Hornof, Margit; Weyenberg, Wim; Ludwig, Annick; Bernkop-Schnürch, Andreas
2003-05-20
The aim of the study was to develop a mucoadhesive ocular insert for the controlled delivery of ophthalmic drugs and to evaluate its efficacy in vivo. The inserts tested were based either on unmodified or thiolated poly(acrylic acid). Water uptake and swelling behavior of the inserts as well as the drug release rates of the model drugs fluorescein and two diclofenac salts with different solubility properties were evaluated in vitro. Fluorescein was used as fluorescent tracer to study the drug release from the insert in humans. The mean fluorescein concentration in the cornea/tearfilm compartment as a function of time was determined after application of aqueous eye drops and inserts composed of unmodified and of thiolated poly(acrylic acid). The acceptability of the inserts by the volunteers was also evaluated. Inserts based on thiolated poly(acrylic acid) were not soluble and had good cohesive properties. A controlled release was achieved for the incorporated model drugs. The in vivo study showed that inserts based on thiolated poly(acrylic acid) provide a fluorescein concentration on the eye surface for more than 8 h, whereas the fluorescein concentration rapidly decreased after application of aqueous eye drops or inserts based on unmodified poly(acrylic acid). Moreover, these inserts were well accepted by the volunteers. The present study indicates that ocular inserts based on thiolated poly(acrylic acid) are promising new solid devices for ocular drug delivery.
Mathurm, Manish; Gilhotra, Ritu Mehra
2011-01-01
An attempt has been made in the present study to formulate soluble ocular inserts of aceclofenac to facilitate the bioavailability of the drug into the eye, as no eye drop solution could be formulated. Glycero-gelatin ocular inserts/films were prepared and physicochemical parameters and drug release profiles of glycerol-gelatin films of aceclofenac were compared with surface cross-linked films of similar compositions. Ocular irritation of the developed formulation was also checked by HET-CAM test and efficacy of the developed formulation against prostaglandin-induced ocular inflammation in rabbit eye was determined. The non-cross-linked films showed poor mechanical, physicochemical properties, and very little potential of sustaining drug release, however cross-linking the films enhanced tensile strength by 70%, but elasticity decreased by 95%. The cross-linked ocular inserts showed less swelling than non-cross-linked. Formulation AF8 (20% gelatin and 70% glycerin, treated by cross-linker for 1 h) demonstrated the longest drug release for 24 h. As per the kinetic models all films showed a constant drug release with Higuchi diffusion mechanism. Formulation was found to be practically non-irritant. The optimized formulation was tested and compared with eye drops of aceclofenac for anti-inflammatory activity in rabbits against PGE₂-induced inflammation. In vivo studies with developed formulation indicated a significant inhibition of PGE₂-induced PMN migration as compared to eye drops. In conclusion, ocular inserts of aceclofenac was found promising as it achieved sustained drug release and better pharmacodynamic activity.
Bhattarai, Sushila; Alany, Raid G; Bunt, Craig R; Abdelkader, Hamdy; Rathbone, Michael J
2015-01-01
This manuscript reports (for the first time) on antibiotic-free polymeric inserts for the prevention and/or treatment of bovine mastitis. Polyethylene oxide (PEO)-based inserts were prepared using different concentrations of various hydrophilic polymers and water-soluble and water-insoluble drug-release-modifying excipients. A simple and scalable melt-extrusion method was employed to prepare the inserts. The prepared inserts were characterised for their dimension, rheological and mechanical properties. The in vitro release of a model bacteriostatic drug (salicylic acid) from the prepared inserts was studied to demonstrate the effectiveness and reproducibility of the melt-extrusion manufacturing method. Further, the in vitro stability of the inserts was evaluated using gel permeation chromatography (GPC) to monitor any change in molecular weight under real-time and accelerated storage conditions. The investigated inserts were stable at accelerated storage conditions over a period of 6 months. PEO inserts have the potential to serve a dual purpose, act as a physical barrier against pathogens invading the teat canal of cows and possibly control the release of a drug.
Franca, Juçara Ribeiro; Foureaux, Giselle; Fuscaldi, Leonardo Lima; Ribeiro, Tatiana Gomes; Rodrigues, Lívia Bomfim; Bravo, Renata; Castilho, Rachel Oliveira; Yoshida, Maria Irene; Cardoso, Valbert Nascimento; Fernandes, Simone Odília; Cronemberger, Sebastião; Ferreira, Anderson José; Faraco, André Augusto Gomes
2014-01-01
The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM). Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM) were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP) was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a promising system for glaucoma management. PMID:24788066
Abdelmonem, Rehab; El Nabarawi, Mohamed; Attia, Alshaimaa
2018-11-01
The aim of this study was to formulate granisetron hydrochloride (GH) spanlastic in mucoadhesive gels and lyophilized inserts for intranasal administration to improve GH bioavailability and brain targeting. Carpapol 934 and HPMC were incorporated in GH spanlastic in nasal gels (GHSpNGs). Gelatin and HPMC as matrix former, glycine as a collapse protecting and mannitol as an insert filler and sweeting agent were used to prepare GH spanlastic loaded in lyophilized inserts (GHSpNIs). The prepared GHSpNGs were characterized for pH measurement, drug content, rheology, and in vitro drug release. The prepared GHSpNIs were characterized for drug content, surface pH, GH release, and mucoadhesion. Biological investigations including pharmacokinetics studies and brain drug targeting efficiency dimensions were performed on rats (LC-MS/MS). The results showed thixotropic pseudoplastic gels and white insert with pH values in a physiological range, drug content (89.9-98.6%), (82.4-98.38%) for gel and insert, respectively and rapid release rate of GH. Biological studies showed that C max and AUC 0-6 h in brain and plasma after intranasal administration of gel and insert were higher compared to IV administration of GH solution. A high brain targeting efficiency (199.3%, 230%) for gel and insert, respectively and a direct nose to brain transport (49.8%, 56.95%) for gel and insert, respectively confirmed that there is a direct nose to brain transport of GH following nasal administration of GH spanlastic loaded in nasal gel and insert. GHSpNIs can be considered as potential novel drug delivery system intended for brain targeting via the nasal rout of administration than GHSpNGs.
Bilayered Films Based on Novel Polymer Derivative for Improved Ocular Therapy of Gatifloxacin
Aher, Naval Dinesh; Nair, Hema Ajit
2014-01-01
Context. Thiomers could prove to be suitable mucoadhesives for fabrication of ocular inserts. Objective. The study intends to explore the application of thiolated sodium alginate (TSA) to the preparation of bilayered ocular inserts of gatifloxacin. Methods. Cysteine moieties were grafted onto sodium alginate (SA) and the resultant thiomer was characterized for relevant physicochemical properties. Bilayered inserts were fabricated with a mucoadhesive immediate release layer composed of either SA or TSA and a sustained release layer composed of acrylates. Films were prepared by solvent evaporation and evaluated for mechanical properties, drug content, and in vitro release. Results and Discussion. The synthesized TSA possessed 248.80 ± 49.7 μmol thiol groups/gm and its solutions thickened on standing due to disulphide bridging. Its films showed improved mucoadhesion and also a strikingly beneficial property of resisting erosion and remaining as a hydrated adhesive layer for the duration of drug release. The bilayered films were found to be flexible, with good folding endurance, uniform thickness, and appropriate drug content, and showed a release of about 80% of loaded gatifloxacin in 12 h. Conclusion. The study demonstrates promise in employing thiolated polymer in conjunction with acrylates for the design of ocular inserts for twice a day therapy with gatifloxacin. PMID:24516362
Bigucci, Federica; Abruzzo, Angela; Vitali, Beatrice; Saladini, Bruno; Cerchiara, Teresa; Gallucci, Maria Caterina; Luppi, Barbara
2015-01-30
The aim of this work was to prepare vaginal inserts based on chitosan/carboxymethylcellulose polyelectrolyte complexes for local delivery of chlorhexidine digluconate. Complexes were prepared with different chitosan/carboxymethylcellulose molar ratios at a pH value close to pKa interval of the polymers and were characterized in terms of physico-chemical properties, complexation yield and drug loading. Then complexes were used to prepare inserts as vaginal dosage forms and their physical handling, morphology, water-uptake ability and drug release properties as well as antimicrobial activity toward Candida albicans and Escherichia coli were evaluated. Results confirmed the ionic interaction between chitosan and carboxymethylcellulose and the influence of the charge amount on the complexation yield. Complexes were characterized by high values of drug loading and showed increasing water-uptake ability with the increase of carboxymethylcellulose amount. The selection of appropriate chitosan/carboxymethylcellulose molar ratios allowed to obtain cone-like shaped solid inserts, easy to handle and able to hydrate releasing the drug over time. Finally, the formulated inserts showed antimicrobial activity against common pathogens responsible for vaginal infections. Copyright © 2014 Elsevier B.V. All rights reserved.
Gerrard, Stephen E; Baniecki, Mary Lynn; Sokal, David C; Morris, Mary K; Urdaneta-Hartmann, Sandra; Krebs, Fred C; Wigdahl, Brian; Abrams, Barbara F; Hanson, Carl V; Slater, Nigel K H; Edwards, Alexander D
2012-09-15
A new drug delivery method for infants is presented which incorporates an active pharmaceutical ingredient (API)-loaded insert into a nipple shield delivery system (NSDS). The API is released directly into milk during breastfeeding. This study investigates the feasibility of using the NSDS to deliver the microbicide sodium dodecyl sulfate (SDS), with the goal of preventing mother-to-child transmission (MTCT) of HIV during breastfeeding in low-resource settings, when there is no safer alternative for the infant but to breastfeed. SDS has been previously shown to effectively inactivate HIV in human milk. An apparatus was developed to simulate milk flow through and drug release from a NSDS. Using this apparatus milk was pulsed through a prototype device containing a non-woven fiber insert impregnated with SDS and the microbicide was rapidly released. The total SDS release from inserts ranged from 70 to 100% of the average 0.07 g load within 50 ml (the volume of a typical breastfeed). Human milk spiked with H9/HIV(IIIB) cells was also passed through the same set-up. Greater than 99% reduction of cell-associated HIV infectivity was achieved in the first 10 ml of milk. This proof of concept study demonstrates efficient drug delivery to breastfeeding infants is achievable using the NSDS. Copyright © 2012 Elsevier B.V. All rights reserved.
Shukr, Marwa
2014-07-01
Topical anesthesia is a safe and cost-effective method considered as the first-choice in many procedures. The objective of the present study was to develop ocular inserts as a new form of lidocaine HCl to give a sufficient level of anesthetic. Ocuserts were prepared using HPMC and PVA in different ratios with lidocaine HCl alone and lidocaine HCl β-cyclodextrins complex. Drug polymer interactions were studied by Fourier transform infrared spectroscopic studies. The prepared ocular inserts were characterized by means of ocusert thickness, weight variation, folding endurance, surface pH, moisture absorption, drug content and in-vitro drug release. Stability study was conducted on selected formulations, and in vivo evaluation of lidocaine HCl was also carried out. The results revealed that F7 formulations containing drug β-cyclodextrins with 4 % HPMC and 2 % PVA were found to have good physical characteristics and appropriate flexibility. In addition to the highest initial and cumulative percentage of drug released in vitro. The selected F7 ocuserts retained their characteristics during the stability study. The results of in vivo study showed that the addition of β-cyclodextrins in F7 significantly increase the drug content in the aqueous humor when compared with F3 ocuserts containing lidocaine HCl alone.
Deficiencies in the reporting of VD and t1/2 in the FDA approved chemotherapy drug inserts
D’Souza, Malcolm J.; Alabed, Ghada J.
2011-01-01
Since its release in 2006, the US Food and Drug Administration (FDA) final improved format for prescription drug labeling has revamped the comprehensiveness of drug inserts, including chemotherapy drugs. The chemotherapy drug “packets”, retrieved via the FDA website and other accredited drug information reporting agencies such as the Physician Drug Reference (PDR), are practically the only available unbiased summary of information. One objective is to impartially evaluate the reporting of useful pharmacokinetic parameters, in particular, Volume of Distribution (VD) and elimination half-life (t1/2), in randomly selected FDA approved chemotherapy drug inserts. The web-accessible portable document format (PDF) files for 30 randomly selected chemotherapy drugs are subjected to detailed search and the two parameters of interest are tabulated. The knowledge of the two parameters is essential in directing patient care as well as for clinical research and since the completeness of the core FDA recommendations has been found deficient, a detailed explanation of the impact of such deficiencies is provided. PMID:21643531
Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan
2016-12-01
There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. Copyright © 2016 Elsevier B.V. All rights reserved.
[Polymer ocular implants for controlled release of drugs. I. Animal testing of the materials].
Czechowicz-Janicka, K; Romaniuk, I; Piekarniak, A; Wicha-Brzuchalska, A; Galant, S; Rosiak, J
1992-01-01
Presented are the results of trials with hydrogel inserts received by radiation method and applied into the conjunctival sac of rabbits. In the future they can serve for incorporation of some definite drugs.
Nogueira, José Carlos; Fulgêncio, Gustavo de Oliveira; Ribeiro, Tatiana Gomes; Castilho, Rachel Oliveira; Yoshida, Maria Irene; Fuscaldi, Leonardo Lima; Fernandes, Simone Odília Antunes; Cardoso, Valbert Nascimento; Cronemberger, Sebastião; Faraco, André Augusto Gomes; Ferreira, Anderson José
2015-01-01
The aim of this study was to develop and evaluate the effects of chitosan inserts for sustained release of the angiotensin-converting enzyme 2 (ACE2) activator, diminazene aceturate (DIZE), in experimental glaucoma. Monolayer DIZE loaded inserts (D+I) were prepared and characterized through swelling, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and in vitro drug release. Functionally, the effects of D+I were tested in glaucomatous rats. Glaucoma was induced by weekly injections of hyaluronic acid (HA) into the anterior chamber and intraocular pressure (IOP) measurements were performed. Retinal ganglion cells (RGC) and optic nerve head cupping were evaluated in histological sections. Biodistribution of the drug was accessed by scintigraphic images and ex vivo radiation counting. We found that DIZE increased the swelling index of the inserts. Also, it was molecularly dispersed and interspersed in the polymeric matrix as a freebase. DIZE did not lose its chemical integrity and activity when loaded in the inserts. The functional evaluation demonstrated that D+I decreased the IOP and maintained the IOP lowered for up to one month (last week: 11.0±0.7 mmHg). This effect of D+I prevented the loss of RGC and degeneration of the optic nerve. No toxic effects in the eyes related to application of the inserts were observed. Moreover, biodistribution studies showed that D+I prolonged the retention of DIZE in the corneal site. We concluded that D+I provided sustained DIZE delivery in vivo, thereby evidencing the potential application of polymeric-based DIZE inserts for glaucoma management. PMID:26204514
Saettone, M F; Giannaccini, B; Chetoni, P; Galli, G; Chiellini, E
1984-04-01
A series of polymeric ophthalmic inserts containing pilocarpine were formulated with four different types of polyvinyl alcohol, PVA, and two types of hydroxypropylcellulose. Pilocarpine was present as the nitrate, or as the salt with polyacrylic acid, PAA. In-vivo miosis vs time experiments on albino rabbits, showed that all inserts increased significantly the bioavailability of pilocarpine, with respect to a standard solution of pilocarpine nitrate. Two PVA inserts, containing the PAA-salt of pilocarpine, were particularly effective. The preparations were also submitted to in-vitro release tests and to differential scanning calorimetry, to ascertain the release mechanism, and to verify, via the thermal behaviour, possible interactions between drug and polymers. The chemical and physiochemical factors, most likely to influence the ophthalmic bioavailability of pilocarpine from the present preparations, are briefly reviewed.
Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate.
Abruzzo, A; Bigucci, F; Cerchiara, T; Saladini, B; Gallucci, M C; Cruciani, F; Vitali, B; Luppi, B
2013-01-16
Chitosan/alginate complexes were prepared at different polycation/polyanion molar ratios and freeze-dried vaginal inserts were obtained for chlorhexidine digluconate local delivery in genital infections. Complex yield, FT-IR spectra, and TGA thermograms were studied to confirm the interaction between the two polyions. The influence of different complexes on physical handling, morphology, and drug distribution in the samples were evaluated by friability test, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), respectively. In vitro water-uptake, mucoadhesion and release tests were performed as well as microbiological tests toward pathogenic vaginal microorganisms. The results showed that the selection of suitable chitosan/alginate molar ratio and drug loading allowed modulate insert ability to hydrate, adhere to the mucosa, and release chlorhexidine digluconate. The insert containing an excess of alginate was found to be the best performing formulation and showed good antimicrobial activity toward the pathogens Candida albicans and Escherichia coli. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cellular automata model for drug release from binary matrix and reservoir polymeric devices.
Johannes Laaksonen, Timo; Mikael Laaksonen, Hannu; Tapio Hirvonen, Jouni; Murtomäki, Lasse
2009-04-01
Kinetics of drug release from polymeric tablets, inserts and implants is an important and widely studied area. Here we present a new and widely applicable cellular automata model for diffusion and erosion processes occurring during drug release from polymeric drug release devices. The model divides a 2D representation of the release device into an array of cells. Each cell contains information about the material, drug, polymer or solvent that the domain contains. Cells are then allowed to rearrange according to statistical rules designed to match realistic drug release. Diffusion is modeled by a random walk of mobile cells and kinetics of chemical or physical processes by probabilities of conversion from one state to another. This is according to the basis of diffusion coefficients and kinetic rate constants, which are on fundamental level just probabilities for certain occurrences. The model is applied to three kinds of devices with different release mechanisms: erodable matrices, diffusion through channels or pores and membrane controlled release. The dissolution curves obtained are compared to analytical models from literature and the validity of the model is considered. The model is shown to be compatible with all three release devices, highlighting easy adaptability of the model to virtually any release system and geometry. Further extension and applications of the model are envisioned.
Gira, Joseph P; Sampson, Reginald; Silverstein, Steven M; Walters, Thomas R; Metzinger, Jamie Lynne; Talamo, Jonathan H
2017-01-01
The purpose of this study is to evaluate the patient experience of sustained release dexamethasone intracanalicular insert (Dextenza™) following cataract surgery as part of a Phase III clinical trial program. This cross-sectional, qualitative evaluation involved individual interviews lasting approximately 45 minutes. Patients from four US investigational study sites who had previously received an insert were enrolled. There were no predesignated end points; this was a qualitative survey seeking a deeper understanding of patient experience. Twenty-five patients were interviewed. Most patients (92%) reported the highest level of satisfaction grade with regard to overall product satisfaction. All patients described the insert as comfortable. Most patients (96%) described their overall experience with the insert as very convenient or extremely convenient. Twenty-two of 23 (96%) participants rated their experience with the insert as "very" or "extremely convenient", compared to previous topical therapy, and 88% of patients stated that if they were to undergo cataract surgery again, they would request the insert. When asked if they would recommend the insert to family members or friends, 92% stated they would. The survey found that 84% of participants would be willing to pay more for the insert than for eye drop therapy. The dexamethasone insert was found by patients to be highly favorable with regard to overall satisfaction, convenience, and comfort. The insert was well received and largely preferred over topical therapy alternatives following surgery. More extensive evaluation of the patient experience is warranted, and future studies should help inform design of the next generation of sustained release drug delivery systems.
Gira, Joseph P; Sampson, Reginald; Silverstein, Steven M; Walters, Thomas R; Metzinger, Jamie Lynne; Talamo, Jonathan H
2017-01-01
Purpose The purpose of this study is to evaluate the patient experience of sustained release dexamethasone intracanalicular insert (Dextenza™) following cataract surgery as part of a Phase III clinical trial program. Methods This cross-sectional, qualitative evaluation involved individual interviews lasting approximately 45 minutes. Patients from four US investigational study sites who had previously received an insert were enrolled. There were no predesignated end points; this was a qualitative survey seeking a deeper understanding of patient experience. Results Twenty-five patients were interviewed. Most patients (92%) reported the highest level of satisfaction grade with regard to overall product satisfaction. All patients described the insert as comfortable. Most patients (96%) described their overall experience with the insert as very convenient or extremely convenient. Twenty-two of 23 (96%) participants rated their experience with the insert as “very” or “extremely convenient”, compared to previous topical therapy, and 88% of patients stated that if they were to undergo cataract surgery again, they would request the insert. When asked if they would recommend the insert to family members or friends, 92% stated they would. The survey found that 84% of participants would be willing to pay more for the insert than for eye drop therapy. Conclusion The dexamethasone insert was found by patients to be highly favorable with regard to overall satisfaction, convenience, and comfort. The insert was well received and largely preferred over topical therapy alternatives following surgery. More extensive evaluation of the patient experience is warranted, and future studies should help inform design of the next generation of sustained release drug delivery systems. PMID:28331295
Controlled release of cortisone drugs from block copolymers synthetized by ATRP
NASA Astrophysics Data System (ADS)
Valenti, G.; La Carta, S.; Mazzotti, G.; Rapisarda, M.; Perna, S.; Di Gesù, R.; Giorgini, L.; Carbone, D.; Recca, G.; Rizzarelli, P.
2016-05-01
Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient's compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye's diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10-60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy (1H-NMR, 13C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic models allowed to deduce that release of BDP is controlled over time from PMMA-b-PHEMA 53/47. In particular, PMMA-b-PHEMA 53/47 showed the best release profile to achieve the therapeutic reference dose of 3 µg/die, employed in treatment of posterior eye disease, up to four months. Accordingly, PMMA-b-PHEMA 53/47 has been tested to prepare ocular inserts. Ocular inserts with different shape and the same area of polymer films have been obtained using silicon moulds made by a 3D printer.
Controlled release of cortisone drugs from block copolymers synthetized by ATRP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valenti, G.; La Carta, S.; Rapisarda, M.
Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site.more » Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ({sup 1}H-NMR, {sup 13}C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic models allowed to deduce that release of BDP is controlled over time from PMMA-b-PHEMA 53/47. In particular, PMMA-b-PHEMA 53/47 showed the best release profile to achieve the therapeutic reference dose of 3 µg/die, employed in treatment of posterior eye disease, up to four months. Accordingly, PMMA-b-PHEMA 53/47 has been tested to prepare ocular inserts. Ocular inserts with different shape and the same area of polymer films have been obtained using silicon moulds made by a 3D printer.« less
Zhang, Wenli; Wang, Guangji; See, Esther; Shaw, John P; Baguley, Bruce C; Liu, Jianping; Amirapu, Satya; Wu, Zimei
2015-04-10
The ultimate aim of this study was to develop asulacrine (ASL)-loaded long-circulating liposomes to prevent phlebitis during intravenous (i.v.) infusion for chemotherapy. Poly(ethylene)glycol (PEG) and poloxamer 188-modified liposomes (ASL-PEGL and ASL-P188L) were developed, and ASL was loaded using a remote loading method facilitated with a low concentration of sulfobutyl ether-β-cyclodextrin as a drug solubilizer. The liposomes were characterized in terms of morphology, size, release properties and stability. Pharmacokinetics and venous tissue tolerance of the formulations were simultaneously studied in rabbits following one-hour i.v. infusion via the ear vein. The irritancy was assessed using a rat paw-lift/lick model after subplantar injections. High drug loading 9.0% w/w was achieved with no drug leakage found from ASL-PEGL or ASL-P188L suspended in a 5% glucose solution at 30days. However, a rapid release (leakage) from ASL-PEGL was observed when PBS was used as release medium, partially related to the use of cyclodextrin in drug loading. Post-insertion of poloxamer 188 to the liposomes appeared to be able to restore the drug retention possibly by increasing the packing density of phospholipids in the membrane. In rabbits (n=5), ASL-P188L had a prolonged half-life with no drug precipitation or inflammation in the rabbit ear vein in contrast to ASL solution. Following subplantar (footpad) injections in rats ASL solution induced paw-lick/lift responses in all rats whereas ASL-P188L caused no response (n=8). PEGylation showed less benefit possibly due to the drug 'leakage'. In conclusion, drug precipitation in the vein and the drug mild irritancy may both contribute to the occurrence of phlebitis caused by the ASL solution, and could both be prevented by encapsulation of the drug in liposomes. Poloxamer 188 appeared to be able to 'seal' the liposomal membrane and enhance drug retention. The study also highlighted the importance of bio-relevant in vitro release study in formulation screening. Copyright © 2015. Published by Elsevier B.V.
Tseng, Ching-Li; Chen, Jung-Chih; Wu, Yu-Chun; Fang, Hsu-Wei; Lin, Feng-Huei; Tang, Tzu-Piao
2015-10-01
Developing an effective vehicle for cancer treatment, hydroxyapatite nanoparticles were fabricated for drug delivery. When 5-Fluorouracil, a major chemoagent, is combined with hydroxyapatite nanocarriers by interclay insertion, the modified hydroxyapatite nanoparticles have superior lysosomal degradation profiles, which could be leveraged as controlled drug release. The decomposition of the hydroxyapatite nanocarriers facilitates the release of 5-Fluorouracil into the cytoplasm causing cell death. Hydroxyapatite nanoparticles with/without 5-Fluorouracil were synthesized and analyzed in this study. Their crystallization properties and chemical composition were examined by X-ray diffraction and Fourier transforms infrared spectroscopy. The 5-Fluorouracil release rate was determined by UV spectroscopy. The biocompatibility of hydroxyapatite-5-Fluorouracil extraction solution was assessed using 3T3 cells via a WST-8 assay. The effect of hydroxyapatite-5-Fluorouracil particles which directly work on the human lung adenocarcinoma (A549) cells was evaluated by a lactate dehydrogenase assay via contact cultivation. A 5-Fluorouracil-absorbed hydroxyapatite particles were also tested. Overall, hydroxyapatite-5-Fluorouracils were prepared using a co-precipitation method wherein 5-Fluorouracil was intercalated in the hydroxyapatite lattice as determined by X-ray diffraction. Energy dispersive scanning examination showed the 5-Fluorouracil content was higher in hydroxyapatite-5-Fluorouracil than in a prepared absorption formulation. With 5-Fluorouracil insertion in the lattice, the widths of the a and c axial constants of the hydroxyapatite crystal increased. The extraction solution of hydroxyapatite-5-Fluorouracil was nontoxic to 3T3 cells, in which 5-Fluorouracil was not released in a neutral phosphate buffer solution. In contrast, at a lower pH value (2.5), 5-Fluorouracil was released by the acidic decomposition of hydroxyapatite. Finally, the results of the lactate dehydrogenase assay revealed that 5-Fluorouracil-hydroxyapatite was highly toxic to A549 cells through direct culture, this phenomenon may result from lysosomal decomposition of particles causing 5-Fluorouracil releasing. The pH-responsive hydroxyapatite-5-Fluorouracil nanoparticles have the potential to be part of a selective drug-delivery system in chemotherapy for cancer treatment. © The Author(s) 2015.
Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification
NASA Astrophysics Data System (ADS)
Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.
Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.
Serum-Stable, Long-Circulating, pH-Sensitive PEGylated Liposomes.
Bertrand, Nicolas; Simard, Pierre; Leroux, Jean-Christophe
2017-01-01
pH-sensitive liposomes have been designed to deliver active compounds, specifically to acidic intracellular organelles, and to augment their cytoplasmic concentrations. These systems combine the protective effects of other liposomal formulations with specific environment-controlled drug release. They are stable at physiological pH, but abruptly discharge their contents when endocytosed into acidic compartments, allowing the drug to be released before it is exposed to the harsh environment of the lysosomes.Serum-stable formulations with minimal leakage at physiological pH and rapid drug release at pH 5.0 to 5.5 can be easily prepared by inserting a hydrophobically modified N-isopropylacrylamide/methacrylic acid copolymer (poly(NIPAM-co-MAA)) in the lipid bilayer of sterically stabilized liposomes. The present chapter describes polymer synthesis, as well as the preparation and characterization of large unilamellar pH-sensitive vesicles.
Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems
NASA Astrophysics Data System (ADS)
Curcio, Manuela; Altimari, Ilaria; Spizzirri, Umile Gianfranco; Cirillo, Giuseppe; Vittorio, Orazio; Puoci, Francesco; Picci, Nevio; Iemma, Francesca
2013-04-01
Native gelatin, N, N'-ethylenebisacrylamide, and sodium methacrylate were inserted into a spherical crosslinked structure by a solvent-free emulsion polymerization method, in which sunflower seed oil containing different amounts of lecithin was selected as continuous phase. Nanogels were characterized by morphological analysis, particle size distribution, and determination of swelling degree. Different dimensional distributions (100-500 nm) and water affinities were obtained by varying the amount of surfactant in the polymerization feed. Nanogels were non-toxic on human bone marrow mesenchymal stromal cells and enzymatically stable in the gastric tract, with weight losses ranging from 58 to 20 % in pancreatin solution. Release profiles of diclofenac sodium salt from the nanogels were evaluated at different pH and found to depend on crosslinking degree and drug-polymer interactions; while in pancreatin solution, a complete release of the drug was observed. The release mechanism and the diffusional contribution were evaluated by semiempirical equations.
Laser sclerectomy and 5-FU controlled-drug-release biodegradable implant for glaucoma therapy
NASA Astrophysics Data System (ADS)
Villain, Franck L.; Parel, Jean-Marie A.; Kiss, Katalin; Parrish, Richard K.; Kuhne, Francois; Takesue, Yoshiko; Hostyn, Patrick
1993-06-01
Laser sclerectomy, a simple filtering procedure performed to alleviate high intraocular pressure in glaucoma patients, was taught to offer longer lasting effect and therefore improve the patient's outcome when compared with the standard trabeculectomy procedure. Recent clinical trials have shown that this was not the case and pharmacologic wound healing modulation is also required with this new procedure. Five-Fluorouracil (5-FU) is useful as an adjunct treatment for glaucoma filtering surgery. However, efficacy depends upon maintaining sustained drug levels, currently achieved by repeated daily injection of the drug for several weeks. To overcome this limitation, we designed a biodegradable implant for the sustained release of 5-FU. After laser sclerectomy, the implant is inserted through the same 1 mm wide conjunctival snip incision and positioned below the open channel. Implantation takes less than a minute. The implant releases the drug for over 15 days and totally biodegrades in less than 100 days. The combined laser surgery and implantation procedure show great potentials for the treatment of glaucoma.
Characterization of drug-release kinetics in trabecular bone from titania nanotube implants
Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan
2012-01-01
Purpose The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Methods Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm) and horizontal (0–10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Results Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT–Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. Conclusion These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to optimize the delivery of specific therapies and to assist in the design of new drug delivery systems. This method has the potential to provide new knowledge to understand drug distribution in the bone environment and to considerably improve existing technologies for local administration in bone, including solving some critical problems in bone therapy and orthopedic implants. PMID:23028217
Characterization of drug-release kinetics in trabecular bone from titania nanotube implants.
Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan
2012-01-01
The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT-Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0-5 mm) and horizontal (0-10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT-Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT-Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to optimize the delivery of specific therapies and to assist in the design of new drug delivery systems. This method has the potential to provide new knowledge to understand drug distribution in the bone environment and to considerably improve existing technologies for local administration in bone, including solving some critical problems in bone therapy and orthopedic implants.
Rahman, Shafiur; Gulati, Karan; Kogawa, Masakazu; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan
2016-03-01
To treat skeletal conditions such as bone infections, osteoporotic fractures, and osteosarcoma, it would be ideal to introduce drugs directly to the affected site. Localized drug delivery from the bone implants is a promising alternative to systemic drug administration. In this study we investigated electrochemically nanoengineered Ti wire implants with titania nanotubes (TNTs), as minimally invasive drug-releasing implants for the delivery of drugs directly into the bone tissue. Since trabecular bone in vivo contains a highly interconnected bone marrow, we sought to determine the influence of marrow on drug release and diffusion. Electrochemical anodization of Ti wires (length 10 mm) was performed to create an oxide layer with TNTs on the surface, followed by loading with a fluorescent model drug, Rhodamine B (RhB). Cores of bovine trabecular bone were generated from the sternum of a young steer, and were processed to have an intact bone marrow, or the marrow was removed. RhB-loaded TNTs/Ti wires were inserted into the bone cores, which were then cultured ex vivo using the ZetOS™ bioreactor system to maintain bone viability. Release and diffusion of RhB inside the bone was monitored using fluorescence imaging and different patterns of drug transport in the presence or absence of marrow were observed. Scanning electron microscopy of the implants after retrieval from bone cores confirmed survival of the TNTs structures. Histological investigation showed the presence of bone cells adherent on the implants. This study shows a potential of Ti drug-releasing implants based on TNTs technology towards localized bone therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 714-725, 2016. © 2015 Wiley Periodicals, Inc.
Pharmacokinetic Studies of Sustained-Release Depot of Dexamethasone in Beagle Dogs.
Blizzard, Charles; Desai, Ankita; Driscoll, Arthur
2016-11-01
To examine the pharmacokinetic characteristics of sustained-release dexamethasone depots in two separate canine studies. Dexamethasone depots loaded with a clinically representative (0.4 mg) dose (DEXTENZA™; Ocular Therapeutix) or an elevated (0.7 mg) dose were inserted into the canaliculi of beagle eyes (n = 37 and n = 34, respectively). Tear fluid was collected for pharmacokinetic analysis of dexamethasone in both studies at predetermined time points. Explanted 0.4 mg depots were collected weekly to measure remaining drug level. Clinical observations and ophthalmic examinations were performed in both studies at each visit. The 0.4 mg depots released a median 308 μg by day 15 and tapered to complete drug release by day 28. Median dexamethasone tear fluid concentrations in the 0.4 mg study group decreased from 2,805 ng/mL at day 7 to 0 ng/mL on day 28. Median dexamethasone tear fluid concentrations in the 0.7 mg study group decreased from 4,370 ng/mL at 6 h post insertion to 830 ng/mL on day 35. Mean ± standard deviation intraocular pressures in the 0.4 and 0.7 mg study groups were 20.7 ± 2.8 and 19.0 ± 4.1 mmHg at baseline, respectively, and demonstrated no meaningful change (20.5 ± 3.0 and 20.6 ± 2.9 mmHg, respectively) over the studies' durations. No ocular toxicities were attributed to the dexamethasone depot. Sustained-release dexamethasone produced no identifiable ocular toxicity in this animal model, and pharmacokinetics demonstrated a sustained and tapered drug release over 28 days at a 0.4 mg dose and exceeded 35 days at a 0.7 mg dose.
Hierarchical drug release of pH-sensitive liposomes encapsulating aqueous two phase system.
Zhang, Xunan; Zong, Wei; Bi, Hongmei; Zhao, Kunming; Fuhs, Thomas; Hu, Ying; Cheng, Wenlong; Han, Xiaojun
2018-06-01
As promising drug delivery vehicles, previous investigations of liposomes as carriers are primarily focused on insertion and modification of lipid membrane interfaces. The utility of the inner core seems to be overlooked. Herein, we developed pH-sensitive liposomes (PSLs) containing an aqueous two phase system (ATPS), and intriguingly discovered their hierarchical release under acidic stimuli. ATPS containing two polymers (poly(ethylene glycol) (PEG) and dextran) is homogeneous above phase transition temperature when producing ATPS-liposomes, and separated into PEG-rich phase and dextran-rich phase after cooling down to room temperature. The overall release time of ATPS-liposomes is divided into two stages and prolonged compared to simple aqueous liposomes. The unique release profile is due to the disproportional distribution of drugs in two phases. Doxorubicin (DOX) is loaded in the ATPS-liposomes, and their half maximum inhibition concentration on HeLa cells is 0.018 μmol L -1 , which means 27.5 fold increase in inhibition efficiency over free DOX. Copyright © 2018 Elsevier B.V. All rights reserved.
Action against contraceptive implant threatened.
Dyer, C
1995-08-19
Norplant provides contraception over a five-year period through the gradual subcutaneous release of the progestogen levonorgestrel. It has been on the US market since 1991 and available in Great Britain since 1993. Already the subject of group legal actions in several US states, Norplant may soon be the target of lawyers in Britain for litigation. The lawyers allege that insertion of the implant under the skin of the upper arm by untrained doctors has led to painful and difficult removals and left women with scarred arms. Moreover, insufficient warning has been given about possible side effects such as mood swings and continuous vaginal bleeding. Hoechst Roussel, marketer of the implant in Britain, however, argues that only doctors trained in Norplant insertion and removal should attempt either procedure. Removal will be problematic only if preceded by a problem insertion. Hoechst Roussel recently advised gynecologists, in writing, not to attempt to extract the implant unless they are trained in the removal technique. By British law, the application of a drug product once approved for general release to general practitioners and family planning doctors cannot be restricted by a pharmaceutical company.
Akkari, Alessandra C S; Papini, Juliana Z Boava; Garcia, Gabriella K; Franco, Margareth K K Dias; Cavalcanti, Leide P; Gasperini, Antonio; Alkschbirs, Melissa Inger; Yokaichyia, Fabiano; de Paula, Eneida; Tófoli, Giovana R; de Araujo, Daniele R
2016-11-01
In this study, we reported the development and the physico-chemical characterization of poloxamer 407 (PL407) and poloxamer 188 (PL188) binary systems as hydrogels for delivering ropivacaine (RVC), as drug model, and investigate their use in infiltrative local anesthesia for applications on the treatment of post-operative pain. We studied drug-micelle interaction and micellization process by light scattering and differential scanning calorimetry (DSC), the sol-gel transition and hydrogel supramolecular structure by small-angle-X-ray scattering (SAXS) and morphological evaluation by Scanning Electron Microscopy (SEM). In addition, we have presented the investigation of drug release mechanisms, in vitro/in vivo toxic and analgesic effects. Micellar dimensions evaluation showed the formation of PL407-PL188 mixed micelles and the drug incorporation, as well as the DSC studies showed increased enthalpy values for micelles formation after addition of PL 188 and RVC, indicating changes on self-assembly and the mixed micelles formation evoked by drug incorporation. SAXS studies revealed that the phase organization in hexagonal structure was not affected by RVC insertion into the hydrogels, maintaining their supramolecular structure. SEM analysis showed similar patterns after RVC addition. The RVC release followed the Higuchi model, modulated by the PL final concentration and the insertion of PL 188 into the system. Furthermore, the association PL407-PL188 induced lower in vitro cytotoxic effects, increased the duration of analgesia, in a single-dose model study, without evoking in vivo inflammation signs after local injection. Copyright © 2016 Elsevier B.V. All rights reserved.
Munteanu, O; Radulescu, L; Bodean, O; Cirstoiu, C; Secara, D; Cirstoiu, M
2013-01-01
This study was undertaken in order to determine if antibiotic prophylaxis is mandatory, after the insertion of levonorgestrel-releasing intrauterine system in order to decrease the risk of pelvic inflammatory disease. We prospectively evaluated 44 patients, admitted in the Bucharest Emergency Hospital between the 1ⁱ of February 2012 and the 1ⁱ of October 2012, in whom the levonorgestrel-releasing intrauterine system was inserted. The patients enrolled were divided into two groups. In group A, a number of 22 patients, received, after the insertion of levonorgestrel-releasing intrauterine system, 875mg Amoxicillin Trihydrate + 125 mg Potassium Clavulanate, a dose every 12 hours for 5 days. Group B was represented by the other 22 patients who did not receive antibiotic prophylaxis. All patients were reevaluated at 4 and 12 weeks after the insertion of levonorgestrel-releasing intrauterine system. During the first 4 weeks after the insertion of levonorgestrel-releasing intrauterine system only two patients, one from group A and one from group B were diagnosed with pelvic inflammatory disease. At a second follow up visit - 12 weeks after the insertion of levonorgestrel-releasing intrauterine system, no other patient was diagnosed with pelvic inflammatory disease. Antibiotic prophylaxis is not mandatory, after the insertion of levonorgestrel-releasing intrauterine system in order to decrease the risk of pelvic inflammatory disease.
Shah, Viral; Choudhury, Bijaya Krushna
2017-11-01
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.
Method and device for supporting blood vessels during anastomosis
Doss, J.D.
1985-05-20
A device and method for preventing first and second severed blood vessels from collapsing during attachment to each other. The device comprises a dissolvable non-toxic stent that is sufficiently rigid to prevent the blood vessels from collapsing during anastomosis. The stent can be hollow or have passages to permit blood flow before it dissolves. A single stent can be inserted with an end in each of the two blood vessels or separate stents can be inserted into each blood vessel. The stent may include a therapeutically effective amount of a drug which is slowly released into the blood stream as the stent dissolves. 12 figs.
NASA Astrophysics Data System (ADS)
Mehdi, Yamina Ait; Itatahine, Asma; Fizir, Meriem; Xiao, Deli; Dramou, Pierre; He, Hua
2018-07-01
An ideal nanocarrier system for drug delivery is that one made from biocompatible and biodegradable materials for safe excretion from the biological system, and often with additional imaging abilities. In the present work, new core-shell silica microspheres have been prepared, with carrier decomposition after drug release. Paclitaxel, which is one of the most efficient drugs against a wide range of malignancies was integrated into the silica core. The carrier decomposition resulted from the escape of drug molecules with loading capacity about 16.95%. To achieve the fluorescents properties of the synthesized material a biocompatible photoluminescent prepared carbon dots were inserted in a silica shell around the Ptx-SiO2 core. The resultant silica core-shell (Ptx-SiO2CDs-SiO2) NPs with average particle size around 100 nm showed high fluorescent properties from the confocal laser scanning microscope observation. Further observation under UV-light at 365 nm also confirmed the photoluminescence. The Ptx-SiO2@CDs-SiO2 NPs were highly water soluble, and provide a sustained drug release as well as pH sensitivity. The incubation of A549 cells line with Ptx-SiO2@CDs-SiO2 NPs exhibits high cellular uptake as shown by CDs imaging. These properties in addition to the biocompatibility of Ptx-SiO2@CDs-SiO2 NPs and biodegradability of the silica core contributed simultaneously with the drug release process for easy body excretion after its functionality via renal system.
Munteanu, O; Radulescu, L; Bodean, O; Cirstoiu, C; Secara, D; Cirstoiu, M
2013-01-01
Abstract Objective: This study was undertaken in order to determine if antibiotic prophylaxis is mandatory, after the insertion of levonorgestrel-releasing intrauterine system in order to decrease the risk of pelvic inflammatory disease. Materials and methods: We prospectively evaluated 44 patients, admitted in the Bucharest Emergency Hospital between the 1ⁱ of February 2012 and the 1ⁱ of October 2012, in whom the levonorgestrel-releasing intrauterine system was inserted. The patients enrolled were divided into two groups. In group A, a number of 22 patients, received, after the insertion of levonorgestrel-releasing intrauterine system, 875mg Amoxicillin Trihydrate + 125 mg Potassium Clavulanate, a dose every 12 hours for 5 days. Group B was represented by the other 22 patients who did not receive antibiotic prophylaxis. All patients were reevaluated at 4 and 12 weeks after the insertion of levonorgestrel-releasing intrauterine system. Results: During the first 4 weeks after the insertion of levonorgestrel-releasing intrauterine system only two patients, one from group A and one from group B were diagnosed with pelvic inflammatory disease. At a second follow up visit – 12 weeks after the insertion of levonorgestrel-releasing intrauterine system, no other patient was diagnosed with pelvic inflammatory disease. Conclusion: Antibiotic prophylaxis is not mandatory, after the insertion of levonorgestrel-releasing intrauterine system in order to decrease the risk of pelvic inflammatory disease. PMID:24868262
Drug-eluting stent in malignant biliary obstruction
NASA Astrophysics Data System (ADS)
Lee, Dong-Ki; Jang, Sung Ill
2012-10-01
Endoscopic stent insertion is the treatment of choice for patients with malignant biliary obstruction. However, conventional stents enable only mechanical palliation of the obstruction, without any anti-tumor effects. Drugeluting stent (DES), which was first introduced in coronary artery disease, are currently under investigation for sustaining stent patency and prolonging patient survival by inhibiting tumor ingrowth in malignant biliary obstruction. Many factors affecting efficient drug delivery have been studied to determine how drugs with antitumor effects suppress tumor ingrowth, including the specific drugs incorporated, means of incorporating the drugs, mode of drug release, and stent structure. Advances have resulted in the construction of more effective non-vascular DES and ongoing clinical research. Non-vascular DES is expected to play a vital role in prolonging the survival of patients with malignant biliary obstruction.
Thamake, S I; Raut, S L; Ranjan, A P; Gryczynski, Z; Vishwanatha, J K
2011-01-21
This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.
NASA Astrophysics Data System (ADS)
Thamake, S. I.; Raut, S. L.; Ranjan, A. P.; Gryczynski, Z.; Vishwanatha, J. K.
2011-01-01
This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.
Ophthalmic drug dosage forms: characterisation and research methods.
Baranowski, Przemysław; Karolewicz, Bożena; Gajda, Maciej; Pluta, Janusz
2014-01-01
This paper describes hitherto developed drug forms for topical ocular administration, that is, eye drops, ointments, in situ gels, inserts, multicompartment drug delivery systems, and ophthalmic drug forms with bioadhesive properties. Heretofore, many studies have demonstrated that new and more complex ophthalmic drug forms exhibit advantage over traditional ones and are able to increase the bioavailability of the active substance by, among others, reducing the susceptibility of drug forms to defense mechanisms of the human eye, extending contact time of drug with the cornea, increasing the penetration through the complex anatomical structure of the eye, and providing controlled release of drugs into the eye tissues, which allows reducing the drug application frequency. The rest of the paper describes recommended in vitro and in vivo studies to be performed for various ophthalmic drugs forms in order to assess whether the form is acceptable from the perspective of desired properties and patient's compliance.
Ophthalmic Drug Dosage Forms: Characterisation and Research Methods
Baranowski, Przemysław; Karolewicz, Bożena; Gajda, Maciej; Pluta, Janusz
2014-01-01
This paper describes hitherto developed drug forms for topical ocular administration, that is, eye drops, ointments, in situ gels, inserts, multicompartment drug delivery systems, and ophthalmic drug forms with bioadhesive properties. Heretofore, many studies have demonstrated that new and more complex ophthalmic drug forms exhibit advantage over traditional ones and are able to increase the bioavailability of the active substance by, among others, reducing the susceptibility of drug forms to defense mechanisms of the human eye, extending contact time of drug with the cornea, increasing the penetration through the complex anatomical structure of the eye, and providing controlled release of drugs into the eye tissues, which allows reducing the drug application frequency. The rest of the paper describes recommended in vitro and in vivo studies to be performed for various ophthalmic drugs forms in order to assess whether the form is acceptable from the perspective of desired properties and patient's compliance. PMID:24772038
Dorr, R T; Surwit, E A; Droegemueller, W; Alberts, D S; Meyskens, F L; Chvapil, M
1982-11-01
Four in vitro preparations were constructed to simulate the intravaginal release of two retinoids, all-trans-retinoic acid (t-RA) and 13-cis-retinoic acid (c-RA), from a 0.7% collagen sponge diaphragm insert. Four t-RA concentrations, 0.019, 0.05, 0.1, and 0.15% in methanol were added to the sponge. The release into an artificial vaginal fluid was monitored serially over 72 h by serial analysis for t-RA and c-RA using high-pressure liquid chromatography. In each preparation, retinoid release was immediate and noncontinuous. At 37 degrees C, the retinoids were stable for at least 48 h. Trans-retinoic acid was the predominant retinoid recovered. Only trace amounts of the cis-isomer were released. Peak t-RA levels were 20 microM after 0.01%, 60-80 microM after 0.05%, 100-200 microM after 0.1%, and 320 microM after 0.15%. When the vaginal fluid bath was changed after 5 h, no further significant retinoid release occurred. There was significant loss of up to 70% of the applied t-RA into the collagen sponge. The retinoid binding was concentration dependent (higher binding with higher concentrations) and was maximal only after 24 h of co-incubation. The discontinuous release of t-RA and the high degree of binding to collagen would seem to preclude use of the diaphragm insert as a vaginal drug delivery system, at least for retinoids.
21 CFR 310.515 - Patient package inserts for estrogens.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Patient package inserts for estrogens. 310.515... package inserts for estrogens. (a) Requirement for a patient package insert. FDA concludes that the safe... patient package insert containing information concerning the drug's benefits and risks. An estrogen drug...
Development and characterization of nano-fiber patch for the treatment of glaucoma.
Gagandeep; Garg, Tarun; Malik, Basant; Rath, Goutam; Goyal, Amit K
2014-03-12
In the present work polymeric nano-fiber patches was developed for the effective treatment of glaucoma using timolol maleate and dorzolamide hydrochloride as model drugs. The nano-fibers were prepared by electrospinning technique and were characterized on the basis of fiber diameter, morphology, entrapment efficiency, mucoadhesive strength, and drug release behavior, etc. Final formulations were inserted in the cul-de-sac of glaucoma induced rabbits and the efficacy of the formulation was evaluated. The results clearly indicated the potential of the developed formulation for occur drug delivery. There was a significant fall in the intraocular pressure compared to commercial eye drops. Copyright © 2013 Elsevier B.V. All rights reserved.
Han, Uiyoung; Seo, Younghye; Hong, Jinkee
2016-04-07
Layer by layer (lbl) assembled multilayer thin films are used in drug delivery systems with attractive advantages such as unlimited selection of building blocks and free modification of the film structure. In this paper, we report the fundamental properties of lbl films constructed from different substances such as PS-b-PAA amphiphilic block copolymer micelles (BCM) as nano-sized drug vehicles, 2D-shaped graphene oxide (GO), and branched polyethylenimine (bPEI). These films were fabricated by successive lbl assembly as a result of electrostatic interactions between the carboxyl group of BCM and amine group of functionalized GO or bPEI under various pH conditions. We also compared the thickness, roughness, morphology and degree of adsorption of the (bPEI/BCM) films to those in the (GO/BCM) films. The results showed significant difference because of the distinct pH dependence of each material. In addition, drug release rates of the GO/BCM film were more rapid those of the (bPEI/BCM) film in pH 7.4 and pH 2 PBS buffer solutions. In (bPEI/BCM/GO/BCM) film, the inserted GO layers into bPEI/BCM multilayer induced rapid drug release. We believe that these materials &pH dependent film properties allow developments in the control of coating techniques for biological and biomedical applications.
On the physics of multidrug efflux through a biomolecular complex
NASA Astrophysics Data System (ADS)
Mishima, Hirokazu; Oshima, Hiraku; Yasuda, Satoshi; Amano, Ken-ichi; Kinoshita, Masahiro
2013-11-01
Insertion and release of a solute into and from a vessel comprising biopolymers is a fundamental function in a biological system. A typical example is found in a multidrug efflux transporter. "Multidrug efflux" signifies that solutes such as drug molecules with diverse properties can be handled. In our view, the mechanism of the multidrug efflux is not chemically specific but rather has to be based on a physical factor. In earlier works, we showed that the spatial distribution of the solute-vessel potential of mean force (PMF) induced by the solvent plays imperative roles in the insertion/release process. The PMF can be decomposed into the energetic and entropic components. The entropic component, which originates from the translational displacement of solvent molecules, is rather insensitive to the solute-solvent and vessel inner surface-solvent affinities. This feature is not shared with the energetic component. When the vessel inner surface is neither solvophobic nor solvophilic, the solvents within the vessel cavity and in the bulk offer almost the same environment to any solute with solvophobicity or solvophilicity, and the energetic component becomes much smaller than the entropic component (i.e., the latter predominates over the former). Our idea is that the multidrug efflux can be realized if the insertion/release process is accomplished by the entropic component exhibiting the insensitivity to the solute properties. However, we have recently argued that the entropic release of the solute is not feasible as long as the vessel geometry is fixed. Here we consider a model of TolC, a cylindrical vessel possessing an entrance at one end and an exit at the other end for the solute. The spatial distribution of the PMF is calculated by employing the three-dimensional integral equation theory with rigid-body models in which the constituents interact only through hard-body potentials. Since the behavior of these models is purely entropic in origin, our analysis is focused on the entropic component. We show that the entropically inserted solute can be released by a continuous variation of the vessel geometry which forms a time-dependent entropic force continuing to accelerate the solute motion to the exit. Solutes with a wide range of sizes are entropically released using the same vessel-geometry variation. The results obtained are fairly general and also applicable to the efflux pump protein AcrB and ATP-binding cassette transporter.
A long-acting buprenorphine delivery system.
Pontani, R B; Misra, A L
1983-03-01
A subcutaneously implantable buprenorphine delivery system utilizing cholesterol-glyceryltristearate matrix for prolonged release of drug is described. Implantable cylindrical pellets of buprenorphine (cholesterol 36 mg, glyceryltristearate 4 mg, buprenorphine hydrochloride 10 mg), diameter 3 mm, length 6 mm blocked the antinociceptive action (hot plate, 55 degrees C) of 10 mg kg-1 SC challenge dose of morphine in rats for 12 weeks or more (longer periods not evaluated). The cumulative percent release of buprenorphine from the test devices 2, 4, 6, 10 and 12 weeks after implantation was 27.4, 35.9, 37.6, 39.9 and 43.1, respectively. The release of buprenorphine from 10 mg pellets approximated first-order kinetics with half-lives of 0.85 and 50.24 weeks, for alpha and beta phases, respectively. The test devices possess the desirable characteristics of simplicity, biocompatibility, nontoxicity, ease of sterilization with ethylene oxide, small size for ease of insertion and removal, minimal encapsulation by surrounding tissue and an extended period of drug release unaffected by body metabolism. No side effects were seen in implanted rats which fed well and gained weight during entire treatment. Neither deterioration of implant nor any gross anatomic changes at implant site were apparent 12 weeks after pellet implantation.
Kassem, Abeer Ahmed; Issa, Doaa Ahmed Elsayed; Kotry, Gehan Sherif; Farid, Ragwa Mohamed
2017-01-01
Periodontal disease broadly defines group of conditions in which the supportive structure of the tooth (periodontium) is destroyed. Recent studies suggested that the anti-diabetic drug metformin hydrochloride (MF) has an osteogenic effect and is beneficial for the management of periodontitis. Development of strong mucoadhesive multiple layer film loading small dose of MF for intra-pocket application. Multiple layer film was developed by double casting followed by compression method. Either 6% carboxy methyl cellulose sodium (CMC) or sodium alginate (ALG) constituted the inner drug (0.6%) loaded layer. Thiolated sodium alginate (TSA; 2 or 4%) constituted the outer drug free layers to enhance mucoadhesion and achieve controlled drug release. Optimized formulation was assessed clinically on 20 subjects. Films were uniform, thin and hard enough for easy insertion into periodontal pockets. Based on water uptake and in vitro drug release, CMC based film with 4% TSA as an outer layer was the optimized formulation with enhanced mucoadhesion and controlled drug release (83.73% over 12 h). SEM showed the effective fabrication of the triple layer film in which connective lines between the layers could be observed. FTIR examination suggests possibility of hydrogen bonding between the -NH groups of metformin and -OH groups of CMC. DSC revealed the presence of MF mainly in the amorphous form. Clinical results indicated improvement of all clinical parameters six months post treatment. The results suggested that local application of the mucoadhesive multiple layer films loaded with metformin hydrochloride was able to manage moderate chronic periodontitis.
Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle.
Gulsen, Derya; Chauhan, Anuj
2005-03-23
Approximately 90% of all ophthalmic drug formulations are now applied as eye-drops. While eye-drops are convenient and well accepted by patients, about 95% of the drug contained in the drops is lost due to absorption through the conjunctiva or through the tear drainage. A major fraction of the drug eventually enters the blood stream and may cause side effects. The drug loss and the side effects can be minimized by using disposable soft contact lenses for ophthalmic drug delivery. The essential idea is to encapsulate the ophthalmic drug formulations in nanoparticles, and disperse these drug-laden particles in the lens material. Upon insertion into the eye, the lens will slowly release the drug into the pre lens (the film between the air and the lens) and the post-lens (the film between the cornea and the lens) tear films, and thus provide drug delivery for extended periods of time. This paper focuses on dispersing stabilized microemulsion drops in poly-2-hydroxyethyl methacrylate (p-HEMA) hydrogels. The results of this study show that the p-HEMA gels loaded with a microemulsion that is stabilized with a silica shell are transparent and that these gels release drugs for a period of over 8 days. Contact lenses made of microemulsion-laden gels are expected to deliver drugs at therapeutic levels for a few days. The delivery rates can be tailored by controlling the particle and the drug loading. It may be possible to use this system for both therapeutic drug delivery to eyes and the provision of lubricants to alleviate eye problems prevalent in extended lens wear.
Pereira-Leite, Catarina; Nunes, Cláudia; Bozelli, José C; Schreier, Shirley; Kamma-Lorger, Christina S; Cuccovia, Iolanda M; Reis, Salette
2018-05-23
Nitric oxide (NO)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) have been developed to overcome the gastrointestinal and cardiovascular toxicity of NSAIDs, by chemically associating a NO-releasing moiety with commercial NSAIDs. Since increasing evidence supports that NSAIDs toxicity is related to their topical actions in membrane lipids, this work aims to evaluate the impact of adding a NO-releasing moiety to parent NSAIDs regarding their effect on lipid bilayers. Thus, the interactions of NO-indomethacin and indomethacin (parent drug) with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers were described herein at pH 3.0 and 7.4. Diverse experimental techniques were combined to characterize the partitioning and location of drugs in DMPC bilayers, and to analyze their effect on the lipid phase transition and the bilayer structure and dynamics. The partitioning of NO-indomethacin into DMPC bilayers was similar to that of charged indomethacin and smaller than that of neutral indomethacin. Both drugs were found to insert the DMPC bilayer and the membrane location of indomethacin was pH-dependent. NO-indomethacin and indomethacin induced a decrease of the main phase transition temperature of DMPC. The effect of these drugs on the bilayer structure and dynamics was dependent on diverse factors, namely drug ionization state, drug:lipid molar ratio, temperature and lipid phase. It is noteworthy that NO-indomethacin induced more pronounced alterations in the biophysical properties of DMPC bilayers than indomethacin, considering equivalent membrane concentrations. Such modifications may have in vivo implications, particularly in the gastric mucosa, where NO-NSAIDs-induced changes in the protective properties of phospholipid layers may contribute to the occurrence of adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Huan; Zhang, Wei; Li, Yan; Ye, Fei F; Yin, Peng P; Yu, Xiu; Hu, Mei N; Fu, Yuan S; Wang, Che; Shang, De J
2014-11-01
A novel bifunctional liposome with long-circulating and pH-sensitive properties was constructed using poly(2-ethyl-oxazoline)-cholesteryl methyl carbonate (PEtOz-CHMC) in this study. PEtOz-CHMC was synthesized and characterized by TLC, IR and (1)H-NMR. The obtained PEtOz lipid was inserted into liposomes by the post-insertion method. Through a series of experiments, such as drug release, tumor cell uptake, cytotoxicity, calcium-induced aggregation, pharmacokinetic experiments, etc., the pH-sensitive and long-circulating properties of PEtOzylated liposomes was identified. PEtOz-CHMC modified liposomes (PEtOz-L) showed increased calcein release at low pH. Flow cytometric analysis results showed that the fusion and cellular uptake of PEtOz-L could be promoted significantly at pH 6.4 compared with those at pH 7.4. Confocal laser scanning microscope observations revealed that PEtOz-L could respond to low endosomal pH and directly released the fluorescent tracer into the cytoplasm. MTT assays in HeLa cells demonstrated that doxorubicin hydrochloride (DOX) loaded PEtOz-L exhibited stronger anti-tumor activity in a medium at pH 6.4 than in a medium pH 7.4. PEtOz-L remained stable when these liposomes were incubated in calcium chloride solution. The cumulative calcein release rate of PEtOz-L was significantly lower than that of CL when the liposomes were dialysed in PBS. The pharmacokinetic experiments of liposomes in rats showed that t 1/2 and AUC of PEtOz-L were 4.13 times and 4.71 times higher than those of CL. PEtOzylated liposomes exhibits excellent long-circulating and pH-sensitive properties. Our results suggest that PEtOz is a promising biomaterial for the modification of liposome in drug delivery.
Nanocarriers in ocular drug delivery: an update review.
Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani Rai; Vyas, S P
2009-01-01
Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit.
21 CFR 886.5420 - Contact lens inserter/remover.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Contact lens inserter/remover. 886.5420 Section 886.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5420 Contact lens inserter/remover...
Dixon, A B; Knights, M; Pate, J L; Lewis, P E; Inskeep, E K
2006-04-01
Three experiments were conducted with a total of 1579 ewes to examine reproductive performance in response to synchronization of oestrus during the breeding season, using controlled internal drug releasing (CIDR-G) inserts in regimens designed to provide high concentrations of circulating progesterone. In experiment 1, treatment with two CIDR-G inserts for 12 days produced conception rate (79%) and prolificacy (1.9) to first service equivalent to breeding at natural oestrus (56% and 2.0, respectively). Pregnancy rates to two service periods were 90 and 79%, respectively. In experiments 2 and 3, progesterone was delivered by a single CIDR-G insert for 5 days in combination with prostaglandin F2alpha (PGF2alpha; 5 mg i.m., twice, 3 h apart) the day before (experiment 2), or at insert removal (experiment 3). The combined treatments improved rates of synchronization of oestrus (p<0.01) by 23 and 20% points, respectively, and pregnancy rates to the first service period by 19 (p<0.05) and 13 (p<0.01) percentage points, respectively, compared to treatment with PGF2alpha alone. It is concluded that the combination of treatment for 5 days with a CIDR-G insert and two injections of 5 mg PGF2alpha, the day before, or the day of insert removal, were effective treatments to obtain high fertility at synchronized oestrus in ewes during the breeding season.
Vree, T B; Dammers, E; Exler, P S; Maes, R A
2000-06-01
This study was based on data from a bioequivalence study (n=24) of two different formulations of suppositories containing 500 mg mesalazine (formulation I and II), with a similar dissolution profile in phosphate buffer pH 6.8. There was a large intra- and intersubject variability in the plasma concentration-time curves of mesalazine from both suppositories. The aim of the investigation was to identify the parameters that caused the observed large variations in release and absorption of mesalazine in the rectum. Plasma mesalazine and acetylmesalazine, and urine acetylmesalazine concentrations were determined according to validated methods involving HPLC analysis with coulometric detection. Lower limit of quantitation values were respectively 10.4 and 19.4 ng mL(-1) in plasma and 0.96 microg mL(-1) in urine. The time of defecation before and after insertion was recorded. There was a clear distinction between subjects who showed monophasic mesalazine release/absorption and those who showed biphasic and more extended release/absorption. With formulation I there was a correlation between time of defecation before dosing and the type of absorption, monophasic and biphasic absorbers showed a significant difference in the time of defecation, e.g. 9.7+/-5.6 h vs 18.8+/-11.9 h (P = 0.0218). The impact of time of defecation before dosing was non-significant with formulation II, 16.7+/-7.2 h vs 15.1+/-4.2 h (P = 0.67). The impact of the time elapsed between administration and time of defecation after the insertion of the suppository was not significant for the type of release/absorption. The plasma concentration-time curves of the metabolite ran parallel to that of the parent drug, the more parent drug was released/absorbed, the more was acetylated (P = 0.0013) and excreted into the urine (P = 0.0004). After absorption the compound was metabolized into acetylmesalazine, and renally excreted (12-13% of the dose). Monophasic release/ absorption resulted in 7.1% metabolite with I and 10.3% with II (P = 0.0004), while biphasic release/absorption gave 16.8% metabolite with I and 15.5% with II. The renal clearance of the metabolite acetylmesalazine was independent of the observed defecation patterns (300 mL min(-1), P > 0.8), stool composition, and type of absorption.
21 CFR 310.501 - Patient package inserts for oral contraceptives.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Patient package inserts for oral contraceptives... Patient package inserts for oral contraceptives. (a) Requirement for a patient package insert. The safe and effective use of oral contraceptive drug products requires that patients be fully informed of the...
21 CFR 310.501 - Patient package inserts for oral contraceptives.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Patient package inserts for oral contraceptives... Patient package inserts for oral contraceptives. (a) Requirement for a patient package insert. The safe and effective use of oral contraceptive drug products requires that patients be fully informed of the...
21 CFR 310.501 - Patient package inserts for oral contraceptives.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Patient package inserts for oral contraceptives... Patient package inserts for oral contraceptives. (a) Requirement for a patient package insert. The safe and effective use of oral contraceptive drug products requires that patients be fully informed of the...
Design and evaluation of moxifloxacin hydrochloride ocular inserts.
Pawar, Pravin K; Katara, Rajesh; Majumdar, Dipak K
2012-03-01
The objective of the present investigation was to prepare and evaluate ocular inserts of moxifloxacin. An ocular insert was made from an aqueous dispersion of moxifloxacin, sodium alginate, polyvinyl alcohol, and dibutyl phthalate by the film casting method. The ocular insert (5.5 mm diameter) was cross-linked by CaCl2 and was coated with Eudragit S-100, RL-100, RS-100, E-100 or L-100. The in vitro drug drainage/permeation studies were carried out using an all-glass modified Franz diffusion cell. The drug concentration and mucoadhesion time of the ocular insert were found satisfactory. Cross-linking and coating with polymers extended the drainage from inserts. The cross-linked ocular insert coated with Eudragit RL-100 showed maximum drug permeation compared to other formulations.
21 CFR 310.515 - Patient package inserts for estrogens.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Patient package inserts for estrogens. 310.515 Section 310.515 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE NEW DRUGS Requirements for Specific New Drugs or Devices § 310.515 Patient...
[The development and operation of a package inserts service system for electronic medical records].
Yamada, Hidetoshi; Nishimura, Sachiho; Shimamori, Yoshimitsu; Sato, Seiji; Hayase, Yukitoshi
2003-03-01
To promote the appropriate use of pharmaceuticals and to prevent side effects, physicians need package inserts on medicinal drugs as soon as possible. A medicinal drug information service system was established for electronic medical records to speed up and increase the efficiency of package insert communications within a medical institution. Development of this system facilitates access to package inserts by, for example, physicians. The time required to maintain files of package inserts was shortened, and the efficiency of the drug information service increased. As a source of package inserts for this system, package inserts using a standard generalized markup language (SGML) form were used, which are accessible to the public on the homepage of the Organization for Pharmaceutical Safety and Research (OPSR). This study found that a delay occurred in communicating revised package inserts from pharmaceutical companies to the OPSR. Therefore a pharmaceutical department page was set up as part of the homepage of the medical institution for electronic medical records to shorten the delay in the revision of package inserts posted on the medicinal drug information service homepage of the OPSR. The usefulness of this package insert service system for electronic medical records is clear. For more effective use of this system based on the OPSR homepage pharmaceutical companies have been requested to provide quicker updating of package inserts.
Pettersson, Mattias; Pettersson, Jean; Molin Thorén, Margareta; Johansson, Anders
2017-01-01
Abstract In the present study, amount of titanium (Ti) released into the surrounding bone during placement of implants with different surface structure was investigated. Quantification of Ti released during insertion from three different implants was performed in this ex vivo study. Jaw bone from pigs was used as model for installation of the implants and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used for analysis of the released Ti. Implant surface were examined with scanning electron microscopy (SEM), before and after the placement into the bone. Ti was abraded to the surrounding bone upon insertion of a dental implant and the surface roughness of the implant increased the amount of Ti found. Diameter and total area of the implant were of less importance for the Ti released to the bone. No visible damages to the implant surfaces could be identified in SEM after placement. PMID:29242814
Hartmann, Xavier H M; van der Linde, Peter; Homburg, Erik F G A; van Breemen, Lambert C A; de Jong, Arthur M; Luttge, Regina
2015-11-18
Arrays of microneedles (MNAs) are integrated in an out-of-plane fashion with a base plate and can serve as patches for the release of drugs and vaccines. We used soft-lithography and micromolding to manufacture ceramic nanoporous (np)MNAs. Failure modes of ceramic npMNAs are as yet poorly understood and the question remained: is our npMNA platform technology ready for microneedle (MN) assembly into patches? We investigated npMNAs by microindentation, yielding average crack fracture forces above the required insertion force for a single MN to penetrate human skin. We further developed a thumb pressure-actuated applicator-assisted npMNA insertion method, which enables anchoring of MNs in the skin by an adhesive in one handling step. Using a set of simple artificial skin models, we found a puncture efficiency of this insertion method a factor three times higher than by applying thumb pressure on the npMNA base plate directly. In addition, this new method facilitated zero MN-breakage due to a well-defined force distribution exerted onto the MNs and the closely surrounding area prior to bringing the adhesive into contact with the skin. Owing to the fact that such parameter space exists, we can conclude that npMNAs by soft lithography are a platform technology for MN assembly into a patch.
Rapid implantation of dissolving microneedles on an electrospun pillar array.
Yang, Huisuk; Kim, Soyoung; Huh, Inyoung; Kim, Suyong; Lahiji, Shayan F; Kim, Miroo; Jung, Hyungil
2015-09-01
Dissolving microneedles (DMNs), designed to release drugs and dissolve after skin insertion, have been spotlighted as a novel transdermal delivery system due to their advantages such as minimal pain and tissue damage, ability to self-administer, and no associated hazardous residues. The drug delivery efficacy of DMNs, however, is limited by incomplete insertion and the extended period required for DMN dissolution. Here, we introduce a novel DMN delivery system, DMN on an electrospun pillar array (DEPA), which can rapidly implant DMNs into skin. DMNs were fabricated on a pillar array covered by a fibrous sheet produced by electrospinning PLGA solution (14%, w/v). DMNs were implanted into the skin by manual application (press and vibration for 10 s) by tearing of the fibers hung on the 300-μm pillars. Separation of DMNs from the fibrous sheet was dependent on both pillar height and the properties of the fibrous sheet. After evaluation of the implantation and dissolution of DMNs with diffusion of red dye by taking cross-sectional images of porcine skin, the hypoglycemic effect of insulin loaded DEPA was examined using a healthy mouse model. This DMN array overcomes critical issues associated with the low penetration efficiency of flat patch-based DMNs, and will allow realization of patient convenience with the desired drug efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Burns, Kelly E; Delehanty, James B
2018-04-27
In this study, we developed a peptide-dendrimer-drug conjugate system for the pH-triggered direct cytosolic delivery of the cancer chemotherapeutic doxorubicin (DOX) using the pH Low Insertion Peptide (pHLIP). We synthesized a pHLIP-dendrimer-DOX conjugate in which a single copy of pHLIP displayed a generation three dendrimer bearing multiple copies of DOX via disulfide linkages. Biophysical analysis showed that both the dendrimer and a single DOX conjugate inserted into membrane bilayers in a pH-dependent manner. Time-resolved confocal microscopy indicate the single DOX conjugate may undergo a faster rate of membrane translocation, due to greater nuclear localization of DOX at 24 h and 48 h post delivery. At 72 h, however, the levels of DOX nuclear accumulation for both constructs were identical. Cytotoxicity assays revealed that both constructs mediated ∼80% inhibition of cellular proliferation at 10 µM, the dendrimer complex exhibited a 17% greater cytotoxic effect at lower concentrations and greater than three-fold improvement in IC 50 over free DOX. Our findings show proof of concept that the dendrimeric display of DOX on the pHLIP carrier (1) facilitates the pH-dependent and temporally-controlled release of DOX to the cytosol, (2) eliminates the endosomal sequestration of the drug cargo, and (3) augments DOX cytotoxicity relative to the free drug. Published by Elsevier B.V.
Antitumor effect of fibrin glue containing temozolomide against malignant glioma
Anai, Shigeo; Hide, Takuichiro; Takezaki, Tatsuya; Kuroda, Jun-ichiro; Shinojima, Naoki; Makino, Keishi; Nakamura, Hideo; Yano, Shigetoshi; Kuratsu, Jun-ichi
2014-01-01
Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma. PMID:24673719
Goudarz Mehdikhani, Kaveh; Morales Moreno, Beatriz; Reid, Jeremy J; de Paz Nieves, Ana; Lee, Yuo-Yu; González Della Valle, Alejandro
2016-07-01
We studied the need to use a constrained insert for residual intraoperative instability and the 1-year result of patients undergoing total knee arthroplasty (TKA) for a varus deformity. In a control group, a "classic" subperiosteal release of the medial soft tissue sleeve was performed as popularized by pioneers of TKA. In the study group, an algorithmic approach that selectively releases and pie-crusts posteromedial structures in extension and anteromedial structures in flexion was used. All surgeries were performed by a single surgeon using measured resection technique, and posterior-stabilized, cemented implants. There were 228 TKAs in the control group and 188 in the study group. Outcome variables included the use of a constrained insert, and the Knee Society Score at 6 weeks, 4 months, and 1 year postoperatively. The effect of the release technique on use of constrained inserts and clinical outcomes were analyzed in a multivariate model controlling for age, sex, body mass index, and severity of deformity. The use of constrained inserts was significantly lower in study than in control patients (8% vs 18%; P = .002). There was no difference in the Knee Society Score and range of motion between the groups at last follow-up. No patient developed postoperative medial instability. This algorithmic, pie-crusting release technique resulted in a significant reduction in the use of constrained inserts with no detrimental effects in clinical results, joint function, and stability. As constrained TKA implants are more costly than nonconstrained ones, if the adopted technique proves to be safe in the long term, it may cause a positive shift in value for hospitals and cost savings in the health care system. Copyright © 2016 Elsevier Inc. All rights reserved.
21 CFR 310.501 - Patient package inserts for oral contraceptives.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Patient package inserts for oral contraceptives. 310.501 Section 310.501 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... the requirements of this section is misbranded under section 502 of the Federal Food, Drug, and...
21 CFR 310.501 - Patient package inserts for oral contraceptives.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Patient package inserts for oral contraceptives. 310.501 Section 310.501 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... the requirements of this section is misbranded under section 502 of the Federal Food, Drug, and...
Nguyen, Yann; Bernardeschi, Daniele; Kazmitcheff, Guillaume; Miroir, Mathieu; Vauchel, Thomas; Ferrary, Evelyne; Sterkers, Olivier
2015-02-01
Loading otoprotective drug into cochlear implant might change its mechanical properties, thus compromising atraumatic insertion. This study evaluated the effect of incorporation of dexamethasone (DXM) in the silicone of cochlear implant arrays on insertion forces. Local administration of DXM with embedded array can potentially reduce inflammation and fibrosis after cochlear implantation procedure to improve hearing preservation and reduce long-term impedances. Four models of arrays have been tested: 0.5-mm distal diameter array (n = 5) used as a control, drug-free 0.4-mm distal diameter array (n = 5), 0.4-mm distal diameter array with 1% eluded DXM silicone (n = 5), and 0.4-mm distal diameter array with 10% eluded DXM silicone (n = 5). Via a motorized insertion bench, each array has been inserted into an artificial scala tympani model. The forces were recorded by a 6-axis force sensor. Each array was tested seven times for a total number of 140 insertions. During the first 10-mm insertion, no difference between the four models was observed. From 10- to 24-mm insertion, the 0.5-mm distal diameter array presented higher insertion forces than the drug-free 0.4-mm distal diameter arrays, with or without DXM. Friction forces for drug-free 0.4-mm distal diameter array and 0.4-mm distal diameter DXM eluded arrays were similar on all insertion lengths. Incorporation of DXM in silicone for cochlear implant design does not change electrode array insertion forces. It does not raise the risk of trauma during array insertion, making it suitable for long-term in situ administration to the cochlea.
Lim, Pei Jin; Chu, Justin Jang Hann
2014-01-01
Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. PMID:24587455
Ex vivo rabbit cornea diffusion studies with a soluble insert of moxifloxacin.
Sebastián-Morelló, María; Calatayud-Pascual, María Aracely; Rodilla, Vicent; Balaguer-Fernández, Cristina; López-Castellano, Alicia
2018-02-01
The objective of this research was to develop and evaluate an ocular insert for the controlled drug delivery of moxifloxacin which could perhaps be used in the treatment of corneal keratitis or even bacterial endophthalmitis. We have evaluated the ex vivo ocular diffusion of moxifloxacin through rabbit cornea, both fresh and preserved under different conditions. Histological studies were also carried out. Subsequently, drug matrix inserts were prepared using bioadhesive polymers. The inserts were evaluated for their physicochemical parameters. Ophthalmic ex vivo permeation of moxifloxacin was carried out with the most promising insert. The formulate insert was thin and provided higher ocular diffusion than commercial formulations. Ocular diffusion studies revealed significant differences between fresh and frozen corneas. Histological examinations also showed differences in the thickness of stroma between fresh and frozen corneas. The ophthalmic insert we have developed allows a larger quantity of moxifloxacin to permeate through the cornea than existing commercial formulations of the drug. Ocular delivery of moxifloxacin with this insert could be a new approach for the treatment of eye diseases.
Bioactive nitric oxide concentration does not increase during reactive hyperemia in human skin.
Zhao, J L; Pergola, P E; Roman, L J; Kellogg, D L
2004-02-01
This study examined whether nitric oxide (NO) is involved in the cutaneous response to reactive hyperemia (RH) in the human forearm. We enrolled seven healthy volunteers. NO concentrations were monitored using a NO selective amperometric electrode (ISO-NOP200, World Precision Instruments) inserted into the skin of the forearm. Laser-Doppler flowmetry (Moor Instruments) was used for monitoring skin blood flow (SkBF) at the same site. SkBF and NO levels were monitored and recorded continuously throughout the experiment. An intradermal microdialysis probe was inserted adjacent to the NO electrode for drug delivery. Data collection began 140 min after the NO electrodes and microdialysis probes were inserted. RH was achieved by the inflation of a blood pressure cuff to 25 mmHg above systolic pressure for 7 min after which the pressure in the cuff was abruptly released. Acetylcholine (ACh) was given by microdialysis probe at the end of RH study to verify the ability of the electrode system to detect changes in the NO concentration. SkBF and NO data before RH and immediately, 2, 5, 7, and 10 min after cuff deflation were used for analysis. SkBF increased immediately after release of the occlusion (P < 0.0001) and remained elevated for 2 min. No significant NO changes occurred with the increases in LDF. ACh induced increases in both SkBF and NO (P < 0.000 and P < 0.037, respectively). We conclude that RH increases SkBF by mechanisms that do not require a measurable increase in NO concentrations.
46 CFR 121.510 - Recommended emergency broadcast instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Immediate Danger to Life or Property. (4) Say: “THIS IS (INSERT VESSEL'S NAME), (INSERT VESSEL'S NAME), (INSERT VESSEL'S NAME), (INSERT VESSEL'S CALL SIGN), OVER.” (5) Release the microphone button briefly and... 16 VHF and 2182 kHz on SSB are for emergency and calling purposes only.) (3) Press microphone button...
Hognert, Helena; Kopp Kallner, Helena; Cameron, Sharon; Nyrelli, Christina; Jawad, Izabella; Heller, Rebecca; Aronsson, Annette; Lindh, Ingela; Benson, Lina; Gemzell-Danielsson, Kristina
2016-11-01
Does a progestin releasing subdermal contraceptive implant affect the efficacy of medical abortion if inserted at the same visit as the progesterone receptor modulator, mifepristone, at medical abortion? A etonogestrel releasing subdermal implant inserted on the day of mifepristone did not impair the efficacy of the medical abortion compared with routine insertion at 2-4 weeks after the abortion. The etonogestrel releasing subdermal implant is one of the most effective long acting reversible contraceptive methods. The effect of timing of placement on the efficacy of mifepristone and impact on prevention of subsequent unintended pregnancy is not known. This multicentre, randomized controlled, equivalence trial with recruitment between 13 October 2013 and 17 October 2015 included a total of 551 women with pregnancies below 64 days gestation opting for the etonogestrel releasing subdermal implant as postabortion contraception. Women were randomized to either insertion at 1 hour after mifepristone intake (immediate) or at follow-up 2-4 weeks later (delayed insertion). An equivalence design was used due to advantages for women such as fewer visits to the clinic with immediate insertion. The primary outcome was the percentage of women with complete abortion not requiring surgical intervention within 1 month. Secondary outcomes included insertion rates, pregnancy and repeat abortion rates during 6 months follow-up. Analysis was per protocol and by intention to treat. Women aged 18 years and older who had requested medical termination of a pregnancy up to 63 days of gestation and opted for an etonogestrel releasing contraceptive implant were recruited in outpatient family planning clinics in six hospitals in Sweden and Scotland. Efficacy of medical abortion was 259/275 (94.2%) in the immediate insertion group and 239/249 (96%) in the routine insertion group with a risk difference of 1.8% (95% CI -0.4 to 4.1%), which was within the ±5% margin of equivalence. The insertion rate was 275/277 (98.9%) in the immediate group compared to 187/261 (71.6%) women in the routine group (P < 0.001). At 6 months of follow-up significantly fewer women in the immediate group had become pregnant again (2/277, 0.8%) compared to the routine group (10/261, 3.8%) P = 0.018. For the main outcome loss to follow-up data was minimized through access to patient records. Efforts were made to reduce loss to follow-up also for secondary outcomes. The results of the sensitivity analysis did not differ from the intention to treat or per protocol analysis. Guidelines on postabortion contraception should be amended to include insertion of the etonogestrel releasing implant at the time of mifepristone intake for medical abortion up to and including a gestation of 63 days. This study was funded by the Swedish Research Council (2012-2844), Stockholm City County and Karolinska Institutet (ALF). The contraceptive implants were provided by Merck and supplied by MSD Sweden. HKK and KGD have received honorariums for giving lectures for MSD/Merck and have participated in the national (HKK and KGD) and international (KGD) medical advisory boards for MSD/Merck. The other authors have nothing to declare. ClinicalTrials number NCT01920022. 06 August 2013. 13 October 2013. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Supraretinacular endoscopic carpal tunnel release: surgical technique with prospective case series.
Ecker, J; Perera, N; Ebert, J
2015-02-01
Current techniques for endoscopic carpal tunnel release use an infraretinacular approach, inserting the endoscope deep to the flexor retinaculum. We present a supraretinacular endoscopic carpal tunnel release technique in which a dissecting endoscope is inserted superficial to the flexor retinaculum, which improves vision and the ability to dissect and manipulate the median nerve and tendons during surgery. The motor branch of the median nerve and connections between the median and ulnar nerve can be identified and dissected. Because the endoscope is inserted superficial to the flexor retinaculum, the median nerve is not compressed before division of the retinaculum and, as a result, we have observed no cases of the transient median nerve deficits that have been reported using infraretinacular endoscopic techniques. © The Author(s) 2014.
21 CFR 876.5830 - Hemodialyzer with disposable insert (Kiil type).
Code of Federal Regulations, 2012 CFR
2012-04-01
... extracorporeal blood system and the dialysate delivery system of the hemodialysis system and accessories (§ 876... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemodialyzer with disposable insert (Kiil type). 876.5830 Section 876.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 876.5830 - Hemodialyzer with disposable insert (Kiil type).
Code of Federal Regulations, 2013 CFR
2013-04-01
... extracorporeal blood system and the dialysate delivery system of the hemodialysis system and accessories (§ 876... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hemodialyzer with disposable insert (Kiil type). 876.5830 Section 876.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 876.5830 - Hemodialyzer with disposable insert (Kiil type).
Code of Federal Regulations, 2011 CFR
2011-04-01
... extracorporeal blood system and the dialysate delivery system of the hemodialysis system and accessories (§ 876... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hemodialyzer with disposable insert (Kiil type). 876.5830 Section 876.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 876.5830 - Hemodialyzer with disposable insert (Kiil type).
Code of Federal Regulations, 2014 CFR
2014-04-01
... extracorporeal blood system and the dialysate delivery system of the hemodialysis system and accessories (§ 876... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemodialyzer with disposable insert (Kiil type). 876.5830 Section 876.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
Fabrication of Progesterone-Loaded Nanofibers for the Drug Delivery Applications in Bovine
NASA Astrophysics Data System (ADS)
Karuppannan, Chitra; Sivaraj, Mehnath; Kumar, J. Ganesh; Seerangan, Rangasamy; Balasubramanian, S.; Gopal, Dhinakar Raj
2017-02-01
Progesterone is a potent drug for synchronization of the estrus and ovulation cycles in bovine. At present, the estrus cycle of bovine is controlled by the insertion of progesterone-embedded silicone bands. The disadvantage of nondegradable polymer inserts is to require for disposal of these bands after their use. The study currently focuses on preparation of biodegradable progesterone-incorporated nanofiber for estrus synchronization. Three different concentrations (1.2, 1.9, and 2.5 g) of progesterone-impregnated nanofibers were fabricated using electrospinning. The spun membrane were characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Uniform surface morphology, narrow size distribution, and interaction between progesterone and zein were confirmed by SEM. FTIR spectroscopy indicated miscibility and interaction between zein and progesterone. X-ray analysis indicated that the size of zein crystallites increased with progesterone content in nanofibers. Significant differences in thermal behavior of progesterone-impregnated nanofiber were observed by DSC. Cell viability studies of progesterone-loaded nanofiber were examined using MTT assay. In vitro release experiment is to identify the suitable progesterone concentration for estrus synchronization. This study confirms that progesterone-impregnated nanofibers are an ideal vehicle for progesterone delivery for estrus synchronization of bovines.
Ross, Astin M.; Rahmani, Sahar; Prieskorn, Diane M.; Dishman, Acacia F; Miller, Josef M.; Lahann, Joerg; Altschuler, Richard A.
2016-01-01
Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. PMID:26841263
Auricchio, Mariangela Tirico; Batistic-Longatto, Mônica Arcon; Nicoletti, Maria Aparecida
2007-10-01
The information provided on package inserts and inner wrapping of eight products containing Panax ginseng from different manufacturers was compared internally and checked against data from the scientific literature. The inserts included extensive text, containing abundant information on indications for use, but no scientific evidence in humans. All the inserts lacked information on potential adverse effects and drug interaction. There was no standardization as to dose regimens, particularly in relation to the dried extract and ginsenoside concentration. The eight inserts thus showed no concern over standardization, indication for usage, or possible side effects and drug interactions.
Lin, Hong-Ru; Tseng, Chao-Chih; Lin, Yiu-Jiuan; Ling, Ming-Hung
2012-01-01
In order to avoid anti-cancer drugs undergoing a first-pass effect and reduce their toxicity, and to solve conventional suppositories defects, we developed an in-situ-gelling and injectable Pluronic-poly(acrylic acid) (Pluronic-PAA) liquid suppository, which could gel fast in the physiological state and had suitable gel strength and bioadhesive force. The liquid suppositories were inserted into the rectum of rabbits without difficulty and leakage, and retained in the rectum for at least 6 h and while releasing the drug. The toxicity and cytotoxic tests indicated that Pluronic and PAA were non-toxic materials and could inhibit colon cancer cells when oxaliplatin was incorporated. C max and AUC0→12h values of oxaliplatin after rectal administration of a oxaliplatin suppository were higher than those for an oxaliplatin solution administered orally. These results suggest that an in-situ-gelling and injectable liquid suppository for humans can be further developed as a more convenient and effective rectal dosage form.
21 CFR 886.5420 - Contact lens inserter/remover.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Contact lens inserter/remover. 886.5420 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5420 Contact lens inserter/remover. (a) Identification. A contact lens inserter/remover is a handheld device intended to insert or remove...
21 CFR 872.3900 - Posterior artificial tooth with a metal insert.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Posterior artificial tooth with a metal insert. 872.3900 Section 872.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... surrounding teeth by a bridge and is intended to provide both an improvement in appearance and functional...
21 CFR 872.3900 - Posterior artificial tooth with a metal insert.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Posterior artificial tooth with a metal insert. 872.3900 Section 872.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... surrounding teeth by a bridge and is intended to provide both an improvement in appearance and functional...
Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A
2015-05-07
Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.
Modeling the accumulation of degradable polymer drug carriers in the brain.
Bolwerk, Celine; Govers, Larissa P M W D; Knol, Hanna; Oostendorp, Thom F; Brock, Roland
2018-05-11
The blood brain barrier (BBB) limits the access of drugs to the brain. Intensive research is being conducted on the development of nanoparticulate drug carriers that mediate transfer across the BBB. A question that has been neglected so far is the potential accumulation of the carrier in the brain upon long-term exposure. Here, we address this question by implementing a kinetic model to relate drug loading, required concentration of drug in the brain and drug clearance to the degradation half-life of the carrier. As a test case with clinical relevance we chose poly-lactic-co-glycolic-acid (PLGA) as a carrier material and a chemotherapeutic for which the required parameters could be recovered from literature. For methotrexate with a drug load of 8.5 %, a required concentration of free drug of 1 µM, a release from PLGA of 6 hours, a drug clearance from the brain of 3 hours and a half-life of polymer degradation of 28 days, a steady state accumulation of 1.3 g polymer would be reached in the brain (1.5L) after 7 months. While this number is surprisingly small, further physiological research is warranted to assess to which degree this will be in a tolerable range. Insert abstract text here. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterisation of protein stability in rod-insert vaginal rings.
Pattani, Aditya; Lowry, Deborah; Curran, Rhonda M; McGrath, Stephanie; Kett, Vicky L; Andrews, Gavin P; Malcolm, R Karl
2012-07-01
A major goal in vaccine development is elimination of the 'cold chain', the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 °C, but not when stored at 40 °C/75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 °C/75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation compared to the original formulation when stored at 40 °C/75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general. Copyright © 2012 Elsevier B.V. All rights reserved.
[Preparation of ondansetron hydrochloride osmotic pump tablets and their in vitro drug release].
Zheng, Hang-sheng; Bi, Dian-zhou
2005-12-01
To prepare ondansetron hydrochloride osmotic pump tablets (OND-OPT) and investigate their in vitro drug release behavior. OND-OPT were prepared with a single punch press and pan coating technique. Osmotic active agents and plasticizer of coating film were chosen by drug release tests. The effects of the number, position and direction of drug release orifice on release behavior were investigated. The relation between drug release duration and thickness of coating film, PEG content of coating film and size of drug release orifice was established by uniform design experiment. The surface morphological change of coating film before and after drug release test was observed by scanning electron microscopy. The osmotic pumping release mechanism of OND-OPT was confirmed by drug release test with high osmotic pressure medium. Lactose-mannitol (1:2) was chosen as osmotic active agents and PEG400 as plasticizer of coating film. The direction of drug release orifice had great effect on the drug release of OND-OPT without HPMC, and had no effect on the drug release of OND-OPT with HPMC. The OND-OPT with one drug release orifice at the centre of the coating film on one surface of tablet released their drug with little fluctuation. The drug release duration of OND-OPT correlated with thickness of coating film and PEG content of coating film, and didn't correlate significantly with the size of drug release orifice. OND-OPT released their drug with osmotic pumping mechanism predominantly. OND-OPT are able to realize ideal controlled drug release.
Zhang, Xiaoyan; Wang, Xiaofei; Zhong, Weitong; Ren, Xiaoqing; Sha, Xianyi; Fang, Xiaoling
2016-01-01
Since elevated expression of matrix metalloproteinase (MMP)-2 and MMP-9 is commonly observed in several malignant tumors, MMPs have been widely reported as key factors in the design of drug delivery systems. Several strategies have been proposed to develop MMPs-responsive nanoparticles to deliver chemotherapeutics to malignant solid tumors. A stimuli-responsive drug delivery system, which could be cleaved by MMPs, was proposed in this study. By inserting an MMP-2/9 cleavable oligopeptide GPVGLIGK-NH2 (GK8) as spacer between α-tocopherol succinate (α-TOS) and methoxy-polyethylene glycol molecular weight (MW 2000 Da) activated by N-hydroxysuccinimide (mPEG2K-NHS), mPEG2K-GK8-α-TOS (TGK) was synthesized as the primary ingredient for MMP-2/9-sensitive micelles composed of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and TGK (n:n =40:60, TGK micelles). mPEG2K-α-TOS (T2K) was similarly synthesized as nonsensitive control. The TGK micelles showed better stability than nonsensitive micelles composed of TPGS and T2K (n:n =40:60, T2K micelles) owing to the inserted peptide. Fluorescence resonance energy transfer results indicated that TGK micelles could be successfully cleaved by MMP-2/9. Effective drug release was demonstrated in the presence of collagenase type IV, a mixture of MMP-2 and MMP-9. Compared with nonsensitive micelles, docetaxel (DTX)-loaded TGK micelles showed a fold higher cellular uptake in HT1080 cells. While the half-maximal inhibitory concentration (IC50) of TGK and T2K micelles were similar (P>0.05) in MCF-7 cells (MMP-2/9 underexpression), the IC50 values of the aforementioned micelles were 0.064±0.006 and 0.122±0.009 μg/mL, respectively, in HT1080 cells (MMP-2/9 overexpression). The MMP-2/9-sensitive micelles also demonstrated desired tumor targeting and accumulation ability in vivo. The results of in vivo antitumor effect evaluation indicate that TGK micelles are potent against solid tumors while maintaining minimum systemic toxicity compared with T2K micelles and DTX. PMID:27217744
48 CFR 52.223-14 - Toxic Chemical Release Reporting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Toxic Chemical Release....223-14 Toxic Chemical Release Reporting. As prescribed in 23.906(b), insert the following clause: Toxic Chemical Release Reporting (AUG 2003) (a) Unless otherwise exempt, the Contractor, as owner or...
48 CFR 1404.804-70 - Release of claims.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATIVE MATTERS Contract Files 1404.804-70 Release of claims. (a) The CO shall insert the clause at 1452.204-70, Release of Claims, in all construction, architect and engineering, and cost-reimbursement... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Release of claims. 1404...
48 CFR 1404.804-70 - Release of claims.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATIVE MATTERS Contract Files 1404.804-70 Release of claims. (a) The CO shall insert the clause at 1452.204-70, Release of Claims, in all construction, architect and engineering, and cost-reimbursement... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Release of claims. 1404...
48 CFR 1404.804-70 - Release of claims.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATIVE MATTERS Contract Files 1404.804-70 Release of claims. (a) The CO shall insert the clause at 1452.204-70, Release of Claims, in all construction, architect and engineering, and cost-reimbursement... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Release of claims. 1404...
48 CFR 1404.804-70 - Release of claims.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATIVE MATTERS Contract Files 1404.804-70 Release of claims. (a) The CO shall insert the clause at 1452.204-70, Release of Claims, in all construction, architect and engineering, and cost-reimbursement... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Release of claims. 1404...
48 CFR 1404.804-70 - Release of claims.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATIVE MATTERS Contract Files 1404.804-70 Release of claims. (a) The CO shall insert the clause at 1452.204-70, Release of Claims, in all construction, architect and engineering, and cost-reimbursement... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Release of claims. 1404...
48 CFR 252.227-7012 - Patent license and release contract.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Patent license and release... of Provisions And Clauses 252.227-7012 Patent license and release contract. As prescribed at 227.7012, insert the following clause in patent releases, license agreements, and assignments: (Contract No...
48 CFR 252.227-7012 - Patent license and release contract.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Patent license and release... of Provisions And Clauses 252.227-7012 Patent license and release contract. As prescribed at 227.7012, insert the following clause in patent releases, license agreements, and assignments: (Contract No...
48 CFR 252.227-7012 - Patent license and release contract.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Patent license and release... of Provisions And Clauses 252.227-7012 Patent license and release contract. As prescribed at 227.7012, insert the following clause in patent releases, license agreements, and assignments: (Contract No...
48 CFR 252.227-7012 - Patent license and release contract.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Patent license and release... of Provisions And Clauses 252.227-7012 Patent license and release contract. As prescribed at 227.7012, insert the following clause in patent releases, license agreements, and assignments: (Contract No...
48 CFR 252.227-7012 - Patent license and release contract.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Patent license and release... of Provisions And Clauses 252.227-7012 Patent license and release contract. As prescribed at 227.7012, insert the following clause in patent releases, license agreements, and assignments: (Contract No...
Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William
2016-09-01
Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.
Cheboyina, Sreekhar; Wyandt, Christy M
2008-07-09
A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.
Akil, Ayman; Parniak, Michael A.; Dezzuitti, Charlene S.; Moncla, Bernard J.; Cost, Marilyn R.; Li, Mingguang; Rohan, Lisa Cencia
2012-01-01
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide. PMID:22708075
Akil, Ayman; Parniak, Michael A; Dezzuitti, Charlene S; Moncla, Bernard J; Cost, Marilyn R; Li, Mingguang; Rohan, Lisa Cencia
2011-06-01
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide.
Kinetics of drug release from ointments: Role of transient-boundary layer.
Xu, Xiaoming; Al-Ghabeish, Manar; Krishnaiah, Yellela S R; Rahman, Ziyaur; Khan, Mansoor A
2015-10-15
In the current work, an in vitro release testing method suitable for ointment formulations was developed using acyclovir as a model drug. Release studies were carried out using enhancer cells on acyclovir ointments prepared with oleaginous, absorption, and water-soluble bases. Kinetics and mechanism of drug release was found to be highly dependent on the type of ointment bases. In oleaginous bases, drug release followed a unique logarithmic-time dependent profile; in both absorption and water-soluble bases, drug release exhibited linearity with respect to square root of time (Higuchi model) albeit differences in the overall release profile. To help understand the underlying cause of logarithmic-time dependency of drug release, a novel transient-boundary hypothesis was proposed, verified, and compared to Higuchi theory. Furthermore, impact of drug solubility (under various pH conditions) and temperature on drug release were assessed. Additionally, conditions under which deviations from logarithmic-time drug release kinetics occur were determined using in situ UV fiber-optics. Overall, the results suggest that for oleaginous ointments containing dispersed drug particles, kinetics and mechanism of drug release is controlled by expansion of transient boundary layer, and drug release increases linearly with respect to logarithmic time. Published by Elsevier B.V.
Starbuck, G R; Mann, G E
2010-04-01
We have investigated the effects administering exogenous progesterone, via insertion of a controlled internal drug release (CIDR) for 4 days, from either day 5 or day 12 of the oestrous cycle on plasma oestradiol concentrations. In study 1, in which progesterone was administered from day 5, measurement of plasma oestradiol in daily samples revealed a significant (p < 0.001) decrease in peripheral oestradiol concentration. In contrast, in study 2, similar administration of progesterone from day 12 had no effect on plasma oestradiol concentration. In study 3, collection of hourly samples following progesterone treatment on day 5 revealed peak progesterone concentrations within 1 h of CIDR insertion and nadir oestradiol concentrations within 4 h. The results demonstrate that treatment with progesterone early in the luteal phase causes a rapid inhibition of oestradiol secretion, while later treatment does not. While improvements in pregnancy rate following progesterone treatment at this time have traditionally been attributed to increases in progesterone, the potential involvement of decreased oestradiol secretion has often been overlooked.
[Oral controlled release dosage forms].
Mehuys, Els; Vervaet, Chris
2010-06-01
Several technologies to control drug release from oral dosage forms have been developed. Drug release can be regulated in several ways: sustained release, whereby the drug is released slowly over a prolonged period of time, postponed release, whereby drug release is delayed until passage from the stomach into the intestine (via enteric coating), and targeted release, whereby the drug is targeted to a specific location of the gastrointestinal tract. This article reviews the various oral controlled release dosage forms on the market.
Huang, Allen R; Redpath, Calum J; van Walraven, Carl
2015-04-28
Cholinesterase inhibitors are used to treat the symptoms of dementia and can theoretically cause bradycardia. Previous studies suggest that patients taking these medications have an increased risk of undergoing pacemaker insertion. Since these drugs have a marginal impact on patient outcomes, it might be preferable to change drug treatment rather than implant a pacemaker. This population-based study determined the association of people with dementia exposed to cholinesterase inhibitor medication and pacemaker insertion. We used data from the Ontario health administrative databases from January 1, 1993 to June 30, 2012. We included all community-dwelling seniors who had a code for dementia and were exposed to cholinesterase inhibitors (donezepil, galantamine, and rivastigmine) and/or drugs used to treat co-morbidities of hypertension, diabetes, depression and hypothyroidism. We controlled for exposure to anti-arrhythmic drugs. Observation started at first exposure to any medication and continued until the earliest of pacemaker insertion, death, or end of study. 2,353,909 people were included with 96,000 (4.1%) undergoing pacemaker insertion during the observation period. Case-control analysis showed that pacemaker patients were less likely to be coded with dementia (unadjusted OR 0.42 [95%CI 0.41-0.42]) or exposed to cholinesterase inhibitors (unadjusted OR 0.39 [95%CI 0.37-0.41]). That Cohort analysis showed patients with dementia taking cholinesterase inhibitors had a decreased risk of pacemaker insertion (unadj-HR 0.58 [0.55-0.61]). Adjustment for patient age, sex, and other medications did not notably change results, as did restricting the analysis to incident users. Patients taking cholinesterase inhibitors rarely undergo, and have a significantly reduced risk of, cardiac pacemaker insertion.
Smith, James M; Moss, John A; Srinivasan, Priya; Butkyavichene, Irina; Gunawardana, Manjula; Fanter, Rob; Miller, Christine S; Sanchez, Debbie; Yang, Flora; Ellis, Shanon; Zhang, Jining; Marzinke, Mark A; Hendrix, Craig W; Kapoor, Amita; Baum, Marc M
2017-01-01
Globally, women bear an uneven burden for sexual HIV acquisition. Results from two clinical trials evaluating intravaginal rings (IVRs) delivering the antiretroviral agent dapivirine have shown that protection from HIV infection can be achieved with this modality, but high adherence is essential. Multipurpose prevention technologies (MPTs) can potentially increase product adherence by offering protection against multiple vaginally transmitted infections and unintended pregnancy. Here we describe a coitally independent, long-acting pod-IVR MPT that could potentially prevent HIV and HSV infection as well as unintended pregnancy. The pharmacokinetics of MPT pod-IVRs delivering tenofovir alafenamide hemifumarate (TAF2) to prevent HIV, acyclovir (ACV) to prevent HSV, and etonogestrel (ENG) in combination with ethinyl estradiol (EE), FDA-approved hormonal contraceptives, were evaluated in pigtailed macaques (N = 6) over 35 days. Pod IVRs were exchanged at 14 days with the only modification being lower ENG release rates in the second IVR. Plasma progesterone was monitored weekly to determine the effect of ENG/EE on menstrual cycle. The mean in vivo release rates (mg d-1) for the two formulations over 30 days ranged as follows: TAF2 0.35-0.40; ACV 0.56-0.70; EE 0.03-0.08; ENG (high releasing) 0.63; and ENG (low releasing) 0.05. Mean peak progesterone levels were 4.4 ± 1.8 ng mL-1 prior to IVR insertion and 0.075 ± 0.064 ng mL-1 for 5 weeks after insertion, suggesting that systemic EE/ENG levels were sufficient to suppress menstruation. The TAF2 and ACV release rates and resulting vaginal tissue drug concentrations (medians: TFV, 2.4 ng mg-1; ACV, 0.2 ng mg-1) may be sufficient to protect against HIV and HSV infection, respectively. This proof of principle study demonstrates that MPT-pod IVRs could serve as a potent biomedical prevention tool to protect women's sexual and reproductive health and may increase adherence to HIV PrEP even among younger high-risk populations.
Long-term Controlled Drug Release from bi-component Electrospun Fibers
NASA Astrophysics Data System (ADS)
Xu, Shanshan; Zhang, Zixin; Xia, Qinghua; Han, Charles
Multi-drug delivery systems with timed programmed release are hard to be produced due to the complex drug release kinetics which mainly refers to the diffusion of drug molecules from the fiber and the degradation of the carrier. This study focused on the whole life-time story of the long-term drug releasing fibrous systems. Electrospun membrane utilizing FDA approved polymers and broad-spectrum antibiotics showed specific drug release profiles which could be divided into three stages based on the profile slope. With throughout morphology observation, cumulative release amount and releasing duration, releasing kinetics and critical factors were fully discussed during three stages. Through changing the second component, approximately linear drug release profile and a drug release duration about 13 days was prepared, which is perfect for preventing post-operative infection. The addition of this semi-crystalline polymer in turn influenced the fiber swelling and created drug diffusion channels. In conclusion, through adjusting and optimization of the blending component, initial burst release, delayed release for certain duration, and especially the sustained release profile could all be controlled, as well as specific anti-bacterial behavior could be obtained.
Intravascular Drug Release Kinetics Dictate Arterial Drug Deposition, Retention, and Distribution
Balakrishnan, Brinda; Dooley, John F.; Kopia, Gregory; Edelman, Elazer R.
2007-01-01
Millions of patients worldwide have received drug-eluting stents to reduce their risk for in-stent restenosis. The efficacy and toxicity of these local therapeutics depend upon arterial drug deposition, distribution, and retention. To examine how administered dose and drug release kinetics control arterial drug uptake, a model was created using principles of computational fluid dynamics and transient drug diffusion-convection. The modeling predictions for drug elution were validated using empiric data from stented porcine coronary arteries. Inefficient, minimal arterial drug deposition was predicted when a bolus of drug was released and depleted within seconds. Month-long stent-based drug release efficiently delivered nearly continuous drug levels, but the slow rate of drug presentation limited arterial drug uptake. Uptake was only maximized when the rates of drug release and absorption matched, which occurred for hour-long drug release. Of the two possibly means for increasing the amount of drug on the stent, modulation of drug concentration potently impacts the magnitude of arterial drug deposition, while changes in coating drug mass affect duration of release. We demonstrate the importance of drug release kinetics and administered drug dose in governing arterial drug uptake and suggest novel drug delivery strategies for controlling spatio-temporal arterial drug distribution. PMID:17868948
Evaluating Documents: The Case of Patient Package Inserts. Technical Report No. 2.
ERIC Educational Resources Information Center
Krug, Robert E.
To illustrate the types of factors that must be considered in evaluating public documents, this paper analyzes a number of possible outcomes resulting from one type of document, the patient package insert (PPI) designed to provide consumers of prescription drugs with information about the drugs. It first outlines the intended sequence for a PPI:…
SOURCE CHARACTERIZATION OF AIR FRESHENERS
The paper discusses research in which five air fresheners of two styles were analyzed for their constituent volatile organic compounds. Both styles were refills to be inserted into heated electric plug-in units; one refill released the fragrance from a gel pack insert and the oth...
Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra
2017-01-01
Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.
Dual-controlled release system of drugs for bone regeneration.
Kim, Yang-Hee; Tabata, Yasuhiko
2015-11-01
Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Pajewski, Robert; Ferdani, Riccardo; Pajewska, Jolanta; Djedovič, Natasha; Schlesinger, Paul H.; Gokel, George W.
2008-01-01
Heptapeptides having dioctadecyl, N-terminal hydrocarbon chains insert in phospholipid bilayer membranes and form pores through which at least chloride ions pass. Although amphiphilic, these compounds do not typically form vesicles themselves. They insert in the bilayers of phospholipid vesicles and mediate the release of carboxyfluorescein. Hill analysis indicates that at least two molecules of the amphiphile are involved in pore formation. In CD2Cl2, dimer formation is detected by NMR chemical shift changes. The anion release activity of individual anion transporters is increased by linking them covalently at the C-terminus or, even more, by linking them at the N-terminus. Evidence is presented that either linked molecule releases chloride from liposomes more effectively and rapidly than the individual transporter molecule at a comparable concentration. PMID:15703797
In silico study on the effects of matrix structure in controlled drug release
NASA Astrophysics Data System (ADS)
Villalobos, Rafael; Cordero, Salomón; Maria Vidales, Ana; Domínguez, Armando
2006-07-01
Purpose: To study the effects of drug concentration and spatial distribution of the medicament, in porous solid dosage forms, on the kinetics and total yield of drug release. Methods: Cubic networks are used as models of drug release systems. They were constructed by means of the dual site-bond model framework, which allows a substrate to have adequate geometrical and topological distribution of its pore elements. Drug particles can move inside the networks by following a random walk model with excluded volume interactions between the particles. The drug release time evolution for different drug concentration and different initial drug spatial distribution has been monitored. Results: The numerical results show that in all the studied cases, drug release presents an anomalous behavior, and the consequences of the matrix structural properties, i.e., drug spatial distribution and drug concentration, on the drug release profile have been quantified. Conclusions: The Weibull function provides a simple connection between the model parameters and the microstructure of the drug release device. A critical modeling of drug release from matrix-type delivery systems is important in order to understand the transport mechanisms that are implicated, and to predict the effect of the device design parameters on the release rate.
Mollo, A Rosario; Corrigan, Owen I
2002-01-01
Amoxycillin-poly (D,L-lactide-co-glycolide) (PLGA) compacts were prepared by direct compression of both powder mixtures or films in a pre-heated press. Release profiles generally showed two phases separated by an induction period. Thus, both diffusion and polymer degradation mechanisms were involved in drug release, the relative importance of each depending on processing type and drug loading. Drug release parameters for each phase were determined. The fraction of total drug released, in the initial release phase, increased with drug loading and was much larger for compressed physical mixtures than for compressed composites prepared from co-evaporate films. Comparison of the polymer mass loss profiles of drug-loaded and drug-free discs indicated that the presence of the amphoteric drug amoxycillin had little impact on the polymer degradation rate, in contrast to the marked acceleration previously reported for basic drugs. Significant drug degradation occurred and was associated with release at later times. Release data was fitted to an equation accounting for degradation of the drug on release and suggested accelerated amoxycillin degradation during the polymer degradation controlled release phase, consistent with changes in pH in the microenvironment of the eroding compact.
NASA Astrophysics Data System (ADS)
de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria
2017-12-01
Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.
Vacuum-actuated percutaneous insertion/implantation tool for flexible neural probes and interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheth, Heeral; Bennett, William J.; Pannu, Satinderpall S.
A flexible device insertion tool including an elongated stiffener with one or more suction ports, and a vacuum connector for interfacing the stiffener to a vacuum source, for attaching the flexible device such as a flexible neural probe to the stiffener during insertion by a suction force exerted through the suction ports to, and to release the flexible device by removing the suction force.
Preload-Release Mechanism For Mounting Electronics Boxes
NASA Technical Reports Server (NTRS)
Generoli, Robert M.; Young, Harry J.
1995-01-01
Proposed mechanism applies spring preload to electrical connector only while needed during insertion of electronics box into supporting frame. Once connector fully mated, mechanism relieves preload. As result, supporting structure sized to handle only individual load applied briefly by each connector on box during insertion.
Double loaded self-decomposable SiO2 nanoparticles for sustained drug release
NASA Astrophysics Data System (ADS)
Zhao, Saisai; Zhang, Silu; Ma, Jiang; Fan, Li; Yin, Chun; Lin, Ge; Li, Quan
2015-10-01
Sustained drug release for a long duration is a desired feature of modern drugs. Using double-loaded self-decomposable SiO2 nanoparticles, we demonstrated sustained drug release in a controllable manner. The double loading of the drugs was achieved using two different mechanisms--the first one via a co-growth mechanism, and the second one by absorption. A two-phase sustained drug release was firstly revealed in an in vitro system, and then further demonstrated in mice. After a single intravenous injection, the drug was controllably released from the nanoparticles into blood circulation with a Tmax of about 8 h, afterwards a long lasting release pattern was achieved to maintain drug systemic exposure with a plasma elimination half-life of approximately 28 h. We disclosed that the absorbed drug molecules contributed to the initial fast release for quickly reaching the therapeutic level with relatively higher plasma concentrations, while the ``grown-in'' drugs were responsible for maintaining the therapeutic level via the later controlled slow and sustained release. The present nanoparticle carrier drug configuration and the loading/maintenance release mechanisms provide a promising platform that ensures a prolonged therapeutic effect by controlling drug concentrations within the therapeutic window--a sustained drug delivery system with a great impact on improving the management of chronic diseases.Sustained drug release for a long duration is a desired feature of modern drugs. Using double-loaded self-decomposable SiO2 nanoparticles, we demonstrated sustained drug release in a controllable manner. The double loading of the drugs was achieved using two different mechanisms--the first one via a co-growth mechanism, and the second one by absorption. A two-phase sustained drug release was firstly revealed in an in vitro system, and then further demonstrated in mice. After a single intravenous injection, the drug was controllably released from the nanoparticles into blood circulation with a Tmax of about 8 h, afterwards a long lasting release pattern was achieved to maintain drug systemic exposure with a plasma elimination half-life of approximately 28 h. We disclosed that the absorbed drug molecules contributed to the initial fast release for quickly reaching the therapeutic level with relatively higher plasma concentrations, while the ``grown-in'' drugs were responsible for maintaining the therapeutic level via the later controlled slow and sustained release. The present nanoparticle carrier drug configuration and the loading/maintenance release mechanisms provide a promising platform that ensures a prolonged therapeutic effect by controlling drug concentrations within the therapeutic window--a sustained drug delivery system with a great impact on improving the management of chronic diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03029c
Mhlanga, Nikiwe; Ray, Suprakas Sinha
2015-01-01
For decades, studies on drug-release kinetics have been an important topic in the field of drug delivery because they provide important insights into the mechanism of drug release from carriers. In this work, polylactide (PLA), doxorubicin (DOX), and metal oxide (MO) (titanium dioxide, magnetic iron oxide, and zinc oxide) spheres were synthesised using the solvent-evaporation technique and were tested for sustained drug release. The efficacy of a dosage system is determined by its ability to deliver the drug at a sustained rate, afford an increased plasma half-life, a minimum exposure of toxic drugs to healthy cells and a high drug pay load. Mathematical models were used to elucidate the release mechanism of the drug from the spheres. The release fitted a zero-order model with a correlation coefficient in the range of 0.9878-0.9891 and the release mechanism followed an anomalous release, meaning drug release was afforded through both diffusion and the dissolution of PLA. Therefore, PLA/DOX/MO released the same amount of drug per unit time. Consequently, the potential for PLA use as a carrier was ascertained. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of a novel osmotically driven drug delivery system for weakly basic drugs.
Guthmann, C; Lipp, R; Wagner, T; Kranz, H
2008-06-01
The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients and coated with an extended and enteric polymer. In contrast, with increasing osmotic pressure of the dissolution medium the in vitro drug release rates decreased significantly.
Sutton, George P.
1998-01-01
An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.
Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R
2012-04-01
A previous paper deals with the physicochemical and technological characterization of novel graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS). The results obtained suggested the potential application of these copolymers as excipients for compressed non-disintegrating matrix tablets. Therefore, the purpose of the present study was to investigate the mechanism governing drug release from matrix systems prepared with the new copolymers and anhydrous theophylline or diltiazem HCl as model drugs with different solubility. The influence of the carbohydrate nature, drying procedure and initial pore network on drug release kinetics was also evaluated. Drug release experiments were performed from free tablets. Radial drug release and fronts movement kinetics were also analysed, and several mathematical models were employed to ascertain the drug release mechanisms. The drug release markedly depends on the drug solubility and the carbohydrate nature but is practically not affected by the drying process and the initial matrix porosity. A faster drug release is observed for matrices containing diltiazem HCl compared with those containing anhydrous theophylline, in accordance with the higher drug solubility and the higher friability of diltiazem matrices. In fact, although diffusion is the prevailing drug release mechanism for all matrices, the erosion mechanism seems to have some contribution in several formulations containing diltiazem. A reduction in the surface exposed to the dissolution medium (radial release studies) leads to a decrease in the drug release rate, but the release mechanism is not essentially modified. The nearly constant erosion front movement confirms the behaviour of these systems as inert matrices where the drugs are released mainly by diffusion through the porous structure. Copyright © 2011 Elsevier B.V. All rights reserved.
Antimicrobial Nanoparticle for the Treatment of Bacterial Infection
NASA Astrophysics Data System (ADS)
Pornpattananangkul, Dissaya
Liposomes are spherical lipid vesicles with bilayered membrane structure, which have been recognized as one of the most widely used carriers for delivering a myriad of pharmaceuticals. Liposomes can carry both hydrophilic and hydrophobic agents with high efficiency and protect them from undesired effects of external conditions. However, the applications of liposomes are usually limited by their instability during storage. They are inclined to fuse with one another immediately after preparation, resulting in undesired mixing, increase in size, and payload loss. To overcome this limitation, this dissertation will focus on the technology to stabilize liposomes during storage and destabilize at specific conditions in order to allow controllable therapeutic release, as well as demonstrate their application to treat one of the bacterial infection diseases, acne vulgaris. The first area of this research is stimuli-responsive liposomes development, where the liposomes are stabilized by introducing gold nanoparticles to adsorb to their surface. As a result, the liposomes are prevented from fusing with one another and undesirable payload release during storage or physiological environments. Moreover, therapeutic is controllably released depending on environment conditions, such as acidic pH and bacterial virulence factor. In case of acid-responsive liposomes, the bound gold nanoparticles can effectively prevent liposomes from fusing with one another at neutral pH value, while at acidic environment (e.g. pH<5), the gold particle stabilizers will fall off from the liposomes, thereby reinstalling the fusion activity of liposomes. The fusion activity of the stabilized liposomes is found to be 25% at pH=7, in contrast to 80% at pH=4. Another stimulus that can activate drug release from liposomes is virulence factor released from bacteria themselves, such as bacterial toxin. When nanoparticle-stabilized liposomes encounter with bacteria that secrete toxin, the toxin will insert into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. It was observed that in the presence of toxin-secreting bacteria, 100% of the encapsulated antibiotics were released from the gold nanoparticle-stabilized liposomes and bacterial growth was effectively inhibited by the released antibiotics in 24 h. The second area is to demonstrate an application of the invented technology to treat acne vulgaris by delivering therapeutics to the acne-causing bacteria, named Propionibacterium acnes (P.acnes). First, lauric acid (LA), an antimicrobial with strong activity against P. acnes, is encapsulated in liposomes (LipoLA), which is shown to effectively kill the bacteria by fusion with the bacterial membrane, resulting in a direct insertion of LA molecules to the membrane and destruction of its surface structure in vitro and in vivo. The system is then further improved by the acid-responsive technology based on the fact that the acne lesions on human skin are typically acidic. Demonstrated by fluorescent and antimicrobial experiments, the bound gold nanoparticles effectively prevent LipoLA from fusing with one another at neutral pH value. However, at acidic condition, the gold particles detatch from LipoLA surface, allowing the fusion with P.acnes membrane and lauric acid delivery, resulting in a complete killing effect. The stimuli-responsive liposomes presented here provide a new, safe, and effective approach to treat bacterial infections. They can be broadly applied to treat a variety of infections caused by bacteria that reside in acidic environment and secrete pore-forming toxins.
Spray-dried nanofibrillar cellulose microparticles for sustained drug release.
Kolakovic, Ruzica; Laaksonen, Timo; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni
2012-07-01
Nanofibrillar cellulose (also referred to as cellulose nanofibers, nanocellulose, microfibrillated or nanofibrillated cellulose) has gained a lot of attention in recent years in different research areas including biomedical applications. In this study we have evaluated the applicability of nanofibrillar cellulose (NFC) as a material for the formation of matrix systems for sustained drug delivery. For that purpose, drug loaded NFC microparticles were produced by a spray drying method. The microparticles were characterized in terms of size and morphology, total drug loading, and physical state of the encapsulated drug. Drug release from the microparticles was assessed by dissolution tests, and suitable mathematical models were used to explain the drug releasing kinetics. The particles had spherical shapes with diameters of around 5 μm; the encapsulated drug was mainly in amorphous form. The controlled drug release was achieved. The drug releasing curves were fitted to a mathematical model describing the drug releasing kinetics from a spherical matrix. Different drugs had different release kinetics, which was a consequence of several factors, including different solubilities of the drugs in the chosen medium and different affinities of the drugs to the NFC. It can be concluded that NFC microparticles can sustain drug release by forming a tight fiber network and thus limit drug diffusion from the system. Copyright © 2012 Elsevier B.V. All rights reserved.
Easy insert, easy release toggle bolt fastener
NASA Technical Reports Server (NTRS)
Kubokawa, C. C.
1970-01-01
Releasable pin-type toggle bolt fastener is constructed so that, when positioned in hole, toggle action prevents its removal and locknut anchors it firmly in place. Fastener is easily removed by loosening locknut and retraction of toggle wings.
Release from Proactive Interference: Insufficiency of an Attentional Account
ERIC Educational Resources Information Center
MacLeod, Colin M.
1975-01-01
If an attentional cue affects retroactive interference, perhaps a similar mechanism underlies release from proactive interference. This study tested this hypothesis by inserting an attentional cue before the final trial in Wickens' paradigm. (Author/RK)
Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M
2002-04-01
The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.
Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.
Pham, Loan; Christensen, John M
2014-02-01
Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.
Tallury, Padmavathy; Randall, Marcus K; Thaw, Khin L; Preisser, John S.; Kalachandra, Sid
2013-01-01
Objectives This study investigates the effects of surfactants and drug loading on the drug release rate from ethylene vinyl acetate (EVA) copolymer. The release rate of nystatin from EVA was studied with addition of non-ionic surfactants Tween 60 and Cremophor RH 40. In addition, the effect of increasing drug load on the release rates of nystatin, chlorhexidine diacetate and acyclovir is also presented. Method Polymer casting solutions were prepared by stirring EVA copolymer and nystatin (2.5 wt %) in dichloromethane. Nystatin and surfactants were added in ratios of (1:1), (1:2) and (1:3). Drug loading was studied with 2.5, 5.0, 7.5, and 10.0% wt. proportions of nystatin, chlorhexidine diacetate and acyclovir incorporated into a separate polymer. Three drug loaded polymer square films (3cm × 3cm × 0.08 cm) were cut from dry films to follow the kinetics of drug release at 37°C. 10 ml of either distilled water or PBS was used as the extracting medium that was replaced daily. PBS was used for nystatin release with addition of surfactants and water was used for the study on drug loading and surfactant release. The rate of drug release was measured by UV-spectrophotometer. The amount of surfactant released was determined by HPLC. Results The release of nystatin was low in PBS and its release rate increased with the addition of surfactants. Also, increasing surfactant concentrations resulted in increased drug release rates. The release rates of chlorhexidine diacetate (p<0.0001), acyclovir (p<0.0003) and nystatin (p<0.0017) linearly increased with increasing drug loads. The amount of surfactants released was above the CMC. Significance This study demonstrates that the three therapeutic agents show a sustained rate of drug release from EVA copolymer over extended periods of time. Nystatin release in PBS is low owing to its poor solubility. Its release rate is enhanced by addition of surfactants and increasing the drug load as well. PMID:17049593
Elsayed, Ibrahim; Sayed, Sinar
2017-01-01
Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box–Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness. PMID:29133980
Multicomponent Implant Releasing Dexamethasone
NASA Astrophysics Data System (ADS)
Nikkola, L.; Vapalahti, K.; Ashammakhi, N.
2008-02-01
Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.
Sutton, G.P.
1998-07-14
An insert is described which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment. 5 figs.
Dixon, Phillip; Ghosh, Tanushri; Mondal, Kalyani; Konar, Aditya; Chauhan, Anuj; Hazra, Sarbani
2018-06-01
Chemical injury by alkali burn is a major cause of corneal blindness in the clinical setting. Current management advocates multiple therapies aimed to prevent inflammation, initiate quick re-epithelialization, arrest the fibrosis, and avoid dry eye and pain by using bandage contact lenses. We hypothesized sustained delivery of the anti-inflammatory, antifibrotic drug pirfenidone through vitamin E-loaded contact lenses as a logical single approach to counter the pathology involved. Vitamin E particles were created in situ in commercial silicon hydrogel contact lenses by soaking the lenses in a vitamin E-ethanol solution. The vitamin E-laden lenses were then placed into pirfenidone-saline solution to load the drug into the lens. The contact lenses were evaluated by both in vitro and in vivo means. For in vitro, lenses were placed into 3 mL of saline solution. The concentration of pirfenidone released was measured by UV-vis spectrophotometry. The contact lenses were implanted in rabbit eyes following the alkali burn; the drug availability in the aqueous humor was evaluated by HPLC at various time points 10 min, 30 min, 2 h, and 3 h; and gene expression of inflammatory cytokines IL-1β, TNF-α, and TGF-β1 was evaluated in the cornea at the end of the study period. In another group of rabbits inflicted with alkali injury, the corneas were graded after 7 days of contact lens implantation with and without pirfenidone. A mathematical model was developed for delivery of the drug to the cornea and aqueous humor after a contact lens is inserted in the eye. The model was validated with experimental data and used to determine the bioavailability both for contact lenses and eye drops. In vitro release of unmodified commercial contact lenses saw a release time of approximately 20 min, with a partition coefficient of 2.68 ± 0.06. The release of pirfenidone from 20% vitamin E-loaded lenses saw a release time of approximately 80 min, with a partition coefficient of 4.20 ± 0.04. In vivo, the drug was available in the aqueous humor for up to 3 h. Gene expression of inflammatory cytokine IL-β1 and profibrotic growth factor TGF-β1 was significantly suppressed in corneas treated with pirfenidone contact lenses. A week after the alkali burn, the eyes with pirfenidone contact lenses showed significant improvement in corneal haze in comparison to the control eyes. About 50% of the drug loaded in the lens reached the aqueous humor compared to 1.3% with eye drops. Vitamin E-loaded contact lenses serve as a suitable platform for delivery of pirfenidone following alkali burn in rabbit eyes; positive pre-clinical outcome identifies it as promising therapy for addressing corneal inflammation and fibrosis. The bioavailability is about 40-fold higher for contact lenses compared to that for eye drops.
Forskolin: upcoming antiglaucoma molecule.
Wagh, V D; Patil, P N; Surana, S J; Wagh, K V
2012-01-01
Forskolin is the first pharmaceutical drug and product derived from a plant to be approved in India by the DCGI in 2006. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is a diterpenoid isolated from plant Coleus forskohlii (Lamiaceae). It is a lipid-soluble compound that can penetrate cell membranes and stimulates the enzyme adenylate cyclase which, in turn, stimulates ciliary epithelium to activate cyclic adenosine monophosphate, which decreases intraocular pressure (IOP) by reducing aqueous humor inflow. The topical application of forskolin is capable of reducing IOP in rabbits, monkeys, and humans. In its drug interactions, forskolin may act synergistically with epinephrine, ephedrine and pseudoephedrine. Whereas the effects of anti-clotting medications like warfarin, clopidogre, aspirin, anoxaparin, etc., may be enhanced by forskolin. Forskolin is contraindicated in the medications for people with ulcers as forskolin may increase acid level. Forskolin has a very good shelf-life of five years. Recently, its Ophthalmic inserts and in situ gels for sustained and delayed-release drug delivery systems were tested in New Zealand Albino Rabbits for its antiglaucoma efficacy. This drug review explains Forskolin as a drug, its antiglaucoma potential and recent findings of forskolin as an antiglaucoma agent. The literature search method used for this review was different databases and search engines like PubMed, International Pharmaceutical Abstracts, Google, Medicinal and Aromatic Plants (MAPA).
Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles
England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.
2015-01-01
Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197
Development of a multilayered association polymer system for sequential drug delivery
NASA Astrophysics Data System (ADS)
Chinnakavanam Sundararaj, Sharath kumar
As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The polymers used for the fabrication of this multilayered device consists of cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion property of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. After the initial characterization of the CAPP system, the device was specifically modified to achieve sequential release of drugs aimed at the treatment of periodontitis. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To obtain different erosion times and achieve appropriate release profiles specific to the disease condition, the device was modified by increasing the number of layers or by inclusion of a slower eroding polymer layer. In all the cases, the device was able to release the four different drugs in the designed temporal sequence. Analysis of antibiotic and antiinflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. Following extensive studies on the in vitro sequential drug release from these devices, the in vivo drug release profiles were investigated. The CAPP devices with different release rates and dosage formulations were implanted in a rat calvarial onlay model, and the in vivo drug release and erosion was compared with in vitro results. In vivo studies showed sequential release of drugs comparable to those measured in vitro, with some difference in drug release rates observed. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. KEYWORDS: Multiple drug delivery, Periodontitis, Cellulose acetate phthalate, Pluronic F-127, Sequential drug release, in vitro drug release, in vivo drug release.
Sustained Release Drug Delivery Applications of Polyurethanes.
Lowinger, Michael B; Barrett, Stephanie E; Zhang, Feng; Williams, Robert O
2018-05-09
Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.
Tank tread assemblies with track-linking mechanism
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr. (Inventor)
1986-01-01
The proposed tank tread assembly has adjacent tank tread segments joined by a link bearing tapered pins retained by clips inserted through the tread shells perpendicular to the axes of the pin. It also has highway pads attached by a release rod bearing tapered, grooved cams which interlockingly engage tabs inserted into the tread shells.
46 CFR 184.510 - Recommended emergency broadcast instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... NAME), (INSERT VESSEL'S NAME), (INSERT VESSEL'S CALL SIGN), OVER.” (5) Release the microphone button... VESSEL'S NAME & CALL SIGN).” (14) If your situation permits, stand by the radio to await further... 2182 kHz. (Channel 16 VHF and 2182 kHz on SSB are for emergency and calling purposes only.) (3) Press...
Vaginal flora changes on Pap smears after insertion of levonorgestrel-releasing intrauterine device.
Donders, Gilbert G G; Berger, Judith; Heuninckx, Hélène; Bellen, Gert; Cornelis, Ann
2011-04-01
The levonorgestrel intrauterine system (LNG-IUS) combines a uterine foreign body and the continuous release of low-dose levonorgestrel for contraception. Its influence on the rate of vulvovaginal infections and flora disturbance is insufficiently known, but important for contraceptive advice in women, especially those who develop recurrent vaginosis or Candida vulvovaginitis. Slides of 286 women who had a Pap smear taken before and 1 to 2 years after placement of a LNG-IUS were blindly reviewed for the presence of abnormal vaginal flora (AVF), bacterial vaginosis (BV), aerobic vaginitis (AV) and Candida vaginitis (CV). Prior to insertion, there were no differences in vaginal flora abnormalities between women using different kinds of contraception. LNG-IUS users did not have different rates of AVF, BV, AV or CV, but the general risk to develop any infection was increased. Uterine bleeding after insertion did not seem to predict a different flora type. We found that Pap smears suggested more vaginal infections after 1 year of LNG-IUS use than prior to insertion of the device. Copyright © 2011 Elsevier Inc. All rights reserved.
Controlled and extended drug release behavior of chitosan-based nanoparticle carrier.
Yuan, Q; Shah, J; Hein, S; Misra, R D K
2010-03-01
Controlled drug release is presently gaining significant attention. In this regard, we describe here the synthesis (based on the understanding of chemical structure), structural morphology, swelling behavior and drug release response of chitosan intercalated in an expandable layered aluminosilicate. In contrast to pure chitosan, for which there is a continuous increase in drug release with time, the chitosan-aluminosilicate nanocomposite carrier was characterized by controlled and extended release. Drug release from the nanocomposite particle carrier occurred by degradation of the carrier to its individual components or nanostructures with a different composition. In both the layered aluminosilicate-based mineral and chitosan-aluminosilicate nanocomposite carriers the positively charged chemotherapeutic drug strongly bound to the negatively charged aluminosilicate and release of the drug was slow. Furthermore, the pattern of drug release from the chitosan-aluminosilicate nanocomposite carrier was affected by pH and the chitosan/aluminosilicate ratio. The study points to the potential application of this hybrid nanocomposite carrier in biomedical applications, including tissue engineering and controlled drug delivery. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics
Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM
2011-01-01
The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354
Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.
Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M
2011-04-01
The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.
Murata, Mari; Uchida, Yusuke; Takami, Taku; Ito, Tomoki; Anzai, Ryosuke; Sonotaki, Seiichi; Murakami, Yoshihiko
2017-05-01
In the present study, we designed hydrogels for dual drug release: the hydrogels that covalently contained the polymeric micelles that possess different drug release properties. The hydrogels that were formed from polymeric micelles possessing a tightly packed (i.e., well-entangled) inner core exhibited a higher storage modulus than the hydrogels that were formed from the polymeric micelles possessing a loosely packed structure. Furthermore, we conducted release experiments and fluorescent observations to evaluate the profiles depicting the release of two compounds, rhodamine B and auramine O, from either polymeric micelles or hydrogels. According to our results, (1) hydrogels that covalently contains polymeric micelles that possess different drug release properties successfully exhibit the independent release behaviors of the two compounds and (2) fluorescence microscopy can greatly facilitate efforts to evaluate drug release properties of materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Dasgupta, Moumita; Kishore, Nand
2017-09-28
Understanding the physical chemistry underlying interactions of drugs with delivery formulations is extremely important in devising effective drug delivery systems. The partitioning and release kinetics of diclofenac sodium and naproxen from Brij 30 and Triton X-100 niosomal formulations have been addressed based on structural characterization, partitioning energetics, and release kinetics, thus establishing a relationship between structures and observed properties. Both the drugs partition in nonpolar regions of TX-100 niosomes via stacking of aromatic rings. The combined effects of interactions of the drugs with polar head groups and the rigidity of the niosome vesicles determine entry and partitioning of drugs into niosomes. The observed slower rate of release of the drugs from the drug encapsulated niosomes of TX-100 than those of Brij 30, suggest stable complexation of drugs in the nonpolar interior of the former. No release of drugs from the niosomes was observed until 24 h even upon varying pH conditions without SDS. However, SDS in drug loaded niosomes led to release of drugs in as early as 6 h. The sustained pattern of in vitro release kinetics of the drugs thus observed from our niosomal preparations suggest these vesicular systems to be promising for pharamaceutical applications as potential drug delivery vehicles.
48 CFR 52.223-6 - Drug-Free Workplace.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Drug-Free Workplace. 52....223-6 Drug-Free Workplace. As prescribed in 23.505, insert the following clause: Drug-Free Workplace... responsibility to determine violations of the Federal or State criminal drug statutes. Criminal drug statute...
48 CFR 52.223-6 - Drug-Free Workplace.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Drug-Free Workplace. 52....223-6 Drug-Free Workplace. As prescribed in 23.505, insert the following clause: Drug-Free Workplace... responsibility to determine violations of the Federal or State criminal drug statutes. Criminal drug statute...
48 CFR 52.223-6 - Drug-Free Workplace.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Drug-Free Workplace. 52....223-6 Drug-Free Workplace. As prescribed in 23.505, insert the following clause: Drug-Free Workplace... responsibility to determine violations of the Federal or State criminal drug statutes. Criminal drug statute...
48 CFR 52.223-6 - Drug-Free Workplace.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Drug-Free Workplace. 52....223-6 Drug-Free Workplace. As prescribed in 23.505, insert the following clause: Drug-Free Workplace... responsibility to determine violations of the Federal or State criminal drug statutes. Criminal drug statute...
48 CFR 52.223-6 - Drug-Free Workplace.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Drug-Free Workplace. 52....223-6 Drug-Free Workplace. As prescribed in 23.505, insert the following clause: Drug-Free Workplace... responsibility to determine violations of the Federal or State criminal drug statutes. Criminal drug statute...
Comparison of Sequential Drug Release in Vitro and in Vivo
Sundararaj, Sharath C.; Al-Sabbagh, Mohanad; Rabek, Cheryl L.; Dziubla, Thomas D.; Thomas, Mark V.; Puleo, David A.
2015-01-01
Development of drug delivery devices typically involves characterizing in vitro release performance with the inherent assumption that this will closely approximate in vivo performance. Yet, as delivery devices become more complex, for instance with a sequential drug release pattern, it is important to confirm that in vivo properties correlate with the expected “programming” achieved in vitro. In this work, a systematic comparison between in vitro and in vivo biomaterial erosion and sequential release was performed for a multilayered association polymer system comprising cellulose acetate phthalate and Pluronic F-127. After assessing the materials during incubation in phosphate-buffered saline, devices were implanted supracalvarially in rats. Devices with two different doses and with different erosion rates were harvested at increasing times post-implantation, and the in vivo thickness loss, mass loss, and the drug release profiles were compared with their in vitro counterparts. The sequential release of four different drugs observed in vitro was successfully translated to in vivo conditions. Results suggest, however, that the total erosion time of the devices was longer and release rates of the four drugs were different, with drugs initially released more quickly and then more slowly in vivo. Whereas many comparative studies of in vitro and in vivo drug release from biodegradable polymers involved a single drug, the present research demonstrated that sequential release of four drugs can be maintained following implantation. PMID:26111338
Determining drug release rates of hydrophobic compounds from nanocarriers
D’Addio, Suzanne M.; Bukari, Abdallah A.; Dawoud, Mohammed; Bunjes, Heike; Rinaldi, Carlos; Prud’homme, Robert K.
2016-01-01
Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on ‘lipid sinks’ and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298440
Determining drug release rates of hydrophobic compounds from nanocarriers.
D'Addio, Suzanne M; Bukari, Abdallah A; Dawoud, Mohammed; Bunjes, Heike; Rinaldi, Carlos; Prud'homme, Robert K
2016-07-28
Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on 'lipid sinks' and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. © 2016 The Author(s).
Matzke, Gary R; Dowling, Thomas C; Marks, Samantha A; Murphy, John E
2016-04-01
In 1998, the United States Food and Drug Administration (FDA) released the first guidance for industry regarding pharmacokinetic (PK) studies in renally impaired patients. This study aimed to determine if the FDA renal PK guidance influenced the frequency and rigor of renal studies conducted for new chemical entities (NCEs). FDA-approved package inserts (APIs) and clinical pharmacology review documents were analyzed for 194 NCEs approved from 1999 to 2010. Renal studies were conducted in 71.6% of NCEs approved from 1999 to 2010, a significant increase over the 56.3% conducted from 1996 to 1997 (P = .0242). Renal studies were more likely to be completed in highly renally excreted drugs (fe ≥ 30%) compared with drugs with low renal excretion, fe < 30% (89.6% vs 65.8%, P = .0015). PK studies to assess the impact of dialysis were conducted for 31.7% of NCEs that had a renal study: a greater proportion of high fe NCEs were studied (44.2% vs 26.0%, P = .0335). No significant change in frequency or rigor of PK studies was detected over time. The majority of NCEs (76.3%) with a renal study provided specific dosing recommendations in the API. The adoption of the 1998 FDA guidance has resulted in improved availability of PK and drug-dosing recommendations, particularly for high fe drugs. © 2015, The American College of Clinical Pharmacology.
Jannesari, Marziyeh; Varshosaz, Jaleh; Morshed, Mohammad; Zamani, Maedeh
2011-01-01
The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl), were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release. PMID:21720511
Drug Release Studies from Caesalpinia pulcherrima Seed Polysaccharide.
Jeevanandham, Somasundaram; Dhachinamoorthi, Duraiswamy; Bannoth Chandra Sekhar, Kothapalli
2011-01-01
This study examines the controlled release behavior of both water-soluble (acetaminophen, caffeine, theophylline and salicylic acid) and water insoluble (indomethacin) drugs derived from Caesalpinia pulcherrima seed Gum isolated from Caesalpinia pulcherrima kernel powder. It further investigates the effect of incorporating diluents such as microcrystalline cellulose and lactose on caffeine release. In addition the effect the gum's (polysaccharide) partial cross-linking had on release of acetaminophen was examined. Applying the exponential equation, the soluble drugs mechanism of release was found to be anomalous. The insoluble drugs showed a near case II or zero order release mechanism. The rate of release in descending order was caffeine, acetaminophen, theophylline, salicylic acid and indomethacin. An increase in the release kinetics of the drug was observed on blending with diluents. However, the rate of release varied with the type and amount of blend within the matrix. The mechanism of release due to effect of diluents was found to be anomalous. The rate of drug release decreased upon partial cross-linking and the mechanism of release was found to be of super case II.
Stuart, Gretchen S; Lesko, Catherine R; Stuebe, Alison M; Bryant, Amy G; Levi, Erika E; Danvers, Antoinette I
2015-04-01
The objective of this randomized trial was to compare breastfeeding among women who received a levonorgestrel-releasing intrauterine system within 6-48 h (early) or 4-6 weeks (standard) after an uncomplicated vaginal birth. Analysis groups of 86 women in each arm were needed to demonstrate a 20% difference in any breastfeeding. Thirty-five women were randomized to the early (N=17) and standard (N=18) arms. The combination of unsuccessful placement (2/17; 12%), expulsions (7/17; 41%) and removals (3/17; 18%) reached 71% (12/17) in the early arm, so the study was stopped. In our small study cohort, levonorgestrel-releasing intrauterine system insertion between 6 and 48 h after vaginal birth was associated with a high rate of expulsion or removal soon after insertion. Copyright © 2015 Elsevier Inc. All rights reserved.
Study of pH (low) insertion peptides (pHLIPs) interaction with lipid bilayer of membrane
NASA Astrophysics Data System (ADS)
Weerakkody, Dhammika
The pH-dependent interactions of pHLIPsRTM (pH (Low) Insertion Peptides) with lipid bilayer of membrane provides an opportunity to study and address fundamental questions of protein folding/insertion into membrane and unfolding/exit, as well as develop novel approach to target acidic diseased tissue such as cancer, ischemic myocardium, infection and others. The main goal of the work presented here is to answer the following questions: - What is the molecular mechanism of spontaneous insertion and folding of a peptide in a lipid bilayer of membrane; - What is the molecular mechanism of unfolding and exit of a peptide from a lipid bilayer of membrane; - How polar cargo attached to a peptide's inserting end might affect the process of insertion into a lipid bilayer of membrane; How sequence variation will affect a peptide's interactions with a lipid bilayer of membrane (partitioning into bilayer at neutral and low pH; apparent pK of insertion) with the main goal to identify the best pHLIP variants for imaging and therapy of pathological states such as cancer and others. It has been demonstrated that pHLIP insertion into a membrane is associated with the protonation of Asp/Glu residues, which leads to an increase of hydrophobicity that triggers the folding and insertion of the peptide across a lipid bilayer. The insertion of the pHLIP is unidirectional and it is accompanied by the release of energy. Therefore, the energy of membrane associated-folding can be used to favor the movement of cell-impermeable polar cargo molecules across the hydrophobic membrane bilayer when they are attached to the inserting end of pHLIP. Both pH-targeting behavior and molecular translocation have been demonstrated in cultured cells and in vivo. Thus, there is an opportunity to develop a novel concept in drug delivery, which is based on the use of a monomeric, pH-sensitive peptide molecular transporter, to deliver agents that are significantly more polar than conventional drugs. Understanding the molecular events that occur when a peptide inserts across a membrane, folds, or exits from it and unfolds provides crucial information for the development of new drug delivery agents, as well as improving our understanding of the first step of membrane-associate protein folding. The promise of exploiting tumor acidosis as a cancer biomarker has not been fully realized in clinical practice, even though the acidity has been a known property since the work of Otto Warburg nearly a century ago. The problem has been to find a practical way to target acidity. pHLIP reversibly folds and inserts across membranes in response to pH changes, and this discovery has led to a novel way to target acidic tissue. Steady state biophysical studies have revealed the molecular mechanism of pHLIP action, which is based on the increase of hydrophobicity of carboxyl groups when they become protonated under mildly acidic conditions, leading to peptide insertion into a membrane. It has been shown that pHLIP can target acidic tissue and selectively translocate polar, cell-impermeable molecules across membranes in response to low extracellular pH. As noted in the Molecular Imaging and Contrast Agent Database (MICAD) at NCBI, a pHLIP labeled with a fluorescent dye, or a PET- and SPECT- agents (64Cu-DOTA, 18F, 99Tc) is a marker for in vivo acidity. All prior studies in vivo were carried out with the WT-pHLIP sequence and showed that a good contrast and tumor to blood ratio can be achieved only more than 24 hours after pHLIP injection, when it has accumulated in the tumor and largely cleared from the blood. However, for the use of pHLIP-based radioactive imaging agents in the clinic, a more rapid background signal reduction is absolutely essential. We have conducted research in order to address this important need, to tune tumor targeting properties, and to broaden our understanding of the molecular mechanism of pHLIP action. A family of 16 pHLIP variants has been designed based on chemical and physical principles and comprehensive biophysical studies were performed with non-labeled peptides. We have successfully established a set of design criteria and identified the pHLIP candidates for imaging and therapeutic applications, including lead compounds for PET/SPECT and fluorescence/MR imaging.
Phaechamud, T.; Choncheewa, C.
2015-01-01
The objective of this investigation was to prepare the shellac wax matrix tablets by fusion and molding technique incorporated with Lutrol in different ratios to modify the hydrophobicity of matrix tablet. The matrix tablets with single drug were loaded either with propranolol hydrochloride or hydrochlorothiazide as hydrophilic and hydrophobic model drugs, and a dual drug formula was also prepared. The single and dual drug release patterns were studied in a dissolution apparatus using distilled water as medium. Propranolol hydrochloride released from matrix was easier than hydrochlorothiazide. Drug release from shellac wax matrix could be enhanced by incorporation of Lutrol. However retardation of drug release from some matrix tablets was evident for the systems that could form dispersion in the dissolution medium. The gel network from high content of Lutrol was hexagonal which was a dense and more compact structure than the other structures found when low amounts of Lutrol were present in the formula. Therefore, the formulae with high content of Lutrol could prolong drug release more efficiently than those containing low content of Lutrol. Hence shellac wax matrix could modulate the drug release with the addition of Lutrol. Sustainable dual drug release was also obtained from these developed matrix tablets. Thus shellac wax-Lutrol component could be used as a potential matrix tablet prepared with fusion and molding technique with excellent controlled drug release. PMID:25767320
The controlled release of tilmicosin from silica nanoparticles.
Song, Meirong; Li, Yanyan; Fai, Cailing; Cui, Shumin; Cui, Baoan
2011-06-01
The aim of this study was to use silica nanoparticles as the carrier for controlled release of tilmicosin. Tilmicosin was selected as a drug model molecule because it has a lengthy elimination half-life and a high concentration in milk after subcutaneous administration. Three samples of tilmicosin-loaded silica nanoparticles were prepared with different drug-loading weight. The drug-loading weight in three samples, as measured by thermal gravimetric analysis, was 29%, 42%, and 64%, respectively. With increased drug-loading weight, the average diameter of the drug-loaded silica nanoparticles was increased from 13.4 to 25.7 nm, and the zeta potential changed from-30.62 to-6.78 mV, indicating that the stability of the drug-loaded particles in the aqueous solution decreases as drug-loading weight increases. In vitro release studies in phosphate-buffered saline showed the sample with 29% drug loading had a slow and sustained drug release, reaching 44% after 72 h. The release rate rose with increased drug-loading weight; therefore, the release of tilmicosin from silica nanoparticles was well-controlled by adjusting the drug loading. Finally, kinetics analysis suggested that drug released from silica nanoparticles was mainly a diffusion-controlled process.
Söderlind, Erik; Abrahamsson, Bertil; Erlandsson, Fredrik; Wanke, Christoph; Iordanov, Ventzeslav; von Corswant, Christian
2015-11-10
A clinical study was conducted to validate the in vivo drug release performance of IntelliCap® CR capsules. 12 healthy, male volunteers were administered IntelliCap® CR capsules, filled with metoprolol as a BCS 1 model drug, and programmed to release the drug with 3 different release profiles (2 linear profiles extending over 6h and 14h, respectively, and a pulsed profile with two equal pulses separated by 5h) using a cross-over design. An oral metoprolol solution was included as a reference. Standard bioavailability variables were determined. In vivo drug release-time profiles for the IntelliCap® CR capsules were calculated from the plasma drug concentrations by deconvolution, and they were subsequently compared with the in vitro drug release profiles including assessment of level A in vitro/in vivo correlation (IVIVC). The relative bioavailability for the linear, extended release profiles was about 85% which is similar to other extended release administrations of metoprolol. There was an excellent agreement between the predetermined release profiles and the in vivo release for these two administrations. For IntelliCap® CR capsules programmed to deliver 2 distinct and equal drug pulses, the first pulse was delivered as expected whereas only about half of the second dose was released. Thus, it is concluded that the IntelliCap® system is well suited for the fast and reliable generation of in vivo pharmacokinetic data for extended release drug profiles, e.g. in context of regional drug absorption investigations. For immediate release pulses delivered in the distal GI tract this version of the device appears however less suitable. Copyright © 2015 Elsevier B.V. All rights reserved.
21 CFR 347.52 - Labeling of astringent drug products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... states “[bullet] dissolve 1 to 3 packets in [insert volume] of cool or warm water [bullet] stir until... [bullet] stir until fully dissolved; do not strain or filter. The resulting mixture contains [insert...
Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration.
Ziller, Antje; Nogueira, Sara S; Hühn, Eva; Funari, Sergio S; Brezesinski, Gerald; Hartmann, Hermann; Sahin, Ugur; Haas, Heinrich; Langguth, Peter
2018-02-05
Insertion of high molecular weight messenger RNA (mRNA) into lyotropic lipid phases as model systems for controlled release formulations for the mRNA was investigated. Low fractions of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used as an anchor to load the mRNA into a lamellar lipid matrix. Dispersions of zwitterionic lipid in the aqueous phase in the presence of increasing fractions of mRNA and cationic lipid were prepared, and the molecular organization was investigated as a function of mRNA and cationic lipid fraction. Insertion of both cationic lipid and mRNA was clearly proven from the physicochemical characteristics. The d-spacing of the lipid bilayers, as determined by small-angle X-ray scattering (SAXS) measurements, responded sensitively to the amount of inserted DOTAP and mRNA. A concise model of the insertion of the mRNA in the lipid matrices was derived, indicating that the mRNA was accommodated in the aqueous slab between lipid bilayers. Depending on the DOTAP and mRNA fraction, a different excess of water was present in this slab. Results from further physicochemical characterization, including determination of free and bound mRNA, zeta potential, and calorimetry data, were in line with this assumption. The structure of these concentrated lipid/mRNA preparations was maintained upon dilution. The functionality of the inserted mRNA was proven by cell culture experiments using C2C12 murine myoblast cells with the luciferase-encoding mRNA. The described lipid phases as carriers for the mRNA may be applicable for different routes of local administration, where control of the release kinetics and the form of the released mRNA (bound or free) is required.
Predicting Pharmacokinetic Stability by Multiple Oral Administration of Atypical Antipsychotics
Aoki, Kazuo; Sakiyama, Yojiro; Ohnishi, Takashi; Sugita, Makoto
2013-01-01
Lower fluctuation, i.e., lower peak-to-trough plasma-concentration variation at steady-state pharmacokinetics, has several advantages for the treatment of schizophrenia with antipsychotics. The reduction of peak concentration can decrease the risk of dose-dependent side effects, such as extrapyramidal symptom and somnolence, and by contrast the increase in trough concentration can decrease the incidence of lack of efficacy due to subtherapeutic drug concentration. Using a one-compartment simulation technique with pharmacokinetic parameters of each atypical antipsychotic collected from package inserts, the fluctuation index was calculated. Among the antipsychotics, the indices varied from 0.018 to 1.9, depending on dosing regimens, formulations and several pharmacokinetic properties. The order of simulated fluctuation index is active-moiety aripiprazole (b.i.d.)
Padois, Karine; Bertholle, Valérie; Pirot, Fabrice; Hyunh, Truc Thanh Ngoc; Rossi, Alessandra; Colombo, Paolo; Falson, Françoise; Sonvico, Fabio
2012-12-01
The widespread use of indwelling medical devices has enormously increased the interest in materials incorporating antibiotics and antimicrobial agents as a means to prevent dangerous device-related infections. Recently, chlorhexidine-loaded polyurethane has been proposed as a material suitable for the production of devices which are able to resist microbial contamination. The aim of the present study was to characterize the in vitro release of chlorhexidine from new polymeric orthodontic chains realized with polyurethane loaded with two different chlorhexidine salts: chlorhexidine diacetate or chlorhexidine digluconate. The orthodontic chains constituted of three layers: a middle polyurethane layer loaded with chlorhexidine salt inserted between two layers of unloaded polymer. In vitro release of chlorhexidine diacetate and digluconate from orthodontic chains loaded with 10% or 20% (w/w) chlorhexidine salt was sustained for 42 days and followed Fickian diffusion. The drug diffusion through the polyurethane was found to be dependent not only on chlorhexidine loading, but also on the type of chlorhexidine salt. The antibacterial activity of 0.2% (w/w) chlorhexidine diacetate-loaded orthodontic chain was successfully tested towards clinically isolated biofilm forming ica-positive Staphylococcus epidermidis via agar diffusion test. In conclusion, the chlorhexidine salt-loaded chains could provide an innovative approach in the prevention of oral infections related to the use of orthodontic devices.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Background Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Methods Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. Results The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. Conclusion The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection. PMID:23028220
In vivo performance of a microelectrode neural probe with integrated drug delivery
Rohatgi, Pratik; Langhals, Nicholas B.; Kipke, Daryl R.; Patil, Parag G.
2014-01-01
Object The availability of sophisticated neural probes is a key prerequisite in the development of future brain machine interfaces (BMI). In this study, we developed and validated a neural probe design capable of simultaneous drug delivery and electrophysiology recordings in vivo. Focal drug delivery has promise to dramatically extend the recording lives of neural probes, a limiting factor to clinical adoption of BMI technology. Methods To form the multifunctional neural probe, we affixed a 16-channel microfabricated silicon electrode array to a fused silica catheter. Three experiments were conducted to characterize the performance of the device. Experiment 1 examines cellular damage from probe insertion and the drug distribution in tissue. Experiment 2 measures the effects of saline infusions delivered through the probe on concurrent electrophysiology. Experiment 3 demonstrates that a physiologically relevant amount of drug can be delivered in a controlled fashion. For these experiments, Hoechst and propidium iodide were used to assess insertion trauma and the tissue distribution of the infusate. Artificial cerebral spinal fluid and tetrodotoxin were injected to determine the efficacy of drug delivery. Results The newly developed multifunctional neural probes were successfully inserted into rat cortex and were able to deliver fluids and drugs that resulted in the expected electrophysiological and histological responses. The damage from insertion of the device into brain tissue was substantially less than the volume of drug dispersion in tissue. Electrophysiological activity, including both individual spikes as well as local field potentials, was successfully recorded with this device during real-time drug delivery. No significant changes were seen in response to delivery of artificial cerebral spinal fluid as a control experiment, whereas delivery of tetrodotoxin produced the expected result of suppressing all spiking activity in the vicinity of the catheter outlet. Conclusions Multifunctional neural probes such as the ones developed and validated within this study have great potential to help further understand the design space and criteria for the next generation of neural probe technology. By incorporating integrated drug delivery functionality into the probes, new treatment options for neurological disorders and regenerative neural interfaces utilizing localized and feedback controlled delivery of drugs can be realized in the near future. PMID:19569896
de Andrade, Diego Fontana; Zuglianello, Carine; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver
2015-12-01
The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.
Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H
2014-03-14
This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.
NASA Astrophysics Data System (ADS)
Xu, Yingpu; Qu, Fengyu; Wang, Yu; Lin, Huiming; Wu, Xiang; Jin, Yingxue
2011-03-01
A novel pH-sensitive drug release system has been established by coating Eudragit (Eud) on drug-loaded mesoporous silica (MS) tablets. The release rate of ibuprofen (IBU) from the MS was retarded by coating with Eudragit S-100, and the higher retardation was due to the increase of coating concentration and the coating layers. The target position of the release depended on the pH of the release medium, which was confirmed by the drug release from IBU/MS/Eud increasing rapidly with the change of medium pH from 1.2 to 7.4. This drug delivery system could prohibit irritant drug from leaking in the stomach and make it only release in the intestine. The loaded and unloaded drug samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), N 2 adsorption/desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery
NASA Astrophysics Data System (ADS)
Jin, Erlei
2011-12-01
Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.
Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B
2010-12-01
Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.
Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi
2012-05-14
We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.
Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S
2015-09-18
The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Drug delivery systems with modified release for systemic and biophase bioavailability.
Leucuta, Sorin E
2012-11-01
This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.
Sustained release of antimicrobial drugs from polyvinylalcohol and gum arabica blend matrix.
Kushwaha, V; Bhowmick, A; Behera, B K; Ray, A R
1998-03-01
Synthetic polymers are widely used in biomedical applications. Polymer blends have recently paved their way in this field. An attempt to prepare blend of synthetic polymer polyvinylalcohol and natural macromolecule gum arabica is made in this paper. Characterization of these blends by NMR, DSC and viscoelastic studies reveal preparation of a blend composition with synergistic properties. The blend composition with synergistic properties was used to release various antimicrobial drugs. The duration and release of the drug depends on the amount of drug loaded in the matrix and solubility of the drug in the matrix and release medium. The advantage of this system is that the release kinetics of the drug from the system can be tailored by adjusting plasticizer, homopolymer and crosslinker composition depending on the drug to be released.
Smart drug release systems based on stimuli-responsive polymers.
Qing, Guangyan; Li, Minmin; Deng, Lijing; Lv, Ziyu; Ding, Peng; Sun, Taolei
2013-07-01
Stimuli-responsive polymers could respond to external stimuli, such as temperature, pH, photo-irradiation, electric field, biomolecules in solution, etc., which further induce reversible transformations in the structures and conformations of polymers, providing an excellent platform for controllable drug release, while the accuracy of drug delivery could obtain obvious improvement in this system. In this review, recent progresses in the drug release systems based on stimuli-responsive polymers are summarized, in which drugs can be released in an intelligent mode with high accuracy and efficiency, while potential damages to normal cells and tissues can also be effectively prevented owing to the unique characteristics of materials. Moreover, we introduce some smart nanoparticles-polymers conjugates and drug release devices, which are especially suitable for the long-term sustained drug release.
Li, Liang; Wang, Linlin; Shao, Yang; Tian, Ye; Li, Conghao; Li, Ying; Mao, Shirui
2013-08-01
The aim of this study was to better understand the underlying drug release characteristics from matrix tablets based on the combination of chitosan (CS) and different types of carrageenans [kappa (κ)-CG, iota (ι)-CG, and lambda (λ)-CG]. Highly soluble trimetazidine hydrochloride (TH) was used as a model drug. First, characteristics of drug release from different formulations were investigated, and then in situ complexation capacity of CG with TH and CS was studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. Erosion and swelling of matrix were also characterized to better understand the drug-release mechanisms. Effects of pH and ionic strength on drug release were also studied. It was found that not only ι-CG and λ-CG could reduce the burst release of TH by the effect of TH-CG interaction, CS-ι-CG- and CS-λ-CG-based polyelectrolyte film could further modify the controlled-release behavior, but not CS-κ-CG. High pH and high ionic strength resulted in faster drug release from CS-κ-CG- and CS-ι-CG-based matrix, but drug release from CS-λ-CG-based matrix was less sensitive to pH and ionic strength. In conclusion, CS-λ-CG-based matrix tablets are quite promising as controlled-release drug carrier based on multiple mechanisms. Copyright © 2013 Wiley Periodicals, Inc.
Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee
2017-10-02
The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.
Modulation of venlafaxine hydrochloride release from press coated matrix tablet.
Gohel, M C; Soni, C D; Nagori, S A; Sarvaiya, K G
2008-01-01
The aim of present study was to prepare novel modified release press coated tablets of venlafaxine hydrochloride. Hydroxypropylmethylcellulose K4M and hydroxypropylmethylcellulose K100M were used as release modifier in core and coat, respectively. A 3(2) full factorial design was adopted in the optimization study. The drug to polymer ratio in core and coat were chosen as independent variables. The drug release in the first hour and drug release rate between 1 and 12 h were chosen as dependent variables. The tablets were characterized for dimension analysis, crushing strength, friability and in vitro drug release. A check point batch, containing 1:2.6 and 1:5.4 drug to polymer in core and coat respectively, was prepared. The tablets of check point batch were subjected to in vitro drug release in dissolution media with pH 5, 7.2 and distilled water. The kinetics of drug release was best explained by Korsmeyer and Peppas model (anomalous non-Fickian diffusion). The systematic formulation approach enabled us to develop modified release venlafaxine hydrochloride tablets.
Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy.
Purushotham, S; Ramanujan, R V
2010-02-01
The synthesis, characterization and property evaluation of drug-loaded polymer-coated magnetic nanoparticles (MNPs) relevant to multimodal cancer therapy has been studied. The hyperthermia and controlled drug release characteristics of these particles was examined. Magnetite (Fe(3)O(4))-poly-n-(isopropylacrylamide) (PNIPAM) composite MNPs were synthesized in a core-shell morphology by dispersion polymerization of n-(isopropylacrylamide) chains in the presence of a magnetite ferrofluid. These core-shell composite particles, with a core diameter of approximately 13nm, were loaded with the anti-cancer drug doxorubicin (dox), and the resulting composite nanoparticles (CNPs) exhibit thermoresponsive properties. The magnetic properties of the composite particles are close to those of the uncoated magnetic particles. In an alternating magnetic field (AMF), composite particles loaded with 4.15 wt.% dox exhibit excellent heating properties as well as simultaneous drug release. Drug release testing confirmed that release was much higher above the lower critical solution temperature (LCST) of the CNP, with a release of up to 78.1% of bound dox in 29h. Controlled drug release testing of the particles reveals that the thermoresponsive property can act as an on/off switch by blocking drug release below the LCST. Our work suggests that these dox-loaded polymer-coated MNPs show excellent in vitro hyperthermia and drug release behavior, with the ability to release drugs in the presence of AMF, and the potential to act as agents for combined targeting, hyperthermia and controlled drug release treatment of cancer.
Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Bashir, Sajid; Ashraf, Muhammad Umer; Ahmad, Naveed
2017-03-01
Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach. Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material. Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM. LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets. The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion. These finding indicates that LSH holds potential to be developed as sustained release material for tablet.
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Maity, Siddhartha; Sa, Biswanath
2014-08-01
The objective of this work was to study the release behavior of prednisolone from calcium-cross-linked carboxymethyl xanthan gum (CMXG) tablets in dissolution medium having different pH values prevailing in the gastrointestinal lumen. Xanthan gum (XG) was derivatized to CMXG which was then cross-linked in situ with Ca(+2) ion during wet massing step of tablet preparation. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry studies did not show any drug-polymer interaction although the drug underwent solid-state transformation during compression as evident from X-ray diffraction analysis. In vitro release study demonstrated that increase in the amount of Ca(+2) ion decreased the drug release, and beyond a certain amount, the drug release increased. While increase in both drug load and tablet crushing strength decreased the drug release, increase in exposure time in acid solution of pH 1.2 increased the overall release of the drug. The mechanism of drug release was non-Fickian/anomalous. The results indicated that variation in the amount of Ca(+2) ion can modulate the drug release from CMXG matrix tablets as needed.
Vasiljevic, Dragana; Parojcic, Jelena; Primorac, Marija; Vuleta, Gordana
2006-02-17
Multiple W/O/W emulsions with high content of inner phase (Phi1=Phi2=0.8) were prepared using relatively low concentrations of lipophilic polymeric primary emulsifier, PEG 30-dipolyhydroxystearate, and diclofenac diethylamine (DDA) as a model drug. The investigated formulations were characterized and their stability over the time was evaluated by dynamic and oscillatory rheological measurements, microscopic analysis and in vitro drug release study. In vitro release profiles of the selected model drug were evaluated in terms of the effective diffusion coefficients and flux of the released drug. The multiple emulsion samples exhibited good stability during the ageing time. Concentration of the lipophilic primary emulsifier markedly affected rheological behaviour as well as the droplet size and in vitro drug release kinetics of the investigated systems. The multiple emulsion systems with highest concentration (2.4%, w/w) of the primary emulsifier had the lowest droplet size and the highest apparent viscosity and highest elastic characteristics. Drug release data indicated predominately diffusional drug release mechanism with sustained and prolonged drug release accomplished with 2.4% (w/w) of lipophilic emulsifier employed.
Mehta, R; Teckoe, J; Schoener, C; Workentine, S; Ferrizzi, D; Rajabi-Siahboomi, A
2016-12-01
Ethylcellulose is one of the most commonly used polymers to develop reservoir type extended release multiparticulate dosage forms. For multiparticulate extended release dosage forms, the drug release is typically governed by the properties of the barrier membrane coating. The ICH Pharmaceutical Development Guideline (ICH Q8) requires an understanding of the influence of critical material attributes and critical process parameters on the drug release of a pharmaceutical product. Using this understanding, it is possible to develop robust formulations with consistent drug release characteristics. Critical material attributes for ethylcellulose were evaluated, and polymer molecular weight variation (viscosity) was considered to be the most critical attribute that can impact drug release. To investigate the effect of viscosity variation within the manufacturer's specifications of ethylcellulose, extended release multiparticulate formulations of two model drugs, metoprolol tartrate and acetaminophen, were developed using ETHOCEL™ as the rate controlling polymer. Quality by Design (QbD) samples of ETHOCEL Std. 10, 20, and 100 Premium grades representing the low, medium, and high molecular weight (viscosity) material were organically coated onto drug layered multiparticulates to a 15% weight gain (WG). The drug release was found to be similar (f 2 > 50) for both metoprolol tartrate and acetaminophen multiparticulates at different coating weight gains of ethylcellulose, highlighting consistent and robust drug release performance. The use of ETHOCEL QbD samples also serves as a means to develop multiparticulate dosage formulations according to regulatory guidelines.
Drug release studies from lipid nanoparticles in physiological media by a new DSC method.
Roese, Elin; Bunjes, Heike
2017-06-28
Lipid nanoparticles are an interesting parenteral delivery system for poorly water-soluble drugs. In order to approach physiological conditions when conducting release studies from such systems the release media should preferentially contain lipophilic acceptor compartments such as lipoproteins or other colloidal lipophilic components. In practice, drug release studies under such close to physiological conditions may be complicated by the small size of lipid nanoparticles, which is in the same range as that of the potential acceptor particles. This study describes a novel differential scanning calorimetry (DSC) method for drug release measurements which works without separation of donor and acceptor particles. The technique is based on measuring the crystallization temperature of trimyristin nanoparticles by DSC. The crystallization temperature of the nanoparticles decreases proportionally with the amount of active ingredient incorporated and thus increases as a result of drug release. Liquid trimyristin nanoparticles loaded with fenofibrate, orlistat, tocopherol acetate and ubidecarenone were studied in three different release media with increasing complexity and comparability to physiological conditions: a rapeseed oil nanoemulsion, porcine serum and porcine blood. Using the new method, a correlation between release behavior and drug lipophilicity was observed: the higher the logP value of the drug, the slower the release. The extent of drug release was influenced by partition equilibrium as indicated by increased drug release in the rapeseed oil nanoemulsion compared to porcine serum and blood. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-01-01
We have developed an improved tool for imaging acidic tumors by reporting the insertion of a transmembrane helix: the pHLIP-Fluorescence Insertion REporter (pHLIP-FIRE). In acidic tissues, such as tumors, peptides in the pHLIP family insert as α-helices across cell membranes. The cell-inserting end of the pHLIP-FIRE peptide has a fluorophore–fluorophore or fluorophore–quencher pair. A pair member is released by disulfide cleavage after insertion into the reducing environment inside a cell, resulting in dequenching of the probe. Thus, the fluorescence of the pHLIP-FIRE probe is enhanced upon cell-insertion in the targeted tissues but is suppressed elsewhere due to quenching. Targeting studies in mice bearing breast tumors show strong signaling by pHLIP-FIRE, with a contrast index of ∼17, demonstrating (i) direct imaging of pHLIP insertion and (ii) cargo translocation in vivo. Imaging and targeted cargo delivery should each have clinical applications. PMID:25184440
Liu, Lin; Bai, Shaoqing; Yang, Huiqin; Li, Shubai; Quan, Jing; Zhu, Limin; Nie, Huali
2016-10-01
The thermo-sensitive copolymer poly(N-vinylcaprolactam-co-methacrylic acid) (PNVCL-co-MAA) was synthesized by free radical polymerization and the resulting nanofibers were fabricated using an electrospinning process. The molecular weight of the copolymer was adjusted by varying the content of methacrylic acid (MAA) while keeping that of N-vinylcaprolactam (NVCL) constant. Hydrophilic captopril and hydrophobic ketoprofen were used as model drugs, and PNVCL-co-MAA nanofibers were used as the drug carrier to investigate the effects of drug on its release properties from nanofibers at different temperatures. The results showed that slow release over several hours was observed at 40°C (above the lower critical solution temperature (LCST) of PNVCL-co-MAA), while the drugs exhibited a burst release of several seconds at 20°C (below the LCST). Drug release slowed with increasing content of the hydrophobic monomer NVCL. The hydrophilic captopril was released at a higher rate than the hydrophobic ketoprofen. The drug release characteristics were dependent on the temperature, the portion of hydrophilic groups and hydrophobic groups in the copolymer and hydrophilicity/hydrophobicity of drug. Study on the mechanism of release showed that Korsmeyer-Peppas model as a major drug release mechanism. Given these results, the PNVCL-co-MAA copolymers are proposed to have useful applications in intellectual drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Meiyan; Xie, Si; Li, Qiu; Wang, Yuli; Chang, Xinyi; Shan, Li; Sun, Lei; Huang, Xiaoli; Gao, Chunsheng
2014-04-25
Delivering sparingly water-soluble drugs from ethylcellulose (EC) coated pellets with a controlled-release pattern remains challenging. In the present study, hydrophilic polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former in EC coated pellets to deliver sparingly water-soluble topiramate, and the key factors that influenced drug release were identified. When the binder PVP content in drug layers below 20% w/w was decreased, the physical state of topiramate changed from amorphous to crystalline, making much difference to drug solubility and dissolution rates while modifying the drug release profile from first-order to zero-order. In addition, without PVP in drug layering solution, drug layered particles were less sticky during layering process, thus leading to a shorter process and higher loading efficiency. Furthermore, PVP level as a pore-former in EC coating layers mainly governed drug release from the coated pellets with the sensitivity ranging from 23% to 29%. PVP leaching rate and water permeability from EC/PVP film increased with the PVP level, which was perfectly correlated with drug release rate. Additionally, drug release from this formulation was independent of pH of release media or of the paddle mixing speed, but inversely proportional to the osmolality of release media above the physiological range. Copyright © 2014. Published by Elsevier B.V.
National Biocontainment Training Center
2014-06-01
of novel antimicrobial compounds with antibacterial activity against TB (Vijayakumar, et al., Dec. 2013, Tuberculosis). She has also developed...Nanoluc. (a) insert the Nanoluc after the signal peptide , (b) insert the Nanoluc before the RSKR site, (c) insert the Nanoluc before the RRLL site...biological safe techniques. This training took place in Dallas, Texas. Trainers: Vickie Jones and Jason Hardcastle. Food and Drug Administration (FDA
Firmness Perception Influences Women’s Preferences for Vaginal Suppositories
Zaveri, Toral; Primrose, Rachel J.; Surapaneni, Lahari; Ziegler, Gregory R.; Hayes, John E.
2014-01-01
Microbicides are being actively researched and developed as woman-initiated means to prevent HIV transmission during unprotected coitus. Along with safety and efficacy, assessing and improving compliance is a major area of research in microbicide development. We have developed carrageenan-based semisoft vaginal suppositories and have previously evaluated how physical properties such as firmness, size and shape influence women’s willingness to try them. Firmness has previously been quantified in terms of small-strain storage modulus, G’, however large-strain properties of the gels may also play a role in the firmness perception. In the current study we prepared two sets of suppositories with the same G’ but different elongation properties at four different G’ values (250, 2500, 12,500, 25,000 Pa): For convenience we refer to these as “brittle” and “elastic”, although these terms were never provided to study participants. In the first of two tests conducted to assess preference, women compared pairs of brittle and elastic suppositories and indicated their preference. We observed an interaction, as women preferred brittle suppositories at lower G’ (250, 2500 Pa) and elastic ones at a higher G’ (25,000 Pa). In the second test, women evaluated samples across different G’, rated the ease-of-insertion and willingness-to-try and ranked the samples in order of preference. Brittle suppositories at G’ of 12,500 Pa were most preferred. In vitro studies were also conducted to measure the softening of the suppositories in contact with vaginal simulant fluid (VSF). Release of antiretroviral drug tenofovir in VSF was quantified for the brittle and elastic suppositories at G’ of 12,500 Pa to determine the effect of suppository type on release. The initial rate of release was 20% slower with elastic suppositories as compared to brittle suppositories. Understanding how different physical properties simultaneously affect women’s preferences and pharmacological efficacy in terms of drug release is required for the optimization of highly acceptable and efficacious microbicides. PMID:25211123
Functional Consequence of Distal Brachioradialis Tendon Release: A Biomechanical Study
Tirrell, Timothy F.; Franko, Orrin I.; Bhola, Siddharth; Hentzen, Eric R.; Abrams, Reid A.; Lieber, Richard L.
2013-01-01
Purpose Open reduction and internal fixation of distal radius fractures often necessitates release of the brachioradialis from the radial styloid. However, this common procedure has the potential to decrease elbow flexion strength. To determine the potential morbidity associated with brachioradialis release, we measured the change in elbow torque as a function of incremental release of the brachioradialis insertion footprint. Methods In 5 upper extremity cadaveric specimens, the brachioradialis tendon was systematically released from the radius, and the resultant effect on brachioradialis elbow flexion torque was measured. Release distance was defined as the distance between the release point and the tip of the radial styloid. Results Brachioradialis elbow flexion torque dropped to 95%, 90% and 86% of its original value at release distances of 27mm, 46mm, and 52mm, respectively. Importantly, brachioradialis torque remained above 80% of its original value at release distances up to 7 centimeters. Conclusions Our data demonstrate that release of the brachioradialis tendon from its insertion has minor effects on its ability to transmit force to the distal radius. Clinical Relevance These data may imply that release of the distal brachioradialis tendon during distal radius open reduction internal fixation can be performed without meaningful functional consequences to elbow flexion torque. Even at large release distances, overall elbow flexion torque loss after brachioradialis release would be expected to be less than 5% due to the much larger contributions of the biceps and brachialis. Use of the brachioradialis as a tendon transfer donor should not be limited by concerns of elbow flexion loss, and the tendon could be considered as an autograft donor. PMID:23528425
Golan, Talia; Khvalevsky, Elina Zorde; Hubert, Ayala; Gabai, Rachel Malka; Hen, Naama; Segal, Amiel; Domb, Abraham; Harari, Gil; David, Eliel Ben; Raskin, Stephen; Goldes, Yuri; Goldin, Eran; Eliakim, Rami; Lahav, Maor; Kopleman, Yael; Dancour, Alain; Shemi, Amotz; Galun, Eithan
2015-01-01
Purpose The miniature biodegradable implant siG12D-LODER™ was inserted into a tumor and released a siRNA drug against KRAS(G12D) along four months. This novel siRNA based drug was studied, in combination with chemotherapy, as targeted therapy for Locally Advanced Pancreatic Cancer (LAPC). Methods An open-label Phase 1/2a study in the first-line setting of patients with non-operable LAPC was initiated. In this study patients were assigned to receive a single dose of siG12D-LODERs, in three escalating dose cohorts (0.025mg, 0.75mg and 3.0mg). Gemcitabine was given on a weekly basis, following the siG12D-LODERTM insertion, until disease progression. The recommended dose was further examined with modified FOLFIRINOX. The follow up period was eight weeks and survival until death. Results Fifteen patients with LAPC were enrolled. Among the 15 treated patients, the most frequent adverse events observed were grade 1or 2 in severity (89%); five patients experienced serious adverse events (SAEs). In 12 patients analyzed by CT scans, none showed tumor progression, the majority (10/12) demonstrated stable disease and two showed partial response. Decrease in tumor marker CA19-9 was observed in 70% (7/10) of patients. Median overall survival was 15.12 months; 18 month survival was 38.5%. Conclusions The combination of siG12D-LODER™ and chemotherapy is well tolerated, safe and demonstrated a potential efficacy in patients with LAPC. NCT01188785 PMID:26009994
Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function
Yim, Sehyuk; Goyal, Kartik; Sitti, Metin
2014-01-01
In this paper, we present a magnetically actuated multimodal drug release mechanism using a tetherless soft capsule endoscope for the treatment of gastric disease. Because the designed capsule has a drug chamber between both magnetic heads, if it is compressed by the external magnetic field, the capsule could release a drug in a specific position locally. The capsule is designed to release a drug in two modes according to the situation. In the first mode, a small amount of drug is continuously released by a series of pulse type magnetic field (0.01–0.03 T). The experimental results show that the drug release can be controlled by the frequency of the external magnetic pulse. In the second mode, about 800 mm3 of drug is released by the external magnetic field of 0.07 T, which induces a stronger magnetic attraction than the critical force for capsule’s collapsing. As a result, a polymeric coating is formed around the capsule. The coated area is dependent on the drug viscosity. This paper presents simulations and various experiments to evaluate the magnetically actuated multimodal drug release capability. The proposed soft capsules could be used as minimally invasive tetherless medical devices with therapeutic capability for the next generation capsule endoscopy. PMID:25378896
Li, Qiaoyun; Wan, Xiaocao; Liu, Chao; Fang, Liang
2018-07-01
The aim of this study was to prepare a drug-in-adhesive patch of nicotine (NIC) and use ion-pair strategy to regulate drug delivery rate. Moreover, the mechanism of how ion-pair strategy regulated drug release was elucidated at molecular level. Formulation factors including pressure sensitive adhesives (PSAs), drug loading and counter ions (C 4 , C 6 , C 8 , C 10 , and C 12 ) were screened. In vitro release experiment and in vitro transdermal experiment were conducted to determine the rate-limiting step in drug delivery process. FT-IR and molecular modeling were used to characterize the interaction between drug and PSA. Thermal analysis and rheology study were conducted to investigate the mobility variation of PSA. The optimized patch prepared with NIC-C 8 had the transdermal profile fairly close to that of the commercial product (p > 0.05). The release rate constants (k) of NIC, NIC-C 4 and NIC-C 10 were 21.1, 14.4 and 32.4, respectively. Different release rates of NIC ion-pair complexes were attributed to the dual effect of ion-pair strategy on drug release. On one hand, ion-pair strategy enhanced the interaction between drug and PSA, which inhibited drug release. On the other hand, using ion-pair strategy improved the mobility of PSA, which facilitated drug release. Drug release behavior was determined by combined effect of two aspects above. These conclusions provided a new idea for us to regulate drug release behavior from patch. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Seung Hyun; Lee, Kang Ju; Lee, JiYong; Yoon, Jae Hyoung; Jo, Dong Hyun; Kim, Jeong Hun; Kang, Keonwook; Ryu, WonHyoung
2016-10-15
The sclera provides the structural support of the eye and protects the intraocular contents. Since it covers a large portion of the eye surface and has relatively high permeability for most drugs, the sclera has been used as a major pathway for drug administration. Recently, microneedle (MN) technology has shown the possibility of highly local and minimally-invasive drug delivery to the eye by MN insertion through the sclera or the suprachoroidal space. Although ocular MN needs to be inserted through the sclera, there has been no systematic study to understand the mechanical properties of the sclera, which are important to design ocular MNs. In this study, we investigated a MN-based method to measure the puncture resistance and fracture toughness of the sclera. To reflect the conditions of MN insertion into the sclera, force-displacement curves obtained from MN-insertion tests were used to estimate the puncture resistance and fracture toughness of sclera tissue. To understand the effect of the insertion conditions, dependency of the mechanical properties on insertion speeds, pre-strain of the sclera, and MN sizes were analyzed and discussed. Measurement of mechanical property of soft biological tissue is challenging due to variations between tissue samples or lack of well-defined measurement techniques. Although non-invasive measurement techniques such as nano/micro indentation were employed to locally measure the elastic modulus of soft biological materials, mechanical properties such as puncture resistance or fracture toughness, which requires "invasive" measurement and is important for the application of "microneedles or hypodermic needles", has not been well studied. In this work, we report minimally-invasive measurement of puncture resistance and fracture toughness of sclera using a double MN insertion method. Parametric studies showed that use of MN proved to be advantageous because of minimally-invasive insertion into tissue as well as higher sensitivity to sub-tissue architecture during the measurement. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
3D Nanoporous Anodic Alumina Structures for Sustained Drug Release
Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep
2017-01-01
The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654
Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi
2017-05-01
Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.
Patient and Physician Perceptions of Drug Safety Information for Sleep Aids: A Qualitative Study.
Kesselheim, Aaron S; McGraw, Sarah A; Dejene, Sara Z; Rausch, Paula; Dal Pan, Gerald J; Lappin, Brian M; Zhou, Esther H; Avorn, Jerry; Campbell, Eric G
2017-06-01
The US Food and Drug Administration uses drug safety communications (DSCs) to release emerging information regarding post-market safety issues, but it is unclear the extent of awareness by patients and providers of these communications and their specific recommendations. We conducted semi-structured interviews with patients and physicians to evaluate their awareness and understanding of emerging drug safety information related to two sleep aids: zolpidem or eszopiclone. We conducted interviews with 40 patients and ten physicians recruited from a combination of insurer claims databases and online sources. We evaluated (1) sources of drug safety information; (2) discussions between patients and physicians about the two medications; (3) their knowledge of the DSC; and (4) preferences for learning about future drug safety information. Interviews were transcribed and analyzed thematically. Patients cited their physicians, pharmacy inserts, and the Internet as sources of drug safety information. Physicians often referred to medical journals and online medical sources. Most patients reported being aware of information contained in the DSC summaries they were read. Almost all patients and physicians reported discussing side effects during patient-provider conversations, but almost no patients mentioned that physicians had communicated with them key messaging from the DSCs at issue: the risk of next-morning impairment with zolpidem and the lower recommended initial dose for women. Some risks of medications are effectively communicated to patients and physicians; however, there is still a noticeable gap between information issued by the Food and Drug Administration and patient and physician awareness of this knowledge, as well as patients' decisions to act on this information. Disseminators of emerging drug safety information should explore ways of providing user-friendly resources to patients and healthcare professionals that can update them on new risks in a timely manner.
Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong
2012-08-01
Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.
Modulation of the formation and release of bovine SRS-A in vitro by several anti-anaphylactic drugs.
Burka, J F; Eyre, P
1975-01-01
Slow-reacting substance of anaphylaxis (SRS-A) is released immunologically from bovine lung in vitro. Various drugs known to protect calves and other animals during anaphylaxis were tested to investigate their modulation of the formation and release of SRS-A. The anti-inflammatory drugs, meclofenamate and aspirin, potentiated SRS-A release. Chlorphenesin and diethylcarbamazine citrate at high concentrations both inhibited SRS-A release. Two new anti-anaphylactic drugs, PR-D-92-EA and M&B 22,948, were particularly effective in inhibiting SRS-A release at low concentrations. The possible modes of actions of these drugs are discussed.
NASA Astrophysics Data System (ADS)
Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.
2018-05-01
Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.
Janas, Christine; Mast, Marc-Phillip; Kirsamer, Li; Angioni, Carlo; Gao, Fiona; Mäntele, Werner; Dressman, Jennifer; Wacker, Matthias G
2017-06-01
The dispersion releaser (DR) is a dialysis-based setup for the analysis of the drug release from nanosized drug carriers. It is mounted into dissolution apparatus2 of the United States Pharmacopoeia. The present study evaluated the DR technique investigating the drug release of the model compound flurbiprofen from drug solution and from nanoformulations composed of the drug and the polymer materials poly (lactic acid), poly (lactic-co-glycolic acid) or Eudragit®RSPO. The drug loaded nanocarriers ranged in size between 185.9 and 273.6nm and were characterized by a monomodal size distribution (PDI<0.1). The membrane permeability constants of flurbiprofen were calculated and mathematical modeling was applied to obtain the normalized drug release profiles. For comparing the sensitivities of the DR and the dialysis bag technique, the differences in the membrane permeation rates were calculated. Finally, different formulation designs of flurbiprofen were sensitively discriminated using the DR technology. The mechanism of drug release from the nanosized carriers was analyzed by applying two mathematical models described previously, the reciprocal powered time model and the three parameter model. Copyright © 2017 Elsevier B.V. All rights reserved.
Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.
Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran
2013-05-01
With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.
Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.
Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao
2011-01-01
Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.
Biodegradable fibre scaffolds incorporating water-soluble drugs and proteins.
Ma, J; Meng, J; Simonet, M; Stingelin, N; Peijs, T; Sukhorukov, G B
2015-07-01
A new type of biodegradable drug-loaded fibre scaffold has been successfully produced for the benefit of water-soluble drugs and proteins. Model drug loaded calcium carbonate (CaCO3) microparticles incorporated into poly(lactic acid-co-glycolic acid) (PLGA) fibres were manufactured by co-precipitation of CaCO3 and the drug molecules, followed by electrospinning of a suspension of such drug-loaded microparticles in a PLGA solution. Rhodamine 6G and bovine serum albumin were used as model drugs for our release study, representing small bioactive molecules and protein, respectively. A bead and string structure of fibres was achieved. The drug release was investigated with different drug loadings and in different pH release mediums. Results showed that a slow and sustained drug release was achieved in 40 days and the CaCO3 microparticles used as the second barrier restrained the initial burst release.
NASA Astrophysics Data System (ADS)
Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu
2014-04-01
In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.
NASA Astrophysics Data System (ADS)
Mesquita, Philippe C.; Oliveira, Alice R.; Pedrosa, Matheus F. Fernandes; de Oliveira, Anselmo Gomes; da Silva-Júnior, Arnóbio Antônio
2015-06-01
Spray dried methotrexate (MTX) loaded chitosan microparticles were prepared using different drug/copolymer ratios (9%, 18%, 27% and 45% w/w). The physicochemical aspects were assessed in order to select particles that were able to induce a sustained drug release effect. Particles were successfully produced which exhibited desired physicochemical aspects such as spherical shape and high drug loading. XRD and FT-IR analysis demonstrated that drug is not bound to copolymer and is only homogeneously dispersed in an amorphous state into polymeric matrix. Even the particles with higher drug loading levels presented a sustained drug release profile, which were mathematically modeled using adjusted Higuchi model. The drug release occurred predominantly with drug dissolution and diffusion through swollen polymeric matrix, with the slowest release occurring with particles containing 9% of drug, demonstrating an interesting and promising drug delivery system for MTX.
Yan, Yue; Fu, Jie; Wang, Tianfu; Lu, Xiuyang
2017-03-15
As efficient drug carriers, stimuli-responsive mesoporous silica nanoparticles are at the forefront of research on drug delivery systems. An acid-responsive system based on silyl ether has been applied to deliver a hybrid prodrug. Thiol-ene click chemistry has been successfully utilized for tethering this prodrug to mesoporous silica nanoparticles. Here, by altering the steric bulk of the substituent on the silicon atom, the release rate of a model drug, camptothecin, was controlled. The synthesized drug delivery system was investigated by analytical methods to confirm the functionalization and conjugation of the mesoporous silica nanoparticles. Herein, trimethyl silyl ether and triethyl silyl ether were selected to regulate the release rate. Under normal plasma conditions (pH 7.4), both types of camptothecin-loaded mesoporous silica nanoparticles (i.e., MSN-Me-CPT and MSN-Et-CPT) did not release the model drug. However, under in vitro acidic conditions (pH 4.0), based on a comparison of the release rates, camptothecin was released from MSN-Me-CPT more rapidly than from MSN-Et-CPT. To determine the biocompatibility of the modified mesoporous silica nanoparticles and the in vivo camptothecin uptake behavior, MTT assays with cancer cells and confocal microscopy observations were conducted, with positive results. These functionalized nanoparticles could be useful in clinical treatments requiring controlled drug release. As the release rate of drug from drug-carrier plays important role in therapy effects, trimethyl silyl ether (TMS) and triethyl silyl ether (TES) were selected as acid-sensitive silanes to control the release rates of model drugs conjugated from MSNs by thiol-ene click chemistry. The kinetic profiles of TMS and TES materials have been studied. At pH 4.0, the release of camptothecin from MSN-Et-CPT occurred after 2h, whereas MSN-Me-CPT showed immediate drug release. The results showed that silyl ether could be used to control release rates of drugs from MSNs under acid environment, which could be useful in clinical treatments requiring controlled drug release. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cheng, Lin; Liu, Yuanyuan; Zou, Bingfang; Yu, Yong; Ruan, Weimin; Wang, Yongqiang
2017-06-01
Template-etching strategy was put forward to synthesize rattle-type magnetic silica (Fe 3 O 4 @SiO 2 ) hollow microspheres in a controlled way. During the experiment, monodisperse Fe 2 O 3 microspheres were fabricated as physical template to generate uniform Fe 2 O 3 @SiO 2 with controlled shell thicknesses through sol-gel method, and the subsequent Fe 2 O 3 template etching process created variable space between Fe 2 O 3 core and SiO 2 shell, and the final calcination process transformed rattle-type Fe 2 O 3 @SiO 2 hollow microspheres into corresponding Fe 3 O 4 @SiO 2 product in hydrogen/nitrogen atmosphere. Compared with traditional physical template, here template-etching synthesis of rattle-type hollow microspheres saved the insertion of middle shells and their removal, which simplified the synthesis process with controllable core size and shell thickness. The rattle-type Fe 3 O 4 @SiO 2 hollow microspheres as drug carrier show efficient doxorubicin (DOX) loading, and the release rate of DOX loaded the rattle-type Fe 3 O 4 @SiO 2 hollow microspheres exhibit a surprising shell-thickness-dependent and a pH responsive drug release features. Additionally, MTT assays in HeLa cells demonstrated that the Fe 3 O 4 @SiO 2 nanocarriers were non-toxic even at the concentration of 250µgmL -1 for 48h. Thus, our results revealed that the Fe 3 O 4 @SiO 2 -DOX could play an important role in the development of intracellular delivery nanodevices for cancer therapy. Copyright © 2017. Published by Elsevier B.V.
Light induced cytosolic drug delivery from liposomes with gold nanoparticles.
Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto
2015-04-10
Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Microencapsulation: A promising technique for controlled drug delivery.
Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G
2010-07-01
MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.
Microencapsulation: A promising technique for controlled drug delivery
Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.
2010-01-01
Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795
Use of fibrin sealants for the localized, controlled release of cefazolin
Tredwell, Stephen; Jackson, John K.; Hamilton, Donald; Lee, Vivian; Burt, Helen M.
2006-01-01
Background Fibrin sealants are used increasingly in surgery to reduce bleeding and improve wound healing. They have great potential as biocompatible, biodegradable drug delivery systems, because the sealant may adhere to the target tissue and allow controlled release of the drug over an extended period. We investigated the encapsulation, stability and controlled release of erythromycin and cefazolin from Beriplast fibrin sealants (Aventis Behring Canada). Methods Drug-loaded clots were cast in glass vials and allowed to set. We observed the clots for drug precipitation and aggregation, and we assessed the effect of drug encapsulation on clot strength. Drug stability and release from the clots in phosphate buffered saline (PBS) was quantified by ultraviolet and visible violet absorbance spectroscopy and high-performance liquid chromatography. Results Erythromycin was found to release slowly from the fibrin clots over the first 2 hours but then degrade rapidly. Cefazolin was found to be very stable in clots in PBS (97% stable at 2 d and 93% stable at 5 d). The drug released in a controlled manner over 2 days, with most being released during the first day. The dose of drug released could be varied by changing the amount placed in the thrombin solution. Clot thickness had no effect on the rate of cefazolin release. Conclusion Overall, the 2-day release profile and the excellent stability of the drug suggest that cefazolin-loaded fibrin sealants may offer an effective route of postoperative antibiotic delivery. PMID:17152573
Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.
Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin
2016-06-01
Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. © 2016 John Wiley & Sons A/S.
Roussignol, X; Gauthe, R; Rahali, S; Mandereau, C; Courage, O; Duparc, F
2015-09-01
Arthroscopic treatment of tears in the middle and posterior parts of the medial meniscus can be difficult when the medial tibiofemoral compartment is tight. Passage of the instruments may damage the cartilage. The primary objective of this cadaver study was to perform an arthroscopic evaluation of medial tibiofemoral compartment opening after pie-crusting release (PCR) of the superficial medial collateral ligament (sMCL) at its distal insertion on the tibia. The secondary objective was to describe the anatomic relationships at the site of PCR (saphenous nerve, medial saphenous vein). We studied 10 cadaver knees with no history of invasive procedures. The femur was held in a vise with the knee flexed at 45°, and the medial aspect of the knee was dissected. PCR of the sMCL was performed under arthroscopic vision, in the anteroposterior direction, at the distal tibial insertion of the sMCL, along the lower edge of the tibial insertion of the semi-tendinosus tendon. Continuous 300-N valgus stress was applied to the ankle. Opening of the medial tibiofemoral compartment was measured arthroscopically using graduated palpation hooks after sequential PCR of the sMCL. The compartment opened by 1mm after release of the anterior third, 2.3mm after release of the anterior two-thirds, and 3.9mm after subtotal release. A femoral fracture occurred in 1 case, after completion of all measurements. Both the saphenous nerve and the medial saphenous vein were located at a distance from the PCR site in all 10 knees. PCR of the sMCL is chiefly described as a ligament-balancing method during total knee arthroplasty. This procedure is usually performed at the joint line, where it opens the compartment by 4-6mm at the most, with some degree of unpredictability. PCR of the sMCL at its distal tibial insertion provides gradual opening of the compartment, to a maximum value similar to that obtained with PCR at the joint space. The lower edge of the semi-tendinosus tendon is a valuable landmark for PCR of the distal sMCL. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Shiny, Jacob; Ramchander, Thadkapally; Goverdhan, Puchchakayala; Habibuddin, Mohammad; Aukunuru, Jithan Venkata
2013-01-01
Objective: The objective of this study was to develop a novel 1 month depot paclitaxel (PTX) microspheres that give a sustained and complete drug release. Materials and Methods: PTX loaded microspheres were prepared by o/w emulsion solvent evaporation technique using the blends of poly(lactic-co-glycolic acid) (PLGA) 75/25, polycaprolactone 14,000 and polycaprolactone 80,000. Fourier transform infrared spectroscopy was used to investigate drug excipient compatibility. Compatible blends were used to prepare F1-F6 microspheres, the process was characterised and the optimum formulation was selected based on the release. Optimised formulation was characterised for solid state of the drug using the differential scanning calorimetry (DSC) studies, surface morphology using the scanning electron microscopy (SEM), in vivo drug release, in vitro in vivo correlation (IVIVC) and anticancer activity. Anticancer activity of release medium was determined using the cell viability assay in Michigan Cancer Foundation (MCF-7) cell line. Results: Blend of PLGA with polycaprolactone (Mwt 14,000) at a ratio of 1:1 (F5) resulted in complete release of the drug in a time frame of 30 days. F5 was considered as the optimised formulation. Incomplete release of the drug resulted from other formulations. The surface of the optimised formulation was smooth and the drug changed its solid state upon fabrication. The formulation also resulted in 1-month drug release in vivo. The released drug from F5 demonstrated anticancer activity for 1-month. Cell viability was reduced drastically with the release medium from F5 formulation. A 100% IVIVC was obtained with F5 formulation suggesting the authenticity of in vitro release, in vivo release and the use of the formulation in breast cancer. Conclusions: From our study, it was concluded that with careful selection of different polymers and their combinations, PTX 1 month depot formulation with 100% drug release and that can be used in breast cancer was developed. PMID:24167783
Gohel, Mukesh C; Sumitra G, Manhapra
2002-02-19
The objective of the present study was to obtain programmed drug delivery from hard gelatin capsules containing a hydrophilic plug (HPMC or guar gum). The significance of factors such as type of plug (powder or tablet), plug thickness and the formulation of fill material on the release pattern of diltiazem HCl, a model drug, was investigated. The body portion of the hard gelatin capsules was cross-linked by the combined effect of formaldehyde and heat treatment. A linear relationship was observed between weight of HPMC K15M and log % drug released at 4 h from the capsules containing the plug in powder form. In order to accelerate the drug release after a lag time of 4 h, addition of an effervescent blend, NaHCO(3) and citric acid, in the capsules was found to be essential. The plugs of HPMC in tablet form, with or without a water soluble adjuvant (NaCl or lactose) were used for obtaining immediate drug release after the lag time. Sodium chloride did not cause significant influence on drug release whereas lactose favourably affected the drug release. The capsules containing HPMC K15M tablet plug (200 mg) and 35 mg effervescent blend in body portion of the capsule met the selection criteria of less than 10% drug release in 4 h and immediate drug release thereafter. It is further shown that the drug release was also dependant on the type of swellable hydrophilic agent (HPMC or guar gum) and molecular weight of HPMC (K15M or 20 cPs). The results reveal that programmed drug delivery can be obtained from hard gelatin capsules by systemic formulation approach.
Fetherston, Susan M.; Geer, Leslie; Veazey, Ronald S.; Goldman, Laurie; Murphy, Diarmaid J.; Ketas, Thomas J.; Klasse, Per Johan; Blois, Sylvain; La Colla, Paolo; Moore, John P.; Malcolm, R. Karl
2013-01-01
Objectives The non-nucleoside reverse transcriptase inhibitor MC1220 has potent in vitro activity against HIV type 1 (HIV-1). A liposome gel formulation of MC1220 has previously been reported to partially protect rhesus macaques against vaginal challenge with a simian HIV (SHIV). Here, we describe the pre-clinical development of an MC1220-releasing silicone elastomer vaginal ring (SEVR), including pharmacokinetic (PK) and efficacy studies in macaques. Methods In vitro release studies were conducted on SEVRs loaded with 400 mg of MC1220, using simulated vaginal fluid (SVF, n = 4) and 1 : 1 isopropanol/water (IPA/H2O, n = 4) as release media. For PK evaluation, SEVRs were inserted into adult female macaques (n = 6) for 30 days. Following a 1week washout period, fresh rings were placed in the same animals, which were then challenged vaginally with RT-SHIV162P3 once weekly for 4 weeks. Results SEVRs released 1.66 and 101 mg of MC1220 into SVF and IPA/H2O, respectively, over 30 days, the differential reflecting the low aqueous solubility of the drug. In macaque PK studies, MC1220 was consistently detected in vaginal fluid (peak 845 ng/mL) and plasma (peak 0.91 ng/mL). Kaplan–Meier analysis over 9weeks showed significantly lower infection rates for animals given MC1220-containing SEVRs than placebo rings (hazard ratio 0.20, P = 0.0037). Conclusions An MC1220-releasing SEVR partially protected macaques from vaginal challenge. Such ring devices are a practical method for providing sustained, coitally independent protection against vaginal exposure to HIV-1. PMID:23109186
Fetherston, Susan M; Geer, Leslie; Veazey, Ronald S; Goldman, Laurie; Murphy, Diarmaid J; Ketas, Thomas J; Klasse, Per Johan; Blois, Sylvain; La Colla, Paolo; Moore, John P; Malcolm, R Karl
2013-02-01
The non-nucleoside reverse transcriptase inhibitor MC1220 has potent in vitro activity against HIV type 1 (HIV-1). A liposome gel formulation of MC1220 has previously been reported to partially protect rhesus macaques against vaginal challenge with a simian HIV (SHIV). Here, we describe the pre-clinical development of an MC1220-releasing silicone elastomer vaginal ring (SEVR), including pharmacokinetic (PK) and efficacy studies in macaques. In vitro release studies were conducted on SEVRs loaded with 400 mg of MC1220, using simulated vaginal fluid (SVF, n = 4) and 1 : 1 isopropanol/water (IPA/H(2)O, n = 4) as release media. For PK evaluation, SEVRs were inserted into adult female macaques (n = 6) for 30 days. Following a 1 week washout period, fresh rings were placed in the same animals, which were then challenged vaginally with RT-SHIV162P3 once weekly for 4 weeks. SEVRs released 1.66 and 101 mg of MC1220 into SVF and IPA/H(2)O, respectively, over 30 days, the differential reflecting the low aqueous solubility of the drug. In macaque PK studies, MC1220 was consistently detected in vaginal fluid (peak 845 ng/mL) and plasma (peak 0.91 ng/mL). Kaplan-Meier analysis over 9 weeks showed significantly lower infection rates for animals given MC1220-containing SEVRs than placebo rings (hazard ratio 0.20, P = 0.0037). An MC1220-releasing SEVR partially protected macaques from vaginal challenge. Such ring devices are a practical method for providing sustained, coitally independent protection against vaginal exposure to HIV-1.
L'Heureux, R; Dennis, T; Curet, O; Scatton, B
1986-06-01
The release of endogenous noradrenaline was measured in the cerebral cortex of the halothane-anesthetized rat by using the technique of brain dialysis coupled to a radioenzymatic assay. A thin dialysis tube was inserted transversally in the cerebral cortex (transcortical dialysis) and perfused with Ringer medium (2 microliter min-1). Under basal conditions, the cortical output of noradrenaline was stable over a period of at least 6 h and amounted to 8.7 pg/20 min (not corrected for recovery). Histological control of the perfused area revealed very little damage and normal morphology in the vicinity of the dialysis tube. Omission of calcium from the perfusion medium caused a marked drop in cortical noradrenaline output. Bilateral electrical stimulation (for 10 min) of the ascending noradrenergic pathways in the medial forebrain bundle caused a frequency-dependent increase in cortical noradrenaline output over the range 5-20 Hz. Stimulation at a higher frequency (50 Hz) resulted in a levelling off of the increase in cortical noradrenaline release. Systemic administration of the dopamine-beta-hydroxylase inhibitor bis-(4-methyl-1-homopiperazinylthiocarbonyl) disulfide (FLA 63) (25 mg/kg i.p.) markedly reduced, whereas injection of the monoamine oxidase inhibitor pargyline (75 mg/kg i.p.) resulted in a progressive increase in, cortical noradrenaline output. d-Amphetamine (2 mg/kg i.p.) provoked a sharp increase in cortical noradrenaline release (+450% over basal values within 40 min). Desmethylimipramine (10 mg/kg i.p.) produced a twofold increase of cortical noradrenaline release. Finally, idazoxan (20 mg/kg i.p.) and clonidine (0.3 mg/kg i.p.), respectively, increased and decreased the release of noradrenaline from the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)
Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171
Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
Rapid dissolution of propofol emulsions under sink conditions.
Damitz, Robert; Chauhan, Anuj
2015-03-15
Pain accompanying intravenous injections of propofol is a major problem in anesthesia. Pain is ascribed to the interaction of propofol with the local vasculature and could be impacted by rapid dissolution of the emulsion formulation to release the drug. In this paper, we measure the dissolution of propofol emulsions including the commercial formulation Diprivan(®). We image the turbidity of blood protein sink solutions after emulsions are injected. The images are digitized, and the drug release times are estimated from the pixel intensity data for a range of starting emulsion droplet size. Drug release times are compared to a mechanistic model. After injection, pixel intensity or turbidity decreases due to reductions in emulsion droplet size. Drug release times can still be measured even if the emulsion does not completely dissolve such as with Diprivan(®). Both pure propofol emulsions and Diprivan(®) release drug very rapidly (under five seconds). Reducing emulsion droplet size significantly increases the drug release rate. Drug release times observed are slightly longer than the model prediction likely due to imperfect mixing. Drug release from emulsions occurs very rapidly after injection. This could be a contributing factor to pain on injection of propofol emulsions. Copyright © 2015. Published by Elsevier B.V.
Ciolino, Joseph B.; Hoare, Todd R.; Iwata, Naomi G.; Behlau, Irmgard; Dohlman, Claes H.; Langer, Robert; Kohane, Daniel S.
2014-01-01
Purpose To formulate and characterize a drug-eluting contact lens designed to provide extended, controlled release of a drug. Methods Prototype contact lenses were created by coating PLGA (poly[lactic-co-glycolic acid]) films containing test compounds with pHEMA (poly[hydroxyethyl methacrylate]) by ultraviolet light polymerization. The films, containing encapsulated fluorescein or ciprofloxacin, were characterized by scanning electron microscopy. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. Ciprofloxacin eluted from the contact lens was studied in an antimicrobial assay to verify antimicrobial effectiveness. Results After a brief and minimal initial burst, the prototype contact lenses demonstrated controlled release of the molecules studied, with zero-order release kinetics under infinite sink conditions for over 4 weeks. The rate of drug release was controlled by changing either the ratio of drug to PLGA or the molecular mass of the PLGA used. Both the PLGA and the pHEMA affected release kinetics. Ciprofloxacin released from the contact lenses inhibited ciprofloxacin-sensitive Staphylococcus aureus at all time-points tested. Conclusions A prototype contact lens for sustained drug release consisting of a thin drug-PLGA film coated with pHEMA could be used as a platform for ocular drug delivery with widespread therapeutic applications. PMID:19136709
Preparation and release characteristics of polymer-coated and blended alginate microspheres.
Lee, D W; Hwang, S J; Park, J B; Park, H J
2003-01-01
To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.
Thote, Amol J; Gupta, Ram B
2005-03-01
Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release. The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles. The nanoparticles are then encapsulated in poly(lactide-co-glycolide) (PLGA) polymer by use of the anhydrous solid-oil-oil-oil technique. This results in a well-dispersed encapsulation of drug nanoparticles in polymer microspheres. In vitro drug release from these microparticles is studied. With supercritical CO2 used as an antisolvent, nanoparticles of dexamethasone phosphate were obtained in the range of 150 to 200 nm. On encapsulation in polylactide coglycolide, composite microspheres of approximately 70 microm were obtained. The in vitro drug release of these nanoparticles/microparticles composites shows sustained release of dexamethasone phosphate over a period of 700 hours with almost no initial burst release. Nanoparticles of dexamethasone phosphate can be produced with the SAS-EM technique. When microencapsulated, these particles can provide sustained drug release without initial burst release. Because the complete process is anhydrous, it can be easily extended to produce sustained release formulations of other hydrophilic drugs.
Seoane-Vazquez, Enrique; Rodriguez-Monguio, Rosa; Hansen, Richard
2016-04-01
Modified-release drugs may provide clinical advantages compared to immediate-release forms and improve convenience to the patient and health outcomes. Concerns have been raised regarding interchangeability, efficacy, and safety of modified-release formulations. This study analyses all US Food and Drug Administration (FDA)-approved modified-release formulations and market trends, and illustrates how bioequivalence and safety of generic modified-release products compare to their respective brand name drugs and other generic drugs with different formulation design characteristics. This study also examines major concerns related to modified-release formulations: safety of opioids and bioequivalence of generic bupropion and methylphenidate. Study data were derived from the FDA electronic versions of the FDA's Orange Book (OB) and the FDA safety communications web page. Medicare Part D utilization and expenditures data were extracted from the Centers for Medicare and Medicaid. In May 2015, 276 (11.9 %) of the 2325 active ingredients and fixed-dose combinations listed in the FDA's Orange Book had at least one modified-release form approved by the FDA. The number of approvals increased over time; 52.5 % of modified releases were approved in the period 2000-May 2015. The FDA required a risk evaluation and mitigation strategy (REMS) to ensure that the benefits of extended-release opioids outweighed its risks of overdose and abuse. The REMS involved 16 new drug applications and 25 abbreviated new drug applications. The FDA addressed interchangeability problems with generic modified-release alternatives of bupropion and methylphenidate including lack of bioequivalence, reduced efficacy, and increased incidence of adverse events. Systematic post-marketing surveillance studies are needed to assess differences in safety, interchangeability, and efficacy of drugs with modified- and immediate-release formulations.
Am Ende, Mary Tanya; Miller, Lee A
2007-02-01
An asymmetric membrane (AM) tablet was developed for a soluble model compound to study the in vitro drug release mechanisms in challenge conditions, including osmotic gradients, concentration gradients, and under potential coating failure modes. Porous, semipermable membrane integrity may be compromised by a high fat meal or by the presence of a defect in the coating that could cause a safety concern about dose-dumping. The osmotic and diffusional release mechanisms of the AM tablet were independently shut down such that their individual contribution to the overall drug release was measured. Shut off of osmotic and diffusional release was accomplished by performing dissolution studies into receptor solutions with osmotic pressure above the internal core osmotic pressure and into receptor solutions saturated with drug, respectively. The effect of coating failure modes on in vitro drug release from the AM tablet was assessed through a simulated high-fat meal and by intentionally compromising the coating integrity. The predominant drug release mechanism for the AM tablet was osmotic and accounted for approximately 90-95% of the total release. Osmotic release was shutoff when the receptor media osmotic pressure exceeded 76 atm. Diffusional release of the soluble drug amounted to 5-10% of the total release mechanism. The observed negative in vitro food effect was attributed to the increased osmotic pressure from the high fat meal when compared to the predicted release rates in sucrose media with the same osmotic pressure. This suppression in drug release rate due to a high fat meal is not anticipated to affect in vivo performance of the dosage form, as the rise in pressure is short-lived. Drug release from the AM system studied was determined to be robust to varying and extreme challenge conditions. The conditions investigated included varying pH, agitation rate, media osmotic pressure, media saturated with drug to eliminate the concentration gradient, simulated high fat meal, and intentionally placed film coating defects. Osmotic and diffusional shut off experiments suggest that the mechanism governing drug release is a combination of osmotic and diffusional at approximately 90-95% and 5-10%, respectively. In addition, the coating failure mode studies revealed this formulation and design is not significantly affected by a high fat meal or by an intentionally placed defect in the film coating, and more specifically, did not result in a burst of drug release.
Aw, Moom Sinn; Losic, Dusan
2013-02-25
A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Amador Ríos, Zoriely; Ghaly, Evone Shehata
2015-01-01
Multiparticulate systems are used in the development of controlled release systems. The objective of this study was to determine the effect of the wax level, the type of excipient, and the exposure of the tablets to thermal treatment on drug release. Spheres from multiparticulate system with different wax levels and excipients were developed using the drug Lisinopril and compressed into tablets; these tablets were analyzed to determine the drug release. All tablets contained constant level of Lisinopril (10% w/w) and Compritol (30% and 50% w/w). Also, as a diluent, all of them contained 30% w/w Avicel and 30% w/w dibasic calcium phosphate or lactose, or 60% Avicel. Tablets compacted from spheres prepared by extruder/marumerizer and using 30% w/w lipid and 60% Avicel released 84% of drug at six hours of dissolution testing, while tablets of the same composition but prepared using 30% dibasic calcium phosphate and 30% Avicel released 101%. When the tablets were thermally treated, the drug release reduced. As the percent of lipid increased in the formulation, the drug release decreased. Compaction of tablets prepared from spheres with wax has potential for controlling the drug release.
Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J
2007-06-07
The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.
Prabhu, Sunil; Sullivan, Jennifer L; Betageri, Guru V
2002-01-01
The objective of our study was to compare the in vitro release kinetics of a sustained-release injectable microsphere formulation of the polypeptide drug, calcitonin (CT), to optimize the characteristics of drug release from poly-(lactide-co-glycolide) (PLGA) copolymer biodegradable microspheres. A modified solvent evaporation and double emulsion technique was used to prepare the microspheres. Release kinetic studies were carried out in silanized tubes and dialysis bags, whereby microspheres were suspended and incubated in phosphate buffered saline, sampled at fixed intervals, and analyzed for drug content using a modified Lowry protein assay procedure. An initial burst was observed whereby about 50% of the total dose of the drug was released from the microspheres within 24 hr and 75% within 3 days. This was followed by a period of slow release over a period of 3 weeks in which another 10-15% of drug was released. Drug release from the dialysis bags was more gradual, and 50% CT was released only after 4 days and 75% after 12 days of release. Scanning electron micrographs revealed spherical particles with channel-like structures and a porous surface after being suspended in an aqueous solution for 5 days. Differential scanning calorimetric studies revealed that CT was present as a mix of amorphous and crystalline forms within the microspheres. Overall, these studies demonstrated that sustained release of CT from PLGA microspheres over a 3-week period is feasible and that release of drug from dialysis bags was more predictable than from tubes.
Kilicarslan, Muge; Koerber, Martin; Bodmeier, Roland
2014-05-01
This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.
Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.
Walia, P S; Stout, P J; Turton, R
1998-02-01
The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.
Wischke, Christian; Behl, Marc; Lendlein, Andreas
2013-09-01
Shape-memory polymers (SMPs) have gained interest for temporary drug-release systems that should be anchored in the body by self-sufficient active movements of the polymeric matrix. Based on the so far published scientific literature, this review highlights three aspects that require particular attention when combining SMPs with drug molecules: i) the defined polymer morphology as required for the shape-memory function, ii) the strong effects that processing conditions such as drug-loading methodologies can have on the drug-release pattern from SMPs, and iii) the independent control of drug release and degradation by their timely separation. The combination of SMPs with a drug-release functionality leads to multifunctional carriers that are an interesting technology for pharmaceutical sciences and can be further expanded by new materials such as thermoplastic SMPs or temperature-memory polymers. Experimental studies should include relevant molecules as (model) drugs and provide a thermomechanical characterization also in an aqueous environment, report on the potential effect of drug type and loading levels on the shape-memory functionality, and explore the potential correlation of polymer degradation and drug release.
Fungo, Marta Stella Maris; Vega, Elena María
2013-04-01
The objective was to analyze the number of drugs dispensed by the Pharmacy Department to the Neonatology Division, to find out if the use of these drugs is described on the package insert approved by the Administración Nacional de Medicamentos, Alimentos y Tecnología, ANMAT (Drug, Food and Technology Administration of Argentina) and to compare such information with that provided by Medical Associations and Commissions. Analytical, observational and retrospective study in which drugs were analyzed based on dosage units, costs and relevance in the 2011 annual budget. We analyzed the information found in ANMAT-approved label inserts, in the Neonatal Pharmacopeia of the Sociedad Argentina de Pediatría and in the Formularies of the Confederación Médica Argentina and the Comisión Nacional del Medicamento (National Medication Commission). A total of 102 drugs (91 drug substances) were dispensed throughout 2011. Drugs most commonly supplied were: antiinfective agents for systemic use (24.51%), agents for the blood and blood forming organs, cardiovascular system, and nervous system (12.72% each). The total expenditure was ARS 263,285.52. Only 21 drugs accounted for 90.73% of the cost. Out of the 14 drugs in this group, only 1 had information related to its use in neonatology in all its labels (package inserts), only 4 in some of their product information and there was no information at all in any of the remaining 9 drugs. The Neonatal Pharmacopeia reported on 12 of the 14 drugs, while the Formularies made a reference to 9 of the 14 drugs. The most widely used drugs were antiinfectives for systemic use. A total of 21 drugs accounted for 90.73% of the annual cost in drugs. Out of 14, only 1 had information of its use in neonatology in all its labels and 9 corresponded to off-label use.
Preparation and characterization of silica xerogels as carriers for drugs.
Czarnobaj, K
2008-11-01
The aim of the present study was to utilize the sol-gel method to synthesize different forms of xerogel matrices for drugs and to investigate how the synthesis conditions and solubility of drugs influence the change of the profile of drug release and the structure of the matrices. Silica xerogels doped with drugs were prepared by the sol-gel method from a hydrolyzed tetraethoxysilane (TEOS) solution containing two model compounds: diclofenac diethylamine, (DD)--a water-soluble drug or ibuprofen, (IB)--a water insoluble drug. Two procedures were used for the synthesis of sol-gel derived materials: one-step procedure (the sol-gel reaction was carried out under acidic or basic conditions) and the two-step procedure (first, hydrolysis of TEOS was carried out under acidic conditions, and then condensation of silanol groups was carried out under basic conditions) in order to obtain samples with altered microstructures. In vitro release studies of drugs revealed a similar release profile in two steps: an initial diffusion-controlled release followed by a slower release rate. In all the cases studied, the released amount of DD was higher and the released time was shorter compared with IB for the same type of matrices. The released amount of drugs from two-step prepared xerogels was always lower than that from one-step base-catalyzed xerogels. One-step acid-catalyzed xerogels proved unsuitable as the carriers for the examined drugs.
NASA Astrophysics Data System (ADS)
Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.
2017-12-01
Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.
Govindasamy, Parthasarathy; Kesavan, Bhaskar Reddy; Narasimha, Jayaveera Korlakunta
2013-01-01
Objective To achieve transbuccal release of carbamazepine by loading in unidirectional release mucoadhesive buccal patches. Methods Buccal patches of carbamazepine with unidirectional drug release were prepared using hydroxypropyl methyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone and ethyl cellulose by solvent casting method. Water impermeable backing layer (Pidilite® Biaxially-oriented polypropylene film) of patches provided unidirectional drug release. They were evaluated for thickness, mass uniformity, surface pH and folding endurance. Six formulations FA2, FA8, FA10, FB1, FB14 and FB16 (folding endurance above 250) were evaluated further for swelling studies, ex vivo mucoadhesive strength, ex vivo mucoadhesion time, in vitro drug release, ex vivo permeation, accelerated stability studies and FTIR and XRD spectral studies. Results The ex vivo mucoadhesion time of patches ranged between 109 min (FA10) to 126 min (FB14). The ex vivo mucoadhesive force was in the range of 0.278 to 0.479 kg/m/s. The in vitro drug release studies revealed that formulation FA8 released 84% and FB16 released 99.01% of drug in 140 min. Conclusions The prepared unidirectional buccal patches of carbamazepine provided a maximum drug release within specified mucoadhesion period and it indicates a potential alternative drug delivery system for systemic delivery of carbamazepine. PMID:24093793
Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets.
Muschert, Susanne; Siepmann, Florence; Leclercq, Bruno; Carlin, Brian; Siepmann, Juergen
2010-02-01
Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.
Donders, Gilbert Gerard Ghislain; Bellen, G; Ruban, Kateryna; Van Bulck, Ben
2018-03-01
Recurrent vulvovaginal infections are a frequent complaint in young women in need of contraception. However, the influence of the contraceptive method on the course of the disease is not well known. To investigate the influence of the levonorgestrel-releasing intrauterine-system (LNG-IUS) on the vaginal microflora. Short-term (3 months) and long-term (1 to 5 years) changes of vaginal microbiota were compared with pre-insertion values in 252 women presenting for LNG-IUS insertion. Detailed microscopy on vaginal fluid was used to define lactobacillary grades (LBGs), bacterial vaginosis (BV), aerobic vaginitis (AV) and the presence of Candida. Cultures for enteric aerobic bacteria and Candida were used to back up the microscopy findings. Fisher's test was used to compare vaginal microbiome changes pre- and post-insertion. Compared to the pre-insertion period, we found a temporary worsening in LBGs and increased rates of BV and AV after 3 months of LNG-IUS. After 1 and 5 years, however, these changes were reversed, with a complete restoration to pre-insertion levels. Candida increased significantly after long-term carriage of LNG-IUS compared to the period before insertion [OR 2.0 (CL951.1-3.5), P=0.017]. Short-term use of LNG-IUS temporarily decreases lactobacillary dominance, and increases LBG, AV and BV, but after 1 to 5 years these characteristics return to pre-insertion levels, reducing the risk of complications to baseline levels. Candida colonization, on the other hand, is twice as high after 1 to 5 years of LNG-IUS use, making it less indicated for long-term use in patients with or at risk for recurrent vulvovaginal candidosis.
Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei
2015-01-01
In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.
NASA Astrophysics Data System (ADS)
Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian
2017-03-01
The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.
Shao, Lin; Cao, Yang; Li, Zhanying; Hu, Wenbin; Li, Shize; Lu, Lingbin
2018-07-15
Alginate was grafted with NIPAM and NHMAM successfully, and a new responsive copolymer, alginate-g-P(NIPAM-co-NHMAM), was obtained. A novel dual responsive polysaccharide-based aerogel with thermo/pH sensitive properties was designed from the copolymer as drug controlled release system. The chemical structure of the copolymer was characterized by FT-IR and 1 H NMR. Lower critical solution temperature (LCST) of the copolymer covered a wide temperature range from 27.6 °C to 42.2 °C, which could be adjusted with changing the ratio between NIPAM and NHMAM. The dual responsive aerogel had a three-dimensional network structure. As a drug controlled release system, the aerogel was high responsive to both temperature and pH with drug loading efficiency up to 13.24%. Above LCST, the aerogel had a faster drug release, and drug was completely released in neutral environment, while the drug release was obstructed in acid environment. Furthermore, the drug release mechanism of the aerogel was illuminated. These results indicated that the dual responsive aerogel was a promising candidate for drug carriers. Copyright © 2018 Elsevier B.V. All rights reserved.
Tool Releases Optical Elements From Spring Brackets
NASA Technical Reports Server (NTRS)
Gum, J. S.
1984-01-01
Threaded hooks retract bracket arms holding element. Tool uses three hooks with threaded shanks mounted in ring-shaped holder to pull on tabs to release optical element. One person can easily insert or remove optical element (such as prism or lens) from spring holder or bracket with minimal risk of damage.
Farooq, Umar; Khan, Samiullah; Nawaz, Shahid; Ranjha, Nazar Mohammad; Haider, Malik Salman; Khan, Muhammad Muzamil; Dar, Eshwa; Nawaz, Ahmad
2017-01-01
Abstract Eudragit E 100 and polycaprolactone (PCL) floating microspheres for enhanced gastric retention and drug release were successfully prepared by oil in water solvent evaporation method. Metronidazole benzoate, an anti-protozoal drug, was used as a model drug. Polyvinyl alcohol was used as an emulsifier. The prepared microspheres were observed for % recovery, % degree of hydration, % water uptake, % drug loading, % buoyancy and % drug release. The physico-chemical properties of the microspheres were studied by calculating encapsulation efficiency of microspheres and drug release kinetics. Drug release characteristics of microspheres were studied in simulated gastric fluid and simulated intestinal fluid i.e., at pH 1.2 and 7.4 respectively. Fourier transform infrared spectroscopy was used to reveal the chemical interaction between drug and polymers. Scanning electron microscopy was conducted to study the morphology of the synthesized microspheres. PMID:29491813
Nippe, Stefanie; General, Sascha
2012-11-20
Our aim was to investigate the in vitro release and combination of ethinyl estradiol (EE) and drospirenone (DRSP) drug-delivery systems. DRSP poly(lactic-co-glycolic acid) (PLGA) microparticles and organogels containing DRSP microcrystals were prepared and characterized with regard to properties influencing drug release. The morphology and release kinetics of DRSP PLGA microparticles indicated that DRSP is dispersed in the polymer. The in vitro release profiles correlated well with in vivo data. Although DRSP degradation is known to be acid-catalyzed, DRSP was relatively stable in the PLGA matrix. Aqueous DRSP PLGA microparticle suspensions were combinable with EE PLGA microparticles and EE poly(butylcyanoacrylate) (PBCA) microcapsules without interacting. EE release from PLGA microparticles was faster than DRSP release; EE release is assumed to be primarily controlled by drug diffusion. Liquid-filled EE PBCA microcapsules were shown to be more robust than air-filled EE PBCA microcapsules; the bursting of microcapsules accelerating the drug delivery was therefore delayed. The drug release profile for DRSP organogels was fairly linear with the square root of time. The system was not combinable with EE PBCA microcapsules. In contrast, incorporation of EE PLGA microparticles in organogels resulted in prolonged EE release. The drug release of EE and DRSP was thus approximated. Copyright © 2012 Elsevier B.V. All rights reserved.
Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D
2000-03-01
Pavlovian autoshaping CRs are directed and reflexive consummatory responses targeted at objects repeatedly paired with rewarding substances. To evaluate the hypothesis that autoshaping may provide an animal learning model of vulnerability to drug abuse, this study relates individual differences in lever-press autoshaping CR performance in rats to stress-induced corticosterone release and tissue monoamine levels in the mesolimbic dopamine tract. Long-Evans rats (n = 14) were given 20 sessions of Pavlovian autoshaping training wherein the insertion of a retractable lever CS was followed by the response-independent presentation of food US. Large between-subjects differences in lever-press autoshaping CR performance were observed, with group high CR frequency (n = 5) performing many more lever press CRs than group low CR frequency (n = 9). Tail-blood samples were obtained before and after the 20th autoshaping session, then 24 h later the rats were sacrificed and dissection yielded tissue samples of nucleus accumbens (NAC), prefrontal cortex (PFC), caudate putamen (CP), and ventral tegmental area (VTA). Serum levels of postsession corticosterone were elevated in group high CR frequency. HPLC revealed that group high CR frequency had higher tissue levels of dopamine and DOPAC in NAC, lower levels of DOPAC/DA turnover in CP, and lower levels of 5-HIAA and lower 5-HIAA/5-HT turnover in VTA. The neurochemical profile of rats that perform more autoshaping CRs share some features of vulnerability to drug abuse.
Ranjbar-Mohammadi, Marziyeh; Zamani, M; Prabhakaran, M P; Bahrami, S Hajir; Ramakrishna, S
2016-01-01
Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core-shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core-shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Intrauterine device insertion in the postpartum period: a systematic review.
Sonalkar, Sarita; Kapp, Nathalie
2015-02-01
Given new research on postpartum placement of levonorgestrel and copper intrauterine devices (IUDs), our objective was to update a prior systematic review of the safety and expulsion rates of postpartum IUDs. We searched MEDLINE, CENTRAL, LILACS, POPLINE, Web of Science, and ClinicalTrials.gov databases for articles between the database inception until July 2013. We included studies that compared IUD insertion time intervals and routes during the postpartum period. We used standard abstract forms and the United States Preventive Services Task Force grading system to summarise and assess the quality of the evidence. We included 18 articles. New evidence suggests that a levonorgestrel releasing-intrauterine system (LNG-IUS) insertion within 48 hours of delivery is safe. Postplacental insertion and insertion between 10 minutes and 48 hours after delivery result in higher expulsion rates than insertion 4 to 6 weeks postpartum, or non-postpartum insertion. Insertion at the time of caesarean section is associated with lower expulsion rates than postplacental insertion at the time of vaginal delivery. This review supports the evidence that insertion of an intrauterine contraceptive within the first 48 hours of vaginal or caesarean delivery is safe. Expulsion rates should be further studied in larger randomised controlled trials.
Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery
Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya
2012-01-01
Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236
Onyeji, C O; Adebayo, A S; Babalola, C P
1999-12-01
The need to develop chloroquine suppository formulations that yield optimal bioavailability of the drug has been emphasized. This study demonstrates the effects of incorporation of known absorption-enhancing agents (nonionic surfactants and sodium salicylate) on the in vitro release characteristics of chloroquine from polyethylene glycol (1000:4000, 75:25%, w/w) suppositories. The release rates were determined using a modification of the continuous flow bead-bed dissolution apparatus for suppositories. Results showed that the extent of drug release from suppositories containing any of three surfactants (Tween 20, Tween 80 and Brij 35) was 100%, whereas 88% release was obtained with control formulation (without enhancer) (P<0.05). However, Tween 20 was more effective than Brij 35 and Tween 80 in improving the drug release rate. There was a concentration-dependent effect with Tween 20, and 4% (w/w) of this surfactant was associated with the highest increase in the rate of drug release from the suppositories. Sodium salicylate at a concentration of 25% (w/w) also significantly enhanced the drug release rate, but a higher concentration of the adjuvant markedly reduced both the rate and extent of drug release. Combined incorporation of Tween 20 and sodium salicylate did not significantly modify (P0.05) the rate of drug release when compared to the effect of the more effective single agent. Due to their effects in improving the drug release profiles coupled with their intrinsic absorption-promoting properties, it is suggested that incorporation of 4% (w/w) Tween 20 and/or 25% (w/w) sodium salicylate in the composite polyethylene glycol chloroquine suppository formulations, may result in enhancement of rectal absorption of the drug. This necessitates an in vivo validation.
Chronomodulated drug delivery system of urapidil for the treatment of hypertension
Chaudhary, Sona S.; Patel, Hetal K.; Parejiya, Punit B.; Shelat, Pragna K.
2015-01-01
Introduction: Hypertension is a disease which shows circadian rhythm in the pattern of two peaks, one in the evening at about 7pm and other in the early morning between 4 am to 8 am. Conventional therapies are incapable to target those time points when actually the symptoms get worsened. To achieve drug release at two time points, chronomodulated delivery system may offer greater benefits. Materials and methods: The chronomodulated system comprised of dual approach; immediate release granules (IRG) and pulsatile release mini-tablets (PRM) filled in the hard gelatin capsule. The mini-tablets were coated using Eudragit S-100 which provided the lag time. To achieve the desired release, various parameters like coating duration and coat thickness were studied. The immediate release granules were evaluated for micromeritical properties and drug release, while mini-tablets were evaluated for various parameters such as hardness, thickness, friability, weight variation, drug content, and disintegration time and in-vitro drug release. Compatibility of drug-excipient was checked by fourier transform infrared spectroscopy and Differential scanning calorimetry studies and pellets morphology was done by Scanning electron microscopy studies. Results: The in-vitro release profile suggested that immediate release granules gives drug release within 20 min at the time of evening attack while the programmed pulsatile release was achieved from coated mini-tablets after a lag time of 9hrs, which was consistent with the demand of drug during early morning hour attack. Pellets found to be spherical in shape with smooth surface. Moreover compatibility studies illustrated no deleterious reaction between drug and polymers used in the study. Conclusions: The dual approach of developed chronomodulated formulation found to be satisfactory in the treatment of hypertension. PMID:25838996
Blakney, Anna K.; Little, Adam B.; Jiang, Yonghou; Woodrow, Kim A.
2017-01-01
Composite delivery systems where drugs are electrospun in different layers and vary the drug stacking-order are posited to affect bioavailability. We evaluated how the formulation characteristics of both burst- and sustained-release electrospun fibers containing three physicochemically diverse drugs: dapivirine (DPV), maraviroc (MVC) and tenofovir (TFV) affect in vitro and ex vivo release. We developed a poly(hydroxyethyl methacrylate) (pHEMA) hydrogel release platform for the rapid, inexpensive in vitro evaluation of burst- and sustained-release topical or dermal drug delivery systems with varying microarchitecture. We investigated properties of the hydrogel that could recapitulate ex vivo release into nonhuman primate vaginal tissue. Using a DMSO extraction protocol and HPLC analysis, we achieved >93% recovery from the hydrogels and >88% recovery from tissue explants for all three drugs. We found that DPV loading, but not stacking order (layers of fiber containing a single drug) or microarchitecture (layers with isolated drug compared to all drugs in the same layer) impacted the burst release in vitro and ex vivo. Our burst-release formulations showed a correlation for DPV accumulation between the hydrogel and tissue (R2=0.80), but the correlation was not significant for MVC or TFV. For the sustained release formulations, the PLGA/PCL content did not affect TFV release in vitro or ex vivo. Incorporation of cells into the hydrogel matrix improved the correlation between hydrogel and tissue explant release for TFV. We expect that this hydrogel tissue mimic maybe a promising preclinical model to evaluate topical or transdermal drug delivery systems with complex microarchitectures. PMID:28222612
21 CFR 314.440 - Addresses for applications and abbreviated applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-600), Center for Drug Evaluation and Research, Food and Drug Administration, Metro Park North II, 7500... Evaluation and Research, Food and Drug Administration, Attn: [insert name of person], Metro Park North II... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Addresses for applications and abbreviated...
21 CFR 181.28 - Release agents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Release agents. Substances classified as release agents, when migrating from food-packaging material shall... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Release agents. 181.28 Section 181.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
21 CFR 181.28 - Release agents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Release agents. 181.28 Section 181.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Release agents. Substances classified as release agents, when migrating from food-packaging material shall...
21 CFR 181.28 - Release agents.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Release agents. Substances classified as release agents, when migrating from food-packaging material shall... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Release agents. 181.28 Section 181.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
21 CFR 181.28 - Release agents.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Release agents. Substances classified as release agents, when migrating from food-packaging material shall... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Release agents. 181.28 Section 181.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
Modulating drug release from gastric-floating microcapsules through spray-coating layers.
Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim
2014-01-01
Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.
Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging.
Kaunisto, Erik; Tajarobi, Farhad; Abrahmsen-Alami, Susanna; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders
2013-03-12
In this paper a new model describing drug release from a polymer matrix tablet is presented. The utilization of the model is described as a two step process where, initially, polymer parameters are obtained from a previously published pure polymer dissolution model. The results are then combined with drug parameters obtained from literature data in the new model to predict solvent and drug concentration profiles and polymer and drug release profiles. The modelling approach was applied to the case of a HPMC matrix highly loaded with mannitol (model drug). The results showed that the drug release rate can be successfully predicted, using the suggested modelling approach. However, the model was not able to accurately predict the polymer release profile, possibly due to the sparse amount of usable pure polymer dissolution data. In addition to the case study, a sensitivity analysis of model parameters relevant to drug release was performed. The analysis revealed important information that can be useful in the drug formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.
Nouri-Nigjeh, Eslam; Bruins, Andries P; Bischoff, Rainer; Permentier, Hjalmar P
2012-10-21
Electrochemistry in combination with mass spectrometry has shown promise as a versatile technique not only in the analytical assessment of oxidative drug metabolism, but also for small-scale synthesis of drug metabolites. However, electrochemistry is generally limited to reactions initiated by direct electron transfer. In the case of substituted-aromatic compounds, oxidation proceeds through a Wheland-type intermediate where resonance stabilization of the positive charge determines the regioselectivity of the anodic substitution reaction, and hence limits the extent of generating drug metabolites in comparison with in vivo oxygen insertion reactions. In this study, we show that the electrocatalytic oxidation of hydrogen peroxide on a platinum electrode generates reactive oxygen species, presumably surface-bound platinum-oxo species, which are capable of oxygen insertion reactions in analogy to oxo-ferryl radical cations in the active site of Cytochrome P450. Electrochemical oxidation of lidocaine at constant potential in the presence of hydrogen peroxide produces both 3- and 4-hydroxylidocaine, suggesting reaction via an arene oxide rather than a Wheland-type intermediate. No benzylic hydroxylation was observed, thus freely diffusing radicals do not appear to be present. The results of the present study extend the possibilities of electrochemical imitation of oxidative drug metabolism to oxygen insertion reactions.
Ofori-Kwakye, Kwabena; Mfoafo, Kwadwo Amanor; Kipo, Samuel Lugrie; Kuntworbe, Noble; Boakye-Gyasi, Mariam El
2016-01-01
The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8-12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct compression.
Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.
Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal
2016-01-01
The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.
Shao, Z J; Farooqi, M I; Diaz, S; Krishna, A K; Muhammad, N A
2001-01-01
A new commercially available sustained-release matrix material, Kollidon SR, composed of polyvinylacetate and povidone, was evaluated with respect to its ability to modulate the in vitro release of a highly water-soluble model compound, diphenhydramine HCl. Kollidon SR was found to provide a sustained-release effect for the model compound, with certain formulation and processing variables playing an important role in controlling its release kinetics. Formulation variables affecting the release include the level of the polymeric material in the matrix, excipient level, as well as the nature of the excipients (water soluble vs. water insoluble). Increasing the ratio of a water-insoluble excipient, Emcompress, to Kollidon SR enhanced drug release. The incorporation of a water-soluble excipient, lactose, accelerated its release rate in a more pronounced manner. Stability studies conducted at 40 degrees C/75% RH revealed a slow-down in dissolution rate for the drug-Kollidon SR formulation, as a result of polyvinylacetate relaxation. Further studies demonstrated that a post-compression curing step effectively stabilized the release pattern of formulations containing > or = 47% Kollidon SR. The release mechanism of Kollidon-drug and drug-Kollidon-Emcompress formulations appears to be diffusion controlled, while that of the drug-Kollidon-lactose formulation appears to be controlled predominantly by diffusion along with erosion.
Oishi, Masayo; Chiba, Koji; Fukushima, Takashi; Tomono, Yoshiro; Suwa, Toshio
2012-01-01
In regulatory guidelines for bioequivalence (BE) assessment, the definitions of AUC for primary assessment are different in ICH countries, i.e., AUC from zero to the last sampling point (AUCall) in Japan, AUC from zero to infinity (AUCinf) or AUC from zero to the last measurable point (AUClast) in the US, and AUClast in the EU. To assure sufficient accuracy of truncated AUC for BE assessment, the ratio of truncated AUC (AUCall or AUClast) to AUCinf should be more than 80% both in Japanese and EU guidelines. We investigated how the difference in the definition of truncated AUC affects BE assessment of sustained release (SR) formulation. Our simulation result demonstrated that AUCall/AUCinf could be ≥80% despite AUClast/AUCinf being <80% and AUCall failed to detect formulation difference. In Japanese package inserts of generic drugs in SR formulation, there were products for which AUCall/AUCinf was ≥80% though AUClast/AUCinf was <80%. In conclusion, it was confirmed that the difference in definition of truncated AUC affected the judgment of validity of truncated AUC for BE assessment, and AUCall could fail to detect the substantially different in vivo dissolution profile of generic drugs with SR formulation from the original drug.
Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães
2014-12-01
Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.
Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release
NASA Astrophysics Data System (ADS)
Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong
2017-06-01
Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.
Tough Composite Hydrogels with High Loading and Local Release of Biological Drugs.
Li, Jianyu; Weber, Eckhard; Guth-Gundel, Sabine; Schuleit, Michael; Kuttler, Andreas; Halleux, Christine; Accart, Nathalie; Doelemeyer, Arno; Basler, Anne; Tigani, Bruno; Wuersch, Kuno; Fornaro, Mara; Kneissel, Michaela; Stafford, Alexander; Freedman, Benjamin R; Mooney, David J
2018-05-01
Hydrogels are under active development for controlled drug delivery, but their clinical translation is limited by low drug loading capacity, deficiencies in mechanical toughness and storage stability, and poor control over the drug release that often results in burst release and short release duration. This work reports a design of composite clay hydrogels, which simultaneously achieve a spectrum of mechanical, storage, and drug loading/releasing properties to address the critical needs from translational perspectives. The clay nanoparticles provide large surface areas to adsorb biological drugs, and assemble into microparticles that are physically trapped within and toughen hydrogel networks. The composite hydrogels demonstrate feasibility of storage, and extended release of large quantities of an insulin-like growth factor-1 mimetic protein (8 mg mL -1 ) over four weeks. The release rate is primarily governed by ionic exchange and can be upregulated by low pH, which is typical for injured tissues. A rodent model of Achilles tendon injury is used to demonstrate that the composite hydrogels allow for highly extended and localized release of biological drugs in vivo, while demonstrating biodegradation and biocompatibility. These attributes make the composite hydrogel a promising system for drug delivery and regenerative medicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ueda, S; Ibuki, R; Kawamura, A; Murata, S; Takahashi, T; Kimura, S; Hata, T
1994-01-01
Time-Controlled Explosion System (TES) has the time-controlled drug release property with a pre-designed lag time. The drug release from the system is initiated by destruction of the membrane. In this study, metoprolol tartrate was used as a model drug. After five types of TES with different in vitro lag times were orally administrated to dogs, plasma metoprolol concentration was monitored. There existed a good correlation between in vitro and in vivo lag time, while the extent of absorbed metoprolol decreased with prolongation of lag time. Next, the in vivo drug release behavior was directly investigated using five different colored TES with a lag time of two hours. Each TES was consecutively administrated to the fasted dogs at predetermined intervals. The amount of metoprolol released was monitored by recovering the administered TES from the gastrointestinal trace. The in vivo release profile corresponded with the in vitro one. It is demonstrated that TES can release the drug in in vivo conditions similarly to in vitro. Based on these results, the decrease of the absorption is suggested to be caused by increased hepatic first-pass metabolism of the drug due to the retarded release rate with longer lag time.
Huanbutta, Kampanart; Sriamornsak, Pornsak; Limmatvapirat, Sontaya; Luangtana-anan, Manee; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide; Nunthanid, Jurairat
2011-02-01
Magnetic resonance imaging (MRI) was used to assess in situ swelling behaviors of spray-dried chitosan acetate (CSA) in 0.1N HCl, pH 6.8 and pH 5.0 Tris-HCl buffers. The in vitro drug releases from CSA matrix tablets containing the model drugs, diclofenac sodium and theophylline were investigated in all media using USP-4 apparatus. The effect of chitosan molecular weight, especially in pH 6.8 Tris-HCl, was also studied. In 0.1N HCl, the drug release from the matrix tablets was the lowest in relation to the highest swelling of CSA. The swelling kinetics in Tris-HCl buffers are Fickian diffusion according to their best fit to Higuchi's model as well as the drug release kinetics in all the media. The high swelling rate (k(s)(')) was found to delay the drug release rate (k'). The linear relationship between the swelling and fractions of drug release in Tris-HCl buffers was observed, indicating an important role of the swelling on controlling the drug release mechanism. Additionally, CSA of 200 and 800 kDa chitosan did not swell in pH 6.8 Tris-HCl but disintegrated into fractions, and the drug release from the matrix tablets was the highest. Copyright © 2010 Elsevier B.V. All rights reserved.
Strübing, Sandra; Abboud, Tâmara; Contri, Renata Vidor; Metz, Hendrik; Mäder, Karsten
2008-06-01
The purpose of this study was to investigate the mechanism of floating and drug release behaviour of poly(vinyl acetate)-based floating tablets with membrane controlled drug delivery. Propranolol HCl containing tablets with Kollidon SR as an excipient for direct compression and different Kollicoat SR 30 D/Kollicoat IR coats varying from 10 to 20mg polymer/cm2 were investigated regarding drug release in 0.1N HCl. Furthermore, the onset of floating, the floating duration and the floating strength of the device were determined. In addition, benchtop MRI studies of selected samples were performed. Coated tablets with 10mg polymer/cm2 SR/IR, 8.5:1.5 coat exhibited the shortest lag times prior to drug release and floating onset, the fastest increase in and highest maximum values of floating strength. The drug release was delayed efficiently within a time interval of 24 h by showing linear drug release characteristics. Poly(vinyl acetate) proved to be an appropriate excipient to ensure safe and reliable drug release. Floating strength measurements offered the possibility to quantify the floating ability of the developed systems and thus to compare different formulations more efficiently. Benchtop MRI studies allowed a deeper insight into drug release and floating mechanisms noninvasively and continuously.
NASA Astrophysics Data System (ADS)
Choiri, S.; Ainurofiq, A.
2018-03-01
Drug release from a montmorillonite (MMT) matrix is a complex mechanism controlled by swelling mechanism of MMT and an interaction of drug and MMT. The aim of this research was to explain a suitable model of the drug release mechanism from MMT and its binary mixture with a hydrophilic polymer in the controlled release formulation based on a compartmental modelling approach. Theophylline was used as a drug model and incorporated into MMT and a binary mixture with hydroxyl propyl methyl cellulose (HPMC) as a hydrophilic polymer, by a kneading method. The dissolution test was performed and the modelling of drug release was assisted by a WinSAAM software. A 2 model was purposed based on the swelling capability and basal spacing of MMT compartments. The model evaluation was carried out to goodness of fit and statistical parameters and models were validated by a cross-validation technique. The drug release from MMT matrix regulated by a burst release mechanism of unloaded drug, swelling ability, basal spacing of MMT compartment, and equilibrium between basal spacing and swelling compartments. Furthermore, the addition of HPMC in MMT system altered the presence of swelling compartment and equilibrium between swelling and basal spacing compartment systems. In addition, a hydrophilic polymer reduced the burst release mechanism of unloaded drug.
Evaluation of the resistance of a geopolymer-based drug delivery system to tampering.
Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne
2014-04-25
Tamper-resistance is an important property of controlled-release formulations of opioid drugs. Tamper-resistant formulations aim to increase the degree of effort required to override the controlled release of the drug molecules from extended-release formulations for the purpose of non-medical use. In this study, the resistance of a geopolymer-based formulation to tampering was evaluated by comparing it with a commercial controlled-release tablet using several methods commonly used by drug abusers. Because of its high compressive strength and resistance to heat, much more effort and time was required to extract the drug from the geopolymer-based formulation. Moreover, in the drug-release test, the geopolymer-based formulation maintained its controlled-release characteristics after milling, while the drug was released immediately from the milled commercial tablets, potentially resulting in dose dumping. Although the tampering methods used in this study does not cover all methods that abuser could access, the results obtained by the described methods showed that the geopolymer matrix increased the degree of effort required to override the controlled release of the drug, suggesting that the formulation has improved resistance to some common drug-abuse tampering methods. The geopolymer matrix has the potential to make the opioid product less accessible and attractive to non-medical users. Copyright © 2014 Elsevier B.V. All rights reserved.
Tagami, Tatsuaki; Nagata, Noriko; Hayashi, Naomi; Ogawa, Emi; Fukushige, Kaori; Sakai, Norihito; Ozeki, Tetsuya
2018-05-30
3D-printed tablets are a promising new approach for personalized medicine. In this study, we fabricated composite tablets consisting of two components, a drug and a filler, by using a fused deposition modeling-type 3D printer. Polyvinylalcohol (PVA) polymer containing calcein (a model drug) was used as the drug component and PVA or polylactic acid (PLA) polymer without drug was used as the water-soluble or water-insoluble filler, respectively. Various kinds of drug-PVA/PVA and drug-PVA/PLA composite tablets were designed, and the 3D-printed tablets exhibited good formability. The surface area of the exposed drug component is highly correlated with the initial drug release rate. Composite tablets with an exposed top and a bottom covered with a PLA layer were fabricated. These tablets showed zero-order drug release by maintaining the surface area of the exposed drug component during drug dissolution. In contrast, the drug release profile varied for tablets whose exposed surface area changed. Composite tablets with different drug release lag times were prepared by changing the thickness of the PVA filler coating the drug component. These results which used PVA and PLA filler will provide useful information for preparing the tablets with multi-components and tailor-made tablets with defined drug release profiles using 3D printers. Copyright © 2018 Elsevier B.V. All rights reserved.
Alvarez, Florencia; Grillo, Claudiaa; Schilardi, Patricial; Rubert, Aldo; Benítez, Guillermo; Lorente, Carolina; de Mele, Mónica Fernández Lorenzo
2013-01-23
The copper intrauterine device (IUD) based its contraceptive action on the release of cupric ions from a copper wire. Immediately after the insertion, a burst release of copper ions occurs, which may be associated to a variety of side effects. 6-Mercaptopurine (6-MP) and pterin (PT) have been proposed as corrosion inhibitors to reduce this harmful release. Pretreatments with 1 × 10(-4) M 6-MP and 1 × 10(-4) M PT solutions with 1h and 3h immersion times were tested. Conventional electrochemical techniques, EDX and XPS analysis, and cytotoxicity assays with HeLa cell line were employed to investigate the corrosion behavior and biocompatibility of copper with and without treatments. Results showed that copper samples treated with PT and 6-MP solutions for 3 and 1 h, respectively, are more biocompatible than those without treatment. Besides, the treatment reduces the burst release effect of copper in simulated uterine solutions during the first week after the insertion. It was concluded that PT and 6-MP treatments are promising strategies able to reduce the side effects related to the "burst release" of copper-based IUD without altering the contraceptive action.
Shah, Kifayat Ullah; Khan, Gul Majid
2012-01-01
The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC) and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P) ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP) as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4) using PharmaTest dissolution apparatus at constant temperature of 37°C ± 0.1. Similarity factor f 2 was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including C max, T max and AUC0-t were compared which showed an optimized C max and T max (P < 0.05). A good correlation was obtained between in vitro drug release and in vivo drug absorption with correlation value (R 2 = 0.934). Relative bioavailability was found to be 93%. Reproducibility of manufacturing process and accelerated stability of the developed tablets were performed in stability chamber at 40 ± 2°C and 75 ± 5% relative humidity for a period of 6 months and were found to be stable throughout the stability period. PMID:22649325
NASA Astrophysics Data System (ADS)
Li, Yongqiang
Sulfopropyl dextran sulfate (SP-DS) microspheres and polymer-lipid hybrid nanoparticles (PLN) for the delivery of water-soluble anticancer drugs and P-glycoprotein inhibitors were developed by our group recently and demonstrated effectiveness in local chemotherapy. To optimize the delivery performance of these particulate systems, particularly PLN, an integrated multidisciplinary approach was developed, based on an in-depth understanding of drug-excipient interactions, internal structure, drug loading and release mechanisms, and application of advanced modeling/optimization techniques. An artificial neural networks (ANN) simulator capable of formulation optimization and drug release prediction was developed. In vitro drug release kinetics of SP-DS microspheres, with various drug loading and in different release media, were predicted by ANN. The effects of independent variables on drug release were evaluated. Good modeling performance suggested that ANN is a useful tool to predict drug release from ion-exchange microspheres. To further improve the performance of PLN, drug-polymer-lipid interactions were characterized theoretically and experimentally using verapamil hydrochloride (VRP) as a model drug and dextran sulfate sodium (DS) as a counter-ion polymer. VRP-DS complexation followed a stoichiometric rule and solid-state transformation of VRP were observed. Dodecanoic acid (DA) was identified as the lead lipid carrier material. Based upon the optimized drug-polymer-lipid interactions, PLN with high drug loading capacity (36%, w/w) and sustained release without initial burst release were achieved. VRP remained amorphous and was molecularly dispersed within PLN. H-bonding contributed to the miscibility between the VRP-DS complex and DA. Drug release from PLN was mainly controlled by diffusion and ion-exchange processes. Drug loading capacity and particle size of PLN depend on the formulation factors of the weight ratio of drug to lipid and concentrations of surfactants applied. A three-factor spherical composite experimental design was used to map the cause-and-effect relationship. PLN with high drug loading efficiency (92%) and small particle size (100 nm) were predicted by ANN and confirmed by experiment. The roles of various factors on the properties of PLN were also investigated. In summary, this thesis demonstrates that an integrated multidisciplinary strategy ranging from preformulation to formulation to optimization is suitable for the rational design of SP-DS microspheres and PLN with desired properties.
Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin
2017-07-01
The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.
Comparative drug release measurements in limited amounts of liquid: a suppository formulation study.
Welch, Ken; Ek, Ragnar; Strømme, Maria
2006-07-01
A novel method for the investigation of drug formulations in limited liquid volumes is presented. The experimental setup consists of a measurement cell containing an absorbent sponge cloth placed between two parallel electrodes. Conductivity measurements are used to monitor the drug release from the dosage form. By varying the amount of water contained in the absorbent cloth surrounding the dosage form, it is possible to measure the drug release performance of the dosage form in very limited amounts of water. The method was employed to test four different tablet formulations consisting of the model drug NaCl incorporated in excipient matrices of hard fat, polyethylene glycol, microcrystalline cellulose and a mixture of microcrystalline cellulose and croscarmellose sodium (Ac-Di-Sol). The drug release rates of the different formulations in limited water volumes differed markedly from the release rates in an excess of water. Whereas the release rates from all tablet types in an excess of water showed only minor differences among the tablet types, the release rates from the tablets formulated with disintegrating excipients were clearly superior in limited water volumes. The developed method for drug release in limited volumes of liquid should be suitable for evaluation of rectal dosage forms.
Understanding Drug Release Data through Thermodynamic Analysis.
Freire, Marjorie Caroline Liberato Cavalcanti; Alexandrino, Francisco; Marcelino, Henrique Rodrigues; Picciani, Paulo Henrique de Souza; Silva, Kattya Gyselle de Holanda E; Genre, Julieta; Oliveira, Anselmo Gomes de; Egito, Eryvaldo Sócrates Tabosa do
2017-06-13
Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS) is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB) kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas-Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability.
Understanding Drug Release Data through Thermodynamic Analysis
Freire, Marjorie Caroline Liberato Cavalcanti; Alexandrino, Francisco; Marcelino, Henrique Rodrigues; Picciani, Paulo Henrique de Souza; Silva, Kattya Gyselle de Holanda e; Genre, Julieta; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Sócrates Tabosa
2017-01-01
Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS) is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB) kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas–Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability. PMID:28773009
Pinto, Colin A; Saripella, Kalyan K; Loka, Nikhil C; Neau, Steven H
2018-04-01
Certain issues with the use of particles of chitosan (Ch) cross-linked with tripolyphosphate (TPP) in sustained release formulations include inefficient drug loading, burst drug release, and incomplete drug release. Acetaminophen was added to Ch:TPP particles to test for advantages of drug addition extragranularly over drug addition made during cross-linking. The influences of Ch concentration, Ch:TPP ratio, temperature, ionic strength, and pH were assessed. Design of experiments allowed identification of factors and 2-factor interactions that have significant effects on average particle size and size distribution, yield, zeta potential, and true density of the particles, as well as drug release from the directly compressed tablets. Statistical model equations directed production of a control batch that minimized span, maximized yield, and targeted a t 50 of 90 min (sample A); sample B that differed by targeting a t 50 of 240-300 min to provide sustained release; and sample C that differed from sample B by maximizing span. Sample B maximized yield and provided its targeted t 50 and the smallest average particle size, with the higher zeta potential and the lower span of samples B and C. Extragranular addition of a drug to Ch:TPP particles achieved 100% drug loading, eliminated a burst drug release, and can accomplish complete drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.
Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D
2017-04-01
Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.
Brouillet, F; Bataille, B; Cartilier, L
2008-05-22
High-amylose sodium carboxymethyl starch (HASCA), produced by spray-drying (SD), was previously shown to have interesting properties as a promising pharmaceutical sustained drug-release tablet excipient for direct compression, including ease of manufacture and high crushing strength. This study describes the effects of some important formulation parameters, such as compression force (CF), tablet weight (TW), drug-loading and electrolyte particle size, on acetaminophen-release performances from sustained drug-release matrix tablets based on HASCA. An interesting linear relationship between TW and release time was observed for a typical formulation of the system consisting of 40% (w/w) acetaminophen as model drug and 27.5% NaCl as model electrolyte dry-mixed with HASCA. Application of the Peppas and Sahlin model gave a better understanding of the mechanisms involved in drug-release from the HASCA matrix system, which is mainly controlled by surface gel layer formation. Indeed, augmenting TW increased the contribution of the diffusion mechanism. CFs ranging from 1 to 2.5 tonnes/cm(2) had no significant influence on the release properties of tablets weighing 400 or 600 mg. NaCl particle size did not affect the acetaminophen-release profile. Finally, these results prove that the new SD process developed for HASCA manufacture is suitable for obtaining similar-quality HASCA in terms of release and compression performances.
Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.
Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada
2008-01-01
The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.
Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui
2018-06-10
In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Bioerodible System for Sequential Release of Multiple Drugs
Sundararaj, Sharath C.; Thomas, Mark V.; Dziubla, Thomas D.; Puleo, David A.
2013-01-01
Because many complex physiological processes are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the objective of the present research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. The polymers used were cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. PMID:24096151
Characterization of drug release from liposomal formulations in ocular fluid.
Jafari, M R; Jones, A B; Hikal, A H; Williamson, J S; Wyandt, C M
1998-01-01
The successful application of liposomes in topical ophthalmic drug delivery requires knowledge of vesicle stabilization in the presence of tear fluid. The release of procaine hydrochloride (PCH) from large unilamellar liposomes in the presence of simulated tear fluid was studied in vitro as a function of bilayer lipid content and tear protein composition. Reverse-phase evaporation vesicles were prepared from egg phosphatidylcholine, stearylamine or dicetyl phosphate, and cholesterol. The relationship between lipid composition and encapsulation efficiency, vesicle size, drug leakage upon storage at 4 degrees C, and the release of PCH-loaded liposomes was studied. The encapsulation efficiency was found to be dependent upon the lipid composition used in the liposome preparation. In particular, phosphatidylcholine vesicles containing cholesterol and/or charged lipids had a lower entrapment efficiency than liposomes prepared with phosphatidylcholine alone. However, the drug release rate was reduced significantly by inclusion of cholesterol and/or charged lipids in the liposomes. The release kinetics of the entrapped agent seemed to be a biphasic process and the drug-release in both simulated tear fluid (STF) and pH 7.4 phosphate buffered saline (PBS) solutions followed pseudo first-order kinetics in the early stage of the release profile. The drug-release appeared to be diffusion and/or partition controlled. Drug release from liposomes into STF, pH 7.4 PBS, and five different modified tear formulations was also evaluated. While serum-induced leakage is attributed to high-density lipoprotein-mediated destabilization, it was determined that lactoferrin might be the protein component in tear fluid that has the primary influence on the liposome-entrapped drug release rate. Five local anesthetics, benoxinate, proparacaine, procaine, tetracaine, and benzocaine were entrapped in liposomal vesicles by a reverse-phase evaporation (REV) technique. The release of these structurally similar topical anesthetics entrapped in positively charged liposomes (egg phosphatidylcholine, stearylamine, and cholesterol in a 7:2:1 molar ratio) was evaluated in a simulated tear fluid and pH 7.4 phosphate buffered saline solution. The liposomes appeared to be useful carriers for these drugs to retard their in vitro release in tear fluid and perhaps sustain or control their release in the eye for better therapeutic efficacy. An analysis of the release data demonstrated that for this series of drugs, drug partition coefficient has the largest effect on release rate, with molecular weight exhibiting a smaller effect. Release rate was found to decrease with increased lipophilicity or increased molecular weight.
Shibata, Nobuhito; Nishumura, Asako; Naruhashi, Kazumasa; Nakao, Yurie; Miura, Rieko
2010-05-01
The focus of current study was to demonstrate a new sustained-release capsule including starch-sponge matrix (SSM) and to investigate how the pharmaceutical properties of SSM affect the drug release or its pharmacokinetic properties. Three representative drugs (uranine [UN], indomethacin [IMC] and nifedipine [NFP]) with different physicochemical properties (LogP(ow): 0.10, 1.18 and 3.23, respectively) were selected as model drugs. Model drug was dispersioned in pastelike cornstarch (starch glue) after heating 2.0-3.0% cornstarch suspension with electromagnetic wave at 2450 MHz (700 W) for l min. Then the drug mixture was encapsulated into a gratin capsule by a syringe, and the SSM including drug was prepared by means of a freeze-dried method. Essentially, drug-free SSM has a porous and netlike structure, and the distribution aspect of model drugs in the SSM depends on physicochemical properties between cornstarch glue and drugs. UN with much lower lipophilicity exists in continues phase of SSM, and IMC or NFP with a moderate or a higher lipophilicity exist in continues phase or porous space of the SSM. In the in vitro dissolution study, the release rate of drug from the SSM was mainly dependent on the lipophilicities of drugs, showing a rank order of the release rate of UN>IMC>NFP. In addition, the in vitro release rate for each drug was well regulated by changing the initial concentration of cornstarch suspension. In vivo absorption studies after intraduodenal administration of SSM capsule including model drug revealed that the sustained-release effects also could be regulated by the initial concentration of starch suspension. Moreover, the sustained-release effect of SSM capsule was enhanced with an increase in the lipophilicity of drug, and local-residential and mucoadhesive properties of SSM in the intestine provided stable supply of drugs from the SSM. The SSM capsule we developed here shows promising results as an oral drug delivery system for sustained-release regulation or target specificity. 2009 Elsevier Masson SAS. All rights reserved.
Rao, Venkatramana M; Zannou, Erika A; Stella, Valentino J
2011-04-01
The challenge of designing a delayed-release oral dosage form is significantly increased when the drug substance is poorly water soluble. This manuscript describes the design and characterization of a novel controlled-release film-coated tablet for the pH-triggered delayed and complete release of poorly water-soluble weak base drugs. Delivery of weak bases is specifically highlighted with the use of dipyridamole and prazosin as model compounds. Tailored delayed release is achieved with a combination of an insoluble but semipermeable polymer and an enteric polymer, such as cellulose acetate and hydroxypropyl cellulose phthalate, respectively, as coatings. The extent of the time lag prior to complete release depends on the film-coating composition and thickness. Complete release is achieved by the addition of a cyclodextrin, namely SBE7M-β-CD with or without a pH modifier added to the tablet core to ensure complete solubilization and release of the drug substance. The film-coating properties allow the complex formation/solubilization to occur in situ. Additionally, the drug release rate can be modulated on the basis of the cyclodextrin to drug molar ratio. This approach offers a platform technology for delayed release of potent but poorly soluble drugs and the release can be modulated by adjusting the film-coating composition and thickness and/or the cyclodextrin and pH modifier, if necessary. Copyright © 2010 Wiley-Liss, Inc.
Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets.
Hussain, Talib; Saeed, Tariq; Mumtaz, Ahmad M; Javaid, Zeeshan; Abbas, Khizar; Awais, Azeema; Idrees, Hafiz Arfat
2013-01-01
Gliclazide is an oral hypoglycemic agent, indicated in non insulin dependent diabetes mellitus and in patients with diabetic retinopathy. It has good tolerability and is a short acting sulfonyl urea that requires large dose to maintain the blood glucose level. So development of a sustained release formulation of gliclazide (GLZ) is required for better patient compliance. This study was conducted to assess the effects of different drug polymer ratios on the release profile of gliclazide from the matrix. Oral matrix tablets of gliclazide were prepared by hot melt method, using pure and blended mixture of glyceryl monostearate (GMS) and stearic acid (SA) in different ratios. In vitro release pattern was studied for 8 h in phosphate buffer media (pH 7.4). Different kinetic models including zero order, first order, Higuchi and Peppas were applied to evaluate drug release behavior. Drug excipient compatibility was evaluated by scanning with DSC and FTIR. Higuchi model was found the most appropriate model for describing the release profile of GLZ and non-Fickian release was found predominant mechanism of drug release. The release of drug from the matrix was greatly controlled by GMS while SA appeared to facilitate the release of drug from matrix tablets. FTIR results showed no chemical interaction between drug and the polymers, and DSC results indicated amorphous state of GLZ and polymers without significant complex formation. The results indicate that matrix tablets of gliclazide using glyceryl monostearate and stearic acid showed marked sustained release properties.
Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.
Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M
2012-01-01
Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.
NASA Astrophysics Data System (ADS)
Sasikumar, Swamiappan
2013-09-01
Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we investigated the release kinetics of ciprofloxacin loaded HAP and analyzed its ability to function as a targeted and sustained release drug carrier. Synthesis of HAP was carried out by combustion method using tartaric acid as a fuel and nitric acid as an oxidizer. Powder XRD and FTIR techniques were employed to characterize the phase purity of the drug carrier and to verify the chemical interaction between the drug and carrier. The synthesized powders were sieve separated to make two different drug carriers with different particle sizes and the surface topography of the pellets of the drug carrier was imaged by AFM. Surface area and porosity of the drug carrier was carried out using surface area analyzer. The in-vitro drug release kinetics was performed in simulated body fluid, at 37.3°C. The amount of ciprofloxacin released is measured using UV-visible spectroscopy following the characteristic λ max of 278 nm. The release saturates around 450 h which indicates that it can be used as a targeted and sustained release carrier for bone infections.
The Impact of Bubbles on Measurement of Drug Release from Echogenic Liposomes
Kopechek, Jonathan A.; Haworth, Kevin J.; Radhakrishnan, Kirthi; Huang, Shaoling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.
2013-01-01
Echogenic liposomes (ELIP) encapsulate gas bubbles and drugs within lipid vesicles, but the mechanisms of ultrasound-mediated drug release from ELIP are not well understood. The effect of cavitation activity on drug release from ELIP was investigated in flowing solutions using two fluorescent molecules: a lipophilic drug (rosiglitazone) and a hydrophilic drug substitute (calcein). ELIP samples were exposed to pulsed Doppler ultrasound from a clinical diagnostic ultrasound scanner at pressures above and below the inertial and stable cavitation thresholds. Control samples were exposed to a surfactant, Triton X-100 (positive control), or to flow alone (negative control). Fluorescence techniques were used to detect release. Encapsulated microbubbles reduced the measured fluorescence intensity and this effect should be considered when assessing drug release from ELIP. The origin of this effect is not specific to ELIP. Release of rosiglitazone or calcein compared to the negative control was only observed with detergent treatment, but not with ultrasound exposure, despite the presence of stable and inertial cavitation activity. Release of rosiglitazone or calcein from ELIP exposed to diagnostic ultrasound was not observed, even in the presence of cavitation activity. Ultrasound-mediated drug delivery strategies with ELIP will thus rely on passage of the drug-loaded liposomes to target tissues. PMID:23357288
Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators
2016-02-03
facilitated transport experiments on topological insulators and Dirac and Weyl semimetals. These experiments resulted in several notable achievements and...Approved for Public Release; Distribution Unlimited Final Report: Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators . The views...Experiments on Topological Insulators . Report Title The award enabled the PI to acquire a complete cryogenic system with a 9-Tesla superconducting magnet. The
Deficiencies of product labeling directions for the preparation of radiopharmaceuticals.
Hung, Joseph C; Ponto, James A; Gadient, Katie R; Frie, Julia A; Aksamit, Carolyn M; Enquist, Cassandra L; Carrels, Katie E
2004-01-01
To identify potential deficiencies in product labeling (package insert) instructions for the preparation of radiopharmaceuticals. Preparation instructions, which include both reconstitution and quality control (QC) directions, as stated in the package inserts were evaluated for all commercially available reconstituted radiopharmaceuticals. Reviews of the package inserts were initially performed by each author, and then all identified deficiencies were compiled and evaluated by all authors. The preparation scenario for each package insert evaluated was based on a centralized nuclear pharmacy operation assuming typical support personnel, standard operating equipment, and workload. The instructions as stated in each package insert for the preparation (including QC) were rated as inadequate if a satisfactory preparation could not be prepared by a nuclear pharmacist or physician when instructions were followed exactly. Identified deficiencies in package insert instructions for the preparation of radiopharmaceuticals fell into the following five categories: (1) absent or incomplete directions (especially with regard to QC procedures); (2) restrictive directions (e.g., specific requirement to use designated needles, chromatography solvents, counting devices), (3) inconsistent directions (e.g., different reconstituted volumes for the same final drug product, unworkable expiration times); (4) impractical directions (e.g., unrealistically low reconstituted activity limits, dangerously high number of radiolabeled particles); and (5) vague directions (e.g., use of the words "should," "may," "recommend"). Manufacturers' directions for the preparation of radiopharmaceuticals often contain deficiencies and should be viewed as standard guidance rather than as requirements. Just as physicians are permitted to use U.S. Food and Drug Administration (FDA)-approved drugs for off-label indications, nuclear pharmacists should be allowed to use alternative methods for preparing radiopharmaceuticals, provided those methods have been validated to be as good as the stated directions and that the nuclear pharmacists do not engage in activities that fall outside the normal practice of pharmacy. Manufacturers, FDA, nuclear pharmacists, and nuclear physicians should work together to address identified deficiencies in package insert directions.
21 CFR 500.26 - Timed-release dosage form drugs.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 201(v) of the Federal Food, Drug, and Cosmetic Act. (b) Timed-release dosage form animal drugs that... using procedures and controls to ensure release of the total dosage at a safe and effective rate. Data...
21 CFR 500.26 - Timed-release dosage form drugs.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 201(v) of the Federal Food, Drug, and Cosmetic Act. (b) Timed-release dosage form animal drugs that... using procedures and controls to ensure release of the total dosage at a safe and effective rate. Data...
21 CFR 500.26 - Timed-release dosage form drugs.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 201(v) of the Federal Food, Drug, and Cosmetic Act. (b) Timed-release dosage form animal drugs that... using procedures and controls to ensure release of the total dosage at a safe and effective rate. Data...
21 CFR 500.26 - Timed-release dosage form drugs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 201(v) of the Federal Food, Drug, and Cosmetic Act. (b) Timed-release dosage form animal drugs that... using procedures and controls to ensure release of the total dosage at a safe and effective rate. Data...
21 CFR 500.26 - Timed-release dosage form drugs.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 201(v) of the Federal Food, Drug, and Cosmetic Act. (b) Timed-release dosage form animal drugs that... using procedures and controls to ensure release of the total dosage at a safe and effective rate. Data...
Yang, Yan; Shen, Lian; Li, Juan; Shan, Wei-Guang
2017-06-01
The objective of this study was to prepare and evaluate metoprolol tartrate sustained-release pellets. Cores were prepared by hot melt extrusion and coated pellets were prepared by hot melt coating. Cores were found to exist in a single-phase state and drug in amorphous form. Plasticizers had a significant effect on torque and drug content, while release modifiers and coating level significantly affected the drug-release behavior. The mechanisms of drug release from cores and coated pellets were Fickian diffusion and diffusion-erosion. The coated pellets exhibited sustained-release properties in vitro and in vivo.
Nanopore thin film enabled optical platform for drug loading and release.
Song, Chao; Che, Xiangchen; Que, Long
2017-08-07
In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.
Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng
2014-01-01
A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.
Natural gum-type biopolymers as potential modified nonpolar drug release systems.
Salamanca, Constain H; Yarce, Cristhian J; Moreno, Roger A; Prieto, Vanessa; Recalde, Juanita
2018-06-01
In this work, the relationship between surface properties and drug release mechanism from binary composition tablets formed by quetiapine fumarate and biopolymer materials was studied. The biopolymers correspond to xanthan and tragacanth gums, which are projected as modified drug release systems. The surface studies were carried out by the sessile drop method, while the surface free energy (SFE) was determinate through Young-Dupree and OWRK semi-empirical models. On the other hand, the drug release studies were performed by in vitro dissolution tests, where the data were analyzed through kinetic models of zero order, first order, Higuchi, and Korsmeyer-Peppas. The results showed that depending on the type and the proportion of biopolymer, surface properties, and the drug release processes are significantly affected, wherein tragacanth gum present a usual erosion mechanism, while xanthan gum describes a swelling mechanism that controls the release of the drug. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation.
Podaru, George; Ogden, Saralyn; Baxter, Amanda; Shrestha, Tej; Ren, Shenqiang; Thapa, Prem; Dani, Raj Kumar; Wang, Hongwang; Basel, Matthew T; Prakash, Punit; Bossmann, Stefan H; Chikan, Viktor
2014-10-09
Fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard release assay is based on the increase of the fluorescence signal from 5(6)-carboxyfluorescein dye when the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in the case of the MgSO4. The experiments also indicate that the magnetic nanoparticles generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.
Kim, Min Soo; Yeom, Dong Woo; Kim, Sung Rae; Yoon, Ho Yub; Kim, Chang Hyun; Son, Ho Yong; Kim, Jin Han; Lee, Sangkil; Choi, Young Wook
2017-01-01
A double layer-coated colon-specific drug delivery system (DL-CDDS) was developed, which consisted of chitosan (CTN) based polymeric subcoating of the core tablet containing citric acid for microclimate acidification, followed by an enteric coating. The polymeric composition ratio of Eudragit E100 and ethyl cellulose and amount of subcoating were optimized using a two-level factorial design method. Drug-release characteristics in terms of dissolution efficiency and controlled-release duration were evaluated in various dissolution media, such as simulated colonic fluid in the presence or absence of CTNase. Microflora activation and a stepwise mechanism for drug release were postulated. Consequently, the optimized DL-CDDS showed drug release in a controlled manner by inhibiting drug release in the stomach and intestine, but releasing the drug gradually in the colon (approximately 40% at 10 hours and 92% at 24 hours in CTNase-supplemented simulated colonic fluid), indicating its feasibility as a novel platform for CDD. PMID:28053506
Gutsche, S; Krause, M; Kranz, H
2008-12-01
Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.
Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release
Sun, Huanli; Cheng, Ru; Deng, Chao
2014-01-01
Abstract Significance: The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. Recent Advances: Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. Critical Issues: Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. Future Directions: Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo. Antioxid. Redox Signal. 21, 755–767. PMID:24279980
NASA Astrophysics Data System (ADS)
Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna
2016-03-01
Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.
Parejiya, Punit B; Barot, Bhavesh S; Patel, Hetal K; Shelat, Pragna K; Shukla, Arunkumar
2013-11-01
The study was aimed toward development of modified release oral drug delivery system for highly water soluble drug, Milnacipran HCl (MH). Novel Tablet in Tablet system (TITs) comprising immediate and extended release dose of MH in different parts was fabricated. The outer shell was composed of admixture of MH, lactose and novel herbal disintegrant obtained from seeds of Lepidium sativum. In the inner core, MH was matrixed with blend of hydrophilic (Benecel®) and hydrophobic (Compritol®) polymers. 3² full factorial design and an artificial neuron network (ANN) were employed for correlating effect of independent variables on dependent variables. The TITs were characterized for pharmacopoeial specifications, in vitro drug release, SEM, drug release kinetics and FTIR study. The release pattern of MH from batch A10 containing 25.17% w/w Benecel® and 8.21% w/w of Compritol® exhibited drug release pattern close proximal to the ideal theoretical profile (t(50%) = 5.92 h, t(75%) = 11.9 h, t(90%) = 18.11 h). The phenomenon of drug release was further explained by concept of percolation and the role of Benecel® and Compritol® in drug release retardation was studied. The normalized error obtained from ANN was less, compared with the multiple regression analysis, and exhibits the higher accuracy in prediction. The results of short-term stability study revealed stable chataracteristics of TITs. SEM study of TITs at different dissolution time points confirmed both diffusion and erosion mechanisms to be operative during drug release from the batch A10. Novel TITs can be a succesful once a day delivery system for highly water soluble drugs.
Körber, Martin; Ciper, Mesut; Hoffart, Valerie; Pearnchob, Nantharat; Walther, Mathias; Macrae, Ross J; Bodmeier, Roland
2011-08-01
Weakly basic drugs and their salts exhibit a decrease in aqueous solubility at higher pH, which can result in pH-dependent or even incomplete release of these drugs from extended release formulations. The objective of this study was to evaluate strategies to set-off the very strong pH-dependent solubility (solubility: 80 mg/ml at pH 2 and 0.02 mg/ml at pH 7.5, factor 4000) of a mesylate salt of weakly basic model drug (pK(a) 6.5), in order to obtain pH-independent extended drug release. Three approaches for pH-independent release were investigated: (1) organic acid addition in the core, (2) enteric polymer addition to the extended release coating and (3) an enteric polymer subcoating below the extended release coating. The layering of aspartic acid onto drug cores as well as the coating of drug cores with an ethylcellulose/Eudragit L (enteric polymer) blend were not effective to avoid the formation of the free base at pH 7.5 and thus failed to significantly improve the completeness of the release compared to standard ethylcellulose/hydroxypropyl cellulose (EC/HPC)-coated drug pellets. Interestingly, the incorporation of an enteric polymer layer underneath the EC/HPC coating decreased the free base formation at pH 7.5 and thus resulted in a more complete release of up to 90% of the drug loading over 18 h. The release enhancing effect was attributed to an extended acidification through the enteric polymer layer. Flexible release patterns with approximately pH-independent characteristics were successfully achieved. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Lu; Alfano, Joy; Race, Doran; Davé, Rajesh N
2018-05-30
In spite of significant recent interest in polymeric films containing poorly water-soluble drugs, dissolution mechanism of thicker films has not been investigated. Consequently, release mechanisms of poorly water-soluble drugs from thicker hydroxypropyl methylcellulose (HPMC) films are investigated, including assessing thickness above which they exhibit zero-order drug release. Micronized, surface modified particles of griseofulvin, a model drug of BSC class II, were incorporated into aqueous slurry-cast films of different thicknesses (100, 500, 1000, 1500 and 2000 μm). Films 1000 μm and thicker were formed by either stacking two or more layers of ~500 μm, or forming a monolithic thick film. Compared to monolithic thick films, stacked films required simpler manufacturing process (easier casting, short drying time) and resulted in better critical quality attributes (appearance, uniformity of thickness and drug per unit area). Both the film forming approaches exhibited similar release profiles and followed the semi-empirical power law. As thickness increased from 100 μm to 2000 μm, the release mechanism changed from Fickian diffusion to zero-order release for films ≥1000 μm. The diffusional power law exponent, n, achieved value of 1, confirming zero-order release, whereas the percentage drug release varied linearly with sample surface area, and sample thickness due to fixed sample diameter. Thus, multi-layer hydrophilic polymer aqueous slurry-cast thick films containing poorly water-soluble drug particles provide a convenient dosage form capable of zero-order drug release with release time modulated through number of layers. Copyright © 2018 Elsevier B.V. All rights reserved.
Blakney, Anna K; Little, Adam B; Jiang, Yonghou; Woodrow, Kim A
2016-11-01
Composite delivery systems where drugs are electrospun in different layers and vary the drug stacking-order are posited to affect bioavailability. We evaluated how the formulation characteristics of both burst- and sustained-release electrospun fibers containing three physicochemically diverse drugs: dapivirine (DPV), maraviroc (MVC) and tenofovir (TFV) affect in vitro and ex vivo release. We developed a poly(hydroxyethyl methacrylate) (pHEMA) hydrogel release platform for the rapid, inexpensive in vitro evaluation of burst- and sustained-release topical or dermal drug delivery systems with varying microarchitecture. We investigated properties of the hydrogel that could recapitulate ex vivo release into nonhuman primate vaginal tissue. Using a dimethyl sulfoxide extraction protocol and high-performance liquid chromatography analysis, we achieved >93% recovery from the hydrogels and >88% recovery from tissue explants for all three drugs. We found that DPV loading, but not stacking order (layers of fiber containing a single drug) or microarchitecture (layers with isolated drug compared to all drugs in the same layer) impacted the burst release in vitro and ex vivo. Our burst-release formulations showed a correlation for DPV accumulation between the hydrogel and tissue (R 2 = 0.80), but the correlation was not significant for MVC or TFV. For the sustained-release formulations, the PLGA/PCL content did not affect TFV release in vitro or ex vivo. Incorporation of cells into the hydrogel matrix improved the correlation between hydrogel and tissue explant release for TFV. We expect that this hydrogel-tissue mimic may be a promising preclinical model to evaluate topical or transdermal drug delivery systems with complex microarchitectures.
Zhang, Lijing; Cao, Hua; Zhang, Jiaxin; Yang, Chengli; Hu, Tingting; Li, Huili; Yang, Wu; He, Gu; Song, Xiangrong; Tong, Aiping; Guo, Gang; Li, Rui; Jiang, Yu; Liu, Jiyan; Cai, Lulu; Zheng, Yu
2017-02-01
Specific delivery of drugs to bone tissue is very challenging due to the architecture and structure of bone tissue. A seven-repeat sequence of aspartate, a representative bone-targeting oligopeptide, is preferentially used for targeted therapy for bone diseases. In this study, Asp7-cholesterol((Asp)7-CHOL) was synthesized and (Asp)7-CHOL-modified liposome loaded with doxorubicin (DOX) was successfully prepared using both pre-insertion (pre-L) and post-insertion (post-L) methods. The formulation was optimized according to particle size, zeta potential and the drug-loading efficiency of the liposome. In addition, the bone affinity of the (Asp)7-CHOL-modified liposome was evaluated using a hydroxyapatite (HA) absorption method. The results suggested that (Asp)7-CHOL-modified liposome show excellent HA absorption; pre-L showed slightly higher HA binding than post-L. However, post-L had a higher DOX entrapment efficiency than pre-L. In vivo imaging further demonstrated that pre-L showed a higher bone-targeting efficiency than post-L, which was consistent with in vitro results. In all, (Asp)7-CHOL-modified liposome showed excellent bone-targeting activity, suggesting their potential for use as a drug delivery system for bone disease-targeted therapies.
Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites.
Gupta, Rashmi; Bajpai, A K
2011-01-01
Tailored with superparamagnetic properties the magnetic nanocomposites have been thoroughly investigated in recent past because of their potential applications in the fields of biomedicine and bioengineering such as protein detection, magnetic targeted drug carriers, bioseparation, magnetic resonance imaging contrast agents and hyperthermia. Magnetic drug targeting has come up as a safe and effective drug-delivery technology, i.e., with the least amount of magnetic particles a maximum of drug may be easily administered and transported to the site of choice. In the present work novel magnetic drug-targeting carriers consisting of magnetic nanoparticles encapsulated within a smart polymer matrix with potential of controlled drug release is described. To make such magnetic polymeric drug-delivery systems, both the magnetic nanoparticles and antibiotic drug (ciprofloxacin) were incorporated into the hydrogel. The controlled release process and release profiles were investigated as a function of experimental protocols such as percent loading of drug, chemical composition of the nanocomposite, pH of release media and strength of magnetic field on the release profiles. The structure, morphology and compositions of magnetic hydrogel nanocomposites were characterized by FT-IR, TEM, XRD and VSM techniques. It was found that magnetic nanocomposites were biocompatible and superparamagnetic in nature and could be used as a smart drug carrier for controlled and targeted drug delivery.
In Situ Loading of Drugs into Mesoporous Silica SBA-15.
Wan, Mi Mi; Li, Yan Yan; Yang, Tian; Zhang, Tao; Sun, Xiao Dan; Zhu, Jian Hua
2016-04-25
In a new strategy for loading drugs into mesoporous silica, a hydrophilic (heparin) or hydrophobic drug (ibuprofen) is encapsulated directly in a one-pot synthesis by evaporation-induced self-assembly. In situ drug loading significantly cuts down the preparation time and dramatically increases the loaded amount and released fraction of the drug, and appropriate drug additives favor a mesoporous structure of the vessels. Drug loading was verified by FTIR spectroscopy and release tests, which revealed much longer release with a larger amount of heparin or ibuprofen compared to postloaded SBA-15. Besides, the in vitro anticoagulation properties of the released heparin and the biocompatibility of the vessels were carefully assessed, including activated partial thromboplastin time, thrombin time, hemolysis, platelet adhesion experiments, and the morphologies of red blood cells. A concept of new drug-release agents with soft core and hard shell is proposed and offers guidance for the design of novel drug-delivery systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Shilan; Liu, Mingzhu; Jin, Shuping; Wang, Bin
2008-02-12
Drug-loaded chitosan (CS) beads were prepared under simple and mild condition using trisodium citrate as ionic crosslinker. The beads were further coated with poly(methacrylic acid) (PMAA) by dipping the beads in PMAA aqueous solution. The surface and cross-section morphology of these beads were observed by scanning electron microscopy and the observation showed that the coating beads had core-shell structure. In vitro release of model drug from these beads obtained under different reaction conditions was investigated in buffer medium (pH 1.8). The results showed that the rapid drug release was restrained by PMAA coating and the optimum conditions for preparing CS-based drug-loaded beads were decided through the effect of reaction conditions on the drug release behaviors. In addition, the drug release mechanism of CS-based drug-loaded beads was analyzed by Peppa's potential equation. According to this study, the ionic-crosslinked CS beads coated by PMAA could serve as suitable candidate for drug site-specific carrier in stomach.
Zn(2+)-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates.
Tan, Li-Li; Li, Haiwei; Zhou, Yue; Zhang, Yuanyuan; Feng, Xiao; Wang, Bo; Yang, Ying-Wei
2015-08-01
A new theranostic nanoplatform, comprising of monodisperse zirconium metal-organic frameworks (MOFs) as drug carriers and carboxylatopillar[5]arene-based supramolecular switches as gating entities, is constructed, and controlled drug release triggered by bio-friendly Zn(2+) ions (abundant in synaptic vesicles) and auxiliary thermal stimulus is realized. This on-command drug delivery system exhibits large pore sizes for drug encapsulation, excellent biodegradability and biocompatibility, extremely low cytotoxicity and premature drug release, and superior dual-stimuli responsiveness, opening a new avenue in targeted drug delivery and controlled release of therapeutic agents, especially in the treatment of central nervous system diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Gamma-Radiation for Drug Releasing from MWNT Vehicle
NASA Astrophysics Data System (ADS)
Li, Jun; Sun, Hao; Dai, Yao-Dong
2010-03-01
A drug delivery system via multi-walled carbon nanotube (MWNT) vehicle was synthesized in aqueous solution. MWNTs were first noncovalently functionalized with chitosan oligomers (CS) with a molecule weight of 4000-6000, making MWNTs water-soluble, and then a cancer ancillary drug tea polyphenols (TP) was conjugated mainly via the hydrogen bond between CS and TP molecules, making MWNTs efficient vehicle for drug delivering. The release of drug molecules can be realized by pH variation and γ-radiation, leading to new methods for controlling drug release from carbon nanotubes carrier. Due to the high penetrability of γ-rays, γ-radiation shows up new opportunities in controlled drug release, possibly facilitating the future cancer treatment in vivo.
Gubskaya, Anna V.; Khan, I. John; Valenzuela, Loreto M.; Lisnyak, Yuriy V.; Kohn, Joachim
2013-01-01
The objectives of this work were: (1) to select suitable compositions of tyrosine-derived polycarbonates for controlled delivery of voclosporin, a potent drug candidate to treat ocular diseases, (2) to establish a structure-function relationship between key molecular characteristics of biodegradable polymer matrices and drug release kinetics, and (3) to identify factors contributing in the rate of drug release. For the first time, the experimental study of polymeric drug release was accompanied by a hierarchical sequence of three computational methods. First, suitable polymer compositions used in subsequent neural network modeling were determined by means of response surface methodology (RSM). Second, accurate artificial neural network (ANN) models were built to predict drug release profiles for fifteen polymers located outside the initial design space. Finally, thermodynamic properties and hydrogen-bonding patterns of model drug-polymer complexes were studied using molecular dynamics (MD) technique to elucidate a role of specific interactions in drug release mechanism. This research presents further development of methodological approaches to meet challenges in the design of polymeric drug delivery systems. PMID:24039300
NASA Astrophysics Data System (ADS)
Wang, Yazhou; Zhang, Yiqiong; Wang, Bochu; Cao, Yang; Yu, Qingsong; Yin, Tieying
2013-06-01
The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.
Computational Studies of Drug Release, Transport and Absorption in the Human Intestines
NASA Astrophysics Data System (ADS)
Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.
2016-11-01
Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.
Al-Ghabeish, Manar; Xu, Xiaoming; Krishnaiah, Yellela S R; Rahman, Ziyaur; Yang, Yang; Khan, Mansoor A
2015-11-30
The availability of in vitro performance tests such as in vitro drug release testing (IVRT) and in vitro permeation testing (IVPT) are critical to comprehensively assure consistent delivery of the active component(s) from semisolid ophthalmic drug products. The objective was to study the impact of drug loading and type of ointment base on the in vitro performance (IVRT and IVPT) of ophthalmic ointments using acyclovir as a model drug candidate. The in vitro drug release for the ointments was evaluated using a modified USP apparatus 2 with Enhancer cells. The transcorneal permeation was carried out using rabbit cornea on modified vertical Franz cells. The drug retention in cornea (DRC) was also determined at the end of transcorneal drug permeation study. The in vitro drug release, transcorneal drug permeation as well as DRC exhibited a proportional increase with increasing drug loading in the ointment. On comparing the in vitro drug release profile with transcorneal permeation profile, it appears that drug release from the ointment is controlling acyclovir transport through the cornea. Furthermore, enhanced in vitro transcorneal permeation relative to the in vitro drug release underscores the importance of the interplay between the physiology of the ocular tissue and ointment formulation. The results indicated that IVRT and IVPT could be used to discriminate the impact of changes in drug load and formulation composition of ophthalmic ointments. Copyright © 2015. Published by Elsevier B.V.
Hashemikia, Samaneh; Hemmatinejad, Nahid; Ahmadi, Ebrahim; Montazer, Majid
2015-04-01
Several researchers are focused on preparation of mesoporous silica as drug carriers with high loading efficiency to control or sustain the drug release. Carriers with highly loaded drug are utilized to minimize the time of drug intake. In this study, amino modified SBA-15 was synthesized through grafting with amino propyl triethoxy silane and then loaded with tetracycline hydrochloride. The drug loading was optimized by using the response surface method considering various factors including drug to silica ratio, operation time, and temperature. The drug to silica ratio indicated as the most influential factor on the drug loading yield. Further, a quadratic polynomial equation was developed to predict the loading percentage. The experimental results indicated reasonable agreement with the predicted values. The modified and drug loaded mesoporous particles were characterized by FT-IR, SEM, TEM, X-ray diffraction (XRD), elemental analysis and N2 adsorption-desorption. The release profiles of tetracycline-loaded particles were studied in different pH. Also, Higuchi equation was used to analyze the release profile of the drug and to evaluate the kinetic of drug release. The drug release rate followed the conventional Higuchi model that could be controlled by amino-functionalized SBA-15. Further, the drug delivery system based on amino modified SBA-15 exhibits novel features with an appropriate usage as an anti-bacterial drug delivery system with effective management of drug adsorption and release. Copyright © 2014 Elsevier Inc. All rights reserved.
Design, development and evaluation of clopidogrel bisulfate floating tablets.
Rao, K Rama Koteswara; Lakshmi, K Rajya
2014-01-01
The objective of the present work was to formulate and to characterize a floating drug delivery system for clopidogrel bisulphate to improve bioavailability and to minimize the side effects of the drug such as gastric bleeding and drug resistance development. Clopidogrel floating tablets were prepared by direct compression technique by the use of three polymers xanthan gum, hydroxypropyl methylcellulose (HPMC) K15M and HPMC K4M in different concentrations (20%, 25% and 30% w/w). Sodium bicarbonate (15% w/w) and microcrystalline cellulose (30% w/w) were used as gas generating agent and diluent respectively. Studies were carried out on floating behavior and influence of type of polymer on drug release rate. All the formulations were subjected to various quality control and in-vitro dissolution studies in 0.1 N hydrochloric acid (1.2 pH) and corresponding dissolution data were fitted to popular release kinetic equations in order to evaluate release mechanisms and kinetics. All the clopidogrel floating formulations followed first order kinetics, Higuchi drug release kinetics with diffusion as the dominant mechanism of drug release. As per Korsmeyer-Peppas equation, the release exponent "n" ranged 0.452-0.654 indicating that drug release from all the formulations was by non-Fickian diffusion mechanism. The drug release rate of clopidogrel was found to be affected by the type and concentration of the polymer used in the formulation (P < 0.05). As the concentration of the polymer was increased, the drug release was found to be retarded. Based on the results, clopidogrel floating tablets prepared by employing xanthan gum at concentration 25% w/w (formulation F2) was the best formulation with desired in-vitro floating time and drug dissolution.
Cui, Wenguo; Li, Xiaohong; Zhu, Xinli; Yu, Guo; Zhou, Shaobing; Weng, Jie
2006-05-01
This study was aimed at assessing the potential use of electrospun fibers as drug delivery vehicles with focus on the different diameters and drug contents to control drug release and polymer fiber degradation. A drug-loaded solvent-casting polymer film was made with an average thickness of 100 microm for comparative purposes. DSC analysis indicated that electrospun fibers had a lower T(g) but higher transition enthalpy than solvent-casting polymer film due to the inner stress and high degree of alignment and orientation of polymer chains caused by the electrospinning process. Inoculation of paracetanol led to a further slight decrease in the T(g) and transition enthalpy. An in vitro drug release study showed that a pronounced burst release or steady release phase was initially observed followed by a plateau or gradual release during the rest time. Fibers with a larger diameter exhibited a longer period of nearly zero order release, and higher drug encapsulation led to a more significant burst release after incubation. In vitro degradation showed that the smaller diameter and higher drug entrapment led to more significant changes of morphologies. The electrospun fiber mat showed almost no molecular weight reduction, but mass loss was observed for fibers with small and medium size, which was characterized with surface erosion and inconsistent with the ordinarily polymer degrading form. Further wetting behavior analysis showed that the high water repellent property of electrospun fibers led to much slower water penetration into the fiber mat, which may contribute to the degradation profiles of surface erosion. The specific degradation profile and adjustable drug release behaviors by variation of fiber characteristics made the electrospun nonwoven mat a potential drug delivery system rather than polymer films and particles.
Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun
2005-04-27
Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.
Luan, Jingjing; Zhang, Dianrui; Hao, Leilei; Li, Caiyun; Qi, Lisi; Guo, Hejian; Liu, Xinquan; Zhang, Qiang
2013-11-01
Amoitone B, a novel compound chemically synthesized as the analogue of cytosporone B, has been proved to own superior affinity with Nur77 than its parent compound and exhibit notable anticancer activity. However, its application is seriously restricted due to the water-insolubility and short biological half-time. The aim of this study was to construct an effective delivery system for Amoitone B to realize sustained release, thus prolong drug circulation time in body and improve the bioavailability. Nanostructured lipid carriers (NLC) act as a new type of colloidal drug delivery system, which offer the advantages of improved drug loading and sustained release. Amoitone B-loaded NLC (AmB-NLC) containing glyceryl monostearate (GMS) and various amounts of medium chain triglycerides (MCT) were successfully prepared by emulsion-evaporation and low temperature-solidification technology with a particle size of about 200 nm and a zeta potential value of about -20 mV. The results of X-ray diffraction and DSC analysis showed amorphous crystalline state of Amoitone B in NLC. Furthermore, the drug entrapment efficacy (EE) was improved compared with solid lipid nanoparticles (SLN). The EE range was from 71.1% to 84.7%, enhanced with the increase of liquid lipid. In vitro drug release studies revealed biphasic drug release patterns with burst release initially and prolonged release afterwards and the release was accelerated with augment of liquid lipid. These results demonstrated that AmB-NLC could be a promising delivery system to control drug release and improve loading capacity, thus prolong drug action time in body and enhance the bioavailability.
21 CFR 201.24 - Labeling for systemic antibacterial drug products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... development of drug-resistant bacteria and maintain the effectiveness of (insert name of antibacterial drug... treat or prevent infections that are proven or strongly suspected to be caused by bacteria. (b) In the “Indications and Usage” section, the labeling must state: To reduce the development of drug-resistant bacteria...
21 CFR 201.24 - Labeling for systemic antibacterial drug products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... development of drug-resistant bacteria and maintain the effectiveness of (insert name of antibacterial drug... treat or prevent infections that are proven or strongly suspected to be caused by bacteria. (b) In the “Indications and Usage” section, the labeling must state: To reduce the development of drug-resistant bacteria...
48 CFR 1852.223-74 - Drug- and alcohol-free workforce.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Drug- and alcohol-free... and Clauses 1852.223-74 Drug- and alcohol-free workforce. As prescribed in 1823.570-2, insert the following clause: Drug- and Alcohol-Free Workforce (MAR 1996) (a) Definitions. As used in this clause the...
48 CFR 1852.223-74 - Drug- and alcohol-free workforce.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Drug- and alcohol-free... and Clauses 1852.223-74 Drug- and alcohol-free workforce. As prescribed in 1823.570-2, insert the following clause: Drug- and Alcohol-Free Workforce (MAR 1996) (a) Definitions. As used in this clause the...
21 CFR 201.24 - Labeling for systemic antibacterial drug products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... development of drug-resistant bacteria and maintain the effectiveness of (insert name of antibacterial drug... treat or prevent infections that are proven or strongly suspected to be caused by bacteria. (b) In the “Indications and Usage” section, the labeling must state: To reduce the development of drug-resistant bacteria...
21 CFR 201.24 - Labeling for systemic antibacterial drug products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... development of drug-resistant bacteria and maintain the effectiveness of (insert name of antibacterial drug... treat or prevent infections that are proven or strongly suspected to be caused by bacteria. (b) In the “Indications and Usage” section, the labeling must state: To reduce the development of drug-resistant bacteria...
21 CFR 201.24 - Labeling for systemic antibacterial drug products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... development of drug-resistant bacteria and maintain the effectiveness of (insert name of antibacterial drug... treat or prevent infections that are proven or strongly suspected to be caused by bacteria. (b) In the “Indications and Usage” section, the labeling must state: To reduce the development of drug-resistant bacteria...
Coatings from blends of Eudragit® RL and L55: a novel approach in pH-controlled drug release.
Wulff, R; Leopold, C S
2014-12-10
The aim of the present study was to investigate the drug release from theophylline pellets coated with blends of quaternary polymethacrylate and methacrylic acid-ethyl acrylate copolymers. Pellets were coated with blends of Eudragit(®) RL PO (RL) and Eudragit(®) L 100-55 (L55) in either organic solution or aqueous dispersion at various copolymer ratios. Generally, the coatings were less permeable for theophylline in phosphate buffer pH 6.8 than they were in hydrochloric acid pH 1.2. Further dissolution experiments revealed that the differences in drug release are caused by the different pH values. A design of experiments for historical data was performed on drug release data of pellets with different coating levels and blend ratios of RL and L55. Drug release in hydrochloric acid was predominantly affected by the coating level, whereas for drug release in phosphate buffer pH 6.8 the blend ratio was the determining factor. As expected, dissolution experiments at different pH values showed that drug release depends on the ratio of dissociated L55 to RL because ionization is a requirement for the functional groups to interact. With the dissolution test for delayed-release solid dosage forms (Ph. Eur.) it was demonstrated that the unique release behavior in neutral media is preserved after the exposition to hydrochloric acid. These findings indicate that the combination of RL and L55 in coatings prepared from solutions is a promising approach for controlled drug release. Copyright © 2014 Elsevier B.V. All rights reserved.
Raut Desai, Shilpa; Rohera, Bhagwan D
2014-03-01
Tri-layered floating tablets using only one grade of polyethylene oxide (PEO) would enable easy manufacturing, reproducibility and controlled release for highly soluble drugs. To evaluate the potential of PEO as a sole polymer for the controlled release and to study the effect of formulation variables on release and gastric retention of highly soluble Diltiazem hydrochloride (DTZ). Tablets were compressed with middle layer consisting of drug and polymer while outer layers consisted of polymer with sodium bicarbonate. Design of formulation to obtain 12 h, zero-order release and rapid floatation was done by varying the grades, quantity of PEO and sodium bicarbonate. Dissolution data were fitted in drug release models and swelling/erosion studies were undertaken to verify the drug release mechanism. Effect of formulation variables and tablet surface morphology using scanning electron microscopy were studied. The optimized formula passed the criteria of USP dissolution test I and exhibited floating lag-time of 3-4 min. Drug release was faster from low molecular weight (MW) PEO as compared to high MW. With an increase in the amount of sodium bicarbonate, faster buoyancy was achieved due to the increased CO2 gas formation. Drug release followed zero-order and gave a good fit to the Korsmeyer-Peppas model, which suggested that drug release was due to diffusion through polymer swelling. Zero-order, controlled release profile with the desired buoyancy can be achieved by using optimum formula quantities of sodium bicarbonate and polymer. The tri-layered system shows promising delivery of DTZ, and possibly other water-soluble drugs.
Oumzil, Khalid; Benizri, Sébastien; Tonelli, Giovanni; Staedel, Cathy; Appavoo, Ananda; Chaffanet, Max; Navailles, Laurence; Barthélémy, Philippe
2015-11-01
Lipid-based delivery systems are an established technology with considerable clinical acceptance and several applications in human. Herein, we report the design, synthesis and evaluation of novel orthoester nucleoside lipids (ONLs) for the modulation of liposome stability. The ONLs contain head groups with 3'-orthoester nucleoside derivatives featuring positive or negative charges. The insertion of the orthoester function in the NL structures allows the formation of pH-sensitive liposomes. ONL-based liposomes can be hydrolyzed to provide nontoxic products, including nucleoside derivatives and hexadecanol. To allow the release to be tunable at different hydrolysis rates, the charge of the polar head structure is modulated, and the head group can be released at a biologically relevant pH. Crucially, when ONLs are mixed with natural phosphocholine lipids (PC), the resultant liposome evolves toward the formation of a hexadecanol/PC lamellar system. Biological evaluation shows that stable nucleic acid lipid particles (SNALPs) formulated with ONLs and siRNAs can effectively enter into tumor cells and release their nucleic acid payload in response to an intracellular acidic environment. This results in a much higher antitumor activity than conventional SNALPs. The ability to use pH-cleavable nucleolipids to control the stability of lipid-based delivery systems represents a promising approach for the intracellular delivery of drug cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.
2013-04-01
We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.
Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit
2004-02-12
The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.
48 CFR 23.505 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 23.505 Contract clause. Except as provided in 23.501, insert the clause at 52.223-6, Drug-Free Workplace, in solicitations and contracts. [68 FR 28082, May 22...
48 CFR 23.505 - Contract clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 23.505 Contract clause. Except as provided in 23.501, insert the clause at 52.223-6, Drug-Free Workplace, in solicitations and contracts. [68 FR 28082, May 22...
48 CFR 1823.570-2 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 1823.570-2 Contract clause. The contracting officer shall insert the clause at 1852.223-74, “Drug- and Alcohol-Free Workforce,” in all solicitations and...
48 CFR 23.505 - Contract clause.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 23.505 Contract clause. Except as provided in 23.501, insert the clause at 52.223-6, Drug-Free Workplace, in solicitations and contracts. [68 FR 28082, May 22...
48 CFR 23.505 - Contract clause.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 23.505 Contract clause. Except as provided in 23.501, insert the clause at 52.223-6, Drug-Free Workplace, in solicitations and contracts. [68 FR 28082, May 22...
48 CFR 23.505 - Contract clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 23.505 Contract clause. Except as provided in 23.501, insert the clause at 52.223-6, Drug-Free Workplace, in solicitations and contracts. [68 FR 28082, May 22...
48 CFR 1823.570-2 - Contract clause.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 1823.570-2 Contract clause. The contracting officer shall insert the clause at 1852.223-74, “Drug- and Alcohol-Free Workforce,” in all solicitations...
48 CFR 1823.570-2 - Contract clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 1823.570-2 Contract clause. The contracting officer shall insert the clause at 1852.223-74, “Drug- and Alcohol-Free Workforce,” in all solicitations...
Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.
Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon
2013-11-28
Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. © 2013 Elsevier B.V. All rights reserved.
Multi-unit dosage formulations of theophylline for controlled release applications.
Uhumwangho, Michael U; Okor, Roland S
2007-01-01
The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The corresponding values of m infinity and t infinity for the tablets were (240 mg, 9 h), (180 mg, 11 h) and (128 mg, 12 h) against the set target (200 mg, 12 h). The indication is that tableting rather than encapsulation can more effectively control drug release from the systems.
PEG-poly(amino acid) block copolymer micelles for tunable drug release.
Ponta, Andrei; Bae, Younsoo
2010-11-01
To achieve tunable pH-dependent drug release in tumor tissues. Poly(ethylene glycol)-poly(aspartic acid) [PEG-p(Asp)] containing 12 kDa PEG and pAsp (5, 15, and 35 repeating units) were prepared. Hydrazide linkers with spacers [glycine (Gly) and 4-aminobenzoate (Abz)] were introduced to PEG-p(Asp), followed by drug conjugation [doxorubicin (DOX)]. The block copolymer-drug conjugates were either reconstituted or dialyzed in aqueous solutions to prepare micelles. Drug release patterns were observed under sink conditions at pH 5.0 and 7.4, 37°C, for 48 h. A collection of six block copolymers with different chain lengths and spacers was synthesized. Drug binding yields were 13-43.6%. The polymer-drug conjugates formed <50 nm polymer micelles irrespective of polymer compositions. Gly-introduced polymer micelles showed marginal change in particle size (40 ± 10 nm), while the size of Abz-micelles increased gradually from 10 to 40 nm as the polymer chain lengths increased. Drug release patterns of both Gly and Abz micelles were pH-dependent and tunable. The spacers appear to play a crucial role in controlling drug release and stability of polymer micelles in combination with block copolymer chain lengths. A drug delivery platform for tunable drug release was successfully developed with polymer micelles possessing spacer-modified hydrazone drug-binding linkers.
García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier
2015-06-20
This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.
Puiggalí-Jou, Anna; Micheletti, Paolo; Estrany, Francesc; Del Valle, Luis J; Alemán, Carlos
2017-09-01
Poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles are loaded with curcumin and piperine by in situ emulsion polymerization using dodecyl benzene sulfonic acid both as a stabilizer and a doping agent. The loaded drugs affect the morphology, size, and colloidal stability of the nanoparticles. Furthermore, kinetics studies of nonstimulated drug release have evidenced that polymer···drug interactions are stronger for curcumin than for piperine. This observation suggests that drug delivery systems based on combination of the former drug with PEDOT are much appropriated to show an externally tailored release profile. This is demonstrated by comparing the release profiles obtained in presence and absence of electrical stimulus. Results indicate that controlled and time-programmed release of curcumin is achieved in a physiological medium by applying a negative voltage of -1.25 V to loaded PEDOT nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of albumin-based nanoparticles for the delivery of abacavir.
Wilson, Barnabas; Paladugu, Latishkumar; Priyadarshini, S R Brahmani; Jenita, J Josephine Leno
2015-11-01
The study was designed to prepare and evaluate albumin nanoparticles containing antiviral drug abacavir sulphate. Various batches of albumin nanoparticles containing abacavir sulphate were prepared by desolvation method. The abacavir loaded particles were characterized for their yield, percentage of drug loading, surface morphology, particle size, surface charge, pattern of in vitro drug release and release mechanism studies. Drug loading ranged from 1.2 to 5.9%w/w. The mean particle size and the surface charge were 418.2nm and -40.8mV respectively. The in vitro drug release varied between 38.73 and 51.36%w/w for 24h. The n value for Korsmeyer-Peppas was 0.425 indicating Fickian type drug release. The preliminary findings indicated that albumin nanoparticles of abacavir can be prepared by desolvation method with good yield, high drug loading and sustained release. Copyright © 2015 Elsevier B.V. All rights reserved.
Réeff, J; Gaignaux, A; Goole, J; Siepmann, J; Siepmann, F; Jerome, C; Thomassin, J M; De Vriese, C; Amighi, K
2013-07-15
Osteoarthritis is characterized by slow degenerative processes in the articular cartilage within synovial joints. It could be interesting to develop a sustained-release formulation that could be effective on both pain/inflammation and restoration of mechanical integrity of the joint. Recently, an injectable system based on glycerol monooleate (GMO), containing clonidine as a model hydrophilic analgesic/anti-inflammatory drug and hyaluronic acid as a viscoelastic scaffold, showed promising potential as a biodegradable and biocompatible preparation to sustain the drug activity. However, drug release from the system is relatively fast (complete within 1 week) and the underlying drug release mechanisms not fully understood. The aims of this study were: (i) to significantly improve this type of local controlled drug delivery system by further sustaining clonidine release, and (ii) to elucidate the underlying mass transport mechanisms. The addition of FDA-approved inactive ingredients such as sodium oleate or purified soybean oil was found to be highly effective. The release rate could be substantially reduced (e.g., 50% release after 10 days), due to the increased hydrophobicity of the systems, resulting in slower and reduced water uptake and reduced drug mobility. Interestingly, Fick's second law of diffusion could be used to quantitatively describe drug release. Copyright © 2013. Published by Elsevier B.V.
Ferber, Shiran; Baabur-Cohen, Hemda; Blau, Rachel; Epshtein, Yana; Kisin-Finfer, Einat; Redy, Orit; Shabat, Doron; Satchi-Fainaro, Ronit
2014-09-28
Polymeric nanocarriers conjugated with low molecular weight drugs are designed in order to improve their efficacy and toxicity profile. This approach is particularly beneficial for anticancer drugs, where the polymer-drug conjugates selectively accumulate at the tumor site, due to the enhanced permeability and retention (EPR) effect. The conjugated drug is typically inactive, and upon its pH- or enzymatically-triggered release from the carrier, it regains its therapeutic activity. These settings lack information regarding drug-release time, kinetics and location. Thereby, real-time non-invasive intravital monitoring of drug release is required for theranostics (therapy and diagnostics). We present here the design, synthesis and characterization of a theranostic nanomedicine, based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer, owing its fluorescence-based monitoring of site-specific drug release to a self-quenched near-infrared fluorescence (NIRF) probe. We designed two HPMA copolymer-based systems that complement to a theranostic nanomedicine. The diagnostic system consists of self-quenched Cy5 (SQ-Cy5) as a reporter probe and the therapeutic system is based on the anticancer agent paclitaxel (PTX). HPMA copolymer-PTX/SQ-Cy5 systems enable site-specific release upon enzymatic degradation in cathepsin B-overexpressing breast cancer cells. The release of the drug occurs concomitantly with the activation of the fluorophore to its Turn-ON state. HPMA copolymer-SQ-Cy5 exhibits preferable body distribution and drug release compared with the free drug and probe when administered to cathepsin B-overexpressing 4T1 murine mammary adenocarcinoma-bearing mice. This approach of co-delivery of two complementary systems serves as a proof-of-concept for real-time deep tissue intravital orthotopic monitoring and may have the potential use in clinical utility as a theranostic nanomedicine. Copyright © 2014. Published by Elsevier Ireland Ltd.
Investigating Block-Copolymer Micelle Dynamics for Tunable Cargo Delivery
NASA Astrophysics Data System (ADS)
Li, Xiuli; Kidd, Bryce; Cooksey, Tyler; Robertson, Megan; Madsen, Louis
Block-copolymer micelles (BCPMs) can carry molecular cargo in a nanoscopic package that is tunable using polymer structure in combination with cargo properties, as well as with external stimuli such as temperature or pH. For example, BCPMs can be used in targeted anticancer drug delivery due to their biocompatibility, in vivo degradability and prolonged circulation time. We are using NMR spectroscopy and diffusometry as well as SANS to investigate BCPMs. Here we study a diblock poly(ethylene oxide)-b-(caprolactone) (PEO-PCL) that forms spherical micelles at 1% (w/v) in the mixed solvent D2O/THF-d8. We quantify the populations and diffusion coefficients of coexisting micelles and free unimers over a range of temperatures and solvent compositions. We use temperature as a stimulus to enhance unimer exchange and hence trigger cargo release, in some cases at a few degrees above body temperature. We present evidence for dominance of the insertion-expulsion mechanism of unimer exchange in these systems, and we map phase diagrams versus temperature and solvent composition. This study sheds light on how intermolecular interactions fundamentally affect cargo release, unimer exchange, and overall micelle tunability.
Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.
Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S
2008-01-01
The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.
Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet
Bhalekar, M. R.; Madgulkar, A. R.; Sheladiya, D. D.; Kshirsagar, S. J.; Wable, N. D.; Desale, S. S.
2008-01-01
The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 32 full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X1) and bees wax (X2) were selected as independent variables and release after 12 h and time required for 50% (t50) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t50 but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings. PMID:20046773
Sustained release of methotrexate through liquid-crystalline folate nanoparticles.
Misra, Rahul; Mohanty, Sanat
2014-09-01
To make chemotherapy more effective, sustained release of the drug is desirable. By controlling the release rates, constant therapeutic levels can be achieved which can avoid re-administration of drug. This helps to combat tumors more effectively with minimal side effects. The present study reports the control release of methotrexate through liquid-crystalline folate nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate methotrexate molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming methotrexate encapsulated folate nanoparticles as well as the release of methotrexate through these nanoparticles. It has been demonstrated that methotrexate release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on methotrexate release rates was also studied.
Swelum, Ayman Abdel-Aziz; Alowaimer, Abdullah Nasser
2015-12-01
The present study aimed to evaluate the efficacy of controlled internal drug release (CIDR) to synchronize the follicular wave in dromedary camels (Camelus dromedarius) during the breeding season through ovarian monitoring, evaluating sexual receptivity, and measuring progesterone (P4) and estradiol (E2) levels during and after CIDR treatment. Sixteen camels received a new CIDR containing 1.9 g of P4 for 14 days. Ultrasound ovarian monitoring was performed on the day of insertion and every 3 days until the CIDR was withdrawn. Ultrasound examinations were continued day in day out after the CIDR was withdrawn for 10 days. According to the ultrasound examinations, the percentages of camels in the breeding (follicles: 12-18 mm) and nonbreeding phases were calculated. Blood samples were collected day after day during the experimental period (24 days) from the day that the CIDR was inserted. The serum P4 and E2 concentrations were analyzed using ELISA kits. The sexual receptivity of the camels was tested daily during the course of the experiment. The results revealed that 2 and 4 days after the CIDR was withdrawn, the percentage of camels in the breeding phase (68.75% and 75.00%, respectively) was significantly (P < 0.05) higher than that in the nonbreeding phase (31.25% and 25.00%, respectively). The percentage of camels that were abstinent during CIDR treatment was significantly (P < 0.05) higher than that observed for those who were incompletely receptive or completely receptive. The P4 levels increased significantly (P < 0.05) 2 days after CIDR insertion (1.73 ng/mL) and reached maximum values (2.94 ng/mL) at Day 12. Significant (P < 0.05) decreases in the P4 levels were observed 2 to 4 days after CIDR withdrawal (1.01 and 0.80 ng/mL, respectively). The P4 levels reached minimum values (0.18-0.22 ng/mL) at Day 20 through the end of the experiment. The E2 levels differed insignificantly during and after CIDR treatment in dromedary camels. In conclusion, the treatment of dromedary camels with CIDR produced a uniform increase in serum concentrations of P4 that could completely prevent sexual receptivity but could not suppress the follicular wave. After CIDR withdrawal, the P4 levels fell and induced the emergence of a new follicular wave, and most of the camels were in the breeding (ovulatory) phase 2 to 4 days after withdrawal. Therefore, CIDR can be used to synchronize the follicular wave in dromedary camels. Copyright © 2015 Elsevier Inc. All rights reserved.
Ahmed, Tarek A; Ibrahim, Hany M; Samy, Ahmed M; Kaseem, Alaa; Nutan, Mohammad T H; Hussain, Muhammad Delwar
2014-06-01
The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.
Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine
2017-01-01
Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (<0.1%). The melt-granulated captopril in matrix systems containing 50% EC (45P, 100P or 100FP) and the melt-granulated metformin hydrochloride in reservoir systems coated with Kollicoat® SR 30D and Opadry® II (80:20 with 10% weight gain or 70:30 with 20% weight gain) exhibited release profiles adequate to sustained release formulations, for over 450min. Therefore, carnauba wax proved to be a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of soluble drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release.
Wu, Daocheng; Wan, Mingxi
2008-01-01
Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. The ADM-GNMF was stable in solution with an average diameter of 46+/-12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 +/- 12 nm to 1212 +/- 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.
Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy
2017-04-03
This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.
Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.
Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka
2015-11-02
In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.
Tak, Jin Wook; Gupta, Biki; Thapa, Raj Kumar; Woo, Kyu Bong; Kim, Sung Yub; Go, Toe Gyeong; Choi, Yongjoo; Choi, Ju Yeon; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2017-05-01
The aim of our current study was to characterize and optimize loxoprofen immediate release (IR)/sustained release (SR) tablet utilizing a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors included ratio of drug in the IR layer to total drug (X 1 ), ratio of HPMC to drug in the SR layer (X 2 ), and ratio of Eudragit RL PO to drug in the SR layer (X 3 ). The dependent variables assessed were % drug released in distilled water at 30 min (Y 1 ), % drug released in pH 1.2 at 2 h (Y 2 ), and % drug released in pH 6.8 at 12 h (Y 3 ). The responses were fitted to suitable models and statistical validation was performed using analysis of variance. In addition, response surface graphs and contour plots were constructed to determine the effects of different factor level combinations on the responses. The optimized loxoprofen IR/SR tablets were successfully prepared with the determined amounts of ingredients that showed close agreement in the predicted and experimental values of tablet characterization and drug dissolution profile. Therefore, BBD can be utilized for successful optimization of loxoprofen IR/SR tablet, which can be regarded as a suitable substitute for the current marketed formulations.
Stylianopoulos, Triantafyllos; Economides, Eva-Athena; Baish, James W; Fukumura, Dai; Jain, Rakesh K
2015-09-01
Conventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome.
Gurpreetarora; Malik, Karan; Rana, Vikas; Singh, Inderbir
2012-01-01
The objective of this study was to extend the GI residence time of the dosage form and to control the release of domperidone using directly compressible sustained release mucoadhesive matrix (SRMM) tablets. A 2-factor centre composite design (CCD) was employed to study the influence of independent variables like gum ghatti (GG) (X1) and hydroxylpropylmethyl cellulose K 15M (HPMC K 15M) (X2) on dependent variable like mucoadhesive strength, tensile strength, release exponent (n), t50 (time for 50% drug release), rel(10 h) (release after 10 h) and rel(18 h) (release after 18 h). Tablets were prepared by direct compression technology and evaluated for tablet parametric test (drug assay, diameter, thickness, hardness and tensile strength), mucoadhesive strength (using texture analyzer) and in vitro drug release studies. The tensile strength and mucoadhesive strength were found to be increased from 0.665 +/- 0.1 to 1.591 +/- 0.1 MN/cm2 (Z1 to Z9) and 10.789 +/- 0.985 to 50.924 +/- 1.150 N (Z1 to Z9), respectively. The release kinetics follows first order and Hixson Crowell equation indicating drug release following combination of diffusion and erosion. The n varies between 0.834 and 1.273, indicating release mechanism shifts from non fickian (anomalous release) to super case II, which depict that drug follows multiple drug release mechanism. The t50 time was found to increase from 5 +/- 0.12 to 11.4 +/- 0.14 h (Z1 to Z9) and release after 10 and 18 h decreases with increasing concentration of both polymers concluding with release controlling potential of polymers. The accelerated stability studies were performed on optimized formulation as per ICH guideline and the result showed that there was no significant change in tensile strength, mucoadhesive strength and drug assay.
Predictable pulsatile release of tramadol hydrochloride for chronotherapeutics of arthritis.
Dabhi, Chandu; Randale, Shivsagar; Belgamwar, Veena; Gattani, Surendra; Tekade, Avinash
2010-07-01
The present investigation deals with the development of a pH and time-dependent press-coated pulsatile drug delivery system for delivering drugs into the colon. The system consists of a drug containing core, coated by a combination of natural polymer Delonix regia gum (DRG) and hydroxypropyl methylcellulose (HPMC K4M) in various proportions, which controls the onset of release. The whole system was coated with methacrylic acid copolymers, which not only prevents the drug release in the stomach, but also prolongs the lag time. Tramadol HCl was used as a model drug and varying combinations of DRG and HPMC K4M were used to achieve the desired lag time before rapid and complete release of the drug in the colon. It was observed that the lag time depends on the coating ratio of DRG to HPMC and also on press coating weight. Drug release was found to be increased by 15-30% in the presence of colonic microbial flora. The results showed the capability of the system in achieving pulsatile release for a programmable period of time and pH-dependent release to attain colon-targeted delivery.
Smart Drug Delivery Systems in Cancer Therapy.
Unsoy, Gozde; Gunduz, Ufuk
2018-02-08
Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.
Lecca, Paola
2018-01-01
We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of drug release, we point out how Monte Carlo heuristics can be integrated in an evolutionary algorithmic approach to infer the mode of MCS best fitting the observed data, and thus the observed release kinetics.•The software implementing the method is written in R language, the free most used language in the bioinformaticians community.
Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen
2016-02-29
The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.
Studies on a novel doughnut-shaped minitablet for intraocular drug delivery.
Choonara, Yahya E; Pillay, Viness; Carmichael, Trevor; Danckwerts, Michael P
2007-12-28
The objective of this study was to evaluate the effect of 2 independent formulation variables on the drug release from a novel doughnut-shaped minitablet (DSMT) in order to optimize formulations for intraocular drug delivery. Formulations were based on a 3(2) full-factorial design. The 2 independent variables were the concentration of Resomer (% wt/wt) and the type of Resomer grade (RG502, RG503, and RG504), respectively. The evaluated response was the drug release rate constant computed from a referenced marketed product and in vitro drug release data obtained at pH 7.4 in simulated vitreous humor. DSMT devices were prepared containing either of 2 model drugs, ganciclovir or foscarnet, using a Manesty F3 tableting press fitted with a novel central-rod, punch, and die setup. Dissolution data revealed biphasic drug release behavior with 55% to 60% drug released over 120 days. The inherent viscosity of the various Resomer grades and the concentration were significant to achieve optimum release rate constants. Using the resultant statistical relationships with the release rate constant as a response, the optimum formulation predicted for devices formulated with foscarnet was 70% wt/wt of Resomer RG504, while 92% wt/wt of Resomer RG503 was ideal for devices formulated with ganciclovir. The results of this study revealed that the full-factorial design was a suitable tool to predict an optimized formulation for prolonged intraocular drug delivery.
Wang, Lexi; Wang, Aiping; Zhao, Xiaolei; Liu, Ximing; Wang, Dan; Sun, Fengying; Li, Youxin
2012-05-10
Two kinds of in situ forming implants (ISFIs) of atypical antipsychotics, risperidone and its 9-hydroxy active metabolite, paliperidone, using poly(lactide-co-glycolide)(PLGA) as carrier, were investigated. Significant difference was observed in the solution-gel transition mechanism of the two systems: homogeneous system of N-methyl-2-pyrrolidone (NMP) ISFI, in which drug was dissolved, and heterogeneous system of dimethyl sulfoxide (DMSO) ISFI, in which drug was dispersed. Fast solvent extractions were found in both systems, but in comparison with the high drug release rate from homogeneous system of drug/polymer/NMP, a fast solvent extraction from the heterogeneous system of drug/polymer/DMSO was not accompanied by a high drug release rate but a rapid solidification of the implant, which resulted in a high drug retention, well-controlled initial burst and slow release of the drug. In vivo study on beagle dogs showed a more than 3-week sustained release with limited initial burst. Pharmacologic evaluation on optimized paliperidone ISFIs presented a sustained-suppressing effect from 1 day to 38 day on the MK-801 induced schizophrenic behavior mice model. A long sustained-release antipsychotic ISFI of 50% drug loading and controlled burst release was achieved, which indicated a good potential in clinic application. Copyright © 2012 Elsevier B.V. All rights reserved.
Development and characterization of surface engineered PPI dendrimers for targeted drug delivery.
Kaur, Avleen; Jain, Keerti; Mehra, Neelesh Kumar; Jain, N K
2017-05-01
In this study, we reported folate-conjugated polypropylene imine dendrimers (FA-PPI) as efficient carrier for model anticancer drug, methotrexate (MTX), for pH-sensitive drug release, selective targeting to cancer cells, and anticancer activity. In the in vitro drug release studies this nanoconjugate of MTX showed initial rapid release followed by gradual slow release, and the drug release was found to be pH sensitive with greater release at acidic pH. The ex vivo investigations with human breast cancer cell lines, MCF-7, showed enhanced cytotoxicity of MTX-FA-PPI with significantly enhanced intracellular uptake. The biofate of nanoconjugate was determined in Wistar rat where MTX-FA-PPI showed 37.79-fold increase in the concentration of MTX in liver after 24 h in comparison with free MTX formulation.
Association of violence with emergence of persecutory delusions in untreated schizophrenia.
Keers, Robert; Ullrich, Simone; Destavola, Bianca L; Coid, Jeremy W
2014-03-01
Psychosis is considered an important risk factor for violence, but studies show inconsistent results. The mechanism through which psychotic disorders influence violence also remains uncertain. The authors investigated whether psychosis increased the risk of violent behavior among released prisoners and whether treatment reduced this risk. They also explored whether active symptoms of psychosis at the time of violent behavior explained associations between untreated psychosis and violence. The U.K. Prisoner Cohort Study is a prospective longitudinal study of prisoners followed up in the community after release. Adult male and female offenders serving sentences of 2 or more years for a sexual or violent offense were classified into four groups: no psychosis (N=742), schizophrenia (N=94), delusional disorder (N=29), and drug-induced psychosis (N=102). Symptoms of psychosis, including hallucinations, thought insertion, strange experiences, and delusions of persecution, were measured before and after release. Information on violence between release and follow-up was collected through self-report and police records. Schizophrenia was associated with violence but only in the absence of treatment (odds ratio=3.76, 95% CI=1.39-10.19). Untreated schizophrenia was associated with the emergence of persecutory delusions at follow-up (odds ratio=3.52, 95% CI=1.18-10.52), which were associated with violence (odds ratio=3.68, 95% CI=2.44-5.55). The mediating effects of persecutory delusions were confirmed in mediation analyses (β=0.02, 95% CI=0.01-0.04). The results indicate that the emergence of persecutory delusions in untreated schizophrenia explains violent behavior. Maintaining psychiatric treatment after release can substantially reduce violent recidivism among prisoners with schizophrenia. Better screening and treatment of prisoners is therefore essential to prevent violence.
Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H
2012-08-30
In recent years, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are among the popular research topics for the delivery of lipophilic drugs. Although SLNs have demonstrated several beneficial properties as drug-carrier, limited drug-loading and expulsion of drug during storage led to the development of NLCs. However, the superiority of NLCs over SLNs has not been fully established yet due to the contradictory results. In this study, SLNs and NLCs were developed using clotrimazole as model drug. Size, polydispersity index (PI), zeta potential (ZP), drug-loading (L), drug encapsulation efficiency (EE), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), drug release and stability of SLNs and NLCs were compared. Critical process parameters exhibited significant impact on the nanoparticles' properties. Size, PI, ZP and EE of the developed SLNs and NLCs were<100 nm, <0.17, <-22 mV and>82%, respectively. SEM images of SLNs and NLCs revealed spherical shaped particles (≈ 100 nm). DSC and XRD studies indicated slight difference between SLNs and NLCs as well as disappearance of the crystalline peak(s) of the encapsulated drug. NLCs demonstrated faster drug release than SLNs at low drug-loading, whereas there was no significant difference in drug release from SLNs and NLCs at high drug-loading. However, sustained/prolonged drug release was observed from both formulations. Furthermore, this study suggests that the drug release experiment should be designed considering the final application (topical/oral/parenteral) of the product. Regarding stability, NLCs showed better stability (in terms of size, PI, EE and L) than SLNs at 25°C. Moreover, there was no significant difference in drug release profile of NLCs after 3 months storage in compare to fresh NLCs, while significant change in drug release rate was observed in case of SLNs. Therefore, NLCs have an edge over SLNs. Copyright © 2012 Elsevier B.V. All rights reserved.
Detection of drugs in the urine of body-packers.
Gherardi, R K; Baud, F J; Leporc, P; Marc, B; Dupeyron, J P; Diamant-Berger, O
1988-05-14
The presence of opiates and benzoylecgonine, the major metabolite of cocaine, in the urine was detected by means of enzyme immunoassay in a series of 120 smugglers who had either ingested or inserted into their rectum cocaine or heroin packaged for transportation. There was a striking relation between the presence of drugs in the urine and swallowing of drug-filled bundles (cocaine 49 of 50 cases, heroin 9 of 10). The proportion of positive results was also high in cases of rectal insertion (cocaine 2 of 2, heroin 35 of 58). In 30 cases of cocaine-packet ingestion, serial measurements showed that the accuracy of the test progressively decreased with respect to the detection of residual packets in the body. Drug detection in the urine of suspected body-packers seems to be a useful test, positive results justifying subsequent radiological investigations.
Li, Yongcheng; Lu, Ming; Wu, Chuanbin
2017-11-10
The purpose of this study was to explore poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) as a novel release-modifier to tailor the drug release from ethylcellulose (EC)-based mini-matrices prepared via hot melt extrusion (HME). Quetiapine fumarate (QF) was selected as model drug. QF/EC/PVP VA64 mini-matrices were extruded with 30% drug loading. The physical state of QF in extruded mini-matrices was characterized using differential scanning calorimetry, X-ray powder diffraction, and confocal Raman microscopy. The release-controlled ability of PVP VA64 was investigated and compared with that of xanthan gum, crospovidone, and low-substituted hydroxypropylcellulose. The influences of PVP VA64 content and processing temperature on QF release behavior and mechanism were also studied. The results indicated QF dispersed as the crystalline state in all mini-matrices. The release of QF from EC was very slow as only 4% QF was released in 24 h. PVP VA64 exhibited the best ability to enhance the drug release as compared with other three release-modifiers. The drug release increased to 50-100% in 24 h with the addition of 20-40% PVP VA64. Increasing processing temperature slightly slowed down the drug release by decreasing free volume and pore size. The release kinetics showed good fit with the Ritger-Peppas model. The values of release exponent (n) increased as PVP VA64 is added (0.14 for pure EC, 0.41 for 20% PVP VA64, and 0.61 for 40% PVP VA64), revealing that the addition of PVP VA64 enhanced the erosion mechanism. This work presented a new polymer blend system of EC with PVP VA64 for sustained-release prepared via HME.
Peng, Hongxia; Huang, Qin; Wu, Tengyan; Wen, Jin; He, Hengping
2018-02-14
The use of chemotherapy drug is hindered by relatively low selectivity toward cancer cells and severe side effects from uptake by noncancerous cells and tissue. Thus, targeted drug delivery systems are preferred to increase the efficiency of drug delivery to specific tissues as well as to decrease its side effects. The aims of this paper are develop microwave-triggered controlled-release drug delivery systems using porous γ-Fe2O3@mWO3 multifunctional core-shell nanoparticles. We also studied its magnetic- microwave to heat responsive properties and large specific surface area. We chose ibuprofen (IBU) as a model drug to evaluate the loading and release function of the γ- Fe2O3@mWO3 nanoparticles. We used a direct precipitation method and thermal decomposition of CTAB template method to synthesize core-shell structured γ-Fe2O3@mWO3 nanoparticles. The specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. The load drug and controlled release of the γ-Fe2O3@mWO3 triggered by microwave was determined with ultraviolet-visible spectroscopic analysis. The γ-Fe2O3@mWO3 nanoparticles possesses high surface area of 100.09 m2/g, provides large accessible pore diameter of 6.0 nm for adsorption of drug molecules, high magnetization saturation value of 43.6 emu/g for drug targeting under foreign magnetic fields, quickly convert electromagnetic energy into thermal energy for controlled release by microwave-triggered which was caused by mWO3 shell. The IBU release of over 78% under microwave discontinuous irradiation out classes the 0.15% within 20s only stirring release. This multifunctional material shows good performance for targeting delivery and mWO3 microwave controlled release of anticancer drugs based on all the properties they possess. The porous shell and the introduction of absorbing material not only increased the drug loading efficiency of the nanoparticles but also realized the microwave-stimulated anticancer drug controlled release. The nanoparticles would be very promising for microwave-induced controlled drug release, targeted drug delivery and hyperthermia therapy using microwave. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Spin-Orbit Torque and Spin Pumping in YIG/Pt with Interfacial Insertion Layers (Postprint)
2018-05-03
Distribution Statement A. Approved for public release: distribution unlimited. © 2018 AMERICAN INSTITUTE OF PHYSICS (STINFO COPY) AIR FORCE RESEARCH ...SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH... observe a large enhancement of Gilbert damping with the insertion of Py that cannot be accounted for solely by spin pumping, revealing significant spin
USDA-ARS?s Scientific Manuscript database
Over 10,000 new mutants have been added to the UniformMu reverse genetics resource in release 7, bringing the total to over 67,000 germinal transposon insertions. These are available in 11,140 independent seed stocks. Close to half of the maize filtered gene set (42%) is represented by at least one ...
Cihangir, Uzunçakmak; Ebru, Akbay; Murat, Ekin; Levent, Yaşar
2013-11-01
To assess the efficacy and adverse effects, and reveal the effective pathway of the levonorgestrel-releasing intrauterine system (LNG-IUS) in the treatment of heavy menstrual bleeding. In a prospective single-center study in Istanbul, Turkey, the LNG-IUS was inserted in 60 patients diagnosed with heavy menstrual bleeding between January 2008 and June 2010. Menstrual bleeding pattern, coagulation parameters, uterine arterial blood flow, endometrial thickness, and uterine and ovarian volumes were assessed pre-insertion, and at 6 and 12months. Forty-nine women completed the study. When compared with pre-insertion values, the LNG-IUS led to improvements in hemoglobin and marked decreases in visual bleeding scores, endometrial thickness, and fibrinogen levels (P<0.001); platelet count, international normalized ratio, prothrombin time, activated partial thromboplastin time, and uterine volume also decreased (P<0.05). No significant change in ovarian volumes, or uterine artery resistive and pulsatility indices was observed at 6 or 12months compared with pre-insertion values. The decline in menstrual blood loss among LNG-IUS users was associated with local progestogenic effects and aggravation of intrinsic and extrinsic coagulation pathways. Although the LNG-IUS is a highly effective method for treating heavy menstrual bleeding, care must be taken when a patient has thromboembolic risk factors. © 2013.
Nandi, Gouranga; Nandi, Amit Kumar; Khan, Najim Sarif; Pal, Souvik; Dey, Sibasish
2018-07-15
Development of tamarind seed gum (TSG)-hydrolyzed polymethacrylamide-g-gellan (h-Pmaa-g-GG) composite beads for extended release of diclofenac sodium using 3 2 full factorial design is the main purpose of this study. The ratio of h-Pmaa-g-GG and TSG and concentration of cross-linker CaCl 2 were taken as independent factors with three different levels of each. Effects of polymer ratio and CaCl 2 on drug entrapment efficiency (DEE), drug release, bead size and swelling were investigated. Responses such as DEE and different drug release parameters were statistically analyzed by 3 2 full factorial design using Design-Expert software and finally the formulation factors were optimized to obtain USP-reference release profile. Drug release rate was found to decrease with decrease in the ratio of h-Pmaa-g-GG:TSG and increase in the concentration of Ca 2+ ions in cross-linking medium. The optimized formulation showed DEE of 93.25% and an extended drug release profile over a period of 10h with f 2 =80.13. Kinetic modeling unveiled case-I-Fickian diffusion based drug release mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping
2015-01-01
We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259
Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases
NASA Astrophysics Data System (ADS)
Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.
We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.
Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong
2015-07-15
To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.
Akhtar, M F; Rabbani, M; Sharif, A; Akhtar, B; Saleem, A; Murtaza, G
2011-01-01
The aim of this work was to develop swellable modified release (MR) isoniazid tablets using different combinations of polyvinyl acetate (PVAc) and sodium-carboxymethylcellulose (Na-CMC). Granules were prepared by moist granulation technique and then compressed into tablets. In vitro release studies for 12 hr were carried out in dissolution media of varying pH i.e. pH 1.2, 4.5, 7.0 and 7.5. Tablets of all formulations were found to be of good physical quality with respect to appearance (width and thickness), content uniformity, hardness, weight variation and friability. In vitro release data showed that increasing total polymer content resulted in more retarding effect. Formulation with 35% polymer content exhibited zero order release profile and it released 35% of the drug in first hr, later on, controlled drug release was observed upto the 12(th) hour. Formulations with PVAc to Na-CMC ratio 20:80 exhibited zero order release pattern at levels of studied concentrations, which suggested that this combination can be used to formulate zero order release tablets of water soluble drugs like isoniazid. Korsmeyer-Peppas modeling of drug release showed that non-Fickian transport is the primary mechanism of isoniazid release from PVAc and Na-CMC based tablets. The value of mean dissolution time decreased with the increase in the release rate of drug clearly showing the retarding behavior of the swellable polymers. The application of a mixture of PVAc to Na-CMC in a specific ratio may be feasible to formulate zero order release tablets of water soluble drugs like isoniazid.
Hollow microspheres of diclofenac sodium - a gastroretentive controlled delivery system.
Bv, Basavaraj; R, Deveswaran; S, Bharath; Abraham, Sindhu; Furtado, Sharon; V, Madhavan
2008-10-01
Most of the floating systems have an inherent drawback of high variability in the GI transit time, invariably affecting the bioavailability of drug. To overcome it, a multiple unit floating system with extended GI transit time, capable of distributing widely throughout the GIT for effective enteric release of the drug has been sought. Microballoons loaded with drug in their outer polymer shells were prepared by novel emulsion solvent diffusion method. The ethanol: dicloromethane solution of drug and Eudragit-S were poured into an aqueous solution of PVA that was thermally controlled at 40 degrees C. The gas phase generated in the dispersed polymer droplet by the evaporation of solvent formed an internal cavity in the microsphere of the polymer with the drug. The flowability of the resulting microballoons improved when compared to pure drug. The microballoons on floatation along with the surfactant, floated continuously for more than 12 hours in the acidic medium in-vitro conditions. The in-vitro drug release profile of the formulation in the simulated gastric buffer showed no drug release, which emphasizes the enteric release property and in simulated intestinal buffer, a slow and controlled drug release of 60 to 84% was obtained over a period of 8 hours. Drug release was significantly affected by increased drug to polymer concentration at pH 6.8. The formulation was found to be physically and chemically stable as per the ICH guidelines.
Kadam, A. U.; Sakarkar, D. M.; Kawtikwar, P. S.
2008-01-01
An oral controlled release suspension of chlorpheniramine maleate was prepared using ion-exchange resin technology. A strong cation exchange resin Indion 244 was utilized for the sorption of the drug and the drug resinates was evaluated for various physical and chemical parameters. The drug-resinate complex was microencapsulated with a polymer Eudragit RS 100 to further retard the release characteristics. Both the drug-resinate complex and microencapsulated drug resinate were suspended in a palatable aqueous suspension base and were evaluated for controlled release characteristic. Stability study indicated that elevated temperature did not alter the sustained release nature of the dosage form indicating that polymer membrane surrounding the core material remained intact throughout the storage period. PMID:20046790
Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation
NASA Technical Reports Server (NTRS)
Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira
2010-01-01
Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.
Mental models in risk assessment: informing people about drugs.
Jungermann, H; Schütz, H; Thüring, M
1988-03-01
One way to communicate about the risks of drugs is through the use of package inserts. The problems associated with this medium of informing patients have been investigated by several researchers who found that people require information about drugs they are using, including extensive risk information, and that they are willing to take this information into account in their usage of drugs. But empirical results also show that people easily misinterpret the information given. A conceptual framework is proposed that might be used for better understanding the cognitive processes involved in such a type of risk assessment and communication. It is based on the idea that people develop, through experience, a mental model of how a drug works, which effects it might produce, that contraindications have to be considered, etc. This mental model is "run" when a specific package insert has been read and a specific question arises such as, for example, whether certain symptoms can be explained as normal or whether they require special attention and action. We argue that the mental model approach offers a useful perspective for examining how people understand package inserts, and consequently for improving their content and design. The approach promises to be equally useful for other aspects of risk analysis that are dependent upon human judgment and decision making, e.g., threat diagnosis and human reliability analysis.
Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties
Dong, Fuping; Firkowska-Boden, Izabela; Arras, Matthias M. L.; ...
2017-01-13
Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabledmore » sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.« less
Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Fuping; Firkowska-Boden, Izabela; Arras, Matthias M. L.
Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabledmore » sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.« less
Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate).
Zhang, F; McGinity, J W
2000-09-01
The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70 degrees C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets. Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system.
NASA Astrophysics Data System (ADS)
Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer
2015-04-01
We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.
Zhu, Lingxiang; Yan, Zhongqiang; Zhang, Zhaojun; Zhou, Qiming; Zhou, Jinchun; Wakeland, Edward K; Fang, Xiangdong; Xuan, Zhenyu; Shen, Dingxia; Li, Quan-Zhen
2013-01-01
The emergence and rapid spreading of multidrug-resistant Acinetobacter baumannii strains has become a major health threat worldwide. To better understand the genetic recombination related with the acquisition of drug-resistant elements during bacterial infection, we performed complete genome analysis on three newly isolated multidrug-resistant A. baumannii strains from Beijing using next-generation sequencing technology. Whole genome comparison revealed that all 3 strains share some common drug resistant elements including carbapenem-resistant bla OXA-23 and tetracycline (tet) resistance islands, but the genome structures are diversified among strains. Various genomic islands intersperse on the genome with transposons and insertions, reflecting the recombination flexibility during the acquisition of the resistant elements. The blood-isolated BJAB07104 and ascites-isolated BJAB0868 exhibit high similarity on their genome structure with most of the global clone II strains, suggesting these two strains belong to the dominant outbreak strains prevalent worldwide. A large resistance island (RI) of about 121-kb, carrying a cluster of resistance-related genes, was inserted into the ATPase gene on BJAB07104 and BJAB0868 genomes. A 78-kb insertion element carrying tra-locus and bla OXA-23 island, can be either inserted into one of the tniB gene in the 121-kb RI on the chromosome, or transformed to conjugative plasmid in the two BJAB strains. The third strains of this study, BJAB0715, which was isolated from spinal fluid, exhibit much more divergence compared with above two strains. It harbors multiple drug-resistance elements including a truncated AbaR-22-like RI on its genome. One of the unique features of this strain is that it carries both bla OXA-23 and bla OXA-58 genes on its genome. Besides, an Acinetobacter lwoffii adeABC efflux element was found inserted into the ATPase position in BJAB0715. Our comparative analysis on currently completed Acinetobacter baumannii genomes revealed extensive and dynamic genome organizations, which may facilitate the bacteria to acquire drug-resistance elements into their genomes.
NASA Astrophysics Data System (ADS)
Kalwar, Kaleemullah; Zhang, Xuan; Aqeel Bhutto, Muhammad; Dali, Li; Shan, Dan
2017-12-01
Electrospun nanofibers with sustained drug release are a challenge but it can be improved by using hydrophobic polymer. Polycaprolactone (PCL) is a hydrophobic and biocompatible polymer. In this work, we have proposed a drug release mechanism by preparation of ciprofloxacin (Cip)/Laponite (LAP) complex and then incorporation in PCL nanofibers through electrospinning technique. In addition, drug incorporation was confirmed by FTIR and morphology of electrospun nanofibers was revealed by SEM. Drug loading was measured by using spectrophotometer. PCL/LAP/Cip NFs proved sustained drug release as compared to PCL NFs and PCL/Cip NFs. Furthermore, PCL/LAP/Cip NFs were used as antimicrobial agent and higher effect measured.
Nagpal, Manju; Singh, Shailendra Kumar; Mishra, Dinanath
2013-01-01
Objective: Present investigation was aimed at developing gastroretentive superporous hydrogels (SPHs) having desired mechanical characteristics with sustained release. Materials and Methods: The acrylamide based SPHs of various generations (1st, 2nd and 3rd) were synthesized by gas blowing technique. The prepared SPHs were evaluated for swelling, mechanical strength studies and scanning electron microscopy studies. Verapamil hydrochloride was loaded into selected SPHs by aqueous drug loading method and characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and in vitro drug release studies. Results: SPHs of third generation were observed to have desired mechanical strength with sufficient swelling properties. Integrity of the drug was maintained in hydrogel polymeric network as indicated by FTIR, X-RD, and DSC and NMR studies. Initially, fast drug release (up to 60%) was observed in 30 min in formulation batches containing pure drug only (A, C and E), which was further sustained untill 24 h. Discussion: The increase in mechanical strength was due to the chemical cross-linking of secondary polymer in hydrogel network. The initial burst release was due to the presence of free drug at the surface and later sustained drug release was due to diffusion of entrapped drug in polymeric network. Significant decrease in drug release was observed by the addition of hydroxypropyl methyl cellulose. Conclusion: SPH interpenetrating networks with fast swelling and sufficient mechanical strength were prepared, which can be potentially exploited for designing gastroretentive drug delivery devices. PMID:24167785
Near-infrared remotely triggered drug-release strategies for cancer treatment
NASA Astrophysics Data System (ADS)
Goodman, Amanda M.; Neumann, Oara; Nørregaard, Kamilla; Henderson, Luke; Choi, Mi-Ran; Clare, Susan E.; Halas, Naomi J.
2017-11-01
Remotely controlled, localized drug delivery is highly desirable for potentially minimizing the systemic toxicity induced by the administration of typically hydrophobic chemotherapy drugs by conventional means. Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery, and are an emerging field of interest in cancer treatment. Here, we demonstrate near-IR light-triggered release of two drug molecules from both DNA-based and protein-based hosts that have been conjugated to near-infrared-absorbing Au nanoshells (SiO2 core, Au shell), each forming a light-responsive drug delivery complex. We show that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release can be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells. Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex showed increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods provide spatially and temporally localized drug-release strategies that can facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormack, R; Ngwa, W; Makrigiorgos, G
Purpose: Permanent prostate brachytherapy spacers can be used to deliver sustained doses of radiosentitizing drug directly to the target, in order to enhance the radiation effect. Implantable nanoplatforms for chemo-radiation therapy (INCeRTs) have a maximum drug capacity and can be engineered to control the drug release schedule. The optimal schedule for sensitization during continuous low dose rate irradiation is unknown. This work studies the optimal release schedule of drug for both traditional sensitizers, and those that work by suppressing DNA repair processes. Methods: Six brachytherapy treatment plans were used to model the anatomy, implant geometry and calculate the spatial distributionmore » of radiation dose and drug concentrations for a range of drug diffusion parameters. Three state partial differential equations (cells healthy, damaged or dead) modeled the effect of continuous radiation (radiosensitivities α,β) and cellular repair (time tr) on a cell population. Radiosensitization was modeled as concentration dependent change in α,β or tr which with variable duration under the constraint of fixed total drug release. Average cell kill was used to measure effectiveness. Sensitization by means of both enhanced damage and reduced repair were studied. Results: Optimal release duration is dependent on the concentration of radiosensitizer compared to the saturation concentration (csat) above which additional sensitization does not occur. Long duration drug release when enhancing α or β maximizes cell death when drug concentrations are generally over csat. Short term release is optimal for concentrations below saturation. Sensitization by suppressing repair has a similar though less distinct trend that is more affected by the radiation dose distribution. Conclusion: Models of sustained local radiosensitization show potential to increase the effectiveness of radiation in permanent prostate brachytherapy. INCeRTs with high drug capacity produce the greatest benefit with drug release over weeks. If in-vivo drug concentrations are not able to approach saturation concentration, durations of days is optimal. DOD 1R21CA16977501; A. David Mazzone Awards Program 2012PD164.« less
Mesoporous silica formulation strategies for drug dissolution enhancement: a review.
McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M
2016-01-01
Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.
Rapidly separating microneedles for transdermal drug delivery.
Zhu, Dan Dan; Wang, Qi Lei; Liu, Xu Bo; Guo, Xin Dong
2016-09-01
The applications of polymer microneedles (MNs) into human skin emerged as an alternative of the conventional hypodermic needles. However, dissolving MNs require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin, which may lead to the low drug delivery efficiency. To address these issues, we introduce rapidly separating MNs that can rapidly deliver drugs into the skin in a minimally invasive way. For the rapidly separating MNs, drug loaded dissolving MNs are mounted on the top of solid MNs, which are made of biodegradable polylactic acid which eliminate the biohazardous waste. These MNs have sufficient mechanical strength to be inserted into the skin with the drug loaded tips fully embedded for subsequent dissolution. Compared with the traditional MNs, rapidly separating MNs achieve over 90% of drug delivery efficiency in 30s while the traditional MNs needs 2min to achieve the same efficiency. With the in vivo test in mice, the micro-holes caused by rapidly separating MNs can heal in 1h, indicating that the rapidly separating MNs are safe for future applications. These results indicate that the design of rapidly separating dissolvable MNs can offer a quick, high efficient, convenient, safe and potentially self-administered method of drug delivery. Polymer microneedles offer an attractive, painless and minimally invasive approach for transdermal drug delivery. However, dissolving microneedles require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin due to the skin deformation, which may lead to the low drug delivery efficiency. In this work we proposed rapidly separating microneedles which can deliver over 90% of drug into the skin in 30s. The in vitro and in vivo results indicate that the new design of these microneedles can offer a quick, high efficient, convenient and safe method for transdermal drug delivery. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Košir, Darjan; Ojsteršek, Tadej; Vrečer, Franc
2018-06-14
Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.
NASA Astrophysics Data System (ADS)
Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang
2014-12-01
Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.
Siddiqa, Akhtar Jahan; Chaudhury, Koel; Adhikari, Basudam
2014-04-01
The present work focuses on the design of a drug delivery system for systemic, controlled release of the poorly soluble breast cancer drug, letrozole. The drug delivery system was prepared in two steps: a low density polyethylene (LDPE) substrate surface was grafted with maleic anhydride (MA) via solution grafting technique. Next, the grafted substrate was used to anchor a hydrophilic polymeric drug release system consisting of poly (vinyl alcohol) (PVA). The PVA anchored MA grafted LDPE (PVA/MA-g-LDPE) drug release system was used for the controlled release of letrozole. This system was characterized using ATR-FTIR spectrophotometry, surface profilometry, and scanning electron microscopy. Biocompatibility studies were also carried out. In vitro release studies of letrozole from the system were performed in distilled water and phosphate buffer saline (PBS) at 37°C. Release of ∼90% letrozole from hydrophilic PVA matrix was observed within a period of 35 days. A high correlation coefficient (R(2)=0.99) was seen between the release of letrozole in distilled water and PBS. Cytotoxicity studies using MTT colorimetric assay suggested that all samples were biocompatible. It is concluded that the letrozole delivery system appears to overcome the limitations associated with letrozole by providing enhanced drug dissolution rate, controlled release and improved bioavailability of the incorporated drug and, therefore, seems to have extended therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Development and optimization of buspirone oral osmotic pump tablet
Derakhshandeh, K.; berenji, M. Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump–based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794
Development and optimization of buspirone oral osmotic pump tablet.
Derakhshandeh, K; Berenji, M Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance.
Wang, Donghui; Ge, Naijian; Yang, Tingting; Peng, Feng; Qiao, Yuqin; Li, Qianwen
2018-01-01
Abstract Construction of localized drug‐eluting systems with synergistic chemothermal tumor‐killing abilities is promising for biomedical implants directly contacting with tumor tissues. In this study, an intelligent and biocompatible drug‐loading platform, based on a gold nanorods‐modified butyrate‐inserted NiTi‐layered double hydroxides film (Au@LDH/B), is prepared on the surface of nitinol alloy. The prepared films function as drug‐loading “sponges,” which pump butyrate out under near‐infrared (NIR) irradiation and resorb drugs in water when the NIR laser is shut off. The stimuli‐responsive release of butyrate is verified to be related with the NIR‐triggered crystal phase transformation of Au@LDH/B. In vitro and in vivo studies reveal that the prepared films possess excellent biosafety and high efficiency in synergistic thermochemo tumor therapy, showing a promising application in the construction of localized stimuli‐responsive drug‐delivery systems. PMID:29721424
Tributyltin and Zebrafish: Swimming in Dangerous Water
Berto-Júnior, Clemilson; de Carvalho, Denise Pires; Soares, Paula; Miranda-Alves, Leandro
2018-01-01
Zebrafish has been established as a reliable biological model with important insertion in academy (morphologic, biochemical, and pathophysiological studies) and pharmaceutical industry (toxicology and drug development) due to its molecular complexity and similar systems biology that recapitulate those from other organisms. Considering the toxicological aspects, many efforts using zebrafish models are being done in order to elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin (TBT) and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that is constantly released into the water and absorbed by marine organisms, leading to bioaccumulation and biomagnification effects. Thus, several findings of malformations and changes in the normal biochemical and physiologic aspects of these marine animals have been related to TBT contamination. In the present review, we have compiled the most significant studies related to TBT effects in zebrafish, also taking into consideration the effects found in other study models. PMID:29692757
Wada, Keizo; Hamada, Daisuke; Tamaki, Shunsuke; Higashino, Kosaku; Fukui, Yoshihiro; Sairyo, Koichi
2017-01-01
Previous studies suggested that changes in kinematics in total knee arthroplasty (TKA) affected satisfaction level. The aim of this cadaveric study was to evaluate the effect of medial collateral ligament (MCL) release by multiple needle puncture on knee rotational kinematics in posterior-stabilized TKA. Six fresh, frozen cadaveric knees were included in this study. All TKA procedures were performed with an image-free navigation system using a 10-mm polyethylene insert. Tibial internal rotation was assessed to evaluate intraoperative knee kinematics. Multiple needle puncturing was performed 5, 10, and 15 times for the hard portion of the MCL at 90° knee flexion. Kinematic analysis was performed after every 5 punctures. After performing 15 punctures, a 14-mm polyethylene insert was inserted, and kinematic analysis was performed. The tibial internal rotation angle at maximum knee flexion without multiple needle puncturing was significantly larger (9.42°) than that after 15 punctures (3°). Negative correlation (Pearson r = -0.715, P < .001) between tibial internal rotation angle at maximum knee flexion and frequency of puncture was observed. The tibial internal rotation angle with a 14-mm insert was significantly larger (7.25°) compared with the angle after 15 punctures. Tibial internal rotation during knee flexion was reduced by extensive MCL release using multiple needle puncturing and was recovered by increasing of medial tightness. From the point of view of knee kinematics, medial tightness should be allowed to maintain the internal rotation angle of the tibia during knee flexion which might lead to patient satisfaction. Copyright © 2016 Elsevier Inc. All rights reserved.
Christenson, Mark; Kambhu, Ann; Reece, James; Comfort, Steve; Brunner, Laurie
2016-01-01
In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push. PMID:26901481
Christenson, Mark; Kambhu, Ann; Reece, James; Comfort, Steve; Brunner, Laurie
2016-05-01
In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound
Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao
2018-01-01
Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623
Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.
Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok
2014-10-01
To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.
Doxorubicin Release Controlled by Induced Phase Separation and Use of a Co-Solvent.
Park, Seok Chan; Yuan, Yue; Choi, Kyoungju; Choi, Seong-O; Kim, Jooyoun
2018-04-26
Electrospun-based drug delivery is emerging as a versatile means of localized therapy; however, controlling the release rates of active agents still remains as a key question. We propose a facile strategy to control the drug release behavior from electrospun fibers by a simple modification of polymer matrices. Polylactic acid (PLA) was used as a major component of the drug-carrier, and doxorubicin hydrochloride (Dox) was used as a model drug. The influences of a polar co-solvent, dimethyl sulfoxide (DMSO), and a hydrophilic polymer additive, polyvinylpyrrolidone (PVP), on the drug miscibility, loading efficiency and release behavior were investigated. The use of DMSO enabled the homogeneous internalization of the drug as well as higher drug loading efficiency within the electrospun fibers. The PVP additive induced phase separation in the PLA matrix and acted as a porogen. Preferable partitioning of Dox into the PVP domain resulted in increased drug loading efficiency in the PLA/PVP fiber. Fast dissolution of PVP domains created pores in the fibers, facilitating the release of internalized Dox. The novelty of this study lies in the detailed experimental investigation of the effect of additives in pre-spinning formulations, such as co-solvents and polymeric porogens, on the drug release behavior of nanofibers.
Doxorubicin Release Controlled by Induced Phase Separation and Use of a Co-Solvent
Park, Seok Chan; Choi, Kyoungju; Choi, Seong-O
2018-01-01
Electrospun-based drug delivery is emerging as a versatile means of localized therapy; however, controlling the release rates of active agents still remains as a key question. We propose a facile strategy to control the drug release behavior from electrospun fibers by a simple modification of polymer matrices. Polylactic acid (PLA) was used as a major component of the drug-carrier, and doxorubicin hydrochloride (Dox) was used as a model drug. The influences of a polar co-solvent, dimethyl sulfoxide (DMSO), and a hydrophilic polymer additive, polyvinylpyrrolidone (PVP), on the drug miscibility, loading efficiency and release behavior were investigated. The use of DMSO enabled the homogeneous internalization of the drug as well as higher drug loading efficiency within the electrospun fibers. The PVP additive induced phase separation in the PLA matrix and acted as a porogen. Preferable partitioning of Dox into the PVP domain resulted in increased drug loading efficiency in the PLA/PVP fiber. Fast dissolution of PVP domains created pores in the fibers, facilitating the release of internalized Dox. The novelty of this study lies in the detailed experimental investigation of the effect of additives in pre-spinning formulations, such as co-solvents and polymeric porogens, on the drug release behavior of nanofibers. PMID:29701714
Controlled drug-release system based on pH-sensitive chloride-triggerable liposomes.
Wehunt, Mark P; Winschel, Christine A; Khan, Ali K; Guo, Tai L; Abdrakhmanova, Galya R; Sidorov, Vladimir
2013-03-01
New pH-sensitive lipids were synthesized and utilized in formulations of liposomes suitable for controlled drug release. These liposomes contain various amounts of NaCl in the internal aqueous compartments. The release of the drug model is triggered by an application of HCl cotransporter and exogenous physiologically relevant NaCl solution. HCl cotransporter allows an uptake of HCl by liposomes to the extent of their being proportional to the transmembrane Cl(-) gradient. Therefore, each set of liposomes undergoes internal acidification, which, ultimately, leads to the hydrolysis of the pH-sensitive lipids and content release at the desired time. The developed system releases the drug model in a stepwise fashion, with the release stages separated by periods of low activity. These liposomes were found to be insensitive to physiological concentrations of human serum albumin and to be nontoxic to cells at concentrations exceeding pharmacological relevance. These results render this new drug-release model potentially suitable for in vivo applications.
Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai
2011-10-01
The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.
In vivo predictive release methods for medicated chewing gums.
Gajendran, Jayachandar; Kraemer, Johannes; Langguth, Peter
2012-10-01
Understanding the performance of a drug product in vivo plays a key role in the development of meaningful in vitro drug release methodology. In case of functional chewing gums, the mode and the mechanism of release and the site of application differ significantly from other conventional solid oral dosage forms and require a special consideration to extract meaningful information from clinical studies. In the current study, suitable drug release methodology was developed to predict the in vivo performance of an investigated chewing gum product. Different parameters of the drug release testing apparatus described in the Ph. Eur. and Pharmeuropa were evaluated. Drug release data indicate that the parameters, chewing distance, chewing frequency and twisting motion, affect the drug release. Higher drug release was observed when the frequency was changed from 40 chews/min to 60 chews/min for apparatus A and B, as was the case for the twisting motion when changed from 20º to 40º for apparatus B. As far as the chewing distance is concerned, the release rate was in the following order; apparatus A: 0.3 mm > 0.5 mm > 0.7 mm; apparatus B: 1.4 mm > 1.6 mm > 1.8 mm. A suitable apparatus set-up for in vitro release testing was identified. The method will be useful for the establishment of in vitro in vivo correlations (IVIVC) for medicated chewing gums. Interchangeability of the apparatus for a product is not generally recommended without prior knowledge of the performance of the product, as the construction and principle of operation for the apparatus differ considerably. Copyright © 2012 John Wiley & Sons, Ltd.
Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C
2016-06-15
Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.
pH- and ion-sensitive polymers for drug delivery
Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro
2013-01-01
Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949
NASA Astrophysics Data System (ADS)
Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt
2006-05-01
Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.
21 CFR 181.28 - Release agents.
Code of Federal Regulations, 2014 CFR
2014-04-01
... classified as release agents, when migrating from food-packaging material shall include: Dimethylpolysiloxane... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Release agents. 181.28 Section 181.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PRIOR-SANCTIONED...
Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery
NASA Astrophysics Data System (ADS)
Nguyen, Thao M.
Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes, while the control showed no visible drugs at the same depth. Most importantly, it was determined that the delivery of drugs into the blood stream was stable within 20 minutes. The functionalization of CP was also studied in order to enhance the properties and drug loading capabilities of the polymers. The co-polymerization of poly(3,4-(2-methylene)propylenedioxythiophene) (PMProDot) with polystyrene (PS) and polyvinylcarbazole (PVK) through the highly reactive methylene group was achieved. The modified PMProDot nanotubes demonstrated response times that were two times faster than without modification. The modification of PEDOT nanotubes with polydopamine, a biocompatible polymer, was also investigated and achieved. In depth characterization of functionalized CP demonstrate the ability to fine tune the properties of the polymer in order to achieve the required therapeutic drug release profile.
Solomon, Deepak; Gupta, Nilesh; Mulla, Nihal S; Shukla, Snehal; Guerrero, Yadir A; Gupta, Vivek
2017-11-01
In the past few years, measurement of drug release from pharmaceutical dosage forms has been a focus of extensive research because the release profile obtained in vitro can give an indication of the drug's performance in vivo. Currently, there are no compendial in vitro release methods designed for liposomes owing to a range of experimental challenges, which has created a major hurdle for both development and regulatory acceptance of liposome-based drug products. In this paper, we review the current techniques that are most often used to assess in vitro drug release from liposomal products; these include the membrane diffusion techniques (dialysis, reverse dialysis, fractional dialysis, and microdialysis), the sample-and-separate approach, the in situ method, the continuous flow, and the modified United States Pharmacopeia methods (USP I and USP IV). We discuss the principles behind each of the methods and the criteria that assist in choosing the most appropriate method for studying drug release from a liposomal formulation. Also, we have included information concerning the current regulatory requirements for liposomal drug products in the United States and in Europe. In light of increasing costs of preclinical and clinical trials, applying a reliable in vitro release method could serve as a proxy to expensive in vivo bioavailability studies. Graphical Abstract Appropriate in-vitro drug release test from liposomal products is important to predict the in-vivo performance.
Huang, Yuh-Tyng; Cheng, Chun-Jen; Lai, Tsun-Fwu; Tsai, Tong-Rong; Tsai, Tung-Hu; Chuo, Wen-Ho; Cham, Thau-Ming
2007-04-18
Pyridostigmine bromide (PB) is a reversible acetylcholinesterase inhibitor that has been used as a pretreatment drug for "Soman" nerve gas poisoning in combat to increase survival. The once-daily PB-sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods in our laboratory, which was followed by zero-order release mechanism. The results showed that the released concentration of acetylcholine (ACh) in skeletal muscle and the released concentration of protein unbound drug in blood were determined by microdialysis technique to have significant differences (P<0.05) among the three dosage forms (IV injection, commercial IR tablets and the PB-SR pellet). The released concentrations of ACh and protein unbound drug for PB-SR pellets were slower than IV injection and commercial IR tablets; this phenomenon indicating that the retention period of drug efficacy in vivo for PB-SR pellet was longer than the others, that is to say, the PB-SR pellets provided with SR effect in vivo as well. We believe that once-daily administered PB-SR pellets would improve limitations of post-exposure antidotes, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in wars or terrorist attacks in the future.
Qiu, Yihong; Li, Xia; Duan, John Z
2014-02-01
The present study examines how drug's inherent properties and product design influence the evaluation and applications of in vitro-in vivo correlation (IVIVC) for modified-release (MR) dosage forms consisting of extended-release (ER) and immediate-release (IR) components with bimodal drug release. Three analgesic drugs were used as model compounds, and simulations of in vivo pharmacokinetic profiles were conducted using different release rates of the ER component and various IR percentages. Plasma concentration-time profiles exhibiting a wide range of tmax and maximum observed plasma concentration (Cmax) were obtained from superposition of the simulated IR and ER profiles based on a linear IVIVC. It was found that depending on the drug and dosage form design, direct use of the superposed IR and ER data for IVIVC modeling and prediction may (1) be acceptable within errors, (2) become unreliable and less meaningful because of the confounding effect from the non-negligible IR contribution to Cmax, or (3) be meaningless because of the insensitivity of Cmax to release rate change of the ER component. Therefore, understanding the drug, design and drug release characteristics of the product is essential for assessing the validity, accuracy, and reliability of IVIVC of complex MR products obtained via directly modeling of in vivo data. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Pharmacovigilance in China: current situation, successes and challenges.
Zhang, Li; Wong, Lisa Y L; He, Ying; Wong, Ian C K
2014-10-01
With the integration of the global pharmaceutical economy and the gradual transformation of the healthcare insurance system in China, the legislative framework for a comprehensive regulatory system monitoring the whole process including drug development, manufacture, distribution and use has been established by the China Food and Drug Administration (CFDA) to ensure the safety and effectiveness of medication use. China has established a relatively comprehensive pharmacovigilance system covering regulation, organisation and technology from 1989 to 2014. As of 2013, one national centre, 34 provincial centres and more than 400 municipal centres for adverse drug reaction (ADR) monitoring were included in the four-level pharmacovigilance network (national, provincial, municipal and county) with more than 200,000 grassroot organisation users. The China Adverse Drug Reaction Monitoring System (CADRMS) is an online spontaneous reporting system which connects the four-level pharmacovigilance network. By 2013, CADRMS had received over 6.6 million ADR case reports. After integrating and analysing pharmacovigilance data, the National Centre for ADR Monitoring (NCADRM) publishes medication safety information by releasing ADR bulletins, National ADR Annual Reports and International Pharmacovigilance Newsletters. The NCADRM also routinely provides CADRMS data feedback to manufacturers. The CFDA implemented risk management through several approaches, including arranging 'manufacturer communication meetings', modification of medication package inserts, and restriction, suspension or withdrawal of marketing authorisations. Seamless information exchange with overseas regulatory authorities and organisations remains an area for improvement. Further development of the China pharmacovigilance system in terms of signal generation, post-marketing pharmacoepidemiology research and education is also needed.
Preparation and Drug-Delivery Properties of HKUST-1/GO Hybrid.
Sun, Ke Ke; Li, Ling; He, Yu Qi; Fan, Lu; Wu, Ya Qi; Liu, Li
2016-01-01
A hybrid HKUST-1/GO composite was synthesized and its drug loading and drug release abilities were investigated. The adsorption of IBU (ibuprofen) onto the surface of HKUST-1/GO and HKUST-1 composites was compared, and it was found that the addition of GO enhanced both IBU loading and stability. The addition of GO also enhanced the specific surface area. Drug release experiments on IBU loaded HKUST-1 and HKUST-1/GO were conducted, and it was found that drug release of HKUST-1/GO was slower, which can be explained by the hydrogen bonding between GO and IBU. It can be concluded that the addition of GO not only enhances drug loading, but can also achieve a more desirable slow-release of the drug.
Newton, A M J; Lakshmanan, Prabakaran
2014-04-01
The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.
Song, Botao; Wu, Chengtie; Chang, Jiang
2012-11-01
Co-delivery of several drugs has been regarded as an alternative strategy for achieving enhanced therapeutic effect. In this study, a co-delivery system based on the electrospun poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) composite mat was designed for the co-encapsulation and prolonged release of one hydrophilic and one hydrophobic drug simultaneously. MSNs were chosen to load the hydrophobic model drug fluorescein (FLU) and hydrophilic model drug rhodamine B (RHB), respectively (named as RHB-loaded MSNs and FLU-loaded MSNs). Two kinds of drug-loaded MSNs were incorporated into the polymer matrix to form a fibrous structure by blending electrospinning. The effect of the weight ratios for the two kinds of drug-loaded MSNs and the initial PLGA concentrations on the drug release kinetics were systematically investigated. The results showed that both model drugs RHB and FLU maintained sustained delivery with controllable release kinetics during the releasing period, and the release kinetics was closely dependent on the loading ratios of two drug-loaded MSNs and the initial PLGA concentrations in the composite mats. The results suggest that the co-drug delivery system may be used for wound dressing that requires the combined therapy of several kinds of drugs. Copyright © 2012 Wiley Periodicals, Inc.
Osmotic Drug Delivery System as a Part of Modified Release Dosage Form
Keraliya, Rajesh A.; Patel, Chirag; Patel, Pranav; Keraliya, Vipul; Soni, Tejal G.; Patel, Rajnikant C.; Patel, M. M.
2012-01-01
Conventional drug delivery systems are known to provide an immediate release of drug, in which one can not control the release of the drug and can not maintain effective concentration at the target site for longer time. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semipermeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. The historical development of osmotic systems includes development of the Rose-Nelson pump, the Higuchi-Leeper pumps, the Alzet and Osmet systems, the elementary osmotic pump, and the push-pull system. Recent advances include development of the controlled porosity osmotic pump, and systems based on asymmetric membranes. This paper highlights the principle of osmosis, materials used for fabrication of pumps, types of pumps, advantages, disadvantages, and marketed products of this system. PMID:22852100
Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels.
Manga, Ramya D; Jha, Prateek K
2017-02-01
Hydrogels consisting of weakly charged acidic/basic groups are ideal candidates for carriers in oral delivery, as they swell in response to pH changes in the gastrointestinal tract, resulting in drug entrapment at low pH conditions of the stomach and drug release at high pH conditions of the intestine. We have developed 1-dimensional mathematical models to study the drug release behavior through pH-responsive hydrogels. Models are developed for 3 different cases that vary in the level of rigor, which together can be applied to predict both in vitro (drug release from carrier) and in vivo (drug concentration in the plasma) behavior of hydrogel-drug formulations. A detailed study of the effect of hydrogel and drug characteristics and physiological conditions is performed to gain a fundamental insight into the drug release behavior, which may be useful in the design of pH-responsive drug carriers. Finally, we describe a successful application of these models to predict both in vitro and in vivo behavior of docetaxel-loaded micelle in a pH-responsive hydrogel, as reported in a recent experimental study. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammed, Irfan A.
To optimize the clinical efficacy of Ketoconazole from an externally applied product, this project was undertaken to evaluate the drug release/permeation profile from various dermatological vehicles using regular powder, nanoparticles and solid dispersion forms with reduced level of drug. Nanoparticles of drug were prepared by wet media milling method using Polyvinylpyrrolidone (PVP-10K) as a stabilizer. The nanoparticles were in the size range of 250-300nm. Solid dispersion was prepared by solvent evaporation method using drug to PVP-10K at a weight ratio of (1:2). Formulations containing 1% w/w drug were developed using HPMC gel, Carbomer gel and a cationic cream as the vehicles. Penetration enhancers including propylene glycol (PG), dimethylsulfoxide (DMSO) and polyethylene glycol 400 (PEG-400) at various levels were evaluated. A commercial 2% w/w ketoconazole product was included as a control for comparison. Studies were carried out with Franz Diffusion Cells using cellulose membrane and human cadaver skin for two and six hour studies. Among the formulations evaluated, the general rank order of the drug release through the cellulose membrane was observed to be: HPMC gel base > Anionic gel base > Cationic gel base > Commercial product. The addition of penetration enhancers showed variable effects in all samples evaluated. However, the HPMC gel-based vehicle showed significant effect in enhancing the drug release in the presence of DMSO. The formulation containing 1% w/w ketoconazole and 20% w/w DMSO gave a maximum drug release of 20.21% when compared to only 1.60% from the commercial product. This represents a twelve fold increase in the release of ketoconazole from the formulation. Furthermore, when the optimum gel-based formulation containing 1% w/w ketoconazole was studied over an extended period of 6 hours, it gave 36.01% drug release from the sample formulation compared to only 2.00% from the commercial product. Finally, this formulation was selected to study for its drug release/permeation profile using the human cadaver skin as the diffusion barrier. Here, as expected, the drug release from both the formulations tested was significantly reduced due to the resistance posed by the skin. After 6 hours, the drug release form the commercial product was 0.17% when compared to 2.80% from the optimum formulation. Once again, this indicated that the experimental formulation exhibits superior drug release dynamics. The selected formulations were further evaluated for their in-vitro anti-fungal activities using yeast microorganisms. The results correlated to the in-vitro drug release profile, where HPMC based formulations exhibited a greater area of zone of inhibition for the growth of microorganisms when compared to diminutive area of zone of inhibition for the commercial product. The release data from all the samples were treated to calculate various physical parameters including: diffusion co-efficient, partition co-efficient, steady state flux and lag period etc. Interestingly, the values for the steady state flux and diffusion coefficient were found to be the highest from the optimum formulation and the values for the lag time and partition coefficient were observed to be the lowest. This supports the evidence that the drug from this formulation is readily diffusible to the skin at a steady rate after its application at the site. In-vitro drug diffusion studies and in-vitro anti-fungal studies proved useful in screening various dermatological formulations of ketoconazole compared to the commercial product containing 2% w/w drug. The HPMC based optimum formulation with reduced level of drug represents 15 folds increase through human cadaver skin and also exhibited augmented anti-fungal activity. This supports that by using an appropriate vehicle and proper incorporation of drug, one can optimize the drug release from topical formulation for maximum therapeutic effect.
Kundawala, Aliasgar; Patel, Vishnu; Patel, Harsha; Choudhary, Dhaglaram
2014-01-01
Abstract This study aimed to prepare and evaluate rifampicin microparticles for the lung delivery of rifampicin as respirable powder. The microparticles were prepared using chitosan by the spray-drying method and evaluated for aerodynamic properties and pulmonary drug absorption. To control the drug release, tripoly-phosphate in different concentrations 0.6, 0.9, 1.2, and 1.5 was employed to get a sustained drug release profile. The microparticles were evaluated for drug loading, % entrapment efficiency, tapped density, morphological characteristics, and in vitro drug release studies. Aerosol properties were determined using the Andersen cascade impactor. Porous microparticles with particle sizes (d0.5) less than 10 μm were obtained. The entrapment of rifampicin in microparticles was up to 72%. In vitro drug release suggested that the crosslinked microparticles showed sustained release for more than 12 hrs. The drug release rate was found to be decreased as the TPP concentration was increased. The microparticles showed a fine particle fraction in the range of 55–63% with mass median aerodynamic diameter (MMAD) values below 3 μm. The in vivo pulmonary absorption of the chitosan microparticles suggested a sustained drug release profile up to 72 hrs with an elimination rate of 0.010 per hr. The studies revealed that the spray-dried porous microparticles have suitable properties to be used as respirable powder in rifampicin delivery to the lungs. PMID:25853075
Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui
2014-01-01
Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292
Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems.
Ueda, H; Hacker, M C; Haesslein, A; Jo, S; Ammon, D M; Borazjani, R N; Kunzler, J F; Salamone, J C; Mikos, A G
2007-12-01
This study sought to develop an injectable formulation for long-term ocular delivery of fluocinolone acetonide (FA) by dissolving the anti-inflammatory drug and the biodegradable polymer poly(propylene fumarate) (PPF) in the biocompatible, water-miscible, organic solvent N-methyl-2-pyrrolidone (NMP). Upon injection of the solution into an aqueous environment, a FA-loaded PPF matrix is precipitated in situ through the diffusion/extraction of NMP into surrounding aqueous fluids. Fabrication of the matrices and in vitro release studies were performed in phosphate buffered saline at 37 degrees C. Drug loadings up to 5% were achieved. High performance liquid chromatography was employed to determine the released amount of FA. The effects of drug loading, PPF content of the injectable formulation, and additional photo-crosslinking of the matrix surface were investigated. Overall, FA release was sustained in vitro over up to 400 days. After an initial burst release of 22 to 68% of initial FA loading, controlled drug release driven by diffusion and bulk erosion was observed. Drug release rates in a therapeutic range were demonstrated. Release kinetics were found to be dependent on drug loading, formulation PPF content, and extent of surface crosslinking. The results suggest that injectable, in situ formed PPF matrices are promising candidates for the formulation of long-term, controlled delivery devices for intraocular drug delivery. Copyright 2007 Wiley Periodicals, Inc.
Ebrahimi, Hossein Ali; Javadzadeh, Yousef; Hamidi, Mehrdad; Jalali, Mohammad Barzegar
2015-09-21
Repaglinide is an efficient anti-diabetic drug which is prescribed widely as multi-dosage oral daily regimens. Due to the low compliance inherent to each multi-dosage regimen, development of prolonged-release formulations could enhance the overall drug efficacy in patient populations. Repaglinide-loaded solid lipid nanoparticles (SLNs) were developed and characterized in vitro. Various surfactants were used in this study during the nanocarrier preparation procedure and their corresponding effects on some physicochemical properties of SLNs such as size, zeta potential; drug loading parameters and drug release profiles was investigated. Stearic acid and glyceryl mono stearate (GMS) were used as lipid phase and phosphatidylcholin, Tween80, Pluronic F127, poly vinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as surfactant/stabilizer. The results showed some variations between formulations; where the Tween80-based SLNs showed smallest size, the phosphatidylcholin-based SLNs indicated most prolonged drug release time and the highest loading capacity. SEM images of these formulations showed morphological variations and also confirmed the nanoscale size of these particles. The FTIR and DSC results demonstrated no interaction between drug and excipients. The invitro release profiles of different formulations were studied and observed slow release of drug from all formulations. However significant differences were found among them in terms of their initial burst release as well as the whole drug release profile. From fitting these data to various statistical models, the Peppas model was proposed as the best model to describe the statistical indices and, therefore, mechanism of drug release. The results of this study confirmed the effect of surfactant type on SLNs physicochemical properties such as morphological features, loading parameters, particle sizes and drug release kinetic. With respect to the outcome data, the mixture of phosphatidylcholin/Pluronic F127 was selected as the best surfactant/stabilizer to coat the lipid core comprising stearic acid and GMS.
Assembled modules technology for site-specific prolonged delivery of norfloxacin.
Oliveira, Paulo Renato; Bernardi, Larissa Sakis; Strusi, Orazio Luca; Mercuri, Salvatore; Segatto Silva, Marcos A; Colombo, Paolo; Sonvico, Fabio
2011-02-28
The aim of this research was to design and study norfloxacin (NFX) release in floating conditions from compressed hydrophilic matrices of hydroxypropylmethylcellulose (HPMC) or poly(ethylene oxide) (PEO). Module assembling technology for drug delivery system manufacturing was used. Two differently cylindrical base curved matrix/modules, identified as female and male, were assembled in void configuration by friction interlocking their concave bases obtaining a floating release system. Drug release and floatation behavior of this assembly was investigated. Due to the higher surface area exposed to the release medium, faster release was observed for individual modules compared to their assembled configuration, independently on the polymer used and concentration. The release curves analyzed using the Korsmeyer exponential equation and Peppas & Sahlin binomial equation showed that the drug release was controlled both by drug diffusion and polymer relaxation or erosion mechanisms. However, convective transport was predominant with PEO and at low content of polymers. NFX release from PEO polymeric matrix was more erosion dependent than HPMC. The assembled systems were able to float in vitro for up to 240min, indicating that this drug delivery system of norfloxacin could provide gastro-retentive site-specific release for increasing norfloxacin bioavailability. Copyright © 2010. Published by Elsevier B.V.
Kitchen, J L; Li, Z; Crooke, E
1999-05-11
The initiation of Escherichia coli chromosomal replication by DnaA protein is strongly influenced by the tight binding of the nucleotides ATP and ADP. Anionic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA protein to replicatively active ATP-DnaA protein in vitro, and thus likely play a key role in regulating DnaA activity. Previous studies have revealed that, during this reactivation, a specific region of DnaA protein inserts into the hydrophobic portion of the lipid bilayer in an acidic phospholipid-dependent manner. To elucidate the requirement for acidic phospholipids in the reactivation process, the contribution of electrostatic forces in the interaction of DnaA and lipid was examined. DnaA-lipid binding required anionic phospholipids, and DnaA-lipid binding as well as lipid-mediated release of DnaA-bound nucleotide were inhibited by increased ionic strength, suggesting the involvement of electrostatic interactions in these processes. As the vesicular content of acidic phospholipids was increased, both nucleotide release and DnaA-lipid binding increased in a linear, parallel manner. Given that DnaA-membrane binding, the insertion of DnaA into the membrane, and the consequent nucleotide release all require anionic phospholipids, the acidic headgroup may be necessary to recruit DnaA protein to the membrane for insertion and subsequent reactivation for replication.
Classification of stimuli-responsive polymers as anticancer drug delivery systems.
Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab
2015-02-01
Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.
Saindane, Nilesh; Vavia, Pradeep
2012-09-01
The aim of the present investigation was to develop controlled porosity osmotic system for poorly water-soluble drug based on drug in polymer-surfactant layer technology. A poorly water-soluble drug, glipizide (GZ), was selected as the model drug. The technology involved core of the pellets containing osmotic agent coated with drug dispersed in polymer and surfactant layer, finally coated with release-retardant layer with pore former. The optimized drug-layer-coated pellets were evaluated for solubility of GZ at different pH conditions and characterized for amorphous nature of the drug by differential scanning calorimetry and X-ray powder diffractometry. The optimized release-retardant layer pellets were evaluated for in vitro drug release at different pH, hydrodynamic, and osmolality conditions. The optimized drug layer showed improvement in solubility (10 times in pH 1.2, 11 times in pH 4.5, and 21 times in pH 6.8), whereas pellets coated with cellulose acetate (15.0%, w/w, weight gain) with pore former triethyl citrate (10.0%, w/w, of polymer) demonstrated zero-order drug release for 24 h at different pH conditions; moreover, retardation of drug release was observed with increment of osmolality. This system could be a platform technology for controlled delivery of poorly water-soluble drugs. Copyright © 2012 Wiley Periodicals, Inc.
Frank, Alexis; Kumar Rath, Santosh; Boey, Freddy; Venkatraman, Subbu
2004-02-01
The initial stages of the in vitro degradation of and the drug release from a matrix made of poly(d,l-lactide-co-glycolide) was carried out in a phosphate buffer saline (pH 7.0) medium. It has been observed that substantial matrix degradation occurs at the end of 2 weeks of immersion. The drug release using films of the polymer shows a tri-phasic pattern, unlike the bi-phasic patterns usually seen. Mechanisms are proposed for each phase of release, based on results from weight loss, amount of water absorption and scanning electron microscopy. The details of the structural changes and their effects on drug release may have implications for delivering potent drugs over a 2-week period.
3D printing of tablets containing multiple drugs with defined release profiles.
Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J
2015-10-30
We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This 'polypill' made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and 'dial up' this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug-excipient interaction. The printed formulations were evaluated for drug release using USP dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer-Peppas release kinetics dependent upon the active/excipient ratio used. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ebadi, Azra; Rafati, Amir Abbas; Bavafa, Sadeghali; Mohammadi, Masoumah
2017-12-01
This study involves the synthesis of a new silica-based colloidal hybrid system. In this new hybrid system, poly (ethylene glycol) (PEG) and thermo-sensitive amphiphilic biocompatible poly (vinyl pyrrolidone) (PVP) were used to create suitable storage for hydrophobic drugs. The possibility of using variable PVP/PEG molar ratios to modulate drug release rate from silica nanoparticles was a primary goal of the current research. In addition, an investigation of the drug release kinetic was conducted. To achieve this, silica nanoparticles were synthesized in poly (ethylene glycol) (PEG) and poly (vinyl pyrrolidone) (PVP) solution incorporated with enrofloxacin (EFX) (as a model hydrophobic drug), using a simple synthetic strategy of hybrid materials which avoided waste and multi-step processes. The impacts of PVP/PEG molar ratios, temperature, and pH of the release medium on release kinetic were investigated. The physicochemical properties of the drug-loaded composites were studied by Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). In vitro drug release studies demonstrated that the drug release rate, which was evaluated by analyzing the experimental data with seven kinetic models in a primarily non-Fickian diffusion-controlled process, aligned well with both Ritger-Peppas and Sahlin-Peppas equations.
Yom-Tov, Ortal; Seliktar, Dror; Bianco-Peled, Havazelet
2015-10-01
The use of buoyant or floating hydrogel tablets is of particular interest in the sustained release of drugs to the stomach. They have an ability to slow the release rates of drugs by prolonging their absorption window in the upper part of the gastrointestinal (GI) tract. In this study we synthesized bioactive hydrogels that have sustainable release rates for drugs in the stomach based on a hydrogel preparation technique that employs emulsifying surfactants. The emulsion gelation technique, which encapsulates oil droplets within the hydrogels during crosslinking, was used to decrease their specific gravity in aqueous environments, resulting in floating drug release depots. Properties such as swelling, buoyancy, density and drug release were manipulated by changing the polymer concentrations, surfactant percentages and the oil:polymer ratios. The relationship between these properties and the hydrogel's floating lag time was documented. The potential for this material to be used as a floating drug delivery system was demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.
Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
Valo, Hanna; Arola, Suvi; Laaksonen, Päivi; Torkkeli, Mika; Peltonen, Leena; Linder, Markus B; Serimaa, Ritva; Kuga, Shigenori; Hirvonen, Jouni; Laaksonen, Timo
2013-09-27
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei
2018-04-15
Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.
Meng, Lingbin; Teng, Zhongqiu; Zheng, Nannan; Meng, Weiwei; Dai, Rongji; Deng, Yulin
2013-01-01
The aim of this study was to develop a derivative of chitosan as pharmaceutical excipient used in sustained-release matrix tablets of poorly soluble drugs. A water-soluble quaternary ammonium carboxymethylchitosan was synthesized by a two-step reaction with carboxymethylchitosan (CMCTS), decylalkyl dimethyl ammonium and epichlorohydrin. The elemental analysis showed that the target product with 10.27% of the maximum grafting degree was obtained. To assess the preliminary safety of this biopolymer, cell toxicity assay was employed. In order to further investigate quaternary ammonium carboxymethylchitosan application as pharmaceutical excipient, aspirin was chosen as model drug. The effect of quaternary ammonium CMCTS on aspirin release rate from sustained-release matrix tablets was examined by in-vitro dissolution experiments. The results showed that this biopolymer had a great potential in increasing the dissolution of poorly soluble drug. With the addition of CMCTS-CEDA, the final cumulative release rate of drug rose up to 90%. After 12 h, at the grade of 10, 20 and 50 cps, the drug release rate increased from 58.1 to 90.7%, from 64.1 to 93.9%, from 69.3 to 96.1%, respectively. At the same time, aspirin release rate from sustainedrelease model was found to be related to the amount of quaternary ammonium CMCTS employed. With the increase of CMCTS-CEDA content, the accumulated release rate increased from 69.1% to 86.7%. The mechanism of aspirin release from sustained-release matrix tablets was also preliminary studied to be Fick diffusion. These data demonstrated that the chitosan derivative has positive effect on drug release from sustained-release matrix tablets. PMID:24250627
Prakash Upputuri, Ravi Theaj; Azad Mandal, Abul Kalam
2017-01-01
Background: Green tea polyphenols (GTP) are known to have several health benefits. In spite of these benefits, its application as a therapeutic agent is limited due to some of its limitations such as stability, bioavailability, and biotransformation. To overcome these limitations, liposomal nanoparticles have been used as a carrier of the GTP. Objective: Encapsulation of GTP to the liposomal nanoparticles in order to achieve a sustained release of the GTP and to determine the drug release kinetics and the mechanism of the release. Materials and Methods: GTP encapsulated liposomal nanoparticles were prepared using phosphatidyl choline and cholesterol. The synthesized particles were characterized for their particle size and morphology. In vitro release studies were carried out, followed by drug release kinetics, and determining the mechanism of release. In vitro , antioxidant assay was determined following 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Results: Atomic force microscope (AFM) and high resolution scanning electron microscope (HR SEM) images showed spherical particles of the size of 64.5 and 252 nm. An encapsulation efficiency as high as 77.7% was observed with GTP concentration of 5 mg.mL -1 . In vitro release studies showed that the loading concentrations of GTP were independent to the cumulative percentage of the drug release. GTP release by varying the pH and temperature showed a direct correlation between the release parameter and the percentage of drug release. The higher the pH and temperature, the higher was the percentage of the drug release. The release data showed a good correlation with Zero order kinetics and the mechanism of the release being anomalous mode. Radical scavenging activity of the released GTP showed a potent scavenging activity. Conclusion: GTP encapsulated liposomal nanoparticles could be used as a delivery vehicle for achieving a sustained release.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., circular, mailer, book insert, catalog, promotional material, sales pamphlet, or any written, printed... or other reading material (i.e., news release) in any periodical or publication or newspaper for the...
Roblegg, Eva; Schrank, Simone; Griesbacher, Martin; Radl, Stefan; Zimmer, Andreas; Khinast, Johannes
2011-10-01
Conventional solid oral dosage forms are unsuitable for children due to problems associated with swallowing and unpleasant taste. Additionally, the limit of tablets lays in the patient adapted dosing. Therefore, the suitability of Ludiflash(®), a direct compression aid for orally disintegrating tablets, was investigated for the preparation of individually dosable pellets. Micropellets consisting of Ludiflash(®) and small amounts of microcrystalline cellulose were prepared via the wet extrusion/spheronization technique. Paracetamol and ibuprofen were applied as model drugs. The obtained pellets were characterized with respect to drug release and disintegration characteristics, mechanical properties, as well as size and shape. Drug loading was possible up to 30% for ibuprofen and even up to 50% for paracetamol. Higher ibuprofen loadings resulted in considerably slowed drug release and higher paracetamol contents yielded in non-spherical pellets. In vitro release studies revealed that more than 80% of the drug was released within 30 and 60 min for paracetamol and ibuprofen, respectively. Drug release rates were highly influenced by the pellet disintegration behavior. Investigations of the release mechanism using the Korsemeyer-Peppas approach suggested Super Case II drug transport for all paracetamol formulations and anomalous drug transport for most ibuprofen formulations. All pellets exhibited a low porosity and friability, as well as a sufficiently high tensile strength, which was significantly influenced by the type of model drug. Ludiflash(®) can be applied as main excipient for the preparation of individually dosable pellets combining fast drug release and a high mechanical stability.
Uskoković, Vuk; Desai, Tejal A.
2012-01-01
Developed in this study is a multifunctional material for simultaneous osseoinduction and drug delivery, potentially applicable in the treatment of osteomyelitis. It is composed of agglomerates of nanoparticles of calcium phosphate (CAP) with different monophasic contents. The drug loading capacity and the release kinetics were investigated on two model drug compounds with different chemical structures, sizes and adsorption propensities: bovine serum albumin and fluorescein. Loading of CAP powders with small molecule drugs was achieved by physisorption and desiccation-induced agglomeration of nanoparticulate subunits into microscopic blocks. The material dissolution rate and the drug release rate depended on the nature of the CAP phase, decreasing from monocalcium phosphate to monetite to amorphous CAP and calcium pyrophosphate to hydroxyapatite. The sustained release of the two model drugs was shown to be directly relatable to the degradation rate of CAP carriers. It was demonstrated that the degradation rate of the carrier and the drug release kinetics could be made tunable within the time scale of 1–2 h for the most soluble CAP phase, monocalcium phosphate, to 1–2 years for the least soluble one, hydroxyapatite. From the standpoint of antibiotic therapy for osteomyelitis, typically lasting for six weeks, the most prospective CAP powder was amorphous CAP with its release time scale for a small organic molecule, the same category to which antibiotics belong, of 1 – 2 months under the conditions applied in our experiments. By combining these different CAP phases in various proportions, drug release profiles could be tailored to the therapeutic occasion. PMID:23115118
Noda, Takehiro; Okuda, Tomoyuki; Ban, Kousuke; Mizuno, Ryota; Tagami, Tatsuaki; Ozeki, Tetsuya; Okamoto, Hirokazu
2017-06-01
In the development of a drug for intra-articular administration, a sustained-release formulation is desirable since it is difficult to sustain the effects of conventional injections due to fast drug leakage from the joint cavity. In this study, we prepared sustained release gel formulations for intra-articular administration containing indocyanine green (ICG) as a model drug to follow its fate after intra-articular administration in rats with in-vivo imaging system (IVIS). ICG administered as an aqueous solution leaked from the joint cavity in a short time and was excreted out of the body within a day. On the other hand, ICG in the sustained-release formulations was retained and released in the joint cavity for a week. Next, we prepared a sustained-release formulation with hyaluronic acid (HA) as the gel base containing a pain-relief drug (Drug A). We had administered it and other formulations into the rat knee where we injected bradykinin to evaluate their walking distance after 1 and 3 d. The effect of an aqueous solution of Drug A disappeared on day 3. The HA gel formulation without Drug A was more effective than the aqueous solution. The HA gel formulation with Drug A was the most effective; the walking distance was about 85% of the baseline on day 3. This study showed that the gel formulations were effective to sustain the release of a drug in the knee joint, and that the combination of a pain-relief drug with HA gel was effective to improve the mobility of the acute pain model rats.
Liu, Xu; Ma, Xiangyu; Kun, Eucharist; Guo, Xiaodi; Yu, Zhongxue; Zhang, Feng
2018-06-05
This study examines the preparation of sustained-release lidocaine polyelectrolyte complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that polyelectrolyte could only form via the acid-base reaction between Eudragit L100-55 and lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically more stable than the lidocaine hydrochloride extrudate during the storage under stressed condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5. Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-55 was solubilized and sustained-release was not achieved in water and aqueous media at pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with drug being released over 10 h. The release of lidocaine hydrochloride from the extrudates in these media was primarily controlled by microenvironment pH. It is concluded that different forms of lidocaine resulted in different drug-polymer interactions and distinctive physicochemical properties of extrudates. Copyright © 2018. Published by Elsevier B.V.
Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming
2016-03-01
To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.
Design of a potential colonic drug delivery system of mesalamine.
Gohel, Mukesh C; Parikh, Rajesh K; Nagori, Stavan A; Dabhi, Mahesh R
2008-01-01
The aim of the present investigation was to develop a site-specific colonic drug delivery system, built on the principles of the combination of pH and time sensitivity. Press-coated mesalamine tablets with a coat of HPMC E-15 were over-coated with Eudragit S100. The in vitro drug release study was conducted using sequential dissolution technique at pH 1.2, 6.0, 7.2 and 6.4 mimicking different regions of gastrointestinal tract. The optimized batch (F2) showed less than 6% of drug release before reaching colonic pH 6.4 and complete drug release was obtained thereafter within 2 hr. A short-term dissolution stability study demonstrated statistical insignificant difference in drug release.
Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-TNFα drug.
Likhitpanichkul, Morakot; Kim, Yesul; Torre, Olivia M; See, Eugene; Kazezian, Zepur; Pandit, Abhay; Hecht, Andrew C; Iatridis, James C
2015-09-01
Intervertebral discs (IVDs) are attractive targets for local drug delivery because they are avascular structures with limited transport. Painful IVDs are in a chronic inflammatory state. Although anti-inflammatories show poor performance in clinical trials, their efficacy treating IVD cells suggests that sustained, local drug delivery directly to painful IVDs may be beneficial. The purpose of this study was to determine if genipin cross-linked fibrin (FibGen) with collagen Type I hollow spheres (CHS) can serve as a drug-delivery carrier for infliximab, the anti-tumor necrosis factor α (TNFα) drug. Infliximab was chosen as a model drug because of the known role of TNFα in increasing downstream production of several pro-inflammatory cytokines and pain mediators. Genipin cross-linked fibrin was used as drug carrier because it is adhesive, injectable, and slowly degrading hydrogel with the potential to seal annulus fibrosus (AF) defects. CHS allow simple and nondamaging drug loading and could act as a drug reservoir to improve sustained delivery. This is a study of biomaterials and human AF cell culture to determine drug release kinetics and efficacy. Infliximab was delivered at low and high concentrations using FibGen with and without CHS. Gels were analyzed for structure, drug release kinetics, and efficacy treating human AF cells after release. Fibrin showed rapid infliximab drug release but degraded quickly. CHS alone showed a sustained release profile, but the small spheres may not remain in a degenerated IVD with fissures. Genipin cross-linked fibrin showed steady and low levels of infliximab release that was increased when loaded with higher drug concentrations. Infliximab was bound in CHS when delivered within FibGen and was only released after enzymatic degradation. The infliximab released over 20 days retained its bioactivity as confirmed by the sustained reduction of interleukin (IL)-1β, IL-6, IL-8, and TNFα concentrations produced by AF cells. Direct mixing of infliximab into FibGen was the simplest drug-loading protocol capable of sustained release. Results show feasibility of using drug-loaded FibGen for delivery of infliximab and, in the context with the literature, show potential to seal AF defects and partially restore IVD biomechanics. Future investigations are required to determine if drug-loaded FibGen can effectively deliver drugs, seal AF defects, and promote IVD repair or prevent further IVD degeneration in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.
Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari azar, Zahra
2013-01-01
In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween®80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams. PMID:24523740
Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari Azar, Zahra
2013-01-01
In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween(®)80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams.
Designing a biocompatible hydrogel for the delivery of mesalamine.
Neufeld, Lena; Bianco-Peled, Havazelet
2015-08-01
A new design for nanocomposite hydrogels based on cross-linked chitosan for the delivery of mesalamine is presented. To enhance drug loading in chitosan, the mineral montmorillonite was incorporated into the matrix. The exfoliated silica montmorillonite nanosheets form interactions with both chitosan and mesalamine, which affect the hydrogel's drug release mechanism and swelling properties. The impact of montmorillonite and glutaraldehyde concentrations on the hydrogel properties was investigated. In vitro drug-release studies detected slower release over short times when montmorillonite was introduced into the matrix. This study is the first to evaluate the influence of pH during mixing and on mixing duration. It was shown that lowering the pH during mixing delayed the release since the positively charged drug was better introduced between the montmorillonite layers, as confirmed by differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) analysis. All hydrogels showed prolonged sustained release of mesalamine over 24h in simulated colonic fluid (pH 7.4). When modeled, the mesalamine release profile suggests a complex release mechanism, involving adsorption of the drug to the montmorillonite and its diffusion. The results imply that chitosan-montmorillonite hydrogels can serve as potential drug carriers for controlled-release applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery.
Macha, Innocent J; Cazalbou, Sophie; Ben-Nissan, Besim; Harvey, Kate L; Milthorpe, Bruce
2015-01-20
Hydrothermally converted coralline hydroxyapatite (HAp) particles loaded with medically active substances were used to develop polylactic acid (PLA) thin film composites for slow drug delivery systems. The effects of HAp particles within PLA matrix on the gentamicin (GM) release and release kinetics were studied. The gentamicin release kinetics seemed to follow Power law Korsmeyer Peppas model with mainly diffusional process with a number of different drug transport mechanisms. Statistical analysis shows very significant difference on the release of gentamicin between GM containing PLA (PLAGM) and GM containing HAp microspheres within PLA matrix (PLAHApGM) devices, which PLAHApGM displays lower release rates. The use of HAp particles improved drug stabilization and higher drug encapsulation efficiency of the carrier. HAp is also the source of Ca2+ for the regeneration and repair of diseased bone tissue. The release profiles, exhibited a steady state release rate with significant antimicrobial activity against Staphylococcus aureus (S. aureus) (SH1000) even at high concentration of bacteria. The devices also indicated significant ability to control the growth of bacterial even after four weeks of drug release. Clinical release profiles can be easily tuned from drug-HAp physicochemical interactions and degradation kinetics of polymer matrix. The developed systems could be applied to prevent microbial adhesion to medical implant surfaces and to treat infections mainly caused by S. aureus in surgery.
Marine Structure Derived Calcium Phosphate–Polymer Biocomposites for Local Antibiotic Delivery
Macha, Innocent J.; Cazalbou, Sophie; Ben-Nissan, Besim; Harvey, Kate L.; Milthorpe, Bruce
2015-01-01
Hydrothermally converted coralline hydroxyapatite (HAp) particles loaded with medically active substances were used to develop polylactic acid (PLA) thin film composites for slow drug delivery systems. The effects of HAp particles within PLA matrix on the gentamicin (GM) release and release kinetics were studied. The gentamicin release kinetics seemed to follow Power law Korsmeyer Peppas model with mainly diffusional process with a number of different drug transport mechanisms. Statistical analysis shows very significant difference on the release of gentamicin between GM containing PLA (PLAGM) and GM containing HAp microspheres within PLA matrix (PLAHApGM) devices, which PLAHApGM displays lower release rates. The use of HAp particles improved drug stabilization and higher drug encapsulation efficiency of the carrier. HAp is also the source of Ca2+ for the regeneration and repair of diseased bone tissue. The release profiles, exhibited a steady state release rate with significant antimicrobial activity against Staphylococcus aureus (S. aureus) (SH1000) even at high concentration of bacteria. The devices also indicated significant ability to control the growth of bacterial even after four weeks of drug release. Clinical release profiles can be easily tuned from drug-HAp physicochemical interactions and degradation kinetics of polymer matrix. The developed systems could be applied to prevent microbial adhesion to medical implant surfaces and to treat infections mainly caused by S. aureus in surgery. PMID:25608725
Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings
Shen, Jie; Burgess, Diane J.
2011-01-01
Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033
Shen, Jie; Burgess, Diane J
2012-01-17
Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Garekani, Hadi Afrasiabi; Ahmadi, Behzad; Sadeghi, Fatemeh
2017-01-01
There are conflicting reports regarding the effect of polymer viscosity grade on microcapsule properties. The aim of the present study was to investigate the effect of just viscosity grade of ethylcellulose (EC) (not polymeric solution) on properties of theophylline microcapsules prepared by emulsion solvent evaporation. The effect of EC viscosity grade and drug:polymer ratio was investigated on microcapsule properties (yield, particle size, morphology, surface characteristics and drug release). Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) were implemented to study the interaction and solid state of drug. The microcapsules were compressed in the presence of excipients and drug release was evaluated. The yield of microencapsulation and encapsulation efficiency at 1:1 drug:polymer ratio was dependent on EC viscosity. Microcapsules were spherical with some pores on their surfaces. The number of pores was more and their size was bigger for EC 100 cP microcapsules. Theophylline remained in crystalline form after encapsulation. DSC studies confirmed lack of interaction between drug and polymer. The drug release was rapid at 2:1 drug:polymer whilst it was slowed down at 1:1 drug:polymer ratio. Microcapsules obtained from EC 100 cP showed slightly faster drug release at latter ratio. Marginal changes in release rate were observed after compression of microcapsules. All viscosity grades of EC were able to sustain the release of the drug from microcapsules. Considering the similar release profiles for microcapsules prepared from different viscosities of EC, the use of lower viscosity grade of EC is recommended due to the ease of production and also less processing time. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Shu, X Z; Zhu, K J
2002-02-21
By adopting a novel chitosan cross-linked method, i.e. chitosan/gelatin droplet coagulated at low temperature and then cross-linked by anions (sulfate, citrate and tripolyphosphate (TPP)), the chitosan beads were prepared. Scanning electron microscopy (SEM) observation showed that sulfate/chitosan and citrate/chitosan beads usually had a spherical shape, smooth surface morphology and integral inside structure. Cross-sectional analysis indicated that the cross-linking process of sulfate and citrate to chitosan was much faster than that of TPP due to their smaller molecular size. But, once completely cross-linked, TPP/chitosan beads possessed much better mechanical strength and the force to break the beads was approximately ten times higher than that of sulfate/chitosan or citrate/chitosan beads. Release media pH and ionic strength seriously influenced the controlled drug release properties of the beads, which related to the strength of electrostatic interaction between anions and chitosan. Sulfate and citrate cross-linked chitosan beads swelled and even dissociated in simulated gastric fluid (SGF) and hence, model drug (riboflavin) released completely in 5 h; while in simulated intestinal fluid (SIF), beads remained in a shrinkage state and drug released slowly (release % usually <70% in 24 h). However, swelling and drug release of TPP/chitosan bead was usually insensitive to media pH. Chitosan beads, cross-linked by a combination of TPP and citrate (or sulfate) together, not only had a good shape, but also improved pH-responsive drug release properties. Salt weakened the interaction of citrate, especially sulfate with chitosan and accelerated beads swelling and hence drug release rate, but it was insensitive to that of TPP/chitosan. These results indicate that ionically cross-linked chitosan beads may be useful in stomach specific drug delivery.
Preparation and controlled release of mesoporous MCM-41/propranolol hydrochloride composite drug.
Zhai, Qing-Zhou
2013-01-01
This article used MCM-41 as a carrier for the assembly of propranolol hydrochloride by the impregnation method. By means of chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and low-temperature N(2) adsorption-desorption at 77 K, the characterization was made for the prepared materials. The propranolol hydrochloride guest assembly capacity was 316.20 ± 0.31 mg/g (drug/MCM-41). Powder XRD test results indicated that during the process of incorporation, the frameworks of the MCM-41 were not destroyed and the crystalline degrees of the host-guest nanocomposite materials prepared still remained highly ordered. Characterization by SEM and TEM showed that the composite material presented spherical particle and the average particle size of composite material was 186 nm. FT-IR spectra showed that the MCM-41 framework existed well in the (MCM-41)-propranolol hydrochloride composite. Low-temperature nitrogen adsorption-desorption results at 77 K showed that the guest partially occupied the channels of the molecular sieves. Results of the release of the prepared composite drug in simulated body fluid indicated that the drug can release up to 32 h and its maximum released amount was 99.20 ± 0.11%. In the simulated gastric juice release pattern of drug, the maximum time for the drug release was discovered to be 6 h and the maximum cumulative released amount of propranolol hydrochloride was 45.13 ± 0.23%. The drug sustained-release time was 10 h in simulated intestinal fluid and the maximum cumulative released amount was 62.05 ± 0.13%. The prepared MCM-41 is a well-controlled drug delivery carrier.
Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-04-25
Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of a new delivery system consisting in 'drug-in cyclodextrin-in PLGA nanoparticles'.
Mura, Paola; Maestrelli, Francesca; Cecchi, Matteo; Bragagni, Marco; Almeida, Antonio
2010-01-01
A combined approach based on drug cyclodextrin (CD) complexation and loading into PLGA nanoparticles (NP) has been developed to improve oxaprozin therapeutic efficiency. This strategy exploits the solubilizing and stabilizing properties of CDs and the prolonged-release and targeting properties of PLGA NPs. Drug-loaded NPs, prepared by double-emulsion, were examined for dimensions, zeta-potential and entrapment efficiency. Solid-state studies demonstrated the absence of drug-polymer interactions and assessed the amorphous state of the drug-CD complex loaded into NPs. Drug release rate from NPs was strongly influenced by the presence and kind of CD used. The percentage released at 24 h varied from 16% (plain drug-loaded NPs) to 50% (drug-betaCD-loaded NPs) up to 100% (drug-methylbetaCD-loaded NPs). This result suggests the possibility of using CD complexation not only to promote, but also to regulate drug release rate from NPs, by selecting the proper type of CD or CD combination.
Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection.
Bear, Joseph C; Patrick, P Stephen; Casson, Alfred; Southern, Paul; Lin, Fang-Yu; Powell, Michael J; Pankhurst, Quentin A; Kalber, Tammy; Lythgoe, Mark; Parkin, Ivan P; Mayes, Andrew G
2016-09-27
Drug delivery to the gastrointestinal (GI) tract is highly challenging due to the harsh environments any drug- delivery vehicle must experience before it releases it's drug payload. Effective targeted drug delivery systems often rely on external stimuli to effect release, therefore knowing the exact location of the capsule and when to apply an external stimulus is paramount. We present a drug delivery system for the GI tract based on coating standard gelatin drug capsules with a model eicosane- superparamagnetic iron oxide nanoparticle composite coating, which is activated using magnetic hyperthermia as an on-demand release mechanism to heat and melt the coating. We also show that the capsules can be readily detected via rapid X-ray computed tomography (CT) and magnetic resonance imaging (MRI), vital for progressing such a system towards clinical applications. This also offers the opportunity to image the dispersion of the drug payload post release. These imaging techniques also influenced capsule content and design and the delivered dosage form. The ability to easily change design demonstrates the versatility of this system, a vital advantage for modern, patient-specific medicine.
Rampersaud, Sham; Fang, Justin; Wei, Zengyan; Fabijanic, Kristina; Silver, Stefan; Jaikaran, Trisha; Ruiz, Yuleisy; Houssou, Murielle; Yin, Zhiwei; Zheng, Shengping; Hashimoto, Ayako; Hoshino, Ayuko; Lyden, David; Mahajan, Shahana; Matsui, Hiroshi
2016-12-14
Although a range of nanoparticles have been developed as drug delivery systems in cancer therapeutics, this approach faces several important challenges concerning nanocarrier circulation, clearance, and penetration. The impact of reducing nanoparticle size on penetration through leaky blood vessels around tumor microenvironments via enhanced permeability and retention (EPR) effect has been extensively examined. Recent research has also investigated the effect of nanoparticle shape on circulation and target binding affinity. However, how nanoparticle shape affects drug release and therapeutic efficacy has not been previously explored. Here, we compared the drug release and efficacy of iron oxide nanoparticles possessing either a cage shape (IO-NCage) or a solid spherical shape (IO-NSP). Riluzole cytotoxicity against metastatic cancer cells was enhanced 3-fold with IO-NCage. The shape of nanoparticles (or nanocages) affected the drug release point and cellular internalization, which in turn influenced drug efficacy. Our study provides evidence that the shape of iron oxide nanoparticles has a significant impact on drug release and efficacy.
Biggs, Kevin B; Balss, Karin M; Maryanoff, Cynthia A
2012-05-29
Drug release from and coating morphology on a CYPHER sirolimus-eluting coronary stent (SES) during in vitro elution were studied by correlated confocal Raman and atomic force microscopy (CRM and AFM, respectively). Chemical surface and subsurface maps of the SES were generated in the same region of interest by CRM and were correlated with surface topography measured by AFM at different elution times. For the first time, a direct correlation between drug-rich regions and the coating morphology was made on a drug-eluting medical device, linking drug release with pore formation, pore throats, and pore networks. Drug release was studied on a drug-eluting stent (DES) system with a multicomponent carrier matrix (poly(n-butyl methacrylate) [PBMA] and poly(ethylene-co-vinyl acetate) [PEVA]). The polymer was found to rearrange postelution because confluence of the carrier polymer matrix reconstituted the voids created by drug release.
Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers
NASA Astrophysics Data System (ADS)
Subia, B.; Kundu, S. C.
2013-01-01
Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.
Development of Novel Warfarin-Silica Composite for Controlled Drug Release.
Parfenyuk, Elena V; Dolinina, Ekaterina S
2017-04-01
The work is devoted to synthesis and study of warfarin composites with unmodified, methyl and phenyl modified silica in order to develop controlled release formulation of the anticoagulant. The composites were prepared by two routes, adsorption and sol-gel, and characterized with FTIR spectroscopy, dynamic light scattering and DSC methods. The drug release behavior from the composites in media with pH 1.6, 6.8 and 7.4 was analyzed in vitro. The release kinetics of the warfarin - silica composites prepared by the two routes was compared among each other and with analogous silica composites with water soluble drug molsidomine. The comparative analysis showed that in general the kinetic regularities and mechanisms of release for both drugs are similar and determined by nonuniform distribution of the drugs over the silica matrixes and stability of the matrixes in the studied media for the adsorbed composites and uniformly distributed drug and more brittle structure for the sol-gel composites. The sol-gel composite of warfarin - phenyl modified silica is perspective for further development of novel warfarin formulation with controlled release because it releases warfarin according to zero-order kinetic law with approximately equal rate in the media imitating different segments of gastrointestinal tract.
NASA Astrophysics Data System (ADS)
Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza
2016-04-01
Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.
Towards more realistic in vitro release measurement techniques for biodegradable microparticles.
Klose, D; Azaroual, N; Siepmann, F; Vermeersch, G; Siepmann, J
2009-03-01
To better understand the importance of the environmental conditions for drug release from biodegradable microparticles allowing for the development of more appropriate in vitro release measurement techniques. Propranolol HCl diffusion in various agarose gels was characterized by NMR and UV analysis. Fick's law was used to theoretically predict the mass transport kinetics. Drug release from PLGA-based microparticles in such agarose gels was compared to that measured in agitated bulk fluids ("standard" method). NMR analysis revealed that the drug diffusivity was almost independent of the hydrogel concentration, despite of the significant differences in the systems' mechanical properties. This is due to the small size of the drug molecules/ions with respect to the hydrogel mesh size. Interestingly, the theoretically predicted drug concentration-distance-profiles could be confirmed by independent experiments. Most important from a practical point of view, significant differences in the release rates from the same batch of PLGA-based microparticles into a well agitated bulk fluid versus a semi-solid agarose gel were observed. Great care must be taken when defining the in vitro conditions for drug release measurements from biodegradable microparticles. The obtained new insight can help facilitating the development of more appropriate in vitro release testing procedures.
Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.
Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P
2016-01-01
Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.
Tran, Vy Anh; Lee, Sang-Wha
2018-01-15
This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen. Of all things, FITC (Fluorescein isothiocyanate)-labeled APTMS (3-aminopropyltrimethoxysilane) (APTMS-FITC conjugates) grafted onto the MSNs generate a pinch-effect on the pore channel (so-called a prominent anchoring effect), which was highly effective in trapping (or blocking) drug molecules at the pore mouth of the MSNs. The anchored APTMS-FITC conjugates provided not only tortuous pathways to the diffusing molecules, but also sustained release of the ibuprofen over a long period of time (∼7days). The fast release kinetics was predicted by an exponential equation based on Fick's law, while the slow release kinetics was predicted by Higuchi model. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Jeong Ho; Kim, Kyung Ja
2007-12-01
This work presents the highly controlled drug delivery system free from the burst release at an initial stage and equipped with the capability of long term drug release. The nanoporous drug releasing reservoir was combined with porous body resembling cancellous bone. The materials were prepared by the integration of synthesized inorganic hydroxyapatite (HA) and the hybrid gels of bicontinuous sponge-phased L3 silicate and thermo-responsive poly(N-isopropylacrylamide) (L3-PNIPAm gels). The materials were designed to have the three dimensionally interconnected heterogeneous porosity of macro- and mesoporosity, in which the HA has the macroporosity of 150μm to be impregnated the drug into the pores and the L3-PNIPAm gels have mesoporosity of 5 nm to regulate the temperature sensitive drug-release through the pore channels and polymeric network, respectively. Consequently, this bone-mimetic system gave the highly long term drug release over the 60 days without the burst release. The release rate could be controlled with the change of the HA and PNIPAm composition ratios. The structural characterization was achieved by TEM, SEM, XRD, Micro-Raman spectroscopy, BET, and the direct contact cytotoxicity test was also described.
Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla
2014-01-01
In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer. PMID:25045689
Bettini, Ruggero; Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla
2014-01-01
In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.
Dextran based Polymeric Micelles as Carriers for Delivery of Hydrophobic Drugs.
Mocanu, Georgeta; Nichifor, Marieta; Sacarescu, Liviu
2017-01-01
The improvement of drugs bioavailability, especially of the hydrophobic ones, by using various nanoparticles is a very exciting field of the modern research. The applicability of nano-sized shell crosslinked micelles based on dextran as supports for controlled release of several hydrophobic drugs (nystatin, rifampicin, resveratrol, and curcumin) was investigated by in vitro drug loading/release experiments. The synthesized crosslinked micelles were loaded with drugs of various hydrophobicities and their retention/release behavior was followed by dialysis procedure. Crosslinked micelles obtained from dextran with octadecyl end groups, with or without N-(2- hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups attached to the main dextran chains, could retain the drugs in amounts which increased with increasing drug hydrophobicity (water insolubility), as follows: 30-60 mg rifampicin/g, 70-100 mg nystatin/g, 120-144 mg resveratrol/g and 146-260 mg curcumin/g. The rate of drug release from the loaded micelles was also dependent on the drug hydrophobicity and was always slower than the free drug recovery. Antioxidant activity of curcumin and resveratrol released from the loaded micelles was preserved. The results highlighted the potential of the new nano-sized micelles as carriers for prolonged and controlled delivery of various hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Alprazolam absorption kinetics affects abuse liability.
Mumford, G K; Evans, S M; Fleishaker, J C; Griffiths, R R
1995-03-01
To evaluate the behavioral, subjective, and reinforcing effects of immediate-release (IR) alprazolam and extended-release (XR) alprazolam to assess the effect of release rate on laboratory measures of abuse liability. Fourteen healthy men with histories of sedative abuse participated as subjects in a double-blind crossover study. All subjects received placebo, 1 and 2 mg immediate-release alprazolam, and 2 and 3 mg extended-release alprazolam in random order. Behavioral performance, subjective effects, and alprazolam plasma concentrations were assessed repeatedly 1/2 hour before and 1/2, 1, 3, 5, 7, 9, 12, and 24 hours after drug administration. Mean peak alprazolam plasma concentrations occurred 1.7 and 9.2 hours after immediate-release alprazolam and extended-release alprazolam, respectively. Compared to placebo, 2 mg immediate-release alprazolam impaired all measures of psychomotor and cognitive performance (Digit Symbol Substitution Test), motor coordination (circular lights and balance), and memory (digit entry and recall); 2 mg extended-release alprazolam did not affect any of these measures and 3 mg extended-release alprazolam impaired circular lights only. Immediate-release alprazolam, 2 mg, increased all six measures of positive drug effects (e.g., ratings of liking or good effects); none of these measures were increased by 2 mg extended-release alprazolam and only three of the six measures were increased by 3 mg extended-release alprazolam. A drug versus money multiple-choice procedure designed to assess the relative reinforcing effects of each condition was administered 24 hour after the drug. The amount of money subjects were willing to "pay" to take the drug was significantly greater than placebo for both doses of immediate-release alprazolam but for neither dose of extended-release alprazolam. These data indicate that extended-release alprazolam has less potential for abuse than immediate-release alprazolam.