does not indicate absence of underlying pathology. Neuroleptics can unmask preclinical PD in patients with insufficient SN damage for the disease to manifest clinically. Though the mechanism of sustained parkinsonian features after discontinuing neuroleptics remains to be established, it is unlikely that dopamine receptor block leads to retrograde SN neuronal degeneration. Furthermore, l‐dopa does not appear to be toxic to SN. © 2015 International Parkinson and Movement Disorder Society PMID:26660063

  15. New Parkinson's Drug May Combat Movement Difficulties

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_162855.html New Parkinson's Drug May Combat Movement Difficulties Opicapone, added to ... HealthDay News) -- New research suggests that people with Parkinson's disease may achieve better and more reliable motor ...

  16. Drug-induced parkinsonism: cinnarizine and flunarizine are potent uncouplers of the vacuolar H+-ATPase in catecholamine storage vesicles.

    PubMed

    Terland, O; Flatmark, T

    1999-06-01

    Cinnarizine (1-diphenylmethyl-4-(3-phenyl-2-propenyl)piperazine) and its di-fluorinated derivative flunarizine inhibit the MgATP-dependent generation of a transmembrane proton electrochemical gradient in chromaffin granule ghosts. The concentrations giving 50% inhibition (IC50) of the MgATP-dependent generation of the pH-gradient were 5.9+/-0.6 microM (n = 6) and 3.0+/-0.3 microM (n = 5) for cinnarizine and flunarizine, respectively. The IC50 values for inhibiting the generation of the membrane potential were even lower, i.e. 0.19+/-0.06 microM (n = 6) and 0.15+/-0.01 microM (n = 4) for cinnarizine and flunarizine, respectively. Cinnarizine (10 microM) also inhibited the energy-dependent vesicular uptake of [14C]-dopamine (50 microM) by 76%, i.e. from 2.1+/-0.9 to 0.5+/-0.6 nmol/mg protein/min (n = 5, P < 0.002). Cinnarizine (10 microM) increased the MgATPase activity of the granule ghosts by 47+/-26% (n = 4) compatible with an uncoupling of the vacuolar H+-ATPase activity. The IC50-values observed for the two compounds are in the same range as their reported therapeutic plasma concentrations in vivo, suggesting that cinnarizine and flunarizine may well inhibit proton pumping and catecholamine uptake in storage vesicles also in vivo. This mechanism of action may contribute to the drug-induced parkinsonism seen as a side-effect of the two drugs.

  17. Drugs of abuse and Parkinson's disease.

    PubMed

    Mursaleen, Leah R; Stamford, Jonathan A

    2016-01-04

    The term "drug of abuse" is highly contextual. What constitutes a drug of abuse for one population of patients does not for another. It is therefore important to examine the needs of the patient population to properly assess the status of drugs of abuse. The focus of this article is on the bidirectional relationship between patients and drug abuse. In this paper we will introduce the dopaminergic systems of the brain in Parkinson's and the influence of antiparkinsonian drugs upon them before discussing this synergy of condition and medication as fertile ground for drug abuse. We will then examine the relationship between drugs of abuse and Parkinson's, both beneficial and deleterious. In summary we will draw the different strands together and speculate on the future merit of current drugs of abuse as treatments for Parkinson's disease.

  18. Neuronal intranuclear inclusion disease: two cases of dopa-responsive juvenile parkinsonism with drug-induced dyskinesia.

    PubMed

    Lai, Szu-Chia; Jung, Shih-Ming; Grattan-Smith, Padraic; Sugo, Ella; Lin, Yen-Wen; Chen, Rou-Shayn; Chen, Chiung-Chu; Wu-Chou, Yah-Huei; Lang, Anthony E; Lu, Chin-Song

    2010-07-15

    There are very few conditions that present with dopa-responsive juvenile parkinsonism. We present two such children with neuronal intranuclear inclusion disease (NIID) who had an initial good levodopa response that was soon complicated by disabling dopa-induced dyskinesia. One child was diagnosed by rectal biopsy in life, and the other diagnosis was confirmed at postmortem. In this patient, dopamine transporter imaging showed severely decreased binding of the radiotracer in the striatum on both sides. Bilateral subthalamic deep brain stimulation in this patient produced initial improvement, but this was not sustained. Both patients died within 10 years of symptom onset. As well as levodopa responsiveness with rapid onset of dyskinesia, clues to the diagnosis of NIID in patients presenting with parkinsonism include the presence of gaze-evoked nystagmus, early onset dysarthria and dysphagia and oculogyric crises. Differential diagnosis of clinical symptoms and neuropathological findings are discussed including the approach to rectal biopsy for early diagnosis.

  19. Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood-Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson's Disease.

    PubMed

    Kundu, Paromita; Das, Manasi; Tripathy, Kalpalata; Sahoo, Sanjeeb K

    2016-12-21

    Parkinson's disease (PD) is the most widespread form of dementia where there is an age related degeneration of dopaminergic neurons in the substantia nigra region of the brain. Accumulation of α-synuclein (αS) protein aggregate, mitochondrial dysfunction, oxidative stress, and neuronal cell death are the pathological hallmarks of PD. In this context, amalgamation of curcumin and piperine having profound cognitive properties, and antioxidant activity seems beneficial. However, the blood-brain barrier (BBB) is the major impediment for delivery of neurotherapeutics to the brain. The present study involves formulation of curcumin and piperine coloaded glyceryl monooleate (GMO) nanoparticles coated with various surfactants with a view to enhance the bioavailability of curcumin and penetration of both drugs to the brain tissue crossing the BBB and to enhance the anti-parkinsonism effect of both drugs in a single platform. In vitro results demonstrated augmented inhibition of αS protein into oligomers and fibrils, reduced rotenone induced toxicity, oxidative stress, and apoptosis, and activation of autophagic pathway by dual drug loaded NPs compared to native counterpart. Further, in vivo studies revealed that our formulated dual drug loaded NPs were able to cross BBB, rescued the rotenone induced motor coordination impairment, and restrained dopaminergic neuronal degeneration in a PD mouse model.

  20. Drugs in development for Parkinson's disease.

    PubMed

    Johnston, Tom H; Brotchie, Jonathan M

    2004-07-01

    Pharmacological treatment of Parkinson's disease (PD) is entering a new and exciting era. Real promise now exists for the clinical application of a large range of molecules in development that will combat different aspects and stages of the condition. These include methyl- and ethyl-esterified forms of L-dopa (etilevodopa and melevodopa), inhibitors of enzymes such as monoamine oxidase type-B (eg, rasagiline), catechol-O-methyl transferase (eg, BIA-3202) and the monoamine re-uptake mechanism (eg, brasofensine). In addition, a range of full and partial dopamine agonists (eg, sumanirole, piribedil and BP-897) and their new formulations, for example, patch delivery systems (eg, rotigotine) are being developed. We also highlight non-dopaminergic treatments that will have wide ranging applications in the treatment of PD and L-dopa-induced dyskinesia. These include alpha2 adrenergic receptor antagonists (eg, fipamezole), adenosine A2A receptor antagonists (eg, istradefylline), AMPA receptor antagonists (eg, talampanel), neuronal synchronization modulators (eg, levetiracetam) and agents that interact with serotonergic systems such as 5-hydroxytryptamine (5-HT)1A agonists (eg, sarizotan) and 5-HT2A antagonists (eg, quetiapine). Lastly, we examine a growing number of neuroprotective agents that seek to halt or even reverse disease progression. These include anti-apoptotic kinase inhibitors (eg, CEP-1347), modulators of mitochondrial function (eg, creatine), growth factors (eg, leteprinim), neuroimmunophilins (eg, V-10367), estrogens (eg, MITO-4509), c-synuclein oligomerization inhibitors (eg, PAN-408) and sonic hedgehog ligands.

  1. Costs of drug treatment in Parkinson's disease.

    PubMed

    Dodel, R C; Eggert, K M; Singer, M S; Eichhorn, T E; Pogarell, O; Oertel, W H

    1998-03-01

    Parkinson's disease (PD) has a major socioeconomic impact on society. The chronic, progressive course of the disease, which often leads to severe disability, results in high expenses for the medical resources used for treatment, care, and rehabilitation of patients as well as reduced or lost productivity as a result of illness or premature death. In Great Britain, it has been estimated that the National Health Service spends up to 383 million pound sterling (1992) annually for the care of PD. This emphasizes the importance of assessing the costs related to this disease. A detailed knowledge of the cost allocation would provide a solid basis on which health care priorities can be rationally set. Next to hospitalization, drug treatment accounts for the highest expense for direct medical costs of PD. Therefore, this analysis focuses on the costs of drug treatment for PD. The cost analysis was based on a retrospective study of 409 patients with PD who were seen over a 1-year period in our movement disorders clinic. The cost of therapy varied considerably depending on the severity of the condition (assessed in the "off" phase), the incidence of motor fluctuations, and the type of PD. In the early stage of the disease (Hoehn and Yahr stage I [HY I]), mean daily costs for therapy were DM (German marks) 6.60, which increased in later stages of the disease (HY V) to DM 22.00. If rare cases requiring continuous subcutaneous apomorphine infusion were included, mean daily costs of patients in HY V rose to DM 32.50 (the mean daily costs of subcutaneous apomorphine-treated patients in HY V: DM 74.30). Patients with motor fluctuations accounted for higher costs (DM 16.50) compared with those without motor fluctuations (DM 7.80). With respect to the three subtypes of PD, the mean daily expenditure was DM 7.00 for the tremor-dominant type, DM 12.40 for the akinetic-rigid type, and DM 10.80 for the mixed type. In the group of 409 PD patients included in this analysis, the average

  2. [Possibilities of non-drug treatment for Parkinson's disease].

    PubMed

    Pokhabov, D V; Abramov, V G; Pokhabov, D D

    In this article, non-drug methods of treatment of Parkinson's disease are reviewed. Particular attention is given to the motor symptoms of disease, specifically to gait disorders. Information about objective methods of gait impairment is presented. Own results that confirm the effect of a method of tempo-rhythmical correction of walk in patients with Parkinson's disease (PD) and vascular parkinsonism as well as a device for assessment of gait parameters developed by the authors are analyzed. The efficacy of other methods of gait correction using external cues, study design and level of evidence are analyzed as well. Information about possibilities of physical therapy and ergotherapy for correction of different symptoms of Parkinson's disease is presented. Positive and negative results of transcranial magnetic stimulation, light therapy and transcranial micropolarization in PD are analyzed. Basis non-drug methods of PD treatment, which currently have insufficient level of evidence (methods of mental relaxation and auditory training, methods of whole body vibration (vibromassage), laser therapy (photoacoustic therapy), acupuncture), are described in brief. Perspectives of the method of gait recovery in PD using tempo-rhythmic correction are emphasized.

  3. Anchanling reduces pathology in a lactacystin- induced Parkinson's disease model☆

    PubMed Central

    Li, Yinghong; Wu, Zhengzhi; Gao, Xiaowei; Zhu, Qingwei; Jin, Yu; Wu, Anmin; Huang, Andrew C. J.

    2012-01-01

    A rat model of Parkinson's disease was induced by injecting lactacystin stereotaxically into the left mesencephalic ventral tegmental area and substantia nigra pars compacta. After rats were intragastrically perfused with Anchanling, a Chinese medicine, mainly composed of magnolol, for 5 weeks, when compared with Parkinson's disease model rats, tyrosine hydroxylase expression was increased, α-synuclein and ubiquitin expression was decreased, substantia nigra cell apoptosis was reduced, and apomorphine-induced rotational behavior was improved. Results suggested that Anchanling can ameliorate Parkinson's disease pathology possibly by enhancing degradation activity of the ubiquitin-proteasome system. PMID:25767493

  4. Drug-induced hepatitis

    MedlinePlus

    Toxic hepatitis ... to get liver damage. Some drugs can cause hepatitis with small doses, even if the liver breakdown ... liver. Many different drugs can cause drug-induced hepatitis. Painkillers and fever reducers that contain acetaminophen are ...

  5. Microglia-inhibiting activity of Parkinson's disease drug amantadine.

    PubMed

    Kim, Jong-Heon; Lee, Ho-Won; Hwang, Jaegyu; Kim, Jaehong; Lee, Min-Jeong; Han, Hyung-Soo; Lee, Won-Ha; Suk, Kyoungho

    2012-09-01

    Amantadine is currently used as an antiviral and an antiparkinsonian drug. Although the drug is known to bind a viral proton channel protein, the mechanism of action in Parkinson's disease (PD) remains to be determined. This study investigated whether the drug has an inhibitory effect on microglial activation and neuroinflammation, which have been implicated in the progression of neurodegenerative processes. Using cultured microglial cells, it was demonstrated that the drug inhibited inflammatory activation of microglia and a signaling pathway that governs the microglial activation. The drug reduced the expression and production of proinflammatory mediators in bacterial lipopolysaccharide-stimulated microglia cells. The microglia-inhibiting activity of amantadine was also demonstrated in a microglia/neuron coculture and animal models of neuroinflammation and Parkinson's disease. Collectively, our results suggest that amantadine may act on microglia in the central nervous system to inhibit their inflammatory activation, thereby attenuating neuroinflammation. These results provide a molecular basis of the glia-targeted mechanism of action for amantadine.

  6. Detoxification and antioxidative therapy for levodopa-induced neurodegeneration in Parkinson's disease.

    PubMed

    Müller, Thomas

    2013-06-01

    Levodopa is the most efficacious drug treatment option for Parkinson's disease. However, in particular, high levodopa dosing may contribute to disease progression. Chronic levodopa metabolism reduces the methylation capacity and the antioxidant defense. Thus, this levodopa-induced free radical production complements the disease process, which considerably depends on free radical-induced, apoptotic neuronal cell death. Accordingly, clinical long-term studies with in the laboratory neuroprotective compounds failed in clinical investigations, as these studies were performed in levodopa-naive patients with Parkinson's disease over a relative short interval. Therefore, the likelihood for a positive outcome was rather low, since trials only focused on the disease process in levodopa-naive patients. However, studies on antioxidant therapeutic strategies were positive in levodopa-treated Parkinson's disease patients. To counteract these metabolic long-term levodopa-associated effects, chronic levodopa therapy should be combined with supplemental application of free radical scavengers and methyl group donating vitamins.

  7. Drug-induced nephropathies.

    PubMed

    Paueksakon, Paisit; Fogo, Agnes B

    2017-01-01

    Drugs are associated frequently with the development of various types of acute and chronic kidney diseases. Nephrotoxicity is associated most commonly with injury in the tubulointerstitial compartment manifested as either acute tubular injury or acute interstitial nephritis. A growing number of reports has also highlighted the potential for drug-induced glomerular disease, including direct cellular injury and immune-mediated injury. Recognition of drug-induced nephropathies and rapid discontinuation of the offending agents are critical to maximizing the likelihood of renal function recovery. This review will focus on the pathology and pathogenesis of drug-induced acute interstitial nephritis and drug-induced glomerular diseases.

  8. Present and future drug treatment for Parkinson's disease

    PubMed Central

    Schapira, A

    2005-01-01

    Considerable advances made in defining the aetiology, pathogenesis, and pathology of Parkinson's disease (PD) have resulted in the development and rapid expansion of the pharmacopoeia available for treatment. Anticholinergics were used before the introduction of levodopa which is now the drug most commonly used. Dopamine agonists are effective when used alone or as an adjunct to levodopa, while monoamine oxidase B inhibitors improve motor function in early and advanced PD. However, treatment mainly addresses the dopaminergic features of the disease and leaves its progressive course unaffected; the drug treatment available for the management of non-motor symptoms is limited. This article seeks to set current treatment options in context, review emerging and novel drug treatments for PD, and assess the prospects for disease modification. Surgical therapies are not considered. PMID:16227533

  9. Drug-induced mania.

    PubMed

    Peet, M; Peters, S

    1995-02-01

    Mania can occur by chance association during drug treatment, particularly in patients predisposed to mood disorder. Single case reports are unreliable, and evidence must be sought from large series of treated patients, particularly those with a matched control group. Drugs with a definite propensity to cause manic symptoms include levodopa, corticosteroids and anabolic-androgenic steroids. Antidepressants of the tricyclic and monoamine oxidase inhibitor classes can induce mania in patients with pre-existing bipolar affective disorder. Drugs which are probably capable of inducing mania, but for which the evidence is less scientifically secure, include other dopaminergic anti-Parkinsonian drugs, thyroxine, iproniazid and isoniazid, sympathomimetic drugs, chloroquine, baclofen, alprazolam, captopril, amphetamine and phencyclidine. Other drugs may induce mania rarely and idiosyncratically. Management involves discontinuation or dosage reduction of the suspected drug, if this is medically possible, and treatment of manic symptoms with antipsychotic drugs or lithium.

  10. Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson's disease by levodopa.

    PubMed

    Esposito, Fabrizio; Tessitore, Alessandro; Giordano, Alfonso; De Micco, Rosita; Paccone, Antonella; Conforti, Renta; Pignataro, Giuseppe; Annunziato, Lucio; Tedeschi, Gioacchino

    2013-03-01

    Brain activity during rest is characterized by slow (0.01-0.1 Hz) fluctuations of blood oxygenation level-dependent functional magnetic resonance imaging signals. These fluctuations are organized as functional connectivity networks called resting-state networks, anatomically corresponding to specific neuronal circuits. As Parkinson's disease is mainly characterized by a dysfunction of the sensorimotor pathways, which can be influenced by levodopa administration, the present study investigated the functional connectivity changes within the sensorimotor resting-state network in drug-naïve patients with Parkinson's disease after acute levodopa administration. Using a double-blind placebo-controlled design, resting-state functional magnetic resonance imaging was carried out in 20 drug-naïve patients with Parkinson's disease, immediately before and 60 min after, oral administration of either levodopa or placebo. Control resting-state functional magnetic resonance imaging data were recorded in 18 age- and sex-matched healthy volunteers. Independent component analysis was performed to extract resting-state network maps and associated time-course spectral features. At the anatomical level, levodopa enhanced the sensorimotor network functional connectivity in the supplementary motor area, a region where drug-naïve patients with Parkinson's disease exhibited reduced signal fluctuations compared with untreated patients. At the spectral frequency level, levodopa stimulated these fluctuations in a selective frequency band of the sensorimotor network. The reported effects induced by levodopa on sensorimotor network topological and spectral features confirm that the sensorimotor system is a target of acute levodopa administration in drug-naïve patients with Parkinson's disease. Moreover, while the regional changes in supplementary motor area reflect the functional improvement in motor function, the rhythm-specific modulation induced by the dopamine precursor discloses a novel

  11. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease

    PubMed Central

    Gunay, Mine Silindir; Ozer, A. Yekta; Chalon, Sylvie

    2016-01-01

    Background: Although a variety of therapeutic approaches are available for the treatment of Parkinson’s disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. Methods: This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. Results: It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson’s disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α-synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Conclusion: Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson’s disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson’s Disease therapy and reduce its side effects. PMID:26714584

  12. A Case of SSRI Induced Irreversible Parkinsonism

    PubMed Central

    Khan, Shahbaj A; Azad, Sudip

    2015-01-01

    Serotonin specific reuptake inhibitors (SSRI) are widely used antidepressants for variety of clinical conditions and have found popularity. They are sometimes associated with extrapyramidal side effects including Parkinsonism. We report a case of generalized anxiety disorder on treatment with SSRI (fluoxetine / sertraline) who developed irreversible Parkinsonism. SSRI are known to cause reversible or irreversible motor disturbances through pathophysiological changes in basal ganglion motor system by altering the dopamine receptors postsynaptically. Clinician should keep risk benefit ratio in mind and change of antidepressant of different class may be considered. Case is reported to alert physicians to possibility of motor system damage while treating with SSRI. PMID:25859504

  13. Multimodal drugs and their future for Alzheimer's and Parkinson's disease.

    PubMed

    Van der Schyf, Cornelis J; Geldenhuys, Werner J

    2011-01-01

    This chapter discusses the rationale for developing multimodal or multifunctional drugs (also called designed multiple ligands or DMLs) aimed at disease-modifying treatment strategies for the most common neurodegenerative diseases Alzheimer's and Parkinson's disease (AD and PD). Both the prevalence and incidence of AD and PD have seen consistent and dramatic increases, a disconcerting phenomenon which, ironically, has been attributed to extended life expectancy brought about by better health care globally. In spite of these statistics, the development and introduction to the clinic of new therapies proven to prevent or delay the onset of AD and PD have been disappointing. Evidence has accumulated to suggest that the etiopathology of these diseases is extremely complex, with an array of potential drug targets located within a number of deleterious biochemical pathways. Therefore, in these diseases, it is unlikely that the complex pathoetiological cascade leading to disease initiation or progression will be mitigated by any one drug acting on a single pathway or target. The pursuit of novel DMLs may offer far better outcomes. Although certainly not the only, and perhaps not even the best, approach but farthest along the drug development pipeline in the DML paradigm are drugs that combine inhibition of monoamine oxidase with associated etiological targets unique to either AD or PD. These compounds will constitute the major focus of this chapter, which will also explore radically new paradigms that seek to combine cognitive enhancers with proneurogenesis compounds.

  14. Drug-induced dyskinesia in Parkinson's disease. Should success in clinical management be a function of improvement of motor repertoire rather than amplitude of dyskinesia?

    PubMed Central

    2013-01-01

    Background Dyskinesia, a major complication in the treatment of Parkinson's disease (PD), can require prolonged monitoring and complex medical management. Discussion The current paper proposes a new way to view the management of dyskinesia in an integrated fashion. We suggest that dyskinesia be considered as a factor in a signal-to-noise ratio (SNR) equation where the signal is the voluntary movement and the noise is PD symptomatology, including dyskinesia. The goal of clinicians should be to ensure a high SNR in order to maintain or enhance the motor repertoire of patients. To understand why such an approach would be beneficial, we first review mechanisms of dyskinesia, as well as their impact on the quality of life of patients and on the health-care system. Theoretical and practical bases for the SNR approach are then discussed. Summary Clinicians should not only consider the level of motor symptomatology when assessing the efficacy of their treatment strategy, but also breadth of the motor repertoire available to patients. PMID:23514355

  15. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson's disease.

    PubMed

    Eggers, Carsten; Fink, Gereon R; Nowak, Dennis A

    2010-10-01

    The purpose of this study was to investigate whether a period of continuous theta burst stimulation (cTBS) induces cortical plasticity and thus improves bradykinesia of the upper limb in Parkinson's disease. In eight patients with Parkinson's disease (two females; mean age: 68.5 ± 5 years; disease duration: 4 ± 3 years) electrophysiological (motor evoked potentials, contralateral and ipsilateral silent period) and behavioural (Purdue pegboard test, UPDRS motor subscore) parameters were evaluated before (baseline condition) and after a 40-s period of (1) real or (2) sham continuous theta burst stimulation over the primary motor cortex contralateral to the more affected body side off dopaminergic drugs. Compared to baseline, cTBS did change neither measures of cortical excitability nor behavioural measures. cTBS over the primary motor cortex does not impact on cortical excitability or motor function of the upper limb in Parkinson's disease. We interpret these data to reflect impaired cortical plasticity in Parkinson's disease. This study is an important contribution to the knowledge about impaired plasticity in Parkinson's disease.

  16. Drug-induced hyperkalemia.

    PubMed

    Ben Salem, Chaker; Badreddine, Atef; Fathallah, Neila; Slim, Raoudha; Hmouda, Houssem

    2014-09-01

    Hyperkalemia is a common clinical condition that can be defined as a serum potassium concentration exceeding 5.0 mmol/L. Drug-induced hyperkalemia is the most important cause of increased potassium levels in everyday clinical practice. Drug-induced hyperkalemia may be asymptomatic. However, it may be dramatic and life threatening, posing diagnostic and management problems. A wide range of drugs can cause hyperkalemia by a variety of mechanisms. Drugs can interfere with potassium homoeostasis either by promoting transcellular potassium shift or by impairing renal potassium excretion. Drugs may also increase potassium supply. The reduction in renal potassium excretion due to inhibition of the renin-angiotensin-aldosterone system represents the most important mechanism by which drugs are known to cause hyperkalemia. Medications that alter transmembrane potassium movement include amino acids, beta-blockers, calcium channel blockers, suxamethonium, and mannitol. Drugs that impair renal potassium excretion are mainly represented by angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, direct renin inhibitors, nonsteroidal anti-inflammatory drugs, calcineurin inhibitors, heparin and derivatives, aldosterone antagonists, potassium-sparing diuretics, trimethoprim, and pentamidine. Potassium-containing agents represent another group of medications causing hyperkalemia. Increased awareness of drugs that can induce hyperkalemia, and monitoring and prevention are key elements for reducing the number of hospital admissions, morbidity, and mortality related to drug-induced hyperkalemia.

  17. Acute and subacute drug-induced movement disorders.

    PubMed

    Burkhard, Pierre R

    2014-01-01

    Many pharmacological agents may induce a variety of movement disorders, including dystonia, tremor, parkinsonism, myoclonus and dyskinesia, with an acute, subacute or more chronic time course. Motor symptoms may be isolated or part of a more extensive cerebral or systemic condition, such as the neuroleptic malignant syndrome or the serotonin syndrome. Drug-induced movement disorders share a number of features that should make them easy to identify, including a clear temporal relationship between medication initiation and symptom onset, a dose-effect, and, with the exception of tardive syndromes, complete resolution after discontinuation of the offending agent. Diagnosis relies on a thorough medication history. Medications commonly involved include dopamine receptor blockers, antidepressants and anti-epileptics, among many others. Mechanisms underlying drug-induced movement disorders involve blockade, facilitation or imbalance of dopamine, serotonin, noradrenaline and cholinergic neurotransmission in the basal ganglia. The present review focuses on drug-induced movement disorders that typically develop as an acute (hours to days) or subacute (days to weeks) event, including acute dystonic reactions, akathisia, drug-induced parkinsonism, neuroleptic malignant syndrome, serotonin syndrome, parkinsonism-hyperpyrexia syndrome, drug-induced tremor, drug-induced hyperkinesias and movement disorders associated with the use of recreational drugs.

  18. Drug-induced hypokalaemia.

    PubMed

    Ben Salem, Chaker; Hmouda, Houssem; Bouraoui, Kamel

    2009-01-01

    Hypokalaemia (defined as a plasma potassium concentration<3.5 mEq/L) is a common electrolyte abnormality in clinical practice. Drugs are a common cause of either asymptomatic or symptomatic hypokalaemia. Drug-induced hypokalaemia is an important problem particularly in the elderly and in patients with cardiovascular, renal or hepatic disease. Hypokalaemia can complicate the use of the drug in the therapeutic concentration range, and can also be precipitated with overdose or conditions leading to drug intoxication. Because the etiologies of hypokalaemia are numerous, the diagnosis of drug-induced hypokalaemia may be overlooked. Physicians should always pay close attention to this common side effect. Evaluation and management of a hypokalaemic patient should include a careful review of medications history to determine if a drug capable of causing or aggravating this electrolyte abnormality is present.

  19. Exosomes as drug delivery vehicles for Parkinson's disease therapy.

    PubMed

    Haney, Matthew J; Klyachko, Natalia L; Zhao, Yuling; Gupta, Richa; Plotnikova, Evgeniya G; He, Zhijian; Patel, Tejash; Piroyan, Aleksandr; Sokolsky, Marina; Kabanov, Alexander V; Batrakova, Elena V

    2015-06-10

    Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinson's disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100-200nm. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation. Exosomes were readily taken up by neuronal cells in vitro. A considerable amount of exosomes was detected in PD mouse brain following intranasal administration. ExoCAT provided significant neuroprotective effects in in vitro and in vivo models of PD. Overall, exosome-based catalase formulations have a potential to be a versatile strategy to treat inflammatory and neurodegenerative disorders.

  20. Drug-induced catatonia.

    PubMed

    Duggal, Harpreet S; Singh, Ira

    2005-09-01

    Catatonia is a heterogeneous syndrome that varies in etiology, presentation, course and sequelae. Initially conceptualized as a subtype of schizophrenia, catatonia is now recognized to occur not only with other psychiatric conditions but also with medical conditions and drug-induced and toxic states. While drug-induced catatonia is now a recognized entity, most studies club it with catatonia due to general medical conditions or organic catatonia, thus precluding any meaningful interpretation of such cases. The literature on drug-induced catatonia mostly draws from scattered case reports. This article attempts to review the available literature in this realm and integrate the information in an attempt to explore the epidemiology, etiology, mechanism and treatment of drug-induced catatonia.

  1. Vitiligo, drug induced (image)

    MedlinePlus

    ... this person's face have resulted from drug-induced vitiligo. Loss of melanin, the primary skin pigment, occasionally ... is the case with this individual. The typical vitiligo lesion is flat and depigmented, but maintains the ...

  2. Drug-induced diarrhoea.

    PubMed

    Chassany, O; Michaux, A; Bergmann, J F

    2000-01-01

    Diarrhoea is a relatively frequent adverse event, accounting for about 7% of all drug adverse effects. More than 700 drugs have been implicated in causing diarrhoea; those most frequently involved are antimicrobials, laxatives, magnesium-containing antacids, lactose- or sorbitol-containing products, nonsteroidal anti-inflammatory drugs, prostaglandins, colchicine, antineoplastics, antiarrhythmic drugs and cholinergic agents. Certain new drugs are likely to induce diarrhoea because of their pharmacodynamic properties; examples include anthraquinone-related agents, alpha-glucosidase inhibitors, lipase inhibitors and cholinesterase inhibitors. Antimicrobials are responsible for 25% of drug-induced diarrhoea. The disease spectrum of antimicrobial-associated diarrhoea ranges from benign diarrhoea to pseudomembranous colitis. Several pathophysiological mechanisms are involved in drug-induced diarrhoea: osmotic diarrhoea, secretory diarrhoea, shortened transit time, exudative diarrhoea and protein-losing enteropathy, and malabsorption or maldigestion of fat and carbohydrates. Often 2 or more mechanisms are present simultaneously. In clinical practice, 2 major types of diarrhoea are seen: acute diarrhoea, which usually appears during the first few days of treatment, and chronic diarrhoea, lasting more than 3 or 4 weeks and which can appear a long time after the start of drug therapy. Both can be severe and poorly tolerated. In a patient presenting with diarrhoea, the medical history is very important, especially the drug history, as it can suggest a diagnosis of drug-induced diarrhoea and thereby avoid multiple diagnostic tests. The clinical examination should cover severity criteria such as fever, rectal emission of blood and mucus, dehydration and bodyweight loss. Establishing a relationship between drug consumption and diarrhoea or colitis can be difficult when the time elapsed between the start of the drug and the onset of symptoms is long, sometimes up to several

  3. Parkinson's disease--challenges in new drug development.

    PubMed

    Babić, Tomislav; Mahović, Darija

    2008-12-01

    Idiopathic Parkinson's disease (IPD) is the second most common neurodegenerative disorder after Alzheimer's disease. Treatment aims in IPD include the provision of symptomatic relief reduction of functional disability, halting or slowing of the neurodegenerative process, and the prevention of long-term complications by proper initiation of therapy. At present, pharmacotherapeutic strategies allow the amelioration of motor symptoms of IPD only, whereas non-motor manifestations are not helped by dopamine replacement strategies. In addition, levodopa-induced fluctuation and dyskinesia are still challenging, particularly in long-term treatment. Despite advances in pharmacotherapy that have improved quality of life for these patients, the mortality rate remains largely unchanged. Sustained interest in IPD will hopefully allow increased funding of research to develop new and better treatments.

  4. Effect of disease and drug treatment on blood serotonin and monoamine oxidase B activity in Parkinson's disease.

    PubMed

    van Kempen, G M; Janjua, R; Roos, R A

    1995-05-01

    Serotonin (5-hydroxytryptamine, 5HT) content and monoamine oxidase (MAO) activity were determined in whole blood of patients with Parkinson's disease (PD) with and without drug treatment and compared with controls. From that comparison a significant reduction in platelet 5HT became apparent in PD. Selegiline, which was always used in combination with L-dopa, not only inhibited MAO activity, as expected, but it also appeared to induce an increase in 5HT content.

  5. Does restraining nitric oxide biosynthesis rescue from toxins-induced parkinsonism and sporadic Parkinson's disease?

    PubMed

    Gupta, Satya Prakash; Yadav, Sharawan; Singhal, Naveen Kumar; Tiwari, Manindra Nath; Mishra, Sarad Kumar; Singh, Mahendra Pratap

    2014-02-01

    Nitric oxide (NO) is an important inorganic molecule of the biological system owing to diverse physiological implications. NO is synthesised from a semi-essential amino acid L-arginine. NO biosynthesis is catalysed by a family of enzymes referred to as nitric oxide synthases (NOSs). NO is accused in many acute and chronic illnesses, which include central nervous system disorders, inflammatory diseases, reproductive impairments, cancer and cardiovascular anomalies. Owing to very unstable nature, NO gets converted into nitrite, peroxynitrite and other reactive nitrogen species that could lead to nitrosative stress in the nigrostriatal system. Nitrosative stress is widely implicated in Parkinson's disease (PD), and its beneficial and harmful effects are demonstrated in in vitro, rodent and primate models of toxins-induced parkinsonism and in the blood, cerebrospinal fluid and nigrostriatal tissues of sporadic PD patients. The current article updates the roles of NO and NOSs in sporadic PD and toxins-induced parkinsonism in rodents along with the scrutiny of how inhibitors of NOSs could open a new line of approach to moderately rescue from PD pathogenesis based on the existing literature. The article also provides a perspective concerning the lack of ample admiration to such an approach and how to minimise the underlying lacunae.

  6. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    PubMed

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease.

  7. Drug-induced exanthems.

    PubMed

    Yawalkar, Nikhil

    2005-04-15

    Cutaneous adverse reactions to drugs can comprise a broad spectrum of clinical and histopathological features. Recent evidence from immunohistological and functional studies of drug-reactive T cells suggest that distinct T-cell functions may be responsible for this broad spectrum of different clinical reactions. Maculopapular exanthems represent the most commonly encountered cutaneous drug eruption. Previous studies on maculopapular exanthems indicate that drug-specific CD4+ T cells expressing cytotoxic granule proteins such as perforin and granzyme B are critically involved in killing activated keratinocytes. These cells are particularly found at the dermo-epidermal junction and may contribute to the generation of vacuolar alteration and destruction of basal keratinocytes, which are typical found in drug-induced maculopapular exanthems. In contrast to maculopapular exanthems, the preferential activation of drug-specific cytotoxic CD8+ T cells may lead to more severe reactions like bullous drug eruptions. Furthermore, activation of drug-specific T with distinct cytokine and chemokines profiles may also explain the different clinical features of drug-induced exanthems. IL-5 and eotaxin are upregulated in maculopapular exanthems and explain the eosinophilia often found in these reactions.

  8. Drug-induced lupus.

    PubMed

    Rubin, Robert L

    2005-04-15

    Autoantibodies and, less commonly, systemic rheumatic symptoms are associated with treatment with numerous medications and other types of ingested compounds. Distinct syndromes can be distinguished, based on clinical and laboratory features, as well as exposure history. Drug-induced lupus has been reported as a side-effect of long-term therapy with over 40 medications. Its clinical and laboratory features are similar to systemic lupus erythematosus, except that patients fully recover after the offending medication is discontinued. This syndrome differs from typical drug hypersensitivity reactions in that drug-specific T-cells or antibodies are not involved in induction of autoimmunity, it usually requires many months to years of drug exposure, is drug dose-dependent and generally does not result in immune sensitization to the drug. Circumstantial evidence strongly suggests that oxidative metabolites of the parent compound trigger autoimmunity. Several mechanisms for induction of autoimmunity will be discussed, including bystander activation of autoreactive lymphocytes due to drug-specific immunity or to non-specific activation of lymphocytes, direct cytotoxicity with release of autoantigens and disruption of central T-cell tolerance. The latter hypothesis will be supported by a mouse model in which a reactive metabolite of procainamide introduced into the thymus results in lupus-like autoantibody induction. These findings, as well as evidence for thymic function in drug-induced lupus patients, support the concept that abnormalities during T-cell selection in the thymus initiate autoimmunity.

  9. [Drug-induced extrapyramidal disorders].

    PubMed

    Horga, J F; Navarro, M; Peiró, V; Hernández, M

    1995-01-01

    We analyze 402 drug-adverse events consisting of movement disorders or aggravation of parkinsonisms, submitted to Sistema Español de Farmacovigilancia until 1994. Our aim is to know patient characteristics and the drugs related with these submissions. Most of them (64) belong to calcium-entry blocker group (31%) and benzamides (27%). Case age intervals more frequent were 11-30 and 60-80 years-old and the events affect predominantly females. The percentage of serious adverse events were near 80%. We think that drug-related parkinsonisms have high prevalence rate and that the role of calcium-entry blockers in these events should be considered at the moment to prescribe groups.

  10. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats

    PubMed Central

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-01-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats. PMID:28349030

  11. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-02-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  12. Drug-induced gynecomastia.

    PubMed

    Eckman, Ari; Dobs, Adrian

    2008-11-01

    Gynecomastia is caused by drugs in 10 - 25% of all cases. The pathophysiologic mechanism for some drugs includes exogenous estrogens exposure, medications that cause hypogonadism, anti-androgenic effects and hyperprolactinemia. This manuscript reviews common examples of drug-induced gynecomastia, discussing the mechanisms and possible treatments. Discontinuing the medication is always the best choice; however, if this is not possible, then testosterone replacement therapy may be needed for hypogonadism. When a man is euogonadal, a trial of the anti-estrogen, tamoxifen or an aromatase inhibitor may be an option.

  13. Drug-induced uveitis

    PubMed Central

    2013-01-01

    A number of medications have been associated with uveitis. This review highlights both well-established and recently reported systemic, topical, intraocular, and vaccine-associated causes of drug-induced uveitis, and assigns a quantitative score to each medication based upon criteria originally described by Naranjo and associates. PMID:23522744

  14. PET imaging of dopamine receptors in MPTP-induced parkinsonism

    SciTech Connect

    Larson, S.M.; DiChiro, G.; Burns, R.S.; Dannals, R.F.; Kopin, I.J.; Brooks, R.A.; Kessler, R.M.; Wagner, R.F.; Eckelman, W.C.; Margolin, R.A.

    1984-01-01

    MPTP(N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces parkinsonism in animals and man by selectively destroying dopaminergic neurons in the pars compacta of the substantia nigra. The postsynaptic neurons (and presumably the dopamine receptors) are intact. The authors have imaged dopamine receptors in a patient with MPTP induced parkinsonism, using /sup 11/CMS (3-N(/sup 11/C) methylspiperone. Seven and 9 mCi's, respectively, were injected at one week intervals while the patient was first off, and then on, L-dopa. As measured by NeuroPET (NIH), putamen to cerebellum concentration ratios rose progressively to 5.5:1, by 90 min. after injection. At this time the concentration of /sup 11/CMS was 10 picomole/cc (off L-dopa), and 14 picomole/cc (on L-dopa). The Duvoisin scale was used to assess the severity of the patient's parkinsonism immediately prior and at the end of PET imaging. On both occasions, despite the small mass amount of /sup 11/CMS injected, (1.1 g/kg), a transient worsening of symptoms was seen. The effect of L-Dopa was almost completely reversed by the /sup 11/CMS. In contrast, off L-Dopa the patients severe basal state was worsened only slightly. The PET scans suggested that dopamine receptors are not reduced in MPTP-induced parkinsonism. The findings were consistent with the hypotheses that PET may identify patients who will benefit from L-Dopa, and that expression of parkinsonian symptoms reflects desaturation of dopamine receptors in striatum.

  15. [Designer drug induced psychosis].

    PubMed

    Fullajtar, Mate; Ferencz, Csaba

    2012-06-01

    3,4-methylene-dioxy-pyrovalerone (MDPV) is a popular designer drug in Hungary, known as MP4. We present a case of a 34-year-old man, whose first psychotic episode was observed in the presence of MP4 use. The paranoid ideas of reference and the dereistic thinking could be the consequence of drug-induced psychosis. Within 24 hours after the intoxication was over delirium set in. The patient's history included only the use of MP4, use of other kinds of drugs was negated. The drug tests were negative, amphetamine derivates were not detectable in the urine sample. It is most likely that the MP4 pill contained an amount of MDPV less than detectable. In conclusion we suggest that the clinical picture could be the consequence of regular MDPV use.

  16. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway.

    PubMed

    Jing, Haoran; Wang, Shaoxia; Wang, Min; Fu, Wenliang; Zhang, Chao; Xu, Donggang

    2017-01-01

    Parkinson's disease (PD) is a complex multi-system and age-related neurodegenerative disorder. The intervention targeting neuroinflammation in PD patients is one effective strategy to slow down or inhibit disease progression. Microglia-mediated inflammatory response plays an important role in Parkinson's, Alzheimer's and other cerebral diseases. Isobavachalcone is a main component of Chinese herb medicine Psoralea corylifolia, which function includes immunoregulation, anti-oxidation and the regulation of β-amyloid (Aβ42) deposited in hippocampus in Alzheimer's patients. Whether it has the therapeutic effect on Parkinson's disease, however, is unclear. In this study, we found that isobavachalcone could effectively remit Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), prolong the residence time of mice on Rota-rod and alleviate the neuronal necrosis. It also inhibited the over-activation of microglia, and decreased the expression of IL-6 and IL-1β in the brain of PD mice. In vitro, isobavachalcone could inhibit nuclear factor-kappaB (NF-κB) pathway through inhibiting the LPS-induced transfer of NF-κB subunit from cytoplasm to nucleus in BV-2 cells. Isobavachalcone decreased the LPS-induced oxidative stress and the expression of inflammatory cytokines, and provided a neuroprotective effect by antagonizing microglia-mediated inflammation. Our results indicated that isobavachalcone may be a candidated drug against Parkinson's disease with great clinical potential.

  17. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway

    PubMed Central

    Jing, Haoran; Wang, Shaoxia; Wang, Min; Fu, Wenliang; Zhang, Chao; Xu, Donggang

    2017-01-01

    Parkinson's disease (PD) is a complex multi-system and age-related neurodegenerative disorder. The intervention targeting neuroinflammation in PD patients is one effective strategy to slow down or inhibit disease progression. Microglia-mediated inflammatory response plays an important role in Parkinson's, Alzheimer's and other cerebral diseases. Isobavachalcone is a main component of Chinese herb medicine Psoralea corylifolia, which function includes immunoregulation, anti-oxidation and the regulation of β-amyloid (Aβ42) deposited in hippocampus in Alzheimer's patients. Whether it has the therapeutic effect on Parkinson's disease, however, is unclear. In this study, we found that isobavachalcone could effectively remit Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), prolong the residence time of mice on Rota-rod and alleviate the neuronal necrosis. It also inhibited the over-activation of microglia, and decreased the expression of IL-6 and IL-1β in the brain of PD mice. In vitro, isobavachalcone could inhibit nuclear factor-kappaB (NF-κB) pathway through inhibiting the LPS-induced transfer of NF-κB subunit from cytoplasm to nucleus in BV-2 cells. Isobavachalcone decreased the LPS-induced oxidative stress and the expression of inflammatory cytokines, and provided a neuroprotective effect by antagonizing microglia-mediated inflammation. Our results indicated that isobavachalcone may be a candidated drug against Parkinson's disease with great clinical potential. PMID:28060896

  18. Drug-Induced Hematologic Syndromes

    PubMed Central

    Mintzer, David M.; Billet, Shira N.; Chmielewski, Lauren

    2009-01-01

    Objective. Drugs can induce almost the entire spectrum of hematologic disorders, affecting white cells, red cells, platelets, and the coagulation system. This paper aims to emphasize the broad range of drug-induced hematological syndromes and to highlight some of the newer drugs and syndromes. Methods. Medline literature on drug-induced hematologic syndromes was reviewed. Most reports and reviews focus on individual drugs or cytopenias. Results. Drug-induced syndromes include hemolytic anemias, methemoglobinemia, red cell aplasia, sideroblastic anemia, megaloblastic anemia, polycythemia, aplastic anemia, leukocytosis, neutropenia, eosinophilia, immune thrombocytopenia, microangiopathic syndromes, hypercoagulability, hypoprothrombinemia, circulating anticoagulants, myelodysplasia, and acute leukemia. Some of the classic drugs known to cause hematologic abnormalities have been replaced by newer drugs, including biologics, accompanied by their own syndromes and unintended side effects. Conclusions. Drugs can induce toxicities spanning many hematologic syndromes, mediated by a variety of mechanisms. Physicians need to be alert to the potential for iatrogenic drug-induced hematologic complications. PMID:19960059

  19. Molecular chaperones as rational drug targets for Parkinson's disease therapeutics.

    PubMed

    Kalia, S K; Kalia, L V; McLean, P J

    2010-12-01

    Parkinson's disease is a neurodegenerative movement disorder that is caused, in part, by the loss of dopaminergic neurons within the substantia nigra pars compacta of the basal ganglia. The presence of intracellular protein aggregates, known as Lewy bodies and Lewy neurites, within the surviving nigral neurons is the defining neuropathological feature of the disease. Accordingly, the identification of specific genes mutated in families with Parkinson's disease and of genetic susceptibility variants for idiopathic Parkinson's disease has implicated abnormalities in proteostasis, or the handling and elimination of misfolded proteins, in the pathogenesis of this neurodegenerative disorder. Protein folding and the refolding of misfolded proteins are regulated by a network of interactive molecules, known as the chaperone system, which is composed of molecular chaperones and co-chaperones. The chaperone system is intimately associated with the ubiquitin-proteasome system and the autophagy-lysosomal pathway which are responsible for elimination of misfolded proteins and protein quality control. In addition to their role in proteostasis, some chaperone molecules are involved in the regulation of cell death pathways. Here we review the role of the molecular chaperones Hsp70 and Hsp90, and the cochaperones Hsp40, BAG family members such as BAG5, CHIP and Hip in modulating neuronal death with a focus on dopaminergic neurodegeneration in Parkinson's disease. We also review current progress in preclinical studies aimed at targetting the chaperone system to prevent neurodegeneration. Finally, we discuss potential future chaperone-based therapeutics for the symptomatic treatment and possible disease modification of Parkinson's disease.

  20. Castration induces Parkinson disease pathologies in young male mice via inducible nitric-oxide synthase.

    PubMed

    Khasnavis, Saurabh; Ghosh, Anamitra; Roy, Avik; Pahan, Kalipada

    2013-07-19

    Although Parkinson disease (PD) is a progressive neurodegenerative disorder, available animal models do not exhibit irreversible neurodegeneration, and this is a major obstacle in finding out an effective drug against this disease. Here we delineate a new irreversible model to study PD pathogenesis. The model is based on simple castration of young male mice. Levels of inducible nitric-oxide synthase (iNOS), glial markers (glial fibrillary acidic protein and CD11b), and α-synuclein were higher in nigra of castrated male mice than normal male mice. On the other hand, after castration, the level of glial-derived neurotrophic factor (GDNF) markedly decreased in the nigra of male mice. Accordingly, castration also induced the loss of tyrosine hydroxylase-positive neurons in the nigra and decrease in tyrosine hydroxylase-positive fibers and neurotransmitters in the striatum. Reversal of nigrostriatal pathologies in castrated male mice by subcutaneous implantation of 5α-dihydrotestosterone pellets validates an important role of male sex hormone in castration-induced nigrostriatal pathology. Interestingly, castration was unable to cause glial activation, decrease nigral GDNF, augment the death of nigral dopaminergic neurons, induce the loss of striatal fibers, and impair neurotransmitters in iNOS(-/-) male mice. Furthermore, we demonstrate that iNOS-derived NO is responsible for decreased expression of GDNF in activated astrocytes. Together, our results suggest that castration induces nigrostriatal pathologies via iNOS-mediated decrease in GDNF. These results are important because castrated young male mice may be used as a simple, toxin-free, and nontransgenic animal model to study PD-related nigrostriatal pathologies, paving the way for easy drug screening against PD.

  1. Drug development in Parkinson's disease: from emerging molecules to innovative drug delivery systems.

    PubMed

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2013-11-01

    Current treatments for Parkinson's disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood-brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients.

  2. Application of Several Multimedia Approaches to the Teaching of CNS Pharmacology: Parkinson's Disease and Antiparkinsonism Drugs.

    ERIC Educational Resources Information Center

    Faulkner, Thomas P.; Sprague, Jon E.

    1996-01-01

    A multimedia approach to drug therapy for Parkinson's Disease, part of a pharmacy school central nervous system course, integrated use of lecture, textbook, video/graphic technology, the movie "Awakenings," Internet and World Wide Web, and an interactive animated movie. A followup questionnaire found generally positive student attitudes…

  3. The noradrenaline transporter as site of action for the anti-Parkinson drug amantadine.

    PubMed

    Sommerauer, Christian; Rebernik, Patrick; Reither, Harald; Nanoff, Christian; Pifl, Christian

    2012-03-01

    Amantadine is an established antiparkinsonian drug with a still unclear molecular site of action. In vivo studies on rodents, in vitro studies on tissue of rodents as well as binding studies on post mortem human tissue implicate monoamine transporters and NMDA receptors. In order to re-examine its action at human variants of these proteins on intact cells we established cells stably expressing the human NR1/2A NMDA-receptor, noradrenaline transporter (NAT) or dopamine transporter (DAT) and tested the activity of amantadine in patch-clamp, uptake, release, and cytotoxicity experiments. Amantadine was less potent in blockade of NMDA-induced inward currents than in blockade of noradrenaline uptake and in induction of inward currents in NAT expressing cells. It was 30 times more potent in blocking uptake in NAT- than in DAT cells. Amantadine induced NAT-mediated release at concentrations of 10-100 μM in superfusion experiments and blocked NAT-mediated cytotoxicity of the parkinsonism inducing neurotoxin 1-methyl-4-phenyl-pyridinium (MPP(+)) at concentrations of 30-300 μM, whereas 300-1000 μM amantadine was necessary to block NMDA-receptor mediated cytotoxicity. Similar to amphetamine, amantadine was inactive at α(2A)-adrenergic receptors and induced reverse noradrenaline transport by NAT albeit with smaller effect size. Thus, amantadine acted as "amphetamine-like releaser" with selectivity for the noradrenergic system. These findings and differences with memantine, which had been reported as less efficient antiparkinsonian drug than amantadine but in our hands was significantly more potent at the NMDA-receptor, suggest contributions from a noradrenergic mechanism in the antiparkinsonian action of amantadine.

  4. [Drug-induced asterixis].

    PubMed

    Rittmannsberger, H; Leblhuber, F

    1994-04-22

    A 54-year-old woman with acute schizoaffective psychosis was treated with lithium carbonate (1,350 mg daily) and zuclopenthixol. On admission, clozapine was added (250 mg daily). Because extrapyramidal symptoms (rigor, akinesia) developed, she was additionally given biperiden retard (4 mg daily) from the fourth hospital day onwards. Eleven days after admission she began to complain of "unsteadiness" and "tremors" in her arms and she had asterixis (flapping tremor) on holding up her arms. The electromyogram showed electrical pauses of 60-120 ms, typical for asterixis. There were no significant metabolic or organic cerebral changes that could have accounted for the symptoms which presumably had been induced by the drugs even though their dosage was not unusual. The symptoms in fact regressed completely after the clozapine dose had been reduced, at first to 125 mg then to 50 mg. Previous experience has suggested that the risk of asterixis is particularly high when lithium and clozapine are taken together.

  5. Oral biomarkers in exercise-induced neuroplasticity in Parkinson's disease.

    PubMed

    Mougeot, J-Lc; Hirsch, M A; Stevens, C B; Mougeot, Fkb

    2016-11-01

    In this article, we review candidate biomarkers for Parkinson's disease (PD) in oral cavity, potential of oral biomarkers as markers of neuroplasticity, and literature on the effects of exercise on oral cavity biomarkers in PD. We first describe how pathophysiological pathways of PD may be transduced from brain stem and ganglia to oral cavity through the autonomic nervous system or transduced by a reverse path. Next we describe the effects of exercise in PD and potential impact on oral cavity. We propose that biomarkers in oral cavity may be useful targets for describing exercise-induced brain neuroplasticity in PD. Nevertheless, much research remains to be carried out before applying these biomarkers for the determination of disease state and therapeutic response to develop strategies to mitigate motor or non-motor symptoms in PD.

  6. Drug-Induced Metabolic Acidosis

    PubMed Central

    Pham, Amy Quynh Trang; Xu, Li Hao Richie; Moe, Orson W.

    2015-01-01

    Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs’ characteristics. PMID:26918138

  7. Spectrophotometric determination of dopaminergic drugs used for Parkinson's disease, cabergoline and ropinirole, in pharmaceutical preparations.

    PubMed

    Onal, Armağan; Cağlar, Sena

    2007-04-01

    Simple and reproducible spectrophotometric methods have been developed for determination of dopaminergic drugs used for Parkinson's disease, cabergoline (CAB) and ropinirole hydrochloride (ROP), in pharmaceutical preparations. The methods are based on the reactions between the studied drug substances and ion-pair agents [methyl orange (MO), bromocresol green (BCG) and bromophenol blue (BPB)] producing yellow colored ion-pair complexes in acidic buffers, after extracting in dichloromethane, which are spectrophotometrically determined at the appropriate wavelength of ion-pair complexes. Beer's law was obeyed within the concentration range from 1.0 to 35 microg ml(-1). The developed methods were applied successfully for the determination of these drugs in tablets.

  8. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models

    PubMed Central

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H. V.

    2016-01-01

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine’s ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease. PMID:27145922

  9. Drug-induced tremor

    MedlinePlus

    ... valproate (Depakene) Asthma medicines such as theophylline and albuterol Immune suppressing medicines such as cyclosporine and tacrolimus Mood stabilizers such as lithium carbonate Stimulants such as caffeine and amphetamines Antidepressant drugs such as selective serotonin reuptake inhibitors ( ...

  10. Thromobocytopenia - drug-induced

    MedlinePlus

    ... to treat arthritis Nonsteroidal anti-inflammatory drugs (NSAIDs) Penicillin Quinidine Quinine Ranitidine Sulfonamides Linezolid and other antibiotics ... Hadjiliadis, MD, MHS, Associate Professor of Medicine, Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University ...

  11. Drug-induced lupus erythematosus

    MedlinePlus

    ... Causes Drug-induced lupus erythematosus is similar to systemic lupus erythematosus (SLE). It is an autoimmune disorder. This means ... 2015:chap 132. Wright B, Bharadwaj S, Abelson A. Systemic lupus erythematosus. In: Carey WD, ed. Cleveland Clinic: Current Clinical ...

  12. Serotonergic markers in Parkinson's disease and levodopa-induced dyskinesias.

    PubMed

    Cheshire, Perdita; Ayton, Scott; Bertram, Kelly L; Ling, Helen; Li, Abi; McLean, Catriona; Halliday, Glenda M; O'Sullivan, Sean S; Revesz, Tamas; Finkelstein, David I; Storey, Elsdon; Williams, David R

    2015-05-01

    Preclinical animal models implicate serotonin neurons in the pathophysiology of levodopa (l-dopa)-induced dyskinesias in Parkinson's disease (PD), but effective treatment remains elusive. We examined the relationship between serotonin and l-dopa-induced dyskinesias in a pathologically confirmed cohort of PD patients. We obtained brain tissue from 44 PD cases and 17 age-matched controls and assessed monoamine levels and the serotonin and dopamine transporters in the striatum, and the extent of dopaminergic and serotonergic cell preservation in the substantia nigra (SN) and the dorsal raphe nuclei (DRN), respectively. As expected, PD patients demonstrated a severe loss of all dopaminergic markers, including dopamine (P < 0.0001) and the dopamine transporter (P < 0.0001) in the striatum, and dopaminergic neurons (P < 0.001) in the SN, compared with controls. Marked serotonin loss was observed in the caudate (but not putamen) in PD patients compared with controls (P < 0.001), but no difference was found in the levels of the serotonin transporter in the striatum or density of serotonergic neurons in the DRN between these groups, suggesting a functional but not structural change in the serotonergic system in PD. No difference was seen in levels of serotonergic and dopaminergic markers in the striatum between PD patients with and without dyskinesias, or between cases separated according to the clinical severity of their dyskinesias. The absence of a correlation between striatal serotonin markers and the incidence and severity of l-dopa-induced dyskinesias suggests that an intact and functioning serotonergic system is not a risk factor for developing dyskinesias in PD.

  13. Tenofovir induced lichenoid drug eruption.

    PubMed

    Gupta, Mrinal; Gupta, Heena; Gupta, Anish

    2015-01-01

    Cutaneous adverse reactions are a common complication of anti-retroviral therapy. Tenofovir is a newer anti-retroviral drug belonging to the nucleotide reverse transcriptase inhibitor group. Systemic adverse effects like nausea, vomiting, diarrhea, hepatotoxicity and renal toxicity are common with tenofovir but cutaneous adverse effects are rare. Lichenoid drug eruptions are a common adverse effect seen with a large variety of drugs including antimalarials, antihypertensives, nonsteroidal anti-inflammatory drugs and diuretics. Lichenoid drug eruption is a rare cutaneous adverse effect of tenofovir with only a single case reported till date. Here, we report a case of tenofovir induced lichenoid drug eruption in a 54-year-old human immunodeficiency virus affected male who presented with generalized lichenoid eruption after 6 weeks of initiation of tenofovir and complete clearance on cessation of the drug.

  14. Structural brain plasticity in Parkinson's disease induced by balance training.

    PubMed

    Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Weise, David; Classen, Joseph; Dukart, Juergen; Draganski, Bogdan; Villringer, Arno; Ragert, Patrick

    2014-01-01

    We investigated morphometric brain changes in patients with Parkinson's disease (PD) that are associated with balance training. A total of 20 patients and 16 healthy matched controls learned a balance task over a period of 6 weeks. Balance testing and structural magnetic resonance imaging were performed before and after 2, 4, and 6 training weeks. Balance performance was re-evaluated after ∼20 months. Balance training resulted in performance improvements in both groups. Voxel-based morphometry revealed learning-dependent gray matter changes in the left hippocampus in healthy controls. In PD patients, performance improvements were correlated with gray matter changes in the right anterior precuneus, left inferior parietal cortex, left ventral premotor cortex, bilateral anterior cingulate cortex, and left middle temporal gyrus. Furthermore, a TIME × GROUP interaction analysis revealed time-dependent gray matter changes in the right cerebellum. Our results highlight training-induced balance improvements in PD patients that may be associated with specific patterns of structural brain plasticity. In summary, we provide novel evidence for the capacity of the human brain to undergo learning-related structural plasticity even in a pathophysiological disease state such as in PD.

  15. Levodopa-induced dyskinesias in Parkinson's disease phenomenology and pathophysiology.

    PubMed

    Marconi, R; Lefebvre-Caparros, D; Bonnet, A M; Vidailhet, M; Dubois, B; Agid, Y

    1994-01-01

    The aim of this study was to provide further insight into the phenomenology and pathophysiology of monophasic and biphasic dyskinesias induced by levodopa in Parkinson's disease. For this purpose, the type, localization, severity, and timing of dyskinesias were evaluated in 15 parkinsonian patients in relation to motor disability after administration of levodopa using a video-electromyographic recording device. Foot-dystonia, myoclonus, and akathisia were observed in most patients. The dyskinesias started in the foot, usually on the side most affected by the disease, and spread in an "ascending wave" to the contralateral side, the trunk, and upper extremities. In a few patients, onset was axial, spreading almost instantaneously to all limbs. The dyskinesias were dystonic and ballistic at the start, and became increasingly choreic as they attained the upper limbs. Their intensity was maximal in the lower limbs, then progressively decreased, while increasing in upper limbs and head. The results indicate that there is no strict dichotomy between biphasic and monophasic dyskinesias. In other words, there is a "continuum" between the first dyskinesias and those observed during the period of maximal clinical improvement. These dyskinesias can also appear in reverse order, as if there were an "oscillator" determining a sequence of alternating patterns.

  16. Graft-induced dyskinesias in Parkinson's disease: High striatal serotonin/dopamine transporter ratio.

    PubMed

    Politis, Marios; Oertel, Wolfgang H; Wu, Kit; Quinn, Niall P; Pogarell, Oliver; Brooks, David J; Bjorklund, Anders; Lindvall, Olle; Piccini, Paola

    2011-09-01

    Graft-induced dyskinesias are a serious complication after neural transplantation in Parkinson's disease. One patient with Parkinson's disease, treated with fetal grafts 14 years ago and deep brain stimulation 6 years ago, showed marked improvement of motor symptoms but continued to suffer from OFF-medication graft-induced dyskinesias. The patient received a series of clinical and imaging assessments. Positron emission tomography and single-photon emission computed tomography 14 years posttransplantation revealed an elevated serotonin/dopamine transporter ratio in the grafted striatum compatible with serotonergic hyperinnervation. Inhibition of serotonin neuron activity by systemic administration of a 5-HT(1A) agonist suppressed graft-induced dyskinesias. Our data provide further evidence that serotonergic neurons mediate graft-induced dyskinesias in Parkinson's disease. Achieving a normal striatal serotonin/dopamine transporter ratio following transplantation of fetal tissue or stem cells should be necessary to avoid the development of graft-induced dyskinesias.

  17. Levodopa "drug holiday" with amantadine infusions as a treatment of complications in Parkinson's disease.

    PubMed

    Koziorowski, Dariusz; Friedman, Andrzej

    2007-05-15

    The loss of beneficial effect of levodopa due to progression of the disease and alteration of receptor sensitivity makes the treatment of the advanced stadium of Parkinson's disease (PD) very difficult. In the past "drug holidays" was used in attempt to resensitize dopamine receptors in the striatum to make the treatment easier. However possible serious complications like neuroleptical malignant-like syndrome discouraged the use of this procedure. Intravenous administration of amantadine, another antiparkinsonian medication during "drug holidays," procedure could be a solution for this problem. We studied 12 patients with PD suffering from complication of the therapy. Daily dose of Levodopa used as monotherapy before amantadine infusions ranged between 700 and 2,000 mg. Levodopa was discontinued for 3 days and during that time amantadine sulfate intravenous was administrated. After "drug holidays" levodopa in the same dose as before treatment was resumed. An assessment of the parkinsonian condition was performed with Unified Parkinson's Disease Rating Scale before "drug holidays" 2 days after and 1, 2, 3, 4, 5, 6 months later. The follow-up study demonstrated a significant improvement both in the motor condition and complication of therapy. The improvement after therapy was maintained up to 4 month. The levodopa "drug holidays" with amantadine infusion is a valuable option in the therapy of advanced stages of PD.

  18. Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update.

    PubMed

    Voon, Valerie; Napier, T Celeste; Frank, Michael J; Sgambato-Faure, Veronique; Grace, Anthony A; Rodriguez-Oroz, Maria; Obeso, Jose; Bezard, Erwan; Fernagut, Pierre-Olivier

    2017-03-01

    Dopaminergic medications used in the treatment of patients with Parkinson's disease are associated with motor and non-motor behavioural side-effects, such as dyskinesias and impulse control disorders also known as behavioural addictions. Levodopa-induced dyskinesias occur in up to 80% of patients with Parkinson's after a few years of chronic treatment. Impulse control disorders, including gambling disorder, binge eating disorder, compulsive sexual behaviour, and compulsive shopping occur in about 17% of patients with Parkinson's disease on dopamine agonists. These behaviours reflect the interactions of the dopaminergic medications with the individual's susceptibility, and the underlying neurobiology of Parkinson's disease. Parkinsonian rodent models show enhanced reinforcing effects of chronic dopaminergic medication, and a potential role for individual susceptibility. In patients with Parkinson's disease and impulse control disorders, impairments are observed across subtypes of decisional impulsivity, possibly reflecting uncertainty and the relative balance of rewards and losses. Impairments appear to be more specific to decisional than motor impulsivity, which might reflect differences in ventral and dorsal striatal engagement. Emerging evidence suggests impulse control disorder subtypes have dissociable correlates, which indicate that individual susceptibility predisposes towards the expression of different behavioural subtypes and neurobiological substrates. Therapeutic interventions to treat patients with Parkinson's disease and impulse control disorders have shown efficacy in randomised controlled trials. Large-scale studies are warranted to identify individual risk factors and novel therapeutic targets for these diseases. Mechanisms underlying impulse control disorders and dyskinesias could provide crucial insights into other behavioural symptoms in Parkinson's disease and addictions in the general population.

  19. Drug-induced urinary calculi.

    PubMed

    Matlaga, Brian R; Shah, Ojas D; Assimos, Dean G

    2003-01-01

    Urinary calculi may be induced by a number of medications used to treat a variety of conditions. These medications may lead to metabolic abnormalities that facilitate the formation of stones. Drugs that induce metabolic calculi include loop diuretics; carbonic anhydrase inhibitors; and laxatives, when abused. Correcting the metabolic abnormality may eliminate or dramatically attenuate stone activity. Urinary calculi can also be induced by medications when the drugs crystallize and become the primary component of the stones. In this case, urinary supersaturation of the agent may promote formation of the calculi. Drugs that induce calculi via this process include magnesium trisilicate; ciprofloxacin; sulfa medications; triamterene; indinavir; and ephedrine, alone or in combination with guaifenesin. When this situation occurs, discontinuation of the medication is usually necessary.

  20. Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?

    PubMed

    Calabresi, Paolo; Ghiglieri, Veronica; Mazzocchetti, Petra; Corbelli, Ilenia; Picconi, Barbara

    2015-07-05

    The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients.

  1. [Drug-induced oral ulcerations].

    PubMed

    Madinier, I; Berry, N; Chichmanian, R M

    2000-06-01

    Different side effects of drugs have been described in the oral cavity, including oral ulcerations. Direct contact between drugs and oral mucosa may induce chemical burn or local hypersensitivity. Less frequently, these drug-induced oral ulcerations are part of a complex reaction with cutaneous or systemic manifestations. Sometimes, one or more oral ulcerations appear as the main side-effect of a drug, or exceptionally as solitary lesions. Solitary oral ulcerations usually appear after few weeks of treatment. In most of cases, these lesions resist to conventional treatments, with a rapid healing following the suppression of the responsible drug. This diagnosis is usually difficult, particularly with patients receiving multiple drug therapy. Besides, special attention must be paid to new drugs. Oral ulcerations following symptoms of burning mouth, metallic taste, dysgueusia or agueusia are strongly suggestive of a pharmacological origin. Most of the molecules able to induce solitary oral ulcerations are commonly prescribed in a) rheumatology: NSAI (diclofenac, flurbiprofen, indomethacin, naproxen), long-term rheumatoid arthritis therapy (azathioprine, methotrexate, penicillamine, gold compounds, tiopronin); b) cardiology: angiotensin-converting-enzyme inhibitors (captopril, enalapril), angiotensin 2-receptor antagonist (losartan), anti-angorous (nicorandil), c) psychiatry: antidepressants (fluoxetine, lithium), d) AIDS therapy (foscarnet, zalcitabine).

  2. Therapeutic Strategies for Alzheimer's and Parkinson's Diseases by Means of Drug Delivery Systems.

    PubMed

    Cunha, S; Amaral, M H; Lobo, J M Sousa; Silva, A C

    2016-01-01

    Alzheimer's and Parkinson's diseases are prevalent neurodegenerative disorders worldwide, which are essentially related to aging. Within the remarkable era of nanomedicine, nowadays several delivery systems have been suggested to improve the treatment of these disorders, namely, liposomes, micelles, nanoparticles (polymeric, lipid, metallic and inorganic), exosomes, dendrimers and fullerenes. The advantage that has been claimed to these delivery systems is that they facilitate the passage of drugs through the blood brain barrier (BBB), enabling targeting before body degradation, and increasing therapeutic efficacy, comparied to conventional pharmaceutical dosage forms. This review article provides a state of the art regarding the drug delivery systems that have been studied for the treatment of Alzheimer's and Parkinson's diseases. It begins with a brief description of the central nervous system (CNS) and the mechanisms involved in the development of these diseases. Later, some examples of drugs used in the treatment of these neurodegenerative diseases are presented, which are currently available in conventional pharmaceutical dosage forms, and in new drug delivery systems that are under development.

  3. [Drug treatment of early-stage (de novo and "honeymoon") Parkinson disease].

    PubMed

    Cesaro, P; Defebvre, L

    2014-04-01

    In this article, we discuss the management of motor symptoms during the early phases of Parkinson's disease, excluding that of any other clinical manifestation. We relied primarily upon recently published data and do not describe older publications relating to anticholinergic drugs or amantadine. The initial pharmacological treatment of idiopathic Parkinson's disease (IPD) is symptomatic and remains based upon dopaminergic drugs. However, the development of new drugs has broadened the range of strategic options and improved overall patient management. Announcing the diagnosis is a critical moment, as pointed out by patients' associations. Patients should be advised to maintain personal, professional, social and physical activities as long as possible. The potential benefit of early pharmacological treatment should be explained, focusing on the possible disease-modifying effect of drugs such as rasagiline. According to current guidelines, L-Dopa is preferred in patients above 65years of age, while those below 65 should be treated with dopamine agonists. Like monoamine oxidase inhibitors B (MAOI-B), synthetic dopamine agonists exhibit several advantages: easy-to-use treatment with a once-daily administration, delayed L-Dopa initiation, significant efficacy on motor symptoms (although lower than that of L-Dopa). MOAI can be prescribed in association with L-Dopa or dopamine agonists. Rasagiline also delays L-Dopa initiation, and consequently motor complications.

  4. Sensory perception changes induced by transcranial magnetic stimulation over the primary somatosensory cortex in Parkinson's disease.

    PubMed

    Palomar, Francisco J; Díaz-Corrales, Francisco; Carrillo, Fatima; Fernández-del-Olmo, Miguel; Koch, Giacomo; Mir, Pablo

    2011-09-01

    Sensory symptoms are common nonmotor manifestations of Parkinson's disease. It has been hypothesized that abnormal central processing of sensory signals occurs in Parkinson's disease and is related to dopaminergic treatment. The objective of this study was to investigate the alterations in sensory perception induced by transcranial magnetic stimulation of the primary somatosensory cortex in patients with Parkinson's disease and the modulatory effects of dopaminergic treatment. Fourteen patients with Parkinson's disease with and without dopaminergic treatment and 13 control subjects were included. Twenty milliseconds after peripheral electrical tactile stimuli in the contralateral thumb, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex was delivered. We evaluated the perception of peripheral electrical tactile stimuli at 2 conditioning stimulus intensities, set at 70% and 90% of the right resting motor threshold, using different interstimulus intervals. At 70% of the resting motor threshold, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex induced an increase in positive responses at short interstimulus intervals (1-7 ms) in controls but not in patients with dopaminergic treatment. At 90% of the resting motor threshold, controls and patients showed similar transcranial magnetic stimulation effects. Changes in peripheral electrical tactile stimuli perception after paired-pulse transcranial magnetic stimulation over the primary somatosensory cortex are altered in patients with Parkinson's disease with dopaminergic treatment compared with controls. These findings suggest that primary somatosensory cortex excitability could be involved in changes in somatosensory integration in Parkinson's disease with dopaminergic treatment.

  5. Drug-induced Liver Injury

    PubMed Central

    David, Stefan; Hamilton, James P

    2011-01-01

    Drug-induced liver injury (DILI) is common and nearly all classes of medications can cause liver disease. Most cases of DILI are benign, and improve after drug withdrawal. It is important to recognize and remove the offending agent as quickly as possible to prevent the progression to chronic liver disease and/or acute liver failure. There are no definite risk factors for DILI, but pre-existing liver disease and genetic susceptibility may predispose certain individuals. Although most patients have clinical symptoms that are identical to other liver diseases, some patients may present with symptoms of systemic hypersensitivity. Treatment of drug and herbal-induced liver injury consists of rapid drug discontinuation and supportive care targeted to alleviate unwanted symptoms. PMID:21874146

  6. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism.

    PubMed

    Abdin, Amany A; Hamouda, Hala E

    2008-12-01

    Current treatment options for parkinsonism as a neurodegenerative disease are limited and still mainly symptomatic and lack significant disease-modifying effect. Understanding its molecular pathology and finding the cause of dopaminergic cell loss will lead to exploring therapies that could prevent and cure the disease. Mitochondrial dysfunction was found to stimulate releasing of reactive oxygen species (ROS) with subsequent induction of apoptotic neuronal cell death. The aim of the present study was to throw the light on the role of coenzyme Q10 with or without L-dopa in an experimental model of parkinsonism induced by rotenone in rats. The present work showed that rotenone (2.5 mg/kg/day i.p. for 60 days) induced a model of parkinsonism (group II) resembling the basic findings in human characterized by bradykinesia and rigidity manifested as an increase in catalepsy score (detected after 20 days with bad prognosis after 60 days) with marked decrease in striatal dopamine levels. This model confirmed the implication of mitochondrial-apoptotic pathway in the pathogenesis of parkinsonism as there was a decrease in levels of striatal complex I activity and ATP as well as extreme overexpression of the antiapoptotic protein Bcl-2, and also exhibited the role of coenzyme Q10 where its plasma and striatal levels were found to be decreased in comparison to the normal control rats (group I). This proposed pathogenesis was evidenced by the significant correlation between catalepsy score and the neurochemical parameters obtained in the current work. The treated groups started to receive the drug(s) after 20 days from induction of parkinsonism and continued to complete for 60 days. Oral administration of Co Q10 in a low dose 200 mg/kg/day (group III) or a high dose 600 mg/kg/day (group IV), resulted in amelioration of the mitochondrial induced apoptosis by dose-dependent restoration of striatal complex I activity, ATP levels with temperate increase in expression of Bcl-2 as

  7. Dopamine transporter availability in motor subtypes of de novo drug-naïve Parkinson's disease.

    PubMed

    Moccia, Marcello; Pappatà, Sabina; Picillo, Marina; Erro, Roberto; Coda, Anna Rita Daniela; Longo, Katia; Vitale, Carmine; Amboni, Marianna; Brunetti, Arturo; Capo, Giuseppe; Salvatore, Marco; Barone, Paolo; Pellecchia, Maria Teresa

    2014-11-01

    Tremor dominant (TD) and akinetic-rigid type (ART) are two motor subtypes of Parkinson's disease associated with different disease progression and neurochemical/neuropathological features. The role of presynaptic nigrostriatal dopaminergic damage is still controversial, poorly explored, and only assessed in medicated patients. In this study, we investigated with FP-CIT SPECT the striatal dopamine transporter (DAT) availability in drug-naïve PD patients with ART and TD phenotypes. Fifty-one de novo, drug-naïve patients with PD underwent FP-CIT SPECT studies. Patients were evaluated with Unified Parkinson's Disease Rating Scale (UPDRS) part III and Hoehn and Yahr scale (H&Y) and divided into ART (24/51) and TD (27/51) according to UPDRS part III. ART and TD patients were not different with regard to age, gender, and disease duration. However, compared to TD, ART patients presented higher UPDRS part III (p = 0.01) and H&Y (p = 0.02) and lower DAT availability in affected and unaffected putamen (p = 0.008 and p = 0.007, respectively), whereas no differences were found in caudate. Moreover, in the whole group of patients, rigidity and bradykinesia, but not tremor scores of UPDRS part III were significantly related to FP-CIT binding in the putamen. These results suggest that in newly diagnosed drug-naïve PD patients DAT availability might be different between ART and TD in relation to different disease severity.

  8. Clinical Features, Pathophysiology, and Treatment of Levodopa-Induced Dyskinesias in Parkinson's Disease

    PubMed Central

    Guridi, J.; González-Redondo, R.; Obeso, J. A.

    2012-01-01

    Dyskinetic disorders are characterized by excess of motor activity that may interfere with normal movement control. In patients with Parkinson's disease, the chronic levodopa treatment induces dyskinetic movements known as levodopa-induced dyskinesias (LID). This paper analyzed the pathophysiology, clinical manifestations, pharmacological treatments, and surgical procedures to treat hyperkinetic disorders. Surgery is currently the only treatment available for Parkinson's disease that may improve both parkinsonian motor syndrome and LID. However, this paper shows the different mechanisms involved are not well understood. PMID:23125942

  9. Blood Biomarkers Associated with Cognitive Decline in Early Stage and Drug-Naive Parkinson's Disease Patients.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2015-01-01

    Early diagnosis of Parkinson's disease (PD) continues to be a major challenge in the field. The lack of a robust biomarker to detect early stage PD patients has considerably slowed the progress toward the development of potential therapeutic agents. We have previously evaluated several RNA biomarkers in whole blood from participants enrolled in two independent clinical studies. In these studies, PD patients were medicated, thus, expression of these biomarkers in de novo patients remains unknown. To this end, we tested ten RNA biomarkers in blood samples from 99 untreated PD patients and 101 HC nested in the cross-sectional Parkinson's Progression Markers Initiative by quantitative real-time PCR. One biomarker out of ten, COPZ1 trended toward significance (nominal p = 0.009) when adjusting for age, sex, and educational level. Further, COPZ1, EFTUD2 and PTBP1 mRNAs correlated with clinical features in PD patients including the Hoehn and Yahr scale, Movement Disorder Society revision of Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive Assessment (MoCA) score. Levels of EFTUD2 and PTBP1 were significantly higher in cognitively normal PD patients (PD-CN) compared to cognitively impaired PD patients (PD-MCI). Interestingly, blood glucose levels were significantly higher in PD and PD-MCI patients (≥ 100 mg/dL, pre-diabetes) compared to HC. Collectively, we report the association of three RNA biomarkers, COPZ1, EFTUD2 and PTBP1 with clinical features including cognitive decline in early drug-naïve PD patients. Further, our results show that drug-naïve PD and PD-MCI patients have glucose levels characteristic of pre-diabetes patients, suggesting that impaired glucose metabolism is an early event in PD. Evaluation of these potential biomarkers in a larger longitudinal study is warranted.

  10. Drug-Path: a database for drug-induced pathways.

    PubMed

    Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches.

  11. ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson's disease.

    PubMed

    Zhang, Danhui; Bordia, Tanuja; McGregor, Matthew; McIntosh, J Michael; Decker, Michael W; Quik, Maryka

    2014-04-01

    Levodopa-induced dyskinesias (LIDs) are a serious complication of levodopa therapy for Parkinson's disease for which there is little treatment. Accumulating evidence shows that nicotinic acetylcholine receptor (nAChR) drugs decrease LIDs in parkinsonian animals. Here, we examined the effect of two β2 nAChR agonists, ABT-089 and ABT-894, that previously were approved for phase 2 clinical trials for other indications. Two sets of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys were administered levodopa/carbidopa (10 mg/kg and 2.5 mg/kg, respectively) twice daily 5 days a week until they were stably dyskinetic. Each set had a vehicle-treated group, an nAChR agonist-treated group, and a nicotine-treated group as a positive control. Set A monkeys had previously received other nAChR drugs (nAChR drug-primed), whereas Set B monkeys were initially nAChR drug-naive. Both sets were administered the partial agonist ABT-089 (range, 0.01-1.0 mg/kg) orally 5 days a week twice daily 30 minutes before levodopa with each dose given for 1 to 5 weeks. ABT-089 decreased LIDs by 30% to 50% compared with vehicle-treated monkeys. Nicotine reduced LIDs by 70% in a parallel group. After 4 weeks of washout, the effect of the full agonist ABT-894 (range, 0.0001-0.10 mg/kg) was assessed on LIDs in Set A and Set B. ABT-894 reduced LIDs by 70%, similar to nicotine. Both drugs acted equally well at α4β2* and α6β2* nAChRs; however, ABT-089 was 30 to 60 times less potent than ABT-894. Tolerance did not develop for the time periods tested (range, 3-4 months). The nAChR drugs did not worsen parkinsonism or cognitive ability. Emesis, a common problem with nAChR drugs, was not observed. ABT-894 and ABT-089 appear to be good candidate nAChR drugs for the management of LIDs in Parkinson's disease.

  12. [Significance of tachycardia induced by atrial stimulation in Wolff-Parkinson-White syndrome].

    PubMed

    Brembilla-Perrot, B

    1992-04-01

    Increased atrial vulnerability is one of the criteria of malignant Wolff-Parkinson-White syndrome. The aim of this study was to try to define the methods of induction of atrial tachycardias (tachycardia, flutter, fibrillation) by endocavitary and oesophageal stimulation characterising an increased vulnerability. The incidence of induced sustained tachycardia by fixed atrial stimulation at incremental rates until the Wenckebach point is attained and programmed atrial stimulation using 1 and 2 extrastimuli under basal conditions and then with isoproterenol was compared in subjects without cardiac disease, Wolff-Parkinson-White or spontaneous tachycardia (Group I) and patients with Wolff-Parkinson-White and spontaneous tachycardias (Group II). Atrial stimulation only induced tachycardia in 2.5% of normal subjects under basal conditions or with isoproterenol, by the endocavitary or oesophageal approaches. Programmed stimulation induced tachycardia in 15% of normal subjects under basal conditions or with isoproterenol by the endocavitary approach alone. In Group II, tachycardia was reproduced under basal conditions or with isoproterenol by atrial stimulation or programmed stimulation in all patients. In conclusion, the induction of a tachyarrhythmia by incremental atrial stimulation up to the Wenckebach point is always pathological even with isoproterenol. Programmed atrial stimulation is less specific except by the oesophageal approach. The use of bursts of very rapid stimuli in the Wolff-Parkinson-White syndrome is of no value as tachycardia can be induced by classical methods in all subjects at risk.

  13. Drug-Induced Sleep Endoscopy.

    PubMed

    Charakorn, Natamon; Kezirian, Eric J

    2016-12-01

    Drug-induced sleep endoscopy (DISE) is an upper airway evaluation technique in which fiberoptic examination is performed under conditions of unconscious sedation. Unique information obtained from this 3-dimensional examination of the airway potentially provides additive benefits to other evaluation methods to guide treatment selection. This article presents recommendations regarding DISE technique and the VOTE Classification system for reporting DISE findings and reviews the evidence concerning DISE test characteristics and the association between DISE findings and treatment outcomes.

  14. Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?

    PubMed Central

    Calabresi, Paolo; Ghiglieri, Veronica; Mazzocchetti, Petra; Corbelli, Ilenia; Picconi, Barbara

    2015-01-01

    The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients. PMID:26009763

  15. Parkinson's disease.

    PubMed Central

    Playfer, J. R.

    1997-01-01

    Parkinson's disease is a common disabling disease of old age. The diagnosis of idiopathic Parkinson's disease is based on clinical signs and has poor sensitivity, with about 25% of patients confidently diagnosed as having the disease actually having other conditions such as multi-system atrophy and other parkinsonism-plus syndromes. Benign essential tremor and arteriosclerotic pseudo-parkinsonism can easily be confused with Parkinson's disease. The cause of Parkinson's disease remains unknown. Speculative research highlights the role of oxidative stress and free radical mediated damage to dopaminergic cells. Parkinson's disease is the one neurodegenerative disorder in which drugs have been demonstrated to be of value. There is now a wide variety of drugs and formulations available, including anticholinergics, amantidine, L-dopa, dopamine agonists including apomorphine, selegiline and soon to be available catechol-O-methyltransferase inhibitors. Disabling side-effects of treatment, fluctuations, dyskinesias and psychiatric problems require strategic use of the drugs available. There is an increasing potential for neurosurgical intervention. PMID:9196696

  16. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity.

    PubMed

    Izumi, Yasuhiko; Sawada, Hideyuki; Yamamoto, Noriyuki; Kume, Toshiaki; Katsuki, Hiroshi; Shimohama, Shun; Akaike, Akinori

    2007-02-28

    Parkinson disease is characterized by selective degeneration of mesencephalic dopaminergic neurons, and endogenous dopamine may play a pivotal role in the degenerative processes. Using primary cultured mesencephalic neurons, we found that glutamate, an excitotoxin, caused selective dopaminergic neuronal death depending on endogenous dopamine content. Pramipexole, a dopamine D2/D3 receptor agonist used clinically in the treatment of Parkinson disease, did not affect glutamate-induced calcium influx but blocked dopaminergic neuronal death induced by glutamate. Pramipexole reduced dopamine content but did not change the levels of total or phosphorylated tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis. The neuroprotective effect of pramipexole was independent of dopamine receptor stimulation because it was not abrogated by domperidone, a dopamine D2-type receptor antagonist. Moreover, both active S(-)- and inactive R(+)-enantiomers of pramipexole as a dopamine D2-like receptor agonist equally suppressed dopaminergic neuronal death. These results suggest that pramipexole protects dopaminergic neurons from glutamate neurotoxicity by the reduction of intracellular dopamine content, independently of dopamine D2-like receptor activation.

  17. Possible pharmacokinetic and pharmacodynamic factors affecting parkinsonism inducement by cinnarizine and flunarizine.

    PubMed

    Kariya, S; Isozaki, S; Masubuchi, Y; Suzuki, T; Narimatsu, S

    1995-11-09

    Potentialities of cinnarizine [1-(diphenylmethyl)-4-(3-phenyl-2-propenyl)piperazine, CZ] and its fluorine derivative flunarizine [1-[bis(4-fluorophenyl)-methyl]-4-(3-phenyl-2-propenyl)piperazine, FZ] to induce parkinsonism as an adverse effect were evaluated pharmacokinetically and pharmacodynamically in rats. In multiple-dose experiments, CZ or FZ was given to rats at a daily dose of 20 mumol/kg for 1, 5, 10, 15, and 30 days, and CZ, FZ, and the ring-hydroxylated metabolites of their cinnamyl moiety [1-(diphenylmethyl)-4-[3-(4'-hydroxyphenyl)-2-propenyl]piperazine, C-2 and 1-[bis(4-fluorophenyl)methyl]-4-[3-(4'- hydroxyphenyl)propenyl]piperazine, F-2] in the plasma and striatum were determined 24 hr after the final dose. Plasma and striatum concentrations of the above compounds except for FZ reached steady state after 10 doses, but their concentrations of FZ continued to increase throughout the experiments. The concentrations obtained after the 30 doses were in the order of FZ > F-2 > CZ > C-2 for the plasma and of F-2 > FZ > CZ > C-2 for the striatum. The ratios of striatum to plasma concentrations of C-2 and F-2 were 2.4 and 3 times higher than those of the parent drugs. Binding affinities of CZ, FZ, and their 10 metabolites for rat striatal dopamine D-2 receptors (D2-R) were assessed by competitive radioligand-binding studies using [3H]-N-[(2RS,3RS)-1-benzyl-2-methyl-3-pyrrolidinyl]-5-chloro-2-met hoxy- 4-methylamino-benzamide ([3H]-YM-09151-2). The IC50s calculated from their Ki values were in the order of F-2 < C-2 < FZ < CZ < C-4 < F-1, indicating that C-2 and F-2 exhibit higher affinities for D2-R than the parent drugs, whereas affinities of other metabolites were 1 to 2 orders of magnitude less than those of C-2 and F-2. These results suggest some important roles of C-2 and F-2 in the development of parkinsonism as active metabolites during chronic medication with CZ and FZ, respectively.

  18. Dopamine dysregulation syndrome and levodopa-induced dyskinesias in Parkinson disease: common consequences of anomalous forms of neural plasticity.

    PubMed

    Linazasoro, Gurutz

    2009-01-01

    Four to 10% of patients with Parkinson disease and chronically treated with levodopa undergo an addictionlike behavioral disturbance named dopamine dysregulation syndrome (DDS). This article suggests that patients with Parkinson disease could be especially prone to develop DDS due to the dopamine deficiency and the "priming" of neural networks by the chronic use of drugs with a short half-life, such as levodopa. These suggestions are based on the clinical and molecular similarities between levodopa-induced dyskinesias and behavioral alterations seen in DDS and addiction to illegal drugs. Motor and behavioral abnormalities can be seen as the consequence of common mechanisms involving anomalous forms of neural plasticity. These forms affect parts of the cortical-basal ganglia-thalamocortical circuits that are topographically organized to differently modulate emotional and motor functions. Recent evidence using positron emission tomography provides support to this idea. By contrast, molecular data suggest that functional segregation may be lost in addiction, DDS, and dyskinesias. The existence of common pathogenic mechanisms for both phenomena could provide the basis for common therapeutic strategies.

  19. Stimulation-induced parkinsonism after posteroventral deep brain stimulation of the globus pallidus internus for craniocervical dystonia.

    PubMed

    Zauber, S Elizabeth; Watson, Nidhi; Comella, Cynthia L; Bakay, Roy A E; Metman, Leo Verhagen

    2009-02-01

    The authors report on a patient with craniocervical dystonia who was treated with bilateral GPi stimulation, with excellent improvement in dystonia but at the cost of stimulation-induced, reversible parkinsonism. Stimulation through ventral contacts resulted in maximal relief of craniocervical dystonia but induced considerable hypophonia, bradykinesia, rigidity, freezing, and impaired postural reflexes. Stimulation through dorsal contacts alleviated parkinsonism, but resulted in the return of dystonia. No stimulation parameters could alleviate the dystonia without inducing parkinsonism over the course of his 4-year follow-up.

  20. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  1. Drug-induced liver injury.

    PubMed

    Katarey, Dev; Verma, Sumita

    2016-12-01

    Drug-induced liver injury (DILI) remains the most common cause of acute liver failure (ALF) in the western world. Excluding paracetamol overdose, nearly all DILI encountered in the clinical setting is idiosyncratic in nature because affected individuals represent only a small proportion of those treated with such drugs. In many cases, the mechanism for idiosyncrasy is immune-mediation and is often identified by genetic risk determined by human leukocyte antigen variants. In the absence of diagnostic tests and/or biomarkers, the diagnosis of DILI requires a high index of suspicion after diligently excluding other causes of abnormal liver tests. Antibiotics are the class of drugs most frequently associated with idiosyncratic DILI, although recent studies indicate that herbal and dietary supplements are an increasingly recognised cause. It is imperative that upon development of DILI the culprit drug be discontinued, especially in the presence of elevated transaminases (aspartate aminotransferase/alanine aminotransferase ratio ≥5 times the upper limit of normal) and/or jaundice. Risk factors for the development ALF include hepatocellular DILI and female gender, the treatment being supportive with some benefit of N-acetylcysteine in the early stages. In view of the poor transplant-free survival in idiosyncratic DILI, early consideration for liver transplant is mandatory.

  2. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review.

    PubMed

    Kulkarni, Abhijeet D; Vanjari, Yogesh H; Sancheti, Karan H; Belgamwar, Veena S; Surana, Sanjay J; Pardeshi, Chandrakantsing V

    2015-01-01

    Nose to brain delivery of neurotherapeutics have been tried by several researchers to explore the virtues of this route viz. circumvention of BBB, avoidance of hepatic metabolism, practicality, safety, ease of administration and non-invasiveness. Nanoparticle (NP) therapeutics is an emerging modality for the treatment of Parkinson's disease (PD) as it offers targeted delivery and enhances the therapeutic efficacy and/or bioavailability of neurotherapeutics. This review presents a concise incursion into the nanomedicines suitable for PD therapy delivered via naso-brain transport. Clinical signs of PD, its pathophysiology, specific genetic determinants, diagnosis and therapy involved have been hashed out. Properties of brain-targeting NPs, transport efficacy and various nanocarriers developed so far also been furnished. In our opinion, nanotechnology-enabled naso-brain drug delivery is an excellent means of delivering neurotherapeutics and is a promising avenue for researchers to develop new formulations for the effective management of PD.

  3. Proprioceptive control of wrist movements in Parkinson's disease. Reduced muscle vibration-induced errors.

    PubMed

    Rickards, C; Cody, F W

    1997-06-01

    The effects upon the trajectories of practised slow (approximately 9 degrees/s) voluntary wrist-extension movements of applying vibration to the tendon of an antagonist muscle (flexor carpi radialis) during the course of the movement have been studied in patients with idiopathic Parkinson's disease and age-matched healthy individuals. In both patient and control groups, flexor vibration elicited undershooting of wrist-extension movements. Wrist extensor and flexor surface EMG recordings indicated that, in patients and controls, such undershooting resulted principally from sustained reductions in extensor (prime mover) activity. Small vibration reflexes were commonly elicited in the wrist flexors which, in both Parkinson's disease and healthy subjects, were usually otherwise virtually quiescent during these slow extension movements. The amplitudes of such vibration reflexes did not differ systematically between patient and control groups and appeared inadequate to have exerted an appreciable braking action upon the extension trajectories. However, the extent of vibration-induced undershooting was, on average, significantly less in the Parkinson's disease group. In a subgroup of patients with asymmetrical parkinsonism the effects of antagonist vibration upon wrist movements of the more and less affected limb were compared. The degree of vibration-induced undershooting was significantly smaller on the more affected side. This finding suggests that disturbed proprioceptive guidance of voluntary movements in Parkinson's disease is related to the severity of clinical motor deficits. A small number Parkinson's disease patients were studied 'ON' and 'OFF' their routine anti-parkinsonian medication. A non-significant tendency was found for vibration-induced errors to be less marked in the 'OFF' state. In a separate series of experiments, under isometric conditions, vibration-induced EMG changes were recorded whilst subjects attempted to maintain a steady (15% maximum

  4. New drug treatments show neuroprotective effects in Alzheimer's and Parkinson's diseases.

    PubMed

    Hölscher, Christian

    2014-11-01

    Type 2 diabetes is a risk factor for Alzheimer's disease and Parkinson's disease. Insulin signaling in the brains of people with Alzheimer's disease or Parkinson's disease is impaired. Preclinical studies of growth factors showed impressive neuroprotective effects. In animal models of Alzheimer's disease and Parkinson's disease, insulin, glia-derived neurotrophic factor, or analogues of the incretin glucagon-like peptide-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality in Alzheimer's disease and Parkinson's disease. On the basis of these promising findings, several clinical trials are ongoing with the first encouraging clinical results published. This gives hope for developing effective treatments for Alzheimer's disease and Parkinson's disease that are currently unavailable.

  5. Why do we need multifunctional neuroprotective and neurorestorative drugs for Parkinson's and Alzheimer's disorders?

    PubMed

    Youdim, Moussa B H

    2010-10-01

    Parkinson's disease (PD) and Alzheimer's disease (AD) are severe neurodegenerative disorders, with no drugs that are currently approved to prevent the neuronal cell loss characteristic in brains of patients suffering from PD and AD, and all drug treatments are symptomatic and monomodal in their action. Due to the complex pathophysiology, including a cascade of neurotoxic molecular events that result in neuronal death and predisposition to depression and eventual dementia, and etiology of these disorders, an innovative approach towards neuroprotection or neurorestoration (neurorescue) is the development and use of multifunctional pharmaceuticals which can act at different brain regions and neurons. Such drugs target an array of pathological pathways, each of which is believed to contribute to the cascades that ultimately lead to neuronal cell death. In this short review, we discuss examples of novel multifunctional ligands that may have potential as neuroprotective-neurorestorative therapeutics in PD and AD, some of which are under development. The compounds discussed originate from synthetic chemistry as well as from natural sources.

  6. Pharmacogenetics of antipsychotic-induced movement disorders as a resource for better understanding Parkinson's disease modifier genes.

    PubMed

    Greenbaum, Lior; Lerer, Bernard

    2015-01-01

    Antipsychotic-induced movement disorders are major side effects of antipsychotic drugs among schizophrenia patients, and include antipsychotic-induced parkinsonism (AIP) and tardive dyskinesia (TD). Substantial pharmacogenetic work has been done in this field, and several susceptibility variants have been suggested. In this paper, the genetics of antipsychotic-induced movement disorders is considered in a broader context. We hypothesize that genetic variants that are risk factors for AIP and TD may provide insights into the pathophysiology of motor symptoms in Parkinson's disease (PD). Since loss of dopaminergic stimulation (albeit pharmacological in AIP and degenerative in PD) is shared by the two clinical entities, genes associated with susceptibility to AIP may be modifier genes that influence clinical expression of PD motor sub-phenotypes, such as age at onset, disease severity, or rate of progression. This is due to their possible functional influence on compensatory mechanisms for striatal dopamine loss. Better compensatory potential might be beneficial at the early and later stages of the PD course. AIP vulnerability variants could also be related to latent impairment in the nigrostriatal pathway, affecting its functionality, and leading to subclinical dopaminergic deficits in the striatum. Susceptibility of PD patients to early development of l-DOPA induced dyskinesia (LID) is an additional relevant sub-phenotype. LID might share a common genetic background with TD, with which it shares clinical features. Genetic risk variants may predispose to both phenotypes, exerting a pleiotropic effect. According to this hypothesis, elucidating the genetics of antipsychotic-induced movement disorders may advance our understanding of multiple aspects of PD and it clinical course, rendering this a potentially rewarding field of study.

  7. Parkinson's disease.

    PubMed Central

    Wolters, E C; Calne, D B

    1989-01-01

    In Parkinson's disease there is degeneration of neurons in the substantia nigra, with consequent depletion of the neurotransmitter dopamine. The triad of tremor, rigidity and bradykinesia is the clinical hallmark. Drugs currently used for palliative therapy fall into three categories: anticholinergic agents, dopamine precursors (levodopa combined with extracerebral decarboxylase inhibitors) and artificial dopamine agonists. It has been argued, on theoretical grounds, that some drugs slow the progress of Parkinson's disease, although no firm evidence has supported this. Treatment must be individualized, and more than one type of drug can be given concurrently after a careful build-up in dosage. We review the adverse effects of various drugs and consider new developments such as slow-release preparations, selective D-1 and D-2 agonists and transplants of dopaminergic cells into the brain. The treatment of Parkinson's disease can be demanding, rewarding and sometimes frustrating, but it remains a most challenging exercise in pharmacotherapy. Images Fig. 1 Fig. 2 Fig. 3 PMID:2563667

  8. Cytomegalovirus reactivation in drug induced hypersensitivity syndrome.

    PubMed

    Mathuram, Alice J; George, Renu E

    2014-06-01

    Drug induced hypersensitivity syndrome has been reported to a variety of drugs. Reactivation of herpes viruses is associated with relapse of symptoms even as late as five weeks after stopping the inciting drug. We report here a case of drug hypersensitivity with CMV reactivation which was treated successfully.

  9. Drug Rechallenge Following Drug-Induced Liver Injury.

    PubMed

    Hunt, Christine M; Papay, Julie I; Stanulovic, Vid; Regev, Arie

    2017-03-13

    Drug induced hepatocellular injury is identified internationally by ALT 5x upper limits normal (ULN) appearing within 3 months of drug initiation, after alternative causes are excluded. Upon withdrawing the suspect drug, ALT generally decreases by 50% or more. With drug readministration, a positive rechallenge has recently been defined by an ALT 3-5xULN or greater. Nearly 50 drugs are associated with positive rechallenge after drug-induced liver injury (DILI): antimicrobials, central nervous system, cardiovascular and oncology therapeutics. Drugs associated with high rates of positive rechallenge exhibit multiple risk factors: daily dose >50 mg, an increased incidence of ALT elevations in clinical trials, immunoallergic clinical injury, and mitochondrial impairment in vitro. These drug factors interact with personal genetic, immune, and metabolic factors to influence positive rechallenge rates and outcomes. Drug rechallenge following drug-induced liver injury is associated with up to 13% mortality in prospective series of all prescribed drugs. In recent oncology trials, standardized systems enable safer drug rechallenge with weekly liver chemistry monitoring during the high risk period and exclusion of patients with hypersensitivity. Yet, high positive rechallenge rates with other innovative therapeutics suggest caution with rechallenge of high risk drugs.

  10. Manganese-Induced Parkinsonism and Parkinson’s Disease: Shared and Distinguishable Features

    PubMed Central

    Kwakye, Gunnar F.; Paoliello, Monica M.B.; Mukhopadhyay, Somshuvra; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Manganese (Mn) is an essential trace element necessary for physiological processes that support development, growth and neuronal function. Secondary to elevated exposure or decreased excretion, Mn accumulates in the basal ganglia region of the brain and may cause a parkinsonian-like syndrome, referred to as manganism. The present review discusses the advances made in understanding the essentiality and neurotoxicity of Mn. We review occupational Mn-induced parkinsonism and the dynamic modes of Mn transport in biological systems, as well as the detection and pharmacokinetic modeling of Mn trafficking. In addition, we review some of the shared similarities, pathologic and clinical distinctions between Mn-induced parkinsonism and Parkinson’s disease. Where possible, we review the influence of Mn toxicity on dopamine, gamma aminobutyric acid (GABA), and glutamate neurotransmitter levels and function. We conclude with a survey of the preventive and treatment strategies for manganism and idiopathic Parkinson’s disease (PD). PMID:26154659

  11. Increased reflection impulsivity in patients with ephedrone induced Parkinsonism

    PubMed Central

    Djamshidian, Atbin; Sanotsky, Yanosh; Matviyenko, Yuriy; O’Sullivan, Sean S.; Sharman, Stephen; Selikhova, Marianna; Fedoryshyn, Ludmyla; Filts, Yuriy; Bearn, Jenny; Lees, Andrew J.; Averbeck, Bruno B.

    2012-01-01

    Aims To examine a syndrome of chronic manganism that occurs in drug addicts in Eastern Europe who use intravenous methcathinone (ephedrone) contaminated with potassium permanganate. The basal ganglia, especially the globus pallidus and the putamen, are damaged irreversibly in many cases. Routine neuropsychological assessment has revealed no cognitive deficits despite widespread abnormalities on brain imaging studies and severe extrapyramidal motor handicap on clinical examination. Design Case control study. Setting Ephedrone patients and patients with opioid dependence were recruited from Lviv, Ukraine. Participants We tested 15 patients with ephedrone induced toxicity, 13 opiate dependent patients, who were receiving opioid replacement therapy and 18 matched healthy volunteers. Measurements The ‘beads task’, an information gathering task to assess reflection impulsivity was used and feedback learning, working memory and risk taking were also assessed. Findings Opiate dependent patients differed from controls on three out of four tasks, whereas ephedrone patients differed from controls on only one task. More specifically both patient groups were more impulsive and made more irrational choices on the beads task than controls (p<0.001). However, ephedrone patients had no deficits in working memory (p>0.1) or risk taking (p>0.1) compared with controls. Opioid dependent patients had significantly worse working memory (p<0.001) and were significantly more risk prone than controls (p=0.002). Conclusions Ephedrone patients may have similar deficits in information gathering and decision making to opiate dependent patients, with preservation of working memory and risk taking. This may reflect specific damage to anterior cingulate- basal ganglia loops. PMID:23228208

  12. Gender differences in non-motor symptoms in early, drug naïve Parkinson's disease.

    PubMed

    Picillo, Marina; Amboni, Marianna; Erro, Roberto; Longo, Katia; Vitale, Carmine; Moccia, Marcello; Pierro, Angela; Santangelo, Gabriella; De Rosa, Anna; De Michele, Giuseppe; Santoro, Lucio; Orefice, Giuseppe; Barone, Paolo; Pellecchia, Maria Teresa

    2013-11-01

    Gender differences in brain structure and function may lead to differences in the clinical expression of neurological diseases, including Parkinson's disease (PD). Few studies reported gender-related differences in the burden of non-motor symptoms (NMS) in treated PD patients, but this matter has not been previously explored in drug-naïve PD patients. This study is to assess gender differences in the prevalence of NMS in a large sample of early, drug-naïve PD patients compared with age and sex-matched healthy controls. Two hundred early, drug-naïve PD patients and ninety-three age and sex-matched healthy controls were included in the study. Frequency of NMS was evaluated by means of the Non-Motor Symptoms Questionnaire. The difference in gender distribution of NMS was evaluated with the χ (2) exact test; multiple comparisons were corrected with the Benjamini-Hochberg method. Male PD patients complained of problems having sex and taste/smelling difficulties significantly more frequently than female PD patients. Furthermore, men with PD complained more frequently of dribbling, sadness/blues, loss of interest, anxiety, acting during dreams, and taste/smelling difficulties as compared to healthy control men, while female PD patients reported more frequently loss of interest and anxiety as compared with healthy control women. This study shows specific sex-related patterns of NMS in drug-naïve PD. In contrast with previous data, female PD patients did not present higher prevalence of mood symptoms as compared to male PD patients. Comparison with healthy controls showed that some NMS classically present in premotor and early stage of disease (i.e., acting out during dreams, taste/smelling difficulties) are more frequent in male than in female patients.

  13. Drug-Induced Liver Injury.

    PubMed

    Hamilton, Leslie A; Collins-Yoder, Angela; Collins, Rachel E

    2016-10-01

    Drug-induced liver injury (DILI) can result from both idiosyncratic and intrinsic mechanisms. This article discusses the clinical impact of DILI from a broad range of medications as well as herbal and dietary supplements. Risk factors for idiosyncratic DILI (IDILI) are the result of multiple host, environmental, and compound factors. Some triggers of IDILI often seen in critical care include antibiotics, antiepileptic medications, statins, novel anticoagulants, proton pump inhibitors, inhaled anesthetics, nonsteroidal anti-inflammatory agents, methotrexate, sulfasalazine, and azathioprine. The mechanism of IDILI due to these medications varies, and the resulting damage can be cholestatic, hepatocellular, or mixed. The primary treatment of IDILI is to discontinue the causative agent. DILI due to acetaminophen is intrinsic because the liver damage is predictably aligned with the dose ingested. Acute acetaminophen ingestion can be treated with activated charcoal or N-acetylcysteine. Future areas of research include identification of mitochondrial stress biomarkers and of the patients at highest risk for DILI.

  14. Terbinafine-induced lichenoid drug eruption.

    PubMed

    Zheng, Yue; Zhang, Jie; Chen, Haiyan; Lai, Wei; Maibach, Howard I

    2017-03-01

    Drug-induced lichen planus has been induced by antibiotics, anticonvulsants, antidiabetics, antimalarials, antitubercular drugs, antihypertensives, psychiatric drugs, chemotherapeutic agents, diuretic, heavy metals, NSAIDs, etc. Terbinafine, an antifungal agent, is widely used for dermatophyte infections and onychomycosis. Cutaneous adverse effects of terbinafine are rarely reported. Here, we report a case of terbinafine-induced lichenoid drug eruption in a 22-year-old who presented with generalized lichenoid eruption 2 weeks after terbinafine initiation of. The body and lip cleared completely after 8 weeks of drug withdrawal; nail change cleared after 12 weeks.

  15. Pathogenesis of Mortalin in Manganese-induced Parkinsonism

    NASA Astrophysics Data System (ADS)

    Cook, Travis J.

    Manganese (Mn) is an essential dietary micronutrient for which excessive exposure has long been known to be neurotoxic. Historically, short-term, high-intensity exposure in occupational settings was recognized to cause acute-onset parkinsonism (PS) termed manganism. Although modern day exposures are typically several orders of magnitude lower than those necessary to cause manganism, chronic, low-level exposures are not uncommon among a number of occupations and communities. Recent epidemiologic studies have demonstrated an association between Mn exposure and risk of PS, and in this regard Mn remains a public health concern. The work described here was designed to provide insight toward questions which remain with respect to Mn exposure and its toxic effect on the brain, and includes studies utilizing Mn exposed human populations and in vitro model systems to address these objectives. Blood plasma samples obtained from a cohort of welders, whose work is recognized as generating appreciable amounts of airborne Mn, and post-mortem brain tissue of Mn mine workers were both found to have discernable alterations related to the mitochondrial chaperone protein mortalin. Furthermore, in vitro studies demonstrated that reduced astroglial expression of mortalin confers neuronal susceptibility to toxicity elicited by low levels of Mn, possibly via mechanisms of endoplasmic reticulum and oxidative stress mediated by alpha-synuclein. Taken together, the results of these studies indicate that Mn exposures experienced by modern day populations are sufficient to cause biological alterations in humans that are potentially neurotoxic.

  16. Serum uric acid is associated with apathy in early, drug-naïve Parkinson's disease.

    PubMed

    Picillo, Marina; Santangelo, Gabriella; Moccia, Marcello; Erro, Roberto; Amboni, Marianna; Prestipino, Elio; Longo, Katia; Vitale, Carmine; Spina, Emanuele; Orefice, Giuseppe; Barone, Paolo; Pellecchia, Maria Teresa

    2016-04-01

    Both low serum uric acid (UA) levels and apathy are considered biomarkers of cognitive decline and dementia in Parkinson's disease (PD). There is an urgent need to combine different biomarkers to predict disease course in PD. Data on the relationship between serum UA levels and apathy in PD are lacking. The aim of this study is to evaluate the relationship between serum UA levels and pure apathy in early, drug-naïve PD patients. Forty-nine early, drug-naïve PD patients were enrolled and stratified into two groups using the median serum UA levels at diagnosis (Group 1 serum UA ≤ 4.8 mg/dl; Group 2 serum UA > 4.8 mg/dl). The cohort was followed for the first 2 years of disease. Apathy was evaluated with the Apathy Evaluation Scale (AES). Patients with lower serum UA levels presented significant higher AES score compared to patients with higher serum UA levels. Regression analysis showed that baseline serum UA levels were significant determinants of AES scores at both baseline and 2-year follow up, irrespective of gender, age, attention/executive functions and dopamine replacement therapy when applicable. This is the first study showing a link between serum UA levels and apathy in non-demented, non-depressed, early, drug-naïve PD, being lower serum UA levels associated with greater apathy. Further follow up of our patients and replication of this observation in independent cohorts are needed to establish if this combination of biomarkers may help in characterizing a subgroup of PD patients at diagnosis.

  17. Drugs developed for treatment of diabetes show protective effects in Alzheimer's and Parkinson's diseases.

    PubMed

    Hölscher, Christian

    2014-10-25

    Type 2 diabetes has been identified as a risk factor for Alzheimer's disease (AD) and Parkinson's disease (PD). In the brains of patients with AD and PD, insulin signaling is impaired. This finding has motivated new research that showed good effects using drugs that initially had been developed to treat diabetes. Preclinical studies showed good neuroprotective effects applying insulin or long lasting analogues of incretin peptides. In transgenic animal models of AD or PD, analogues of the incretin GLP-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality and reduced the symptoms of the diseases. Amyloid plaque load and synaptic loss as well as cognitive impairment had been prevented in transgenic AD mouse models, and dopaminergic loss of transmission and motor function has been reversed in animal models of PD. On the basis of these promising findings, several clinical trials are being conducted with the first encouraging clinical results already published. In several pilot studies in AD patients, the nasal application of insulin showed encouraging effects on cognition and biomarkers. A pilot study in PD patients testing a GLP-1 receptor agonist that is currently on the market as a treatment for type 2 diabetes (exendin-4, Byetta) also showed encouraging effects. Several other clinical trials are currently ongoing in AD patients, testing another GLP-1 analogue that is on the market (liraglutide, Victoza). Recently, a third GLP-1 receptor agonist has been brought to the market in Europe (Lixisenatide, Lyxumia), which also shows very promising neuroprotective effects. This review will summarise the range of these protective effects that those drugs have demonstrated. GLP-1 analogues show promise in providing novel treatments that may be protective or even regenerative in AD and PD, something that no current drug does.

  18. Chemoreflex and baroreflex alterations in Parkinsonism induced by 6-OHDA in unanesthetized rats.

    PubMed

    Ariza, Deborah; Lopes, Fernanda Novi Cortegoso; Crestani, Carlos Cesar; Martins-Pinge, Marli Cardoso

    2015-10-21

    Parkinson's disease (PD) is mainly characterized by motor signals. However, non-motor signals also affect and decrease the quality of life of PD patients. Among these non-motor signs are cardiovascular disorders as orthostatic hypotension, postprandial hypotension and cardiac arrhythmias, which may be due to the involvement of both central nervous system and peripheral autonomic nervous system. In the present study we investigated the cardiovascular function, evaluating cardiovascular reflexes (chemoreflex and baroreflex), in an animal model of Parkinsonism induced by bilateral infusion of the toxin 6-hydroxydopamine (6-OHDA), in the substantia nigra pars compacta (SNpc). The results showed that the animals induced to Parkinsonism had lower arterial pressure (AP) and heart rate HR) compared to control animals. We showed that after activation of the baroreceptors by phenylephrine (Phe) and sodium nitroprusside (SNP), the baroreflex sensitivity index was not changed between the groups. However, there was a greater increase in the AP when stimulated with Phe and greater tachycardia when stimulated with SNP in 6-OHDA animals. After activation of the peripheral chemoreceptors through KCN injection (cytotoxic hypoxia), there was a higher increase in pressor and bradycardic response in injured animals with bilateral 6-OHDA. These changes in the cardiovascular reflexes may be important adjustments mechanisms to maintain the cerebral blood flow in those animals, and may be a result of denervation supersensitivity to catecholamines in autonomic targets.

  19. Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster.

    PubMed

    Shukla, Arvind Kumar; Ratnasekhar, Ch; Pragya, Prakash; Chaouhan, Hitesh Singh; Patel, Devendra Kumar; Chowdhuri, Debapratim Kar; Mudiam, Mohana Krishna Reddy

    2016-01-01

    Paraquat (PQ) exposure causes degeneration of the dopaminergic neurons in an exposed organism while altered metabolism has a role in various neurodegenerative disorders. Therefore, the study presented here was conceived to depict the role of altered metabolism in PQ-induced Parkinson-like symptoms and to explore Drosophila as a potential model organism for such studies. Metabolic profile was generated in control and in flies that were fed PQ (5, 10, and 20 mM) in the diet for 12 and 24 h concurrent with assessment of indices of oxidative stress, dopaminergic neurodegeneration, and behavioral alteration. PQ was found to significantly alter 24 metabolites belonging to different biological pathways along with significant alterations in the above indices. In addition, PQ attenuated brain dopamine content in the exposed organism. The study demonstrates that PQ-induced alteration in the metabolites leads to oxidative stress and neurodegeneration in the exposed organism along with movement disorder, a phenotype typical of Parkinson-like symptoms. The study is relevant in the context of Drosophila and humans because similar alteration in the metabolic pathways has been observed in both PQ-exposed Drosophila and in postmortem samples of patients with Parkinsonism. Furthermore, this study provides advocacy towards the applicability of Drosophila as an alternate model organism for pre-screening of environmental chemicals for their neurodegenerative potential with altered metabolism.

  20. Drug-induced restless legs syndrome.

    PubMed

    2010-08-01

    Restless legs syndrome can be very troublesome but it has no serious physical complications. The underlying causes are unknown, but it can be triggered or aggravated by a drug. In early 2010, about 60 cases of drug-induced restless legs syndrome had been published in detail. The drugs implicated were mainly psychotropics, especially antidepressants and neuroleptics. Some drugs used to treat restless legs syndrome, especially dopaminergic drugs, can in fact aggravate symptoms. Drug-induced restless legs syndrome generally resolves when the dose is reduced or the drug is withdrawn. Dysfunction of the dopaminergic system has been implicated in some cases. In practice, when a patient presents with restless legs syndrome, the role of a drug, especially a psychotropic, should be considered. Drug withdrawal or a dose reduction may be beneficial.

  1. Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson's disease model.

    PubMed

    Ham, Sangwoo; Lee, Yun-Il; Jo, Minkyung; Kim, Hyojung; Kang, Hojin; Jo, Areum; Lee, Gum Hwa; Mo, Yun Jeong; Park, Sang Chul; Lee, Yun Song; Shin, Joo-Ho; Lee, Yunjong

    2017-04-03

    Dysfunctional parkin due to mutations or post-translational modifications contributes to dopaminergic neurodegeneration in Parkinson's disease (PD). Overexpression of parkin provides protection against cellular stresses and prevents dopamine cell loss in several PD animal models. Here we performed an unbiased high-throughput luciferase screening to identify chemicals that can increase parkin expression. Among promising parkin inducers, hydrocortisone possessed the most favorable profiles including parkin induction ability, cell protection ability, and physicochemical property of absorption, distribution, metabolism, and excretion (ADME) without inducing endoplasmic reticulum stress. We found that hydrocortisone-induced parkin expression was accountable for cell protection against oxidative stress. Hydrocortisone-activated parkin expression was mediated by CREB pathway since gRNA to CREB abolished hydrocortisone's ability to induce parkin. Finally, hydrocortisone treatment in mice increased brain parkin levels and prevented 6-hydroxy dopamine induced dopamine cell loss when assessed at 4 days after the toxin's injection. Our results showed that hydrocortisone could stimulate parkin expression via CREB pathway and the induced parkin expression was accountable for its neuroprotective effect. Since glucocorticoid is a physiological hormone, maintaining optimal levels of glucocorticoid might be a potential therapeutic or preventive strategy for Parkinson's disease.

  2. New drug treatments show neuroprotective effects in Alzheimer's and Parkinson's diseases

    PubMed Central

    Hölscher, Christian

    2014-01-01

    Type 2 diabetes is a risk factor for Alzheimer's disease and Parkinson's disease. Insulin signaling in the brains of people with Alzheimer's disease or Parkinson's disease is impaired. Preclinical studies of growth factors showed impressive neuroprotective effects. In animal models of Alzheimer's disease and Parkinson's disease, insulin, glia-derived neurotrophic factor, or analogues of the incretin glucagon-like peptide-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality in Alzheimer's disease and Parkinson's disease. On the basis of these promising findings, several clinical trials are ongoing with the first encouraging clinical results published. This gives hope for developing effective treatments for Alzheimer's disease and Parkinson's disease that are currently unavailable. PMID:25558231

  3. An update on drug-induced arthritis.

    PubMed

    Adwan, Marwan H

    2016-08-01

    A large and heterogeneous group of drugs can cause drug-induced arthritis. No single pathogenetic mechanism or drug class unifies these diverse culprits. Recognizing that joint symptoms may, in fact, be drug-related not only saves time and unnecessary investigations but can also prevent needless suffering and morbidity due to late recognition of a drug-induced arthritic condition. The extent of drug-induced arthritis is variable and ranges from minor short-lived and reversible arthralgia to a prolonged and occasionally destructive arthritis. The onset of arthritis due to various medications in relation to the timing of drug initiation is also variable and may range from a few days to several months.

  4. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy.

    PubMed

    Desai, Brinda S; Monahan, Angela J; Carvey, Paul M; Hendey, Bill

    2007-01-01

    The blood-brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.

  5. Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation

    PubMed Central

    Tocco, Pierluigi; Federico, Angela; Zanette, Giampietro

    2016-01-01

    Cardinal motor features of Parkinson's disease (PD) include bradykinesia, rest tremor, and rigidity, which appear in the early stages of the disease and largely depend on dopaminergic nigrostriatal denervation. Intermediate and advanced PD stages are characterized by motor fluctuations and dyskinesia, which depend on complex mechanisms secondary to severe nigrostriatal loss and to the problems related to oral levodopa absorption, and motor and nonmotor symptoms and signs that are secondary to marked dopaminergic loss and multisystem neurodegeneration with damage to nondopaminergic pathways. Nondopaminergic dysfunction results in motor problems, including posture, balance and gait disturbances, and fatigue, and nonmotor problems, encompassing depression, apathy, cognitive impairment, sleep disturbances, pain, and autonomic dysfunction. There are a number of symptomatic drugs for PD motor signs, but the pharmacological resources for nonmotor signs and symptoms are limited, and rehabilitation may contribute to their treatment. The present review will focus on classical notions and recent insights into the neuropathology, neuropharmacology, and neurophysiology of motor dysfunction of PD. These pieces of information represent the basis for the pharmacological, neurosurgical, and rehabilitative approaches to PD. PMID:27366343

  6. Alterations in Polysomnographic (PSG) profile in drug-naïve Parkinson's disease

    PubMed Central

    Joy, Sanju P.; Sinha, Sanjib; Pal, Pramod Kumar; Panda, Samhita; Philip, Mariamma; Taly, Arun B.

    2014-01-01

    Objective: We studied the changes in Polysomnographic (PSG) profile in drug-naïve patients of Parkinson's disease (PD) who underwent evaluation with sleep overnight PSG. Materials and Methods: This prospective study included 30 with newly diagnosed levodopa-naïve patients with PD, fulfilling the UK-PD society brain bank clinical diagnostic criteria (M:F = 25:5; age: 57.2 ± 10.7 years). The disease severity scales and sleep related questionnaires were administered, and then patients were subjected to overnight PSG. Results: The mean duration of illness was 9.7 ± 9.5 months. The mean Hoehn and Yahr stage was 1.8 ± 0.4. The mean Unified Parkinson's Disease Rating Scale (UPDRS) motor score improved from 27.7 ± 9.2 to 17.5 ± 8.9 with sustained usage of levodopa. Nocturnal sleep as assessed by Pittsburgh Sleep Quality Index (PSQI) was impaired in 10 (33.3%) patients (mean PSQI score: 5.1 ± 3.1). Excessive day time somnolence was recorded in three patients with Epworth Sleepiness Scale (ESS) score ≥ 10 (mean ESS score: 4.0 ± 3.4). PSG analysis revealed that poor sleep efficiency of <85% was present in 86.7% of patients (mean: 68.3 ± 21.3%). The latencies to sleep onset (mean: 49.8 ± 67.0 minutes) and stage 2 sleep (36.5 ± 13.1%) were prolonged while slow wave sleep was shortened. Respiration during sleep was significantly impaired in which 43.3% had impaired apnoea hyperpnoea index (AHI) ≥5, mean AHI: 8.3 ± 12.1). Apnoeic episodes were predominantly obstructive (obstructive sleep apnea, OSA index = 2.2 ± 5.1). These patients had periodic leg movement (PLM) disorder (56.7% had PLM index of 5 or more, mean PLMI: 27.53 ± 4 9.05) that resulted in excessive daytime somnolence. Conclusions: To conclude, sleep macro-architecture is altered in frequently and variably in levodopa-naïve patients of PD and the alterations are possibly due to disease process per se. PMID:25221397

  7. Non-human primate FOG develops with advanced parkinsonism induced by MPTP Treatment.

    PubMed

    Revuelta, Gonzalo J; Uthayathas, Subramaniam; Wahlquist, Amy E; Factor, Stewart A; Papa, Stella M

    2012-10-01

    Freezing of gait (FOG) is a debilitating feature of Parkinson's disease (PD) and other forms of parkinsonism. The anatomical or pathophysiological correlates are poorly understood largely due to the lack of a well-established animal model. Here we studied whether FOG is reproduced in the non-human primate (NHP) model of PD. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (Genus Macaca, n=29) were examined for the development of FOG, and the leg movements were recorded with accelerometry. The relationships between developing FOG and the animals' characteristics, the MPTP treatments, and the modeled outcomes were determined. In parkinsonian monkeys FOG developed frequently (48%) manifesting similar characteristics to those seen in PD patients. In addition, FOG episodes in the monkey were accompanied by leg trembling with the typical duration (2-10s) and frequency (~7 Hz). The development of NHP FOG was significantly associated with the severity of parkinsonism, as shown by high motor disability scores (≥ 20) and levodopa-induced dyskinesia scores (p=0.01 and p=0.04, respectively). Differences in demographics and MPTP treatments (doses, treatment duration, etc.) had no influence on NHP FOG occurrence, with the exception of gender that showed FOG predominance in males (p=0.03). The unique features of FOG in PD can be replicated in severely parkinsonian macaques, and this represents the first description of a FOG animal model.

  8. Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias.

    PubMed

    Morgante, Francesca; Espay, Alberto J; Gunraj, Carolyn; Lang, Anthony E; Chen, Robert

    2006-04-01

    Experimental models of Parkinson's disease have demonstrated abnormal synaptic plasticity in the corticostriatal system, possibly related to the development of levodopa-induced dyskinesias (LID). We tested the hypothesis that LID in Parkinson's disease is associated with aberrant plasticity in the human motor cortex (M1). We employed the paired associative stimulation (PAS) protocol, an experimental intervention involving transcranial magnetic stimulation (TMS) and median nerve stimulation capable of producing long-term potentiation (LTP) like changes in the sensorimotor system in humans. We studied the more affected side of 16 moderately affected patients with Parkinson's disease (9 dyskinetic, 7 non-dyskinetic) and the dominant side of 9 age-matched healthy controls. Motor-evoked potential (MEP) amplitudes and cortical silent period (CSP) duration were measured at baseline before PAS and for up to 60 min (T0, T30 and T60) after PAS in abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles. PAS significantly increased MEP size in controls (+74.8% of baseline at T30) but not in patients off medication (T30: +0.07% of baseline in the non-dyskinetic, +27% in the dyskinetic group). Levodopa restored the potentiation of MEP amplitudes by PAS in the non-dyskinetic group (T30: +64.9% of baseline MEP) but not in the dyskinetic group (T30: -9.2% of baseline). PAS prolonged CSP duration in controls. There was a trend towards prolongation of CSP in the non-dyskinetic group off medications but not in the dyskinetic group. Levodopa did not restore CSP prolongation by PAS in the dyskinetic group. Our findings suggest that LTP-like plasticity is deficient in Parkinson's disease off medications and is restored by levodopa in non-dyskinetic but not in dyskinetic patients. Abnormal synaptic plasticity in the motor cortex may play a role in the development of LID.

  9. Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson's disease.

    PubMed

    Quik, Maryka; Mallela, Archana; Ly, Jason; Zhang, Danhui

    2013-09-01

    Although 3,4-dihydroxyphenylalanine (levodopa) is the gold-standard treatment for Parkinson's disease, it can lead to disabling dyskinesias. Previous work demonstrated that nicotine reduces levodopa-induced dyskinesias (LIDs) in several parkinsonian animal models. The goal of this study was to determine whether the duration of nicotine administration affects its ability to reduce LIDs in levodopa-primed and levodopa-naíve monkeys and also to test whether tolerance develops to the beneficial effects of nicotine. Monkeys were injected with MPTP (1.9-2.0 mg/kg subcutaneously) over 3 to 5 months until parkinsonism developed. Nicotine (300 μg/mL) was administered in drinking water (over 4-6 months) to levodopa-primed or levodopa-naíve monkeys, with levodopa/carbidopa (10/2.5 mg/kg) gavaged twice daily. One set of MPTP-lesioned monkeys (n = 23) was first gavaged with levodopa and subsequently received nicotine 4 weeks later, when dyskinesias plateaued, or 8 weeks later, when dyskinesias were established. A 60% to 70% decrease in LIDs was observed after several weeks of nicotine treatment in both groups. A second set of monkeys (n = 26) received nicotine 8 or 2 weeks before levodopa. In the 8-week nicotine pretreatment group, there was an immediate reduction in LIDs, which plateaued at 60% to 70%. In the 2-week nicotine pretreatment group, there were initial small decreases in LIDs, which plateaued at 60% to 70% several weeks later. Thus, nicotine pretreatment and nicotine post-treatment were similarly efficacious in reducing LIDs. The beneficial effect of nicotine persisted throughout the study (17-23 weeks). Nicotine did not worsen parkinsonism. These data suggest that nicotine treatment has potential as a successful antidyskinetic therapy for patients with Parkinson's disease.

  10. Drug-induced hyperuricaemia and gout.

    PubMed

    Ben Salem, C; Slim, Raoudha; Fathallah, Neila; Hmouda, Houssem

    2016-08-07

    Hyperuricaemia is a common clinical condition that can be defined as a serum uric acid level >6.8 mg/dl (404 µmol/l). Gout, a recognized complication of hyperuricaemia, is the most common inflammatory arthritis in adults. Drug-induced hyperuricaemia and gout present an emergent and increasingly prevalent problem in clinical practice. Diuretics are one of the most important causes of secondary hyperuricaemia. Drugs raise serum uric acid level by an increase of uric acid reabsorption and/or decrease in uric acid secretion. Several drugs may also increase uric acid production. In this review, drugs leading to hyperuricaemia are summarized with regard to their mechanism of action and clinical significance. Increased awareness of drugs that can induce hyperuricaemia and gout, and monitoring and prevention are key elements for reducing the morbidity related to drug-induced hyperuricaemia and gout.

  11. 5-Hydroxy-tryptophan for the treatment of L-DOPA-induced dyskinesia in the rat Parkinson's disease model.

    PubMed

    Tronci, Elisabetta; Lisci, Carlo; Stancampiano, Roberto; Fidalgo, Camino; Collu, Maria; Devoto, Paola; Carta, Manolo

    2013-12-01

    The serotonin system has recently emerged as an important player in the appearance of L-DOPA-induced dyskinesia (LID) in experimental models of Parkinson's disease, as it provides an unregulated source of L-DOPA-derived dopamine release in the dopamine-depleted striatum. Accordingly, toxin lesion or pharmacological silencing of serotonin neurons suppressed LID in the rat and monkey models of Parkinson's disease. However, 5-HT1 receptor agonists were also found to partially reduce the therapeutic effect of L-DOPA. In this study, we evaluated whether enhancement of the serotonin tone induced by the administration of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) could affect induction and expression of LID, as well as the therapeutic effect of L-DOPA, in 6-OHDA-lesioned rats. Drug naïve and L-DOPA-primed 6-OHDA-lesioned rats were chronically treated with a daily injection of L-DOPA (6 mg/kg plus benserazide, s.c.) alone, or in combination with 5-HTP (24-48 mg/kg, i.p.). The abnormal involuntary movements (AIMs) test, as well as the stepping and the motor activity tests, were performed during the chronic treatments. Results showed that 5-HTP reduced the appearance of LID of about 50% at both tested doses. A partial reduction of the therapeutic effect of L-DOPA was seen with the higher but not with the lower dose of 5-HTP. 5-HTP 24 mg/kg was also able to reduce the expression of dyskinesia in L-DOPA-primed dyskinetic rats, to a similar extent than in L-DOPA-primed rats. Importantly, the antidyskinetic effect of 5-HTP 24 mg/kg does not appear to be due to a competition with L-DOPA for crossing the blood-brain barrier; in fact, similar L-DOPA striatal levels were found in L-DOPA only and L-DOPA plus 5-HTP 24 mg/kg treated animals. These data further confirm the involvement of the serotonin system in the appearance of LID, and suggest that 5-HTP may be useful to counteract the appearance of dyskinesia in Parkinson's disease patients.

  12. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson's disease: a dose-finding study.

    PubMed

    Svenningsson, Per; Rosenblad, Carl; Af Edholm Arvidsson, Karolina; Wictorin, Klas; Keywood, Charlotte; Shankar, Bavani; Lowe, David A; Björklund, Anders; Widner, Håkan

    2015-04-01

    In advanced stages of Parkinson's disease, serotonergic terminals take up L-DOPA and convert it to dopamine. Abnormally released dopamine may participate in the development of L-DOPA-induced dyskinesias. Simultaneous activation of 5-HT1A and 5-HT1B receptors effectively blocks L-DOPA-induced dyskinesias in animal models of dopamine depletion, justifying a clinical study with eltoprazine, a 5-HT1A/B receptor agonist, against L-DOPA-induced dyskinesias in patients with Parkinson's disease. A double-blind, randomized, placebo-controlled and dose-finding phase I/IIa study was conducted. Single oral treatment with placebo or eltoprazine, at 2.5, 5 and 7.5 mg, was tested in combination with a suprathreshold dose of L-DOPA (Sinemet®) in 22 patients with Parkinson's disease (16 male/six female; 66.6 ± 8.8 years old) with L-DOPA-induced dyskinesias. A Wilcoxon Signed Ranked Test was used to compare each eltoprazine dose level to paired randomized placebo on the prespecified primary efficacy variables; area under the curve scores on Clinical Dyskinesia Rating Scale for 3 h post-dose and maximum change of Unified Parkinson's Disease Rating Scale part III for 3 h post-dose. Secondary objectives included effects on maximum Clinical Dyskinesia Rating Scale score, area under the curve of Rush Dyskinesia Rating Scale score for 3 h post-dose, mood parameters measured by Hospital Anxiety Depression Scale and Montgomery Asberg Depression Rating Scale along with the pharmacokinetics, safety and tolerability profile of eltoprazine. A mixed model repeated measures was used for post hoc analyses of the area under the curve and peak Clinical Dyskinesia Rating Scale scores. It was found that serum concentrations of eltoprazine increased in a dose-proportional manner. Following levodopa challenge, 5 mg eltoprazine caused a significant reduction of L-DOPA-induced dyskinesias on area under the curves of Clinical Dyskinesia Rating Scale [-1.02(1.49); P = 0.004] and Rush Dyskinesia Rating

  13. Neuroprotective effect of lycopene against MPTP induced experimental Parkinson's disease in mice.

    PubMed

    Prema, Asokan; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Thenmozhi, Arokiasamy Justin

    2015-07-10

    Parkinson's disease (PD) is the second most common neurodegenerative disorder that mainly affects the movement of the aged populations. Lycopene is a carotenoid with unique pharmacological properties and its efficacy on experimental Hunginton's disease and brain ischemia has shown intense neuroprotective effects. The present study was aimed to explore the neuroprotective effect of lycopene against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mice. Administration of lycopene (5, 10 and 20 mg/kg/day orally) protected MPTP induced depletion of striatal dopamine (DA) and its metabolites in a dose dependent manner. It also attenuated MPTP-induced oxidative stress and motor abnormalities seen in PD mice. Our western blot studies showed that treatment with lycopene reversed MPTP induced apoptosis may be due to its antioxidant and antiapoptotic properties. As to conclude, lycopene reverses neurochemical deficts, oxidative stress, apoptosis and physiological abnormalities in PD mice and offer promise strategy in the treatment of this neurodegenerative disease.

  14. Cerebellar and Motor Cortical Transcranial Stimulation Decrease Levodopa-Induced Dyskinesias in Parkinson's Disease.

    PubMed

    Ferrucci, Roberta; Cortese, Francesca; Bianchi, Marta; Pittera, Dario; Turrone, Rosanna; Bocci, Tommaso; Borroni, Barbara; Vergari, Maurizio; Cogiamanian, Filippo; Ardolino, Gianluca; Di Fonzo, Alessio; Padovani, Alessandro; Priori, Alberto

    2016-02-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique for inducing prolonged functional changes in the human cerebral cortex. This simple and safe neurostimulation technique for modulating motor functions in Parkinson's disease could extend treatment option for patients with movement disorders. We assessed whether tDCS applied daily over the cerebellum (cerebellar tDCS) and motor cortex (M1-tDCS) improves motor and cognitive symptoms and levodopa-induced dyskinesias in patients with Parkinson's disease (PD). Nine patients (aged 60-85 years; four women; Hoehn & Yahr scale score 2-3) diagnosed as having idiopathic PD were recruited. To evaluate how tDCS (cerebellar tDCS or M1-tDCS) affects motor and cognitive function in PD, we delivered bilateral anodal (2 mA, 20 min, five consecutive days) and sham tDCS, in random order, in three separate experimental sessions held at least 1 month apart. In each session, as outcome variables, patients underwent the Unified Parkinson's Disease Rating Scale (UPDRS III and IV) and cognitive testing before treatment (baseline), when treatment ended on day 5 (T1), 1 week later (T2), and then 4 weeks later (T3), at the same time each day. After patients received anodal cerebellar tDCS and M1-tDCS for five days, the UPDRS IV (dyskinesias section) improved (p < 0.001). Conversely, sham tDCS, cerebellar tDCS, and M1-tDCS left the other variables studied unchanged (p > 0.05). Despite the small sample size, our preliminary results show that anodal tDCS applied for five consecutive days over the motor cortical areas and cerebellum improves parkinsonian patients' levodopa-induced dyskinesias.

  15. Blink reflex in Parkinson's disease with levodopa-induced dyskinesia.

    PubMed

    Iriarte, L M; Chacon, J; Madrazo, J; Chaparro, P

    1989-01-01

    We have studied the electrically evoked blink reflex (R1 and R2 components) in 40 parkinsonian patients with levodopa-induced dyskinesia (15 with facial dyskinesia, 13 with limb-truncal dyskinesia and 12 with mixed dyskinesia). R2 latencies (both ipsilateral and contralateral) were significantly prolonged in dyskinetic patients. These findings are indicative of decreased excitability of brainstem interneurones in the dyskinetic parkinsonians. We found no correlation between the neurophysiological pattern of blink reflex and the localization of dyskinesia.

  16. Treatment of drug-induced seizures.

    PubMed

    Chen, Hsien-Yi; Albertson, Timothy E; Olson, Kent R

    2016-03-01

    Seizures are a common complication of drug intoxication, and up to 9% of status epilepticus cases are caused by a drug or poison. While the specific drugs associated with drug-induced seizures may vary by geography and change over time, common reported causes include antidepressants, stimulants and antihistamines. Seizures occur generally as a result of inadequate inhibitory influences (e.g., gamma aminobutyric acid, GABA) or excessive excitatory stimulation (e.g. glutamate) although many other neurotransmitters play a role. Most drug-induced seizures are self-limited. However, status epilepticus occurs in up to 10% of cases. Prolonged or recurrent seizures can lead to serious complications and require vigorous supportive care and anticonvulsant drugs. Benzodiazepines are generally accepted as the first line anticonvulsant therapy for drug-induced seizures. If benzodiazepines fail to halt seizures promptly, second line drugs include barbiturates and propofol. If isoniazid poisoning is a possibility, pyridoxine is given. Continuous infusion of one or more anticonvulsants may be required in refractory status epilepticus. There is no role for phenytoin in the treatment of drug-induced seizures. The potential role of ketamine and levetiracetam is promising but not established.

  17. Neuroprotective effects of madecassoside in early stage of Parkinson's disease induced by MPTP in rats.

    PubMed

    Xu, Chang-Liang; Qu, Rong; Zhang, Jin; Li, Lu-Fan; Ma, Shi-Ping

    2013-10-01

    In this study, we investigated the neuroprotective effects of madecassoside, isolated from the Chinese medicinal herb Centella asiatica, in the rat model of early phase of parkinsonism. During intragastric administrations of madecassoside for 7 days, the rats were injected with MPTP on the 7th day. And for the following 14 days, madecassoside were also administered. On the 14th day, the behavioral tests were assessed after 1h of administration. And then, the rats were sacrificed, substantia nigra and striatum were dissected. The content of DA, MDA, GSH, and Bcl-2/Bax gene expression levels and BDNF protein level was determined. Treatment with madecassoside was found to improve locomotor dysfunction and to protect dopaminergic neuron by antagonizing MPTP induced neurotoxicity. Madecassoside significantly attenuated the MPTP-induced reduction of dopamine in the striatum. The MDA contents were significantly decreased while the GSH levels, Bcl-2/Bax ratio and protein expression of BDNF were significantly increased in madecassoside treated groups. These results indicated that madecassoside was effective in recovering MPTP-induced early signs of parkinsonism via its neuroprotective effects including reversing the depletion of DA, antioxidant activity, increasing ratio of Bcl-2/Bax, increasing protein expression of BDNF.

  18. Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson's Disease Drug Candidate ZM241385

    PubMed Central

    Wang, Zhiyun; Che, Pao-Lin; Du, Jian; Ha, Barbara; Yarema, Kevin J.

    2010-01-01

    Background This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD). Methodology and Principal Findings SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth. Conclusions and Significance When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders. PMID:21079735

  19. Non-steroidal drug-induced glaucoma

    PubMed Central

    Razeghinejad, M R; Pro, M J; Katz, L J

    2011-01-01

    Numerous systemically used drugs are involved in drug-induced glaucoma. Most reported cases of non-steroidal drug-induced glaucoma are closed-angle glaucoma (CAG). Indeed, many routinely used drugs that have sympathomimetic or parasympatholytic properties can cause pupillary block CAG in individuals with narrow iridocorneal angle. The resulting acute glaucoma occurs much more commonly unilaterally and only rarely bilaterally. CAG secondary to sulfa drugs is a bilateral non-pupillary block type and is due to forward movement of iris–lens diaphragm, which occurs in individuals with narrow or open iridocorneal angle. A few agents, including antineoplastics, may induce open-angle glaucoma. In conclusion, the majority of cases with glaucoma secondary to non-steroidal medications are of the pupillary block closed-angle type and preventable if the at-risk patients are recognized and treated prophylactically. PMID:21637303

  20. Drug-induced liver injury and drug development: industry perspective.

    PubMed

    Regev, Arie

    2014-05-01

    Despite intensive ongoing research, drug-induced live injury (DILI) remains a serious issue for care providers and patients, and has been a major cause of drug withdrawal and non-approval by regulatory authorities in the past 50 years. Consequently, DILI remains a major concern for the pharmaceutical industry and a leading cause for attrition during drug development. In most instances, severe DILI is an uncommon idiosyncratic reaction, which typically does not present during preclinical phases or early clinical phases of drug development. In the majority of cases, drugs that caused severe DILI in humans have not shown clear and consistent hepatotoxic signals in preclinical assessment including animal studies, cell cultures, or other methods. Despite intensive efforts to develop better biomarkers that would help in predicting DILI risk in earlier phases of drug development, such biomarkers are currently not supported by sufficient evidence and are not yet available for routine use by drug makers. Due to the lack of effective and accurate methods for prediction of idiosyncratic DILI during preclinical phases of drug development, different drug makers have adopted different approaches, which are often not supported by strong systematic evidence. Based on growing experience, it is becoming increasingly evident that milder forms of liver injury occurring during clinical development, when assessed correctly, may significantly enhance our ability to predict the drug's potential to cause more severe liver injury postmarketing. Strategies based on this concept have been adopted by many drug makers, and are being increasingly implemented during drug development. Meticulous causality assessment of individual hepatic cases and adherence to strict hepatic discontinuation rules are critical components of this approach and have to rely on thorough clinical evaluation and occasionally on assessment by liver experts experienced with DILI and drug development.

  1. Intranigral administration of substance P receptor antagonist attenuated levodopa-induced dyskinesia in a rat model of Parkinson's disease.

    PubMed

    Yang, Xinxin; Zhao, Hui; Shi, Hongjuan; Wang, Xiaoying; Zhang, Shenyang; Zhang, Zunsheng; Zu, Jie; Zhang, Wei; Shen, Xia; Cui, Guiyun; Hua, Fang

    2015-09-01

    Levodopa (L-dopa) remains the most effective drug in the treatment of Parkinson's disease (PD). However, L-dopa-induced dyskinesia (LID) has hindered its use for PD patients. The mechanisms of LID are not fully understood. Substance P (SP) receptor antagonist has been shown to reduce parkinsonism in animal models of PD, and ameliorate LID in PD rats. But the concrete mechanism is not fully understood. To address this issue, we produced a rat model of PD using 6-hydroxydompamine (6-OHDA) injections, and valid PD rats were intranigrally administrated with different doses of SP receptor antagonist LY303870 (5 nmol/day, 10 nmol/day and 20 nmol/day) following L-dopa (6 mg/kg/day, i.p.) plus benserazide (12 mg/kg/day, i.p.) for 23 days. We found that nigral SP levels were increased on days 3, 7 and 14 and decreased on day 21 after 6-hydroxydompamine lesions. But nigral SP levels kept increasing after repeated L-dopa administration in PD rats. Intranigral administration of low and moderate LY303870 reduced abnormal involuntary movements (AIMs) while improving motor deficits in PD rats treated with L-dopa plus benserazide. Microdialysis revealed that LY303870 (10 nmol/day) treatment attenuated the increase of striatal dopamine and the reduction of γ-aminobutyric acid in ventromedial thalamus of PD rats primed with L-dopa. Additionally, LY303870 (10 nmol/day) treatment prior to L-dopa administration reduced the phosphorylated levels of dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa at Thr 34 and extracellular signal-regulated kinases 1/2 as well as the levels of activity-regulated cytoskeleton-associated protein and Penk in L-dopa-primed PD rats. Taken together, these data showed that low and moderate SP receptor antagonists LY303870 could ameliorate LID via neurokinin 1 receptor without affecting therapeutic effect of L-dopa.

  2. Azithromycin induced bullous fixed drug eruption.

    PubMed

    Das, Anupam; Sancheti, Karan; Podder, Indrashis; Das, Nilay Kanti

    2016-01-01

    Fixed drug eruption (FDE) is a common type of drug eruption seen in skin clinics. It is characterized by solitary or multiple, round to oval erythematous patches with dusky red centers, some of which may progress to bulla formation. Bullous FDE may be caused by a number of drugs. We hereby describe a case of azithromycin-induced bullous FDE; to the best of our knowledge, this is the first such case being reported.

  3. Acemetacin-induced fixed drug eruption.

    PubMed

    Cebeci, Filiz; Yaşar, Şirin; Aytekin, Sema; Güneş, Pembegül

    2016-01-01

    Fixed drug eruption (FDE) is an adverse effect observed with various drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs) and various antibiotics. Acemetacin, a prodrug of indomethacin, is an NSAID licensed for use in rheumatic disease and other musculoskeletal disorders. We present a case of acemetacin-induced FDE in a 49-year-old woman. To the best of our knowledge, this is the second case report detailing clinical and histopathological findings of a patient with FDE caused by acemetacin.

  4. Drug-induced photosensitivity: culprit drugs, management and prevention.

    PubMed

    Drucker, Aaron M; Rosen, Cheryl F

    2011-10-01

    Photo-induced drug eruptions are cutaneous adverse events due to exposure to a drug and either ultraviolet or visible radiation. Based on their pathogenesis, they can be classified as phototoxic or photoallergic drug eruptions, although in many cases it is not possible to determine whether a particular eruption is due to a phototoxic or photoallergic mechanism. In this review, the diagnosis, prevention and management of drug-induced photosensitivity are discussed. Diagnosis is based primarily on the history of drug intake and the clinical appearance of the eruption, primarily affecting sun-exposed areas of the skin. Phototesting and photopatch testing can be useful adjuncts in making a diagnosis. The mainstay of management is prevention, including informing patients of the possibility of increased sun sensitivity and the use of sun protective measures. However, once the eruption has occurred, it may be necessary to discontinue the culprit medication and treat the eruption with a potent topical corticosteroid. Drugs that have been implicated in causing photosensitive eruptions are reviewed. Tetracycline, doxycycline, nalidixic acid, voriconazole, amiodarone, hydrochlorothiazide, naproxen, piroxicam, chlorpromazine and thioridazine are among the most commonly implicated medications. We review the medical literature regarding evidence for the culpability of each drug, including the results of phototesting, photopatch testing and rechallenge testing.

  5. Drug-induced immune neutropenia/agranulocytosis.

    PubMed

    Curtis, Brian R

    2014-01-01

    Neutrophils are the most abundant white blood cell in blood and play a critical role in preventing infections as part of the innate immune system. Reduction in neutrophils below an absolute count of 500 cells/pL is termed severe neutropenia or agranulocytosis. Drug-induced immune neutropenia (DIIN) occurs when drug-dependent antibodies form against neutrophil membrane glycoproteins and cause neutrophil destruction. Affected patients have fever, chills, and infections; severe infections left untreated can result in death. Treatment with granulocyte colony-stimulating factor can hasten neutrophil recovery. Cumulative data show that severe neutropenia or agranulocytosis associated with exposure to nonchemotherapy drugs ranges from approximately 1.6 to 15.4 cases per million population per year. Drugs most often associated with neutropenia or agranulocytosis include dipyrone, diclofenac, ticlopidine, calcium dobesilate, spironolactone, antithyroid drugs (e.g., propylthiouracil), carbamazepine, sulfamethoxazole- trimethoprim, [3-lactam antibiotics, clozapine, levamisole, and vancomycin. Assays used for detection of neutrophil drug-dependent antibodies (DDAbs) include flow cytometry, monoclonal antibody immobilization of granulocyte antigens, enzyme-linked immunosorbent assay, immunoblotting, granulocyte agglutination, and granulocytotoxicity. However, testing for neutrophil DDAbs is rarely performed owing to its complexity and lack of availability. Mechanisms proposed for DIIN have not been rigorously studied, but those that have been studied include drug- or hapten-induced antibody formation and autoantibody production against drug metabolite or protein adducts covalently attached to neutrophil membrane proteins. This review will address acute, severe neutropenia caused by neutrophil-reactive antibodies induced by nonchemotherapy drugs-DIIN

  6. Promise of Neurorestoration and Mitochondrial Biogenesis in Parkinson's Disease with Multi Target Drugs: An Alternative to Stem Cell Therapy

    PubMed Central

    Oh, Young J.

    2013-01-01

    There is an unmet need in progressive neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. The present therapeutics for these diseases at best is symptomatic and is not able to delay disease or possess disease modifying activity. Thus an approach to drug design should be made to slow or halt progressive course of a neurological disorder by interfering with a disease-specific pathogenetic process. This would entail the ability of the drug to protect neurons by blocking the common pathway for neuronal injury and cell death and the ability to promote regeneration of neurons and restoration of neuronal function. We have now developed a number of multi target drugs which possess neuroprotective, and neurorestorative activity as well as being able to active PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α), SIRT1 (NAD-dependent deacetylase protein) and NTF (mitochondrial transcription factor) that are intimately associated with mitochondrial biogenesis. PMID:24167412

  7. The discovery of drug-induced illness.

    PubMed

    Jick, H

    1977-03-03

    The increased use of drugs (and the concurrent increased risks of drug-induced illness) require definition of relevant research areas and strategy. For established marketed drugs, research needs depend on the magnitudes of risk of an illness from a drug and the base-line risk. With the drug risk high and the base-line risk low, the problem surfaces in premarketing studies or through the epidemic that develops after marketing. If the drug adds slightly to a high base-line risk, the effect is undetectable. When both risks are low, adverse effects can be discovered by chance, but systematic case-referent studies can speed discovery. If both risks are high, clinical trials and nonexperimental studies may be used. With both risks intermediate, systematic evaluations, especially case-referent studies are needed. Newly marketed drugs should be routinely evaluated through compulsory registration and follow-up study of the earliest users.

  8. Parkinson disease drug screening based on the interaction between D(2) dopamine receptor and beta-arrestin 2 detected by capillary zone electrophoresis.

    PubMed

    Zhou, Zheng; Liao, Jun-Ming; Zhang, Peng; Fan, Jun-Bao; Chen, Jie; Liang, Yi

    2011-11-01

    Parkinson's disease is the second most common neurodegenerative disease in the world. Beta-arrestin-2 has been reported to be an important protein involved in D(2) dopamine receptor desensitization, which is essential to Parkinson's disease. Moreover, the potential value of pharmacological inactivation of G protein-coupled receptor kinase or arrestin in the treatment of patients with Parkinson's disease has recently been shown. We studied the interaction between D(2) dopamine receptor and beta-arrestin-2 and the pharmacological regulation of chemical compounds on such interaction using capillary zone electrophoresis. The results from screening more than 40 compounds revealed three compounds that remarkably inhibit the beta-arrestin-2/D(2) dopamine receptor interaction among them. These compounds are promising therapies for Parkinson's disease, and the method used in this study has great potential for application in large-scale drug screening and evaluation.

  9. [Therapeutic effect of a natural squamosamide derivative FLZ on Parkinson's disease model mice induced by LPS plus MPTP].

    PubMed

    Yu, Ling-Hong; Wei, Huai-Ling; Bao, Xiu-Qi; Zhang, Dan; Sun, Hua

    2013-10-01

    The aim of this study is to investigate the protective effect of N-[2-(4-hydroxyphenyl)ethyl]-2-(2, 5-dimethoxyphenyl)-3-(3-methoxy-4-hydroxyphenyl)acrylamide (FLZ), a novel synthetic squamosamide cyclic derivative, against Parkinson's disease (PD) model mice induced by the inflammatory bacterial endotoxin, lipopolysaccharides (LPS) and the neurotoxin 1-methy-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). C57/BL mice were ip injected LPS (5 mg x kg(-1)) once. One week following the LPS injection, mice received a subcutaneous injection of MPTP (25 mg x kg(-1)) once daily for 2 days. Eight weeks later, FLZ (25, 50 and 75 mg x kg(-1)) was orally administered to mice once daily for 60 days. The motor ability of the mice was evaluated by rod climbing test and footprint test. The dopamine (DA) levels in mouse striatum were determined by high performance liquid chromatography system. The tyrosine hydroxylase (TH)-positive cells were showed by immunohistochemical analysis. FLZ treatment significantly improved motor dysfunction of mice challenged by LPS plus MPTP. The increase of TH-positive cell numbers and elevation of DA levels may be contributed to the beneficial effects of FLZ on motor behavior. This study showed FLZ has significant therapeutic effect on LPS plus MPTP induced chronic PD model, which indicates its potential as a new candidate drug to treat PD.

  10. Tranexamic Acid-Induced Fixed Drug Eruption

    PubMed Central

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary. PMID:26288438

  11. Tranexamic Acid-Induced Fixed Drug Eruption.

    PubMed

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  12. Amantadine extended release for levodopa-induced dyskinesia in Parkinson's disease (EASED Study).

    PubMed

    Pahwa, Rajesh; Tanner, Caroline M; Hauser, Robert A; Sethi, Kapil; Isaacson, Stuart; Truong, Daniel; Struck, Lynn; Ruby, April E; McClure, Natalie L; Went, Gregory T; Stempien, Mary Jean

    2015-05-01

    ADS-5102 is a long-acting, extended-release capsule formulation of amantadine HCl administered once daily at bedtime. This study investigated the safety, efficacy, and tolerability of ADS-5102 in Parkinson's disease (PD) patients with levodopa-induced dyskinesia. This was a randomized, double-blind, placebo-controlled, parallel-group study of 83 PD patients with troublesome dyskinesia assigned to placebo or one of three doses of ADS-5102 (260 mg, 340 mg, 420 mg) administered daily at bedtime for 8 weeks. The primary efficacy analysis compared change from baseline to week 8 in Unified Dyskinesia Rating Scale (UDysRS) total score for 340 mg ADS-5102 versus placebo. Secondary outcome measures included change in UDysRS for 260 mg, 420 mg, Fatigue Severity Scale (FSS), Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS), patient diary, Clinician's Global Impression of Change, and Parkinson's Disease Questionnaire (PDQ-39). ADS-5102 340 mg significantly reduced dyskinesia versus placebo (27% reduction in UDysRS, P = 0.005). In addition, ADS-5102 significantly increased ON time without troublesome dyskinesia, as assessed by PD patient diaries, at 260 mg (P = 0.004), 340 mg (P = 0.008) and 420 mg (P = 0.018). Adverse events (AEs) were reported for 82%, 80%, 95%, and 90% of patients in the placebo, 260-mg, 340-mg, and 420-mg groups, respectively. Constipation, hallucinations, dizziness, and dry mouth were the most frequent AEs. Study withdrawal rates were 9%, 15%, 14%, and 40% for the placebo, 260-mg, 340-mg, and 420-mg groups, respectively. All study withdrawals in the active treatment groups were attributable to AEs. ADS-5102 was generally well tolerated and resulted in significant and dose-dependent improvements in dyskinesia in PD patients.

  13. Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity.

    PubMed

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-08-02

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD.

  14. Dopamine mediated iron release from ferritin is enhanced at higher temperatures: Possible implications for fever-induced Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Babincová, Melánia; Babinec, Peter

    2005-05-01

    A new molecular mechanism is proposed to explain the pathogenesis of fever-induced Parkinson's disease. This proposal is based on dopamine and 6-hydroxydopamine-mediated free iron release from ferritin magnetic nanoparticles, which is enhanced at higher temperatures, and which may lead to substantial peroxidation and injury of lipid biomembranes of the substantia nigra in the brain.

  15. Parkinson's Disease

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Parkinson's Disease KidsHealth > For Kids > Parkinson's Disease A A ... symptoms of something called Parkinson's disease. What Is Parkinson's Disease? You may have seen the actor Michael ...

  16. Amantadine extended release for levodopa‐induced dyskinesia in Parkinson's disease (EASED Study)

    PubMed Central

    Tanner, Caroline M.; Hauser, Robert A.; Sethi, Kapil; Isaacson, Stuart; Truong, Daniel; Struck, Lynn; Ruby, April E.; McClure, Natalie L.; Went, Gregory T.; Stempien, Mary Jean

    2015-01-01

    Abstract ADS‐5102 is a long‐acting, extended‐release capsule formulation of amantadine HCl administered once daily at bedtime. This study investigated the safety, efficacy, and tolerability of ADS‐5102 in Parkinson's disease (PD) patients with levodopa‐induced dyskinesia. This was a randomized, double‐blind, placebo‐controlled, parallel‐group study of 83 PD patients with troublesome dyskinesia assigned to placebo or one of three doses of ADS‐5102 (260 mg, 340 mg, 420 mg) administered daily at bedtime for 8 weeks. The primary efficacy analysis compared change from baseline to week 8 in Unified Dyskinesia Rating Scale (UDysRS) total score for 340 mg ADS‐5102 versus placebo. Secondary outcome measures included change in UDysRS for 260 mg, 420 mg, Fatigue Severity Scale (FSS), Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS‐UPDRS), patient diary, Clinician's Global Impression of Change, and Parkinson's Disease Questionnaire (PDQ‐39). ADS‐5102 340 mg significantly reduced dyskinesia versus placebo (27% reduction in UDysRS, P = 0.005). In addition, ADS‐5102 significantly increased ON time without troublesome dyskinesia, as assessed by PD patient diaries, at 260 mg (P = 0.004), 340 mg (P = 0.008) and 420 mg (P = 0.018). Adverse events (AEs) were reported for 82%, 80%, 95%, and 90% of patients in the placebo, 260‐mg, 340‐mg, and 420‐mg groups, respectively. Constipation, hallucinations, dizziness, and dry mouth were the most frequent AEs. Study withdrawal rates were 9%, 15%, 14%, and 40% for the placebo, 260‐mg, 340‐mg, and 420‐mg groups, respectively. All study withdrawals in the active treatment groups were attributable to AEs. ADS‐5102 was generally well tolerated and resulted in significant and dose‐dependent improvements in dyskinesia in PD patients. © 2015 Adamas Pharmaceuticals, Inc. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and

  17. Remission-inducing drugs in rheumatoid arthritis.

    PubMed Central

    Anastassiades, T. P.

    1980-01-01

    The administration of certain drugs to patients with established rheumatoid arthritis frequently results in improvement that is slow to appear but persists for long periods, even after the drug is discontinued. The three main drugs with this effect, whose efficacy and toxicity are reviewed in this paper, are gold salts, D-penicillamine and chloroquine. The cytotoxic agents used to treat rheumatoid arthritis, which likely have nonspecific anti-inflammatory actions and have serious long-term side effects, are also briefly reviewed. A new drug, levamisole, is currently being tested in patients with rheumatoid arthritis. It is suggested that the time for considering the introduction of a remission-inducing drug in patients with progressive rheumatoid arthritis is after an adequate trial of therapy with salicylates or other nonsteroidal anti-inflammatory agents, or both, and before the oral administration of steroids. It is difficult, however, on the basis of rigorous clinical comparisons, to recommend which of the three main remission-inducing drugs should be tried first, although gold salts have been used the most. Patients who have improved with 6 months of chrysotherapy may continue treatment for at least 3 years, during which time the frequency of mucocutaneous and renal toxic effects will steadily decrease. Some aspects of the medical economics of therapy with remission-inducing drugs for rheumatoid arthritis are discussed. PMID:6768438

  18. Drug-induced rash: nuisance or threat?

    PubMed

    Wick, Jeannette Y

    2013-03-01

    Drug-induced rash is the most commonly reported drug reaction and occurs in a dizzying array of presentations. Changes in lean and fat body tissue, gastrointestinal acid and mucosal permeability, cardiac output, and renal and hepatic metabolism can affect drug absorption, distribution, metabolism, and elimination. Elders may develop cutaneous eruptions from drugs or biologics and be more sensitive to topical medications. Almost all medications have been associated with rash to some degree. Consultant pharmacists should be able to distinguish between the rashes that are uncomfortable from those that are potentially life-threatening. Some drug therapies tend to induce or aggravate "companion" rashes. With select medications, rash is a clinical indicator that the medication is working. Extensive or unusually painful drug-induced skin conditions are rare, but often require fast action by health care providers to direct the patient to life-saving help. Many of these rashes are associated with high mortality, severe complications, and potential chronic disability. Awareness of the drugs that are most likely to cause a rash can help consultant pharmacists work with the clinical team to arrange appropriate care.

  19. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  20. Drug-induced arrhythmia: pharmacogenomic prescribing?

    PubMed Central

    Behr, Elijah R.; Roden, Dan

    2013-01-01

    Drug-induced Torsades de Pointes is a rare, unpredictable, and life-threatening serious adverse event. It can be caused by both cardiac and non-cardiac drugs and has become a major issue in novel drug development and for the regulatory authorities. This review describes the problem, predisposing factors, and the underlying genetic predisposition as it is understood currently. The future potential for pharmacogenomic-guided and personalized prescription to prevent drug-induced Torsades de Pointes is discussed. Database searches utilized reports from www.qtdrugs.org up to January 2012, case reports and articles from www.pubmed.com up to January 2012, and the British National Formulary edition at www.bnf.org. PMID:23091201

  1. Fluconazole-induced Fixed Drug Eruption.

    PubMed

    Gaiser, Cory Allen; Sabatino, Dominick

    2013-03-01

    Triazole antifungals are commonly used in the treatment of oral, esophageal, and vaginal candidiasis. Fluconazole is frequently prescribed as the therapy modality for vaginal fungal infections. On rare occasions, fluconazole has been shown to cause fixed drug eruptions. Lesions of fixed drug eruptions vary in size and number, but have the same general appearance and symptoms. The authors report a case of fluconazole-induced fixed drug eruption in a 24-year-old woman with recurrent vaginal candidiasis. The lesion was initially diagnosed as a spider bite. Topical and oral provocation tests with fluconazole were performed. Topical provocation with petroleum/fluconazole and dimethyl sulfoxide/fluonazole were both negative. Oral provocation was positive, thus confirming the diagnosis of fluconazole-induced fixed drug eruption.

  2. Mechanistic Review of Drug-Induced Steatohepatitis

    PubMed Central

    Schumacher, Justin; Guo, Grace

    2015-01-01

    Drug-induced steatohepatitis is a rare form of liver injury known to be caused by only a handful of compounds. These compounds stimulate the development of steatohepatitis through their toxicity to hepatocyte mitochondria; inhibition of beta-oxidation, mitochondrial respiration, and/or oxidative phosphorylation. Other mechanisms discussed include the disruption of phospholipid metabolism in lysosomes, prevention of lipid egress from hepatocytes, targeting mitochondrial DNA and topoisomerase, decreasing intestinal barrier function, activation of the adenosine pathway, increasing fatty acid synthesis, and sequestration of coenzyme A. It has been found that the majority of compounds that induce steatohepatitis have cationic amphiphilic structures; a lipophilic ring structure with a side chain containing a cationic secondary or tertiary amine. Within the last decade, the ability of many chemotherapeutics to cause steatohepatitis has become more evident coining the term chemotherapy-associated steatohepatitis (CASH). The mechanisms behind drug-induced steatohepatitis are discussed with a focus on cationic amphiphilic drugs and chemotherapeutic agents. PMID:26344000

  3. Drug-induced metabolic syndrome.

    PubMed

    Wofford, Marion R; King, Deborah S; Harrell, T Kristopher

    2006-02-01

    The metabolic syndrome is a cluster of risk factors associated with an increased risk for cardiovascular disease and type 2 diabetes. Based on data from 1988 to 1994, it is estimated that 24% of adults in the United States meet the criteria for diagnosis of the metabolic syndrome. The use of certain medications may increase the risk of the metabolic syndrome by either promoting weight gain or altering lipid or glucose metabolism. Health providers should recognize and understand the risk associated with certain medications and appropriately monitor for changes related to the metabolic syndrome. Careful attention to drug choices should be paid in patients who are overweight or have other risk factors for diabetes or cardiovascular disease.

  4. Dopamine improves exploration after expectancy violations and induces psychotic-like experiences in patients with Parkinson's disease.

    PubMed

    Polner, Bertalan; Moustafa, Ahmed A; Nagy, Helga; Takáts, Annamária; Győrfi, Orsolya; Kéri, Szabolcs

    2016-03-11

    Dopamine neurons are sensitive to novel and rewarding events, and dopamine signals can modulate learning in higher-level brain networks. Additionally, dopamine abnormalities appear to be central to the pathophysiology of schizophrenia spectrum disorders. In this study, we investigate the dopaminergic modulation of schizotypal traits and exploration after expectancy violations in Parkinson's disease (PD) patients on dopamine replacement therapy. Exploration after expectancy violations was measured with a latent inhibition and an anomaly categorisation task. Patients with PD had significantly elevated levels of schizotypy and reduced latent inhibition, relative to the controls. Anomaly categorisation was enhanced at trend level among the patients. Dopaminergic antiparkinsonian drugs showed dose-dependent effects: they induced psychotic-like experiences, and at the same time, they disrupted latent inhibition and made categorisation of anomaly more efficient. Most of these findings were replicated in an independent sample of patients with PD. An up-regulated dopamine system in medicated PD patients might tune higher-level brain networks to engage in learning when faced with unexpected information, and therefore hasten the updating of internal models.

  5. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson's disease model induced by MPTP via chelating iron.

    PubMed

    Wang, Y-Q; Wang, M-Y; Fu, X-R; Peng-Yu; Gao, G-F; Fan, Y-M; Duan, X-L; Zhao, B-L; Chang, Y-Z; Shi, Z-H

    2015-01-01

    Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP(+)-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases.

  6. Modafinil-induced Fixed Drug Eruption.

    PubMed

    Gaikwad, Girish Vasant; Dhuri, Chetali Vijay

    2012-10-01

    Modafinil is a stimulant drug widely used to promote wakefulness in a variety of psychiatric and neurological conditions. Modafinil-induced severe dermatologic reactions are uncommon but serious side effects. We report a patient who developed fixed drug eruption after exposure to a single dose of tablet modafinil. On assessment using the Naranjo scale, the score was five, which made us conclude that modafinil was the "probable" cause of the patient's adverse drug event. This case report highlights the need to be alert toward the emergence of dermatologic side effects among patients taking modafinil.

  7. California’s Parkinson’s Disease Registry Pilot Project - Coordination Center and Northern California Ascertainment

    DTIC Science & Technology

    2014-03-01

    d. Review and determination of study diagnosis. For cases with multiple parkinsonism codes (i.e. diagnosed with more than one of 332.0, 333.0...individuals (10.7%) had ICD-9 codes for other forms of neurodegenerative parkinsonism . The remaining 2.1% were primarily drug- induced parkinsonism ...55.7%) Group 3 Parkinsonism n=694 (6.6%) Prevalent in 2007 n=139 (32.7%) Prevalent in 2007 n=181 (26.1%) Prevalent in 2007 n=123 (55.4

  8. A single-center, cross-sectional prevalence study of impulse control disorders in Parkinson disease: association with dopaminergic drugs.

    PubMed

    Poletti, Michele; Logi, Chiara; Lucetti, Claudio; Del Dotto, Paolo; Baldacci, Filippo; Vergallo, Andrea; Ulivi, Martina; Del Sarto, Simone; Rossi, Giuseppe; Ceravolo, Roberto; Bonuccelli, Ubaldo

    2013-10-01

    The current study aimed at establishing the prevalence of impulse control disorders (ICDs) in patients with Parkinson disease (PD) and their association with demographic, drug-related, and disease-related characteristics. We performed a single-center cross-sectional study of 805 PD patients. Impulse control disorders were investigated with the Questionnaire for Impulsive Compulsive Disorders in Parkinson's Disease; also comorbid neuropsychiatric complications (dementia, delusions, visual hallucinations) were investigated with clinical interviews and ad hoc instruments (Parkinson Psychosis Questionnaire and Neuropsychiatry Inventory). Impulse control disorders were identified in 65 patients (prevalence, 8.1%), with pathological gambling and hypersexuality the most frequent. Impulse control disorders were present in 57 of 593 cognitively preserved patients (prevalence, 9.6%) and in 8 of 212 demented patients (prevalence, 3.8%). Impulse control disorders were significantly associated with dopamine agonists (odds ratio [OR], 5.50; 95% confidence interval [CI], 2.60-12.46; P < 0.0001) and levodopa (OR, 2.43; 95% CI, 1.06-6.35; P = 0.034). Impulse control disorders frequency was similar for pramipexole and ropinirole (16.6% vs 12.5%; OR, 1.45; 95% CI, 0.79-2.74; P = 0.227). Additional variables associated with ICDs were male sex and younger age. These findings suggested that dopaminergic treatments in PD are associated with increased odds of having an ICD, but also other demographic and clinical variables are associated with ICDs, suggesting the multifactorial nature of the ICD phenomenon in PD.

  9. The relationship between the phenotype of Parkinson's disease and levodopa-induced dyskinesia.

    PubMed

    Zhang, Yu-Han; Tang, Bei-Sha; Song, Chen-Yuan; Xu, Qian; Lou, Ming-Xin; Liu, Zhen-Hua; Yu, Ren-He; Yan, Xin-Xiang; Guo, Ji-Feng

    2013-11-27

    Levodopa has been demonstrated to be an effective medication for Parkinson's disease (PD), but its long-term use is complicated by the subsequent development of dyskinesias. Few studies have distinguished distinct PD subtypes associated with the occurrence of Levodopa-Induced Dyskinesia (LID). Therefore, we performed a retrospective analysis to determine if the specific phenotype of PD and other epidemiological factors are associated with the development of LID. Of 367 PD patients taking levodopa, 101 of them developed LID. Multivariate logistic regression analysis demonstrated that initial tremor-dominant manifestation was associated with a reduced risk of LID, independent of other risk factors, such as age at the onset of PD, the duration and dose of levodopa.

  10. [Neurosurgical treatment for dopamine-induced dyskinesias in Parkinson's disease patients].

    PubMed

    Sugiyama, K; Yokoyama, T; Namba, H

    2000-10-01

    The effects of current neurosurgical interventions for levodopa-induced dyskiensias (DID) in Parkinson's disease are reviewed. Thalamotomy has been reported to be effective for DID when the lesions include Vo or CM-Pf nucleus, while thalamic deep brain stimulation(DBS) is less effective than thalamotomy. Both pallidotomy and pallidal DBS are probably the most effective neurosurgical treatment for DID, because they significantly improve all of the DID, including off-period dystonia, without reduction of levodopa dosage. Subthalamic DBS has no direct therapeutic effects on DID, but substantially can improve DID as a result of decreased levodopa dosage. The effects of cerebral transplantation on DID remain undefined. More researches are expected to clarify the pathophysiology of DID.

  11. Synthesis of a Parkinson's Disease Treatment Drug, the "R,R"-Tartrate Salt "of R"-Rasagiline: A Three Week Introductory Organic Chemistry Lab Sequence

    ERIC Educational Resources Information Center

    Aguilar, Noberto; Garcia, Billy; Cunningham, Mark; David, Samuel

    2016-01-01

    A synthesis of the "R,R"-tartrate salt of the popular anti-Parkinson's drug "R"-rasagiline (Azilect) was adapted to introduce the organic laboratory student to a medically relevant synthesis. It makes use of concepts found in the undergraduate organic chemistry curriculum, appropriately fits into three approximately 4 h lab…

  12. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    PubMed

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson's disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson's disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson's disease induced by 6-hydroxydopamine.

  13. [Impaired exercise-induced blood pressure control in patients with Parkinson's disease and related disorders].

    PubMed

    Deguchi, Kazushi

    2013-01-01

    An almost directly proportional increase in blood pressure (BP) and heart rate with exercise intensity has been reported in healthy subjects. In contrast, patients with multiple system atrophy (MSA) and pure autonomic failure (PAF) characterized by autonomic failure exhibit exercise-induced hypotension (EIH), prolonged hypotension following the cessation of exercise and exaggerated orthostatic hypotension after exercise. EIH, which can be the earliest symptom of PAF, provides a clue to the diagnosis of autonomic failure. Exercise-induced hypertension, which may be due to adrenergic receptor supersensitivity, may also be observed. BP during and after exercise was significantly lower in patients with Parkinson's disease (PD) than in healthy subjects. Some PD patients exhibited symptoms related to EIH. PD patients who did not achieve 85% of target HR with treadmill testing lacked BP elevations during sub-maximal and peak exercise. On the other hand, no significant difference was observed in exercise-induced BP elevations between PD patients with and without cardiac sympathetic denervation. Since BP control during exercise in PD was not affected by dosing with levodopa, exercise-related BP abnormalities in PD appear to manifest with the disease. These findings suggest that PD has impaired exercise-induced BP control, but not to the extent of MSA and PAF.

  14. Drug induced acute pancreatitis: incidence and severity.

    PubMed Central

    Lankisch, P G; Dröge, M; Gottesleben, F

    1995-01-01

    To determine the incidence and severity of drug induced acute pancreatitis, data from 45 German centres of gastroenterology were evaluated. Among 1613 patients treated for acute pancreatitis in 1993, drug induced acute pancreatitis was diagnosed in 22 patients (incidence 1.4%). Drugs held responsible were azathioprine, mesalazine/sulfasalazine, 2',3'-dideoxyinosine (ddI), oestrogens, frusemide, hydrochlorothiazide, and rifampicin. Pancreatic necrosis not exceeding 33% of the organ was found on ultrasonography or computed tomography, or both, in three patients (14%). Pancreatic pseudocysts did not occur. A decrease of arterial PO2 reflecting respiratory insufficiency, and an increase of serum creatinine, reflecting renal insufficiency as complications of acute pancreatitis were seen in two (9%) and four (18%) patients, respectively. Artificial ventilation was not needed, and dialysis was necessary in only one (5%) case. Two patients (9%) died of AIDS and tuberculosis, respectively; pancreatitis did not seem to have contributed materially to their death. In conclusion, drugs rarely cause acute pancreatitis, and drug induced acute pancreatitis usually runs a benign course. PMID:7489946

  15. Drug-induced subacute cutaneous lupus erythematosus.

    PubMed

    Callen, J P

    2010-08-01

    Subacute cutaneous lupus erythematosus (SCLE) is a subset of cutaneous lupus erythematosus with unique immunologic and clinical features. The first description dates back to 1985 when a series of five patients were found to have hydrochlorothiazide-induced SCLE. Since that time, at least 40 other drugs have been implicated in the induction of SCLE.

  16. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone.

    PubMed

    Khadrawy, Yasser A; Salem, Ahmed M; El-Shamy, Karima A; Ahmed, Emad K; Fadl, Nevein N; Hosny, Eman N

    2017-09-03

    The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na(+)/K(+)-ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na(+)/K(+)-ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.

  17. Drug-induced, factitious, & idiopathic diarrhoea.

    PubMed

    Abraham, Bincy P; Sellin, Joseph H

    2012-10-01

    The aetiology of diarrhoea can often be simple to identify, but in some cases may pose a challenge. The diagnosis of drug-induced diarrhoea can easily be sorted based on timing of the symptom with onset of a new drug. Treatment can vary from simply monitoring and eventual resolution with continuation of the drug, to discontinuation of the offending agent. In cases where a drug cannot always be stopped, additional medications can help control the symptom. Factitious diarrhoea can present a diagnostic challenge if the evaluating physician does not suspect its possibility. Typically a careful history, and in some cases, stool testing can provide clues. The diagnosis of idiopathic diarrhoea is often made when exhaustive testing provides no definite aetiology and the goal of management is supportive care and symptomatic treatment.

  18. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice.

    PubMed

    Patil, Sachin P; Jain, Pankaj D; Sancheti, Jayant S; Ghumatkar, Priya J; Tambe, Rufi; Sathaye, Sadhana

    2014-11-01

    In the present study, we aim to investigate the neuroprotective and neurotrophic effects of naturally occurring polyphenols like apigenin and luteolin and also to explore the underlying mechanisms with respect to Parkinson's disease (PD). MPTP (25 mg/kg) along with Probenecid (250 mg/kg) was administrated for five consecutive days to induce parkinsonism in mice. Apigenin (5, 10 and 20 mg/kg), luteolin (10 and 20 mg/kg) and Bromocriptine (10 mg/kg) were administrated orally for 26 days including 5 days of pretreatment. Behavioural analysis and biochemical estimation of oxidative stress biomarkers were conducted. Tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and brain derived neurotrophic factor (BDNF) were evaluated in substantia nigra (SN) region of the brain by immunostaining. TNF-α was estimated using ELISA technique. Our results demonstrate that apigenin and luteolin treatment improved the locomotor and muscular activities in MPTP treated mice. TH-positive cells decreased up to 7% in MPTP treated mice compared to normal mice (P < 0.001) and were found to be protected from degeneration in apigenin (69%) and luteolin (63%) treated mice (P < 0.001). Levels of GFAP were found to be decreased in the SN of the brain due to apigenin and luteolin treatment as compared to MPTP mice. BDNF levels were elevated significantly in apigenin and luteolin treatment groups when compared to MPTP treatment mice. In conclusion, apigenin and luteolin protected the dopaminergic neurons probably by reducing oxidative damage, neuroinflammation and microglial activation along with enhanced neurotrophic potential. The above results propose both these flavonoids as promising molecules in the therapeutics of PD.

  19. Broad neuroprotective profile of nicotinamide in different mouse models of MPTP-induced parkinsonism.

    PubMed

    Anderson, D W; Bradbury, K A; Schneider, J S

    2008-08-01

    The factors contributing to substantia nigra pars compacta (SNc) dopamine (DA) neuron death and striatal DA depletion in Parkinson's disease (PD) are still poorly understood. However, mitochondrial dysfunction, cellular energy depletion and oxidative stress appear to play important roles in the pathogenesis of PD. In view of this, the current study examined the potential of nicotinamide, a form of the B-complex vitamin niacin, to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced SNc cell loss and striatal DA depletion in two mouse MPTP models that respond differently to putative neuroprotective agents. Adult male C57Bl/6 mice received nicotinamide (125, 250 or 500 mg/kg i.p.) prior to either acute (four injections in 1 day at 2-h intervals) or sub-acute (two injections per day at 4-h intervals for 5 days) MPTP administration. Striatal DA levels, changes in numbers of tyrosine hydroxylase (TH)- and cresyl violet-stained cells in the SNc at 2 and 6 weeks following the last MPTP exposure were analyzed. Nicotinamide administration resulted in a dose-dependent sparing of striatal DA levels and SNc neurons in acute MPTP-treated animals. Only the highest dose of nicotinamide had similar effects in sub-acute MPTP-treated animals. At 6 weeks after MPTP exposure, there was some spontaneous recovery of striatal DA levels in both models: neuroprotective effects were still apparent in acute but not sub-acute MPTP-treated animals. These results show neuroprotective effects of nicotinamide in different mouse Parkinson models associated with different forms of cell death and suggest that nicotinamide may have broad neuroprotective potential in PD.

  20. Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson's disease in rats.

    PubMed

    Han, Bing; Hu, Jia; Shen, Jingyu; Gao, Yonglin; Lu, Yan; Wang, Tian

    2013-08-15

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting predominantly the dopaminergic mesotelencephalic system. Enormous progress has been made in the treatment of PD. Our previous study has shown that hydroxysafflor yellow A (HSYA) could attenuate the neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. In the present work, we examined whether HSYA had the neuroprotective effect on dopaminergic neurons of substantia nigra in a rat model of PD. Adult Sprague-Dawley rats were unilaterally injected with 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. The PD rats were treated with HSYA (2 or 8 mg/kg) via caudal vein injection daily for 4 weeks. Rotational tests showed that HSYA significantly attenuated apomorphine-induced turns in 6-OHDA-induced PD rats. HSYA treatment resulted in a significant protection against the loss of tyrosine hydroxylase-positive cells. Our data showed that HSYA also increased the levels of dopamine and its metabolites, glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in striatum of PD rats. In conclusion, these results supported a role for HSYA in preserving dopamine neuron integrity and motor function in a rodent model of PD, and implied a potential neuroprotective role for HSYA in this disease.

  1. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer's Disease and Parkinson's Disease: Reconsidering the Role of Neuroinflammation

    PubMed Central

    Moore, Amy H.; Bigbee, Matthew J.; Boynton, Grace E.; Wakeham, Colin M.; Rosenheim, Hilary M.; Staral, Christopher J.; Morrissey, James L.; Hund, Amanda K.

    2010-01-01

    Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases with age as the greatest risk factor. As the general population experiences extended life span, preparation for the prevention and treatment of these and other age-associated neurological diseases are warranted. Since epidemiological studies suggested that non-steroidal anti-inflammatory drug (NSAID) use decreased risk for AD and PD, increasing attention has been devoted to understanding the costs and benefits of the innate neuroinflammatory response to functional recovery following pathology onset. This review will provide a general overview on the role of neuroinflammation in these neurodegenerative diseases and an update on NSAID treatment in recent experimental animal models, epidemiological analyses, and clinical trials. PMID:27713331

  2. Development of inducible leucine-rich repeat kinase 2 (LRRK2) cell lines for therapeutics development in Parkinson's disease.

    PubMed

    Huang, Liang; Shimoji, Mika; Wang, Juan; Shah, Salim; Kamila, Sukanta; Biehl, Edward R; Lim, Seung; Chang, Allison; Maguire-Zeiss, Kathleen A; Su, Xiaomin; Federoff, Howard J

    2013-10-01

    The pathogenic mechanism(s) contributing to loss of dopamine neurons in Parkinson's disease (PD) remain obscure. Leucine-rich repeat kinase 2 (LRRK2) mutations are linked, as a causative gene, to PD. LRRK2 mutations are estimated to account for 10% of familial and between 1 % and 3 % of sporadic PD. LRRK2 proximate single nucleotide polymorphisms have also been significantly associated with idiopathic/sporadic PD by genome-wide association studies. LRRK2 is a multidomain-containing protein and belongs to the protein kinase super-family. We constructed two inducible dopaminergic cell lines expressing either human-LRRK2-wild-type or human-LRRK2-mutant (G2019S). Phenotypes of these LRRK2 cell lines were examined with respect to cell viability, morphology, and protein function with or without induction of LRRK2 gene expression. The overexpression of G2019S gene promoted (1) low cellular metabolic activity without affecting cell viability, (2) blunted neurite extension, and (3) increased phosphorylation at S910 and S935. Our observations are consistent with reported general phenotypes in LRRK2 cell lines by other investigators. We used these cell lines to interrogate the biological function of LRRK2, to evaluate their potential as a drug-screening tool, and to investigate screening for small hairpin RNA-mediated LRRK2 G2019S gene knockdown as a potential therapeutic strategy. A proposed LRRK2 kinase inhibitor (i.e., IN-1) decreased LRRK2 S910 and S935 phosphorylation in our MN9DLRRK2 cell lines in a dose-dependent manner. Lentivirus-mediated transfer of LRRK2 G2019S allele-specific small hairpin RNA reversed the blunting of neurite extension caused by LRRK2 G2019S overexpression. Taken together, these inducible LRRK2 cell lines are suitable reagents for LRRK2 functional studies, and the screening of potential LRRK2 therapeutics.

  3. The skin in Parkinson's disease.

    PubMed

    Flint, A

    1977-09-01

    The characteristic oily skin in individuals with parkinsonism has long been observed by clinicians. The oiliness seems to be associated with periods when the disease is most active. This seborrhea has been observed particularly in post-encephalitic parkinsonism, as well as in idiopathic paralysis agitans. It also occurs in phenothiazine-induced parkinsonism.

  4. Contrasting gene expression patterns induced by levodopa and pramipexole treatments in the rat model of Parkinson's disease.

    PubMed

    Taravini, Irene R; Larramendy, Celia; Gomez, Gimena; Saborido, Mariano D; Spaans, Floor; Fresno, Cristóbal; González, Germán A; Fernández, Elmer; Murer, Mario G; Gershanik, Oscar S

    2016-02-01

    Whether the treatment of Parkinson's disease has to be initiated with levodopa or a D2 agonist like pramipexole remains debatable. Levodopa is more potent against symptoms than D2 agonists, but D2 agonists are less prone to induce motor complications and may have neuroprotective effects. Although regulation of plastic changes in striatal circuits may be the key to their different therapeutic potential, the gene expression patterns induced by de novo treatments with levodopa or D2 agonists are currently unknown. By studying the whole striatal transcriptome in a rodent model of early stage Parkinson's disease, we have identified the gene expression patterns underlying therapeutically comparable chronic treatments with levodopa or pramipexole. Despite the overall relatively small size of mRNA expression changes at the level of individual transcripts, our data show a robust and complete segregation of the transcript expression patterns induced by both treatments. Moreover, transcripts related to oxidative metabolism and mitochondrial function were enriched in levodopa-treated compared to vehicle-treated and pramipexole-treated animals, whereas transcripts related to olfactory transduction pathways were enriched in both treatment groups compared to vehicle-treated animals. Thus, our data reveal the plasticity of genetic striatal networks possibly contributing to the therapeutic effects of the most common initial treatments for Parkinson's disease, suggesting a role for oxidative stress in the long term complications induced by levodopa and identifying previously overlooked signaling cascades as potentially new therapeutic targets.

  5. Effect of memantine on L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson's disease.

    PubMed

    Tronci, E; Fidalgo, C; Zianni, E; Collu, M; Stancampiano, R; Morelli, M; Gardoni, F; Carta, M

    2014-04-18

    An increasing body of experimental evidence demonstrates that the glutamatergic system is involved in the genesis of l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID). Indeed, the N-methyl-d-aspartate (NMDA) receptor antagonist amantadine is the only anti-dyskinetic compound used in patients, albeit with limited efficacy and side effects. In this study, we investigated the anti-dyskinetic properties of memantine, a non-competitive NMDA receptor antagonist in clinical use for the treatment of dementia, in the 6-hydroxy-dopamine (6-OHDA)-lesion rat model of Parkinson's disease. For comparison, parallel experiments were also performed with amantadine. First, we investigated the acute effect of different doses of memantine (5, 10, 15 and 20mg/kg), and amantadine (10, 20, 40, 60mg/kg) on established dyskinesia induced by L-DOPA (6mg/kg plus benserazide). Results showed that both memantine and amantadine produced a significant reduction of LID. Afterward, drug-naïve and L-DOPA-primed 6-OHDA-lesioned rats were sub-chronically treated with daily injections of L-DOPA (6mg/kg plus benserazide) alone, or in combination with the effective doses of memantine, while amantadine was tested in already dyskinetic rats. Results showed that memantine significantly dampened dyskinesia in both drug-naïve and L-DOPA-primed rats, but only during the first few days of administration. In fact, the anti-dyskinetic effect of memantine was completely lost already at the fifth administration, indicating a rapid induction of tolerance. Interestingly, a 3-week washout period was not sufficient to restore the anti-dyskinetic effect of the drug. Similarly, amantadine was able to dampen already established dyskinesia only during the first day of administration. Moreover, memantine partially decreased the therapeutic effect of L-DOPA, as showed by the result of the stepping test. Finally, loss of the anti-dyskinetic effect of memantine was associated to increased synaptic GluN2A/GluN2B

  6. Cerebrospinal fluid levels of catecholamines and its metabolites in Parkinson's disease: Effect of L-DOPA treatment and changes in levodopa-induced dyskinesia.

    PubMed

    Andersen, A D; Blaabjerg, M; Binzer, M; Kamal, A; Thagesen, H; Kjaer, T W; Stenager, E; Gramsbergen, J B

    2017-02-28

    Levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) is the most effective drug in the symptomatic treatment of Parkinson's disease (PD), but chronic use initiates a maladaptive process leading to L-DOPA-induced dyskinesia (LID). Risk factors for early onset LID include younger age, more severe disease at baseline and higher daily L-DOPA dose, but biomarkers to predict the risk of motor complications are not yet available. Here we investigated whether CSF levels of catecholamines and its metabolites are altered in PD patients with LID (PD-LID, n=8)) as compared to non-dyskinetic PD patients receiving L-DOPA (PD-L, n=6), or not receiving L-DOPA (PD-N, n=7) as well as non-PD controls (n=16). PD patients were clinically assessed using the Unified Parkinson's Disease Rating Scale and Unified Dyskinesia Rating Scale and CSF was collected after overnight fasting and 1-2 hours after oral intake of L-DOPA or other anti-Parkinson medication. CSF catecholamines and its metabolites were analyzed by HPLC with electrochemical detection. We observed (1) decreased levels of dihydroxyphenylacetic acid and homovanillic acid in PD patients not receiving L-DOPA (2) higher DA levels in LID as compared to controls (3) higher DA/L-DOPA and lower DOPAC/DA ratio's in LID as compared to PDL and (4) an age-dependent increase of DA and decrease of DOPAC/DA ratio in controls. These results suggest increased DA release from non-DA cells and deficient DA re-uptake in PD-LID. Monitoring DA and DOPAC in CSF of L-DOPA-treated PD patients may help identify patients at risk of developing LID. This article is protected by copyright. All rights reserved.

  7. Insulin-like growth factor-1 and progression of motor symptoms in early, drug-naïve Parkinson's disease.

    PubMed

    Picillo, Marina; Erro, Roberto; Santangelo, Gabriella; Pivonello, Rosario; Longo, Katia; Pivonello, Claudia; Vitale, Carmine; Amboni, Marianna; Moccia, Marcello; Colao, Annamaria; Barone, Paolo; Pellecchia, Maria Teresa

    2013-07-01

    Much pre-clinical evidence show that insulin-like growth factor 1 (IGF-1) provides protection against loss of dopaminergic neurons. Recently, IGF-1 has been proposed as a possible biomarker for early diagnosis of Parkinson's disease (PD). We aimed to assess the relationship between serum IGF-1 levels and progression of motor symptoms in a cohort of drug-naïve PD patients. Serum IGF-1 was measured at baseline in 37 early, drug-naive PD patients; subsequently, patients were evaluated "on drug" by means of UPDRS-III, UPDRS dopa-resistant score and dopaminergic score at 12, 18 and 24 month follow-up. Repeated measures ANOVA was used both to evaluate progression of motor scores within time and differences between serum IGF-1 quartiles, age at onset and motor phenotype. Patients at the highest IGF-1 quartile were found to have significantly higher UPDRS-III (p < 0.001) and dopaminergic score (p < 0.001), as compared to patients at other quartiles. Mean serum IGF-1 level was moderately increased in PD as compared to healthy controls (p < 0.011). IGF-1 levels are related to those symptoms predominantly responsive to dopaminergic treatment. This is the first study to demonstrate a relationship between serum IGF-1 and progression of motor symptoms in the early stage of disease.

  8. James Parkinson: Parkinson's disease.

    PubMed

    Ellis, Harold

    2013-11-01

    Parkinson's disease is a condition that anyone with a modicum of medical knowledge can recognise in the street--as indeed how it was studied by James Parkinson himself. Its three characteristic features are: 1. Increase in the tone of the voluntary muscles (rigidity). 2. Slowness of movement (bradykinesis). 3. Tremor (the characteristic 'pill rolling' movements of the fingers).

  9. Drug-Provoked Psoriasis: Is It Drug Induced or Drug Aggravated?

    PubMed Central

    Kim, Grace K.

    2010-01-01

    Psoriasis is a commonly encountered dermatosis with a variety of internal and external paradoxical factors contributing to the clinical course of the disease. There are several drugs described in the literature that have been associated with the initiation, exacerbation, and aggravation of psoriasis. Understanding the pathophysiology can provide clues to treatment and management of drug-induced and drug-aggravated psoriasis, which may be indistinguishable from idiopathic psoriasis. The clinical manifestations of drug-associated psoriasis can range from plaque-type psoriasis to severe erythroderma, thus warranting astute and sustained clinical observation. PMID:20725536

  10. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson's disease patients.

    PubMed

    Politis, Marios; Wu, Kit; Loane, Clare; Brooks, David J; Kiferle, Lorenzo; Turkheimer, Federico E; Bain, Peter; Molloy, Sophie; Piccini, Paola

    2014-03-01

    Levodopa-induced dyskinesias (LIDs) are the most common and disabling adverse motor effect of therapy in Parkinson's disease (PD) patients. In this study, we investigated serotonergic mechanisms in LIDs development in PD patients using 11C-DASB PET to evaluate serotonin terminal function and 11C-raclopride PET to evaluate dopamine release. PD patients with LIDs showed relative preservation of serotonergic terminals throughout their disease. Identical levodopa doses induced markedly higher striatal synaptic dopamine concentrations in PD patients with LIDs compared with PD patients with stable responses to levodopa. Oral administration of the serotonin receptor type 1A agonist buspirone prior to levodopa reduced levodopa-evoked striatal synaptic dopamine increases and attenuated LIDs. PD patients with LIDs that exhibited greater decreases in synaptic dopamine after buspirone pretreatment had higher levels of serotonergic terminal functional integrity. Buspirone-associated modulation of dopamine levels was greater in PD patients with mild LIDs compared with those with more severe LIDs. These findings indicate that striatal serotonergic terminals contribute to LIDs pathophysiology via aberrant processing of exogenous levodopa and release of dopamine as false neurotransmitter in the denervated striatum of PD patients with LIDs. Our results also support the development of selective serotonin receptor type 1A agonists for use as antidyskinetic agents in PD.

  11. Proteasome inhibition in medaka brain induces the features of Parkinson's disease.

    PubMed

    Matsui, Hideaki; Ito, Hidefumi; Taniguchi, Yoshihito; Inoue, Haruhisa; Takeda, Shunichi; Takahashi, Ryosuke

    2010-10-01

    Recent findings suggest that a defect in the ubiquitin-proteasome system plays an important role in the pathogenesis of Parkinson's disease (PD). A previous report (McNaught et al. 2004) demonstrated that rats systemically injected with proteasome inhibitors exhibited PD-like clinical symptoms and pathology. However, because these findings have not been consistently replicated, this model is not commonly used to study PD. We used medaka fish to test the effect of systemic administration of proteasome inhibitors because of the high level of accessibility of the cerebrospinal fluid in fish. We injected lactacystin or epoxomicin into the CSF of medaka. With proteasome inhibition in the medaka brain, selective dopaminergic and noradrenergic cell loss was observed. Furthermore, treated fish exhibited reduced spontaneous movement. Treatment with proteasome inhibitors also induced the formation of inclusion bodies resembling Lewy bodies, which are characteristic of PD. Treatment with 6-OHDA also induced dopaminergic cell loss but did not produce inclusion bodies. These findings in medaka are consistent with previous results reporting that non-selective proteasome inhibition replicates the cardinal features of PD: locomotor dysfunction, selective dopaminergic cell loss, and inclusion body formation.

  12. Foetal Cell Transplantation for Parkinson's Disease: Focus on Graft-Induced Dyskinesia.

    PubMed

    Tronci, Elisabetta; Fidalgo, Camino; Carta, Manolo

    2015-01-01

    Transplantation of dopamine- (DA-) rich foetal ventral mesencephalic cells emerged as a promising therapy for Parkinson's disease (PD), as it allowed significant improvement of motor symptoms in several PD patients in open-label studies. However, double-blind clinical trials have been largely disappointing. The general agreement in the field is that the lack of standardization of tissue collection and preparation, together with the absence of postsurgical immunosuppression, played a key role in the failure of these studies. Moreover, a further complication that emerged in previous studies is the appearance of the so-called graft-induced dyskinesia (GID), in a subset of grafted patients, which resembles dyskinesia induced by L-DOPA but in the absence of medication. Preclinical evidence pointed to the serotonin neurons as possible players in the appearance of GID. In agreement, clinical investigations have shown that grafted tissue may contain a large number of serotonin neurons, in the order of half of the DA cells; moreover, the serotonin 5-HT1A receptor agonist buspirone has been found to produce significant dampening of GID in grafted patients. In this paper, we will review the recent preclinical and clinical studies focusing on cell transplantation for PD and on the mechanisms underlying GID.

  13. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease.

    PubMed

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P; Kaufman, Daniel L

    2011-01-31

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions.

  14. BCG Vaccine-Induced Neuroprotection in a Mouse Model of Parkinson's Disease

    PubMed Central

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P.; Kaufman, Daniel L.

    2011-01-01

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions. PMID:21304945

  15. [DRUGS-INDUCED URTICARIA AND ANGIOEDEMA].

    PubMed

    Braire-Bourrel, Marion; Augey, Frédéric; Doutre, Marie-Sylvie

    2015-09-01

    Drug-induced urticaria and/or angioedema is a frequent issue encountered in family medicine. A specific collection of the anamnesis and of the general context is very important to appreciate the involved mechanism, allergic or not, and potential cofactors. If in doubt about an allergic mechanism, tests will be conducted, mostly under a hospital setting. Bradykinin-mediated angioedema, so much rare than histamine-mediated one, has to be known, because it is potentially lethal. It is often iatrogenic (ACE inhibitors especially). At the end of the allergology work-up, a course of action is proposed to the patient and his family practitioner as far as the rechallenge of the drug is concerned, In case of non-allergic urticaria, much more frequent than allergy, taking the drug is possible with a premedication with antihistamines.

  16. Meprobamate-induced fixed drug eruption.

    PubMed

    Zaïem, Ahmed; Kaabi, Widd; Badri, Talel; Lakhoua, Ghozlane; Sahnoun, Rym; Kastalli, Sarrah; Daghfous, Riadh; Lakhal, Mohamed; El Aidli, Sihem

    2014-01-01

    Meprobamate is usually a safe drug prescribed for anxiety disorders. Fixed drug eruption (FDE) is an exceptional cutaneous adverse effect of this drug. We report a case of FDE induced by meprobamate with positive patch test. A 22-year-old woman was prescribed for depression meprobamate, aceprometazine, valpromide and lorazepam. On the second day of treatment, the patient presented red erythematous and pruriginous plaques in the limbs and the face. After stopping the previous treatment, the patient's lesions resolved completely within 3 weeks with residual pigmentation. One month later, patch tests were performed and were positive to meprobamate. Exceptional cases of FDE were reported in literature with meprobamate. None has reported the use of patch test to confirm the diagnosis.

  17. Sleep disturbances in drug naïve Parkinson's disease (PD) patients and effect of levodopa on sleep

    PubMed Central

    Ferreira, Teresa; Prabhakar, Sudesh; Kharbanda, Parampreet S.

    2014-01-01

    Context: Parkinson's disease (PD) is associated with sleep disturbances, attributed to the neurodegenerative process and therapeutic drugs. Studies have found levodopa to increase wakefulness in some patients while increasing sleepiness in others. Aims: To confirm sleep disturbances in drug naïve PD patients and understand the impact of levodopa on their sleep. Materials and Methods: Twenty-three drug naïve PD patients and 31 age-gender matched controls were compared using the Parkinson's Disease Sleep Scale (PDSS) and Epworth Sleepiness Scale (ESS). A polysomnogram objectively compared sleep quality. Of the 23 patients, the 12 initiated on levodopa were reassessed subjectively and through polysomnography after 2 months of therapy. Statistical Analysis: Data was expressed as mean ± standard deviation, median, and range. Continuous variables were analyzed by Student's T test for normally distributed data and Mann–Whitney U test for skewed data. Discrete variables were compared by Chi Square tests (Pearson Chi square Test or Fisher's Exact Test). Wilcoxon signed ranks test was applied in the analysis of paired data pre- and post-levodopa. A P value < 0.05 was considered as statistically significant. Statistical analysis of the data was done using the Statistical Package for the Social Sciences (SPSS) version 12. Results: Drug naïve PD patients had lower PDSS scores than controls. The sleep architecture changes observed on polysomnogram were reduced NREM Stage III and REM sleep and increased sleep latency and wake after sleep onset time. Following levodopa, improved sleep efficiency with reduced sleep latency and wake after sleep onset time was noted, coupled with improved PDSS scores. However, NREM Stage III and REM sleep duration did not increase. Discussion: PD patients take longer to fall asleep and have difficulty in sleep maintenance. Sleep maintenance is affected by nocturia, REM behavioral disorder, nocturnal cramps, akinesia, and tremors, as observed in

  18. Drug-induced Angle-Closure Glaucoma

    PubMed Central

    Khurana, Aruj K; Khurana, Bhawna

    2012-01-01

    Drug-induced angle-closure glaucoma is an important entity for the ophthalmologist as well as the general physician as it represents a preventable cause of potential blindness. This brief review highlights the fact that a high index of suspicion, in a susceptible individual followed by confirmation on appropriate imaging modality (UBM, ultrasound or anterior segment OCT) can alleviate the threat to sight and also help to institute appropriate therapy. PMID:27990064

  19. Drug-induced mitochondrial dysfunction and cardiotoxicity

    PubMed Central

    Varga, Zoltán V; Ferdinandy, Peter; Liaudet, Lucas

    2015-01-01

    Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities. PMID:26386112

  20. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-03

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.

  1. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model

    PubMed Central

    Liu, Jia; Chen, Min; Wang, Xue; Wang, Yi; Duan, Chunli; Gao, Ge; Lu, Lingling; Wu, Xia; Wang, Xiaomin; Yang, Hui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but there are few treatments currently available. The autophagy pathway plays an important role in the pathogenesis of PD; modulating this pathway is considered to be a promising treatment strategy. Piperine (PIP) is a Chinese medicine with anti-inflammatory and antioxidant effects. The present study investigated the neuroprotective effects of PIP on rotenone-induced neurotoxicity in SK-N-SH cells, primary rat cortical neurons, and in a mouse model. Mice were administered rotenone (10mg/kg) for 6 weeks; PIP (25mg/kg, 50mg/kg) was subsequently administered for 4 weeks. We found that PIP treatment attenuated rotenone-induced motor deficits, and rescued the loss of dopaminergic neurons in the substantia nigra. PIP increased cell viability and restored mitochondrial functioning in SK-N-SH cells and primary neurons. In addition, PIP induced autophagy by inhibiting mammalian target of rapamycin complex 1(mTORC1) via activation of protein phosphotase 2A (PP2A). However, inhibiting PP2A activity with okadaic acid reduced these protective effects, suggesting that PP2A is a target of PIP. These findings demonstrate that PIP exerts neuroprotective effects in PD models via induction of autophagy, and may be an effective agent for PD treatment. PMID:27572322

  2. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model.

    PubMed

    Liu, Jia; Chen, Min; Wang, Xue; Wang, Yi; Duan, Chunli; Gao, Ge; Lu, Lingling; Wu, Xia; Wang, Xiaomin; Yang, Hui

    2016-09-20

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but there are few treatments currently available. The autophagy pathway plays an important role in the pathogenesis of PD; modulating this pathway is considered to be a promising treatment strategy. Piperine (PIP) is a Chinese medicine with anti-inflammatory and antioxidant effects. The present study investigated the neuroprotective effects of PIP on rotenone-induced neurotoxicity in SK-N-SH cells, primary rat cortical neurons, and in a mouse model. Mice were administered rotenone (10mg/kg) for 6 weeks; PIP (25mg/kg, 50mg/kg) was subsequently administered for 4 weeks. We found that PIP treatment attenuated rotenone-induced motor deficits, and rescued the loss of dopaminergic neurons in the substantia nigra. PIP increased cell viability and restored mitochondrial functioning in SK-N-SH cells and primary neurons. In addition, PIP induced autophagy by inhibiting mammalian target of rapamycin complex 1(mTORC1) via activation of protein phosphotase 2A (PP2A). However, inhibiting PP2A activity with okadaic acid reduced these protective effects, suggesting that PP2A is a target of PIP. These findings demonstrate that PIP exerts neuroprotective effects in PD models via induction of autophagy, and may be an effective agent for PD treatment.

  3. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.

    PubMed

    Perfeito, Rita; Cunha-Oliveira, Teresa; Rego, Ana Cristina

    2013-09-01

    Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.

  4. Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model.

    PubMed

    Park, Hi-Joon; Lim, Sabina; Joo, Wan-Seok; Yin, Chang-Shik; Lee, Hyang-Sook; Lee, Hye-Jung; Seo, Jung Chul; Leem, Kanghyun; Son, Yang-Sun; Kim, Youn-Jung; Kim, Chang-Ju; Kim, Yong-Sik; Chung, Joo-Ho

    2003-03-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder, and it has been suggested that treatments promoting survival and functional recovery of affected dopaminergic neurons could have a significant and long-term therapeutic value. In the present study, we investigated the neuroprotective effects of acupuncture on the nigrostriatal system in rat unilaterally lesioned with 6-hydroxydopamine (6-OHDA, 4 microg/microl, intrastriatal injection) using tyrosine hydroxylase (TH) and receptor for brain-derived neurotrophic factor, trkB, immunohistochemistries. Two weeks after the lesions were made, rats presented with asymmetry in rotational behavior (118.3 +/- 17.5 turns/h) following injection with apomorphine, a dopamine receptor agonist (0.5 mg/kg, sc). In contrast, acupunctural treatment at acupoints GB34 and LI3 was shown to significantly reduce this motor deficit (14.6 +/- 13.4 turns/h). Analysis via TH immunohistochemistry revealed a substantial loss of cell bodies in the substantia nigra (SN) (45.7% loss) and their terminals in the dorsolateral striatum ipsilateral to the 6-OHDA-induced lesion. However, acupunctural treatment resulted in the enhanced survival of dopaminergic neurons in the SN (21.4% loss) and their terminals in the dorsolateral striatum. Acupuncture also increased the expression of trkB significantly (35.6% increase) in the ipsilateral SN. In conclusion, we observed that only acupuncturing without the use of any drug has the neuroprotective effects against neuronal death in the rat PD model and these protective properties of acupuncture could be mediated by trkB.

  5. DJ-1-binding compounds prevent oxidative stress-induced cell death and movement defect in Parkinson's disease model rats.

    PubMed

    Miyazaki, Shin; Yanagida, Takashi; Nunome, Kana; Ishikawa, Shizuma; Inden, Masatoshi; Kitamura, Yoshihisa; Nakagawa, Shinsuke; Taira, Takahiro; Hirota, Kosaku; Niwa, Masami; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2008-06-01

    Parkinson's disease (PD) is caused by neuronal cell death. Although a precursor of dopamine and inhibitors of dopamine degradation have been used for PD therapy, cell death progresses during treatment. DJ-1, a causative gene product of a familial form of PD, PARK7, plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in the onset of PD. Superfluous oxidation of cysteine at amino acid 106 (C106) of DJ-1 renders DJ-1 inactive, and such oxidized DJ-1 has been observed in patients with the sporadic form of PD. In this study, we isolated compounds that bind to the region at C106 by a virtual screening. These compounds prevented oxidative stress-induced death of SH-SY5Y cells, embryonic stem cell-derived dopaminergic cells and primary neuronal cells of the ventral mesencephalon, but not that of DJ-1-knockdown cells of SH-SY5Y and NIH3T3 cells, indicating that the effect of the compounds is specific to DJ-1. These compounds inhibited production of reactive oxygen species and restored activities of mitochondrial complex I and tyrosine hydroxylase that had been compromised by oxidative stress. These compounds prevented dopaminergic cell death in the substantia nigra and restored movement abnormality in 6-hydroxyldopamine-injected PD model rats. One mechanism of action of these compounds is prevention of superfluous oxidation of DJ-1, and the compounds passed through the blood-brain barrier in vitro. Taken together, the results indicate that these compounds should become fundamental drugs for PD therapy.

  6. Neuroprotection effects of retained acupuncture in neurotoxin-induced Parkinson's disease mice.

    PubMed

    Yang, Jen-Lin; Chen, Jay S C; Yang, Yi-Fei; Chen, Jyh-Cheng; Lin, Ching-Huang; Chang, Rong-Seng; Tsao, Po-Jui; Chen, Fang-Pey; Chern, Chang-Ming; Tsai, Tung-Hu; Chiu, Jen-Hwey

    2011-10-01

    The aim of this study was to investigate the role of retained acupuncture (RA) in neurotoxin-induced Parkinson's disease (PD) mice. Male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce the PD model. The mice were divided into four groups, namely, (1) normal; (2) MPTP+retained acupuncture (RA); (3) MPTP+electroacupuncture (EA); (4) MPTP+sham acupuncture (SA). After mice being manipulated with/without acupuncture at acupoints (Daling, PC 7), groups 2-4 were injected with MPTP (15 mg/kg/d). The mice were evaluated for behavioral changes, in terms of time of landing, after acupuncture treatment. The animals were sacrificed and their brains assayed for dopamine and its metabolites and tyrosine hydroxylase (TH) expression by using HPLC and immunohistochemistry/Western blotting, respectively. [(123)I] IBZM-SPECT imaging between SA and RA groups were compared. The results showed that the time of landing of the three groups with treatment was significant longer than group 1 (normal) (4.33±0.15 s). Nonetheless, group 2 (RA) (7.13±0.20 s) had a shorter time of landing than group 4 (SA) (7.89±0.46 s). The number of TH (+) neurons and the expression of TH proteins were significantly higher in the RA group than in the SA/EA groups. RA also increased the uptake of [(123)I] IBZM into the triatum compared to the SA group. We conclude that RA possibly attenuates neuronal damage in MPTP-induced PD mice, which suggests RA may be useful as a complementary strategy when treating human PD.

  7. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model

    PubMed Central

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  8. Hydroxysafflor Yellow A Improves Motor Dysfunction in the Rotenone-Induced Mice Model of Parkinson's Disease.

    PubMed

    Wang, Tian; Wang, Lijie; Li, Cuiting; Han, Bing; Wang, Zhenhua; Li, Ji; Lv, Yan; Wang, Shuyun; Fu, Fenghua

    2017-01-17

    Dopamine D3 receptor (DRD3) is diminished in patients of Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is responsible for regulating expression of the DRD3 in the brain. Our previous study showed that hydroxysafflor yellow A (HSYA) could increase BDNF content in the striatum of PD mice. This experiment aimed to evaluate whether HSYA can improve the motor dysfunction induced by rotenone through regulating the BDNF/TrkB/DRD3 signaling pathway in mice. Male C57/BL6 mice were intraperitoneally treated with HSYA. Thirty minutes later, they were intragastrically administered with rotenone at a dose of 30 mg/kg. Pole, rotarod and open field tests were investigated at 28 d. Then, tyrosine hydroxylase (TH) in substantia nigra was observed by immunohistochemistry. Dopamine content was detected by high-performance liquid chromatography. The expressions of BDNF, phospho-tropomyosin-related kinase B (p-TrkB), tropomyosin-related kinase B (TrkB), phospho-phosphoinositide 3-kinase (p-PI3K), phosphoinositide 3-kinase (PI3K), phospho-protein kinase B (p-AKT), protein kinase B (AKT), and DRD3 were assayed by western blotting. Behavioral tests showed that rotenone-challenged mice displayed motor dysfunction. However, treatment with HSYA improved motor dysfunction induced by rotenone. HSYA treatment increased not only the number of TH-containing dopaminergic neurons in substantia nigra, but also the dopamine content in the striatum in PD mice. Moreover, the expressions of BDNF, p-TrkB/TrkB, DRD3, p-PI3K/PI3K, p-AKT/AKT were significantly increased in rotenone plus HSYA group. Our results indicated that HSYA improved motor dysfunction in rotenone-induced PD model and the pharmacological action of HSYA was related to regulating BDNF/TrkB/DRD3 signaling pathway, at least, in part.

  9. Gastrodin Protects Apoptotic Dopaminergic Neurons in a Toxin-Induced Parkinson's Disease Model

    PubMed Central

    Kumar, Hemant; Kim, In-Su; More, Sandeep Vasant; Kim, Byung-Wook; Bahk, Young-Yil; Choi, Dong-Kug

    2013-01-01

    Gastrodia elata (GE) Blume is one of the most important traditional plants in Oriental countries and has been used for centuries to improve various conditions. The phenolic glucoside gastrodin is an active constituent of GE. The aim of this study was to investigate the neuroprotective role of gastrodin in 1-methyl-4-phenylpyridinium (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP) induced human dopaminergic SH-SY5Y cells and mouse model of Parkinson's disease (PD), respectively. Gastrodin significantly and dose dependently protected dopaminergic neurons against neurotoxicity through regulating free radicals, Bax/Bcl-2 mRNA, caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP) in SH-SY5Y cells stressed with MPP+. Gastrodin also showed neuroprotective effects in the subchronic MPTP mouse PD model by ameliorating bradykinesia and motor impairment in the pole and rotarod tests, respectively. Consistent with this finding, gastrodin prevented dopamine depletion and reduced reactive astrogliosis caused by MPTP as assessed by immunohistochemistry and immunoblotting in the substantiae nigrae and striatata of mice. Moreover, gastrodin was also effective in preventing neuronal apoptosis by attenuating antioxidant and antiapoptotic activities in these brain areas. These results strongly suggest that gastrodin has protective effects in experimental PD models and that it may be developed as a clinical candidate to ameliorate PD symptoms. PMID:23533492

  10. Biomarkers of cell damage induced by oxidative stress in Parkinson's disease and related models.

    PubMed

    Tobón-Velasco, Julio César; Carmona-Aparicio, Liliana; Ali, Syed F; Santamaría, Abel

    2010-12-01

    One of the common features occurring in several experimental models of neurodegenerative disorders is oxidative/nitrosative stress (OS/NS). This event induces a series of deleterious actions involving the primary formation of reactive oxygen and nitrogen species (ROS/RNS), affecting both the structure and function of different biological molecules, and leading to specific toxic processes that compromise cell redox status. Biomarkers are important indicators of normal and abnormal biological processes. Specific biochemical and genetic changes observed in different pathologies bring us comprehensive information regarding the nature of any particular disorder. Parkinson's disease (PD) is a chronic neurodegenerative disorder difficult to study, given the intricate events occurring in the pathology, and also because the resultant clinical phenotype fluctuates over time. At present, we have no definitive diagnostic test, and thus for clinicians there is still expectation that biomarkers will eventually help to diagnose symptomatic and presymptomatic disease, or provide surrogated end-points to demonstrate clinical efficacy of new treatments and neuroprotective therapies. In this review we explore current information on some potential biomarkers of OS/NS in PD models, with special emphasis on the most-recent findings on this topic.

  11. p53 signalling mediates acupuncture-induced neuroprotection in Parkinson's disease.

    PubMed

    Park, Ji-Yeun; Choi, Hwan; Baek, Soonbong; Jang, Jaehwan; Lee, Ahreum; Jeon, Songhee; Kim, Jongpil; Park, Hi-Joon

    2015-05-08

    Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with a selective loss of dopamine (DA) neurons in the substantia nigra of the midbrain. Recently, it has been demonstrated that acupuncture treatment has protective effects in PD. However, to date, the molecular mechanisms underlying acupuncture's effect on DA neuronal protection are largely unknown. In this study, we report that p53 signalling mediates the protective effects of acupuncture treatment in a mouse model of PD. We found that the acupuncture treatment in the mouse PD model results in significant recovery to the normal in the context of behaviour and molecular signatures. We found that the gene network associated with p53 signalling is closely involved in the protective effects of acupuncture treatment in PD. Consistent with this idea, we demonstrated that specific knockout of the p53 gene in the midbrain DA neurons abrogates the acupuncture induced protective effects in the mouse model of PD. Thus, these data suggest that p53 signalling mediates the protective effects of acupuncture treatment in PD.

  12. Efficacy of Ropinirole-Loaded PLGA Microspheres For The Reversion Of Rotenone-Induced Parkinsonism.

    PubMed

    Negro, Sofía; Boeva, Liudmilla; Slowing, Karla; Fernández-Carballido, Ana; García-García, Luis; Barcia, Emilia

    2016-09-28

    A new controlled delivery system is developed for ropinirole (RP) for the treatment of Parkinson´s disease (PD) consisting in PLGA microparticles (MPs) which exhibited in vitro constant release of RP (78.23 µg/day/10 mg MPs) for 19 days. The neuroprotective effects of RP released from MPs are evaluated in SKN-AS cells after exposure to rotenone (20 μM). Cell apoptosis was significantly reduced by RP (100-120 μM). Daily doses of rotenone (2 mg/kg) given i.p. to rats induced neuronal and behavioral changes similar to those of PD. After 15 days animals received RP in saline (1 mg/kg/day for 45 days) or as MPs at two dose levels (amount of MPs equivalent to 7.5 mg/kg or 15 mg/kg RP given on days 15 and 30). Brain immunochemistry (Nissl-staining, GFAP and TH immunohistochemistry) and behavioral testing (catalepsy, akinesia, rotarod and swim test) showed that animals receiving RP either in solution or encapsulated within MPs reverted PD symptoms with the best results obtained in animals receiving RP microspheres at the highest dose assayed, thereby confirming the potential therapeutic interest of the new RP delivery system.

  13. Mechanism of copper(II)-induced misfolding of Parkinson's disease protein.

    PubMed

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerzy

    2011-01-01

    α-synuclein (aS) is a natively unfolded pre-synaptic protein found in all Parkinson's disease patients as the major component of fibrillar plaques. Metal ions, and especially Cu(II), have been demonstrated to accelerate aggregation of aS into fibrillar plaques, the precursors to Lewy bodies. In this work, copper binding to aS is investigated by a combination of quantum and molecular mechanics simulations. Starting from the experimentally observed attachment site, several optimized structures of Cu-binding geometries are examined. The most energetically favorable attachment results in significant allosteric changes, making aS more susceptible to misfolding. Indeed, an inverse kinematics investigation of the configuration space uncovers a dynamically stable β-sheet conformation of Cu-aS that serves as a nucleation point for a second β-strand. Based on these findings, we propose an atomistic mechanism of copper-induced misfolding of aS as an initial event in the formation of Lewy bodies and thus in PD pathogenesis.

  14. Advances in understanding drug-induced neuropathies.

    PubMed

    Peltier, Amanda C; Russell, James W

    2006-01-01

    Many commonly used medications have neurotoxic adverse effects; the most common of these is peripheral neuropathy. Neuropathy can be a dose-limiting adverse effect for many medications used in life-threatening conditions, such as malignancy and HIV-related disease. Epidemiological evidence supports previous case reports of HMG-CoA reductase inhibitors (or 'statins') causing an axonal sensorimotor neuropathy or a purely small-fibre neuropathy in some patients. The neuropathy improves when the medication is withdrawn. Despite the association between HMG-CoA reductase inhibitors and neuropathy, the risk is low compared with the significant vascular protective benefits. Oxaliplatin, a new platinum chemotherapy agent designed to have fewer adverse effects than other such agents, has been shown to cause a transient initial dysaesthesia in addition to an axonal polyneuropathy. Thalidomide, an old therapy currently being utilised for new therapeutic indications (e.g. treatment of haematological malignancies), is associated with a painful, axonal sensorimotor neuropathy that does not improve on withdrawal of the drug. Nucleoside reverse transcriptase inhibitors are important components of highly active antiretroviral therapy, but are associated with a sensory neuropathy that is likely to be due to a direct effect of these drugs on mitochondrial DNA replication. New research demonstrates that lactate levels may help discriminate between neuropathy caused by nucleoside analogues and HIV-induced neuropathy. Understanding the mechanism of drug-induced neuropathy has led to advances in preventing this disabling condition.

  15. Drug-induced hyponatremia: an updated review.

    PubMed

    Ramos-Levi, A M; Duran Rodriguez-Hervada, A; Mendez-Bailon, M; Marco-Martinez, J

    2014-03-01

    Hyponatremia, defined as serum sodium concentrations <135 mmol/L, is the most frequent electrolyte disturbance observed in both hospitalized and ambulatory patients, and has been associated to relevant negative consequences regarding morbidity and mortality. Drug-induced hyponatremia has been widely observed. However, since it may be clinically symptomatic or asymptomatic, it is frequently an underdiagnosed condition. This review aims to highlight the main drugs involved in the pathophysiology of hyponatremia, which should be considered in the differential diagnosis when approaching a patient with hyponatremia. We discuss their impact and relative importance. In order to prevent undesirable negative consequences we also emphasize the need for awareness of this clinically-relevant adverse effect, and we suggest how clinical management of patients may be approached.

  16. Drug-Induced Rosacea-like Dermatitis.

    PubMed

    Rezaković, Saida; Bukvić Mokos, Zrinka; Paštar, Zrinjka

    2016-04-01

    Rosacea is a common, chronic cutaneous disorder with a prevalence of 0.5-10%, predominantly affecting women. The disease presents with a heterogeneous clinical picture characterized by transient flushing, persistent facial redness, telangiectasias, and, in more severe clinical forms, the presence of inflammatory papules and pustules in the central third of the face. Although its pathophysiology is complex and still remains unknown, factors that exacerbate the disease are well defined. They include genetic predisposition as well as external factors such as exposure to UV light, high temperature, and diet. Besides these well-known factors, recent studies suggest that drugs and vitamins could also be possible factors inducing rosacea-like dermatitis or aggravating pre-existing rosacea. Although these are less common possible triggering factors, the aim of this article is to present the current knowledge on the association between use of certain drugs or vitamins and rosacea.

  17. Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study.

    PubMed

    Vanitallie, T B; Nonas, C; Di Rocco, A; Boyar, K; Hyams, K; Heymsfield, S B

    2005-02-22

    Ketones may bypass the defect in complex I activity implicated in Parkinson disease (PD). Five of seven volunteers with PD were able to prepare a "hyperketogenic" diet at home and adhere to it for 28 days. Substituting unsaturated for saturated fats appeared to prevent cholesterol increases in four volunteers. Unified Parkinson's Disease Rating Scale scores improved in all five during hyperketonemia, but a placebo effect was not ruled out.

  18. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    PubMed Central

    Kosaraju, Jayasankar; Chinni, Santhivardhan; Roy, Partha Deb; Kannan, Elango; Antony, A. Shanish; Kumar, M. N. Satish

    2014-01-01

    Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). Materials and Methods: T. cordifolia ethanol extract (TCEE) was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 μg). Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg) and two experimental groups (n = 6/group). Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein) and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein) at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18) and 400 mg/kg (1.11 ± 0.15) when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation. PMID:24741189

  19. Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats.

    PubMed

    Chompoopong, Supin; Jarungjitaree, Sunit; Punbanlaem, Tideeporn; Rungruang, Thanaporn; Chongthammakun, Sukumal; Kettawan, Aikkarach; Taechowisan, Thongchai

    2016-09-01

    The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD.

  20. Chronic mild stress augments MPTP induced neurotoxicity in a murine model of Parkinson's disease.

    PubMed

    Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Dhanalakshmi, Chinnasamy; Essa, Musthafa Mohamed; Song, Byoung-Joon; Guillemin, Gilles J

    2017-02-06

    Depression is frequently encountered during Parkinson's disease (PD) as a non-motor feature, which has been reported to cause and exaggerate motor deficits and neurodegenerative events in experimental PD models. We studied the effect of chronic mild stress (CMS) (pre, post and pre & post) exposure mediated depression on motor and non-motor symptoms, oxidative stress, inflammation and brain derived neurotrophic factor (BDNF) levels and its related signalling molecules against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) induced neurotoxicity in mice. CMS and MPTP/p-coexposed C57BL/6 mice exhibited low neuromuscular strength and stride length with enhanced oxidative stress and inflammation as compared to CMS or MPTP/p alone exposed mice. Coexposure diminished the levels of BDNF and expressions of p-TrkB, p-ERK/ERK, p-AKT/AKT and p-CREB in nigrostriatal regions as compared to those of the alone exposure. CMS alone exposed mice showed more anxiety related behaviour with diminished expression of serotonin transporter as compared to MPTP/p alone injected group. Post-stress exposure to MPTP/p mice exhibited lowest motor and reflecting higher anxiety state with greatest enhancement in inflammation and reduction in the protein expression of stress and cell signalling markers as compared to pre and pre & post stress exposed PD mice. However, pre- and pre & post CMS exposed PD animals are more vulnerable to oxidative stress as compared with post-stress experienced MPTP/p mice. CMS mediated depression exacerbates motor/non-motor symptoms in MPTP/p-PD animals by modulating oxidative stress and various signalling molecules. Our results suggested that stress induced NMS can accelerate neurodegenerative processes in the PD in a progressive or expedited manner.

  1. Resting‐state connectivity predicts levodopa‐induced dyskinesias in Parkinson's disease

    PubMed Central

    Haagensen, Brian N.; Nielsen, Silas H.; Madsen, Kristoffer H.; Løkkegaard, Annemette; Siebner, Hartwig R.

    2016-01-01

    ABSTRACT Background Levodopa‐induced dyskinesias are a common side effect of dopaminergic therapy in PD, but their neural correlates remain poorly understood. Objectives This study examines whether dyskinesias are associated with abnormal dopaminergic modulation of resting‐state cortico‐striatal connectivity. Methods Twelve PD patients with peak‐of‐dose dyskinesias and 12 patients without dyskinesias were withdrawn from dopaminergic medication. All patients received a single dose of fast‐acting soluble levodopa and then underwent resting‐state functional magnetic resonance imaging before any dyskinesias emerged. Levodopa‐induced modulation of cortico‐striatal resting‐state connectivity was assessed between the putamen and the following 3 cortical regions of interest: supplementary motor area, primary sensorimotor cortex, and right inferior frontal gyrus. These functional connectivity measures were entered into a linear support vector classifier to predict whether an individual patient would develop dyskinesias after levodopa intake. Linear regression analysis was applied to test which connectivity measures would predict dyskinesia severity. Results Dopaminergic modulation of resting‐state connectivity between the putamen and primary sensorimotor cortex in the most affected hemisphere predicted whether patients would develop dyskinesias with a specificity of 100% and a sensitivity of 91% (P < .0001). Modulation of resting‐state connectivity between the supplementary motor area and putamen predicted interindividual differences in dyskinesia severity (R 2 = 0.627, P = .004). Resting‐state connectivity between the right inferior frontal gyrus and putamen neither predicted dyskinesia status nor dyskinesia severity. Conclusions The results corroborate the notion that altered dopaminergic modulation of cortico‐striatal connectivity plays a key role in the pathophysiology of dyskinesias in PD. © 2016 International Parkinson and Movement

  2. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease.

    PubMed

    Thome, Aaron D; Harms, Ashley S; Volpicelli-Daley, Laura A; Standaert, David G

    2016-02-24

    Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.

  3. Doxycycline-induced drug fever: a case report.

    PubMed

    Yuan, Hai-Ling; Lu, Ning-Wei; Xie, Hua; Zheng, Yuan-Yuan; Wang, Qiu-Hong

    2016-01-01

    Drug fever is a febrile reaction induced by a drug without additional clinical symptoms. This adverse reaction is not rare but under diagnosed and under reported. Doxycycline is a tetracycline compound with broad-spectrum antibiotic activity. Drug fever induced by doxycycline is rarely reported. In this study, we describe a patient in whom doxycycline induced drug fever after 17 days of therapy for brucellosis.

  4. Drug-Induced Liver Disease: Clinical Course.

    PubMed

    Saithanyamurthi, Hemamala; Faust, Alison Jazwinski

    2017-02-01

    Drug-induced liver injury (DILI) is a term used to describe a spectrum of clinical presentations and severity that ranges from mild elevation of liver enzymes on routine blood work to acute liver failure and death. Approximately 10% of all patients with DILI develop acute liver failure resulting in death or liver transplantation. DILI may be prolonged with persistence of elevated liver enzymes for longer than 6 months in approximately 5% to 20% of cases. Cirrhosis and long-term liver-related morbidity and mortality have also been described but are rare, occurring in 1% to 3% of cases.

  5. [Drug-induced interstitial lung disease].

    PubMed

    Gemma, Akihiko

    2008-10-01

    There was limited knowledge about drug-induced ILD(DILD), when safety reports of acute ILD-type events in gefitinib-treated patients appeared in Japan. There is a need to better understand DILD including event incidence on different treatments and risk factors for developing DILD. Some studies using recent advances in imaging, molecular examination, and pathology are designed and conducted by an independent academic team to define the risk and increase understanding of ILD of various agents in a postmarketing surveillance. These studies may help to shed light on the underlying mechanisms of DILD and appropriate strategies for such events.

  6. Use of a refined drug tracer algorithm to estimate prevalence and incidence of Parkinson's disease in a large israeli population.

    PubMed

    Chillag-Talmor, Orly; Giladi, Nir; Linn, Shai; Gurevich, Tanya; El-Ad, Baruch; Silverman, Barbara; Friedman, Nurit; Peretz, Chava

    2011-01-01

    Estimating rates of Parkinson's disease (PD) is essential for health services planning and studies of disease determinants. However, few PD registries exist. We aimed to estimate annual prevalence and incidence of PD in a large Israeli population over the past decade using computerized drug purchase data. Based on profiles of anti-parkinsonian drugs, age at first purchase, purchase density, and follow-up time, we developed a refined algorithm for PD assessment (definite, probable or possible) and validated it against clinical diagnoses. We used the prescription database of the second largest Health Maintenance Organization in Israel (covers ~25% of population), for the years 1998-2008. PD rates by age, gender and year were calculated and compared using Poisson models. The algorithm was found to be highly sensitive (96%) for detecting PD cases. We identified 7,134 prevalent cases (67% definite/probable), and 5,288 incident cases (65% definite/probable), with mean age at first purchase 69 ± 13 years. Over the years 2000-2007, PD incidence rate of 33/100,000 was stable, and the prevalence rate increased from 170/100,000 to 256/100,000. For ages 50+, 60+, 70+, median prevalence rates were 1%, 2%, 3%, respectively. Incidence rates also increased with age (RR = 1.76, 95%CI 1.75-1.77, ages 50+, 5-year interval). For ages 50+, rates were higher among men for both prevalence (RR = 1.38, 95%CI 1.37-1.39) and incidence (RR = 1.45, 95%CI 1.42-1.48). In conclusion, our refined algorithm for PD assessment, based on computerized drug purchases data, may be a reliable tool for population-based studies. The findings indicate a burden of PD in Israel higher than previously assumed.

  7. Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP.

    PubMed

    Lu, Chen; Zhang, Jin; Shi, Xiaopeng; Miao, Shan; Bi, Linlin; Zhang, Song; Yang, Qian; Zhou, Xuanxuan; Zhang, Meng; Xie, Yanhua; Miao, Qing; Wang, Siwang

    2014-01-01

    Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disease. Although several hypotheses have been proposed to explain the pathogenesis of PD, apoptotic cell death and oxidative stress are the most prevalent mechanisms. Tetramethylpyrazine (TMP) is a biological component that has been extracted from Ligusticum wallichii Franchat (ChuanXiong), which exhibits anti-apoptotic and antioxidant roles. In the current study, we aimed to investigate the possible protective effect of TMP against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP and to elucidate probable molecular mechanisms. The results showed that TMP could notably prevent MPTP-induced dopaminergic neurons damage, reflected by improvement of motor deficits, enhancement of TH expression and the content of dopamine and its metabolite, DOPAC. We observed MPTP-induced activation of mitochondrial apoptotic death pathway, evidenced by up-regulation of Bax, down-regulation of Bcl-2, release of cytochrome c and cleavage of caspase 3, which was significantly inhibited by TMP. Moreover, TMP could prevent MPTP-increased TBARS level and MPTP-decreased GSH level, indicating the antioxidant role of TMP in PD model. And the antioxidant role of TMP attributes to the prevention of MPTP-induced reduction of Nrf2 and GCLc expression. In conclusion, in MPTP-induced PD model, TMP prevents the down-regulation of Nrf2 and GCLc, maintaining redox balance and inhibiting apoptosis, leading to the attenuation of dopaminergic neuron damage. The effectiveness of TMP in treating PD potentially leads to interesting therapeutic perspectives.

  8. Daytime Sleepiness in Parkinson's Disease: Perception, Influence of Drugs, and Mood Disorder

    PubMed Central

    Ataide, M.; Franco, C. M. R.; Lins, O. G.

    2014-01-01

    Parkinson's disease (PD) is associated with sleep complaints as excessive daytime sleepiness (EDS) and several factors have been implicated in the genesis of these complaints. Objective. To correlate the subjective perception of EDS with variables as the severity of the motor symptoms, medications, and the presence of depressive symptoms. Materials and Methods. A cross-sectional study, using specific scales as Epworth sleepiness scale (ESS), Beck depression inventory (iBeck) and Hoehn and Yahr (HY), in 42 patients with PD. Results. The patients had a mean age of 61.2 ± 11.3 years and mean disease duration of 4.96 ± 3.3 years. The mean ESS was 7.5 ± 4.7 and 28.6% of patients reached a score of abnormally high value (>10). There was no association with gender, disease duration, and dopamine agonists. Patients with EDS used larger amounts of levodopa (366.7 ± 228.0 versus 460.4 ± 332.25 mg, P = 0.038), but those who had an iBeck >20 reached lower values of ESS than the others (5.9 ± 4.1 versus 9.3 ± 4.8, P = 0.03). Conclusions. EDS was common in PD patients, being related to levodopa intake. Presence of depressed mood may influence the final results of self-assessment scales for sleep disorders. PMID:24587912

  9. Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms.

    PubMed

    Kumar, Anil; Sharma, Neha; Gupta, Amit; Kalonia, Harikesh; Mishra, Jitendriya

    2012-08-30

    Neuro-inflammation and oxidative stress plays a key role in the pathophysiology of Parkinson's disease (PD). Studies demonstrated that neuro-inflammation and associated infiltration of inflammatory cells into central nervous system are inhibited by 3-hydroxy-3-methyl glutaryl co-enzyme A (HMG-CoA) reductase inhibitors. Based on these experimental evidences, the present study has been designed to evaluate the neuroprotective effect of HMG-CoA reductase inhibitors (atorvastatin and simvastatin) against 6-hydroxydopamine (6-OHDA) induced unilateral lesion model of PD. In the present study, the animals were divided into nine groups (n=15 per group). Group I: Naive (without treatment); Group II: Sham (surgery performed, vehicle administered); Group III: Atorvastatin (20mg/kg); Group IV: Simvastatin (30 mg/kg); Group V: Control [Intrastriatal 6-OHDA (20 μg; single unilateral injection)]; Groups VI and VII: 6-OHDA (20 μg)+atorvastatin (10mg/kg and 20mg/kg) respectively; Groups VIII and IX: 6-OHDA (20 μg)+simvastatin (15 mg/kg and 30 mg/kg) respectively. Intrastriatal administration of 6-OHDA (20 μg; 4 μl of 5 μg/μl) significantly caused impairment in body weight, locomotor activity, rota-rod performance, oxidative defense and mitochondrial enzyme complex activity, and increase in the inflammatory cytokine levels (TNF-α and IL-6) as compared to naive animals. Atorvastatin (20mg/kg) and simvastatin (30 mg/kg) drug treatment significantly improved these behavioral and biochemical alterations restored mitochondrial enzyme complex activities and attenuated neuroinflammatory markers in 6-OHDA (20 μg) treated animals as compared to control group. The findings of the present study demonstrate the neuroprotective potential of statins in experimental model of 6-OHDA induced Parkinson like symptoms.

  10. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson's disease.

    PubMed

    Khurana, Navneet; Gajbhiye, Asmita

    2013-12-01

    Present study focused on the evaluation of aqueous extract of Sida cordifolia (AESC), and its different fractions; hexane (HFSC), chloroform (CFSC) and aqueous (AFSC), against rotenone induced biochemical, neurochemical, histopathological and behavioral alterations in a rat model of Parkinson's disease (PD). An estimation of the level of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) along with superoxide anion generation (SAG) in different brain regions (cortex, midbrain and cerebellum) was carried out to assess biochemical changes. Behavioral evaluation tests (catalepsy, rearing behavior and posture instability) and neurochemical estimations (norepinephrine, dopamine and serotonin level) along with histopathological evaluations of different brain regions were also performed. The varying doses (50, 100, 250mg/kg; p.o.) of different test treatments (AESC, HFSC, CFSC and AFSC) were co-administered along with rotenone (2mg/kg; s.c.), for a period of 35 days to rats of various groups and compared with rotenone per se (negative control) and l-deprenyl (positive control; 10mg/kg; p.o.) treated groups for the above mentioned parameters. The increase in catalepsy and posture instability along with decrease in rearing behavior observed due to rotenone treatment was significantly attenuated by co-treatment with varying doses of AESC and AFSC. Results of the histopathological studies of different brain regions of rats showed eosinophilic lesions in the mid brain region due to rotenone treatment. The eosinophilic lesions were significantly attenuated in co-treated groups of AESC-100mg/kg and AFSC-100mg/kg. Rotenone induced oxidative damage, revealed by increased level of TBARS, SAG and decreased level of GSH and CAT in mid brain region of rats, was attenuated by the co-treatment of AESC and AFSC. The rotenone induced decrease of dopamine level in the midbrain region of rats was also attenuated by co-treatment of AESC-100mg/kg and AFSC

  11. Drug induced exfoliative dermatitis: state of the art.

    PubMed

    Yacoub, Mona-Rita; Berti, Alvise; Campochiaro, Corrado; Tombetti, Enrico; Ramirez, Giuseppe Alvise; Nico, Andrea; Di Leo, Elisabetta; Fantini, Paola; Sabbadini, Maria Grazia; Nettis, Eustachio; Colombo, Giselda

    2016-01-01

    Drug induced exfoliative dermatitis (ED) are a group of rare and severe drug hypersensitivity reactions (DHR) involving skin and usually occurring from days to several weeks after drug exposure. Erythema multiforme (EM), Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are the main clinical presentations of drug induced ED. Overall, T cells are the central player of these immune-mediated drug reactions. Here we provide a systematic review on frequency, risk factors, pathogenesis, clinical features and management of patients with drug induced ED.

  12. Drug-induced regeneration in adult mice

    PubMed Central

    Zhang, Yong; Strehin, Iossif; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise; Leferovich, John; Messersmith, Phillip B.; Heber-Katz, Ellen

    2015-01-01

    Whereas amphibians regenerate lost appendages spontaneously, mammals generally form scars over the injury site through the process of wound repair. The MRL mouse strain is an exception among mammals because it shows a spontaneous regenerative healing trait and so can be used to investigate proregenerative interventions in mammals. We report that hypoxia-inducible factor 1α (HIF-1α) is a central molecule in the process of regeneration in adult MRL mice. The degradation of HIF-1α protein, which occurs under normoxic conditions, is mediated by prolyl hydroxylases (PHDs). We used the drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), a PHD inhibitor, to stabilize constitutive expression of HIF-1α protein. A locally injectable hydrogel containing 1,4-DPCA was designed to achieve controlled delivery of the drug over 4 to 10 days. Subcutaneous injection of the 1,4-DPCA/hydrogel into Swiss Webster mice that do not show a regenerative phenotype increased stable expression of HIF-1α protein over 5 days, providing a functional measure of drug release in vivo. Multiple peripheral subcutaneous injections of the 1,4-DPCA/hydrogel over a 10-day period led to regenerative wound healing in Swiss Webster mice after ear hole punch injury. Increased expression of the HIF-1α protein may provide a starting point for future studies on regeneration in mammals. PMID:26041709

  13. Drug-induced abnormalities of potassium metabolism.

    PubMed

    Kokot, Franciszek; Hyla-Klekot, Lidia

    2008-01-01

    Pharmacotherapy has progressed rapidly over the last 20 years with the result that general practioners more and more often use drugs which may influence potassium metabolism at the kidney or gastrointestinal level, or the transmembrane transport of potassium at the cellular level. Potassium abnormalities may result in life-theatening clinical conditions. Hypokalemia is most frequently caused by renal loss of this electrolyte (thiazide, thiazide-like and loop diuretics, glucocorticoids) and the gastrointestinal tract (laxatives, diarrhea, vomiting, external fistula), and may be the result of an increased intracellular potassium influx induced by sympathicomimetics used mostly by patients with asthma, or by insulin overdosage in diabetic subjects. The leading symptoms of hypokalemia are skeletal and smooth muscle weakness and cardiac arrhythmias. Hyperkalemia may be caused by acute or end-stage renal failure, impaired tubular excretion of potassium (blockers of the renin-angiotensin-aldosterone system, nonsteroidal anti-inflammatory drugs, cyclosporine, antifungal drugs, potassium sparing diuretics), acidemia, and severe cellular injury (tumor lysis syndrome). Hyperkalemia may be the cause of severe injury of both skeletal and smooth muscle cells. The specific treatment counteracting hyperkalemia is a bolus injection of calcium salts and, when necessary, hemodialysis.

  14. Drug-induced erythrocyte membrane internalization

    PubMed Central

    Ben-Bassat, Isaac; Bensch, Klaus G.; Schrier, Stanley L.

    1972-01-01

    In vitro erythrocyte membrane internalization, resulting in the formation of membrane-lined vacuoles, can be quantified by a radioisotopic method. A complex of 37Co-labeled vitamin B12 and its plasma protein binders is first adsorbed to the cell surface, and after vacuoles are formed, the noninternalized label is removed by washing and trypsin treatment. The residual radioactivity represents trapped label and can be used to measure the extent of membrane internalization. Using this method, it was found that in addition to primaquine, a group of membrane-active drugs, specifically hydrocortisone, vinblastine, and chlorpromazine can induce membrane internalization in erythrocytes. This is a metabolic process dependent on drug concentration, temperature, and pH. Vacuole formation by all agents tested can be blocked by prior depletion of endogenous substrates or by poisoning the erythrocytes with sodium fluoride and sulfhydryl blocking agents. This phenomenon resembles in some respects the previously reported membrane internalization of energized erythrocyte ghosts. It is suggested that membrane internalization is dependent on an ATP-energized state and is influenced by the balance between the concentrations of magnesium and calcium in the membrane. This study provides a basis for proposing a unifying concept of the action of some membrane-active drugs, and for considering the role of erythrocyte membrane internalization in pathophysiologic events. Images PMID:4555785

  15. Drug-induced erythrocyte membrane internalization.

    PubMed

    Ben-Bassat, I; Bensch, K G; Schrier, S L

    1972-07-01

    In vitro erythrocyte membrane internalization, resulting in the formation of membrane-lined vacuoles, can be quantified by a radioisotopic method. A complex of (37)Co-labeled vitamin B(12) and its plasma protein binders is first adsorbed to the cell surface, and after vacuoles are formed, the noninternalized label is removed by washing and trypsin treatment. The residual radioactivity represents trapped label and can be used to measure the extent of membrane internalization. Using this method, it was found that in addition to primaquine, a group of membrane-active drugs, specifically hydrocortisone, vinblastine, and chlorpromazine can induce membrane internalization in erythrocytes. This is a metabolic process dependent on drug concentration, temperature, and pH. Vacuole formation by all agents tested can be blocked by prior depletion of endogenous substrates or by poisoning the erythrocytes with sodium fluoride and sulfhydryl blocking agents. This phenomenon resembles in some respects the previously reported membrane internalization of energized erythrocyte ghosts. It is suggested that membrane internalization is dependent on an ATP-energized state and is influenced by the balance between the concentrations of magnesium and calcium in the membrane. This study provides a basis for proposing a unifying concept of the action of some membrane-active drugs, and for considering the role of erythrocyte membrane internalization in pathophysiologic events.

  16. Induced Accelerated Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease

    DTIC Science & Technology

    2014-07-01

    Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease PRINCIPAL INVESTIGATOR: Dr. Birgitt Schuele CONTRACTING...contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision...Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease 5b. GRANT NUMBER W81XWH-12-1-0003 5c. PROGRAM ELEMENT NUMBER

  17. Drug-induced spatial dispersion of repolarization

    PubMed Central

    Antzelevitch, Charles

    2008-01-01

    Spatial dispersion of repolarization in the form of transmural, trans-septal and apico-basal dispersion of repolarization creates voltage gradients that inscribe the J wave and T wave of the ECG. Amplification of this spatial dispersion of repolarization (SDR) underlies the development of life-threatening ventricular arrhythmias associated with inherited or acquired ion channelopathies giving rise to the long QT, short QT and Brugada syndromes (BrS). This review focuses on the role of spatial dispersion of repolarization in drug-induced arrhythmogenesis associated with the long QT and BrS. In the long QT syndrome, drug-induced amplification of SDR is often secondary to preferential prolongation of the action potential duration (APD) of M cells, whereas in the BrS, it is thought to be due to selective abbreviation of the APD of right ventricular epicardium. Among the challenges ahead is the identification of a means to quantitate SDR non-invasively. This review also discusses the value of the interval between the peak and end of the T wave (Tpeak–Tend, Tp–Te) as an index of SDR and transmural dispersion of repolarization, in particular. PMID:18651395

  18. Neuroprotective Effect of Coptis chinensis in MPP[Formula: see text] and MPTP-Induced Parkinson's Disease Models.

    PubMed

    Friedemann, Thomas; Ying, Yue; Wang, Weigang; Kramer, Edgar R; Schumacher, Udo; Fei, Jian; Schröder, Sven

    2016-01-01

    The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinson's disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinson's disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinson's disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinson's disease.

  19. An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson's disease and restless legs syndrome.

    PubMed

    Elshoff, Jan-Peer; Cawello, Willi; Andreas, Jens-Otto; Mathy, Francois-Xavier; Braun, Marina

    2015-04-01

    This narrative review reports on the pharmacological and pharmacokinetic properties of rotigotine, a non-ergolinic D₃/D₂/D₁ dopamine receptor agonist approved for the treatment of early- and advanced-stage Parkinson's disease (PD) and moderate to severe restless legs syndrome (RLS). Rotigotine is formulated as a transdermal patch providing continuous drug delivery over 24 h, with a plasma concentration profile similar to that of administration via continuous intravenous infusion. Absolute bioavailability after 24 h transdermal delivery is 37 % of the applied rotigotine dose. Following a single administration of rotigotine transdermal system (24-h patch-on period), most of the absorbed drug is eliminated in urine and feces as sulphated and glucuronidated conjugates within 24 h of patch removal. The drug shows a high apparent volume of distribution (>2500 L) and a total body clearance of 300-600 L/h. Rotigotine transdermal system provides dose-proportional pharmacokinetics up to supratherapeutic dose rates of 24 mg/24 h, with steady-state plasma drug concentrations attained within 1-2 days of daily dosing. The pharmacokinetics of rotigotine transdermal patch are similar in healthy subjects, patients with early- or advanced-stage PD, and patients with RLS when comparing dose-normalized area under the plasma concentration-time curve (AUC) and maximum plasma drug concentration (Cmax), as well as half-life and other pharmacokinetic parameters. Also, it is not influenced in a relevant manner by age, sex, ethnicity, advanced renal insufficiency, or moderate hepatic impairment. No clinically relevant drug-drug interactions were observed following co-administration of rotigotine with levodopa/carbidopa, domperidone, or the CYP450 inhibitors cimetidine or omeprazole. Also, pharmacodynamics and pharmacokinetics of an oral hormonal contraceptive were not influenced by rotigotine co-administration. Rotigotine was generally well tolerated, with an adverse event profile

  20. Plasmapheresis for Refractory Pruritus due to Drug-Induced Cholestasis.

    PubMed

    Al-Azzawi, Hasan; Patel, Ruchi; Sood, Gagan; Kapoor, Sumit

    2016-01-01

    Pruritus can be a distressing symptom seen in various cholestatic disorders. It is treated with medications like bile acid sequestrants. Drug-induced cholestasis usually resolves with withdrawal of the causative medication. We describe a case of refractory pruritus due to drug-induced cholestasis, not improved with withdrawal of the drug, managed effectively with multiple sessions of plasmapheresis.

  1. Plasmapheresis for Refractory Pruritus due to Drug-Induced Cholestasis

    PubMed Central

    Al-Azzawi, Hasan; Patel, Ruchi; Sood, Gagan; Kapoor, Sumit

    2016-01-01

    Pruritus can be a distressing symptom seen in various cholestatic disorders. It is treated with medications like bile acid sequestrants. Drug-induced cholestasis usually resolves with withdrawal of the causative medication. We describe a case of refractory pruritus due to drug-induced cholestasis, not improved with withdrawal of the drug, managed effectively with multiple sessions of plasmapheresis. PMID:28203129

  2. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    PubMed

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG.

  3. Weight change in Parkinson and Alzheimer patients taking atypical antipsychotic drugs.

    PubMed

    Sitburana, Oraporn; Rountree, Susan; Ondo, William G

    2008-09-15

    Atypical antipsychotics (AA) are generally associated with weight gain. We determined body mass index (BMI) change in Parkinson's disease (PD) before and after taking AA and compared against PD controls and Alzheimer's disease (AD) patients on AA. In 66 consecutive PD subjects started on AA who had accurate weights for more than 6 months before and after initiation of AA, we compared weight change before and after AA use, against a control group of sixty-one sex-matched PD subjects, and against twenty-eight AD subjects taking AA. A linear regression model was created to compare weight changes. Fifty-nine PD subjects had complete data, quetiapine (n=53) and clozapine (n=6). The mean BMI change in the period before starting AA was 0.00 kg/m(2)/month over 1.95+/-1.41 years. After starting AA, subjects lost 0.03 kg/m(2)/month (95% CI 0.62-1.21, P<0.0001), comparing PD before AA to the same PD patients after AA. In 61 PD controls, the mean BMI loss was 0.01 kg/m(2)/month (95% CI 0.15-0.94, P=0.007) comparing PD on AA vs. PD controls. The BMI for 28 AD subjects on AA increased 0.01 kg/m(2)/month (95% CI 0.26-0.83, P<0.0001), comparing PD on AA vs. AD on AA. The weight loss seen in the PD/AA group, compared to AD, suggest uniquely altered weight homeostasis in PD.

  4. Succinobucol, a Non-Statin Hypocholesterolemic Drug, Prevents Premotor Symptoms and Nigrostriatal Neurodegeneration in an Experimental Model of Parkinson's Disease.

    PubMed

    Santos, Danúbia Bonfanti; Colle, Dirleise; Moreira, Eduardo Luiz Gasnhar; Hort, Mariana Appel; Godoi, Marcelo; Le Douaron, Gael; Braga, Antonio Luiz; Assreuy, Jamil; Michel, Patrick Pierre; Prediger, Rui Daniel; Raisman-Vozari, Rita; Farina, Marcelo

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by non-motor and motor disabilities. This study investigated whether succinobucol (SUC) could mitigate nigrostriatal injury caused by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice. Moreover, the effects of SUC against MPTP-induced behavioral impairments and neurochemical changes were also evaluated. The quantification of tyrosine hydroxylase-positive (TH(+)) cells was also performed in primary mesencephalic cultures to evaluate the effects of SUC against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in vitro. C57BL/6 mice were treated with SUC (10 mg/kg/day, intragastric (i.g.)) for 30 days, and thereafter, animals received MPTP infusion (1 mg/nostril) and SUC treatment continued for additional 15 days. MPTP-infused animals displayed significant non-motor symptoms including olfactory and short-term memory deficits evaluated in the olfactory discrimination, social recognition, and water maze tasks. These behavioral impairments were accompanied by inhibition of mitochondrial NADH dehydrogenase activity (complex I), as well as significant decrease of TH and dopamine transporter (DAT) immunoreactivity in the substantia nigra pars compacta and striatum. Although SUC treatment did not rescue NADH dehydrogenase activity inhibition, it was able to blunt MPTP-induced behavioral impairments and prevented the decrease in TH and DAT immunoreactivities in substantia nigra (SN) and striatum. SUC also suppressed striatal astroglial activation and increased interleukin-6 levels in MPTP-intoxicated mice. Furthermore, SUC significantly prevented the loss of TH(+) neurons induced by MPP(+) in primary mesencephalic cultures. These results provide new evidence that SUC treatment counteracts early non-motor symptoms and neurodegeneration/neuroinflammation in the nigrostriatal pathway induced by intranasal MPTP administration in mice by modulating events downstream to the

  5. Side effects induced by the acute levodopa challenge in Parkinson’s Disease and atypical parkinsonisms

    PubMed Central

    Mostile, Giovanni; Dibilio, Valeria; Sciacca, Giorgia; Contrafatto, Donatella; Cicero, Calogero Edoardo; Raciti, Loredana; Luca, Antonina; Zappia, Mario

    2017-01-01

    Introduction Acute levodopa challenge may be performed to predict levodopa chronic responsiveness. The aim of the study was to investigate frequency of side effects during the acute levodopa challenge in PD and atypical parkinsonisms. Methods We enrolled 34 de novo PD patients and 29 patients affected by atypical parkinsonisms (Multiple System Atrophy, MSA, n = 10; Progressive Supranuclear Palsy, PSP, n = 12 and Corticobasal Degeneration, CBD, n = 7) who underwent an acute levodopa challenge. Side effects occurring during test were recorded. Results Side effects were more frequent among atypical parkinsonisms as unique group when compared to PD patients (64.3% versus 23.5%; p-value 0.002) with an adjusted OR of 4.36 (95%CI 1.40–13.5). Each atypical parkinsonisms showed almost double occurrence of side effects (MSA 90%, PSP 41.7% and CBD 57%). Conclusions Side effects during acute levodopa challenge may be frequent in atypical parkinsonisms. This information could be useful in order to better prepare the patient for the test. Furthermore, it could represent a useful cue in differential diagnosis with PD. PMID:28207803

  6. Zhichan decoction induces differentiation of dopaminergic neurons in Parkinson's disease rats after neural stem cell transplantation

    PubMed Central

    Shi, Huifen; Song, Jie; Yang, Xuming

    2014-01-01

    The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson's disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite (dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson's disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson's disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons. PMID:25206914

  7. Cyclooxygenase-2 Directs Microglial Activation-Mediated Inflammation and Oxidative Stress Leading to Intrinsic Apoptosis in Zn-Induced Parkinsonism.

    PubMed

    Chauhan, Amit Kumar; Mittra, Namrata; Patel, Devendra Kumar; Singh, Chetna

    2017-03-13

    Inflammation is decisive in zinc (Zn)-induced nigrostriatal dopaminergic neurodegeneration; however, the contribution of cyclooxygenase-2 (COX-2) is not yet known. The present study aimed to explore the role of COX-2 in Zn-induced Parkinsonism and its association with the microglial activation. Male Wistar rats were treated intraperitoneally (i.p.) with Zn as zinc sulphate (20 mg/kg) along with respective controls for 2-12 weeks. In a few sets, animals were also treated with/without celecoxcib (CXB, 20 mg/kg, i.p.), a selective COX-2 inhibitor. Indexes of the nigrostriatal neurodegeneration, oxidative stress, inflammation and apoptosis were measured in the animals/nigrostriatal tissue. Zn induced time-dependent increase in the expression of COX-2 while COX-1 expression was unaltered. Zn reduced the neurobehavioral activities, striatal dopamine content, tyrosine hydroxylase (TH) expression and number of dopaminergic neurons. While oxidative stress; microglial activation; expression of microglial cell surface marker-CD11b; cytochrome c release; caspase-9/3 activation; level of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 and Bcl-2-associated protein x (Bax) translocation from the cytosol to mitochondria were induced in the Zn-treated group, expression of B-cell lymphoma-2 (Bcl-2) was found to be reduced. CXB significantly attenuated Zn-induced increase in COX-2 expression and restored TH-expression, dopamine content, level of inflammatory cytokines and neurobehavioral indexes towards normalcy. Moreover, CXB also attenuated Zn-induced increase in microglial activation, oxidative stress and apoptotic markers towards normal levels. Results of the study thus demonstrate that COX-2 induces microglial activation that provokes the release of inflammatory mediators, which in turn augments oxidative stress and intrinsic apoptosis leading to dopaminergic neurodegeneration in Zn-induced Parkinsonism.

  8. Amantadine may reverse punding in Parkinson's disease--observation in a patient.

    PubMed

    Kashihara, Kenichi; Imamura, Takaki

    2008-01-01

    Punding, complex stereotyped behavior, sometimes occurs in patients with Parkinson's disease under dopaminergic replacement therapy. Reduction of dopaminergic drugs may reduce the problem but risks enhancing motor impairment. We report a patient with Parkinson's disease presenting disabling punding, which was reversed by amantadine without aggravating motor function. Amantadine may reduce punding by blocking NMDA receptors, in the same manner as in levodopa-induced dyskinesias.

  9. Phenotypes and Pathology of Drug-Induced Liver Disease.

    PubMed

    Goodman, Zachary D

    2017-02-01

    Drug hepatotoxicity can simulate nearly any clinical syndrome or pathologic lesion that may occur in the liver, so clinical and histopathologic diagnosis of drug-induced liver injury may be difficult. Nevertheless, most drugs that are known to idiosyncratic liver injury tend to cause patterns of injury that produce characteristic phenotypes. Recognition of these patterns or phenotypes in liver biopsy material is helpful in evaluation of clinical cases of suspected drug-induced liver injury.

  10. Acupuncture treatment of Parkinson's disease--a report of 29 cases.

    PubMed

    Zhuang, X; Wang, L

    2000-12-01

    It can be concluded that acupuncture possesses definite therapeutic effectiveness for Parkinson's disease, which is mainly represented by improvement in the clinical symptoms and signs, delaying of the disease's progression, decrease in the dosage of anti-parkinsonian drug, and expectant treatment of the complications and symptoms induced by the drug side-effects.

  11. Intervention of mitochondrial dysfunction-oxidative stress-dependent apoptosis as a possible neuroprotective mechanism of α-lipoic acid against rotenone-induced parkinsonism and L-dopa toxicity.

    PubMed

    Abdin, Amany A; Sarhan, Naglaa I

    2011-12-01

    The current study evidenced hypothesis that mitochondrial dysfunction-oxidative stress-dependent apoptotic pathways play a critical role in degeneration of dopaminergic neurons in Parkinson's disease. Model of rotenone-induced parkinsonism in rats produced decrease in striatal complex I activity and reduced glutathione with increase in nitrites concentration and caspase-3 activity. This was confirmed by significant correlation of catalepsy score with neurochemical parameters. Moreover, electron microscopic examination of striatal neurons displayed ultrastructure affection as hyperchromatic nuclei and disrupted mitochondria that are typical features of undergoing apoptosis. Administration of L-dopa as replacement therapy, although caused symptomatic improvement in catalepsy score, but further worsening in neurochemical parameters. Therefore, efforts are not only to improve effect of L-dopa, but also to introduce drugs provide antiparkinsonian and neuroprotective effects. In this study, α-lipoic acid exhibited noticeable neuroprotective effects by a mechanism via intervention of mitochondrial dysfunction-oxidative stress-dependent apoptotic pathways. Combination of α-lipoic acid efficiently halting deleterious toxic effects of L-dopa, revealed normalization of catalepsy score in addition to amelioration of neurochemical parameters and apparent preservation of striatal ultrastructure integrity, indicating benefit of both symptomatic and neuroprotective therapy. In conclusion, α-lipoic acid could be recommended as a disease-modifying therapy when given with L-dopa early in course of Parkinson's disease.

  12. Neuroprotective effect of matrine on MPTP-induced Parkinson's disease and on Nrf2 expression

    PubMed Central

    Meng, Fanhua; Wang, Jianhui; Ding, Fuxiang; Xie, Yunliang; Zhang, Yingjie; Zhu, Jie

    2017-01-01

    The incidence rate of Parkinson's disease (PD) is ≤2% in Chinese individuals >65 years old, accounting for 40% of the global total of PD patients. The pathogenesis of PD is not yet clear, and oxidative stress-induced mitochondrial dysfunction is considered to be the main reason for the onset of PD. Studies have shown that matrine exhibits good antioxidant activity. Thus, the present study aimed to observe the protective effect and mechanism of matrine on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neuron damage. A total of 25 C57BL male mice were randomly divided into 5 groups, consisting of the control group (group A), the MPTP group (group B) and three matrine (4, 8 and 16 mg/kg) plus MPTP treatment groups (groups C, D and E, respectively). Results from a pole-climbing test and locomotor activity experiments were recorded. The mice were sacrificed 4 days later and brain dissection was performed. The levels of superoxide dismutase (SOD) and glutathione (GSH) were assessed. The expression level of tyrosine hydroxylase (TH) in the ventral midbrain was studied by immunofluorescence analysis. The expression level of nuclear factor erythroid 2-related factor 2 (Nrf2) in the ventral midbrain was studied by western blot analysis. The experiments were repeated three times. Compared with control mice, the PD mice exhibited the typical behaviors associated with PD; matrine can alleviate this phenomenon, and with increasing matrine concentration, the symptoms were reduced significantly. Compared with the control mice, the PD mice had lower SOD and GSH activity, and matrine partially reversed the change in SOD and GSH activity. Immunofluorescence analysis showed that the level of TH in the ventral midbrain decreased significantly in the PD mice, and that the mice administered matrine showed higher expression of TH and levels of TH-positive cells. Western blotting results showed that the expression of Nrf2 in the ventral midbrain decreased

  13. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  14. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.

  15. Parkinson's Disease

    MedlinePlus

    ... results in reduction of a critical neurotransmitter called dopamine, a chemical responsible for transmitting messages to parts ... that coordinate muscle movement. Parkinson's patients have less dopamine. Studies have shown that the symptoms of Parkinson's ...

  16. Drug-induced neurobehavioral plasticity: the role of environmental context.

    PubMed

    Badiani, A; Robinson, T E

    2004-09-01

    Repeated administrations of addictive drugs produce long-lasting changes in brain and behavior. However, drug-induced neurobehavioral plasticity is not a mere function of the neuropharmacological actions of drugs, but the result of complex drug-environment interactions. In the present review we summarize results obtained in a series of studies using an animal model of drug-environment interaction, showing that environmental context and past drug history interact to modulate the effects of amphetamine, cocaine and morphine on behavior, gene expression and structural plasticity. These findings may help shed some light on the conditions necessary for addictive drugs to enduringly alter brain and behavior.

  17. Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson's disease.

    PubMed

    Boileau, Isabelle; Guttman, Mark; Rusjan, Pablo; Adams, John R; Houle, Sylvain; Tong, Junchao; Hornykiewicz, Oleh; Furukawa, Yoshiaki; Wilson, Alan A; Kapur, Shitij; Kish, Stephen J

    2009-05-01

    The D(3) dopamine (DA) receptor is a member of the D(2)-like DA receptor family. While the D(2) receptor is abundant especially in motor-regions of the striatum, the D(3) receptor shows a relative abundance in limbic regions and globus pallidus. This receptor is of current interest in neurology because of its potential involvement in psychiatric and motor complications in Parkinson's disease and the possibility that dopamine D(3)-preferring agonist therapy might delay progression of the disorder. Preclinical data indicate that striatal levels of the D(3) (but not the D(2)) DA receptor are decreased following lesion of nigrostriatal DA neurons; at present, there are no in vivo data on this receptor subtype in Parkinson's disease. The objective of this positron emission tomography study was to compare [(11)C]-(+)-PHNO (D(3) versus D(2) preferring) and [(11)C]raclopride (D(3) = D(2)) binding in brain of non-depressed, non-demented, dopaminergic drug-naïve patients with early-stage Parkinson's disease (n = 10), relative to matched-controls (n = 9). Parkinson's disease was associated with a trend for bilaterally decreased [(11)C]-(+)-PHNO (but not [(11)C]raclopride) binding in the D(3)-rich ventral striatum (-11%, P = 0.07) and significantly decreased binding in globus pallidus (-42%, P = 0.02). In contrast, in the primarily D(2)-populated putamen, both [(11)C]-(+)-PHNO (25%, P = 0.02) and [(11)C]raclopride (25%, P < 0.01) binding were similarly increased, especially on the side contra-lateral to the symptoms. In the midbrain, presumably containing D(3) receptors localized to the substantia nigra, [(11)C]-(+)-PHNO binding was normal. Decreased [(11)C]-(+)-PHNO to [(11)C]raclopride ratio correlated with motor deficits and lowered-mood (P < 0.02). Our imaging data suggest that brain DA neuron loss in the human causes region-specific differential changes in DA D(2) and D(3) receptors with D(3) receptor 'downregulation' possibly related to some motor and mood problems in

  18. Neuroprotective Effects of Tetramethylpyrazine against Dopaminergic Neuron Injury in a Rat Model of Parkinson's Disease Induced by MPTP

    PubMed Central

    Lu, Chen; Zhang, Jin; Shi, Xiaopeng; Miao, Shan; Bi, Linlin; Zhang, Song; Yang, Qian; Zhou, Xuanxuan; Zhang, Meng; Xie, Yanhua; Miao, Qing; Wang, Siwang

    2014-01-01

    Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disease. Although several hypotheses have been proposed to explain the pathogenesis of PD, apoptotic cell death and oxidative stress are the most prevalent mechanisms. Tetramethylpyrazine (TMP) is a biological component that has been extracted from Ligusticum wallichii Franchat (ChuanXiong), which exhibits anti-apoptotic and antioxidant roles. In the current study, we aimed to investigate the possible protective effect of TMP against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP and to elucidate probable molecular mechanisms. The results showed that TMP could notably prevent MPTP-induced dopaminergic neurons damage, reflected by improvement of motor deficits, enhancement of TH expression and the content of dopamine and its metabolite, DOPAC. We observed MPTP-induced activation of mitochondrial apoptotic death pathway, evidenced by up-regulation of Bax, down-regulation of Bcl-2, release of cytochrome c and cleavage of caspase 3, which was significantly inhibited by TMP. Moreover, TMP could prevent MPTP-increased TBARS level and MPTP-decreased GSH level, indicating the antioxidant role of TMP in PD model. And the antioxidant role of TMP attributes to the prevention of MPTP-induced reduction of Nrf2 and GCLc expression. In conclusion, in MPTP-induced PD model, TMP prevents the down-regulation of Nrf2 and GCLc, maintaining redox balance and inhibiting apoptosis, leading to the attenuation of dopaminergic neuron damage. The effectiveness of TMP in treating PD potentially leads to interesting therapeutic perspectives. PMID:24719552

  19. Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease.

    PubMed

    González-Aparicio, Ramiro; Moratalla, Rosario

    2014-02-01

    The long-term use of levodopa (L-DOPA) in Parkinson's disease (PD) results in the development of abnormal involuntary movements called L-DOPA-induced dyskinesias. Increasing evidences suggest that the endocannabinoid system may play a role in the modulation of dyskinesias. In this work, we assessed the antidyskinetic effect of the endocannabinoid analog oleoylethanolamide (OEA), an agonist of PPARα and antagonist of TRPV1 receptors. We used a hemiparkinsonian model of PD in mice with 6-OHDA striatal lesion. The chronic L-DOPA treatment developed intense axial, forelimb and orolingual dyskinetic symptoms, as well as contralateral rotations. Treatment with OEA reduced all these symptoms without reducing motor activity or the therapeutic motor effects of L-DOPA. Moreover, the OEA-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates of dyskinesia. OEA reduced FosB striatal overexpression and phosphoacetylation of histone 3, both molecular markers of L-DOPA-induced dyskinesias. We found that OEA antidyskinetic properties were mediated by TRPV1 receptor, as pretreatment with capsaicin, a TRPV1 agonist, blocked OEA antidyskinetic actions, as well as the reduction in FosB- and pAcH3-overexpression induced by L-DOPA. This study supports the hypothesis that the endocannabinoid system plays an important role in the development and expression of dyskinesias and might be an effective target for the treatment of L-DOPA-induced dyskinesias. Importantly, there was no development of tolerance to OEA in any of the parameters we examined, which has important implications for the therapeutic potential of drugs targeting the endocannabinoid system.

  20. Evaluation of the Short Parkinson's Evaluation Scale: a new friendly scale for the evaluation of Parkinson's disease in clinical drug trials.

    PubMed

    Rabey, J M; Bass, H; Bonuccelli, U; Brooks, D; Klotz, P; Korczyn, A D; Kraus, P; Martinez-Martin, P; Morrish, P; Van Sauten, W; Van Hilten, B

    1997-08-01

    The extensive use of the Unified Parkinson's Disease Rating Scale (UPDRS) has revealed low interrater reliability in some items and redundancy in others. In view of these shortcomings, we have structured a new scale that includes a zero-to three-point scale for each item in the evaluation of PD. The mental axis includes memory, thought disorders, and depression. Activities of daily living (ADL) includes eight items: speech, eating, feeding, dressing, hygiene, handwriting, walking, and turning in bed. The motor examination includes eight items: speech, tremor, rest and posture, rigidity, finger tapping, arising from chair, gait, and postural stability. Complications of therapy were also included: dyskinesias, dystonia, motor fluctuations, and freezing episodes, collected by history. In addition, a global scoring for motor fluctuations that should complement the Hoehn and Yahr Scale was incorporated. In this report, we present a statistical analysis of the ADL, motor evaluation, and complications of therapy sections. Concerning the interrater reliability mean, Kendall's W values were >0.9 for most of the items in the Short Parkinson's Evaluation Scale (SPES). Kendall's W <0.8 (motor evaluation) was found for two items of the SPES and nine items of the UPDRS. The mean interrater reliability for both scales across all seven centers (seven Kendall's W for seven centers) (Mann-Whitney test) showed no statistical differences between the scales. Spearman's correlations between items of both scales were significant. Factor analysis of the SPES and UPDRS data revealed a four-factor solution that explained approximately 60% of the data. All participating centers found the SPES easier to apply and quicker to complete, when compared with the UPDRS. The results obtained strongly favor the introduction of SPES for clinical practice.

  1. Neuroprotective effects of stemazole in the MPTP-induced acute model of Parkinson's disease: Involvement of the dopamine system.

    PubMed

    Guo, Zhirui; Xu, Shasha; Du, Na; Liu, Jia; Huang, Yiyun; Han, Mei

    2016-03-11

    Parkinson's disease is a neurodegenerative disorder characterized by a loss of nigrostriata dopaminergic neurons, which has been thought, at least in part, to result from oxidative stress. The present study aims to investigate the neuroprotective effects of stemazole (ST) on the dopamine (DA) system and its possible mechanisms of action in a mouse model of PD. Mice were injected intraperitoneally with MPTP (20mg/kg) four times at 2-h intervals for one day to induce Parkinsonism, and then treated with ST (10, 30 and 50mg/kg) or Madopar (120mg/kg) for 7days. Behavioral analyses were performed with locomotor activity measures and rotarod test. Tyrosine hydroxylase (TH) and dopamine transporter (DAT) levels were detected by immunohistochemistry method. DA and its metabolites were determined by high-performance liquid chromatography with an electrochemical detector. Oxidative stress levels were assessed by measuring the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). Our results demonstrated that ST treatment improved locomotor activity and motor coordination in MPTP mice. There was also a significant increase in TH-positive cells (∼24%, P<0.01) and DAT levels (∼26%, P<0.01) in MPTP mice treated with ST (50mg/kg) compared with the vehicle group. Madopar treatment showed weaker effects on TH-positive cells (∼21%, P<0.05) and DAT levels (∼21%, P<0.05). DA and its metabolite levels were significantly increased with ST (50mg/kg) treatment (P<0.01, compared with the vehicle group). In addition, SOD and GSH-PX activities were elevated notably in ST treatment groups compared with the vehicle group. In conclusion, these results suggest that ST has neuroprotective effect on the impaired DA system, potentially through enhancement of the cell's anti-oxidative capacity. Hence it may be used as a potential therapeutic agent for Parkinson's disease.

  2. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP /probenecid-induced Parkinson's disease mouse model.

    PubMed

    Sung, Yun-Hee

    2015-10-01

    [Purpose] This study aimed to investigate the effect of treadmill exercise on non-motor function, specifically long-term memory, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease mouse model. [Methods] A mouse model of Parkinson's disease was developed by injecting 20 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 250 mg/kg of probenecid (P). We divided in into four groups: probenecid group, probenecid-exercise group, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group. Mice in the exercise groups ran on treadmill for 30 min/day, five times per week for 4 weeks. [Results] Latency in the passive avoidance test increased in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group compared with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. In addition, the number of 5-bromo-2-deoxyuridine/NeuN-positive cells and 5-bromo-2-deoxyuridine/doublecortin-positive cells in the hippocampal dentate gyrus was higher in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group than that in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. These changes were associated with the expression of brain-derived neurotrophic factor in the hippocampus. [Conclusion] Our results suggest that treadmill exercise may improve long-term memory in Parkinson's disease mice by facilitating neurogenesis via increased expression of neurotrophic factors.

  3. [DRUG INDUCED EXANTHEMA AND SEVERE CUTANEOUS DRUG REACTIONS].

    PubMed

    Bensaïd, Benoît; Valeyrie-Allanore, Laurence; Lebrun-Vignes, Bénédicte; Nicolas, Jean-François

    2015-09-01

    Cutaneous adverse drug reactions (CADR) are delayed hypersensivities. Their clinical presentation and severity are very diverse ranging from the frequent and benign exanthemas to the rare but severe CADR involving deep organs in the case of drug reaction with eosinophilia and systemic symptoms (DRESS) or leading to skin bulla and epidermal detachment in toxic epidermal necrolysis. The main differential diagnoses are infections, especially viral ones, which could give clinical symptoms identical to those occurring in CADR.

  4. Mechanisms of drug-induced proarrhythmia in clinical practice

    PubMed Central

    Konstantopoulou, Arkadia; Tsikrikas, Spyros; Asvestas, Dimitrios; Korantzopoulos, Panagiotis; Letsas, Konstantinos P

    2013-01-01

    Drug-induced proarrhythmia represents a great challenge for those involved in the development of novel pharmaceuticals and in the regulatory bodies for drug approval as well as for the prescribing clinicians. Our understanding of the mechanisms that underlie drug-induced proarrhythmia has grown dramatically over the last two decades. A growing number of cardiac and non-cardiac agents have been shown to alter cardiac repolarization predisposing to fatal cardiac arrhythmias such as ventricular tachycardia or ventricular fibrillation and sudden cardiac death. These agents may induce the phenotype of long QT syndrome and less commonly of short QT syndrome and Brugada syndrome (BS). Although, genetic susceptibility underlie drug-induced proarrhythmia in certain cases, current data are limited regarding this topic. The present review surveys the current published literature on the mechanisms and the offending medical agents that predispose to drug-induced long QT syndrome, short QT syndrome and BS. Drug-induced proarrhythmia should be considered as a predictor of sudden cardiac death and should prompt critical re-evaluation of the risks and benefits of the suspicious medication. Survivors of drug-induced proarrhythmia and family members require careful examination and possibly genetic testing for the presence of a channelopathy. Treating physicians are advised to follow the lists of agents implicated in drug-induced proarrhythmia in order to minimize the risk of arrhythmia and sudden cardiac death. PMID:23847724

  5. [Cabergoline in the treatment of Parkinson's disease].

    PubMed

    Pastor, P; Tolosa, E

    2003-05-01

    Cabergoline (1-[(6-allelylergolin-8 beta-yl)carbonyl]-1-[3-(dimethylamino)propyl]-3-ethyl-urea) is a new agonist of the D2 dopaminergic receptors used in the treatment of Parkinson's disease. Cabergoline is characterized by unique pharmacologic properties, such as its long plasma half-life (about 68 hours), which allows for once a day administration. Cabergoline is well tolerated, as has been shown in several clinical trials. Based on the information available, we suggest that cabergoline produces an improvement in the symptoms of Parkinson's disease similar to those produced by other dopaminergic agonists. Cabergoline monotherapy, when used in previously untreated patients, is an appropriate option for the symptomatic treatment of Parkinson's disease. Cabergoline improves motor symptoms, delays the presentation of levodopa-induced motor complications, and diminishes the amount of levodopa required for the control of the symptoms. We suggest that cabergoline is an adequate adjuvant treatment for Parkinson' disease. There is improvement in motor symptoms (without substantially increased dyskinesias), reduced severity and duration of the wearing-off period, and diminished need for levodopa. Cabergoline can also be useful in the treatment of sleep disturbances associated with advanced Parkinson's disease such as nocturnal akinesia and dystonia. However, additional studies on cabergoline's effects in nocturnal disturbances associated with Parkinson's disease are still required. Cabergoline is a well tolerated drug. Its side effects are seen mainly in the digestive and nervous system (central and peripheral). The efficacy of cabergoline in comparison to other dopaminergic agonists should be tested in future clinical studies.

  6. Psychotic disorders induced by antiepileptic drugs in people with epilepsy.

    PubMed

    Chen, Ziyi; Lusicic, Ana; O'Brien, Terence J; Velakoulis, Dennis; Adams, Sophia J; Kwan, Patrick

    2016-10-01

    Antiepileptic drug treatment can induce psychosis in some patients. However, there are no agreed definitions or diagnostic criteria for antiepileptic drug-induced psychotic disorder in the classification systems of either epileptology or psychiatry. In this study we investigated the clinical spectrum of antiepileptic drug-induced psychotic disorder in patients with epilepsy. The medical records of all patients with epilepsy who were diagnosed by a neuropsychiatrist as having a psychotic disorder at the Royal Melbourne Hospital from January 1993 to June 2015 were reviewed. Data were extracted regarding epilepsy and its treatment, psychotic symptoms profile and outcome. The diagnosis of epilepsy was established in accordance to the classification system of the International League Against Epilepsy while that of psychotic disorder was made according to the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition and the proposal on neuropsychiatric disorders in epilepsy. Patients with antiepileptic drug-induced psychotic disorder were compared to those with psychotic disorders unrelated to antiepileptic drugs assessed over the same period (non-antiepileptic drug induced psychotic disorder group). Univariate comparisons were performed and variables with a value of P < 0.1 were selected for the multivariate logistic regression analysis. The records of 2630 in-patients and outpatients with epilepsy were screened, from which 98 (3.7%) with psychotic disorders were identified. Among these, 14 (14.3%) were diagnosed to have antiepileptic drug-induced psychotic disorder. Excluding one patient who developed psychosis after valproate withdrawal, 76.9% in the antiepileptic drug induced psychotic disorder group were female and the percentage of temporal lobe involvement was higher in the antiepileptic drug induced psychotic disorder group (69.2% versus 38.1%, P < 0.05). Current use of levetiracetam was higher in antiepileptic drug-induced psychotic disorder group (84

  7. Antituberculosis drug-induced hepatotoxicity in children

    PubMed Central

    Donald, Peter R

    2011-01-01

    Recent increases in the dosages of the essential antituberculosis agents isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA) for use in children recommended by World Health Organization have raised concerns regarding the risk of hepatotoxicity. Published data relating to the incidence and pathogenesis of antituberculosis drug-induced hepatotoxicity (ADIH), particularly in children, is reviewed. Amongst 12,708 children receiving chemoprophylaxis, mainly with INH, but also other combinations of INH, RMP and PZA only 1 case (0.06%) of jaundice was recorded and abnormal liver functions documented in 110 (8%) of the 1225 children studied. Excluding tuberculous meningitis (TBM) 8984 were children treated for tuberculosis disease and jaundice documented in 75 (0.83%) and abnormal liver function tests in 380 (9.9%) of the 3855 children evaluated. Amongst 717 children treated for TBM, however, jaundice occurred in 72 (10.8%) and abnormal LFT were recorded in 174 (52.9%) of those studied. Case reports document the occurrence of ADIH in at least 63 children. Signs and symptoms of ADIH were frequently ignored in the recorded cases. ADIH can occur in children at any age or at any dosage of INH, RMP or PZA, but the incidence of.ADIH is is considerably lower in children than in adults. Children with disseminated forms of disease are at greater risk of ADIH. The use of the higher dosages of INH, RMP and PZA recently recommended by WHO is unlikely to result in a greater risk of ADIH in children. PMID:21772953

  8. [Research advances in drug-induced autoimmune hepatitis].

    PubMed

    Li, C M; Zhang, J Y; Tang, Y Y; Mao, Y M

    2016-11-20

    Drug induced autoimmune hepatitis (DIAIH) refers to the liver injury mediated by drug-induced autoimmune reaction. Since it has similar clinical features as idiopathic autoimmune hepatitis, it is often difficult to make differential diagnosis in clinical practice. A deep understanding of the development, pathogenesis, related drugs, risk factors, and clinical and histological features of DIAIH helps with the correct diagnosis and treatment of DIAIH.

  9. Kaurenoic acid from pulp of Annona cherimolia in regard to Annonaceae-induced Parkinsonism.

    PubMed

    Guillopé, R; Escobar-Khondiker, M; Guérineau, V; Laprévote, O; Höglinger, G U; Champy, P

    2011-12-01

    Guadeloupean Parkinsonism has been linked epidemiologically to the consumption of Annonaceae fruits. These were proposed to be etiological agents for sporadic atypical Parkinsonism worldwide, because of their content of neurotoxins such as isoquinolinic alkaloids and Annonaceous acetogenins. The pulp of Annona cherimolia Mill. from Spain was screened for these toxic molecules using Matrix-Assisted Laser Desorption Ionisation - Time of Flight mass spectrometry (MALDI-TOF MS) and it was found not to be a source of exposure. However, kaurenoic acid, a diterpene considered to be cytotoxic, was detected in high amounts (66 mg/fresh fruit). Treatment of rat embryonic striatal primary cultures, up to a high concentration (50 µM), did not cause neuronal death nor astrogliosis, suggesting that this molecule is not at risk of implication in human neurodegenerative diseases.

  10. Permeability of blood-brain barrier in macaque model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson disease.

    PubMed

    Thiollier, Thibaud; Wu, Caisheng; Contamin, Hugues; Li, Qin; Zhang, Jinlan; Bezard, Erwan

    2016-06-01

    Brain bioavailability of drugs developed to address central nervous system diseases is classically documented through cerebrospinal fluid collected in normal animals, i.e., through an approximation as there are fundamental differences between cerebrospinal fluid and tissue contents. The fact that disease might affect brain availability of drugs is almost never considered at this stage although several conditions are associated with blood-brain barrier damage. Building upon our expertise in Parkinson's disease translational research, the present study addressed this gap comparing plasma and cerebrospinal fluid bioavailability of l-3,4-dihydroxyphenylalanine, carbamazepine, quinidine, lovastatin, and simvastatin, in healthy and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated macaques, the gold standard model of Parkinson's disease. The drugs were selected based upon their differential transport across the blood-brain barrier. Interestingly, brain bioavailability of quinidine was decreased while others were unaffected. Pharmacokinetics and pharmacodynamics experiments of drugs addressing Parkinson's disease might thus be performed in healthy animals unless the drugs are known to interact with the organic cation transporter.

  11. Neuregulins, Neuroprotection and Parkinson’s Disease

    DTIC Science & Technology

    2002-12-01

    Although the basic underlying mechanisms of Parkinson’s disease remain unknown, considerable efforts have centered on developing effective strategies...dopamine in the nigrostriatal system have the potential for overcoming the lack of dopamine neuronal function in Parkinson’s disease patients. Results...application of neuregulins to the treatment of neurotoxin-induced neurodegenerative disorders such as Parkinson’s disease .

  12. Gene dysregulation is restored in the Parkinson's disease MPTP neurotoxic mice model upon treatment of the therapeutic drug Cu(II)(atsm).

    PubMed

    Cheng, Lesley; Quek, Camelia Y J; Hung, Lin W; Sharples, Robyn A; Sherratt, Nicki A; Barnham, Kevin J; Hill, Andrew F

    2016-03-01

    The administration of MPTP selectively targets the dopaminergic system resulting in Parkinsonism-like symptoms and is commonly used as a mice model of Parkinson's disease. We previously demonstrated that the neuroprotective compound Cu(II)(atsm) rescues nigral cell loss and improves dopamine metabolism in the MPTP model. The mechanism of action of Cu(II)(atsm) needs to be further defined to understand how the compound promotes neuronal survival. Whole genome transcriptomic profiling has become a popular method to examine the relationship between gene expression and function. Substantia nigra samples from MPTP-lesioned mice were evaluated using whole transcriptome sequencing to investigate the genes altered upon Cu(II)(atsm) treatment. We identified 143 genes affected by MPTP lesioning that are associated with biological processes related to brain and cognitive development, dopamine synthesis and perturbed synaptic neurotransmission. Upon Cu(II)(atsm) treatment, the expression of 40 genes involved in promoting dopamine synthesis, calcium signaling and synaptic plasticity were restored which were validated by qRT-PCR. The study provides the first detailed whole transcriptomic analysis of pathways involved in MPTP-induced Parkinsonism. In addition, we identify key therapeutic pathways targeted by a potentially new class of neuroprotective agents which may provide therapeutic benefits for other neurodegenerative disorders.

  13. Identification of Drugs Inducing Phospholipidosis by Novel in vitro Data

    PubMed Central

    Muehlbacher, Markus; Tripal, Philipp; Roas, Florian; Kornhuber, Johannes

    2012-01-01

    Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 μm and 5.0 μm). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood–brain barrier, and compounds that violate Lipinski’s rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD. PMID:22945602

  14. Identification of drugs inducing phospholipidosis by novel in vitro data.

    PubMed

    Muehlbacher, Markus; Tripal, Philipp; Roas, Florian; Kornhuber, Johannes

    2012-11-01

    Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 μM and 5.0 μM). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood-brain barrier, and compounds that violate Lipinski's rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD.

  15. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions

    PubMed Central

    Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse

  16. Drug-induced phospholipidosis caused by combinations of common drugs in vitro.

    PubMed

    Glock, Mareike; Muehlbacher, Markus; Hurtig, Henoch; Tripal, Philipp; Kornhuber, Johannes

    2016-09-01

    Drug-induced phospholipidosis (DIPLD), characterized by the accumulation of phospholipids within lysosomes, is suspected to impair lysosomal function and considered an adverse side effect of the administered medication. The increasing use of polypharmacy and the resultant elevated risks of adverse drug reactions raise the need to explore the effects of drug combinations with respect to their influence on side effects, such as DIPLD. In this study, we utilized an in vitro assay to investigate DIPLD that was caused by 24 commonly used drugs applied alone and in binary combinations with each other. Moreover, we attempted to predict the extent of DIPLD resulting from the combinations using a simple additive approach based on the increase in phospholipid levels caused by the single drugs. The results suggest that DIPLD, which was caused by combinations of drugs, occurs in an additive manner, depending on total drug concentration. Furthermore, we show that the extent of DIPLD can be predicted from the DIPLD caused by the single drugs. Thus, the simultaneous use of multiple drugs with PLD-inducing properties increases the event risk, as well as the severity of drug-induced phospholipidosis. The findings underline the importance of considering the DIPLD-inducing properties of drugs, especially in the context of polypharmacy.

  17. The Parkinson's disease death rate: carbidopa and vitamin B6.

    PubMed

    Hinz, Marty; Stein, Alvin; Cole, Ted

    2014-01-01

    The only indication for carbidopa and benserazide is the management of L-3,4-dihydroxyphenylalanine (L-dopa)-induced nausea. Both drugs irreversibly bind to and permanently deactivate pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, and PLP-dependent enzymes. PLP is required for the function of over 300 enzymes and proteins. Virtually every major system in the body is impacted directly or indirectly by PLP. The administration of carbidopa and benserazide potentially induces a nutritional catastrophe. During the first 15 years of prescribing L-dopa, a decreasing Parkinson's disease death rate was observed. Then, in 1976, 1 year after US Food and Drug Administration approved the original L-dopa/carbidopa combination drug, the Parkinson's disease death rate started increasing. This trend has continued to the present, for 38 years and counting. The previous literature documents this increasing death rate, but no hypothesis has been offered concerning this trend. Carbidopa is postulated to contribute to the increasing Parkinson's disease death rate and to the classification of Parkinson's as a progressive neurodegenerative disease. It may contribute to L-dopa tachyphylaxis.

  18. Drug-induced QT interval prolongation: mechanisms and clinical management

    PubMed Central

    Nachimuthu, Senthil; Assar, Manish D.

    2012-01-01

    The prolonged QT interval is both widely seen and associated with the potentially deadly rhythm, Torsades de Pointes (TdP). While it can occur spontaneously in the congenital form, there is a wide array of drugs that have been implicated in the prolongation of the QT interval. Some of these drugs have either been restricted or withdrawn from the market due to the increased incidence of fatal polymorphic ventricular tachycardia. The list of drugs that cause QT prolongation continues to grow, and an updated list of specific drugs that prolong the QT interval can be found at www.qtdrugs.org. This review focuses on the mechanism of drug-induced QT prolongation, risk factors for TdP, culprit drugs, prevention and monitoring of prolonged drug-induced QT prolongation and treatment strategies. PMID:25083239

  19. Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: a model for early Parkinson's disease.

    PubMed

    Eagle, Andrew L; Olumolade, Oluyemi O; Otani, Hajime

    2015-03-01

    Parkinson's disease (PD) produces progressive nigrostriatal dopamine (DA) denervation resulting in cognitive and motor impairment. However, it is unknown whether cognitive impairments, such as instrumental learning deficits, are associated with the early stage PD-induced mild DA denervation. The current study sought to model early PD-induced instrumental learning impairments by assessing the effects of low dose (5.5μg), bilateral 6OHDA-induced striatal DA denervation on acquisition of instrumental stimulus discrimination in rats. 6OHDA (n=20) or sham (n=10) lesioned rats were tested for stimulus discrimination acquisition either 1 or 2 weeks post surgical lesion. Stimulus discrimination acquisition across 10 daily sessions was used to assess discriminative accuracy, or a probability measure of the shift toward reinforced responding under one stimulus condition (Sd) away from extinction, when reinforcement was withheld, under another (S(d) phase). Striatal DA denervation was assayed by tyrosine hydroxylase (TH) staining intensity. Results indicated that 6OHDA lesions produced significant loss of dorsal striatal TH staining intensity and marked impairment in discrimination acquisition, without inducing akinetic motor deficits. Rather 6OHDA-induced impairment was associated with perseveration during extinction (S(Δ) phase). These findings suggest that partial, bilateral striatal DA denervation produces instrumental learning deficits, prior to the onset of gross motor impairment, and suggest that the current model is useful for investigating mild nigrostriatal DA denervation associated with early stage clinical PD.

  20. Chronic thalamic stimulation improves tremor and levodopa induced dyskinesias in Parkinson's disease.

    PubMed Central

    Caparros-Lefebvre, D; Blond, S; Vermersch, P; Pécheux, N; Guieu, J D; Petit, H

    1993-01-01

    Chronic thalamic stimulation was performed in 10 Parkinsonian patients with disabling tremor and poor response to drug therapy. During the stereotactic procedure, an electrode was introduced in the ventralis intermediate nucleus of the thalamus. Test stimulation was performed during the intra-operative procedure and a few days after surgery using an external stimulator. When tremor was obviously reduced by thalamic stimulation, an internal stimulator was implanted under the clavicle. Tremor was initially suppressed in all cases and reappeared whenever stimulation was stopped. Patients were followed for 22 to 34 months. Tremor was controlled in eight cases but reappeared after three months in two cases. Levodopa induced dyskinesias were observed before electrode implantation in 5 cases. They consisted of peak-dose choreic or ballistic dyskinesias in 4 cases and biphasic dystonic dyskinesias in 3 cases. Peak-dose dyskinesias were greatly improved or suppressed in all cases. Biphasic dyskinesias were improved in 2 cases. Thalamic stimulation was well tolerated. Mild dystonic hand posture related to the deep brain stimulation was observed in one case. No neuropsychological side-effects were noted. Thalamic stimulation could prove to be an adequate treatment for resistant tremor and levodopa induced dyskinesias. PMID:8459243

  1. Drug-induced impairment of renal function

    PubMed Central

    Pazhayattil, George Sunny; Shirali, Anushree C

    2014-01-01

    Pharmaceutical agents provide diagnostic and therapeutic utility that are central to patient care. However, all agents also carry adverse drug effect profiles. While most of these are clinically insignificant, some drugs may cause unacceptable toxicity that impacts negatively on patient morbidity and mortality. Recognizing adverse effects is important for administering appropriate drug doses, instituting preventive strategies, and withdrawing the offending agent due to toxicity. In the present article, we will review those drugs that are associated with impaired renal function. By focusing on pharmaceutical agents that are currently in clinical practice, we will provide an overview of nephrotoxic drugs that a treating physician is most likely to encounter. In doing so, we will summarize risk factors for nephrotoxicity, describe clinical manifestations, and address preventive and treatment strategies. PMID:25540591

  2. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage and oxidative stress in a rat model of Parkinson's disease.

    PubMed

    Wang, Jun; He, Can; Wu, Wang-Yang; Chen, Feng; Wu, Yang-Yang; Li, Wei-Zu; Chen, Han-Qing; Yin, Yan-Yan

    2015-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulated evidences have suggested that oxidative stress is closely associated with the dopaminergic neurodegeneration of PD that can be protected by antioxidants. Biochanin A that is an O-methylated isoflavone in chickpea is investigated to explore its protective mechanism on dopaminergic neurons of the unilateral lipopolysaccharide (LPS)-injected rat. The results showed that biochanin A significantly improved the animal model's behavioral symptoms, prevented the loss of dopaminergic neurons and inhibited the deleterious microglia activation in the LPS-induced rats. Moreover, biochanin A inhibited nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) activation and malondialdehyde (MDA) production, increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the rat brain. These results suggested that biochanin A might be a natural candidate with protective properties on dopaminergic neurons against the PD.

  3. Dopamine-melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson's disease.

    PubMed

    Offen, D; Ziv, I; Barzilai, A; Gorodin, S; Glater, E; Hochman, A; Melamed, E

    1997-08-01

    The function of neuromelanin (NM), the oxidized dopamine (DA) polymer, within the DA-producing cells in the human and primate substantia nigra (SN), is still an enigma. Some studies show that the vulnerability of nigral neurons in Parkinson's disease is correlated to their toxic NM content, while others suggest that it contributes to cellular protection. We showed recently that DA, the endogenous nigral neurotransmitter, triggers apoptosis, an active program of cellular self-destruction, in neuronal cultures. In the present study, we exposed cells to synthetic dopamine-melanin (DA-M) and analysed the cellular and genetic changes. We found that exposure of PC12 cells to DA-M (0.5 mg/ml for 24 h) caused 50% cell death, as indicated by trypan blue exclusion assay and 3H-thymidine incorporation. Gel electrophoresis DNA analysis of PC12 cells treated with DA-M showed the typical apoptotic DNA ladder, indicating inter-nucleosomal DNA degradation. The DNA fragmentation also was visualized histochemically in situ by DNA end-labeling staining (the TUNEL method). The FeCl2 (0.05 mM) significantly increased DA-M toxicity, while desferrioxamine, an iron chelator, totally abolished the additive toxicity of iron. The contribution of oxidative stress in this model of DA-M-induced cell death was examined using various antioxidants. In contrast to DA, inhibition of DA-M toxicity antioxidants by reduced glutathione (GSH), N-acetyl cysteine, catalase and Zn/Cu superoxide dismutase (SOD) was very limited. In conclusion, we found that DA-M may induce typical apoptotic death in PC12 cells. Our findings support a possible role of NM in the vulnerability of the dopaminergic neural degeneration in Parkinson's disease. The differential protective effect by antioxidants against toxicity of DA and DA-M may have implications for future neuroprotective therapeutic approaches for this common neurological disorder.

  4. Inhibition of adenylyl cyclase type 5 prevents L-DOPA-induced dyskinesia in an animal model of Parkinson's disease.

    PubMed

    Park, Hye-Yeon; Kang, Young-Mi; Kang, Young; Park, Tae-Shin; Ryu, Young-Kyoung; Hwang, Jung-Hwan; Kim, Yong-Hoon; Chung, Bong-Hyun; Nam, Ki-Hoan; Kim, Mee-Ree; Lee, Chul-Ho; Han, Pyung-Lim; Kim, Kyoung-Shim

    2014-08-27

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is widely used as a therapeutic choice for the treatment of patients with Parkinson's disease. However, the long-term use of L-DOPA leads to the development of debilitating involuntary movements, called L-DOPA-induced dyskinesia (LID). The cAMP/protein kinase A (PKA) signaling in the striatum is known to play a role in LID. However, from among the nine known adenylyl cyclases (ACs) present in the striatum, the AC that mediates LID remains unknown. To address this issue, we prepared an animal model with unilateral 6-hydroxydopamine lesions in the substantia nigra in wild-type and AC5-knock-out (KO) mice, and examined behavioral responses to short-term or long-term treatment with L-DOPA. Compared with the behavioral responses of wild-type mice, LID was profoundly reduced in AC5-KO mice. The behavioral protection of long-term treatment with L-DOPA in AC5-KO mice was preceded by a decrease in the phosphorylation levels of PKA substrates ERK (extracellular signal-regulated kinase) 1/2, MSK1 (mitogen- and stress-activated protein kinase 1), and histone H3, levels of which were all increased in the lesioned striatum of wild-type mice. Consistently, FosB/ΔFosB expression, which was induced by long-term L-DOPA treatment in the lesioned striatum, was also decreased in AC5-KO mice. Moreover, suppression of AC5 in the dorsal striatum with lentivirus-shRNA-AC5 was sufficient to attenuate LID, suggesting that the AC5-regulated signaling cascade in the striatum mediates LID. These results identify the AC5/cAMP system in the dorsal striatum as a therapeutic target for the treatment of LID in patients with Parkinson's disease.

  5. Systems biology analysis of the proteomic alterations induced by MPP+, a Parkinson's disease-related mitochondrial toxin

    PubMed Central

    Monti, Chiara; Bondi, Heather; Urbani, Andrea; Fasano, Mauro; Alberio, Tiziana

    2015-01-01

    Parkinson's disease (PD) is a complex neurodegenerative disease whose etiology has not been completely characterized. Many cellular processes have been proposed to play a role in the neuronal damage and loss: defects in the proteosomal activity, altered protein processing, increased reactive oxygen species burden. Among them, the involvement of a decreased activity and an altered disposal of mitochondria is becoming more and more evident. The mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of complex I, has been widely used to reproduce biochemical alterations linked to PD in vitro and its precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), to induce a Parkinson-like syndrome in vivo. Therefore, we performed a meta-analysis of the literature of all the proteomic investigations of neuronal alterations due to MPP+ treatment and compared it with our results obtained with a mitochondrial proteomic analysis of SH-SY5Y cells treated with MPP+. By using open-source bioinformatics tools, we identified the biochemical pathways and the molecular functions mostly affected by MPP+, i.e., ATP production, the mitochondrial unfolded stress response, apoptosis, autophagy, and, most importantly, the synapse funcionality. Eventually, we generated protein networks, based on physical or functional interactions, to highlight the relationships among the molecular actors involved. In particular, we identified the mitochondrial protein HSP60 as the central hub in the protein-protein interaction network. As a whole, this analysis clarified the cellular responses to MPP+, the specific mitochondrial proteome alterations induced and how this toxic model can recapitulate some pathogenetic events of PD. PMID:25698928

  6. Basic Cardiac Electrophysiology and Common Drug-induced Arrhythmias.

    PubMed

    Lee, Aimee; Pickham, David

    2016-09-01

    Drugs can be a double-edged sword, providing the benefit of symptom alleviation and disease modification but potentially causing harm from adverse cardiac arrhythmic events. Proarrhythmia is the ability of a drug to cause an arrhythmia, the number one reason for drugs to be withdrawn from the patient. Drug-induced arrhythmias are defined as the production of de novo arrhythmias or aggravation of existing arrhythmias, as a result of previous or concomitant pharmacologic treatment. This review summarizes normal cardiac cell and tissue functioning and provides an overview of drugs that effect cardiac repolarization and the adverse effects of commonly administered antiarrhythmics.

  7. Adalimumab-induced lichenoid drug eruption.

    PubMed

    El Habr, Constantin; Meguerian, Zarouwi; Sammour, Rita

    2014-01-01

    Tumor necrosis factor (TNF)-α inhibitors are being widely and increasingly used for the management of a spectrum of rheumatologic diseases that are refractory to conventional disease modifying anti-rheumatic drugs. Various cutaneous side effects have been reported after treatment with TNF-α inhibitors. We present a case report of a 26-year-old male patient who developed a lichenoid drug eruption few months after the initiation of adalimumab for the management of Crohn's disease. We also highlight the clinical and histopathologic differences between lichenoid drug eruptions and idiopathic lichen planus.

  8. An approach to drug induced delirium in the elderly

    PubMed Central

    Alagiakrishnan, K; Wiens, C

    2004-01-01

    Drugs have been associated with the development of delirium in the elderly. Successful treatment of delirium depends on identifying the reversible contributing factors, and drugs are the most common reversible cause of delirium. Anticholinergic medications, benzodiazepines, and narcotics in high doses are common causes of drug induced delirium. This article provides an approach for clinicians to prevent, recognise, and manage drug induced delirium. It also reviews the mechanisms for this condition, especially the neurotransmitter imbalances involving acetylcholine, dopamine, and gamma aminobutyric acid and discusses the age related changes that may contribute to altered pharmacological effects which have a role in delirium. Specific interventions for high risk elderly with the goal of preventing drug induced delirium are discussed. PMID:15254302

  9. Chronic liver injury induced by drugs: a systematic review.

    PubMed

    Stine, Jonathan G; Chalasani, Naga

    2015-11-01

    To examine the available literature and summarize what is known about chronic drug-induced liver injury. We reviewed PubMed/MEDLINE through March 2015. We developed a MEDLINE search strategy using PubMed medical subject heading terms chronic liver injury, hepatotoxicity, drug-induced liver injury, cirrhosis and chronic liver disease. We reviewed the reference list of included articles to identify articles missed in the database search. Chronic liver injury from drugs is more common than once thought with prevalence as high as 18% based on large national registries. Patients with cholestatic injury, age ≤65 years, and a long latency period (>365 days) are at increased risk. Of the most common drugs associated with drug-induced liver injury, antibiotics (amoxicillin-clavulanic acid, trimethoprim-sulfamethoxazole, azithromycin) are most likely to cause chronic injury. The presence of autoantibodies is common with chronic DILI, however, it is not diagnostic nor is it specific to autoimmune-like drug-induced liver injury. Immunosuppressive therapy may be necessary for individual cases of autoimmune-like drug-induced liver injury where cessation of the drug alone does not result in resolution of injury, however, the lowest dose should be used for the shortest duration with careful attention to the development of side effects. The effectiveness of treament of cholestatic liver injury with corticosteroids or ursodiol remains unclear. Cases of drug-induced fatty liver, nodular regenerative hyperplasia and peliosis hepatitis are less common subtypes of chronic drug-induced liver injury that deserve special consideration. A high degree of clinical suspicion is required for the diagnosis of chronic drug-induced liver injury and should be suspected in any patient with liver associated enzyme abnormalities that persist out past 6 months of initial presentation. Treatment with drug removal and/or immunosuppressive therapy appears to be effective for the majority of cases

  10. Targeted drug induces responses in aggressive lymphomas

    Cancer.gov

    Preliminary results from clinical trials in a subtype of lymphoma show that for a number of patients whose disease was not cured by other treatments, the drug ibrutinib can provide significant anti-cancer responses with modest side effects.

  11. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature.

  12. Lichenoid drug eruption induced by colchicine: case report.

    PubMed

    An, Isa; Demir, Vasfiye; Akdeniz, Sedat

    2016-07-15

    Lichenoid drug eruption (LDE) is a common cutaneous side effect of drugs including antimalarials, antihypertensives, nonsteroids, anti-inflammatory drugs and diuretics. The physiopathologic relationship between colchicine treatment and LDE is unclear. There is very little documentation of LDE induced by colchicine in the literature. In this report, we present a case that developed LDE on the abdomen and the legs during the colchicine treatment.

  13. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias.

    PubMed

    Cubeddu, Luigi X

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended.

  14. Side effect profile of 5-HT treatments for Parkinson's disease and L-DOPA-induced dyskinesia in rats

    PubMed Central

    Lindenbach, D; Palumbo, N; Ostock, C Y; Vilceus, N; Conti, M M; Bishop, C

    2015-01-01

    BACKGROUND AND PURPOSE Treatment of Parkinson's disease (PD) with L-DOPA eventually causes abnormal involuntary movements known as dyskinesias in most patients. Dyskinesia can be reduced using compounds that act as direct or indirect agonists of the 5-HT1A receptor, but these drugs have been reported to worsen PD features and are known to produce ‘5-HT syndrome’, symptoms of which include tremor, myoclonus, rigidity and hyper-reflexia. EXPERIMENTAL APPROACH Sprague-Dawley rats were given unilateral nigrostriatal dopamine lesions with 6-hydroxydopamine. Each of the following three purportedly anti-dyskinetic 5-HT compounds were administered 15 min before L-DOPA: the full 5-HT1A agonist ±-8-hydroxy-2-dipropylaminotetralin (±8-OH-DPAT), the partial 5-HT1A agonist buspirone or the 5-HT transporter inhibitor citalopram. After these injections, animals were monitored for dyskinesia, 5-HT syndrome, motor activity and PD akinesia. KEY RESULTS Each 5-HT drug dose-dependently reduced dyskinesia by relatively equal amounts (±8-OH-DPAT ≥ citalopram ≥ buspirone), but 5-HT syndrome was higher with ±8-OH-DPAT, lower with buspirone and not present with citalopram. Importantly, with or without L-DOPA, all three compounds provided an additional improvement of PD akinesia. All drugs tempered the locomotor response to L-DOPA suggesting dyskinesia reduction, but vertical rearing was reduced with 5-HT drugs, potentially reflecting features of 5-HT syndrome. CONCLUSIONS AND IMPLICATIONS The results suggest that compounds that indirectly facilitate 5-HT1A receptor activation, such as citalopram, may be more effective therapeutics than direct 5-HT1A receptor agonists because they exhibit similar anti-dyskinesia efficacy, while possessing a reduced side effect profile. PMID:25175895

  15. The predictive validity of the drug-naive bilaterally MPTP-treated monkey as a model of Parkinson's disease: effects of L-DOPA and the D1 agonist SKF 82958.

    PubMed

    Andringa, G; Lubbers, L; Drukarch, B; Stoof, J C; Cools, A R

    1999-03-01

    The aim of this study was twofold: (1) to study the predictive validity of the drug-naive, bilaterally MPTP-treated monkey as an animal model of Parkinson's disease (PD), and (2) to investigate the therapeutic and undesired effects of the D1 agonist SKF 82958 as compared to L-DOPA treatment, in drug-naive and L-DOPA pretreated monkeys. A detailed ethogram was used, allowing the separation of therapeutic and undesired effects. Eight weeks after bilateral intracarotid MPTP administration, SKF 82958 (1 mg/kg, n = 4, SKF 82958, naive group) or methyl-L-DOPA + carbi-dopa (10 + 2.5 mg/kg, n = 4, L-DOPA group) was administered intramuscularly for 22 days. After a drug-free period of eight weeks, the L-DOPA group was treated with SKF 82958 for 22 days (SKF 82959, 1 mg/kg, n=4, pretreated). All drug treatments increased the parameters used classically to evaluate dopaminergic drugs, namely body displacement, dyskinesia and dystonia. However, the new detailed analysis revealed that L-DOPA, but not SKF 82958, had therapeutic effects, reflected by an increase in goal-directed fore-limb use. SKF 82958, but not L-DOPA, induced additional undesired effects; including epileptoid behaviours in both drug-naive and drug-pretreated monkeys. In one L-DOPA-unresponsive monkey, SKF 82958 did induce minor therapeutic effects, as well as undesired effects. Although the effects of SKF 82958 on fore-limb movements, rotational behaviours and body displacement were comparable in the naive and pretreated group, SKF 82958 re-initiated undesired effects in the L-DOPA pretreated group from day one. It is concluded that the bilaterally MPTP-treated monkey is an animal model with predictive validity for PD: it adequately predicts the therapeutic effects and undesired effects of L-DOPA. Furthermore, it is concluded that SKF 82958 is less effective than L-DOPA in the treatment of PD, because it did not induce therapeutic effects, but instead elicited several undesired effects.

  16. Gefitinib-associated vitiligo: report in a man with parotid squamous cell carcinoma and review of drug-induced hypopigmentation.

    PubMed

    Jalalat, Sheila Z; Cohen, Philip R

    2013-10-16

    Gefitinib is a tyrosine kinase inhibitor that targets and inhibits epidermal growth factor receptors. It was initially used to treat non-small cell lung cancer but has increasingly been used for other solid tumors such as those in the breast, colorectal sites, and head and neck, as in our patient. Vitiligo is an autoimmune disorder that results in the destruction of melanocytes and subsequent skin depigmentation and hypopigmentation. Previously described mucocutanous side effects of gefitinib at 250-500 mg/day include alopecia, asteatotic dermatitis, desquamation, hyperpigmentation, papulopustular acneiform eruption, pruritus, seborrheic dermatitis, and skin fragility. A 54-year-old man with metastatic squamous cell carcinoma to the parotid gland developed vitiligo within 1 month of starting gefitinib therapy. We retrospectively reviewed the medical literature using PubMed, searching: (1) gefitinib side effects, (2) drugs and (3) vitiligo. The patient with gefitinib-induced vitiligo continued to receive treatment with the drug during which time areas of skin hypopigmentation persisted and progressed. Etiology of drug-induced vitiligo includes alopecia areata therapies, anticonvulsants, antimalarials, antineoplastics, anti-Parkinson medications, and other miscellaneous drugs. No other individuals have been described with gefitinib-induced vitiligo. Albeit rare, gefitinib may be associated with the development of vitiligo.

  17. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease.

    PubMed

    Karimi, M; Golchin, N; Tabbal, S D; Hershey, T; Videen, T O; Wu, J; Usche, J W M; Revilla, F J; Hartlein, J M; Wernle, A R; Mink, J W; Perlmutter, J S

    2008-10-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (r(s) = -0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (r(s) = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (r(s) = -0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor

  18. Epidemiology of cutaneous drug-induced reactions.

    PubMed

    Naldi, L; Crotti, S

    2014-04-01

    Cutaneous reactions represent in many surveillance systems, the most frequent adverse events attributable to drugs. The spectrum of clinical manifestations is wide and virtually encompasses any known dermatological disease. The introduction of biological agents and so-called targeted therapies has further enlarged the number of reaction patterns especially linked with cytokine release or in balance. The frequency and clinical patterns of cutaneous reactions are influenced by drug use, prevalence of specific conditions (e.g., HIV infection) and pharmacogenetic traits of a population, and they may vary greatly among the different populations around the world. Studies of reaction rates in cohorts of hospitalized patients revealed incidence rates ranging from, 1 out 1000 to 2 out 100 of all hospitalized patients. For drugs such as aminopenicillines and sulfamides the incidence of skin reactions is in the order of 3-5 cases out of 100 exposed people. Although the majority of cutaneous reactions are mild and self-limiting, there are reactions such as Stevens Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) which are associated with significant morbidity and mortality. Surveillance systems routed on sound epidemiologic methodology, are needed to raise signals and to assess risks associated with specific reactions and drug exposures. Identification of risk factors for adverse reactions and appropriate genetic screening of groups at higher risk may improve the outcomes of skin reactions.

  19. The use of nanopore analysis for discovering drugs which bind to α-synuclein for treatment of Parkinson's disease.

    PubMed

    Tavassoly, Omid; Kakish, Joe; Nokhrin, Sergiy; Dmitriev, Oleg; Lee, Jeremy S

    2014-12-17

    A major feature of Parkinson's disease is the formation of Lewy bodies in dopaminergic neurons which consist of misfolded α-synuclein. The binding of natural products to α-synuclein was evaluated by nanopore analysis and caffeine, curcumin, and nicotine all caused large conformational changes which may be related to their known neuroprotective effect in Parkinson's disease. The binding of the stereoisomers of nicotine were also studied by ITC, CD and NMR. It is proposed that (-)-nicotine causes the folding of α-synuclein into a loop with interaction between the N- and C-termini. For (+)-nicotine the binding is weaker and mainly involves residues in the N-terminus. Caffeine and nicotine can bind to α-synuclein simultaneously and may provide lead structures for the development of other compounds for the treatment of PD.

  20. Targeting β-arrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson's disease.

    PubMed

    Urs, Nikhil M; Bido, Simone; Peterson, Sean M; Daigle, Tanya L; Bass, Caroline E; Gainetdinov, Raul R; Bezard, Erwan; Caron, Marc G

    2015-05-12

    Parkinson's disease (PD) is characterized by severe locomotor deficits and is commonly treated with the dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (L-DOPA), but its prolonged use causes dyskinesias referred to as L-DOPA-induced dyskinesias (LIDs). Recent studies in animal models of PD have suggested that dyskinesias are associated with the overactivation of G protein-mediated signaling through DA receptors. β-Arrestins desensitize G protein signaling at DA receptors (D1R and D2R) in addition to activating their own G protein-independent signaling events, which have been shown to mediate locomotion. Therefore, targeting β-arrestins in PD L-DOPA therapy might prove to be a desirable approach. Here we show in a bilateral DA-depletion mouse model of Parkinson's symptoms that genetic deletion of β-arrestin2 significantly limits the beneficial locomotor effects while markedly enhancing the dyskinesia-like effects of acute or chronic L-DOPA treatment. Viral rescue or overexpression of β-arrestin2 in knockout or control mice either reverses or protects against LIDs and its key biochemical markers. In other more conventional animal models of DA neuron loss and PD, such as 6-hydroxydopamine-treated mice or rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated nonhuman primates, β-arrestin2 overexpression significantly reduced dyskinesias while maintaining the therapeutic effect of L-DOPA. Considerable efforts are being spent in the pharmaceutical industry to identify therapeutic approaches to block LIDs in patients with PD. Our results point to a potential therapeutic approach, whereby development of either a genetic or pharmacological intervention to enhance β-arrestin2- or limit G protein-dependent D1/D2R signaling could represent a more mechanistically informed strategy.

  1. Acetyl-l-carnitine protects dopaminergic nigrostriatal pathway in 6-hydroxydopamine-induced model of Parkinson's disease in the rat.

    PubMed

    Afshin-Majd, Siamak; Bashiri, Keyhan; Kiasalari, Zahra; Baluchnejadmojarad, Tourandokht; Sedaghat, Reza; Roghani, Mehrdad

    2017-02-12

    Parkinson's disease (PD) is a movement disorder and the second most common neurodegenerative disease worldwide in which nigrostriatal dopaminergic neurons within substantia nigra pars compacta (SNC) are lost, with clinical motor and non-motor symptoms including bradykinesia, resting tremor, rigidity, stooping posture and cognitive deficits. This study was undertaken to evaluate the neuroprotective potential of acetyl-l-carnitine (ALC) against unilateral striatal 6-hydroxydopamine (6-OHDA)-induced model of PD and to explore some involved mechanisms. In this experimental study, intrastriatal 6-OHDA-lesioned rats received ALC at doses of 100 or 200mg/kg/day for 1 week. ALC (200mg/kg) lowered apomorphine-induced rotational asymmetry and reduced the latency to initiate and the total time in the narrow beam test, reduced striatal malondialdehyde (MDA), increased catalase activity and glutathione (GSH) level, prevented reduction of nigral tyrosine hydroxylase (TH)-positive neurons and striatal TH-immunoreactivity, and lowered striatal glial fibrillary acidic protein (GFAP) and its immunoreactivity as an indicator of astrogliosis, and nuclear factor NF-kappa B and Toll-like receptor 4 (TLR4) as reliable markers of neuroinflammation. Meanwhile, ALC at both doses mitigated nigral DNA fragmentation as a valuable marker of apoptosis. The results of this study clearly suggest the neuroprotective effect of ALC in 6-OHDA-induced model of PD through abrogation of neuroinflammation, apoptosis, astrogliosis, and oxidative stress and it may be put forward as an ancillary therapeutic candidate for controlling PD.

  2. Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism.

    PubMed

    Bello, E P; Casas-Cordero, R; Galiñanes, G L; Casey, E; Belluscio, M A; Rodríguez, V; Noaín, D; Murer, M G; Rubinstein, M

    2017-04-01

    Motor execution and planning are tightly regulated by dopamine D1 and D2 receptors present in basal ganglia circuits. Although stimulation of D1 receptors is known to enhance motor function, the global effect of D2 receptor (D2R) stimulation or blockade remains highly controversial, with studies showing increasing, decreasing or no changes in motor activity. Moreover, pharmacological and genetic attempts to block or eliminate D2R have led to controversial results that questioned the importance of D2R in motor function. In this study, we generated an inducible Drd2 null-allele mouse strain that circumvented developmental compensations found in constitutive Drd2(-/-) mice and allowed us to directly evaluate the participation of D2R in spontaneous locomotor activity and motor learning. We have found that loss of D2R during adulthood causes severe motor impairments, including hypolocomotion, deficits in motor coordination, impaired learning of new motor routines and spontaneous catatonia. Moreover, severe motor impairment, resting tremor and abnormal gait and posture, phenotypes reminiscent of Parkinson's disease, were evident when the mutation was induced in aged mice. Altogether, the conditional Drd2 knockout model studied here revealed the overall fundamental contribution of D2R in motor functions and explains some of the side effects elicited by D2R blockers when used in neurological and psychiatric conditions, including schizophrenia, bipolar disorder, Tourette's syndrome, dementia, alcohol-induced delusions and obsessive-compulsive disorder.

  3. Drug-induced QT interval prolongation and torsades de pointes

    PubMed Central

    Tisdale, James E.

    2016-01-01

    Torsades de pointes (TdP) is a life-threatening arrhythmia associated with prolongation of the corrected QT (QTc) interval on the electrocardiogram. More than 100 drugs available in Canada, including widely used antibiotics, antidepressants, cardiovascular drugs and many others, may cause QTc interval prolongation and TdP. Risk factors for TdP include QTc interval >500 ms, increase in QTc interval ≥60 ms from the pretreatment value, advanced age, female sex, acute myocardial infarction, heart failure with reduced ejection fraction, hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, treatment with diuretics and elevated plasma concentrations of QTc interval–prolonging drugs due to drug interactions, inadequate dose adjustment of renally eliminated drugs in patients with kidney disease and rapid intravenous administration. Pharmacokinetic drug interactions associated with the highest risk of TdP include antifungal agents, macrolide antibiotics (except azithromycin) and drugs to treat human immunodeficiency virus interacting with amiodarone, disopyramide, dofetilide or pimozide. Other important pharmacokinetic interactions include antidepressants (bupropion, duloxetine, fluoxetine, paroxetine) interacting with flecainide, quinidine or thioridazine. Pharmacists play an important role in minimizing the risk of drug-induced QTc interval prolongation and TdP through knowledge of drugs that are associated with a known or possible risk of TdP, individualized assessment of risk of drug-induced QTc interval prolongation, awareness of drug interactions most likely to result in TdP and attention to dose reduction of renally eliminated QTc interval-prolonging drugs in patients with kidney disease. Treatment of hemodynamically stable TdP consists of discontinuation of the offending drug(s), correction of electrolyte abnormalities and administration of intravenous magnesium sulfate 1 to 2 g. PMID:27212965

  4. Drug induced chest pain—rare but important

    PubMed Central

    Davey, P.; Lalloo, D.

    2000-01-01

    Pericarditis, usually viral in origin, is an infrequent cause of chest pain. Pericarditis due to drug allergy is even less frequent and is thus rarely considered in the differential diagnosis. A case is reported of a woman who presented with severe chest pain, caused by minocycline induced pericarditis. Such allergy may be more common than reported. It is suggested that drug induced pericarditis should be included in the differential diagnosis of acute chest pain.


Keywords: chest pain; pericarditis; minocycline; drug allergy PMID:10878205

  5. Tolerance development to cadmium-induced alteration of drug action.

    PubMed

    Roberts, S A; Miya, T S; Schnell, R C

    1976-05-01

    Cadmium administration potentiates the duration of hexobarbital-induced hypnosis and inhibits the rate of hepatic microsomal metabolism of this drug in the male rat. The threshold dose of cadmium required to produce these alterations in drug action is 0.84 mg Ck/kg. If subthreshold doses of cadmium (0.21 or 0.42 mg Cd/kg) are administered prior to the 0.84 mg Cd/kg dose, the cadmium-induced alterations in drug action are no longer observed.

  6. Drug-induced pulmonary edema and acute respiratory distress syndrome.

    PubMed

    Lee-Chiong, Teofilo; Matthay, Richard A

    2004-03-01

    Noncardiogenic pulmonary edema, and, to a lesser extent, acute respiratory distress syndrome (ARDS), are common clinical manifestations of drug-induced lung diseases. Clinical features and radiographic appearances are generally indistinguishable from other causes of pulmonary edema and ARDS. Typical manifestations include dyspnea, chest discomfort, tachypnea, and hypoxemia. Chest radiographs commonly reveal interstitial and alveolar filling infiltrates. Unlike pulmonary edema that is due to congestive heart failure, cardiomegaly and pulmonary vascular redistribution are generally absent in cases that are drug-related. Rare cases of drug-induced myocarditis with heart failure and pulmonary edema have been described. Results from laboratory evaluation and respiratory function tests are nonspecific.

  7. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease

    PubMed Central

    Deas, Emma; Cremades, Nunilo; Angelova, Plamena R.; Ludtmann, Marthe H.R.; Yao, Zhi; Chen, Serene; Horrocks, Mathew H.; Banushi, Blerida; Little, Daniel; Devine, Michael J.; Gissen, Paul; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.

    2016-01-01

    Abstract Aims: Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity. Results: We first demonstrate excessive free radical production in a human induced pluripotent stem-derived α-S triplication model at basal levels and on application of picomolar doses of β-sheet-rich α-S oligomers. We probed the effects of different structural species of α-S in wild-type rat neuronal cultures and show that both oligomeric and fibrillar forms of α-S are capable of generating free radical production, but that only the oligomeric form results in reduction of endogenous glutathione and subsequent neuronal toxicity. We dissected the mechanism of oligomer-induced free radical production and found that it was interestingly independent of several known cellular enzymatic sources. Innovation: The oligomer-induced reactive oxygen species (ROS) production was entirely dependent on the presence of free metal ions as addition of metal chelators was able to block oligomer-induced ROS production and prevent oligomer-induced neuronal death. Conclusion: Our findings further support the causative role of soluble amyloid oligomers in triggering neurodegeneration and shed light into the mechanisms by which these species cause neuronal damage, which, we show here, can be amenable to modulation through the use of metal chelation. Antioxid. Redox Signal. 24, 376–391. PMID:26564470

  8. Acute cervical motor radiculopathy induced by neck and limb immobilization in a patient with Parkinson disease.

    PubMed

    Shimizu, Toshio; Komori, Tetsuo; Hayashi, Hideaki

    2006-01-01

    A 68-year-old woman with Parkinson disease (PD) presented with acute monoplegia of her left upper extremity after the neck and limb immobilization for several hours. Her sensory function was normal, and the chest X-ray showed left phrenic nerve palsy. Electrophysiological studies showed multi-segment muscle involvement (C3 to T1) including denervation potentials and reduced interference of motor units in needle electromyography. M wave amplitude in peripheral nerve stimulation was preserved except for the ulnar nerve, suggesting both axonal injury and conduction block at the anterior spinal roots. The patient showed fair recovery in several months, suggesting sufficient reinnervation and recovery of conduction block. Incomplete root avulsion was thought to be the pathomechanism of acute cervical motor radiculopathy.

  9. Atomistic Investigation of Cu-Induced Misfolding in the Onset of Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Rose, Francis; Hodak, Miroslav; Bernholc, Jerry

    2009-03-01

    A nucleation mechanism for the misfolding of α-synuclein, the protein implicated in Parkinson's Disease (PD), is investigated using computer simulations. Through a combination of ab initio and classical simulation techniques, the conformational evolution of copper-ion-initiated misfolding of α-synuclein is determined. Based on these investigations and available experimental evidence, an atomistic model detailing the nucleation-initiated pathogenesis of PD is proposed. Once misfolded, the proteins can assemble into fibrils, the primary structural components of the deleterious PD plaques. Our model identifies a process of structural modifications to an initially unfolded α-synuclein that results in a partially folded intermediate with a well defined nucleation site as a precursor to the fully misfolded protein. The identified pathway can enable studies of reversal mechanisms and inhibitory agents, potentially leading to the development of effective therapies.

  10. The Effect of Parkinson Drug Timing on Cardiovascular Response during Treadmill Exercise in a Person with Parkinson Disease and Freezing of Gait.

    PubMed

    Petersen, Cheryl M; Nelson, Reid; Steffen, Teresa M

    2013-01-01

    Objectif : Analyser la réaction de l'oxygénation cérébrale au cours de la marche sur tapis roulant chez une personne souffrant de la maladie de Parkinson (MP) aux prises avec un blocage de la marche (freezing of gait, FOG), puis déterminer si la réaction de l'oxygène cérébral est liée à l'horaire selon lequel ses médicaments pour la MP sont administrés. Description du client : Un homme de 61 ans souffrant de la MP. Il a accompli deux tests sur tapis roulant la même journée, lorsque ses médicaments pour la MP étaient en phase et lorsqu'ils étaient hors-phase. Mesures et résultat : Le client a vécu deux épisodes de FOG au cours de la première séance de tests (en phase, avec séance de mouvements hypocinétiques). La réaction de l'oxygène cérébral (mesurée par spectroscopie proche infrarouge) était stable jusqu'à ce que le trouble de la démarche se manifeste; elle a alors décru et est demeurée telle jusqu'à la fin de l'épisode de FOG. Aucun changement à l'électrocardiogramme (ECG) ni aucun étourdissement n'ont été observés et la tension artérielle (TA) est demeurée stable. Au cours de la deuxième séance de tests avec exercice (hors phase, avec séance de mouvements dyscinétiques), le client n'a pas subi d'épisodes de FOG et la réaction de l'oxygène cérébral est demeurée stable. À la fin de la deuxième séance, il a ressenti des étourdissements et sa tension artérielle a chuté d'environ 30 mmHg, et on a aussi constaté un fléchissement appréciable du segment ST de son ECG. Conséquences : Les changements survenus à l'oxygène hémodynamique et à l'oxygène cérébral étaient directement liés au moment de la prise des médicaments pour la MP par le patient et à ses épisodes de FOG. Cette étude de cas démontre que la baisse de l'oxygénation cérébrale au cours des épisodes de FOG chez une personne souffrant de MP peut s'expliquer par sa réaction variable à la lévodopa, ou peut être

  11. Stress-Induced Executive Dysfunction in GDNF-Deficient Mice, A Mouse Model of Parkinsonism.

    PubMed

    Buhusi, Mona; Olsen, Kaitlin; Yang, Benjamin Z; Buhusi, Catalin V

    2016-01-01

    Maladaptive reactivity to stress is linked to improper decision making, impulsivity, and discounting of delayed rewards. Chronic unpredictable stress (CUS) alters dopaminergic function, re-shapes dopaminergic circuits in key areas involved in decision making, and impairs prefrontal-cortex dependent response inhibition and working memory. Glial-derived neurotrophic factor (GDNF) is essential for regulating dopamine (DA) release in the basal ganglia and for the survival of dopaminergic neurons; GDNF-deficient mice are considered an animal model for aging-related Parkinsonism. Recently, GDNF expression in the striatum has been linked to resilience to stress. Here we investigated the effects of CUS on decision making in GDNF-heterozygous (HET) mice and their wild-type littermate controls (WT). Before CUS no differences in temporal discounting (TD) were found between genotypes. However, following CUS GDNF HET mice, having a partial reduction of GDNF levels, showed increased impulsive choice indexed by a reduction in percent Larger-Later (LL) choices in the TD paradigm, and a reduction in area under the TD curve. Moreover, stressed GDNF HET mice, but not their WT controls, showed decreased neuronal activation (number of cFos positive neurons) in the orbitofrontal cortex (OFC), nucleus accumbens (NA) core, and NA shell, suggestive of a maladaptive response to stress. Interestingly, area under the TD curve positively correlated with cFos activation in the NA core, and NA shell, but not with orbitofrontal activity. These results provide further evidence of the differential involvement of the OFC, NA core, and NA shell in impulsive choice, and identify GDNF-deficient mice as a double-hit (gene × environment) model of stress-related executive dysfunction, particularly relevant to substance abuse and Parkinson's disease (PD).

  12. Role of Oxidative Stress in Drug-Induced Kidney Injury

    PubMed Central

    Hosohata, Keiko

    2016-01-01

    The kidney plays a primary role in maintaining homeostasis and detoxification of numerous hydrophilic xenobiotics as well as endogenous compounds. Because the kidney is exposed to a larger proportion and higher concentration of drugs and toxins than other organs through the secretion of ionic drugs by tubular organic ion transporters across the luminal membranes of renal tubular epithelial cells, and through the reabsorption of filtered toxins into the lumen of the tubule, these cells are at greater risk for injury. In fact, drug-induced kidney injury is a serious problem in clinical practice and accounts for roughly 20% of cases of acute kidney injury (AKI) among hospitalized patients. Therefore, its early detection is becoming more important. Usually, drug-induced AKI consists of two patterns of renal injury: acute tubular necrosis (ATN) and acute interstitial nephritis (AIN). Whereas AIN develops from medications that incite an allergic reaction, ATN develops from direct toxicity on tubular epithelial cells. Among several cellular mechanisms underlying ATN, oxidative stress plays an important role in progression to ATN by activation of inflammatory response via proinflammatory cytokine release and inflammatory cell accumulation in tissues. This review provides an overview of drugs associated with AKI, the role of oxidative stress in drug-induced AKI, and a biomarker for drug-induced AKI focusing on oxidative stress. PMID:27809280

  13. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    PubMed

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  14. Drug Induced Arousal and Fear Appeals.

    ERIC Educational Resources Information Center

    Deckner, C. William; Rogers, Ronald W.

    It is hypothesized that the drug, epinephrine, used in conjunction with a fear arousing film on the consquences of smoking would be more effective than either alone in increasing fear and negative attitudes toward smoking and, resultantly, in reducing cigarette consumption. The experimenters assigned 119 subjects to the four cells of a 2x2…

  15. Light induced drug delivery into cancer cells.

    PubMed

    Shamay, Yosi; Adar, Lily; Ashkenasy, Gonen; David, Ayelet

    2011-02-01

    Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.

  16. Drug Induced Steatohepatitis: An Uncommon Culprit of a Common Disease

    PubMed Central

    Rabinowich, Liane; Shibolet, Oren

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver disease in developed countries. Its frequency is increasing in the general population mostly due to the widespread occurrence of obesity and the metabolic syndrome. Although drugs and dietary supplements are viewed as a major cause of acute liver injury, drug induced steatosis and steatohepatitis are considered a rare form of drug induced liver injury (DILI). The complex mechanism leading to hepatic steatosis caused by commonly used drugs such as amiodarone, methotrexate, tamoxifen, valproic acid, glucocorticoids, and others is not fully understood. It relates not only to induction of the metabolic syndrome by some drugs but also to their impact on important molecular pathways including increased hepatocytes lipogenesis, decreased secretion of fatty acids, and interruption of mitochondrial β-oxidation as well as altered expression of genes responsible for drug metabolism. Better familiarity with this type of liver injury is important for early recognition of drug hepatotoxicity and crucial for preventing severe forms of liver injury and cirrhosis. Moreover, understanding the mechanisms leading to drug induced hepatic steatosis may provide much needed clues to the mechanism and potential prevention of the more common form of metabolic steatohepatitis. PMID:26273591

  17. [Drug-induced hypersensitivity syndrome and HHV-6 reactivation].

    PubMed

    Tohyama, Mikiko; Hashimoto, Koji

    2009-06-01

    Drug-induced hypersensitivity syndrome (DIHS) is an adverse reaction with clinical signs of fever, rash, and internal organ involvement. The culprit drugs of DIHS are limited to several drugs such as carbamazepine, phenytoin, phenobarbital, zonisamide, allopurinol, salazosulfapyridine, diaphenylsulphone, and mexiletine. The association of HHV-6 reactivation with DIHS has been known. Flaring of symptoms such as fever and hepatitis is closely related to HHV-6 reactivation. A combination of immunologic reaction to a drug and HHV-6 reactivation results in the severe course of DIHS.

  18. Contemporary review of drug-induced pancreatitis: A different perspective

    PubMed Central

    Hung, Whitney Y; Abreu Lanfranco, Odaliz

    2014-01-01

    Although gallstone and alcohol use have been considered the most common causes of acute pancreatitis, hundreds of frequently prescribed medications are associated with this disease state. The true incidence is unknown since there are few population based studies available. The knowledge of drug induced acute pancreatitis is limited by the availability and the quality of the evidence as the majority of data is extrapolated from case reports. Establishing a definitive causal relationship between a drug and acute pancreatitis poses a challenge to clinicians. Several causative agent classification systems are often used to identify the suspected agents. They require regular updates since new drug induced acute pancreatitis cases are reported continuously. In addition, infrequently prescribed medications and herbal medications are often omitted. Furthermore, identification of drug induced acute pancreatitis with new medications often requires accumulation of post market case reports. The unrealistic expectation for a comprehensive list of medications and the multifactorial nature of acute pancreatitis call for a different approach. In this article, we review the potential mechanisms of drug induced acute pancreatitis and provide the perspective of deductive reasoning in order to allow clinicians to identify potential drug induced acute pancreatitis with limited data. PMID:25400984

  19. Histopathological and immunohistochemical features of drug-induced exanthems.

    PubMed

    Lisi, P; Pelliccia, S; Bellini, V

    2014-04-01

    Exanthematic eruptions, together with urticaria-angioedema syndrome and fixed drug eruption, are the most frequent cutaneous adverse drug reactions. Among the drug-induced exanthems (DIEs), erythematous maculopapular eruptions are the most common. Their management, especially when retrospective, is often not easy, and it is based on the use of clinical criteria, history, results of some laboratory tests, drug elimination test, skin tests, and oral challenge test. The superficial perivascular and spongiotic dermatitis, which is the prevalent histopathological features of DIEs, is not very useful in the differential diagnosis with virus- and bacteria-induced exanthems (VBIEs). On the contrary, some immune-histochemical findings (interleukin-5 overexpression, concomitant enhancement of perforin, interleukin-5, and granzyme B production, positivity for fatty acid synthase-ligand-L in amoxicillin-induced exanthems) seem to be more important. These data justifie the inclusion of DIEs in the subtypes IVb and IVc of delayed hypersensitivity reactions.

  20. Pulmonary and generalized lysosomal storage induced by amphiphilic drugs.

    PubMed Central

    Hruban, Z

    1984-01-01

    Administration of amphiphilic drugs to experimental animals causes formation of myelinoid bodies in many cell types, accumulation of foamy macrophages in pulmonary alveoli and pulmonary alveolar proteinosis. These changes are the result of an interaction between the drugs and phospholipids which leads to an alteration in physicochemical properties of the phospholipids. Impairment of the digestion of altered pulmonary secretions in phagosomes of macrophages results in accumulation of foam cells in pulmonary alveoli. Impairment of the metabolism of altered phospholipids removed by autophagy induces an accumulation of myelinoid bodies. The administration of amphiphilic compounds thus causes pulmonary intra-alveolar histiocytosis which is a part of a drug-induced lysosomal storage or generalized lipidosis. The accumulation of drug-lipid complexes in myelinoid bodies and in pulmonary foam cells may lead to alteration of cellular functioning and to clinical disease. Currently over 50 amphiphilic drugs are known. Unique pharmacological properties necessitate clinical use of some of these drugs. The occurrence and severity of potential clinical side effects depend on the nature of each drug, dosage and duration of treatment, simultaneous administration of other drugs and foods, individual metabolic pattern of the patient and other factors. Further studies on factors preventing and potentiating adverse effects of amphiphilic drugs are indicated. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. PMID:6376111

  1. Vanadium Induces Dopaminergic Neurotoxicity Via Protein Kinase C-Delta Dependent Oxidative Signaling Mechanisms: Relevance to Etiopathogenesis of Parkinson's Disease

    PubMed Central

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, R. S.; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration. PMID:19646462

  2. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-10-15

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V{sub 2}O{sub 5}). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V{sub 2}O{sub 5} was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC{sub 50} was determined to be 37 {mu}M in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKC{delta}, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKC{delta} kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKC{delta} proteolytic activation, indicating that caspases mediate PKC{delta} cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V{sub 2}O{sub 5}-induced DNA fragmentation. Furthermore, PKC{delta} knockdown using siRNA protected N27 cells from V{sub 2}O{sub 5}-induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKC{delta} cleavage, suggesting that metal exposure may promote nigral

  3. HLA and Delayed Drug-Induced Hypersensitivity.

    PubMed

    Sousa-Pinto, Bernardo; Correia, Cláudia; Gomes, Lídia; Gil-Mata, Sara; Araújo, Luís; Correia, Osvaldo; Delgado, Luís

    2016-01-01

    Delayed drug allergy reactions (DDAR) are potentially fatal. Certain human leukocyte antigen (HLA) alleles have been associated with delayed allergy reactions following the administration of particular drugs. Examples are HLA-B*57:01 (abacavir), HLA-B*15:02/HLA-A*31:01 (carbamazepine), and HLA-B*58:01 (allopurinol). Based on the identification of these associations, it may now be possible to prevent certain allergy reactions that were, until recently, considered unpredictable. In this review, we will focus on the pharmacogenetics of the best-studied associations between specific HLA alleles and delayed allergy reactions and describe the pathogenesis models proposed so far. Finally, we will evaluate the genetic screening strategies available and discuss the clinical relevance of a better understanding of the immunogenetics and mechanisms involved in DDAR.

  4. [Parkinsonism during lithium use].

    PubMed

    Walrave, T R W M; Bulens, C

    2009-01-01

    Two patients with bipolar disorder had been treated for years with lithium without any complications but began to develop symptoms of rigidity and an altered gait, namely symptoms compatible with a diagnosis of Parkinsonism with an action tremor. In both patients lithium levels were within the therapeutic range. Medication-induced Parkinsonism occurs frequently in patients using antipsychotic medication, but is a rare complication in patients receiving long term treatment with lithium. The lithium dosage was reduced gradually and within a few months all neurological symptoms subsided completely.

  5. Drug-Induced Torsade de Pointes and Implications for Drug Development

    PubMed Central

    Fenichel, Robert R.; Malik, Marek; Antzelevitch, Charles; Sanguinetti, Michael; Roden, Dan M.; Priori, Silvia G.; Ruskin, Jeremy N.; Lipicky, Raymond J.; Cantilena, Lou

    2006-01-01

    Torsade de pointes is a potentially lethal arrhythmia that occasionally appears as an adverse effect of pharmacotherapy. Recently-developed understanding of the underlying electrophysiology allows better estimation of the drug-induced risks, and explains the failures of older approaches through the surface electrocardiogram. The article expresses a consensus reached by an independent academic task force on the physiologic understanding of drug-induced repolarisation changes, on their preclinical and clinical evaluation, and on the risk-benefit interpretation of drug-induced torsade de pointes. The consensus of the task force includes suggestions on how to evaluate the risk of torsade within drug development program. Individual sections of the text discuss the techniques and limitations of methods directed at drug-related ion-channel phenomena, investigations aimed at action potentials changes, preclinical studies of phenomena seen only in the whole (or nearly whole) heart, and at interpretation of human electrocardiograms obtained in clinical studies. Final section of the text discusses drug-induced torsade within the larger evaluation of drug-related risks and benefits. PMID:15090000

  6. Evidence of an association between sleep and levodopa-induced dyskinesia in an animal model of Parkinson's disease.

    PubMed

    Galati, Salvatore; Salvadè, Agnese; Pace, Marta; Sarasso, Simone; Baracchi, Francesca; Bassetti, Claudio L; Kaelin-Lang, Alain; Städler, Claudio; Stanzione, Paolo; Möller, Jens C

    2015-03-01

    Levodopa-induced dyskinesia (LID) represents a major challenge for clinicians treating patients affected by Parkinson's disease (PD). Although levodopa is the most effective treatment for PD, the remodeling effects induced by disease progression and the pharmacologic treatment itself cause a narrowing of the therapeutic window because of the development of LID. Although animal models of PD provide strong evidence that striatal plasticity underlies the development of dyskinetic movements, the pathogenesis of LID is not entirely understood. In recent years, slow homeostatic adjustment of intrinsic excitability occurring during sleep has been considered fundamental for network stabilization by gradually modifying plasticity thresholds. So far, how sleep affects on LID has not been investigated. Therefore, we measured synaptic downscaling across sleep episodes in a parkinsonian animal model showing dyskinetic movements similar to LID. Our electrophysiological, molecular, and behavioral results are consistent with an impaired synaptic homeostasis during sleep in animals showing dyskinesia. Accordingly, sleep deprivation causes an anticipation and worsening of LID supporting a link between sleep and the development of LID.

  7. Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and Drosophila.

    PubMed

    Song, Saera; Jang, Seoyeon; Park, Jeehye; Bang, Sunhoe; Choi, Sekyu; Kwon, Kyum-Yil; Zhuang, Xiaoxi; Kim, Eunjoon; Chung, Jongkyeong

    2013-02-22

    Mutations in PINK1 (PTEN-induced putative kinase 1) are tightly linked to autosomal recessive Parkinson disease (PD). Although more than 50 mutations in PINK1 have been discovered, the role of these mutations in PD pathogenesis remains poorly understood. Here, we characterized 17 representative PINK1 pathogenic mutations in both mammalian cells and Drosophila. These mutations did not affect the typical cleavage patterns and subcellular localization of PINK1 under both normal and damaged mitochondria conditions in mammalian cells. However, PINK1 mutations in the kinase domain failed to translocate Parkin to mitochondria and to induce mitochondrial aggregation. Consistent with the mammalian data, Drosophila PINK1 mutants with mutations in the kinase domain (G426D and L464P) did not genetically interact with Parkin. Furthermore, PINK1-null flies expressing the transgenic G426D mutant displayed defective phenotypes with increasing age, whereas L464P mutant-expressing flies exhibited the phenotypes at an earlier age. Collectively, these results strongly support the hypothesis that the kinase activity of PINK1 is essential for its function and for regulating downstream Parkin functions in mitochondria. We believe that this study provides the basis for understanding the molecular and physiological functions of various PINK1 mutations and provides insights into the pathogenic mechanisms of PINK1-linked PD.

  8. Age-, gender-, and socioeconomic status-specific incidence of Parkinson's disease and parkinsonism in northeast Scotland: the PINE study.

    PubMed

    Caslake, Robert; Taylor, Kate; Scott, Neil; Gordon, Joanna; Harris, Clare; Wilde, Katie; Murray, Alison; Counsell, Carl

    2013-05-01

    There have been few high quality incidence studies of Parkinson's disease (PD). We measured age-, gender- and socioeconomic-specific incidence rates for parkinsonism and PD in north-east Scotland, and compared our results with those of previous high quality studies. Incident patients were identified prospectively over three years by several overlapping methods from primary care practices (total population 311,357). Parkinsonism was diagnosed if patients had two or more cardinal motor signs. Drug-induced parkinsonism was excluded. Patients had yearly follow-up to improve diagnostic accuracy. Incidence rates using clinical diagnosis at latest follow-up were calculated for all parkinsonism and for PD by age, gender and socioeconomic status. Meta-analysis with similar studies was performed. Of 377 patients identified at baseline with possible or probable parkinsonism, 363 were confirmed as incident patients after median follow-up of 26 months (mean age 74.8 years, SD 9.8; 61% men). The crude annual incidence of parkinsonism was 28.7 per 100,000 (95% confidence interval (CI) 25.7-31.8) and PD 17.9 per 100,000 (95% CI 15.5-20.4). PD was more common in men (age-adjusted male to female ratio 1.87:1, 95% CI 1.55-2.23) but there was no difference by socioeconomic status. Meta-analysis of 12 studies showed an incidence of PD (adjusted to the 1990 Scottish population) of 14.6 per 100,000 (95% CI 12.2-17.3) with considerable heterogeneity (I(2) 95%), partially explained by population size and recruitment duration. The incidence of PD was similar to other high quality studies. The incidence of PD was not affected by socioeconomic status.

  9. Drug-induced endocrine disorders in the intensive care unit.

    PubMed

    Thomas, Zachariah; Bandali, Farooq; McCowen, Karen; Malhotra, Atul

    2010-06-01

    The neuroendocrine response to critical illness is key to the maintenance of homeostasis. Many of the drugs administered routinely in the intensive care unit significantly impact the neuroendocrine system. These agents can disrupt the hypothalamic-pituitary-adrenal axis, cause thyroid abnormalities, and result in dysglycemia. Herein, we review major drug-induced endocrine disorders and highlight some of the controversies that remain in this area. We also discuss some of the more rare drug-induced syndromes that have been described in the intensive care unit. Drugs that may result in an intensive care unit admission secondary to an endocrine-related adverse event are also included. Unfortunately, very few studies have systematically addressed drug-induced endocrine disorders in the critically ill. Timely identification and appropriate management of drug-induced endocrine adverse events may potentially improve outcomes in the critically ill. However, more research is needed to fully understand the impact of medications on endocrine function in the intensive care unit.

  10. Prediction of drug-induced liver injury using keratinocytes.

    PubMed

    Hirashima, Rika; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2017-01-31

    Drug-induced liver injury (DILI) is one of the most common adverse drug reactions. DILI is often accompanied by skin reactions, including rash and pruritus. However, it is still unknown whether DILI-associated genes such as S100 calcium-binding protein A and interleukin (IL)-1β are involved in drug-induced skin toxicity. In the present study, most of the tested hepatotoxic drugs such as pioglitazone and diclofenac induced DILI-associated genes in human and mouse keratinocytes. Keratinocytes of mice at higher risk for DILI exhibited an increased IL-1β basal expression. They also showed a higher inducibility of IL-1β when treated by pioglitazone. Mice at higher risk for DILI showed even higher sums of DILI-associated gene basal expression levels and induction rates in keratinocytes. Our data suggest that DILI-associated genes might be involved in the onset and progression of drug-induced skin toxicity. Furthermore, we might be able to identify individuals at higher risk of developing DILI less invasively by examining gene expression patterns in keratinocytes. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease.

    PubMed

    Liu, Zhan; Huang, Yan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping

    2016-11-14

    T helper (Th)17 cells, a subset of CD4(+) T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP(+))-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP(+)-treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.

  12. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson's disease by suppressing glycogen synthase kinase-3 beta activity

    PubMed Central

    Ren, Zhao-xiang; Zhao, Ya-fei; Cao, Ting; Zhen, Xue-chu

    2016-01-01

    Aim: It is general believed that mitochondrial dysfunction and oxidative stress play critical roles in the pathology of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, has recently been found to elicit potent anti-oxidative effects. In the present study, we explored the role of DHM in protecting dopaminergic neurons. Methods: Male C57BL/6 mice were intraperitoneally injected with 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 d to induce PD. Additionally, mice were treated with either 5 or 10 mg/kg DHM for a total of 13 d (3 d before the start of MPTP, during MPTP administration (7 d) and 3 d after the end of MPTP). For the saline or DHM alone treatment groups, mice were injected with saline or DHM for 13 d. On d 14, behavioral tests (locomotor activity, the rotarod test and the pole test) were administered. After the behavioral tests, the mice were sacrificed, and brain tissue was collected for immunofluorescence staining and Western blotting. In addition, MES23.5 cells were treated with MPP+ and DHM, and evaluated using cell viability assays, reactive oxygen species (ROS) measurements, apoptosis analysis and Western blotting. Results: DHM significantly attenuated MPTP-induced mouse behavioral impairments and dopaminergic neuron loss. In the MES23.5 cells, DHM attenuated MPP+-induced cell injury and ROS production in a dose-dependent manner. In addition, DHM increased glycogen synthase kinase-3 beta phosphorylation in a dose- and time-dependent manner, which may be associated with DHM-induced dopaminergic neuronal protection. Conclusion: The present study demonstrated that DHM is a potent neuroprotective agent for DA neurons by modulating the Akt/GSK-3β pathway, which suggests that DHM may be a promising therapeutic candidate for PD. PMID:27374489

  13. Drug induced osteonecrosis of the jaw.

    PubMed

    Hamadeh, Issam S; Ngwa, Bridget A; Gong, Yan

    2015-05-01

    Despite the widespread use of bisphosphonates and their unequivocal efficacy for the treatment of various disease states, osteonecrosis of the jaw remains one of the most feared complications associated with their use. Current evidence, however, suggests that there is also a relationship between occurrence of osteonecrosis of the jaw and use of other classes of pharmacotherapies namely RANKL inhibitors as well as angiogenesis inhibitors. Although these drugs have different mechanisms of action than bisphosphonates, they all seem to interfere with the bone remodeling process i.e. alter the balance between bone resorption and bone formation which may be the most plausible explanation for pathogenesis of osteonecrosis of the jaw. The main objective of this review is to introduce the readership to a number of relatively new medications that may cause osteonecrosis of the jaw. Accordingly, we will summarize latest findings from clinical studies, meta analyses and case reports published in medical literature on this topic. For some of these medications, the evidence may not appear as robust as that for bisphosphonates; yet, the possibility of this adverse event occurring with these non bisphosphonate drugs should never be precluded unless proven otherwise. Thus, it is imperative that health care providers implement preventive measures so as to circumvent the incidence of osteonecrosis of the jaw. In this day of age where medical care is becoming personalized, we will highlight some of significant findings from studies seeking to identify genetic markers that may potentially play a role in development of osteonecrosis of the jaw.

  14. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease.

    PubMed

    Allen Reish, Heather E; Standaert, David G

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses.

  15. Peripheral mechanisms of intestinal dysmotility in rats with salsolinol induced experimental Parkinson's disease.

    PubMed

    Banach, T; Zurowski, D; Gil, K; Krygowska-Wajs, A; Marszałek, A; Thor, P J

    2006-06-01

    Gastrointestinal dysmotility in Parkinson's disease (PD) has been attributed in part to peripheral neurotoxine action. Our purpose was the evaluation of the salsolinol effect on intramuscular interstitial cells of Cajal (ICC), duodenal myoelectrical activity (DMA) and vagal afferent activity (VAA) in rats with experimental PD. Twenty rats were divided into 2 equal groups. Experimental PD was produced in one group by 3 weeks of the intraperitoneal salsolinol injections (50 mg/kg/day), whereas the 2-nd group served as control. DMA and VAA were recorded in both groups during fasting and stepwise--gastric distension (GD) of 10 ml. Subsequently fragments of duodenum were removed and intramuscular ICC were assessed as c-Kit antigen percentage in the duodenal muscular zone. Analyses of the fasting DMA and VAA recordings didn't reveal differences between the compared groups. During GD increase of DMA dominant frequency (p=0.04) and VAA frequency (p<0.01) was observed in the controls whereas in the salsolinol group both parameters remained unchanged. Image analysis of duodenum revealed decreased c-Kit expression in the salsolinol-injected animals (p=0.05). The results of our study may suggest the direct effect of salsolinol on both ICC and neuronal pathways of gastro-duodenal reflexes.

  16. Effects of exercise induced oxidative stress on glutathione levels in Parkinson's disease on and off medication.

    PubMed

    Elokda, Ahmed; DiFrancisco-Donoghue, Joanne; Lamberg, Eric M; Werner, William G

    2010-10-01

    Resting plasma glutathione (GSH) levels are lower in individuals with Parkinson's disease (PD) than any other neurological condition. Medications used to treat PD have also been shown to further decrease this depletion. Acute exercise has been shown to be an effective tool to produce oxidative stress in other populations as reflected in lowering levels of GSH. The purpose of this study was to determine how PD responds to acute exercise stress and how medication affects these responses. Fourteen men with PD and 14 men without PD underwent an exercise stress test. Subjects with PD performed the test once off PD medication (PD-Off-med) for 12 h then again 1 week later on PD medication (PD-On-med). GSH and glutathione disulfide (GSSG), were collected via blood draws at rest and after peak exercise along with peak VO(2). At rest and at peak exercise GSH levels and the GSH:GSSG ratio were significantly lower in the PD-On-med and PD-Off-med as compared to controls. GSSG levels were significantly higher in both medication conditions at rest and peak exercise compared to controls. When comparing PD-On-med vs. PD-Off-med at rest and peak exercise, the PD-On-med had lower GSH levels, a lower GSH:GSSG ratio and higher GSSG levels. VO(2) correlated positively with GSH levels. Subjects with PD have lower plasma GSH levels than healthy controls at rest and at peak exercise.

  17. Imaging of Drug-induced Complications in the Gastrointestinal System.

    PubMed

    McGettigan, Melissa J; Menias, Christine O; Gao, Zhenqiang J; Mellnick, Vincent M; Hara, Amy K

    2016-01-01

    Drug-induced injury commonly affects the gastrointestinal and hepatobiliary systems because of the mechanisms of absorption and metabolism. In pill esophagitis, injury is frequently related to direct contact with the esophageal mucosa, resulting in small superficial ulcers in the mid esophagus. Nonsteroidal anti-inflammatory drugs can lead to gastrointestinal tract ulcers and small bowel mucosal diaphragms (thin weblike strictures). Injury to the pancreatic and hepatobiliary systems can manifest as pancreatitis, acute or chronic hepatitis, cholestasis, or steatosis and steatohepatitis (which may progress to cirrhosis). Various drugs may also insult the hepatic vasculature, resulting in Budd-Chiari and sinusoidal obstructive syndromes. Focal lesions such as hepatic adenomas may develop after use of oral contraceptives or anabolic steroids. Ultrasonography, computed tomography, and magnetic resonance imaging can aid in diagnosis of drug-induced injuries and often are necessary to exclude other causes.

  18. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson's disease with levodopa-induced dyskinesias.

    PubMed

    Jin, Xingxing; Schwabe, Kerstin; Krauss, Joachim K; Alam, Mesbah

    2016-04-01

    The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12-19 Hz) and high (19-30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

  19. An In Vivo Microdialysis Study of FLZ Penetration through the Blood-Brain Barrier in Normal and 6-Hydroxydopamine Induced Parkinson's Disease Model Rats

    PubMed Central

    Hou, Jinfeng; Liu, Qian; Li, Yingfei; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances. PMID:25045708

  20. An in vivo microdialysis study of FLZ penetration through the blood-brain barrier in normal and 6-hydroxydopamine induced Parkinson's disease model rats.

    PubMed

    Hou, Jinfeng; Liu, Qian; Li, Yingfei; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances.

  1. Genuine and drug-induced synesthesia: a comparison.

    PubMed

    Sinke, Christopher; Halpern, John H; Zedler, Markus; Neufeld, Janina; Emrich, Hinderk M; Passie, Torsten

    2012-09-01

    Despite some principal similarities, there is no systematic comparison between the different types of synesthesia (genuine, acquired and drug-induced). This comprehensive review compares the three principal types of synesthesia and focuses on their phenomenological features and their relation to different etiological models. Implications of this comparison for the validity of the different etiological models are discussed. Comparison of the three forms of synesthesia show many more differences than similarities. This is in contrast to their representation in the literature, where they are discussed in many respects as being virtually similar. Noteworthy is the much broader spectrum and intensity with the typical drug-induced synesthesias compared to genuine and acquired synesthesias. A major implication of the phenomenological comparison in regard to the etiological models is that genuine and acquired synesthesias point to morphological substrates, while drug-induced synesthesia appears to be based on functional changes of brain activity.

  2. Molecular Docking and Prediction of Pharmacokinetic Properties of Dual Mechanism Drugs that Block MAO-B and Adenosine A(2A) Receptors for the Treatment of Parkinson's Disease.

    PubMed

    Azam, Faizul; Madi, Arwa M; Ali, Hamed I

    2012-07-01

    Monoamine oxidase B (MAO-B) inhibitory potential of adenosine A(2A) receptor (AA(2A)R) antagonists has raised the possibility of designing dual-target-directed drugs that may provide enhanced symptomatic relief and that may also slow the progression of Parkinson's disease (PD) by protecting against further neurodegeneration. To explain the dual inhibition of MAO-B and AA(2A)R at the molecular level, molecular docking technique was employed. Lamarckian genetic algorithm methodology was used for flexible ligand docking studies. A good correlation (R(2)= 0.524 and 0.627 for MAO-B and AA(2A)R, respectively) was established between docking predicted and experimental K(i) values, which confirms that the molecular docking approach is reliable to study the mechanism of dual interaction of caffeinyl analogs with MAO-B and AA(2A)R. Parameters for Lipinski's "Rule-of-Five" were also calculated to estimate the pharmacokinetic properties of dual-target-directed drugs where both MAO-B inhibition and AA(2A)R antagonism exhibited a positive correlation with calculated LogP having a correlation coefficient R(2) of 0.535 and 0.607, respectively. These results provide some beneficial clues in structural modification for designing new inhibitors as dual-target-directed drugs with desired pharmacokinetic properties for the treatment of PD.

  3. Biomarkers to monitor drug-induced phospholipidosis

    SciTech Connect

    Baronas, Elizabeth Tengstrand; Lee, Ju-Whei; Alden, Carl; Hsieh, Frank Y. . E-mail: frank.hsieh@nextcea.com

    2007-01-01

    Di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP) was identified as a promising phospholipidosis (PL) biomarker in rats treated with either amiodarone, gentamicin, or azithromycin. Sprague-Dawley rats received either amiodarone (150 mg/kg), gentamicin (100 mg/kg) or azithromycin (30 mg/kg) once daily for ten consecutive days. Histopathological examination of tissues by transmission electron microscopy (TEM) indicated different degrees of accumulation of phospholipidosis in liver, lung, mesenteric lymph node, and kidney of drug-treated rats but not controls. Liquid chromatography coupled to mass spectrometry (LC/MS) was used to identify levels of endogenous biochemical profiles in rat urine. Urinary levels of di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP) correlated with induction of phospholipidosis for amiodarone, gentamicin and azithromycin. Rats treated with gentamicin also had increased urinary levels of several phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) species.

  4. Quercetin potentiates L-Dopa reversal of drug-induced catalepsy in rats: possible COMT/MAO inhibition.

    PubMed

    Singh, Amanpreet; Naidu, Pattipati S; Kulkarni, Shrinivas K

    2003-06-01

    L-Dopa plus carbidopa treatment remains the first-line therapy in Parkinson's disease. The use of catechol-O-methyltransferase (COMT) and/or monoamine oxidase (MAO) inhibitors as an adjunct to L-dopa therapy has yielded varying degrees of success. Quercetin, a flavonoid present in many plants, is reported to inhibit COMT and MAO activities, the key enzymes involved in the metabolism of dopamine. In the present study we have studied the effect of quercetin on the L-dopa plus carbidopa combination against perphenazine and reserpine-induced catalepsy in rats. Neuroleptic-induced catalepsy is a widely accepted animal model for testing the drugs used in parkinsonism. Catalepsy in rats was induced by administration of perphenazine (5 mg/kg i.p.) or reserpine (2.5 mg/kg i.p.) + alpha-methyl-P-tyrosine (200 mg/kg i.p.). Catalepsy in animals was assessed by using the bar test. The quercetin dose (25-100 mg/kg, p.o.) dependently reversed perphenazine- as well as reserpine-induced catalepsy. When quercetin was combined with a subthreshold dose of L-dopa plus carbidopa, the anticatatonic effect was potentiated. Pretreatment with a central COMT inhibitor, 3,5-dinitrocatechol (OR-486) (10 mg/kg p.o.), or a MAO-B inhibitor, selegiline (5 mg/kg i.p.), also potentiated the actions of threshold dose of quercetin against perphenazine- or reserpine-induced catalepsy. On the other hand adenosine (100 mg/kg i.p.), which is known to decrease the release of catecholamines through an action on presynaptic A(1) receptors, partly reversed the protective effect of quercetin against perphenazine-induced catalepsy. Quercetin through its COMT and MAO enzyme-inhibiting properties might potentiate the anticatatonic effect of L-dopa plus carbidopa treatment. The results of the present study strongly suggest that quercetin could serve as an effective adjunct to L-dopa therapy in Parkinson's disease.

  5. In silico modeling to predict drug-induced phospholipidosis

    SciTech Connect

    Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G. Sadrieh, Nakissa

    2013-06-01

    Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.

  6. Role of dermatology in pharmacogenomics: drug-induced skin injury.

    PubMed

    Borroni, Riccardo G

    2015-01-01

    Different individuals may respond diversely to the same drug, in terms of efficacy and toxicity. Adverse drug reactions cause about 6% of all hospital admissions and account for up to 9% of hospitalization costs. Drug-induced skin injury (DISI) is the most common presentation of adverse drug reactions, ranging from maculopapular eruptions to severe adverse cutaneous drug reactions (SCARs) with mortality of up to 40%. Specific genetic polymorphisms confer susceptibility to different types of DISI. Identifying patients genetically at risk for SCARs is one of the goals of pharmacogenomics. In this article, the aspects of clinical dermatology relevant to the pharmacogenetics of DISI are reviewed. Many SCARs are now preventable, with consequent reduction of morbidity, mortality and healthcare costs.

  7. Parkinson's Disease

    MedlinePlus

    Parkinson's disease (PD) is a type of movement disorder. It happens when nerve cells in the brain don't ... coordination As symptoms get worse, people with the disease may have trouble walking, talking, or doing simple ...

  8. Parkinson's Disease

    MedlinePlus

    ... cells make and use a brain chemical called dopamine (say: DOH-puh-meen) to send messages to ... coordinate body movements. When someone has Parkinson's disease, dopamine levels are low. So, the body doesn't ...

  9. Secondary parkinsonism

    MedlinePlus

    ... Encephalitis Hemoglobin derivatives Meningitis Parkinson disease Stroke Toxins Review Date 8/13/2015 Updated by: Joseph V. ... Division of Neurology, Cooper University Hospital, Camden, NJ. Review provided by VeriMed Healthcare Network. Internal review and ...

  10. [Successful drug desensitization after vemurafenib-induced rash].

    PubMed

    Klossowski, N; Kislat, A; Homey, B; Gerber, P A; Meller, S

    2015-04-01

    The BRAF inhibitor vemurafenib was approved in 2011 for the treatment of inoperable or metastatic melanoma. Vemurafenib therapy is associated with several side effects, such as arthralgia, secondary skin tumors or inflammatory rashes. In particular cutaneous toxicities represent a serious threat to patients' adherence. Here, we present the case of a successful drug desensitization in a patient that presented with a vemurafenib-induced rash. Lymphocyte activation tests failed to detect drug-specific T cells, suggesting that the development of the rash was based upon a nonallergic drug hypersensitivity reaction. A program of slow desensitization was initiated and subsequently, vemurafenib was tolerated at the full effective and recommended dosage.

  11. Comparison of Two Methods for Inducing Reflex Cough in Patients With Parkinson's Disease, With and Without Dysphagia.

    PubMed

    Hegland, Karen W; Troche, Michelle S; Brandimore, Alexandra; Okun, Michael S; Davenport, Paul W

    2016-02-01

    Aspiration pneumonia is a common cause of death in people with Parkinson's disease (PD). Dysfunctional swallowing occurs in the majority of people with PD, and research has shown that cough function is also impaired. Previous studies suggest that testing reflex cough by having participants inhale a cough-inducing stimulus through a nebulizer may be a reliable indicator of swallowing dysfunction, or dysphagia. The primary goal of this study was to determine the cough response to two different cough-inducing stimuli in people with and without PD. The second goal of this study was to compare the cough response to the two different stimuli in people with PD, with and without swallowing dysfunction. Seventy adults (49 healthy and 21 with PD) participated in the study. Aerosolized water (fog) and 200 μM capsaicin were used to induce cough. Each substance was placed in a small, hand-held nebulizer, and presented to the participant. Each cough stimulus was presented three times. The total number of coughs produced to each stimulus trial was recorded. All participants coughed more to capsaicin versus fog (p < 0.001). A categorical 'responder' and 'non-responder' variable for the fog stimulus, defined as whether or not the participant coughed at least two times to two of three presentations of the stimulus, yields sensitivity of 77.8 % and a specificity of 90.9 % for identifying PD participants with and without dysphagia. The data show a differential response of the PD participants to the capsaicin versus fog stimuli. Clinically, this finding may allow for earlier identification of people with PD who are in need of a swallowing evaluation. As well, there are implications for the neural control of cough in this patient population.

  12. Drug-induced Pneumonitis Following the Administration of TAS-102

    PubMed Central

    Hasegawa, Yoshikazu; Ota, Takayo; Tsukuda, Hiroshi; Suzumura, Tomohiro; Fukuoka, Masahiro

    2016-01-01

    A 59-year-old woman, diagnosed with advanced rectal cancer, presented with a low-grade fever and dyspnea on exertion after the 2nd cycle of TAS-102. TAS-102 has promising efficacy in patients with metastatic colorectal cancer. A CT scan revealed mosaic patterns with bilateral ground-glass opacities. The drug lymphocyte stimulation test for TAS-102 was strongly positive and serum β-D glucan level was elevated. The clinical course was compatible with TAS-102-induced pneumonitis combined with pneumocystis pneumonia (PCP). We herein report a rare case of drug-induced pneumonitis in a patient receiving TAS-102 in combination with PCP. PMID:27725548

  13. An Update on Drug-induced Liver Injury.

    PubMed

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of

  14. Ammonium chloride and tunicamycin are novel toxins for dopaminergic neurons and induce Parkinson's disease-like phenotypes in medaka fish.

    PubMed

    Matsui, Hideaki; Ito, Hidefumi; Taniguchi, Yoshihito; Takeda, Shunichi; Takahashi, Ryosuke

    2010-12-01

    Perturbations in protein folding and degradation are key pathological mechanisms in neurodegenerative diseases, including Parkinson's disease (PD). Recent evidence suggests that mishandling of proteins may play an important role in the pathogenesis of PD. We have utilized medaka fish to monitor the effects of injecting neurotoxins into the CSF space. In this study, ammonium chloride, tunicamycin, and lactacystin were tested for their ability to disturb lysosomal proteolysis, N-glycosylation in the endoplasmic reticulum, and proteasomal degradation, respectively. All of the substances tested induced selective loss of dopaminergic neurons, movement disorders and inclusion bodies. Among them, the features of the inclusion bodies that developed after ammonium chloride injection mimicked those of PD: co-localization of ubiquitin and phosphorylated α-synuclein, as well as the presence of LC3 protein in the inclusion bodies. Our study demonstrated that medaka fish are useful for examining the effects of environmental toxins and lysosome inhibition, and lysosome inhibitors may be factors in the development of PD.

  15. Impact of dopamine versus serotonin cell transplantation for the development of graft-induced dyskinesia in a rat Parkinson model.

    PubMed

    García, Joanna; Carlsson, Thomas; Döbrössy, Máté; Nikkhah, Guido; Winkler, Christian

    2012-08-27

    Graft-induced dyskinesia (GID), covering a range of dystonic and choreiform involuntary movements, has been observed in some patients with Parkinson's disease (PD) after intracerebral cell transplantation. These dyskinesias have been severe in a number of patients and represent one of the main obstacles for further development of the cell therapy in PD. Serotonin neurons, included into the dopaminergic cell suspension due to the nature of the dissection process, have been suggested as a key factor for the development of GID, since the administration of the serotonin (5-HT)(1A)-receptor agonist buspirone reduced dyskinesia in transplanted PD patients. In the present study, we characterized GID in the rat PD model after transplantation of dopaminergic grafts containing different amounts of serotonin neurons. The severity of GID was significantly correlated with the amount of grafted dopamine and serotonin neurons, but the r-values were low. However, neither the innervation density of dopamine and serotonin fibers in the grafted striatum nor the dopamine-to-serotonin cell ratio correlated significantly with the severity of GID. The results extend prior knowledge of the role of dopaminergic grafts in the development of GID and show that, in the animal model, serotonin neurons within the graft suspension might be involved, but given sufficient dopamine cells, their impact on GID may be minor.

  16. Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson's disease.

    PubMed

    Maioli, Margherita; Rinaldi, Salvatore; Migheli, Rossana; Pigliaru, Gianfranco; Rocchitta, Gaia; Santaniello, Sara; Basoli, Valentina; Castagna, Alessandro; Fontani, Vania; Ventura, Carlo; Serra, Pier Andrea

    2015-05-15

    Research for the use of physical means, in order to induce cell differentiation for new therapeutic strategies, is one of the most interesting challenges in the field of regenerative medicine, and then in the treatment of neurodegenerative diseases, Parkinson's disease (PD) included. The aim of this work is to verify the effect of the radio electric asymmetric conveyer (REAC) technology on the PC12 rat adrenal pheochromocytoma cell line, as they display metabolic features of PD. PC12 cells were cultured with a REAC regenerative tissue optimization treatment (TO-RGN) for a period ranging between 24 and 192 hours. Gene expression analysis of specific neurogenic genes, as neurogenin-1, beta3-tubulin and Nerve growth factor, together with the immunostaining analysis of the specific neuronal protein beta3-tubulin and tyrosine hydroxylase, shows that the number of cells committed toward the neurogenic phenotype was significantly higher in REAC treated cultures, as compared to control untreated cells. Moreover, MTT and Trypan blue proliferation assays highlighted that cell proliferation was significantly reduced in REAC TO-RGN treated cells. These results open new perspectives in neurodegenerative diseases treatment, particularly in PD. Further studies will be needed to better address the therapeutic potential of the REAC technology.

  17. Protective effect of chinonin in MPTP-induced C57BL/6 mouse model of Parkinson's disease.

    PubMed

    Feng, Guoshuai; Zhang, Zhijian; Bao, Qingqing; Zhang, Zaijun; Zhou, Libing; Jiang, Jie; Li, Sha

    2014-01-01

    The aims of this study were to investigate the effect of chinonin in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in C57BL/6 mice and to examine the possible mechanisms. The neurotoxin MPTP was employed to create a subacute Parkinson's disease (PD)-like model in C57BL/6 mice. Chinonin (10, 20, 40 mg/kg body weight) was intraperitoneally administered 0.5 h after MPTP (30 mg/kg) injection for 7 d consecutively. Chinonin showed neuroprotective effects in the MPTP-treated mice PD model by ameliorating motor impairment in the catwalk and open-field tests. Consistently, chinonin reduced loss of dopaminergic neurons in the substantia nigra and prevented depletion of dopamine and its metabolites 3-methoxy-4-hydroxy-phenylacetic acid and homovanillic acid in the striatum of mice. Compared with the MPTP group, in the chinonin plus MPTP groups significant increases of superoxide dismutase activity and glutathione levels were observed as well as a distinct reduction of lipid peroxidation product malondialdehyde in the striatum. Taken together, we propose that chinonin exerts neuroprotective effects in C57BL/6 mouse model of PD and these effects may be due to chinonin's antioxidative property.

  18. Differentiation between the contributions of shortening reaction and stretch-induced inhibition to rigidity in Parkinson's disease.

    PubMed

    Xia, Ruiping; Powell, Douglas; Rymer, W Zev; Hanson, Nicholas; Fang, Xiang; Threlkeld, A Joseph

    2011-04-01

    Parkinsonian rigidity is characterized by an increased resistance of a joint to externally imposed motion that remains uniform with changing joint angle. Two candidate mechanisms are proposed for the uniformity of rigidity, involving neural-mediated excitation of shortening muscles, i.e., shortening reaction (SR), or inhibition of stretched muscles, i.e., stretch-induced inhibition (SII). To date, no study has addressed the roles of these two phenomena in rigidity. The purpose of this study was to differentiate these two phenomena, and to quantify the potential contribution of each to wrist joint moment in 17 patients with parkinsonian rigidity, in both Off- and On-medication states. Joint position, torque, and EMGs of selected muscles were collected during externally imposed flexion and extension motions. Moments of shortened and stretched muscles were estimated using a biomechanical model. Slopes of the estimated torque-angle curve were calculated for shortened and stretched muscles, separately. A mixed model ANOVA was performed to compare the contribution between the two mechanisms. During flexion, slopes were significantly (P = 0.003) smaller for SR than for SII, whereas during extension, slopes for SII were significantly (P = 0.003) smaller. Results showed that both SR and SII contributed to rigidity. Which mechanism predominates appeared to be associated with the direction of movement. The findings provide new insights into the biomechanical underpinnings of this common symptom in Parkinson's disease.

  19. The Transcriptional Changes of trim Genes Associated with Parkinson's Disease on a Model of Human Induced Pluripotent Stem Cells.

    PubMed

    Nenasheva, V V; Novosadova, E V; Makarova, I V; Lebedeva, O S; Grefenshtein, M A; Arsenyeva, E L; Antonov, S A; Grivennikov, I A; Tarantul, V Z

    2016-10-29

    Over the last few years, in vitro models, based on patient-derived induced pluripotent stem cells (iPSCs), have received considerable attention for modeling different neurodegenerative disorders. Using this model, we analyzed transcription of 15 tripartite motif (trim) genes in iPSCs, derived from the different groups: Parkinson's disease (PD) patients bearing mutations in different genes, patient with the sporadic form of PD, and the healthy individuals. The transcription was observed during neuronal differentiation of the cells in vitro into neuronal stem cells and terminally differentiated neurons. The transcription of over 50 % of these genes, belonging to different sub-groups of the TRIM family, varied between PD patients and healthy individuals during the reprogramming of fibroblasts into iPSCs and the following neuronal differentiation. Moreover, the transcription of the trim6 and trim24 genes was different between cells, derived from PD patients, and control cells at all stages. The transcription of the four trim genes (trim5α, 26, 27, 31) remained unchanged during almost all investigated stages, compared with the controls. We suppose that the revealed changes in the transcription of several trim genes reflect their possible role in neurodegenerative processes at the early stages of PD. These genes may act as a gear unit between the PD progression and the deregulation of the immune system.

  20. Melatonin attenuates hLRRK2-induced sleep disturbances and synaptic dysfunction in a Drosophila model of Parkinson's disease.

    PubMed

    Sun, Xicui; Ran, Dongzhi; Zhao, Xiaofeng; Huang, Yi; Long, Simei; Liang, Fengyin; Guo, Wenyuan; Nucifora, Frederick C; Gu, Huaiyu; Lu, Xilin; Chen, Ling; Zeng, Jinsheng; Ross, Christopher A; Pei, Zhong

    2016-05-01

    Sleep problems are the most common non-motor symptoms in Parkinson's disease (PD), and are more difficult to treat than the motor symptoms. In the current study, the role of human leucine-rich repeat kinase 2 (hLRRK2), the most common genetic cause of PD, was investigated with regards to sleep problems, and the therapeutic potential of melatonin in hLRRK2‑associated sleep problems was explored in Drosophila. hLRRK2 was selectively expressed in the mushroom bodies (MBs) in Drosophila and sleep patterns were measured using the Drosophila Activity Monitoring System. MB expression of hLRRK2 resulted in sleep problems, presynaptic dysfunction as evidenced by reduced miniature excitatory postsynaptic current (mEPSC) and excitatory postsynaptic potential (EPSP) frequency, and excessive synaptic plasticity such as increased axon bouton density. Treatment with melatonin at 4 mM significantly attenuated the sleep problems and rescued the reduction in mEPSC and EPSP frequency in the hLRRK2 transgenic flies. The present study demonstrates that MB expression of hLRRK2 in flies recapitulates the clinical features of the sleep disturbances in PD, and that melatonin attenuates hLRRK2-induced sleep disorders and synaptic dysfunction, suggesting the therapeutic potential of melatonin in PD patients carrying LRRK2 mutations.

  1. Self-unawareness of levodopa induced dyskinesias in patients with Parkinson's disease.

    PubMed

    Amanzio, Martina; Palermo, Sara; Zibetti, Maurizio; Leotta, Daniela; Rosato, Rosalba; Geminiani, Giuliano; Lopiano, Leonardo

    2014-10-01

    The study analyzes the presence of dyskinesias-reduced-self-awareness in forty-eight patients suffering from Parkinson's disease (PD). As the association with executive dysfunction is a matter of debate and we hypothesize it plays an important role in dyskinesias self-unawareness, we analyzed the role of dopaminergic treatment on the medial-prefrontal-ventral-striatal circuitry using a neurocognitive approach. Special attention was given to metacognitive abilities related to action-monitoring that represent a novel explanation of the phenomenon. PD patients were assessed using different rating scales that we devised to measure movement awareness disorders. In order to ascertain whether each variable measured at a cognitive-clinical level contributes to predicting the scores of the movement-disorder-awareness-scales, we conducted multiple logistic regression models using the latter as binary dependent variables. We used the Wisconsin Card Sorting Test-metacognitive-version to assess the executive functions of the prefrontal-ventral-striatal circuitry. Data showed that a reduction of self-awareness using the Dyskinesia rating scale was associated with global monitoring (p=.04), monitoring resolution (p=.04) and control sensitivity (p=.04). Patients failed to perceive their performance, distinguish between correct and incorrect sorts, be confident in their choice and consequently decide to gamble during the task. We did not find any association with executive functions using the hypo-bradykinesia rating scale. Our findings indicate that when the comparator mechanism for monitoring attentive performance is compromised at a prefrontal striatal level, patients lose the ability to recognize their motor disturbances that do not achieve conscious awareness.

  2. Brain plasticity in Parkinson's disease with freezing of gait induced by action observation training.

    PubMed

    Agosta, Federica; Gatti, Roberto; Sarasso, Elisabetta; Volonté, Maria Antonietta; Canu, Elisa; Meani, Alessandro; Sarro, Lidia; Copetti, Massimiliano; Cattrysse, Erik; Kerckhofs, Eric; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-01-01

    Gait disorders represent a therapeutic challenge in Parkinson's disease (PD). This study investigated the efficacy of 4-week action observation training (AOT) on disease severity, freezing of gait and motor abilities in PD, and evaluated treatment-related brain functional changes. 25 PD patients with freezing of gait were randomized into two groups: AOT (action observation combined with practicing the observed actions) and "Landscape" (same physical training combined with landscape-videos observation). At baseline and 4-week, patients underwent clinical evaluation and fMRI. Clinical assessment was repeated at 8-week. At 4-week, both groups showed reduced freezing of gait severity, improved walking speed and quality of life. Moreover, AOT was associated with reduced motor disability and improved balance. AOT group showed a sustained positive effect on motor disability, walking speed, balance and quality of life at 8-week, with a trend toward a persisting reduced freezing of gait severity. At 4-week vs. baseline, AOT group showed increased recruitment of fronto-parietal areas during fMRI tasks, while the Landscape group showed a reduced fMRI activity of the left postcentral and inferior parietal gyri and right rolandic operculum and supramarginal gyrus. In AOT group, functional brain changes were associated with clinical improvements at 4-week and predicted clinical evolution at 8-week. AOT has a more lasting effect in improving motor function, gait and quality of life in PD patients relative to physical therapy alone. AOT-related performance gains are associated with an increased recruitment of motor regions and fronto-parietal mirror neuron and attentional control areas.

  3. Stress-Induced Executive Dysfunction in GDNF-Deficient Mice, A Mouse Model of Parkinsonism

    PubMed Central

    Buhusi, Mona; Olsen, Kaitlin; Yang, Benjamin Z.; Buhusi, Catalin V.

    2016-01-01

    Maladaptive reactivity to stress is linked to improper decision making, impulsivity, and discounting of delayed rewards. Chronic unpredictable stress (CUS) alters dopaminergic function, re-shapes dopaminergic circuits in key areas involved in decision making, and impairs prefrontal-cortex dependent response inhibition and working memory. Glial-derived neurotrophic factor (GDNF) is essential for regulating dopamine (DA) release in the basal ganglia and for the survival of dopaminergic neurons; GDNF-deficient mice are considered an animal model for aging-related Parkinsonism. Recently, GDNF expression in the striatum has been linked to resilience to stress. Here we investigated the effects of CUS on decision making in GDNF-heterozygous (HET) mice and their wild-type littermate controls (WT). Before CUS no differences in temporal discounting (TD) were found between genotypes. However, following CUS GDNF HET mice, having a partial reduction of GDNF levels, showed increased impulsive choice indexed by a reduction in percent Larger-Later (LL) choices in the TD paradigm, and a reduction in area under the TD curve. Moreover, stressed GDNF HET mice, but not their WT controls, showed decreased neuronal activation (number of cFos positive neurons) in the orbitofrontal cortex (OFC), nucleus accumbens (NA) core, and NA shell, suggestive of a maladaptive response to stress. Interestingly, area under the TD curve positively correlated with cFos activation in the NA core, and NA shell, but not with orbitofrontal activity. These results provide further evidence of the differential involvement of the OFC, NA core, and NA shell in impulsive choice, and identify GDNF-deficient mice as a double-hit (gene × environment) model of stress-related executive dysfunction, particularly relevant to substance abuse and Parkinson’s disease (PD). PMID:27445722

  4. Drug-induced hyperhidrosis and hypohidrosis: incidence, prevention and management.

    PubMed

    Cheshire, William P; Fealey, Robert D

    2008-01-01

    The human sweating response is subject to the influence of diverse classes of drugs. Some act centrally at the hypothalamus or at spinal thermoregulatory centres, while others act at sympathetic ganglia or at the eccrine-neuroeffector junction. Pharmacological disturbances of sweating have broad clinical implications. Drugs that induce hyperhidrosis, or sweating in excess of that needed to maintain thermoregulation, can cause patient discomfort and embarrassment, and include cholinesterase inhibitors, selective serotonin reuptake inhibitors, opioids and tricyclic antidepressants. Drugs that induce hypohidrosis, or deficient sweating, can increase the risk of heat exhaustion or heat stroke and include antimuscarinic anticholinergic agents, carbonic anhydrase inhibitors and tricyclic antidepressants. As acetylcholine is the principal neuroeccrine mediator, anhidrosis is one of the clinical hallmarks by which acute anticholinergic toxicity may be recognized. The symptom of dry mouth often accompanies the less apparent symptom of hypohidrosis because the muscarinic M(3) acetylcholine receptor type predominates at both sweat and salivary glands. Management options include dose reduction, drug substitution or discontinuation. When compelling medical indications require continuation of a drug causing hyperhidrosis, the addition of a pharmacological agent to suppress sweating can help to reduce symptoms. When hypohidrotic drugs must be continued, deficient sweating can be managed by avoiding situations of heat stress and cooling the skin with externally applied water. The availability of clinical tests for the assessment of sudomotor dysfunction in neurological disease has enhanced recognition of the complex effects of drugs on sweating. Advances in the understanding of drug-induced anhidrosis have also enlarged the therapeutic repertoire of effective treatments for hyperhidrosis.

  5. Capecitabine-induced lichenoid drug eruption: a case report.

    PubMed

    Gehlhausen, Jeff R; Strausburg, Matthew B; Aouthmany, Mouhammad; Katona, Terrence M; Turner, Matthew J

    2017-02-15

    Capecitabine is a 5-fluorouracil basedchemotherapeutic drug widely used in the treatmentof solid tumors, especially colorectal and breast. Someof the most common side effects of capecitabine arecutaneous in nature, including hand-foot syndrome(palmar-plantar erythrodysesthesia). Several reports inthe literature link capecitabine use with photosensitivelichenoid eruptions. Herein, we present a case ofcapecitabine-induced lichenoid eruption in an elderlyfemale with metastatic breast cancer and discuss ourfindings in relationship to previously reported cases ofthis and other capecitabine-induced skin pathologies.

  6. Drug-Induced Nephrotoxicity and Dose Adjustment Recommendations: Agreement Among Four Drug Information Sources

    PubMed Central

    Bicalho, Millena Drumond; Soares, Danielly Botelho; Botoni, Fernando Antonio; Reis, Adriano Max Moreira; Martins, Maria Auxiliadora Parreiras

    2015-01-01

    Hospitalized patients require the use of a variety of drugs, many of which individually or in combination have the potential to cause kidney damage. The use of potentially nephrotoxic drugs is often unavoidable, and the need for dose adjustment should be evaluated. This study is aimed at assessing concordance in information on drug-induced nephrotoxicity and dose adjustment recommendations by comparing four drug information sources (DRUGDEX®, UpToDate®, Medscape® and the Brazilian Therapeutic Formulary) using the formulary of a Brazilian public hospital. A total of 218 drugs were investigated. The global Fleiss’ kappa coefficient was 0.265 for nephrotoxicity (p < 0.001; CI 95%, 0.211–0.319) and 0.346 for recommendations (p < 0.001; CI 95%, 0.292–0.401), indicating fair concordance among the sources. Anti-infectives and anti-hypertensives were the main drugs cited as nephrotoxic by the different sources. There were no clear definitions for qualitative data or quantitative values for dose adjustments among the four information sources. There was no advice for dosing for a large number of the drugs in the international databases. The National Therapeutic Formulary offered imprecise dose adjustment recommendations for many nephrotoxic drugs. Discrepancies among information sources may have a clinical impact on patient care and contribute to drug-related morbidity and mortality. PMID:26371029

  7. Drug-Induced Nephrotoxicity and Dose Adjustment Recommendations: Agreement Among Four Drug Information Sources.

    PubMed

    Bicalho, Millena Drumond; Soares, Danielly Botelho; Botoni, Fernando Antonio; Reis, Adriano Max Moreira; Martins, Maria Auxiliadora Parreiras

    2015-09-09

    : Hospitalized patients require the use of a variety of drugs, many of which individually or in combination have the potential to cause kidney damage. The use of potentially nephrotoxic drugs is often unavoidable, and the need for dose adjustment should be evaluated. This study is aimed at assessing concordance in information on drug-induced nephrotoxicity and dose adjustment recommendations by comparing four drug information sources (DRUGDEX(®), UpToDate(®), Medscape(®) and the Brazilian Therapeutic Formulary) using the formulary of a Brazilian public hospital. A total of 218 drugs were investigated. The global Fleiss' kappa coefficient was 0.265 for nephrotoxicity (p < 0.001; CI 95%, 0.211-0.319) and 0.346 for recommendations (p < 0.001; CI 95%, 0.292-0.401), indicating fair concordance among the sources. Anti-infectives and anti-hypertensives were the main drugs cited as nephrotoxic by the different sources. There were no clear definitions for qualitative data or quantitative values for dose adjustments among the four information sources. There was no advice for dosing for a large number of the drugs in the international databases. The National Therapeutic Formulary offered imprecise dose adjustment recommendations for many nephrotoxic drugs. Discrepancies among information sources may have a clinical impact on patient care and contribute to drug-related morbidity and mortality.

  8. Cellular models for Parkinson's disease.

    PubMed

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth

    2016-10-01

    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  9. P-glycoprotein mediated efflux limits the transport of the novel anti-Parkinson's disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models.

    PubMed

    Liu, Qian; Hou, Jinfeng; Chen, Xiaoguang; Liu, Gengtao; Zhang, Dan; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ, a novel anti-Parkinson's disease (PD) candidate drug, has shown poor blood-brain barrier (BBB) penetration based on the pharmacokinetic study using rat brain. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two important transporters obstructing substrates entry into the CNS as well as in relation to PD neuropathology. However, it is unclear whether P-gp and BCRP are involved in low BBB permeability of FLZ and what the differences of FLZ brain penetration are between normal and Parkinson's conditions. For this purpose, in vitro BBB models mimicking physiological and PD pathological-related BBB properties were constructed by C6 astroglial cells co-cultured with primary normal or PD rat cerebral microvessel endothelial cells (rCMECs) and in vitro permeability experiments of FLZ were carried out. High transepithelial electrical resistance (TEER) and low permeability for sodium fluorescein (NaF) confirmed the BBB functionality of the two models. Significantly greater expressions of P-gp and BCRP were detected in PD rCMECs associated with the lower in vitro BBB permeability of FLZ in pathological BBB model compared with physiological model. In transport studies only P-gp blocker effectively inhibited the efflux of FLZ, which was consistent with the in vivo permeability data. This result was also confirmed by ATPase assays, suggesting FLZ is a substrate for P-gp but not BCRP. The present study first established in vitro BBB models reproducing PD-related changes of BBB functions in vivo and demonstrated that poor brain penetration of FLZ and low BBB permeability were due to the P-gp transport.

  10. Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases.

    PubMed

    Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai

    2015-08-01

    Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.

  11. Drug-induced tendinopathy: from physiology to clinical applications.

    PubMed

    Kirchgesner, Thomas; Larbi, Ahmed; Omoumi, Patrick; Malghem, Jacques; Zamali, Nadia; Manelfe, Julien; Lecouvet, Frédéric; Vande Berg, Bruno; Djebbar, Sahlya; Dallaudière, Benjamin

    2014-12-01

    Drug-induced tendon toxicity is rare but often underestimated. To date, four main drug classes have been incriminated in tendinopathies. Quinolones and long-term glucocorticoids are the most widely known, but statins and aromatase inhibitors can also induce tendon damage. The specific pathophysiological mechanisms responsible for drug-induced tendinopathies remain unknown. Proven risk factors have been identified, such as age older than 60 years, pre-existing tendinopathy, and potentiation of toxic effects when several drug classes are used in combination. Mean time to symptom onset varies from a few days with quinolones to several months with statins and several years for long-term glucocorticoid therapy. The most common sites of involvement are the lower limb tendons, most notably the body of the Achilles tendon. The first part of this review discusses tendon anatomy and the pathophysiology and radiological manifestations of tendinopathies. The second part provides details on the main characteristics of each of the drugs classes associated with tendon toxicity.

  12. Continuous and intermittent nicotine treatment reduces L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson's disease.

    PubMed

    Bordia, Tanuja; Campos, Carla; Huang, Luping; Quik, Maryka

    2008-10-01

    The development of abnormal involuntary movements (AIMs) or dyskinesias is a serious complication of L-DOPA [L-3,4-dihydroxyphenylalanine] therapy for Parkinson's disease. Our previous work had shown that intermittent nicotine dosing reduced L-DOPA-induced dyskinetic-like movements in nonhuman primates. A readily available nicotine formulation is the nicotine patch, which provides a constant source of nicotine. However, constant nicotine administration more readily desensitizes nicotinic receptors, to possibly yield alternate behavioral outcomes. Therefore, we investigated whether constant nicotine administration reduced L-DOPA-induced AIMs in a rat parkinsonian model, with results compared with those with intermittent nicotine dosing. Rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion were exposed to either intermittent (drinking water) or constant (minipump) nicotine for > or = 2 weeks at doses that yielded plasma levels of the nicotine metabolite cotinine similar to those in smokers. The rats were next treated with L-DOPA/benserazide (8 or 12 mg/kg/15 mg/kg) for > or = 3 weeks to allow for the development of AIMs, with nicotine treatment continued. Both modes of nicotine administration resulted in > or = 50% decline in L-DOPA-induced AIMs. Nicotine treatment also significantly reduced AIMs in L-DOPA-primed rats using either dosing regimen, whereas nicotine removal led to an increase in AIMs. There was no effect of nicotine on various measures of motor performance in 6-OHDA-lesioned rats. In summary, nicotine provided either via the drinking water or minipump reduced L-DOPA-induced AIMs in a rat model of Parkinson's disease. These results suggest that either intermittent or constant nicotine treatment may be useful in the treatment of L-DOPA-induced dyskinesias in patients with Parkinson's disease.

  13. Maternal Omega-3 Supplement Improves Dopaminergic System in Pre- and Postnatal Inflammation-Induced Neurotoxicity in Parkinson's Disease Model.

    PubMed

    Delattre, Ana Marcia; Carabelli, Bruno; Mori, Marco Aurélio; Kempe, Paula G; Rizzo de Souza, Luiz E; Zanata, Silvio M; Machado, Ricardo B; Suchecki, Deborah; Andrade da Costa, Belmira L S; Lima, Marcelo M S; Ferraz, Anete C

    2017-04-01

    Evidence suggests that idiopathic Parkinson's disease (PD) is the consequence of a neurodevelopmental disruption, rather than strictly a consequence of aging. Thus, we hypothesized that maternal supplement of omega-3 polyunsaturated fatty acids (ω-3 PUFA) may be associated with neuroprotection mechanisms in a self-sustaining cycle of neuroinflammation and neurodegeneration in lipopolysaccharide (LPS)-model of PD. To test this hypothesis, behavioral and neurochemical assay were performed in prenatally LPS-exposed offspring at postnatal day 21. To further determine whether prenatal LPS exposure and maternal ω-3 PUFAs supplementation had persisting effects, brain injury was induced on PN 90 rats, following bilateral intranigral LPS injection. Pre- and postnatal inflammation damage not only affected dopaminergic neurons directly, but it also modified critical features, such as activated microglia and astrocyte cells, disrupting the support provided by the microenvironment. Unexpectedly, our results failed to show any involvement of caspase-dependent and independent apoptosis pathway in neuronal death mechanisms. On the other hand, learning and memory deficits detected with a second toxic exposure were significantly attenuated in maternal ω-3 PUFAs supplementation group. In addition, ω-3 PUFAs promote beneficial effect on synaptic function, maintaining the neurochemical integrity in remaining neurons, without necessarily protect them from neuronal death. Thus, our results suggest that ω-3 PUFAs affect the functional ability of the central nervous system in a complex way in a multiple inflammation-induced neurotoxicity animal model of PD and they disclose new ways of understanding how these fatty acids control responses of the brain to different challenges.

  14. Drug-induced liver injury: hepatotoxicity of quetiapine revisited.

    PubMed

    Shpaner, Alexander; Li, Wei; Ankoma-Sey, Victor; Botero, Rafael Claudino

    2008-11-01

    Drug hepatotoxicity is the most common cause of fulminant hepatic failure in the USA. We describe a rare case of a patient who developed an acute liver injury after initiation of therapy with quetiapine, but after conservative management and a trial of steroids, has fully recovered. This is the second reported case of quetiapine-induced liver injury in the published literature.

  15. Drug-induced hypersensitivity syndrome due to carbapenem antibiotics.

    PubMed

    Goto, Mizuki; Shimizu, Fumiaki; Takeo, Naoko; Okamoto, Osamu; Katagiri, Kazumoto; Ikewaki, Junji; Ogata, Masao; Kadota, Jun-ichi; Fujiwara, Sakuhei

    2010-04-01

    Drug-induced hypersensitivity syndrome (DIHS) is characterized by a serious adverse systemic reaction that usually appears after a 3-6-week exposure to certain drugs, for example, anticonvulsants. Many different precipitating factors have been reported, but the pathophysiology of DIHS remains unknown. However, reactivation of members of the human herpesvirus (HHV) family, and of HHV-6 in particular, has been reported in patients with DIHS. We report the case of a 64-year-old man who developed a generalized erythematous rash, fever, hepatic failure, lymphadenopathy and an increased number of atypical lymphocytes. In addition, reactivation of HHV-6 and cytomegalovirus (CMV) was demonstrated by real-time quantitative amplification by polymerase chain reaction. The patient was given a diagnosis of DIHS due to carbapenem antibiotics based on his clinical course, laboratory data, and results of lymphocyte-stimulation tests with various drugs. This is the first report, to our knowledge, of DIHS induced by carbapenem antibiotics.

  16. Acetaminophen-induced cellulitis-like fixed drug eruption.

    PubMed

    Fathallah, Neila; Ben Salem, Chaker; Slim, Raoudha; Boussofara, Lobna; Ghariani, Najet; Bouraoui, Kamel

    2011-03-01

    Acetaminophen is a widely used analgesic drug. Its adverse reactions are rare but severe. An 89-year-old man developed an indurated edematous and erythematous plaque on his left arm 1 day after acetaminophen ingestion. Cellulitis was suspected and antibiotictherapy was started but there was no improvement of the rash; there was a spectacular extension of the lesion with occurrence of flaccid vesicles and blisters in the affected sites. The diagnosis of generalized-bullous-fixed drug eruption induced by acetaminophen was considered especially with a reported history of a previous milder reaction occurring in the same site. Acetaminophen was withdrawn and the rash improved significantly. According to the Naranjo probability scale, the eruption experienced by the patient was probably due to acetaminophen. Clinicians should be aware of the ability of acetaminophen to induce fixed drug eruption that may clinically take several aspects and may be misdiagnosed.

  17. Drug-induced liver injury: Is it somehow foreseeable?

    PubMed Central

    Tarantino, Giovanni; Di Minno, Matteo Nicola Dario; Capone, Domenico

    2009-01-01

    The classic view on the pathogenesis of drug-induced liver injury is that the so-called parent compounds are made hepatotoxic by metabolism (formation of neo-substances that react abnormally), mainly by cytochromes P-450 (CYP), with further pathways, such as mitochondrial dysfunction and apoptosis, also playing a role. Risk factors for drug-induced liver injury include concomitant hepatic diseases, age and genetic polymorphisms of CYP. However, some susceptibility can today be predicted before drug administration, working on the common substrate, by phenotyping and genotyping studies and by taking in consideration patients’ health status. Physicians should always think of this adverse effect in the absence of other clear hepatic disease. Ethical and legal problems towards operators in the health care system are always matters to consider. PMID:19533803

  18. Molecular interaction studies of green tea catechins as multitarget drug candidates for the treatment of Parkinson's disease: computational and structural insights.

    PubMed

    Azam, Faizul; Mohamed, Najah; Alhussen, Fatma

    2015-01-01

    Green tea catechins have extensively been studied for their imminent role in reducing the risk of various neurodegenerative diseases such as Parkinson's disease (PD). Understanding the molecular interaction of these compounds with various anti-Parkinsonian drug targets is of interest. The present study is intended to explore binding modes of catechins with molecular targets having potential role in PD. Lamarckian genetic algorithm methodology was adopted for molecular docking simulations employing AutoDock 4.2 program. Toxicity potential and molecular properties responsible for good pharmacokinetic profile were calculated by Osiris property explorer and Molinspiration online toolkit, respectively. A strong correlation coefficient (r(2) = 0.893) was obtained between experimentally reported and docking predicted activities of native co-crystallized ligands of the 18 target receptors used in current study. Analysis of docked conformations revealed monoamine oxidase-B as most promising, while N-methyl-D-aspartate receptor was recognized as the least favorable target for catechins. Benzopyran skeleton with a phenyl group substituted at the 2-position and a hydroxyl (or ester) function at the 3-position has been identified as common structural requirements at majority of the targets. The present findings suggest that epigallocatechin gallate is the most promising lead to be developed as multitarget drug for the design and development of novel anti-Parkinsonian agents.

  19. Flurbiprofen-induced generalized bullous fixed drug eruption.

    PubMed

    Balta, I; Simsek, H; Simsek, G G

    2014-01-01

    Fixed drug eruption (FDE) is an unusual drug-related side effect that results in recurrent lesions whenever the causative drugs are used. FDEs usually occur as a single, sharply demarcated, round erythematous patch or plaque, occasionally with localized bullae. The most common offending agents include antimicrobials, nonsteroidal anti-inflammatory drugs, and antiepileptics. There are some reports where contact dermatitis and cutaneous vasculitis have been associated with the use of flurbiprofen. We present the case of a 50-year-old man with flurbiprofen-induced generalized bullous FDE. To the best of our knowledge, the most serious form of FDE, the generalized bullous FDE, to be caused by flurbiprofen has not been reported previously.

  20. Drug-induced immune haemolytic anaemia caused by levofloxacin.

    PubMed

    Sukhal, Shashvat; Gupta, Shweta

    2014-08-01

    Drug-induced immune haemolytic anaemia (DIIHA) is extremely rare. We herein report a case of life-threatening DIIHA due to levofloxacin. This is the second case reported in the literature. A 51-year-old woman presented with complaints of fatigue after 4-5 days of levofloxacin therapy for a lung infection. At presentation, she was found to have haemolysis with a positive Coombs test and IgG autoantibodies. Levofloxacin was identified as the probable culprit, using the Naranjo adverse drug reaction probability scale. Upon discontinuation of the drug and initiation of steroids, the patient's haematological parameters stabilised. Diagnosis of DIIHA is made through a history of intake of levofloxacin, clinical and laboratory features of haemolysis and a positive Coombs test. An autoantibody screen is most commonly positive for warm antibodies (IgG type). It is essential for clinicians to recognise this rare complication caused by a commonly prescribed medication, discontinue the offending drug and initiate treatment.

  1. Clinical Characteristics of Patients with Drug-induced Liver Injury

    PubMed Central

    Yang, Li-Xia; Liu, Cheng-Yuan; Zhang, Lun-Li; Lai, Ling-Ling; Fang, Ming; Zhang, Chong

    2017-01-01

    Background: Drug is an important cause of liver injury and accounts for up to 40% of instances of fulminant hepatic failure. Drug-induced liver injury (DILI) is increasing while the diagnosis becomes more difficult. Though many drugs may cause DILI, Chinese herbal medicines have recently emerged as a major cause due to their extensive use in China. We aimed to provide drug safety information to patients and health carers by analyzing the clinical and pathological characteristics of the DILI and the associated drug types. Methods: A retrospective analysis was conducted in 287 patients diagnosed with DILI enrolled in our hospital from January 2011 to December 2015. The categories of causative drugs, clinical and pathological characteristics were reviewed. Results: Western medicines ranked as the top cause of DILI, accounting for 163 out of the 287 DILI patients (56.79%) in our study. Among the Western medicine, antituberculosis drugs were the highest cause (18.47%, 53 patients) of DILI. Antibiotics (18 patients, 6.27%) and antithyroid (18 patients, 6.27%) drugs also ranked among the major causes of DILI. Chinese herbal medicines are another major cause of DILI, accounting for 36.59% of cases (105 patients). Most of the causative Chinese herbal medicines were those used to treat osteopathy, arthropathy, dermatosis, gastropathy, leukotrichia, alopecia, and gynecologic diseases. Hepatocellular hepatitis was prevalent in DILI, regardless of Chinese herbal medicine or Western medicine-induced DILI. Conclusions: Risks and the rational use of medicines should be made clear to reduce the occurrence of DILI. For patients with liver injury of unknown origin, liver tissue pathological examination is recommended for further diagnosis. PMID:28091407

  2. Drug-Induced Liver Injury Is a Major Risk for New Drugs.

    PubMed

    Seeff, Leonard B

    2015-01-01

    Drug-induced liver injury (DILI), a relatively rare condition, is nevertheless a major reason for not approving a drug in development or for removing one already marketed. With a specific diagnostic biomarker lacking, finding elevated serum enzyme [alanine aminotransferase (ALT), aspartate aminotransferase and alkaline phosphatase] activities remains an initial signal for incipient liver injury. Enzyme elevations alone may not be harmful, but if caused by a drug and followed by jaundice (called 'Hy's law') there is a high possibility of serious DILI. In 1997 several drugs were approved by the Food and Drug Administration (FDA) of the USA that were later withdrawn from the market for serious liver toxicity. New drugs in development are now required to be monitored for liver injury, and the data is to be considered in the approval decision. A program called e-DISH (evaluation of drug-induced serious hepatotoxicity) was introduced in 2004 to aid medical reviewers to select from all subjects studied those few who show nontrivial liver injury and estimate the most likely cause. The threshold of enzyme elevation comprising a warning for possibly serious DILI is uncertain, although generally accepted as 3-5 times the 'upper limit of normal'. The new direct-acting antiviral agents for treating chronic hepatitis C virus, which often lead to a reduction of elevated ALTs, mandate that a later increase without viral breakthrough be compared to the new on-treatment level of values. The drug may be discontinued or interrupted for evaluation to exclude other possible causes of liver injury. The FDA has approved no drug since 1997 that has been withdrawn later because of serious hepatotoxicity.

  3. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms.

    PubMed

    Frommeyer, Gerrit; Eckardt, Lars

    2016-01-01

    Drug-induced ventricular tachyarrhythmias can be caused by cardiovascular drugs, noncardiovascular drugs, and even nonprescription agents. They can result in arrhythmic emergencies and sudden cardiac death. If a new arrhythmia or aggravation of an existing arrhythmia develops during therapy with a drug at a concentration usually considered not to be toxic, the situation can be defined as proarrhythmia. Various cardiovascular and noncardiovascular drugs can increase the occurrence of polymorphic ventricular tachycardia of the 'torsade de pointes' type. Antiarrhythmic drugs, antimicrobial agents, and antipsychotic and antidepressant drugs are the most important groups. Age, female sex, and structural heart disease are important risk factors for the occurrence of torsade de pointes. Genetic predisposition and individual pharmacodynamic and pharmacokinetic sensitivity also have important roles in the generation of arrhythmias. An increase in spatial or temporal dispersion of repolarization and a triangular action-potential configuration have been identified as crucial predictors of proarrhythmia in experimental models. These studies emphasized that sole consideration of the QT interval is not sufficient to assess the proarrhythmic risk. In this Review, we focus on important triggers of proarrhythmia and the underlying electrophysiological mechanisms that can enhance or prevent the development of torsade de pointes.

  4. Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson's-Like Disease

    PubMed Central

    Ahuja, Manuj; Ammal Kaidery, Navneet; Yang, Lichuan; Calingasan, Noel; Smirnova, Natalya; Gaisin, Arsen; Gaisina, Irina N.; Gazaryan, Irina; Hushpulian, Dmitry M.; Kaddour-Djebbar, Ismail; Bollag, Wendy B.; Morgan, John C.; Ratan, Rajiv R.; Starkov, Anatoly A.; Beal, M. Flint

    2016-01-01

    A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro. However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic. SIGNIFICANCE STATEMENT Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The

  5. Effect of low-frequency repetitive transcranial magnetic stimulation combined with physical therapy on L-dopa-induced painful off-period dystonia in Parkinson's disease.

    PubMed

    Kodama, Mitsuhiko; Kasahara, Takashi; Hyodo, Masaki; Aono, Koji; Sugaya, Mutsumi; Koyama, Yuji; Hanayama, Kozo; Masakado, Yoshihisa

    2011-02-01

    Previous research has shown that low-frequency repetitive transcranial magnetic stimulation over the primary motor area and supplementary motor area can reduce L-dopa-induced dyskinesias in Parkinson's disease; however, it involved only patients with peak-dose or diphasic dyskinesia. We report a case of a patient with severely painful off-period dystonia in the unilateral lower limb who underwent 0.9-Hz subthreshold repetitive transcranial magnetic stimulation over contralateral primary motor area and supplementary motor area. Repetitive transcranial magnetic stimulation over the primary motor area significantly reduced the painful dystonia and walking disturbances but repetitive transcranial magnetic stimulation over the supplementary motor area did not. The cortical silent period also prolonged after repetitive transcranial magnetic stimulation over the primary motor area. At 5 mos of approximately once a week repetitive transcranial magnetic stimulation over the primary motor area, the Unified Parkinson's Disease Rating Scale motor score also improved. This report shows that repetitive transcranial magnetic stimulation over the inhibitory primary motor area can be useful for rehabilitating patients with Parkinson's disease with off-period dystonia and suggests that this treatment should be further verified in such patients.

  6. Combined exposure to agriculture pesticides, paraquat and maneb, induces alterations in the N/OFQ-NOPr and PDYN/KOPr systems in rats: Relevance to sporadic Parkinson's disease.

    PubMed

    Bastías-Candia, Sussy; Di Benedetto, Manuela; D'Addario, Claudio; Candeletti, Sanzio; Romualdi, Patrizia

    2015-01-01

    Despite several years of research, the aetiology of Parkinson's disease (PD) is quite far from being solved. In PD, as well as in other neurodegenerative disorders, it has been proposed that the combination of multiple factors might contribute to the onset of the disease. Indeed, several authors have suggested that environmental factors, such as pollutants and chemicals, might be associated with the onset of several neurodegenerative disorders. On the other hand, several studies have described that the nociceptin/orphanin-NOP and prodynorphin-KOP opioid systems are implicated in the pathology of Parkinson's disease. Considering the nonrestricted commercial availability and common use of several pesticides, such as paraquat and maneb, in agriculture of less developed countries, the aim of our study was to investigate the involvement of nociceptin/orphanin-NOP and prodynorphin-KOP systems in a chronic paraquat and maneb animal model of Parkinson's disease. Our results showed that after paraquat/maneb (5/15 mg kg(-1) ) treatment, a significant reduction in tyrosine hydroxylase (TH) levels, the rate-limiting enzyme for dopamine synthesis, was observed. Also, the association of paraquat and maneb (5/15 mg kg(-1) ) induced an increase in nociceptin/orphanin and a decrease of prodynorphin gene expression levels in the substantia nigra with a down-regulation of NOP and KOP receptors after both treatments in the substantia nigra and caudate putamen. These data further confirm that paraquat and maneb toxicity can modulate gene expression of the nociceptin/orphanin-NOP receptor and prodynorphin-KOP receptor systems in the substantia nigra and caudate putamen, offering further support to the hypothesis that chronic exposure to these agrochemicals might be implicated in the mechanisms underlying sporadic Parkinson's disease. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 656-663, 2015.

  7. Prevention of Drug-induced Memory Impairment by Immunopharmacotherapy

    PubMed Central

    Treweek, Jennifer B.; Sun, Chengzao; Mayorov, Alexander V.; Qi, Longwu; Levy, Coree L.; Roberts, Amanda J.; Dickerson, Tobin J.; Janda, Kim D.

    2009-01-01

    One approach to treating drug abuse uses anti-drug antibodies to immunize subjects against the illicit substance rather than administering therapeutics that target the specific CNS site of action. At present, passive vaccination has recognized efficacy in treating certain gross symptoms of drug misuse, namely motor activation, self-administration, and overdose. However, the potential for antibodies to prevent drug-induced changes involving finer cognitive processes, such as benzodiazepine-associated amnesia, remains unexplored. To address this concept, a flunitrazepam hapten was synthesized and employed in the generation of a panel of high affinity monoclonal antibodies. Anti-flunitrazepam mAb RCA3A3 (Kd,app= 200 nM) was tested in a mouse model of passive immunization and subsequent mole-equivalent challenge with flunitrazepam. Not only was flunitrazepam-induced sedation prevented, but immunization also conferred protection to memory consolidation as assessed through contextual and cued fear conditioning paradigms. These results provide evidence that immunopharmacotherapeutic blockade of drug intoxication also preserves complex cognitive function. PMID:18921991

  8. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells.

  9. Hitler's parkinsonism.

    PubMed

    Boettcher, Lillian B; Bonney, Phillip A; Smitherman, Adam D; Sughrue, Michael E

    2015-07-01

    Of the multitude of medical and psychiatric conditions ascribed to Hitler both in his lifetime and since his suicide in April 1945, few are more substantiated than parkinsonism. While the timeline of the development of this condition, as well as its etiology, are debated, there is clear evidence for classic manifestations of the disease, most prominently a resting tremor but also stooped posture, bradykinesia, micrographia, and masked facial expressions, with progression steadily seen over his final years. Though ultimately speculation, some have suggested that Hitler suffered from progressive cognitive and mood disturbances, possibly due to parkinsonism, that affected the course of events in the war. Here, the authors discuss Hitler's parkinsonism in the context of the Third Reich and its eventual destruction, maintaining that ultimately his disease had little effect on the end result.

  10. Behavioral and Neurochemical Effects of Alpha-Lipoic Acid in the Model of Parkinson's Disease Induced by Unilateral Stereotaxic Injection of 6-Ohda in Rat

    PubMed Central

    de Araújo, Dayane Pessoa; De Sousa, Caren Nádia Soares; Araújo, Paulo Victor Pontes; Menezes, Carlos Eduardo de Souza; Sousa Rodrigues, Francisca Taciana; Escudeiro, Sarah Souza; Lima, Nicole Brito Cortez; Patrocínio, Manoel Claúdio Azevedo; Aguiar, Lissiana Magna Vasconcelos; Viana, Glauce Socorro de Barros; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This study aimed to investigate behavioral and neurochemical effects of α-lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinson's disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α-Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α-lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α-lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α-lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment. PMID:24023579

  11. Asiaticoside: attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax.

    PubMed

    Xu, Chang-Liang; Wang, Qi-Zhi; Sun, Ling-Mei; Li, Xiu-Min; Deng, Ji-Min; Li, Lu-Fan; Zhang, Jin; Xu, Rong; Ma, Shi-Ping

    2012-01-01

    In this study, we investigated the neuroprotective effects of asiaticoside, a triterpenoid saponin isolated from the Chinese medicinal herb Centella asiatica, in the rats model of Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Rats were first injected with MPTP. One day after surgery, asiaticoside was administered and the behavioral tests were assessed. On 14th day, the rats were sacrificed, substantia nigra (SN) and striatum were dissected, and then dopamine (DA) and its metabolites in striatum and malonyldialdehyde (MDA) contents, reduced glutathione (GSH) level and gene expression level in SN were estimated. Treatment with asiaticoside was found to protect dopaminergic neuron by antagonizing MPTP induced neurotoxicity and to improve locomotor dysfunction. Asiaticoside significantly attenuated the MPTP-induced reduction of dopamine in the striatum. The content of MDA was significantly decreased while the GSH level was significantly increased in asiaticoside-treated groups. In addition, asiaticoside increased the Bcl-2/Bax ratio. These results indicated that asiaticoside was effective in reversing MPTP induced Parkinsonism via its neuroprotective effects including antioxidant activity, maintaining the metabolic balance of DA, and increasing ratio of Bcl-2/Bax.

  12. [Talc-induced pulmonary granulomas in drug addicts].

    PubMed

    Latartseva, L N; Kryvenko, O N

    2013-01-01

    Among the diseases accompanied by granuloma formation in the lung, there is so-called granulomatosis developing in injection drug users who have been long injecting suspensions of oral medications containing talc and other water insoluble fillers. 102 deaths of chronic intravenous drug users were examined; 12 of whom showed pulmonary talc-induced granulomatosis. Their morphology was studied using polarized light microscopy. The main mechanisms of thanatogenesis in lethal cases within the first hours after intravenous injection of talc-containing oral medication suspensions are explained.

  13. Cancer Evolution under Drug-Induced Stress-Gradients

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Austin, Robert H.

    2011-03-01

    The lack of long term success in eliminating cancer cells while avoiding the evolution of drug resistance indicates that our understanding of how cells evolve in response to stress is still incomplete. We interpret this not as a failure of the current approaches, but rather as an indication that new research venues should be undertaken, where conventional wisdom is challenged in order to drive forward our understanding of cancer. Of particular importance, we believe that the powerful role of evolution in the origin of drug resistance is ill-understood. We do not ask whether evolution occurs, but rather how. We do not describe molecular mechanisms underlying drug resistance at the single cell level, but rather ask how does resistance spread in cancerous tissues and metastatic lesions. We attempt to answer these questions by studying the population-wide dynamics of drug evolution and the collective stress response of cancer cells in a microfluidics device. We use microfluidics technologies to impose high levels of stress on cancer cell metapopulation by create smoothly varying gradients of either oxygen, chemotherapeutic drug, nutrient or pH. We present long-term studies of the adaptation of tumorigenic cancer cells to drug- induced stress gradients. Partially supported by and performance at NCI U54CA143803, CNF ECS-0335765, NSF PHY- 0750323, and NSERC.

  14. A systematic review of drug induced ocular reactions in diabetes

    PubMed Central

    Hampson, J; Harvey, J

    2000-01-01

    AIMS—To conduct a systematic review of drug induced adverse ocular effects in diabetes to determine if this approach identified any previously unrecognised adverse drug effects; to make a preliminary assessment of the feasibility of this approach in identifying adverse drug reactions; and to assess the current accessibility of this information to prescribing physicians.
METHODS—Literature search of online biomedical databases. The search strategy linked eye disorders with adverse drug reactions and diabetes. Source journals were classified as medical, pharmaceutical, diabetes related, or ophthalmological. It was determined whether the reactions identified were recorded in drug datasheets and the British National Formulary.
RESULTS—63 references fulfilled the selection criteria, of which 45 were considered to be relevant to the study. The majority of these were case reports but cross sectional surveys, case-control and cohort studies, and review articles were also identified. 61% of the reactions were not recorded in the British National Formulary and 41% were not recorded in the datasheets. 55% appeared in specialist ophthalmology journals.
CONCLUSIONS—This is a feasible approach to the identification of adverse drug reactions. Adverse reactions not listed in the most commonly used reference sources were found. The majority were published in specialist ophthalmology journals which might not be seen by prescribing physicians.

 PMID:10655188

  15. Quantitative Electromyographic Analysis of Reaction Time to External Auditory Stimuli in Drug-Naïve Parkinson's Disease

    PubMed Central

    Kwon, Do-Young; Park, Byung Kyu; Kim, Ji Won; Eom, Gwang-Moon; Hong, Junghwa; Koh, Seong-Beom; Park, Kun-Woo

    2014-01-01

    Evaluation of motor symptoms in Parkinson's disease (PD) is still based on clinical rating scales by clinicians. Reaction time (RT) is the time interval between a specific stimulus and the start of muscle response. The aim of this study was to identify the characteristics of RT responses in PD patients using electromyography (EMG) and to elucidate the relationship between RT and clinical features of PD. The EMG activity of 31 PD patients was recorded during isometric muscle contraction. RT was defined as the time latency between an auditory beep and responsive EMG activity. PD patients demonstrated significant delays in both initiation and termination of muscle contraction compared with controls. Cardinal motor symptoms of PD were closely correlated with RT. RT was longer in more-affected side and in more-advanced PD stages. Frontal cognitive function, which is indicative of motor programming and movement regulation and perseveration, was also closely related with RT. In conclusion, greater RT is the characteristic motor features of PD and it could be used as a sensitive tool for motor function assessment in PD patients. Further investigations are required to clarify the clinical impact of the RT on the activity of daily living of patients with PD. PMID:24724037

  16. Parkinson's disease: emerging pharmacotherapy.

    PubMed

    Strecker, Karl; Schwarz, Johannes

    2008-12-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. The prevalence is increasing with age and averages approximately 0.3% in the entire population. The clinical picture is dominated by the cardinal motor symptoms such as tremor at rest, bradykinesia, muscular rigidity, stooped posture and postural instability. Psychiatric comorbidity is common, comprising dementia, depression, anxiety and psychosis. Although many drugs have been developed and introduced into the market to provide symptomatic treatment, there is still no cure for PD and not even solid evidence for disease-modifying strategies. In addition, motor complications in advanced stages of the disease, side effects of the dopaminergic therapy, and non-motor symptoms remain huge challenges during long-term therapy. Thus, new therapeutic agents are desperately needed. Here, we describe current therapies and possible future developments that we hope will contribute to sustaining quality of life in patients suffering from Parkinson's disease for many years.

  17. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2012-10-01

    Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.

  18. Idiosyncratic Drug-Induced Liver Injury: Is Drug-Cytokine Interaction the Linchpin?

    PubMed

    Roth, Robert A; Maiuri, Ashley R; Ganey, Patricia E

    2017-02-01

    Idiosyncratic drug-induced liver injury continues to be a human health problem in part because drugs that cause these reactions are not identified in current preclinical testing and because progress in prevention is hampered by incomplete knowledge of mechanisms that underlie these adverse responses. Several hypotheses involving adaptive immune responses, inflammatory stress, inability to adapt to stress, and multiple, concurrent factors have been proposed. Yet much remains unknown about how drugs interact with the liver to effect death of hepatocytes. Evidence supporting hypotheses implicating adaptive or innate immune responses in afflicted patients has begun to emerge and is bolstered by results obtained in experimental animal models and in vitro systems. A commonality in adaptive and innate immunity is the production of cytokines, including interferon-γ (IFNγ). IFNγ initiates cell signaling pathways that culminate in cell death or inhibition of proliferative repair. Tumor necrosis factor-α, another cytokine prominent in immune responses, can also promote cell death. Furthermore, tumor necrosis factor-α interacts with IFNγ, leading to enhanced cellular responses to each cytokine. In this short review, we propose that the interaction of drugs with these cytokines contributes to idiosyncratic drug-induced liver injury, and mechanisms by which this could occur are discussed.

  19. Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson's disease.

    PubMed

    Ljungdahl, Anna; Hanrieder, Jörg; Fälth, Maria; Bergquist, Jonas; Andersson, Malin

    2011-01-01

    L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS) was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm) nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors. This suggests that

  20. Ofloxacin Induced Angioedema: A Rare Adverse Drug Reaction

    PubMed Central

    Yadav, Sankalp; Kumar, Raj; Wani, Umar Rasool

    2016-01-01

    The Adverse Drug Reaction (ADR) to a commonly prescribed anti-microbial can pose a major public health problem. The authors report a rare case of 24-year-old young lady who presented with angioedema of lips after ingestion of Ofloxacin, prescribed to her for treatment of loose motions. Fluoroquinolones are widely prescribed antibiotics for various disease conditions. The history, clinical examination and normal laboratory parameters led to the diagnosis of ofloxacin induced hypersensitivity reaction and the patient was successfully treated with corticosteroids and antihistamines. The hypersensitivity reactions to fluoroquinolones are rare with an incidence of 0.4% to 2%. The pharmacovigilance program and self-reporting of all the ADR’s by the health care workers can help in ensuring the judicious use of the drug, drug safety and thus decrease the associated morbidity and mortality. PMID:28050397

  1. A case of severe psychosis induced by novel recreational drugs

    PubMed Central

    Dragogna, Filippo; Oldani, Lucio; Buoli, Massimiliano; Altamura, A. Carlo

    2014-01-01

    Introduction:  The use of novel recreational drugs is becoming of public interest, especially after recent international alerts about their cardiovascular and neurological toxicity. Additionally, little is known about the psychiatric consequences of the long-term use of these compounds. Case presentation: We describe a case of severe psychotic episode likely induced by chronic use of a combination of new recreational drugs (methylenedioxypyrovalerone, mephedrone, butylone and alpha-pyrrolidinopentiophenone). The patient had no psychiatric history and showed poor response to conventional antipsychotic treatment (haloperidol). Conclusions: This case illustrates the potential negative effects of recreational drugs that cannot be limited to an acute psychotic episode but might determine a condition of prolonged paranoid psychosis. Although the use of these compounds is currently increasing, such molecules might often pass undetected in patients accessing the emergency room, leading to misdiagnosis (e.g. schizophrenic episode) and lack of appropriate treatment. PMID:25352977

  2. Association between Parkinson's Disease and Helicobacter Pylori

    PubMed Central

    Oğuz, Sıdıka

    2016-01-01

    Helicobacter pylori (HP) is a common infection of the gastrointestinal system that is usually related to peptic ulcers. However, recent studies have revealed relationships between HP and many other diseases. Although the exact mechanism is unknown, HP can prevent the absorption of certain drugs. A high prevalence of HP has been found in patients with Parkinson's disease, and this bacterium causes motor fluctuations by affecting the absorption of levodopa, which is the main drug used to treat Parkinson's disease. Eradicating HP from patients with Parkinson's disease by applying antibiotic treatment will increase the absorption of levodopa and decrease their motor fluctuations. PMID:26932258

  3. Troponin leak associated with drug-induced methemoglobinemia.

    PubMed

    Cannon, Robert D; Wagner, Michael; Jacoby, Jeanne L

    2014-10-01

    Drug-induced methemoglobinemia is a well-described entity but has not been previously associated with elevated troponins in the absence of cardiac symptoms. We report a case of a patient presenting to the emergency department (ED) with complaints related to an exacerbation of her long-standing cystitis. A low pulse oximetry reading prompted an evaluation, revealing a troponin leak, which peaked at 10 hours. Her methemoglobin level was found to be elevated at 11.4%, but a preexisting anemia apparently prevented the clinical recognition of cyanosis. The methemoglobinemia was determined to be secondary to her ingestion of phenazopyridine and trimethoprim-sulfa methoxizole. Although phenazopyridine and sulfa agents have long been known to cause methemoglobinemia, our patient exhibited an asymptomatic troponin leak that has not been previously reported as a complication of drug-induced methemoglobinemia. Clinicians should be aware of this potential association.

  4. Drug target validation: Lethal infection blocked by inducible peptide

    NASA Astrophysics Data System (ADS)

    Tao, Jianshi; Wendler, Philip; Connelly, Gene; Lim, Audrey; Zhang, Jiansu; King, Megan; Li, Tongchuan; Silverman, Jared A.; Schimmel, Paul R.; Tally, Francis P.

    2000-01-01

    Genome projects are generating large numbers of potential new targets for drug discovery. One challenge is target validation, proving the usefulness of a specific target in an animal model. In this paper, we demonstrate a new approach to validation and assay development. We selected in vitro specific peptide binders to a potential pathogen target. By inducing the expression of a selected peptide in pathogen cells causing a lethal infection in mice, the animals were rescued. Thus, by combining in vitro selection methods for peptide binders with inducible expression in animals, the target's validity was rigorously tested and demonstrated. This approach to validation can be generalized and has the potential to become a valuable tool in the drug discovery process.

  5. A comparative study of the plasma membrane permeabilization and fluidization induced by antipsychotic drugs in the rat brain.

    PubMed

    Murata, Tetsuhito; Maruoka, Nobuyuki; Omata, Naoto; Takashima, Yasuhiro; Fujibayashi, Yasuhisa; Yonekura, Yoshiharu; Wada, Yuji

    2007-10-01

    We compared the potency of the interaction of three antipsychotic drugs, i.e. chlorpromazine (CPZ), haloperidol (Hal) and sulpiride (Sul), with the plasma membrane in the rat brain. CPZ loading (> or = 100 microM) dose-dependently increased both membrane permeability (assessed as [18F]2-fluoro-2-deoxy-D-glucose-6-phosphate release from brain slices) and membrane fluidity (assessed as the reduction in the plasma membrane anisotropy of 1,6-diphenyl-1,3,5-hexatriene). On the other hand, a higher concentration of Hal (1 mM) was required to observe these effects. However, Sul failed to change membrane permeability and fluidity even at a high concentration (1 mM). These results indicated the following ranking of the potency to interact with the membrane: CPZ>Hal>Sul. The difference among antipsychotic drugs in the potency to interact with the plasma membrane as revealed in the present study may be partly responsible for the difference among the drugs in the probability of inducing extrapyramidal side-effects such as parkinsonism and tardive dyskinesia.

  6. Antithyroid drug induced agranulocytosis: what still we need to learn ?

    PubMed Central

    Chaudhry, Liaqat Ali; Mazen, Khalid Fouad; Ba-Essa, Ebtesam; Robert, Asirvatham Alwin

    2016-01-01

    Antithyroid drugs (ATDs) induced agranulocytosis is a rare but life threatening condition. We report a 29 years Filipino female diagnosed as having hyperthyroidism with normal base line blood counts, liver and renal profile. She was started on maximum 60mg (20mg TID) oral dose of carbimazole since one month by her treating physician. Exactly after one month of treatment she presented to emergency room (ER) with fever, sore throat and generalized weakness for several days. PMID:27200132

  7. Drug induced hypertension--An unappreciated cause of secondary hypertension.

    PubMed

    Grossman, Alon; Messerli, Franz H; Grossman, Ehud

    2015-09-15

    Most patients with hypertension have essential hypertension or well-known forms of secondary hypertension, such as renal disease, renal artery stenosis, or common endocrine diseases (hyperaldosteronism or pheochromocytoma). Physicians are less aware of drug induced hypertension. A variety of therapeutic agents or chemical substances may increase blood pressure. When a patient with well controlled hypertension is presented with acute blood pressure elevation, use of drug or chemical substance which increases blood pressure should be suspected. Drug-induced blood pressure increases are usually minor and short-lived, although rare hypertensive emergencies associated with use of certain drugs have been reported. Careful evaluation of prescription and non-prescription medications is crucial in the evaluation of the hypertensive individual and may obviate the need for expensive and unnecessary evaluations. Discontinuation of the offending agent will usually achieve adequate blood pressure control. When use of a chemical agent which increases blood pressure is mandatory, anti-hypertensive therapy may facilitate continued use of this agent. We summarize the therapeutic agents or chemical substances that elevate blood pressure and their mechanisms of action.

  8. Parkinson Disease.

    PubMed

    Capriotti, Teri; Terzakis, Kristina

    2016-06-01

    Parkinson disease (PD) is a progressive neurodegenerative disease that affects one million people in the United States. This article reviews the etiology and pathophysiology of PD, risk factors, clinical manifestations, diagnostic criteria, and treatment of this common disease. Implications for home care clinicians are included.

  9. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson's disease and its progression: Disease and staging biomarkers and new drug targets.

    PubMed

    de Farias, Carine Coneglian; Maes, Michael; Bonifácio, Kamila Landucci; Bortolasci, Chiara Cristina; de Souza Nogueira, André; Brinholi, Francis Fregonesi; Matsumoto, Andressa Keiko; do Nascimento, Matheus Amarante; de Melo, Lúcio Baena; Nixdorf, Suzana Lucy; Lavado, Edson Lopes; Moreira, Estefânia Gastaldello; Barbosa, Décio Sabbatini

    2016-03-23

    There is evidence that immune-inflammatory, stress of reactive oxygen and nitrogen species (IO&NS) processes play a role in the neurodegenerative processes observed in Parkinson's disease (PD). The aim of the present study was to investigate peripheral IO&NS biomarkers in PD. We included 56 healthy individuals and 56 PD patients divided in two groups: early PD stage and late PD stage. Plasma lipid hydroperoxides (LOOH), malondialdehyde (MDA), nitric oxide metabolites (NOx), sulfhydryl (SH) groups, catalase (CAT) activity, superoxide dismutase (SOD) activity, paraoxonase (PON)1 activity, total radical trapping antioxidant parameter (TRAP) and C-reactive protein (CRP) were measured. PD is characterized by increased LOOH, MDA and SOD activity and lowered CAT activity. A combination of five O&NS biomarkers highly significantly predicts PD with a sensitivity of 94.5% and a specificity of 86.8% (i.e., MDA, SOD activity, TRAP, SH-groups and CAT activity). The single best biomarker of PD is MDA, while LOOH and SOD activity are significantly associated with late PD stage, but not early PD stage. Antiparkinson drugs did not affect O&NS biomarkers, but levodopa+carbidopa significantly increased CRP. It is suggested that MDA may serve as a disease biomarker, while LOOH and SOD activity are associated with late PD stage characteristic. New treatments for PD should not only target dopamine but also lipid peroxidation.

  10. Antituberculosis Drug-Induced Liver Injury with Autoimmune Features: Facing Diagnostic and Treatment Challenges

    PubMed Central

    Pinto Pais, Isabel; Duarte, Raquel; Carvalho, Isabel

    2017-01-01

    The authors present a case report of antituberculosis drug-induced liver injury that offered diagnostic challenges (namely, the possibility of drug-induced autoimmune hepatitis) and treatment difficulties. PMID:28116201

  11. Parkinson's Disease: Research

    MedlinePlus

    ... page please turn JavaScript on. Feature: Parkinson's Disease Research Past Issues / Winter 2016 Table of Contents Parkinson's Patient Active as Research Advocate Joel Grace Photo courtesy of Parkinson's Disease ...

  12. Parkinson's Disease Foundation Newsletter

    MedlinePlus

    ... Patient Advocates Sign Up for Funding News npj Parkinson's Disease Scientific Advisory Board Understanding Parkinson's Coping with a Diagnosis What is Parkinson’s Disease? National HelpLine Educational Publications Online Seminars Parkinson's News ...

  13. Pregnane X receptor and drug-induced liver injury

    PubMed Central

    Wang, Yue-Ming; Chai, Sergio C.; Brewer, Christopher T; Chen, Taosheng

    2014-01-01

    Introduction The liver plays a central role in transforming and clearing foreign substances. The continuous exposure of the liver to xenobiotics sometimes leads to impaired liver function, referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) tightly regulates the expression of genes in the hepatic drug-clearance system and its undesired activation plays a role in DILI. Areas covered This review focuses on the recent progress in understanding PXR-mediated DILI and highlights the efforts made to assess and manage PXR-mediated DILI during drug development. Expert opinion Future efforts are needed to further elucidate the mechanisms of PXR-mediated liver injury, including the epigenetic regulation and polymorphisms of PXR. Novel in vitro models containing functional PXR could improve our ability to predict and assess DILI during drug development. PXR inhibitors may provide chemical tools to validate the potential of PXR as a therapetic target and to develop drugs to be used in the clinic to manage PXR-mediated DILI. PMID:25252616

  14. Quantitative analysis of the therapeutic effect of magnolol on MPTP-induced mouse model of Parkinson's disease using in vivo 18F-9-fluoropropyl-(+)-dihydrotetrabenazine PET imaging.

    PubMed

    Weng, Chi-Chang; Chen, Zi-An; Chao, Ko-Ting; Ee, Ting-Wei; Lin, Kun-Ju; Chan, Ming-Huan; Hsiao, Ing-Tsung; Yen, Tzu-Chen; Kung, Mei-Ping; Hsu, Ching-Han; Wey, Shiaw-Pyng

    2017-01-01

    18F-9-Fluoropropyl-(+)-dihydrotetrabenazine [18F-FP-(+)-DTBZ] positron emission tomography (PET) has been shown to detect dopaminergic neuron loss associated with Parkinson's disease (PD) in human and neurotoxin-induced animal models. A polyphenol compound, magnolol, was recently proposed as having a potentially restorative effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 6-hydroxydopamine-treated animal models. In this study, 18F-FP-(+)-DTBZ PET was used to determine the therapeutic efficacy of magnolol in an MPTP-PD mouse model that was prepared by giving an intraperitoneally (i.p.) daily dose of 25 mg/kg MPTP to male C57BL/6 mice for 5 consecutive days. Twenty-minute static 18F-FP-(+)-DTBZ PET scans were performed before MPTP treatment and 5 days after the termination of MPTP treatment to set up the baseline control. Half of the MPTP-treated mice then received a daily dose of magnolol (10 mg/kg dissolved in corn oil, i.p.) for 6 days. 18F-FP-(+)-DTBZ PET imaging was performed the day after the final treatment. All 18F-FP-(+)-DTBZ PET images were analysed and the specific uptake ratio (SUr) was calculated. Ex vivo autoradiography (ARG) and corresponding immunohistochemistry (IHC) studies were conducted to confirm the distribution of dopaminergic terminals in the striatum. The striatal SUr ratios of 18F-FP-(+)-DTBZ PET images for the Sham, the MPTP, and the MPTP + Magnolol-treated groups were 1.25 ± 0.05, 0.75 ± 0.06, and 1.00 ± 0.11, respectively (n = 4 for each group). The ex vivo 18F-FP-(+)-DTBZ ARG and IHC results correlated favourably with the PET imaging results. 18F-FP-(+)-DTBZ PET imaging suggested that magnolol post-treatment may reverse the neuronal damage in the MPTP-lesioned PD mice. In vivo imaging of the striatal vesicular monoamine transporter type 2 (VMAT2) distribution using 18F-FP-(+)-DTBZ animal PET is a useful method to evaluate the efficacy of therapeutic drugs i.e., magnolol, for the management of PD.

  15. Drug-induced cutaneous photosensitivity: incidence, mechanism, prevention and management.

    PubMed

    Moore, Douglas E

    2002-01-01

    The interaction of sunlight with drug medication leads to photosensitivity responses in susceptible patients, and has the potential to increase the incidence of skin cancer. Adverse photosensitivity responses to drugs occur predominantly as a phototoxic reaction which is more immediate than photoallergy, and can be reversed by withdrawal or substitution of the drug. The bias and inaccuracy of the reporting procedure for these adverse reactions is a consequence of the difficulty in distinguishing between sunburn and a mild drug photosensitivity reaction, together with the patient being able to control the incidence by taking protective action. The drug classes that currently are eliciting a high level of adverse photosensitivity are the diuretic, antibacterial and nonsteroidal anti-inflammatory drugs (NSAIDs). Photosensitising chemicals usually have a low molecular weight (200 to 500 Daltons) and are planar, tricyclic, or polycyclic configurations, often with heteroatoms in their structures enabling resonance stabilisation. All absorb ultraviolet (UV) and/or visible radiation, a characteristic that is essential for the chemical to be regarded as a photosensitiser. The photochemical and photobiological mechanisms underlying the adverse reactions caused by the more photoactive drugs are mainly free radical in nature, but reactive oxygen species are also involved. Drugs that contain chlorine substituents in their chemical structure, such as hydrochlorthiazide, furosemide and chlorpromazine, exhibit photochemical activity that is traced to the UV-induced dissociation of the chlorine substituent leading to free radical reactions with lipids, proteins and DNA. The photochemical mechanisms for the NSAIDs that contain the 2-aryl propionic acid group involve decarboxylation as the primary step, with subsequent free radical activity. In aerated systems, the reactive excited singlet form of oxygen is produced with high efficiency. This form of oxygen is highly reactive towards

  16. Dual target strategy: combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates L-DOPA-induced rotational behavior in a rodent model of Parkinson's disease.

    PubMed

    Fuzzati-Armentero, Marie-Therese; Cerri, Silvia; Levandis, Giovanna; Ambrosi, Giulia; Montepeloso, Elena; Antoninetti, Gianfilippo; Blandini, Fabio; Baqi, Younis; Müller, Christa E; Volpini, Rosaria; Costa, Giulia; Simola, Nicola; Pinna, Annalisa

    2015-08-01

    The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2A R) represent major non-dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6-hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), and two A2A R antagonists, (E)-phosphoric acid mono-[3-[8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl]propyl] (MSX-3) and 8-ethoxy-9-ethyladenine (ANR 94). Chronic treatment with MPEP or MSX-3 alone, but not with ANR 94, reduced the toxin-induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX-3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX-3 given alone significantly potentiated L-DOPA-induced turning behavior. Combination of either A2A R antagonists with MPEP synergistically increased L-DOPA-induced turning. This effect was dose-dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co-treatment with A2A R and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non-dopaminergic PD treatment using low drug concentration and establishes the basis for in-depth studies to identify optimal doses at which these drugs reach highest efficacy. Combined treatment with low concentrations of known adenosine A2A receptor (A2A R) and metabotropic glutamate receptor (mGluR5) antagonists results in a therapeutic benefit and provides better results than those produced by either drug given alone, both in terms of motor performance and neuroprotection. Future trials should involve careful optimization of

  17. Levodopa-Induced Modifications of Prosody and Comprehensibility in Advanced Parkinson's Disease as Perceived by Professional Listeners

    ERIC Educational Resources Information Center

    De Letter, Miet; Santens, Patrick; Estercam, Irina; Van Maele, Georges; De Bodt, Marc; Boon, Paul; Van Borsel, John

    2007-01-01

    The prosodic aspects of hypokinetic dysarthria in Parkinson's disease (PD) have been the focus of numerous reports. Few data on the effects of levodopa on prosody, more specifically on the effects on the variability of prosodic characteristics such as pitch, loudness and speech rate, are available in advanced PD. The relation between these…

  18. High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1.

    PubMed

    Poschmann, Gereon; Seyfarth, Katrin; Besong Agbo, Daniela; Klafki, Hans-Wolfgang; Rozman, Jan; Wurst, Wolfgang; Wiltfang, Jens; Meyer, Helmut E; Klingenspor, Martin; Stühler, Kai

    2014-05-02

    Genetic and environmental factors mediate via different physiological and molecular processes a shifted energy balance leading to overweight and obesity. To get insights into the underlying processes involved in energy intake and weight gain, we compared hypothalamic tissue of mice kept on a high-fat or control diet for 10 days by a proteomic approach. Using two-dimensional difference gel electrophoresis in combination with LC-MS/MS, we observed significant abundance changes in 15 protein spots. One isoform of the protein DJ-1 was elevated in the high-fat diet group in three different mouse strains SWR/J, C57BL/6N, and AKR/J analyzed. Large-scale validation of DJ-1 isoforms in individual samples and tissues confirmed a shift in the pattern of DJ-1 isoforms toward more acidic isoforms in several brain and peripheral tissues after feeding a high-fat diet for 10 days. The identification of oxidation of cysteine 106 as well as 2-succinyl modification of the same residue by mass spectrometry not only explains the isoelectric shift of DJ-1 but also links our results to similar shifts of DJ-1 observed in neurodegenerative disease states under oxidative stress. We hypothesize that DJ-1 is a common physiological sensor involved in both nutrition-induced effects and neurodegenerative disease states.

  19. A Comparison of the Effectiveness of Three Drug Regimens on Cognitive Performance of Patients with Parkinson's disease

    ERIC Educational Resources Information Center

    Emsaki, Golit; Asgari, Karim; Molavi, Hossein; Chitsaz, Ahmad

    2013-01-01

    In the present study, the effectiveness of 3 drug regimen on cognitive performance of PD patients was compared. 12 patients who had been using pramipexole, levodopa and amantadine for at least 1 month entered the study and compared with those 12 who had been using trihexiphenidyle, levodopa and amantadine. There was also a control group…

  20. Drug-reaction eosinophilia and systemic symptoms and drug-induced hypersensitivity syndrome.

    PubMed

    Fernando, Suran L

    2014-02-01

    Drug reaction with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome (DIHS), is a rare, severe cutaneous adverse reaction characterised by fever, rash, lymphadenopathy, eosinophilia and/or other leukocyte abnormalities, and internal organ involvement and often has a relapsing-remitting course despite withdrawal of the drug. The drugs that are most implicated include aromatic anticonvulsants, allopurinol, sulphonamides, antiretrovirals (abacavir and nevirapine), and minocycline. The pathogenesis of DRESS/DIHS is far from clear but probably involves a combination of impaired pharmacokinetics and the accumulation of drug metabolites, the sequential reactivation of the herpesvirus family and genetic susceptibility conferred by the association with certain human leukocyte antigen (HLA) class I alleles. The strong association between abacavir and HLA-B*5701 has enabled pharmacogenetics screening to be employed successfully to minimise the occurrence of hypersensitivity. A prolonged course of oral corticosteroids is required to treat DRESS/DIHS, given the relapsing-remitting nature of the condition with i.v. immunoglobulin and valgangciclovir reserved for refractory or life-threatening cases.

  1. Methamphetamine and Parkinson's Disease

    PubMed Central

    Granado, Noelia; Ares-Santos, Sara; Moratalla, Rosario

    2013-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles. PMID:23476887

  2. Treatment of Parkinson's disease.

    PubMed Central

    Aminoff, M J

    1994-01-01

    Pharmacotherapy with levodopa for Parkinson's disease provides symptomatic benefit, but fluctuations in (or loss of) response may eventually occur. Dopamine agonists are also helpful and, when taken with low doses of levodopa, often provide sustained benefit with fewer side effects; novel agonists and new methods for their administration are therefore under study. Other therapeutic strategies are being explored, including the use of type B monoamine oxidase inhibitors to reduce the metabolic breakdown of dopamine, catechol-O-methyltransferase inhibitors to retard the breakdown of levodopa, norepinephrine precursors to compensate for deficiency of this neurotransmitter, glutamate antagonists to counteract the effects of the subthalamic nucleus, and various neurotrophic factors to influence dopaminergic nigrostriatal cells. Surgical procedures involving pallidotomy are sometimes helpful. Those involving cerebral transplantation of adrenal medullary or fetal mesencephalic tissue have yielded mixed results; benefits may relate to the presence of growth factors in the transplanted tissue. The transplantation of genetically engineered cell lines will probably become the optimal transplantation procedure. The cause of Parkinson's disease may relate to oxidant stress and the generation of free radicals. It is not clear whether treatment with selegiline hydrochloride (a type B monoamine oxidase inhibitor) delays the progression of Parkinson's disease, because the drug also exerts a mild symptomatic effect. Daily treatment with vitamin E (a scavenger of free radicals) does not influence disease progression, perhaps because of limited penetration into the brain. Images PMID:7975571

  3. Neuroprotective effects of the andrographolide analogue AL-1 in the MPP⁺/MPTP-induced Parkinson's disease model in vitro and in mice.

    PubMed

    Zhang, Zaijun; Lai, Daoxu; Wang, Liang; Yu, Pei; Zhu, Longjun; Guo, Baojian; Xu, Lipeng; Zhou, Libing; Sun, Yewei; Lee, Simon Ming Yuen; Wang, Yuqiang

    2014-07-01

    The andrographolide-lipoic acid conjugate AL-1 is a newly synthesized molecule by covalently linking andrographolide (Andro) with α-lipoic acid (LA). In the present work, the neuroprotective effect of AL-1 was investigated in vitro and in a mouse model of the Parkinson's disease (PD). We found that AL-1 significantly prevented 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells and primary cerebellar granule neurons. In a mouse model of Parkinson's disease, AL-1 rescued 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced loss of tyrosine hydroxylase (TH)-positive neurons, improved the behavioral impairment, and elevated the striatal levels of dopamine and its metabolites 3,4-dihydroxyphenylacetic acid. Furthermore, AL-1 remarkably lowered the nitric oxide and malondialdehyde levels while increased the superoxide dismutase level in the substantial nigra of MPTP-treated mice. The immunoblotting data showed that AL-1 significantly ameliorated the decreased expression of TH protein in the substantial nigra and inhibited the up-regulation of phosphorylated NF-κB p65 in vitro and in vivo. Taken together, AL-1 exerted neuroprotective effect in vitro and in animal model of PD through anti-oxidation and inhibition of NF-κB activation.

  4. Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson's disease.

    PubMed

    Gaballah, Hanaa Hibishy; Zakaria, Soha Said; Elbatsh, Maha M; Tahoon, Nahid M

    2016-05-05

    The mechanisms leading to neuronal death in Parkinson's disease (PD) are not fully elucidated; however, mounting evidence implicates endoplasmic reticulum (ER) stress, oxidative damage, and inflammatory changes are the crucial factors in its pathogenesis. This study was undertaken to investigate the modulatory effects of resveratrol on ER stress-mediated apoptosis, inflammatory and oxidative stress markers in a rat model of rotenone-induced PD. mRNA expression levels of ER stress markers; C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), were estimated in the rat brain using quantitative real-time PCR. Caspase-3 activity, IL-1β levels and Nuclear Factor Erythroid 2-related factor (Nrf2) DNA-binding activity were estimated by ELISA, while glutathione peroxidase and Xanthine oxidase activities, as well as protein carbonyl contents in the rat brain were evaluated spectrophotometrically. Our data revealed that Resveratrol ameliorated rotenone-induced ER stress by downregulating CHOP and GRP78 genes expression and hampered caspase-3 activity in the brain of rotenone exposed rats. It also restored redox balance as evident by suppressing Xanthine oxidase activity and protein carbonyls formation; in addition to preservation of intracellular antioxidants status via activating glutathione peroxidase and Nrf2 signaling pathway. In conclusion; our study launched promising avenues for the potential use of resveratrol as a neuroprotective therapeutic agent in Parkinson's disease.

  5. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson's rats.

    PubMed

    Song, Lu; Zhang, Zhanzhao; Hu, Rongguo; Cheng, Jie; Li, Lin; Fan, Qinyi; Wu, Na; Gan, Jing; Zhou, Mingzhu; Liu, Zhenguo

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-dopa) remains the most effective therapy for Parkinson's disease (PD), but its long-term administration is associated with the development of debilitating motor complications known as L-dopa-induced dyskinesia (LID). Enhanced function of dopamine D1 receptor (D1R) and N-methyl-D-aspartate receptor (NMDAR) is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1) interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2). In this study, we demonstrated in 6-hydroxydopamine (6-OHDA)-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson's patients.

  6. Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): Implications for neurodegeneration in Parkinson's disease

    PubMed Central

    Kanthasamy, Anumantha G; Kitazawa, Masashi; Yang, Yongjie; Anantharam, Vellareddy; Kanthasamy, Arthi

    2008-01-01

    Background In previous work, we investigated dieldrin cytotoxicity and signaling cell death mechanisms in dopaminergic PC12 cells. Dieldrin has been reported to be one of the environmental factors correlated with Parkinson's disease and may selectively destroy dopaminergic neurons. Methods Here we further investigated dieldrin toxicity in a dopaminergic neuronal cell model of Parkinson's disease, namely N27 cells, using biochemical, immunochemical, and flow cytometric analyses. Results In this study, dieldrin-treated N27 cells underwent a rapid and significant increase in reactive oxygen species followed by cytochrome c release into cytosol. The cytosolic cytochrome c activated caspase-dependent apoptotic pathway and the increased caspase-3 activity was observed following a 3 hr dieldrin exposure in a dose-dependent manner. Furthermore, dieldrin caused the caspase-dependent proteolytic cleavage of protein kinase C delta (PKCδ) into 41 kDa catalytic and 38 kDa regulatory subunits in N27 cells as well as in brain slices. PKCδ plays a critical role in executing the apoptotic process in dieldrin-treated dopaminergic neuronal cells because pretreatment with the PKCδ inhibitor rottlerin, or transfection and over-expression of catalytically inactive PKCδK376R, significantly attenuates dieldrin-induced DNA fragmentation and chromatin condensation. Conclusion Together, we conclude that caspase-3-dependent proteolytic activation of PKCδ is a critical event in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells. PMID:18945348

  7. Association analysis between functional polymorphism of the rs4606 SNP in the RGS2 gene and antipsychotic-induced Parkinsonism in Japanese patients with schizophrenia: results from the Juntendo University Schizophrenia Projects (JUSP).

    PubMed

    Higa, Masayuki; Ohnuma, Tohru; Maeshima, Hitoshi; Hatano, Tokiko; Hanzawa, Ryo; Shibata, Nobuto; Sakai, Yoshie; Suzuki, Toshihito; Arai, Heii

    2010-01-18

    Antipsychotic-induced extrapyramidal symptoms (AIEPSs) are commonly recognized side effects of typical 1st generation antipsychotics, and considerable variability is seen in the susceptibility of individual patients to AIEPSs. Regulator of G-protein signaling 2 (RGS2) proteins regulate intracellular signaling and second messenger activation of molecules including dopamine, serotonin, and acetylcholine receptors, all of which appear to be involved in the pathophysiology of AIEPSs. Previous studies have shown an association between AIEPSs in schizophrenia and RGS2, especially the minor G allele of single nucleotide polymorphism (SNP) rs4606 (+2971C>G) in RGS2, and have suggested a possible protective effect by the G allele on AIEPSs. In this study, we investigated whether the rs4606 SNP in RGS2 alone also showed an effect on AIEPSs by utilizing the Drug-Induced Extrapyramidal Symptom Scale (DIEPSS) in 103 Japanese patients with schizophrenia. In the assumed G allele recessive model, sialorrhea and total Parkinsonism scores were significantly higher in subjects with the GG genotype than in subjects with other genotypes. Other clinical variables were not significantly different among the various genotype groups. Controlling for clinical variables as covariates, a one-way analysis of covariance found no association between rs4606 genotypes and DIEPSS scores. Taken together, these results, although preliminary, suggest that rs4606 does not affect AIEPSs in Japanese subjects.

  8. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson's disease.

    PubMed

    Duty, Susan

    2012-12-01

    The appearance of levodopa-induced dyskinesia (LID) and ongoing degeneration of nigrostriatal dopaminergic neurons are two key features of Parkinson's disease (PD) that current treatments fail to address. Increased glutamate transmission contributes to the motor symptoms in PD, to the striatal plasticity that underpins LID and to the progression of neurodegeneration through excitotoxic mechanisms. Glutamate receptors have therefore long been considered as potential targets for pharmacological intervention in PD, with emphasis on either blocking activation of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA), N-methyl-D-aspartate (NMDA) or excitatory metabotropic glutamate (mGlu) 5 receptors or promoting the activation of group II/III mGlu receptors. Following a brief summary of the role of glutamate in PD and LID, this article explores the current status of pharmacological studies in pre-clinical rodent and primate models through to clinical trials, where applicable, that support the potential of glutamate-based therapeutic interventions. To date, AMPA antagonists have shown good efficacy against LID in rat and primate models, but the failure of perampanel to lessen LID in clinical trials casts doubt on the translational potential of this approach. In contrast, antagonists selective for NR2B-containing NMDA receptors were effective against LID in animal models and in small-scale clinical trials, though observed adverse cognitive effects need addressing. So far, mGlu5 antagonists or negative allosteric modulators (NAMs) look set to become the first introduced for tackling LID, with AFQ-056 reported to exhibit good efficacy in phase II clinical trials. NR2B antagonists and mGlu5 NAMs may subsequently prove to also be effective disease-modifying agents if their protective effects in rat and primate models of PD, respectively, are replicated in the next stages of investigation. Finally, group III mGlu4 agonists or positive allosteric modulators (PAMs

  9. Study of process induced polymorphic transformations in fluconazole drug.

    PubMed

    Desai, Satish R; Dharwadkar, Sanjiv R

    2009-01-01

    The polymorphic form-I of the fluconazole drug commonly crystallized from the solution phase could be obtained by the solid state transformation of form-II employing different process parameters. As received fluconazole-II drug melted at 138.4 degrees C. The molten drug undercooled almost to ambient temperature of 30 degrees C and solidified to a glassy mass which, on ageing for 48 h transformed to a white powder which could be identified as fluconazole-I. The same glassy mass on heating at 5 degrees C/min, without ageing, also underwent polymorphic transformation to fluconazole-I above 81 degrees C. The application of uniaxial pressure of 200 kg/cm2 on as received fluconazole-II sample also yielded form-I of the drug. This phase transformation was enhanced by the application of pressure (200 kg/cm2) on the as received sample aged for 36 months. The phase transformation was concluded from the difference in differential scanning calorimetric (DSC) curves of the original sample (form-II) and the products obtained by adopting the different processing routes. The DSC patterns of fluconozole-I obtained by different methods were found to be identical. The phase transformation in the as received drug (form-II) induced by different process parameters, concluded from the DSC data was corroborated by X- ray diffraction (XRD) studies and scanning electron microscope (SEM) photographs of the two polymorphic forms. The intrinsic dissolution rates of polymorphic form-I and -II and the influence of crystal habit on the drug dissolution process have also been studied.

  10. Dropped head associated with amantadine in Parkinson disease.

    PubMed

    Kataoka, Hiroshi; Ueno, Satoshi

    2011-01-01

    The antiviral agent amantadine has been used to manage Parkinson's disease or levodopa-induced dyskinesias for nearly 5 decades. Amantadine is often associated with hallucinations as an adverse effect, but a long-term study reported no serious motor complications. We describe an unusual patient who had Parkinson's disease with dropped head syndrome (DHS) caused by amantadine. When the patient, who had DHS while receiving only 2 kinds of antiparkinsonian drugs, was rechallenged with amantadine, DHS developed, accompanied by increased muscle tone in the neck muscles on surface electromyogram. The DHS resolved after the withdrawal of amantadine. Moreover, an intravenous infusion of levodopa did not alter the DHS. These findings collectively suggest that the DHS in our patient was most likely caused directly by amantadine. Our findings suggest that amantadine may carry the risk of augmenting dystonic syndrome in humans.

  11. Drug-induced linear IgA bullous dermatosis.

    PubMed

    Navi, Daniel; Michael, Daniel J; Fazel, Nasim

    2006-09-08

    A 73-year-old man was admitted to the University of California Davis Medical Center for treatment of a pleural effusion and congestive heart failure. His hospital course was complicated by asymptomatic sustained ventricular tachycardia requiring placement of an implantable cardiac defibrillator. The patient was treated with vancomycin and cefazolin during the procedure. After 3 days he developed tense vesicles over the dorsal aspect of the hands. Perilesional skin biopsy showed subepidermal cleavage with a neutrophilic infiltrate. Direct immunofluorescence revealed granular IgA and C3 deposition along the dermal epidermal junction. A diagnosis of drug-induced linear IgA bullous dermatosis secondary to vancomycin was established. Linear IgA bullous dermatosis is a rare autoimmune blistering disorder with clinical features that can overlap with bullous pemphigoid and dermatitis herpetiformis. Drug-induced linear IgA bullous dermatosis is a less common variant that is correspondingly less well characterized. Although a variety of medications have been implicated, vancomycin is the most common associated drug.

  12. Drug-induced hypersensitivity syndrome with human herpesvirus-6 reactivation.

    PubMed

    Riyaz, Najeeba; Sarita, S; Arunkumar, G; Sabeena, S; Manikoth, Neeraj; Sivakumar, C P

    2012-01-01

    A 45-year-old man, on carbamazepine for the past 3 months, was referred as a case of atypical measles. On examination, he had high-grade fever, generalized itchy rash, cough, vomiting and jaundice. A provisional diagnosis of drug hypersensitivity syndrome to carbamazepine was made with a differential diagnosis of viral exanthema with systemic complications. Laboratory investigations revealed leukocytosis with eosnophilia and elevated liver enzymes. Real-time multiplex polymerase chain reaction (PCR) on throat swab and blood was suggestive of human herpesvirus-6 (HHV-6). Measles was ruled out by PCR and serology. The diagnosis of drug-induced hypersensitivity syndrome (DIHS) was confirmed, which could explain all the features manifested by the patient. HHV-6 infects almost all humans by age 2 years. It infects and replicates in CD4 T lymphocytes and establishes latency in human peripheral blood monocytes or macrophages and early bone marrow progenitors. In DIHS, allergic reaction to the causative drug stimulates T cells, which leads to reactivation of the herpesvirus genome. DIHS is treated by withdrawal of the culprit drug and administration of systemic steroids. Our patient responded well to steroids and HHV-6 was negative on repeat real-time multiplex PCR at the end of treatment.

  13. Immunohistology of drug-induced exanthema: clues to pathogenesis.

    PubMed

    Yawalkar, N; Pichler, W J

    2001-08-01

    Hypersensitivity reactions to drugs can cause a variety of different skin disorders, the most frequent being maculopapular eruptions. In recent years increasing evidence has indicated the important involvement of T cells in this drug reaction. Histopathological changes typically show a dominant T-cell infiltration together with vacuolar interface dermatitis. Immunohistochemical studies demonstrate the presence of cytotoxic CD4+ and CD8+ T cells, which contain perforin and granzyme B, in close proximity to keratinocytes showing signs of cell destruction. Expression of Fas ligand is barely detectable, which suggests that cytotoxic granule exocytosis may be the dominant pathway leading to keratinocyte cell damage. In addition, drug-specific T cells may orchestrate the inflammatory skin reaction through the release and induction of various cytokines (i.e. IL-5, IL-6, TNF-alpha, IFN-gamma) and chemokines (i.e. regulated on activation, normal T-cell expressed and secreted; eotaxin). These mediators contribute to the generation of eosinophilia, which may amplify the underlying immune response through the release of further proinflammatory mediators in drug-induced maculopapular exanthema.

  14. Induced protein degradation: an emerging drug discovery paradigm.

    PubMed

    Lai, Ashton C; Crews, Craig M

    2017-02-01

    Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

  15. Are Polymorphisms in Genes Relevant to Drug Disposition Predictors of Susceptibility to Drug-Induced Liver Injury?

    PubMed

    Daly, Ann K

    2016-12-27

    Despite considerable progress in identifying specific HLA alleles as genetic risk factors for some forms of drug-induced liver injury, progress in understanding whether genetic polymorphisms relevant to drug disposition also contribute to risk for developing this serious toxicity has been more limited. Evidence from both candidate-gene case control studies and genome-wide association studies is now discussed. In the case of genes relevant to drug metabolism, polymorphisms in cytochromes P450, UDP-glucuronosyltransferases, N-acetyltransferases and glutathione S-transferases as risk factors for DILI are assessed. The relevance of ABC transporters to drug-induced liver injury is also considered, together with data showing associations of particular ABCB11, ABCB1 and ABCC2 polymorphisms with some forms of drug-induced liver injury. Very few of the associations with genes relevant to drug disposition that have been reported have been well replicated. Even apparently well-studied associations such as that between isoniazid liver injury and N-acetyltransferase 2 slow acetylators remain problematic, though it seems likely that polymorphisms in drug metabolism genes do contribute to risk for some specific drugs. A better understanding of genetic risk factors for drug-induced liver injury will require further genome-wide association studies with larger numbers of cases, especially for forms of drug-induced liver injury where HLA genotype does not appear to be a risk factor.

  16. Models of drug-induced epileptiform synchronization in vitro

    PubMed Central

    Avoli, Massimo; Jefferys, John G.R.

    2016-01-01

    Models of epileptiform activity in vitro have many advantages for recording and experimental manipulation. Neural tissues can be maintained in vitro for hours, and in neuronal or organotypic slice cultures for several weeks. A variety of drugs and other agents increase activity in these in vitro conditions, in many cases resulting in epileptiform activity, thus providing a direct model of symptomatic seizures. We review these preparations and the experimental manipulations used to induce epileptiform activity. The most common of drugs used are GABAA receptor antagonists and potassium channel blockers (notably 4-aminopyridine). Muscarinic agents also can induce epileptiform synchronization in vitro, and include potassium channel inhibition amongst their cellular actions. Manipulations of extracellular ions are reviewed in another paper in this special issue, as are ex vivo slices prepared from chronically epileptic animals and from people with epilepsy. More complex slices including extensive networks and/or several connected brain structures can provide insights into the dynamics of long range connections during epileptic activity. Visualization of slices also provides opportunities for identification of living neurons and for optical recording/stimulation and manipulation. Overall, the analysis of the epileptiform activity induced in brain tissue in vitro has played a major role in advancing our understanding of the cellular and network mechanisms of epileptiform synchronization, and it is expected to continue to do so in future. PMID:26484784

  17. Drug-Induced Acute Interstitial Nephritis with Nifedipine

    PubMed Central

    Golbin, Léonard; Dolley-Hitze, Thibault; Lorcy, Nolwenn; Rioux-Leclercq, Nathalie; Vigneau, Cécile

    2016-01-01

    Background. Acute interstitial nephritis (AIN) is a frequent cause of Acute Kidney Injury (AKI). Drug hypersensitivity is the most common etiology and the list of drugs that can induce AIN is not exhaustive yet. Case Report. Here, we describe the case of a 43-year-old man who was treated with nifedipine (Adalate®) for Raynaud's syndrome. After nifedipine introduction, serum creatininemia progressively increased from 91 to 188 μmol/L in a few months and AKI was diagnosed. Laboratory work-up results indicated the presence of tubular proteinuria and nonspecific inflammatory syndrome. Histological analysis found granulomatous interstitial nephropathy without necrosis in 20% of the kidney biopsy without immunofluorescent deposit. Nifedipine was stopped and corticosteroid treatment was started with a rapid but incomplete reduction of serum creatininemia level to 106 μmol/L. Conclusion. This is the first case of AIN caused by nifedipine. PMID:26955492

  18. Invariant NKT cells increase drug-induced osteosarcoma cell death

    PubMed Central

    Fallarini, S; Paoletti, T; Orsi Battaglini, N; Lombardi, G

    2012-01-01

    BACKGROUND AND PURPOSE In osteosarcoma (OS) patients, only a limited number of drugs are active and the regimens currently in use include a combination of at least two of these drugs: doxorubicin, cisplatin, methotrexate and ifosfamide. Today, 30–40% of patients still die of OS highlighting the urgent need for new treatments. Invariant NKT (iNKT) cells are a lymphocyte lineage with features of both T and NK cells, playing important roles in tumour suppression. Our aim was to test whether the cytoxicity induced by cisplatin, doxorubicin and methotrexate against OS cells can be enhanced by iNKT cell treatment. EXPERIMENTAL APPROACH iNKT cells were purified from human peripheral blood mononuclear cells by cell sorting (Vα24Vβ11+ cells) and used as effector cells against OS cells (U2-OS, HOS, MG-63). Cell death (calcein-AM method), perforin/granzyme B and Fas/FasL expressions were determined by flow cytometry. CD1d expression was analysed at both the gene and protein level. KEY RESULTS iNKT cells were cytotoxic against OS cells through a CD1d-dependent mechanism. This activity was specific for tumour cells, because human CD1d+ mesenchymal stem cells and CD1d- osteoblasts were not affected. iNKT cell treatment enhanced drug-induced OS cell death in a concentration-dependent manner and this effect was reduced in CD1d-silenced OS cells. CONCLUSION AND IMPLICATIONS iNKT cells kill malignant, but not non-malignant, cells. iNKT cell treatment enhances the cytotoxicity of anti-neoplastic drugs against OS cells in a CD1d-dependent manner. The present data encourage further studies on the use of iNKT cells in OS therapy. PMID:22817659

  19. Neuroendocrine abnormalities in Parkinson's disease.

    PubMed

    De Pablo-Fernández, Eduardo; Breen, David P; Bouloux, Pierre M; Barker, Roger A; Foltynie, Thomas; Warner, Thomas T

    2017-02-01

    Neuroendocrine abnormalities are common in Parkinson's disease (PD) and include disruption of melatonin secretion, disturbances of glucose, insulin resistance and bone metabolism, and body weight changes. They have been associated with multiple non-motor symptoms in PD and have important clinical consequences, including therapeutics. Some of the underlying mechanisms have been implicated in the pathogenesis of PD and represent promising targets for the development of disease biomarkers and neuroprotective therapies. In this systems-based review, we describe clinically relevant neuroendocrine abnormalities in Parkinson's disease to highlight their role in overall phenotype. We discuss pathophysiological mechanisms, clinical implications, and pharmacological and non-pharmacological interventions based on the current evidence. We also review recent advances in the field, focusing on the potential targets for development of neuroprotective drugs in Parkinson's disease and suggest future areas for research.

  20. Prolonged drug-induced myoclonus: is it related to palonosetron?

    PubMed

    Chaw, Sook Hui; Chan, Lucy; Lee, Pui Kuan; Bakar, Jaseemuddeen A; Rasiah, Raveenthiran; Foo, Li Lian

    2016-12-01

    We report a case of drug-induced myoclonus possibly related to palonosetron, a second-generation 5-hydroxytryptamine-3 receptor antagonist which was administered as a prophylaxis for postoperative nausea and vomiting in a 28-year-old female. The recurrent episodes of myoclonus jerk involving the head, neck and shoulder persisted for a period of 4 days. The patient also exhibited an episode of severe bradycardia leading to hypotension 7 h after surgery. To our knowledge, this is the first report presenting these adverse events potentially associated with the use of palonosetron.

  1. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease.

    PubMed

    Bortolanza, Mariza; Cavalcanti-Kiwiatkoski, Roberta; Padovan-Neto, Fernando E; da-Silva, Célia Aparecida; Mitkovski, Miso; Raisman-Vozari, Rita; Del-Bel, Elaine

    2015-01-01

    l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.

  2. Quantitative analysis of drug-induced tremor in mice.

    PubMed

    Shinozaki, H

    1984-12-01

    A method of analyzing tremor in mice was developed using a power spectral analysis of the random current induced by the movement of a magnet attached to a mouse, on a wire coil. The power spectral density function defined the frequency composition of the tremor, and the mean square value of the data in any frequency range of concern was determined. It was possible to determine qualitative differences in the tremor caused by various tremorgenic agents, and to differentiate the drug-induced tremor from spontaneous motor activity. The power spectral densities of the tremorine- and oxotremorine-induced tremors were tentatively expressed as the sum of 3 main components (Cauchy distribution) with different peak frequencies, consisting of the spontaneous motor activity component and two tremor components. On the other hand, the power spectral densities of the harmaline-induced tremor were expressed as the sum of two components with two peak frequencies, and the plots of the power spectral densities versus frequency, consisting of the spontaneous motor activity component and a tremor component. The frequency of the peak spectral density was almost independent of the dose of tremorgenic agents, but changed slightly with the lapse of time after their injection. The severity of the tremor was determined quantitatively in terms of the sum of the mean square value. The sum of the mean square value for a period of 45 min after the injection of tremorine, changed in a dose-dependent manner. The severity of the tremor was different for each of the mouse strains. The method studied in the present paper is expected to be utilized for the quantitative examination of the fine motor movement of the experimental animal, particularly, for the screening test of new anti-tremor drugs.

  3. Anti-inflammatory agents and inducibility of hepatic drug metabolism.

    PubMed

    Pappas, P; Stephanou, P; Vasiliou, V; Marselos, M

    1998-01-01

    Two rat liver cytosolic aldehyde dehydrogenases, ALDH1 and ALDH3c, are of particular interest because they are inducible by different classes of xenobiotics. ALDHI is mainly increased by phenobarbital-type inducers; polycyclic aromatic hydrocarbons (PAHs), such as 3- methylcholanthrene (3MC), increase ALDH3c enzyme activity in all rat species currently tested. In addition, ALDH3c has been found to reflect the subfamily CYPIA of cytochrome P-450, as well as other enzymes functionally related to the aryl hydrocarbon receptor (the "Ah-receptor enzyme battery"), which is activated by the same type of inducers. In the present study we investigated whether the induction of ALDH3c might be connected with a chemically produced aseptic inflammation of the hepatocyte. To answer this question, we examined the relationship between the induction of ALDH3c by 3MC and the arachidonic acid cascade. Different non-steroid anti-inflammatory drugs (NSAIDs) were tested in combination with 3MC and in post-treatment. The 3MC-induced ALDH3c activity was significantly diminished by the co-administered anti-inflammatory agents. Two microsomal enzyme activities (ethoxyresorufin-O-deethylase, EROD; aryl-hydrocarbon-hydroxylase, AHH) were also decreased. Similar results were obtained with NSAIDs administered to animals pre- treated with 3MC, as far as the ALDH3c activity was concerned, but not for the microsomal enzyme activity (EROD and AHH). In conclusion, the induction of ALDH3c, after PAH treatment, may be related to an aseptic inflammation of the hepatocytes. This effect is reduced by commonly used steroid and non-steroid anti- inflammatory drugs, and although the mechanism of inhibition has not yet been elucidated, it appears likely that ALDH3c and CYP1A activities are associated with the "acute phase" response.

  4. Control of simultaneous movements distinguishes depressive motor retardation from Parkinson's disease and neuroleptic parkinsonism.

    PubMed

    Fleminger, S

    1992-10-01

    Patients with depressive motor retardation, neuroleptic induced parkinsonism or Parkinson's disease were tested on movement tasks requiring control of simultaneous movements. This was in order to determine whether these three groups of patients, who all show slowing of movements, also share the distinctive impairment of simultaneous movement control that is observed in Parkinson's disease. Though all three patient groups showed equivalent slowing on the motor tasks that were studied, the patterns of impairment were different. Only the patients with parkinsonism, either neuroleptic induced or from Parkinson's disease, showed additional slowing of a rapid ballistic elbow flexion movement when it was performed simultaneously with a rapid squeeze of the ipsilateral hand. Only patients with parkinsonism showed a significant increase in dual task interference on a bimanual bead and tapper task, compared with controls. The bead and tapper interference in patients with depressive motor retardation was between that of controls and parkinsonism. Having a bimanual skill had a large effect on the subjects' dual task interference on this task. The measures of dual task interference for the two tasks did not correlate with one another; difficulty running simultaneous motor programs does therefore not explain the interference that is observed when tapping is performed while the other hand simultaneously performs a dextrous motor task. Only patients with parkinsonism showed increased fatigue on the tapping task. The patients with depressive motor retardation did have elevated scores on a clinical rating of parkinsonism. Nevertheless there are clearly defined differences between the movement disorder observed in patients with depression, and that observed in in parkinsonism. The patterns of impairments in patients with neuroleptic parkinsonism were very similar to those of Parkinson's disease.

  5. Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation.

    PubMed

    Lubik, S; Fogel, W; Tronnier, V; Krause, M; König, J; Jost, W H

    2006-02-01

    The aim of our study was to observe the effects on gait parameters induced by STN stimulation and levodopa medication in patients with advanced Parkinson's disease in order to determine different or additive effects. Therefore we examined 12 patients with advanced Parkinson disease after bilateral implantation of DBS into the STN. We assessed the motor score of the UPDRS and quantitative gait analysis under 4 treatment conditions: with and without stimulation as well as with and without levodopa. The mean improvement of the UPDRS motor score was almost the same with levodopa and DBS. Combining both therapies we saw a further improvement of the motor score. Gait parameters of patients with PD treated either with levodopa or STN stimulation were greatly improved. A significant difference between levodopa and STN stimulation could only be shown for the parameters velocity and step length. These parameters improved more with levodopa than with stimulation. The combination of both therapeutic methods showed the best results on the UPDRS motor score and gait parameters.

  6. Cortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss.

    PubMed

    Garcia, Bonnie G; Neely, M Diana; Deutch, Ariel Y

    2010-10-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if decortication reverses or prevents dopamine depletion-induced spine loss by placing motor cortex lesions 4 weeks after, or at the time of, 6-hydroxydopamine lesions of the SN. Animals were sacrificed 4 weeks after cortical lesions. Motor cortex lesions significantly reversed the loss of MSN spines elicited by dopamine denervation; a similar effect was observed in the prevention experiment. We then determined if modulating glutamate release in organotypic cocultures prevented spine loss. Treatment of the cultures with the mGluR2/3 agonist LY379268 to suppress corticostriatal glutamate release completely blocked spine loss in dopamine-denervated cultures. These studies provide the first evidence to show that MSN spine loss associated with parkinsonism can be reversed and point to suppression of corticostriatal glutamate release as a means of slowing progression in Parkinson's disease.

  7. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells

    PubMed Central

    Oliveira, L M A; Falomir-Lockhart, L J; Botelho, M G; Lin, K-H; Wales, P; Koch, J C; Gerhardt, E; Taschenberger, H; Outeiro, T F; Lingor, P; Schüle, B; Arndt-Jovin, D J; Jovin, T M

    2015-01-01

    We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction. PMID:26610207

  8. Perioperative management of patients with Parkinson's disease.

    PubMed

    Katus, Linn; Shtilbans, Alexander

    2014-04-01

    Parkinson's disease is the second most common neurodegenerative disease worldwide, leading to a wide range of disability and medical complications. Managing patients with Parkinson's disease in the perioperative hospital setting can be particularly challenging. Suboptimal management can lead to medical complications, prolonged hospital stays, and delayed recovery. This review aims to address the most important issues related to caring for patients with Parkinson's disease perioperatively who are undergoing emergent or planned general surgery. It also intends to help hospitalists, internists, and other health care providers mitigate potential in-hospital morbidity and prevent prolonged recovery. Challenges in managing patients with Parkinson's disease in the perioperative hospital setting include disruption of medication schedules, "nothing by mouth" status, reduced mobility, and medication interactions and their side effects. Patients with Parkinson's disease are more prone to immobility and developing dysphagia, respiratory dysfunction, urinary retention, and psychiatric symptoms. These issues lead to higher rates of pneumonia, urinary tract infections, deconditioning, and falls compared with patients without Parkinson's disease, as well as prolonged hospital stays and a greater need for post-hospitalization rehabilitation. Steps can be taken to decrease these complications, including minimizing nothing by mouth status duration, using alternative routes of drugs administration when unable to give medications orally, avoiding drug interactions and medications that can worsen parkinsonism, assessing swallowing ability frequently, encouraging incentive spirometry, performing bladder scans, avoiding Foley catheters, and providing aggressive physical therapy. Knowing and anticipating these potential complications allow hospital physicians to mitigate nosocomial morbidity and shorten recovery times and hospital stays.

  9. Over-Pressure Suppresses Ultrasonic-Induced Drug Uptake

    PubMed Central

    Stringham, S. Briant; Viskovska, Maria A.; Richardson, Eric S.; Ohmine, Seiga; Husseini, Ghaleb A.; Murray, Byron K.; Pitt, William G.

    2012-01-01

    Ultrasound (US) is used to enhance and target delivery of drugs and genes to cancer tissues. The present study further examines the role of acoustic cavitation in US-induced permeabilization of cell membranes and subsequent drug or gene uptake by the cell. Rat colon cancer cells were exposed to ultrasound at various static pressures to examine the hypothesis that oscillating bubbles, also known as cavitating bubbles, permeabilize cells. Increasing pressure suppresses bubble cavitation activity; thus if applied pressure were to reduce drug uptake, cell permeabilization would be strongly linked to bubble cavitation activity. Cells were exposed to 476 kHz pulsed ultrasound at average intensities of 2.75 W/cm2 and 5.5 W/cm2 at various pressures and times in an isothermal chamber. Cell fractions with reversible membrane damage (calcein uptake) and irreversible damage (propidium iodide uptake) were analyzed by flow cytometry. Pressurization to 3 atm nearly eliminated the biological effect of US in promoting calcein uptake. Data also showed a linear increase in membrane permeability based upon increased time and intensity. This research shows that US-mediated cell membrane permeability is likely linked to cavitation bubble activity. PMID:19056161

  10. Metformin-Induced Generalized Fixed Drug Eruption With Cutaneous Hemophagocytosis.

    PubMed

    Ramírez-Bellver, Jose Luis; Lopez, Joaquin; Macias, Elena; Fuertes, Laura; Andres, Irene; Alegria, Victoria; Gimeno, Ignacio; Perez, Alejandra; Perez, Yosmar; Requena, Luis

    2016-12-19

    Fixed drug eruption (FDE) consists of recurrent dusky-red to brownish macules or patches at the same sites after the readministration of the causative drug. It usually presents as a solitary lesion, but generalized eruptions have been described. The most frequently implied drugs are antibiotics, anticonvulsants, and analgesics. Only 2 cases due to metformin have been reported. Histopathologic features of FDE include vacuolar degeneration of the basal layer, necrotic keratinocytes, and superficial and deep perivascular lymphocytic infiltrate. Cutaneous hemophagocytosis in the context of a FDE has not been previously reported. We describe the case of an 86-year-old man who developed a pruritic generalized macular eruption of reddish to violaceous patches. Skin biopsy was performed and the dermal infiltrate was immunohistochemically studied. Histopathology showed interface dermatitis with vacuolar degeneration of the basal layer, necrotic keratinocytes, and superficial and deep perivascular lymphohistiocytic infiltrate. In deep dermis, histiocytes with engulfed cells inside their cytoplasm were seen. Lymphoid enhancer binding factor 1 immunostain demonstrated that most of these cells were lymphocytes. We present the first case with cutaneous hemophagocytosis in the context of a metformin-induced generalized FDE. In this particular case, hemophagocytosis was just a histopathologic finding with no systemic consequences for the patient.

  11. Assessment of drug-induced liver injury in clinical practice.

    PubMed

    Lucena, Ma Isabel; García-Cortés, Miren; Cueto, Raquel; Lopez-Duran, Jl; Andrade, Raúl J

    2008-04-01

    Currently, pharmaceutical preparations are serious contributors to liver disease, with hepatotoxicity ranking as the most frequent cause for acute liver failure and post-marketing regulatory decisions. The diagnostic approach of drug-induced liver injury (DILI) is still rudimentary and inaccurate because of the lack of reliable markers for use in general clinical practice. To incriminate any given drug in an episode of liver dysfunction is a step-by-step process that requires a high degree of suspicion, compatible chronology, awareness of the drug's hepatotoxic potential, the exclusion of alternative causes of liver damage, and the ability to detect the presence of subtle data that favour a toxic aetiology. Clinical and laboratory data may also be assessed with algorithms or clinical scales, which may add consistency to the clinical judgment by translating the suspicion into a quantitative score. The CIOMS/RUCAM instrument is considered at present the best method for assessing causality in DILI, although it could be improved through the use of large database of bona fide DILI cases for validation criteria.

  12. Drug-induced secretory diarrhea: A role for CFTR.

    PubMed

    Moon, Changsuk; Zhang, Weiqiang; Sundaram, Nambirajan; Yarlagadda, Sunitha; Reddy, Vadde Sudhakar; Arora, Kavisha; Helmrath, Michael A; Naren, Anjaparavanda P

    2015-12-01

    Many medications induce diarrhea as a side effect, which can be a major obstacle to therapeutic efficacy and also a life-threatening condition. Secretory diarrhea can be caused by excessive fluid secretion in the intestine under pathological conditions. The cAMP/cGMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) is the primary chloride channel at the apical membrane of intestinal epithelial cells and plays a major role in intestinal fluid secretion and homeostasis. CFTR forms macromolecular complexes at discreet microdomains at the plasma membrane, and its chloride channel function is regulated spatiotemporally through protein-protein interactions and cAMP/cGMP-mediated signaling. Drugs that perturb CFTR-containing macromolecular complexes in the intestinal epithelium and upregulate intracellular cAMP and/or cGMP levels can hyperactivate the CFTR channel, causing excessive fluid secretion and secretory diarrhea. Inhibition of CFTR chloride-channel activity may represent a novel approach to the management of drug-induced secretory diarrhea.

  13. RUCAM in Drug and Herb Induced Liver Injury: The Update

    PubMed Central

    Danan, Gaby; Teschke, Rolf

    2015-01-01

    RUCAM (Roussel Uclaf Causality Assessment Method) or its previous synonym CIOMS (Council for International Organizations of Medical Sciences) is a well established tool in common use to quantitatively assess causality in cases of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI). Historical background and the original work confirm the use of RUCAM as single term for future cases, dismissing now the term CIOMS for reasons of simplicity and clarity. RUCAM represents a structured, standardized, validated, and hepatotoxicity specific diagnostic approach that attributes scores to individual key items, providing final quantitative gradings of causality for each suspect drug/herb in a case report. Experts from Europe and the United States had previously established in consensus meetings the first criteria of RUCAM to meet the requirements of clinicians and practitioners in care for their patients with suspected DILI and HILI. RUCAM was completed by additional criteria and validated, assisting to establish the timely diagnosis with a high degree of certainty. In many countries and for more than two decades, physicians, regulatory agencies, case report authors, and pharmaceutical companies successfully applied RUCAM for suspected DILI and HILI. Their practical experience, emerging new data on DILI and HILI characteristics, and few ambiguous questions in domains such alcohol use and exclusions of non-drug causes led to the present update of RUCAM. The aim was to reduce interobserver and intraobserver variability, to provide accurately defined, objective core elements, and to simplify the handling of the items. We now present the update of the well accepted original RUCAM scale and recommend its use for clinical, regulatory, publication, and expert purposes to validly establish causality in cases of suspected DILI and HILI, facilitating a straightforward application and an internationally harmonized approach of causality assessment as a common

  14. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats.

    PubMed

    El Arfani, Anissa; Bentea, Eduard; Aourz, Najat; Ampe, Ben; De Deurwaerdère, Philippe; Van Eeckhaut, Ann; Massie, Ann; Sarre, Sophie; Smolders, Ilse; Michotte, Yvette

    2014-10-01

    Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.

  15. Optical Imaging of Drug-Induced Metabolism Changes in Murine and Human Pancreatic Cancer Organoids Reveals Heterogeneous Drug Response

    PubMed Central

    Walsh, Alex J.; Castellanos, Jason A.; Nagathihalli, Nagaraj S.; Merchant, Nipun B.; Skala, Melissa C.

    2016-01-01

    Objectives Three-dimensional organoids derived from primary pancreatic ductal adenocarcinomas are an attractive platform for testing potential anticancer drugs on patient-specific tissue. Optical metabolic imaging (OMI) is a novel tool used to assess drug-induced changes in cellular metabolism, and its quantitative end point, the OMI index, is evaluated as a biomarker of drug response in pancreatic cancer organoids. Methods Optical metabolic imaging is used to assess both malignant cell and fibroblast drug response within primary murine and human pancreatic cancer organoids. Results Anticancer drugs induce significant reductions in the OMI index of murine and human pancreatic cancer organoids. Subpopulation analysis of OMI data revealed heterogeneous drug response and elucidated responding and nonresponding cell populations for a 7-day time course. Optical metabolic imaging index significantly correlates with immunofluorescence detection of cell proliferation and cell death. Conclusions Optical metabolic imaging of primary pancreatic ductal adenocarcinoma organoids is highly sensitive to drug-induced metabolic changes, provides a nondestructive method for monitoring dynamic drug response, and presents a novel platform for patient-specific drug testing and drug development. PMID:26495796

  16. (1)H NMR-based metabolomics study on a goldfish model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

    PubMed

    Lu, Zhaoguang; Wang, Junsong; Li, Minghui; Liu, Qingwang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-11-05

    A goldfish (Carassius auratus) model of Parkinson's disease (PD) was constructed by a single dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to previously reported methods. Global metabolite changes in brain of the MPTP induced goldfish model of PD were investigated. (1)H NMR-based metabolomics combined with various statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) found significant increase of leucine, isoleucine, valine, alanine, alanylalanine, creatinine, myo-inositol, 18:2 fatty acid, total fatty acids, arachic alcohol, taurine and significant decrease of N-acetylaspartate, (phospho)creatine, (phospho)choline, betaine, glutamine, 3-hexenedioate, acetamide, malonate, isocitrate, scyllo-inositol, phosphatidylcholines, cholesterols, n-3 fatty acids, polyunsaturated fatty acids (PUFAs) in brain of MPTP induced PD goldfish. These disturbed metabolite levels were involved in oxidative stress, energy failure, neuronal cell injury and death, consistent with those observed in clinical PD patients, and rodents and primates model of PD, indicating that the acute MPTP model of goldfish was an ideal and valuable model for PD research. In addition, several unusual metabolites in brain were significantly changed between MPTP induced PD and control goldfish, which might also play an important role in the pathogenesis of PD. This study also demonstrated the applicability and potential of (1)H NMR-based metabolomics approach for evaluation of animal models of disease induced by chemicals, such as MPTP-induced PD goldfish.

  17. Detection of preclinical Parkinson's disease with PET

    SciTech Connect

    Brooks, D.J. )

    1991-08-01

    Putamen 18F-dopa uptake of patients with Parkinson's disease (PD) is reduced by at least 35% at onset of symptoms; therefore, positron-emission tomography (PET) can be used to detect preclinical disease in clinically unaffected twins and relatives of patients with PD. Three out of 6 monozygotic and 2 out of 3 dizygotic unaffected PD co-twins have shown reduced putamen 18F-dopa uptake to date. In addition, an intact sibling and a daughter of 1 of 4 siblings with PD both had low putamen 18F-dopa uptake. These preliminary findings suggest there may be a familial component to the etiology of PD. PET can also be used to detect underlying nigral pathology in patients with isolated tremor and patients who become rigid taking dopamine-receptor blocking agents (DRBAs). Patients with familial essential tremor have normal, and those with isolated rest tremor have consistently low, putamen 18F-dopa uptake. Drug-induced parkinsonism is infrequently associated with underlying nigral pathology.

  18. Detection of preclinical Parkinson's disease with PET

    SciTech Connect

    Brooks, D.J. )

    1991-05-01

    Putamen 18F-dopa uptake of patients with Parkinson's disease (PD) is reduced by at least 35% at onset of symptoms; therefore, positron-emission tomography (PET) can be used to detect preclinical disease in clinically unaffected twins and relatives of patients with PD. Three out of 6 monozygotic and 2 out of 3 dizygotic unaffected PD co-twins have shown reduced putamen 18F-dopa uptake to date. In addition, an intact sibling and a daughter of 1 of 4 siblings with PD both had low putamen 18F-dopa uptake. These preliminary findings suggest there may be a familial component to the etiology of PD. PET can also be used to detect underlying nigral pathology in patients with isolated tremor and patients who become rigid taking dopamine-receptor blocking agents (DRBAs). Patients with familial essential tremor have normal, and those with isolated rest tremor have consistently low, putamen 18F-dopa uptake. Drug-induced parkinsonism is infrequently associated with underlying nigral pathology.

  19. Diphenhydramine as a Cause of Drug-Induced Liver Injury

    PubMed Central

    Cui, Isabelle H.

    2017-01-01

    Drug-induced liver injury (DILI) is the most common cause of acute liver failure in the Unites States and accounts for 10% of acute hepatitis cases. We report the only known case of diphenhydramine-induced acute liver injury in the absence of concomitant medications. A 28-year-old man with history of 13/14-chromosomal translocation presented with fevers, vomiting, and jaundice. Aspartate-aminotransferase and alanine-aminotransferase levels peaked above 20,000 IU/L and 5,000 IU/L, respectively. He developed coagulopathy but without altered mental status. Patient reported taking up to 400 mg diphenhydramine nightly, without concomitant acetaminophen, for insomnia. He denied taking other medications, supplements, antibiotics, and herbals. A thorough workup of liver injury ruled out viral hepatitis (including A, B, C, and E), autoimmune, toxic, ischemic, and metabolic etiologies including Wilson's disease. A liver biopsy was consistent with DILI without evidence of iron or copper deposition. Diphenhydramine was determined to be the likely culprit. This is the first reported case of diphenhydramine-induced liver injury without concomitant use of acetaminophen. PMID:28246565

  20. Inducible Mouse Models for Cancer Drug Target Validation

    PubMed Central

    Jeong, Joseph H.

    2016-01-01

    Genetically-engineered mouse (GEM) models have provided significant contributions to our understanding of cancer biology and developing anticancer therapeutic strategies. The development of GEM models that faithfully recapitulate histopathological and clinical features of human cancers is one of the most pressing needs to successfully conquer cancer. In particular, doxycycline-inducible transgenic mouse models allow us to regulate (induce or suppress) the expression of a specific gene of interest within a specific tissue in a temporal manner. Leveraging this mouse model system, we can determine whether the transgene expression is required for tumor maintenance, thereby validating the transgene product as a target for anticancer drug development (target validation study). In addition, there is always a risk of tumor recurrence with cancer therapy. By analyzing recurrent tumors derived from fully regressed tumors after turning off transgene expression in tumor-bearing mice, we can gain an insight into the molecular basis of how tumor cells escape from their dependence on the transgene (tumor recurrence study). Results from such studies will ultimately allow us to predict therapeutic responses in clinical settings and develop new therapeutic strategies against recurrent tumors. The aim of this review is to highlight the significance of doxycycline-inducible transgenic mouse models in studying target validation and tumor recurrence. PMID:28053958

  1. Parkinson Disease Psychosis: Update

    PubMed Central

    Friedman, J. H.

    2013-01-01

    Psychotic symptoms are common in drug treated patients with Parkinson's disease (PD). Visual hallucinations occur in about 30% and delusions, typically paranoid in nature, occur in about 5%. These problems, particularly the delusions, cause great distress for patient and caregivers, and are among the most important precipitants for nursing home placement. Psychotic symptoms carry a poor prognosis. They often herald dementia, and are associated with increased mortality. These symptoms often abate with medication reductions, but this may not be tolerated due to worsened motor function. Only clozapine has level A evidence to support its use in PD patients with psychosis (PDP), whether demented or not. While quetiapine has been recommended by the American Academy of Neurology for “consideration,” double blind placebo controlled trials have demonstrated safety but not efficacy. Other antipsychotic drugs have been reported to worsen motor function and data on the effectiveness of cholinesterase inhibitors is limited. PDP remains a serious problem with limited treatment options. PMID:23242358

  2. Smoking and Parkinson's disease: explanatory hypothesis.

    PubMed

    Allam, Mohamed Farouk; Serrano del Castillo, Amparo; Fernández-Crehuet Navajas, Rafael

    2002-07-01

    A systematic review was conducted to estimate the pooled risk of smoking for Parkinson's disease in Chinese populations. The four identified case-control studies had odds ratios with 95% confidence intervals nearly or overlapping unity. Pooled odds ratio of these studies was 0.77 with 95% confidence interval 0.60 to 0.97. It was suggested that smoking induces debrisoquine 4-hydroxylase, which is responsible for the metabolism of antipsychotic drugs and the detoxification of certain environmental toxins known to cause dopaminergic neural damage. This could be the explanation of these contradictory results as cytochrome P-450 CYP2D6 debrisoquine hydroxylase gene polymorphism is known to be much lower in Chinese than in Caucasian people. This systematic review raises concerns about generalization of the conclusion previously settled by many cohort and case-control studies.

  3. Reversible Valproate Induced Pisa Syndrome and Parkinsonism in a Neuro-Oncology Patient with Depression and Epilepsy.

    PubMed

    Botturi, Andrea; Silvani, Antonio; Pravettoni, Gabriella; Paoli, Riccardo Augusto; Lucchiari, Claudio

    2016-01-01

    Neurological and psychiatric conditions frequently overlap in neuro-oncology. This overlapping negatively affects patients' quality of life and decreases the ability of providers to manage specific symptoms by therapy modulation, especially when psychopharmacotherapy needs to be prescribed. We describe here a patient with recurrent brain tumor, symptomatic epilepsy and depression who developed Pisa syndrome and parkinsonism after several months of valproic acid use. An accurate recognition of symptoms and treatment side effect allowed an appropriate clinical approach so as to rapidly improve both movement disorder and depression without increasing the risk of developing seizure. This has improved the autonomy and quality of life in a patient with poor prognosis.

  4. Reversible Valproate Induced Pisa Syndrome and Parkinsonism in a Neuro-Oncology Patient with Depression and Epilepsy

    PubMed Central

    Botturi, Andrea; Silvani, Antonio; Pravettoni, Gabriella; Paoli, Riccardo Augusto; Lucchiari, Claudio

    2016-01-01

    Neurological and psychiatric conditions frequently overlap in neuro-oncology. This overlapping negatively affects patients’ quality of life and decreases the ability of providers to manage specific symptoms by therapy modulation, especially when psychopharmacotherapy needs to be prescribed. We describe here a patient with recurrent brain tumor, symptomatic epilepsy and depression who developed Pisa syndrome and parkinsonism after several months of valproic acid use. An accurate recognition of symptoms and treatment side effect allowed an appropriate clinical approach so as to rapidly improve both movement disorder and depression without increasing the risk of developing seizure. This has improved the autonomy and quality of life in a patient with poor prognosis. PMID:27462241

  5. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering.

    PubMed

    Ottolini, Denis; Calì, Tito; Negro, Alessandro; Brini, Marisa

    2013-06-01

    DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.

  6. Lupus in a patient with cystinosis: is it drug induced?

    PubMed

    Eroglu, F K; Besbas, N; Ozaltin, F; Topaloglu, R; Ozen, S

    2015-11-01

    A 9-year-old girl with a diagnosis of cystinosis since 2 years of age, on cysteamine therapy, presented with complaints of serositis and arthritis, and laboratory tests revealed high antinuclear antibody titers with hypocomplementemia. Kidney biopsy was not consistent with lupus nephritis. With prednisolone treatment her complaints resolved and creatinine level decreased, but on follow-up, serological features of systemic lupus erythematosus (SLE) continued. Six years after cessation of prednisolone, lupus features were reactivated, with positive antihistone antibodies and ANCA. Coincidence of cystinosis and SLE is very rare, and to the best of our knowledge this is the fourth case reported in the literature. Physicians should be aware that cystinosis patients may have some autoimmune manifestations with features of true or drug-induced lupus. In the light of this case, pathophysiology and treatment are discussed.

  7. Possibly drug-induced palpable migratory arciform erythema*

    PubMed Central

    Dantas, Fernando Luiz Teixeira; Valente, Neusa Yuriko Sakai; Veronez, Isis Suga; Kakizaki, Priscila; Leitão, Juliana Ribeiro; Fraga, Rafael Cavanellas

    2015-01-01

    Palpable migratory arciform erythema is an entity of unknown etiology, with few published cases in the literature. The clinical and histopathological features of this disease are difficult to be distinguished from those of Jessner’s lymphocytic infiltration of the skin, lupus erythematous tumidus and the deep erythema annulare centrifugum. We describe here the first two Brazilian cases of palpable migratory arciform erythema. The patients presented with infiltrated annular plaques and erythematous arcs without scales. These showed centrifugal growth before disappearing without scarring or residual lesions after a few days. They had a chronic course with repeated episodes for years. In addition, these cases provide evidence of a drug-induced etiology. PMID:26312680

  8. Drug induced phospholipidosis: an acquired lysosomal storage disorder.

    PubMed

    Shayman, James A; Abe, Akira

    2013-03-01

    There is a strong association between lysosome enzyme deficiencies and monogenic disorders resulting in lysosomal storage disease. Of the more than 75 characterized lysosomal proteins, two thirds are directly linked to inherited diseases of metabolism. Only one lysosomal storage disease, Niemann-Pick disease, is associated with impaired phospholipid metabolism. However, other phospholipases are found in the lysosome but remain poorly characterized. A recent exception is lysosomal phospholipase A2 (group XV phospholipase A2). Although no inherited disorder of lysosomal phospholipid metabolism has yet been associated with a loss of function of this lipase, this enzyme may be a target for an acquired form of lysosomal storage, drug induced phospholipidosis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

  9. Antidiabetic Drug Metformin Suppresses Endotoxin-Induced Uveitis in Rats

    PubMed Central

    Kalariya, Nilesh M.; Shoeb, Mohammad; Ansari, Naseem H.; Srivastava, Satish K.; Ramana, Kota V.

    2012-01-01

    Purpose. To investigate the therapeutic effects of metformin, a commonly used antidiabetic drug, in preventing endotoxin-induced uveitis (EIU) in rats. Methods. EIU in Lewis rats was developed by subcutaneous injection of lipopolysaccharide (LPS; 150 μg). Metformin (300 mg/kg body weight, intraperitoneally) or its carrier was injected either 12 hours before or 2 hours after LPS induction. Three and 24 hours after EIU, eyes were enucleated and aqueous humor (AqH) was collected. The MILLIPLEX-MAG Rat cytokine-chemokine magnetic bead array was used to determine inflammatory cytokines. The expression of Cox-2, phosphorylation of AMPK, and NF-κB (p65) were determined immunohistochemically. Primary human nonpigmented ciliary epithelial cells (HNPECs) were used to determine the in vitro efficacy of metformin. Results. Compared with controls, the EIU rat AqH had significantly increased number of infiltrating cells and increased levels of various cytokines and chemokines (TNF-α, MCP-1, IL-1β, MIP-1α, IL-6, Leptin, and IL-18) and metformin significantly prevented the increase. Metformin also prevented the expression of Cox-2 and phosphorylation of p65, and increased the activation of AMPK in the ciliary bodies and retinal tissues. Moreover, metformin prevented the expression of Cox-2, iNOS, and activation of NF-kB in the HNPECs and decreased the levels of NO and PGE2 in cell culture media. Conclusions. Our results for the first time demonstrate a novel role of the antidiabetic drug, metformin, in suppressing uveitis in rats and suggest that this drug could be developed to prevent uveitis complications. PMID:22562515

  10. Current Concepts of Mechanisms in Drug-Induced Hepatotoxicity

    PubMed Central

    Russmann, Stefan; Kullak-Ublick, Gerd A; Grattagliano, Ignazio

    2009-01-01

    Drug-induced liver injury (DILI) has become a leading cause of severe liver disease in Western countries and therefore poses a major clinical and regulatory challenge. Whereas previously drug-specific pathways leading to initial injury of liver cells were the main focus of mechanistic research and classifications, current concepts see these as initial upstream events and appreciate that subsequent common downstream pathways and their attenuation by drugs and other environmental and genetic factors also have a profound impact on the risk of an individual patient to develop overt liver disease. This review summarizes current mechanistic concepts of DILI in a 3-step model that limits its principle mechanisms to three main ways of initial injury, i.e. direct cell stress, direct mitochondrial impairment, and specific immune reactions. Subsequently, initial injury initiates further downstream events, i.e. direct and death receptor-mediated pathways leading to mitochondrial permeability transition, which then results in apoptotic or necrotic cell death. For all mechanisms, mitochondria play a central role in events leading to apoptotic vs. necrotic cell death. New treatment targets consequently focus on interference with downstream pathways that mediate injury and therefore determine the ultimate outcome of DILI. Genome wide and targeted pharmacogenetic as well as metabonomic approaches are now used in order to reach the key goals of a better understanding of mechanisms in hepatotoxicity, and to develop new strategies for its prediction and treatment. However, the complexity of interactions between genetic and environmental risk factors is considerable, and DILI therefore currently remains unpredictable for most hepatotoxins. PMID:19689281

  11. Drug-sensing hydrogels for the inducible release of biopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Ehrbar, Martin; Schoenmakers, Ronald; Christen, Erik H.; Fussenegger, Martin; Weber, Wilfried

    2008-10-01

    Drug-dependent dissociation or association of cellular receptors represents a potent pharmacologic mode of action for regulating cell fate and function. Transferring the knowledge of pharmacologically triggered protein-protein interactions to materials science will enable novel design concepts for stimuli-sensing smart hydrogels. Here, we show the design and validation of an antibiotic-sensing hydrogel for the trigger-inducible release of human vascular endothelial growth factor. Genetically engineered bacterial gyrase subunit B (GyrB) (ref. 4) coupled to polyacrylamide was dimerized by the addition of the aminocoumarin antibiotic coumermycin, resulting in hydrogel formation. Addition of increasing concentrations of clinically validated novobiocin (Albamycin) dissociated the GyrB subunits, thereby resulting in dissociation of the hydrogel and dose- and time-dependent liberation of the entrapped protein pharmaceutical VEGF121 for triggering proliferation of human umbilical vein endothelial cells. Pharmacologically controlled hydrogels have the potential to fulfil the promises of stimuli-sensing materials as smart devices for spatiotemporally controlled delivery of drugs within the patient.

  12. Salivary Secretory Disorders, Inducing Drugs, and Clinical Management

    PubMed Central

    Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Lahor-Soler, Eduard; Farré, Magí

    2015-01-01

    Background: Salivary secretory disorders can be the result of a wide range of factors. Their prevalence and negative effects on the patient's quality of life oblige the clinician to confront the issue. Aim: To review the salivary secretory disorders, inducing drugs and their clinical management. Methods: In this article, a literature search of these dysfunctions was conducted with the assistance of a research librarian in the MEDLINE/PubMed Database. Results: Xerostomia, or dry mouth syndrome, can be caused by medication, systemic diseases such as Sjögren's Syndrome, glandular pathologies, and radiotherapy of the head and neck. Treatment of dry mouth is aimed at both minimizing its symptoms and preventing oral complications with the employment of sialogogues and topical acting substances. Sialorrhea and drooling, are mainly due to medication or neurological systemic disease. There are various therapeutic, pharmacologic, and surgical alternatives for its management. The pharmacology of most of the substances employed for the treatment of salivary disorders is well-known. Nevertheless, in some cases a significant improvement in salivary function has not been observed after their administration. Conclusion: At present, there are numerous frequently prescribed drugs whose unwanted effects include some kind of salivary disorder. In addition, the differing pathologic mechanisms, and the great variety of existing treatments hinder the clinical management of these patients. The authors have designed an algorithm to facilitate the decision making process when physicians, oral surgeons, or dentists face these salivary dysfunctions. PMID:26516310

  13. Epidemiology of Idiosyncratic Drug-Induced Liver Injury

    PubMed Central

    Bell, Lauren N.; Chalasani, Naga

    2010-01-01

    Idiosyncratic drug-induced liver injury (DILI) is a significant health problem because of its unpredictable nature, poorly understood pathogenesis, and potential to cause fatal outcomes. It is also a significant hurdle for drug development and marketing of safe prescription medications. Idiosyncratic DILI is generally rare, but its occurrence is likely underappreciated due to the lack of active reporting or surveillance systems and substantial challenges involved in its recognition and diagnosis. Nonetheless, DILI is a common cause of potentially serious and fatal acute liver failure in both children and adults. Population-based studies that accurately estimate the incidence and full spectrum of DILI are limited. However, using a prospective, population-based French study with an annual estimated incidence of 13.9 ± 2.4 DILI cases per 100,000 inhabitants, it has been extrapolated that nearly 44,000 individuals in the United States will suffer from DILI each year. Although increasing numbers of patients are also being seen with DILI due to herbal and dietary supplements, the epidemiology of this entity requires further investigation. In this article, the epidemiology of DILI, both in the general population and in potentially high-risk subgroups, is reviewed. PMID:19826967

  14. Neuroprotective Effects of Jitai Tablet, a Traditional Chinese Medicine, on the MPTP-Induced Acute Model of Parkinson's Disease: Involvement of the Dopamine System

    PubMed Central

    Liu, Jia; Gao, Jinlong; Xu, Shasha; Liu, Ying; Shang, Weihu; Gu, Chenxin; Huang, Yiyun; Han, Mei

    2014-01-01

    Jitai tablet (JTT) is a traditional Chinese medicine used to treat neuropsychiatric disorders. We previously demonstrated that JTT treatment led to increased level of dopamine transporter (DAT) in the striatum, thus indicating that JTT might have therapeutic potential for Parkinson's disease (PD), which is characterized by dysregulated dopamine (DA) transmission and decreased striatal DAT expression. The aim of this study was to investigate the neuroprotective effect of JTT on MPTP-induced PD mice. Using locomotor activity test and rotarod test, we evaluated the effects of JTT (0.50, 0.15, or 0.05 g/kg) on MPTP-induced behavioral impairments. Tyrosine hydroxylase TH-positive neurons in the substantia nigra and DAT and dopamine D2 receptor (D2R) levels in the striatum were detected by immunohistochemical staining and/or autoradiography. Levels of DA and its metabolites were determined by HPLC. In MPTP-treated mice, behavioral impairments were alleviated by JTT treatment. Moreover, JTT protected against impairment of TH-positive neurons and attenuated the MPTP-induced decreases in DAT and D2R. Finally, high dose of JTT (0.50 g/kg) inhibited the MPTP-induced increase in DA metabolism rate. Taken together, results from our present study provide evidence that JTT offers neuroprotective effects against the neurotoxicity of MPTP and thus might be a potential treatment for PD. PMID:24799940

  15. Phosphatidylinositol 3-kinase/Akt signaling pathway mediates acupuncture-induced dopaminergic neuron protection and motor function improvement in a mouse model of Parkinson's disease.

    PubMed

    Kim, Seung-Nam; Kim, Seung-Tae; Doo, Ah-Reum; Park, Ji-Yeun; Moon, Woongjoon; Chae, Younbyoung; Yin, Chang Shik; Lee, Hyejung; Park, Hi-Joon

    2011-10-01

    It has been reported that acupuncture treatment reduced dopaminergic neuron degeneration in Parkinson's disease (PD) models. However, the mechanistic pathways underlying, such neuroprotection, are poorly understood. Here, we investigated the effects and the underlying mechanism of acupuncture in a mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). First, we observed that MPTP-induced impairment of Akt activation, but not MPTP-induced c-Jun activation, was effectively restored by acupuncture treatment in the substantia nigra. Furthermore, we demonstrated for the first time that the brain-specific blockade of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, by intranasal administration of LY294002, a specific inhibitor of PI3K/Akt signaling pathway, significantly blocked acupuncture-induced dopaminergic neuron protection and motor function improvement. Our results provide evidence that PI3K/Akt signaling pathway may play a central role in the mechanism underlying acupuncture-induced benefits in Parkinsonian mice.

  16. Phytic acid attenuates inflammatory responses and the levels of NF-κB and p-ERK in MPTP-induced Parkinson's disease model of mice.

    PubMed

    Lv, Yuqiang; Zhang, Zheng; Hou, Lin; Zhang, Li; Zhang, Jinyu; Wang, Yuehua; Liu, Cun; Xu, Pingping; Liu, Lu; Gai, Xiaoying; Lu, Tingxiu

    2015-06-15

    Phytic acid (PA) is a naturally occurring constituent which exhibits protective action in Parkinson's disease (PD). Inflammation in the central nervous system (CNS) is strongly associated with neuronal death in PD. However, the molecular mechanism of the protective effect of PA in PD has not been fully elucidated. In this study, we tried to testify the protection of PA on neuron and inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model of mice and investigated the mechanism involved in them. Motor behavior test and tyrosine hydroxylase (TH) immunohistochemistry method showed PA significantly inhibited MPTP-induced dopaminergic cell loss in the substantia nigra (SN). Moreover, using immunohistochemistry method and quantitative polymerase chain reaction (qPCR), microglial activation and inducible nitric oxide synthase (iNOS) were found to be markedly repressed by PA. Via western blot assay, expressions of nuclear factor κB (NF-κB) and phosphorylated extracellular signal-regulated kinase (p-ERK) were significantly attenuated by PA. In conclusion, it is suggested that PA has a neuroprotective effect in MPTP-induced PD model and the neuroprotection is correlated with its anti-inflammatory effect which may be associated with suppression of pathways that involved in NF-κB and p-ERK.

  17. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1.

    PubMed

    Desplats, Paula; Spencer, Brian; Crews, Leslie; Pathel, Pruthul; Morvinski-Friedmann, Dinorah; Kosberg, Kori; Roberts, Scott; Patrick, Christina; Winner, Beate; Winkler, Juergen; Masliah, Eliezer

    2012-09-14

    Parkinson disease is characterized by the loss of dopaminergic neurons mainly in the substantia nigra. Accumulation of α-synuclein and cell loss has been also reported in many other brain regions including the hippocampus, where it might impair adult neurogenesis, contributing to nonmotor symptoms. However, the molecular mechanisms of these alterations are still unknown. In this report we show that α-synuclein-accumulating adult rat hippocampus neural progenitors present aberrant neuronal differentiation, with reduction of Notch1 expression and downstream signaling targets. We characterized a Notch1 proximal promoter that contains p53 canonical response elements. In vivo binding of p53 represses the transcription of Notch1 in neurons. Moreover, we demonstrated that α-synuclein directly binds to the DNA at Notch1 promoter vicinity and also interacts with p53 protein, facilitating or increasing Notch1 signaling repression, which interferes with maturation and survival of neural progenitors cells. This study provides a molecular basis for α-synuclein-mediated disruption of adult neurogenesis in Parkinson disease.

  18. Abnormal Bidirectional Plasticity-Like Effects in Parkinson's Disease

    ERIC Educational Resources Information Center

    Huang, Ying-Zu; Rothwell, John C.; Lu, Chin-Song; Chuang, Wen-Li; Chen, Rou-Shayn

    2011-01-01

    Levodopa-induced dyskinesia is a major complication of long-term dopamine replacement therapy for Parkinson's disease that becomes increasingly problematic in advanced Parkinson's disease. Although the cause of levodopa-induced dyskinesias is still unclear, recent work in animal models of the corticostriatal system has suggested that…

  19. "PINK1"-Linked Parkinsonism Is Associated with Lewy Body Pathology

    ERIC Educational Resources Information Center

    Samaranch, Lluis; Lorenzo-Betancor, Oswaldo; Arbelo, Jose M.; Ferrer, Isidre; Lorenzo, Elena; Irigoyen, Jaione; Pastor, Maria A.; Marrero, Carmen; Isla, Concepcion; Herrera-Henriquez, Joanna; Pastor, Pau

    2010-01-01

    Phosphatase and tensin homolog-induced putative kinase 1 gene mutations have been associated with autosomal recessive early-onset Parkinson's disease. To date, no neuropathological reports have been published from patients with Parkinson's disease with both phosphatase and tensin homolog-induced putative kinase 1 gene copies mutated. We analysed…

  20. Parkinson's disease: Autoimmunity and neuroinflammation.

    PubMed

    De Virgilio, Armando; Greco, Antonio; Fabbrini, Giovanni; Inghilleri, Maurizio; Rizzo, Maria Ida; Gallo, Andrea; Conte, Michela; Rosato, Chiara; Ciniglio Appiani, Mario; de Vincentiis, Marco

    2016-10-01

    Parkinson's disease is a neurodegenerative disease that causes the death of dopaminergic neurons in the substantia nigra. The resulting dopamine deficiency in the basal ganglia leads to a movement disorder that is characterized by classical parkinsonian motor symptoms. Parkinson's disease is recognized as the most common neurodegenerative disorder after Alzheimer's disease. PD ethiopathogenesis remains to be elucidated and has been connected to genetic, environmental and immunologic conditions. The past decade has provided evidence for a significant role of the immune system in PD pathogenesis, either through inflammation or an autoimmune response. Several autoantibodies directed at antigens associated with PD pathogenesis have been identified in PD patients. This immune activation may be the cause of, rather than a response to, the observed neuronal loss. Parkinsonian motor symptoms include bradykinesia, muscular rigidity and resting tremor. The non-motor features include olfactory dysfunction, cognitive impairment, psychiatric symptoms and autonomic dysfunction. Microscopically, the specific degeneration of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies, which are brain deposits containing a substantial amount of α-synuclein, have been recognized. The progression of Parkinson's disease is characterized by a worsening of motor features; however, as the disease progresses, there is an emergence of complications related to long-term symptomatic treatment. The available therapies for Parkinson's disease only treat the symptoms of the disease. A major goal of Parkinson's disease research is the development of disease-modifying drugs that slow or stop the neurodegenerative process. Drugs that enhance the intracerebral dopamine concentrations or stimulate dopamine receptors remain the mainstay treatment for motor symptoms. Immunomodulatory therapeutic strategies aiming to attenuate PD neurodegeneration have become an attractive option and