Sample records for drug release testing

  1. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    PubMed

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. [Preparation of ondansetron hydrochloride osmotic pump tablets and their in vitro drug release].

    PubMed

    Zheng, Hang-sheng; Bi, Dian-zhou

    2005-12-01

    To prepare ondansetron hydrochloride osmotic pump tablets (OND-OPT) and investigate their in vitro drug release behavior. OND-OPT were prepared with a single punch press and pan coating technique. Osmotic active agents and plasticizer of coating film were chosen by drug release tests. The effects of the number, position and direction of drug release orifice on release behavior were investigated. The relation between drug release duration and thickness of coating film, PEG content of coating film and size of drug release orifice was established by uniform design experiment. The surface morphological change of coating film before and after drug release test was observed by scanning electron microscopy. The osmotic pumping release mechanism of OND-OPT was confirmed by drug release test with high osmotic pressure medium. Lactose-mannitol (1:2) was chosen as osmotic active agents and PEG400 as plasticizer of coating film. The direction of drug release orifice had great effect on the drug release of OND-OPT without HPMC, and had no effect on the drug release of OND-OPT with HPMC. The OND-OPT with one drug release orifice at the centre of the coating film on one surface of tablet released their drug with little fluctuation. The drug release duration of OND-OPT correlated with thickness of coating film and PEG content of coating film, and didn't correlate significantly with the size of drug release orifice. OND-OPT released their drug with osmotic pumping mechanism predominantly. OND-OPT are able to realize ideal controlled drug release.

  3. 21 CFR 610.1 - Tests prior to release required for each lot.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Tests prior to release required for each lot. 610.1 Section 610.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Release Requirements § 610.1 Tests prior to...

  4. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems.

    PubMed

    Jug, Mario; Hafner, Anita; Lovrić, Jasmina; Kregar, Maja Lusina; Pepić, Ivan; Vanić, Željka; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena

    2018-01-05

    In vitro dissolution/release tests are an important tool in the drug product development phase as well as in its quality control and the regulatory approval process. Mucosal drug delivery systems are aimed to provide both local and systemic drug action via mucosal surfaces of the body and exhibit significant differences in formulation design, as well as in their physicochemical and release characteristics. Therefore it is not possible to devise a single test system which would be suitable for release testing of such complex dosage forms. This article is aimed to provide a comprehensive review of both compendial and noncompendial methods used for in vitro dissolution/release testing of novel mucosal drug delivery systems aimed for ocular, nasal, oromucosal, vaginal and rectal administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 14 CFR 120.111 - Administrative and other matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.111 Administrative and other matters. (a... for the employer must be produced at the employer's place of business. (c) Release of drug testing information. An employer shall release information regarding an employee's drug testing results, evaluation...

  6. 14 CFR 120.111 - Administrative and other matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.111 Administrative and other matters. (a... for the employer must be produced at the employer's place of business. (c) Release of drug testing information. An employer shall release information regarding an employee's drug testing results, evaluation...

  7. 14 CFR 120.111 - Administrative and other matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.111 Administrative and other matters. (a... for the employer must be produced at the employer's place of business. (c) Release of drug testing information. An employer shall release information regarding an employee's drug testing results, evaluation...

  8. 14 CFR 120.111 - Administrative and other matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.111 Administrative and other matters. (a... for the employer must be produced at the employer's place of business. (c) Release of drug testing information. An employer shall release information regarding an employee's drug testing results, evaluation...

  9. 14 CFR 120.111 - Administrative and other matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.111 Administrative and other matters. (a... for the employer must be produced at the employer's place of business. (c) Release of drug testing information. An employer shall release information regarding an employee's drug testing results, evaluation...

  10. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 2: The Influence of Formulation Parameters on Drug Release.

    PubMed

    Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy

    2017-04-03

    This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.

  11. Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets.

    PubMed

    Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B

    2010-12-01

    Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.

  12. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules III. Effects of the dissolution condition on the release process.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2006-08-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the entire release properties. As the first step, the dissolution test under various conditions is selected for the in vitro test, and usually the results are analyzed following Drug Approval and Licensing Procedures. In this test, 3 time points for each release ratio, such as 0.2-0.4, 0.4-0.6, and over 0.7, respectively, should be selected in advance. These are analyzed as to whether their values are inside or outside the prescribed aims at each time point. This method is very simple and useful but the details of the release properties can not be clarified or confirmed. The validity of the dissolution test in analysis using a combination of the square-root time law and cube-root law equations to understand all the drug release properties was confirmed by comparing the simulated value with that measured in the previous papers. Dissolution tests under various conditions affecting drug release properties in the human body were then examined, and the results were analyzed by both methods to identify their strengths and weaknesses. Hereafter, the control of pharmaceutical preparation, the manufacturing process, and understanding the drug release properties will be more efficient. It is considered that analysis using the combination of the square-root time law and cube-root law equations is very useful and efficient. The accuracy of predicting drug release properties in the human body was improved and clarified.

  13. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Laboratory...

  14. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Laboratory...

  15. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Laboratory...

  16. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Laboratory...

  17. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-07-01

    This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  18. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  19. Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment.

    PubMed

    Al-Ghabeish, Manar; Xu, Xiaoming; Krishnaiah, Yellela S R; Rahman, Ziyaur; Yang, Yang; Khan, Mansoor A

    2015-11-30

    The availability of in vitro performance tests such as in vitro drug release testing (IVRT) and in vitro permeation testing (IVPT) are critical to comprehensively assure consistent delivery of the active component(s) from semisolid ophthalmic drug products. The objective was to study the impact of drug loading and type of ointment base on the in vitro performance (IVRT and IVPT) of ophthalmic ointments using acyclovir as a model drug candidate. The in vitro drug release for the ointments was evaluated using a modified USP apparatus 2 with Enhancer cells. The transcorneal permeation was carried out using rabbit cornea on modified vertical Franz cells. The drug retention in cornea (DRC) was also determined at the end of transcorneal drug permeation study. The in vitro drug release, transcorneal drug permeation as well as DRC exhibited a proportional increase with increasing drug loading in the ointment. On comparing the in vitro drug release profile with transcorneal permeation profile, it appears that drug release from the ointment is controlling acyclovir transport through the cornea. Furthermore, enhanced in vitro transcorneal permeation relative to the in vitro drug release underscores the importance of the interplay between the physiology of the ocular tissue and ointment formulation. The results indicated that IVRT and IVPT could be used to discriminate the impact of changes in drug load and formulation composition of ophthalmic ointments. Copyright © 2015. Published by Elsevier B.V.

  20. Effect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserinEffect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserinretain-->.

    PubMed

    Zhao, Chunyi; Quan, Peng; Liu, Chao; Li, Qiaoyun; Fang, Liang

    2016-11-01

    The purpose of this study was to investigate the effect of isopropyl myristate (IPM), a penetration enhancer, on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin. The patches were prepared with DURO-TAK ® 87-2287 as a pressure-sensitive adhesive (PSA) containing 5% ( w / w ) of blonanserin and different concentrations of IPM. An in vitro release experiment was performed and the adhesive performance of the drug-in-adhesive patches with different concentrations of IPM was evaluated by a rolling ball tack test and a shear-adhesion test. The glass transition temperature ( T g ) and rheological parameters of the drug-in-adhesive layers were determined to study the effect of IPM on the mechanical properties of the PSA. The results of the in vitro release experiment showed that the release rate of blonanserin increased with an increasing concentration of IPM. The rolling ball tack test and shear-adhesion test showed decreasing values with increasing IPM concentration. The results were interpreted on the basis of the IPM-induced plasticization of the PSA, as evidenced by a depression of the glass transition temperature and a decrease in the elastic modulus. In conclusion, IPM acted as a plasticizer on DURO-TAK ® 87-2287, and it increased the release of blonanserin and affected the adhesive properties of the PSA.

  1. Assessing the influence of media composition and ionic strength on drug release from commercial immediate-release and enteric-coated aspirin tablets.

    PubMed

    Karkossa, Frank; Klein, Sandra

    2017-10-01

    The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.

  2. A novel system to diagnose cutaneous adverse drug reactions employing the cellscan--comparison with histamine releasing test and Inf-gamma Releasing Test.

    PubMed

    Goldberg, Ilan; Gilburd, Boris; Kravitz, Martine Szyper; Kivity, Shmuel; Chaim, Berta Ben; Klein, Tirza; Schiffenbauer, Yael; Trubniykovr, Ela; Brenner, Sarah; Shoenfeld, Yehuda

    2005-03-01

    There are several mechanisms to describe allergic drug reactions yet the methods to diagnose them are limited. To compare several conventional clinical and laboratory methods to diagnose skin reactions to drugs to a new method of diagnosing drug reactions by the CellScan system. The study entailed 21 patients who were diagnosed as suffering from drug eruptions, and 105 healthy controls with no history of drug allergy. The drugs were classified into two groups according to suspicion of causing drug allergy: high and low. Most of the patients were on more than one drug, leading to 41 patient-drug interactions (assays). Histamine releasing test (HRT), interferon (INF)-gamma releasing test and CellScan examination were performed on lymphocytes of the patients and controls. The HRTwas interpreted as positive in 9 out of 18 (50%) patients and in 13 out of 35 (37%) assays. Based on the INF-gamma releasing test, positive results were observed in 16 out of 21 (76%) patients and in 24 out of 41 (59%) assays. In the CellScan test (CST), positive results were observed in 17 out of 21 (81%) patients and in 29 out of 41 (71%) assays. The rate of identifying the drug for eruption in the high suspicion level drugs was 9 out of 22 (41%) assays in the HRT, 20 out of 24 (83%) assays in the INF-gamma releasing test, and 21 out of 24 (87%) studies with the CellScan method. The rate of determining of the drug that caused the eruption in the low suspicion level drugs was 4 out of 13 (31 %) in the HRT, 4 out of 17 (24%) assays in the INF-gamma releasing test, and 8 out of 17 (47%) analyses in the CST. When examined in the CellScan, 99 out of 105 (94%) controls were interpreted as negative. This preliminary study indicates that the CellScan seems to be an easy and promising method for the detection of drugs responsible for adverse skin reactions. In contrast to the HRT and to the Interferon-gamma secretion test, the CellScan method is characterized by its ability to track and monitor the reaction of individual cells. By measuring the kinetic parameters of selected cells before and after adding the suspected drug, we were able to identify the culprit drug. The CellScan method had the highest sensitivity, and the interferon-gamma secretion test had the highest specificity for detection of the culprit drug. In contrast, the analysis of 105 normal control sera disclosed a high specificity of 94% for the CellScan method.

  3. A Drug-Eluting Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hoare, Todd R.; Iwata, Naomi G.; Behlau, Irmgard; Dohlman, Claes H.; Langer, Robert; Kohane, Daniel S.

    2014-01-01

    Purpose To formulate and characterize a drug-eluting contact lens designed to provide extended, controlled release of a drug. Methods Prototype contact lenses were created by coating PLGA (poly[lactic-co-glycolic acid]) films containing test compounds with pHEMA (poly[hydroxyethyl methacrylate]) by ultraviolet light polymerization. The films, containing encapsulated fluorescein or ciprofloxacin, were characterized by scanning electron microscopy. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. Ciprofloxacin eluted from the contact lens was studied in an antimicrobial assay to verify antimicrobial effectiveness. Results After a brief and minimal initial burst, the prototype contact lenses demonstrated controlled release of the molecules studied, with zero-order release kinetics under infinite sink conditions for over 4 weeks. The rate of drug release was controlled by changing either the ratio of drug to PLGA or the molecular mass of the PLGA used. Both the PLGA and the pHEMA affected release kinetics. Ciprofloxacin released from the contact lenses inhibited ciprofloxacin-sensitive Staphylococcus aureus at all time-points tested. Conclusions A prototype contact lens for sustained drug release consisting of a thin drug-PLGA film coated with pHEMA could be used as a platform for ocular drug delivery with widespread therapeutic applications. PMID:19136709

  4. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone.

    PubMed

    Stein, Sandra; Auel, Tobias; Kempin, Wiebke; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne

    2018-06-01

    Sustained intravitreal dexamethasone (DX) administration with the FDA and EMA approved Ozurdex® implant is indicated for the treatment of macular edema and non-infectious uveitis. Since drug release after intravitreal application cannot be determined in vivo in human eyes, the characterization of drug release in vitro in addition to animal models is of great importance. The aim of this study was to provide information about the influence of the test method on the in vitro drug release from intravitreal model implants. The following test methods were used: a shaking incubator experiment in reagent tubes, the small volume USP apparatus 7, the Vitreous Model (VM) and a system simulating the impact of movement on the VM (Eye Movement System, EyeMoS). Cylindrical model implants composed of DX and PLGA (poly (d,l-lactide-co-glycolide)) and additional polycaprolactone (PCL) implants containing fluorescein sodium (FS) as a model substance were produced by hot melt extrusion and were cut to a length of approximately 6 mm. Drug release was studied in ringer buffer pH 7.4 and in a modified polyacrylamide gel (PAAG) as vitreous substitute. In combination with the VM, the shape, the gel structure and a partial liquefaction (50%) were simulated in vitro. Swelling, disintegration, fragmentation, surface enlargement and changes in shape of the PLGA model implants were observed during the drug release study. We experienced that not each of the test methods and media were suitable for drug release studies of the PLGA implants. Marked differences in the release profiles were observed depending on the employed test method. These results emphasize the necessity to understand the underlying in vivo processes and to transfer the knowledge about the release determining factors into reliable in vitro test systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro.

    PubMed

    Wu, Gui; Wu, Weigang; Zheng, Qixin; Li, Jingfeng; Zhou, Jianbo; Hu, Zhilei

    2014-07-19

    Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants' surfaces were observed with electron microscope. The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a "nest-shaped" way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day's release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic.

  6. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro

    PubMed Central

    2014-01-01

    Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic. PMID:25038793

  7. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy.

    PubMed

    Purushotham, S; Ramanujan, R V

    2010-02-01

    The synthesis, characterization and property evaluation of drug-loaded polymer-coated magnetic nanoparticles (MNPs) relevant to multimodal cancer therapy has been studied. The hyperthermia and controlled drug release characteristics of these particles was examined. Magnetite (Fe(3)O(4))-poly-n-(isopropylacrylamide) (PNIPAM) composite MNPs were synthesized in a core-shell morphology by dispersion polymerization of n-(isopropylacrylamide) chains in the presence of a magnetite ferrofluid. These core-shell composite particles, with a core diameter of approximately 13nm, were loaded with the anti-cancer drug doxorubicin (dox), and the resulting composite nanoparticles (CNPs) exhibit thermoresponsive properties. The magnetic properties of the composite particles are close to those of the uncoated magnetic particles. In an alternating magnetic field (AMF), composite particles loaded with 4.15 wt.% dox exhibit excellent heating properties as well as simultaneous drug release. Drug release testing confirmed that release was much higher above the lower critical solution temperature (LCST) of the CNP, with a release of up to 78.1% of bound dox in 29h. Controlled drug release testing of the particles reveals that the thermoresponsive property can act as an on/off switch by blocking drug release below the LCST. Our work suggests that these dox-loaded polymer-coated MNPs show excellent in vitro hyperthermia and drug release behavior, with the ability to release drugs in the presence of AMF, and the potential to act as agents for combined targeting, hyperthermia and controlled drug release treatment of cancer.

  8. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  9. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms.

    PubMed

    Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S

    2015-09-18

    The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Kinetics of drug release from ointments: Role of transient-boundary layer.

    PubMed

    Xu, Xiaoming; Al-Ghabeish, Manar; Krishnaiah, Yellela S R; Rahman, Ziyaur; Khan, Mansoor A

    2015-10-15

    In the current work, an in vitro release testing method suitable for ointment formulations was developed using acyclovir as a model drug. Release studies were carried out using enhancer cells on acyclovir ointments prepared with oleaginous, absorption, and water-soluble bases. Kinetics and mechanism of drug release was found to be highly dependent on the type of ointment bases. In oleaginous bases, drug release followed a unique logarithmic-time dependent profile; in both absorption and water-soluble bases, drug release exhibited linearity with respect to square root of time (Higuchi model) albeit differences in the overall release profile. To help understand the underlying cause of logarithmic-time dependency of drug release, a novel transient-boundary hypothesis was proposed, verified, and compared to Higuchi theory. Furthermore, impact of drug solubility (under various pH conditions) and temperature on drug release were assessed. Additionally, conditions under which deviations from logarithmic-time drug release kinetics occur were determined using in situ UV fiber-optics. Overall, the results suggest that for oleaginous ointments containing dispersed drug particles, kinetics and mechanism of drug release is controlled by expansion of transient boundary layer, and drug release increases linearly with respect to logarithmic time. Published by Elsevier B.V.

  12. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    NASA Astrophysics Data System (ADS)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  13. Investigation of factors affecting in vitro doxorubicin release from PEGylated liposomal doxorubicin for the development of in vitro release testing conditions.

    PubMed

    Shibata, Hiroko; Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Goda, Yukihiro

    2015-01-01

    Establishing appropriate drug release testing methods of liposomal products for assuring quality and performance requires the determination of factors affecting in vitro drug release. In this study, we investigated the effects of test conditions (human plasma lot, pH/salt concentration in the test media, dilution factor, temperature, ultrasound irradiation, etc.), and liposomal preparation conditions (pH/concentration of ammonium sulfate solution), on doxorubicin (DXR) release from PEGylated liposomal DXR. Higher temperature and lower pH significantly increased DXR release. The evaluation of DXR solubility indicated that the high DXR release induced by low pH may be attributed to the high solubility of DXR at low pH. Ultrasound irradiation induced rapid DXR release in an amplitude-dependent manner. The salt concentration in the test solution, human plasma lot, and dilution factor had a limited impact on DXR-release. Variations in the ammonium sulfate concentration used in solutions for the formation/hydration of liposomes significantly affected DXR release behavior, whereas differences in pH did not. In addition, heating condition in phosphate-buffered saline at lower pH (<6.5) exhibited higher discriminative ability for the release profiles from various liposomes with different concentrations of ammonium sulfate than did ultrasound irradiation. These results are expected to be helpful in the process of establishing appropriate drug release testing methods for PEGylated liposomal DXR.

  14. Caffeine accelerates recovery from general anesthesia

    PubMed Central

    Wang, Qiang; Fong, Robert; Mason, Peggy; Fox, Aaron P.

    2013-01-01

    General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients. PMID:24375022

  15. Regulating Drug Release Behavior and Kinetics from Matrix Tablets Based on Fine Particle-Sized Ethyl Cellulose Ether Derivatives: An In Vitro and In Vivo Evaluation

    PubMed Central

    Shah, Kifayat Ullah; Khan, Gul Majid

    2012-01-01

    The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC) and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P) ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP) as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4) using PharmaTest dissolution apparatus at constant temperature of 37°C ± 0.1. Similarity factor f 2 was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including C max⁡, T max⁡ and AUC0-t were compared which showed an optimized C max⁡ and T max⁡ (P < 0.05). A good correlation was obtained between in vitro drug release and in vivo drug absorption with correlation value (R 2 = 0.934). Relative bioavailability was found to be 93%. Reproducibility of manufacturing process and accelerated stability of the developed tablets were performed in stability chamber at 40 ± 2°C and 75 ± 5% relative humidity for a period of 6 months and were found to be stable throughout the stability period. PMID:22649325

  16. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    PubMed

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non-conforming batches that are explicitly "out of specification" under real-time test conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media.

    PubMed

    Kotla, Niranjan G; Singh, Sima; Maddiboyina, Balaji; Sunnapu, Omprakash; Webster, Thomas J

    2016-01-01

    The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade "A" honey. Approximately 10(10)-10(11) colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials' community by elucidating an easier assay for colonic drug delivery.

  18. Modulation of the formation and release of bovine SRS-A in vitro by several anti-anaphylactic drugs.

    PubMed

    Burka, J F; Eyre, P

    1975-01-01

    Slow-reacting substance of anaphylaxis (SRS-A) is released immunologically from bovine lung in vitro. Various drugs known to protect calves and other animals during anaphylaxis were tested to investigate their modulation of the formation and release of SRS-A. The anti-inflammatory drugs, meclofenamate and aspirin, potentiated SRS-A release. Chlorphenesin and diethylcarbamazine citrate at high concentrations both inhibited SRS-A release. Two new anti-anaphylactic drugs, PR-D-92-EA and M&B 22,948, were particularly effective in inhibiting SRS-A release at low concentrations. The possible modes of actions of these drugs are discussed.

  19. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.

    PubMed

    Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka

    2015-11-02

    In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.

  20. Potential applications for halloysite nanotubes based drug delivery systems

    NASA Astrophysics Data System (ADS)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate could be released in a sustained manner; (2) cytotoxicity test confirmed the biocompatibility of HNTs and methotrexate coated HNTs; (3) proliferation test confirmed the growth inhibition of released methotrexate on osteosarcoma cells; and (4) nylon-6 could prolong the sustained release of methotrexate from polyelectrolytes coated HNTs. Another application comes from the prevention of surgical site infection. It is a common complication in surgery, which may prolong hospital stay, increase mortality rate, and cause additional financial burden for patients. By directly releasing antibiotics at the surgical site, it is supposed to enhance the drug efficacy and improve the treatment outcome. Therefore, the same HNTs based system was tested with E. coli in vitro to show the potential of delivering antibiotics to enhance the prevention of surgical site infection. Nitrofurantoin was incorporated within HNTs using the layer-by-layer coating technique, and the drug coated HNTs were filled into nylon-6 again. Results showed that (1) nitrofurantoin could be incorporated with this HNTs based drug delivery system, and released in a sustained manner; (2) nylon-6 could prolong the sustained release of nitrofurantoin from polyelectrolytes coated HNTs; and (3) released nitrofurantoin could severely inhibit E. coil growth. Therefore, a tunable drug delivery system based on HNTs was developed, and a great potential of medical application in drug delivery was shown.

  1. Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide/metal oxide-based hybrids.

    PubMed

    Mhlanga, Nikiwe; Ray, Suprakas Sinha

    2015-01-01

    For decades, studies on drug-release kinetics have been an important topic in the field of drug delivery because they provide important insights into the mechanism of drug release from carriers. In this work, polylactide (PLA), doxorubicin (DOX), and metal oxide (MO) (titanium dioxide, magnetic iron oxide, and zinc oxide) spheres were synthesised using the solvent-evaporation technique and were tested for sustained drug release. The efficacy of a dosage system is determined by its ability to deliver the drug at a sustained rate, afford an increased plasma half-life, a minimum exposure of toxic drugs to healthy cells and a high drug pay load. Mathematical models were used to elucidate the release mechanism of the drug from the spheres. The release fitted a zero-order model with a correlation coefficient in the range of 0.9878-0.9891 and the release mechanism followed an anomalous release, meaning drug release was afforded through both diffusion and the dissolution of PLA. Therefore, PLA/DOX/MO released the same amount of drug per unit time. Consequently, the potential for PLA use as a carrier was ascertained. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 49 CFR 40.323 - May program participants release drug or alcohol test information in connection with legal...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...

  3. 49 CFR 40.323 - May program participants release drug or alcohol test information in connection with legal...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...

  4. 49 CFR 40.323 - May program participants release drug or alcohol test information in connection with legal...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...

  5. 49 CFR 40.323 - May program participants release drug or alcohol test information in connection with legal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...

  6. 49 CFR 40.323 - May program participants release drug or alcohol test information in connection with legal...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...

  7. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin.

    PubMed

    Rasoulzadehzali, Monireh; Namazi, Hassan

    2018-04-27

    The present project describes the facile preparation of novel pH-sensitive bio-nanocomposite hydrogel beads based on chitosan (CH) and GO-Ag nanohybrid particles for controlled release of anti-cancer drugs such as doxorubicin (DOX). The loading efficiency of doxorubicin into test beads was measured via UV-vis spectroscopy analysis and was found to be high. The formation of silver nanoparticles on the GO sheets and structural characteristics were evaluated via FT-IR, TEM, XRD, and SEM techniques. In addition, the antibacterial activity, swelling and drug release profiles of prepared nanocomposite beads were evaluated. Also, in vitro drug release test was performed in order to investigate the efficiency of CH/GO-Ag nanocomposite hydrogel beads as a drug carrier for controlled release of anti-cancer drugs such as doxorubicin (DOX). A more sustained and controlled drug release profile was observed for CH/GO-Ag nanocomposite hydrogel beads that enhanced by increasing the GO-Ag nanohybrid particles content. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Formulation characteristics and in vitro release testing of cyclosporine ophthalmic ointments.

    PubMed

    Dong, Yixuan; Qu, Haiou; Pavurala, Naresh; Wang, Jiang; Sekar, Vasanthakumar; Martinez, Marilyn N; Fahmy, Raafat; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming

    2018-06-10

    The aim of the present study was to investigate the relationship between formulation/process variables versus the critical quality attributes (CQAs) of cyclosporine ophthalmic ointments and to explore the feasibility of using an in vitro approach to assess product sameness. A definitive screening design (DSD) was used to evaluate the impact of formulation and process variables. The formulation variables included drug percentage, percentage of corn oil and lanolin alcohol. The process variables studied were mixing temperature, mixing time and the method of mixing. The quality and performance attributes examined included drug assay, content uniformity, image analysis, rheology (storage modulus, shear viscosity) and in vitro drug release. Of the formulation variables evaluated, the percentage of the drug substance and the percentage of corn oil in the matrix were the most influential factors with respect to in vitro drug release. Conversely, the process parameters tested were observed to have minimal impact. An evaluation of the release mechanism of cyclosporine from the ointment revealed an interplay between formulation (e.g. physicochemical properties of the drug and ointment matrix type) and the release medium. These data provide a scientific basis to guide method development for in vitro drug release testing of ointment dosage forms. These results demonstrate that the in vitro methods used in this investigation were fit-for-purpose for detecting formulation and process changes and therefore amenable to assessment of product sameness. Published by Elsevier B.V.

  9. An alternative approach based on artificial neural networks to study controlled drug release.

    PubMed

    Reis, Marcus A A; Sinisterra, Rubén D; Belchior, Jadson C

    2004-02-01

    An alternative methodology based on artificial neural networks is proposed to be a complementary tool to other conventional methods to study controlled drug release. Two systems are used to test the approach; namely, hydrocortisone in a biodegradable matrix and rhodium (II) butyrate complexes in a bioceramic matrix. Two well-established mathematical models are used to simulate different release profiles as a function of fundamental properties; namely, diffusion coefficient (D), saturation solubility (C(s)), drug loading (A), and the height of the device (h). The models were tested, and the results show that these fundamental properties can be predicted after learning the experimental or model data for controlled drug release systems. The neural network results obtained after the learning stage can be considered to quantitatively predict ideal experimental conditions. Overall, the proposed methodology was shown to be efficient for ideal experiments, with a relative average error of <1% in both tests. This approach can be useful for the experimental analysis to simulate and design efficient controlled drug-release systems. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.

    PubMed

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Spray-dried nanofibrillar cellulose microparticles for sustained drug release.

    PubMed

    Kolakovic, Ruzica; Laaksonen, Timo; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni

    2012-07-01

    Nanofibrillar cellulose (also referred to as cellulose nanofibers, nanocellulose, microfibrillated or nanofibrillated cellulose) has gained a lot of attention in recent years in different research areas including biomedical applications. In this study we have evaluated the applicability of nanofibrillar cellulose (NFC) as a material for the formation of matrix systems for sustained drug delivery. For that purpose, drug loaded NFC microparticles were produced by a spray drying method. The microparticles were characterized in terms of size and morphology, total drug loading, and physical state of the encapsulated drug. Drug release from the microparticles was assessed by dissolution tests, and suitable mathematical models were used to explain the drug releasing kinetics. The particles had spherical shapes with diameters of around 5 μm; the encapsulated drug was mainly in amorphous form. The controlled drug release was achieved. The drug releasing curves were fitted to a mathematical model describing the drug releasing kinetics from a spherical matrix. Different drugs had different release kinetics, which was a consequence of several factors, including different solubilities of the drugs in the chosen medium and different affinities of the drugs to the NFC. It can be concluded that NFC microparticles can sustain drug release by forming a tight fiber network and thus limit drug diffusion from the system. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system.

    PubMed

    Malipeddi, Venkata Ramana; Awasthi, Rajendra; Ghisleni, Daniela Dal Molim; de Souza Braga, Marina; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Dua, Kamal

    2017-02-01

    The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.

  13. Sustained release of antibiotics from injectable and thermally responsive polypeptide depots.

    PubMed

    Adams, Samuel B; Shamji, Mohammed F; Nettles, Dana L; Hwang, Priscilla; Setton, Lori A

    2009-07-01

    Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to undergo in situ depot formation at body temperature. ELPs were modified to enable loading with the antibiotics, cefazolin, and vancomycin, followed by induction of the phase transition in vitro. Cefazolin and vancomycin concentrations were monitored, as well as bioactivity of the released antibiotics, to test an ability of the ELP depot to provide for prolonged release of bioactive drugs. Further tests of formulation viscosity were conducted to test suitability as an injectable drug carrier. Results demonstrate sustained release of therapeutic concentrations of bioactive antibiotics by the ELP, with first-order time constants for drug release of approximately 25 h for cefazolin and approximately 500 h for vancomycin. These findings illustrate that an injectable, in situ forming ELP depot can provide for sustained release of antibiotics with an effect that varies across antibiotic formulation. ELPs have important advantages for drug delivery, as they are known to be biocompatible, biodegradable, and elicit no known immune response. These benefits suggest distinct advantages over currently used carriers for antibiotic drug delivery in orthopedic applications. (c) 2008 Wiley Periodicals, Inc.

  14. Interferon-gamma (INF-gamma) release test can detect cutaneous adverse effects to statins.

    PubMed

    Goldberg, Ilan; Isman, Gila; Shirazi, Idit; Brenner, Sarah

    2009-12-01

    An increasing number of cutaneous adverse effects are being reported as use of statins becomes more widespread. A study was undertaken to establish the relationship between statin and a cutaneous reaction by the in vitro interferon-gamma (INF-gamma) release test. The lymphocytes of 20 patients with suspected drug-induced skin reaction were incubated with and without the drug. The level of INF-gamma from the supernatant was measured by enzyme-linked immunosorbent assay (ELISA), and the increase calculated. Response was positive in 27 (21.43%) of the 126 drugs. Statin was the only drug with a positive response in 80% of those cases. Nine of 20 patients (45.0%) had complete resolution after discontinuation of the drug; 6 (30.0%) who replaced one drug by another statin had partial or no resolution; and 5 (20.0%) had no resolution despite cessation of statins of all kinds. A positive INF-gamma release test was found in patients who developed skin reactions while taking statins; the test's reliability was strengthened by prompt improvement following elimination of the suspected drug in the majority of patients.

  15. In vivo predictive release methods for medicated chewing gums.

    PubMed

    Gajendran, Jayachandar; Kraemer, Johannes; Langguth, Peter

    2012-10-01

    Understanding the performance of a drug product in vivo plays a key role in the development of meaningful in vitro drug release methodology. In case of functional chewing gums, the mode and the mechanism of release and the site of application differ significantly from other conventional solid oral dosage forms and require a special consideration to extract meaningful information from clinical studies. In the current study, suitable drug release methodology was developed to predict the in vivo performance of an investigated chewing gum product. Different parameters of the drug release testing apparatus described in the Ph. Eur. and Pharmeuropa were evaluated. Drug release data indicate that the parameters, chewing distance, chewing frequency and twisting motion, affect the drug release. Higher drug release was observed when the frequency was changed from 40 chews/min to 60 chews/min for apparatus A and B, as was the case for the twisting motion when changed from 20º to 40º for apparatus B. As far as the chewing distance is concerned, the release rate was in the following order; apparatus A: 0.3 mm > 0.5 mm > 0.7 mm; apparatus B: 1.4 mm > 1.6 mm > 1.8 mm. A suitable apparatus set-up for in vitro release testing was identified. The method will be useful for the establishment of in vitro in vivo correlations (IVIVC) for medicated chewing gums. Interchangeability of the apparatus for a product is not generally recommended without prior knowledge of the performance of the product, as the construction and principle of operation for the apparatus differ considerably. Copyright © 2012 John Wiley & Sons, Ltd.

  16. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    PubMed

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  17. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Zero-order drug delivery system: theory and preliminary testing.

    PubMed

    Brooke, D; Washkuhn, R J

    1977-02-01

    A new approach to zero-order drug delivery that includes geometric factors is described. An experimental device based on the theory was tested by following the release of stearic acid into ethanol. Three separate trials indicated that the solid was released via a zero-order process in a reproducible manner.

  19. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.

    PubMed

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi

    2015-07-25

    The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Non-invasive continuous imaging of drug release from soy-based skin equivalent using wide-field interferometry

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.

    2013-04-01

    We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.

  1. Natural gum-type biopolymers as potential modified nonpolar drug release systems.

    PubMed

    Salamanca, Constain H; Yarce, Cristhian J; Moreno, Roger A; Prieto, Vanessa; Recalde, Juanita

    2018-06-01

    In this work, the relationship between surface properties and drug release mechanism from binary composition tablets formed by quetiapine fumarate and biopolymer materials was studied. The biopolymers correspond to xanthan and tragacanth gums, which are projected as modified drug release systems. The surface studies were carried out by the sessile drop method, while the surface free energy (SFE) was determinate through Young-Dupree and OWRK semi-empirical models. On the other hand, the drug release studies were performed by in vitro dissolution tests, where the data were analyzed through kinetic models of zero order, first order, Higuchi, and Korsmeyer-Peppas. The results showed that depending on the type and the proportion of biopolymer, surface properties, and the drug release processes are significantly affected, wherein tragacanth gum present a usual erosion mechanism, while xanthan gum describes a swelling mechanism that controls the release of the drug. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Determining drug release rates of hydrophobic compounds from nanocarriers

    PubMed Central

    D’Addio, Suzanne M.; Bukari, Abdallah A.; Dawoud, Mohammed; Bunjes, Heike; Rinaldi, Carlos; Prud’homme, Robert K.

    2016-01-01

    Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on ‘lipid sinks’ and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298440

  3. Determining drug release rates of hydrophobic compounds from nanocarriers.

    PubMed

    D'Addio, Suzanne M; Bukari, Abdallah A; Dawoud, Mohammed; Bunjes, Heike; Rinaldi, Carlos; Prud'homme, Robert K

    2016-07-28

    Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on 'lipid sinks' and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. © 2016 The Author(s).

  4. 21 CFR 660.46 - Samples; protocols; official release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Samples; protocols; official release. 660.46 Section 660.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface...

  5. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers.

    PubMed

    Janas, Christine; Mast, Marc-Phillip; Kirsamer, Li; Angioni, Carlo; Gao, Fiona; Mäntele, Werner; Dressman, Jennifer; Wacker, Matthias G

    2017-06-01

    The dispersion releaser (DR) is a dialysis-based setup for the analysis of the drug release from nanosized drug carriers. It is mounted into dissolution apparatus2 of the United States Pharmacopoeia. The present study evaluated the DR technique investigating the drug release of the model compound flurbiprofen from drug solution and from nanoformulations composed of the drug and the polymer materials poly (lactic acid), poly (lactic-co-glycolic acid) or Eudragit®RSPO. The drug loaded nanocarriers ranged in size between 185.9 and 273.6nm and were characterized by a monomodal size distribution (PDI<0.1). The membrane permeability constants of flurbiprofen were calculated and mathematical modeling was applied to obtain the normalized drug release profiles. For comparing the sensitivities of the DR and the dialysis bag technique, the differences in the membrane permeation rates were calculated. Finally, different formulation designs of flurbiprofen were sensitively discriminated using the DR technology. The mechanism of drug release from the nanosized carriers was analyzed by applying two mathematical models described previously, the reciprocal powered time model and the three parameter model. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Effect of Formulation Excipients and Thermal Treatment on the Release Properties of Lisinopril Spheres and Tablets.

    PubMed

    Amador Ríos, Zoriely; Ghaly, Evone Shehata

    2015-01-01

    Multiparticulate systems are used in the development of controlled release systems. The objective of this study was to determine the effect of the wax level, the type of excipient, and the exposure of the tablets to thermal treatment on drug release. Spheres from multiparticulate system with different wax levels and excipients were developed using the drug Lisinopril and compressed into tablets; these tablets were analyzed to determine the drug release. All tablets contained constant level of Lisinopril (10% w/w) and Compritol (30% and 50% w/w). Also, as a diluent, all of them contained 30% w/w Avicel and 30% w/w dibasic calcium phosphate or lactose, or 60% Avicel. Tablets compacted from spheres prepared by extruder/marumerizer and using 30% w/w lipid and 60% Avicel released 84% of drug at six hours of dissolution testing, while tablets of the same composition but prepared using 30% dibasic calcium phosphate and 30% Avicel released 101%. When the tablets were thermally treated, the drug release reduced. As the percent of lipid increased in the formulation, the drug release decreased. Compaction of tablets prepared from spheres with wax has potential for controlling the drug release.

  7. Facile preparation and characterization of pH sensitive Mt/CMC nanocomposite hydrogel beads for propranolol controlled release.

    PubMed

    Farhadnejad, Hassan; Mortazavi, Seyed Alireza; Erfan, Mohammad; Darbasizadeh, Behzad; Motasadizadeh, Hamidreza; Fatahi, Yousef

    2018-05-01

    The main aim of the present study was to design pH-sensitive nanocomposite hydrogel beads, based on carboxymethyl cellulose (CMC) and montmorillonite (Mt)-propranolol (PPN) nanohybrid, and evaluate whether the prepared nanocomposite beads could potentially be used as oral drug delivery systems. PPN-as a model drug-was intercalated into the interlayer space of Mt clay mineral via the ion exchange procedure. The resultant nanohybrid (Mt-PPN) was applied to fabricate nanocomposite hydrogel beads by association with carboxymethyl cellulose. The characterization of test samples was performed using different techniques: X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), thermal gravity analysis (TGA), and scanning electron microscopy (SEM). The drug encapsulation efficiency was evaluated by UV-vis spectroscopy, and was found to be high for Mt/CMC beads. In vitro drug release test was performed in the simulated gastrointestinal conditions to evaluate the efficiency of Mt-PPN/CMC nanocomposite beads as a controlled-release drug carrier. The drug release profiles indicated that the Mt-PPN/CMC nanocomposite beads had high stability against stomach acid and a sustained- and controlled-release profile for PPN under the simulated intestinal conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. In Situ Loading of Drugs into Mesoporous Silica SBA-15.

    PubMed

    Wan, Mi Mi; Li, Yan Yan; Yang, Tian; Zhang, Tao; Sun, Xiao Dan; Zhu, Jian Hua

    2016-04-25

    In a new strategy for loading drugs into mesoporous silica, a hydrophilic (heparin) or hydrophobic drug (ibuprofen) is encapsulated directly in a one-pot synthesis by evaporation-induced self-assembly. In situ drug loading significantly cuts down the preparation time and dramatically increases the loaded amount and released fraction of the drug, and appropriate drug additives favor a mesoporous structure of the vessels. Drug loading was verified by FTIR spectroscopy and release tests, which revealed much longer release with a larger amount of heparin or ibuprofen compared to postloaded SBA-15. Besides, the in vitro anticoagulation properties of the released heparin and the biocompatibility of the vessels were carefully assessed, including activated partial thromboplastin time, thrombin time, hemolysis, platelet adhesion experiments, and the morphologies of red blood cells. A concept of new drug-release agents with soft core and hard shell is proposed and offers guidance for the design of novel drug-delivery systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 28 CFR 2.204 - Conditions of supervised release.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... if the supervision officer finds that the releasee has tested positive for illegal drugs or has... with drug testing, possessed a firearm, or tested positive for illegal controlled substances more than... releasee's residence, workplace, or vehicle. (v) The releasee shall submit to a drug or alcohol test...

  10. 28 CFR 2.204 - Conditions of supervised release.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... if the supervision officer finds that the releasee has tested positive for illegal drugs or has... with drug testing, possessed a firearm, or tested positive for illegal controlled substances more than... releasee's residence, workplace, or vehicle. (v) The releasee shall submit to a drug or alcohol test...

  11. 28 CFR 2.204 - Conditions of supervised release.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... if the supervision officer finds that the releasee has tested positive for illegal drugs or has... with drug testing, possessed a firearm, or tested positive for illegal controlled substances more than... releasee's residence, workplace, or vehicle. (v) The releasee shall submit to a drug or alcohol test...

  12. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    PubMed

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  13. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption.

    PubMed

    Shi, Yi; Gao, Ping; Gong, Yuchuan; Ping, Haili

    2010-10-04

    A biphasic in vitro test method was used to examine release profiles of a poorly soluble model drug, celecoxib (CEB), from its immediate release formulations. Three formulations of CEB were investigated in this study, including a commercial Celebrex capsule, a solution formulation (containing cosolvent and surfactant) and a supersaturatable self-emulsifying drug delivery system (S-SEDDS). The biphasic test system consisted of an aqueous buffer and a water-immiscible organic solvent (e.g., octanol) with the use of both USP II and IV apparatuses. The aqueous phase provided a nonsink dissolution medium for CEB, while the octanol phase acted as a sink for CEB partitioning. For comparison, CEB concentration-time profiles of these formulations in the aqueous medium under either a sink condition or a nonsink condition were also explored. CEB release profiles of these formulations observed in the aqueous medium from either the sink condition test, the nonsink condition test, or the biphasic test have little relevance to the pharmacokinetic observations (e.g., AUC, C(max)) in human subjects. In contrast, a rank order correlation among the three CEB formulations is obtained between the in vitro AUC values of CEB from the octanol phase up to t = 2 h and the in vivo mean AUC (or C(max)) values. As the biphasic test permits a rapid removal of drug from the aqueous phase by partitioning into the organic phase, the amount of drug in the organic phase represents the amount of drug accumulated in systemic circulation in vivo. This hypothesis provides the scientific rationale for the rank order relationship among these CEB formulations between their CEB concentrations in the organic phase and the relative AUC or C(max). In addition, the biphasic test method permits differentiation and discrimination of key attributes among the three different CEB formulations. This work demonstrates that the biphasic in vitro test method appears to be useful as a tool in evaluating performance of formulations of poorly water-soluble drugs and to provide potential for establishing an in vitro-in vivo relationship.

  14. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  15. Comparative drug release measurements in limited amounts of liquid: a suppository formulation study.

    PubMed

    Welch, Ken; Ek, Ragnar; Strømme, Maria

    2006-07-01

    A novel method for the investigation of drug formulations in limited liquid volumes is presented. The experimental setup consists of a measurement cell containing an absorbent sponge cloth placed between two parallel electrodes. Conductivity measurements are used to monitor the drug release from the dosage form. By varying the amount of water contained in the absorbent cloth surrounding the dosage form, it is possible to measure the drug release performance of the dosage form in very limited amounts of water. The method was employed to test four different tablet formulations consisting of the model drug NaCl incorporated in excipient matrices of hard fat, polyethylene glycol, microcrystalline cellulose and a mixture of microcrystalline cellulose and croscarmellose sodium (Ac-Di-Sol). The drug release rates of the different formulations in limited water volumes differed markedly from the release rates in an excess of water. Whereas the release rates from all tablet types in an excess of water showed only minor differences among the tablet types, the release rates from the tablets formulated with disintegrating excipients were clearly superior in limited water volumes. The developed method for drug release in limited volumes of liquid should be suitable for evaluation of rectal dosage forms.

  16. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  17. Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation.

    PubMed

    Podaru, George; Ogden, Saralyn; Baxter, Amanda; Shrestha, Tej; Ren, Shenqiang; Thapa, Prem; Dani, Raj Kumar; Wang, Hongwang; Basel, Matthew T; Prakash, Punit; Bossmann, Stefan H; Chikan, Viktor

    2014-10-09

    Fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard release assay is based on the increase of the fluorescence signal from 5(6)-carboxyfluorescein dye when the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in the case of the MgSO4. The experiments also indicate that the magnetic nanoparticles generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.

  18. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. © 2016 John Wiley & Sons A/S.

  19. Formulation and evaluation of chitosan/polyethylene oxide nanofibers loaded with metronidazole for local infections.

    PubMed

    Zupančič, Špela; Potrč, Tanja; Baumgartner, Saša; Kocbek, Petra; Kristl, Julijana

    2016-12-01

    Nanofibers combined with an antimicrobial represent a powerful strategy for treatment of various infections. Local infections usually have a low fluid volume available for drug release, whereas pharmacopoeian dissolution tests include a much larger receptor volume. Therefore, the development of novel drug-release methods that more closely resemble the in-vivo conditions is necessary. We first developed novel biocompatible and biodegradable chitosan/polyethylene oxide nanofibers using environmentally friendly electrospinning of aqueous polymer solutions, with the inclusion of the antimicrobial metronidazole. Here, the focus is on the characterization of these nanofibers, which have high potential for bioadhesion and retention at the site of application. These can be used where prolonged retention of the delivery system at an infected target site is needed. Drug release was studied using three in-vitro methods: a dissolution apparatus (Apparatus 1 of the European Pharmacopoeia), vials, and a Franz diffusion cell. In contrast to other studies, here the Franz diffusion cell method was modified to introduce a small volume of medium with the nanofibers in the donor compartment, where the nanofibers swelled, eroded, and released the metronidazole, which then diffused into the receptor compartment. This set-up with nanofibers in a limited amount of medium released the drug more slowly compared to the other two in-vitro methods that included larger volumes of medium. These findings show that drug release from nanofibers strongly depends on the release method used. Therefore, in-vitro test methods should closely resemble the in-vivo conditions for more accurate prediction of drug release at a therapeutic site. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Influence of Postprandial Intragastric Pressures on Drug Release from Gastroretentive Dosage Forms.

    PubMed

    Schneider, Felix; Hoppe, Melanie; Koziolek, Mirko; Weitschies, Werner

    2018-05-29

    Despite extensive research in the field of gastroretentive dosage forms, this "holy grail" of oral drug delivery yet remained an unmet goal. Especially under fasting conditions, the reproducible retention of dosage forms in the stomach seems to be an impossible task. This is why such systems are often advised to be taken together with food. But also the postprandial motility can contribute significantly to the failure of gastroretentive dosage forms. To investigate the influence of postprandial pressure conditions on drug release from such systems, we used a novel in vitro dissolution tool, the dissolution stress test device. With the aid of this device, we simulated three different intragastric pressure profiles that may occur after postprandial intake. These transit scenarios were based on recently obtained, postprandial SmartPill® data. The tested systems, Glumetza® 1000 and Madopar® HBS 125, are marketed dosage forms that are based on different approaches to achieve proper gastric retention. All three transit scenarios revealed a highly pressure-sensitive drug release behavior, for both drugs. For Madopar® HBS 125, nearly complete drug release was observed even after early occurring pressures. Glumetza® 1000 seemed to be more resistant to these, most likely due to incomplete wetting of the system. On the contrary to these findings, data from standard dissolution tests using the paddle apparatus displayed controlled drug release for both systems for about 6 h. Based on these results, it can be doubted that established gastroretentive systems stay intact over a longer period of time, even under postprandial conditions.

  1. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  2. Applicability of low-melting-point microcrystalline wax to develop temperature-sensitive formulations.

    PubMed

    Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-10-30

    Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties

    DOE PAGES

    Dong, Fuping; Firkowska-Boden, Izabela; Arras, Matthias M. L.; ...

    2017-01-13

    Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabledmore » sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.« less

  4. Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Fuping; Firkowska-Boden, Izabela; Arras, Matthias M. L.

    Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabledmore » sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.« less

  5. Understanding the drug release mechanism from a montmorillonite matrix and its binary mixture with a hydrophilic polymer using a compartmental modelling approach

    NASA Astrophysics Data System (ADS)

    Choiri, S.; Ainurofiq, A.

    2018-03-01

    Drug release from a montmorillonite (MMT) matrix is a complex mechanism controlled by swelling mechanism of MMT and an interaction of drug and MMT. The aim of this research was to explain a suitable model of the drug release mechanism from MMT and its binary mixture with a hydrophilic polymer in the controlled release formulation based on a compartmental modelling approach. Theophylline was used as a drug model and incorporated into MMT and a binary mixture with hydroxyl propyl methyl cellulose (HPMC) as a hydrophilic polymer, by a kneading method. The dissolution test was performed and the modelling of drug release was assisted by a WinSAAM software. A 2 model was purposed based on the swelling capability and basal spacing of MMT compartments. The model evaluation was carried out to goodness of fit and statistical parameters and models were validated by a cross-validation technique. The drug release from MMT matrix regulated by a burst release mechanism of unloaded drug, swelling ability, basal spacing of MMT compartment, and equilibrium between basal spacing and swelling compartments. Furthermore, the addition of HPMC in MMT system altered the presence of swelling compartment and equilibrium between swelling and basal spacing compartment systems. In addition, a hydrophilic polymer reduced the burst release mechanism of unloaded drug.

  6. Evaluation of the resistance of a geopolymer-based drug delivery system to tampering.

    PubMed

    Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne

    2014-04-25

    Tamper-resistance is an important property of controlled-release formulations of opioid drugs. Tamper-resistant formulations aim to increase the degree of effort required to override the controlled release of the drug molecules from extended-release formulations for the purpose of non-medical use. In this study, the resistance of a geopolymer-based formulation to tampering was evaluated by comparing it with a commercial controlled-release tablet using several methods commonly used by drug abusers. Because of its high compressive strength and resistance to heat, much more effort and time was required to extract the drug from the geopolymer-based formulation. Moreover, in the drug-release test, the geopolymer-based formulation maintained its controlled-release characteristics after milling, while the drug was released immediately from the milled commercial tablets, potentially resulting in dose dumping. Although the tampering methods used in this study does not cover all methods that abuser could access, the results obtained by the described methods showed that the geopolymer matrix increased the degree of effort required to override the controlled release of the drug, suggesting that the formulation has improved resistance to some common drug-abuse tampering methods. The geopolymer matrix has the potential to make the opioid product less accessible and attractive to non-medical users. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Opioid tolerance and urine drug testing among initiates of extended-release or long-acting opioids in Food and Drug Administration's Sentinel System.

    PubMed

    Larochelle, Marc R; Cocoros, Noelle M; Popovic, Jennifer; Dee, Elizabeth C; Kornegay, Cynthia; Ju, Jing; Racoosin, Judith A

    A risk evaluation and mitigation strategy for extended-release and long-acting (ER/LA) opioid analgesics was approved by the Food and Drug Administration in 2012. Our objective was to assess frequency of opioid tolerance and urine drug testing for individuals initiating ER/LA opioid analgesics. Retrospective cohort study. Sentinel, a distributed database with electronic healthcare data on >190 million predominantly commercially insured members. Members under age 65 initiating ER/LA opioid analgesics between January 2009 and December 2013. We examined the proportion of opioid-tolerant-only ER/LA opioid analgesic initiates meeting tolerance criteria: receipt of ≥30 mg oxycodone equivalents per day in 7 days prior to the first opioid-tolerant-only dispensing. We separately examined the proportion of new users of extended-release oxycodone (ERO) and other ER/LA opioid analgesics with a claim for a urine drug test in the 30 days prior to, and separately for the 183 days after, dispensing. We identified 79,824 ERO, 7,343 extended-release hydromorphone, and 91,778 transdermal fentanyl opi-oid-tolerant-only episodes. Tolerance criteria were met in 64 percent of ERO, 64 percent of extended-release hydromorphone and 40 percent of transdermal fentanyl episodes. We identified 210,581 incident ERO and 311,660 other ER/LA opioid analgesic episodes. Use of urine drug testing for ERO compared with other ER/LA opioid analgesics was: 4 percent vs 14 percent respectively in the 30 days prior to initiation and 9 percent vs 23 percent respectively in the 183 days following initiation. These results suggest potential areas for improving appropriate ER/LA opioid analgesic prescribing practices.

  8. Tuning model drug release and soft-tissue bioadhesion of polyester films by plasma post-treatment.

    PubMed

    Mogal, Vishal T; Yin, Chaw Su; O'Rorke, Richard; Boujday, Souhir; Méthivier, Christophe; Venkatraman, Subbu S; Steele, Terry W J

    2014-04-23

    Plasma treatments are investigated as a post-production method of tuning drug release and bioadhesion of poly(lactic-co-glycolic acid) (PLGA) thin films. PLGA films were treated under varying conditions by controlling gas flow rate, composition, treatment time, and radio frequency (RF) power. In vitro release of the drug-like molecule fluorescein diacetate (FDAc) from plasma-treated PLGA was tunable by controlling RF power; an increase of 65% cumulative release is reported compared to controls. Bioadhesion was sensitive to RF power and treatment time, assessed using ex vivo shear-stress tests with wetted swine aorta. We report a maximum bioadhesion ∼6-fold that of controls and 5-fold that of DOPA-based mussel adhesives tested to swine skin.1 The novelty of this post-treatment is the activation of a hydrophobic polyester film for bioadhesion, which can be quenched, while simultaneously tuning drug-release kinetics. This exemplifies the promise of plasma post-treatment for in-clinic bioadhesive activation, along with technological advancements, i.e., atmospheric plasma and hand-held "plasma pencils".

  9. [In vitro drug release behavior of carrier made of porous glass ceramics].

    PubMed

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  10. Development and Characterization of Chitosan Cross-Linked With Tripolyphosphate as a Sustained Release Agent in Tablets, Part I: Design of Experiments and Optimization.

    PubMed

    Pinto, Colin A; Saripella, Kalyan K; Loka, Nikhil C; Neau, Steven H

    2018-04-01

    Certain issues with the use of particles of chitosan (Ch) cross-linked with tripolyphosphate (TPP) in sustained release formulations include inefficient drug loading, burst drug release, and incomplete drug release. Acetaminophen was added to Ch:TPP particles to test for advantages of drug addition extragranularly over drug addition made during cross-linking. The influences of Ch concentration, Ch:TPP ratio, temperature, ionic strength, and pH were assessed. Design of experiments allowed identification of factors and 2-factor interactions that have significant effects on average particle size and size distribution, yield, zeta potential, and true density of the particles, as well as drug release from the directly compressed tablets. Statistical model equations directed production of a control batch that minimized span, maximized yield, and targeted a t 50 of 90 min (sample A); sample B that differed by targeting a t 50 of 240-300 min to provide sustained release; and sample C that differed from sample B by maximizing span. Sample B maximized yield and provided its targeted t 50 and the smallest average particle size, with the higher zeta potential and the lower span of samples B and C. Extragranular addition of a drug to Ch:TPP particles achieved 100% drug loading, eliminated a burst drug release, and can accomplish complete drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation.

    PubMed

    Pineros, Isabel; Slowing, Karla; Serrano, Dolores R; de Pablo, Esther; Ballesteros, Maria Paloma

    2017-04-01

    Development of analgesic and anti-inflammatory controlled-released injectable microemulsions utilising lysine clonixinate (LC) as model drug and generally regarded as safe (GRAS) excipients. Different microemulsions were optimised through pseudo-ternary phase diagrams and characterised measuring droplet size, viscosity, ex vivo haemolytic activity and in vitro drug release. The anti-inflammatory and analgesic activity was tested in mice (Hot plate test) and rats (Carrageenan-induced paw edema test) respectively and their activity was compared to an aqueous solution of LC salt. The aqueous solution showed a faster and shorter response whereas the optimised microemulsion increased significantly (p<0.01) the potency and duration of the analgesic and anti-inflammatory activity after deep intramuscular injection. The droplet size and the viscosity were key factors to control the drug release from the systems and enhance the effect of the formulations. The microemulsion consisting of Labrafil®/Lauroglycol®/Polysorbate 80/water with LC (56.25/18.75/15/10, w/w) could be a promising formulation after buccal surgery due to its ability to control the drug release and significantly achieve greater analgesic and anti-inflammatory effect over 24h. Copyright © 2016. Published by Elsevier B.V.

  12. Correlation of dissolution and disintegration results for an immediate-release tablet.

    PubMed

    Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming

    2018-02-20

    The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants.

    PubMed

    Kempin, Wiebke; Franz, Christian; Koster, Lynn-Christine; Schneider, Felix; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne

    2017-06-01

    The 3D printing technique of fused deposition modeling® (FDM) has lately come into focus as a potential fabrication technique for pharmaceutical dosage forms and medical devices that allows the preparation of delivery systems with nearly any shape. This is particular promising for implants administered at application sites with a high anatomical variability where an individual shape adaption appears reasonable. In this work different polymers (Eudragit®RS, polycaprolactone (PCL), poly(l-lactide) (PLLA) and ethyl cellulose (EC)) were evaluated with respect to their suitability for FDM of drug loaded implants and their drug release behaviour was evaluated. The fluorescent dye quinine was used as a model drug to visualize drug distribution in filaments and implants. Quinine loaded filaments were produced by solvent casting and subsequent hot melt extrusion (HME) and model implants were printed as hollow cylinders using a standard FDM printer. Parameters were found at which model implants (hollow cylinders, outer diameter 4-5mm, height 3mm) could be produced from all tested polymers. The drug release which was examined by incubation of the printed implants in phosphate buffered saline solution (PBS) pH 7.4 was highly dependent on the used polymer. The fastest relative drug release of approximately 76% in 51days was observed for PCL and the lowest for Eudragit®RS and EC with less than 5% of quinine release in 78 and 100days, respectively. For PCL further filaments were prepared with different quinine loads ranging from 2.5% to 25% and thermal analysis proved the presence of a solid dispersion of quinine in the polymer for all tested concentrations. Increasing the drug load also increased the overall percentage of drug released to the medium since nearly the same absolute amount of quinine remained trapped in PCL at the end of drug release studies. This knowledge is valuable for future developments of printed implants with a desired drug release profile that might be controlled by the choice of the polymer and the drug load. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    PubMed

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Untethered magnetic millirobot for targeted drug delivery.

    PubMed

    Iacovacci, Veronica; Lucarini, Gioia; Ricotti, Leonardo; Dario, Paolo; Dupont, Pierre E; Menciassi, Arianna

    2015-01-01

    This paper reports the design and development of a novel millimeter-sized robotic system for targeted therapy. The proposed medical robot is conceived to perform therapy in relatively small diameter body canals (spine, urinary system, ovary, etc.), and to release several kinds of therapeutics, depending on the pathology to be treated. The robot is a nearly-buoyant bi-component system consisting of a carrier, in which the therapeutic agent is embedded, and a piston. The piston, by exploiting magnetic effects, docks with the carrier and compresses a drug-loaded hydrogel, thus activating the release mechanism. External magnetic fields are exploited to propel the robot towards the target region, while intermagnetic forces are exploited to trigger drug release. After designing and fabricating the robot, the system has been tested in vitro with an anticancer drug (doxorubicin) embedded in the carrier. The efficiency of the drug release mechanism has been demonstrated by both quantifying the amount of drug released and by assessing the efficacy of this therapeutic procedure on human bladder cancer cells.

  16. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  17. 49 CFR 40.27 - May an employer require an employee to sign a consent or release in connection with the DOT drug...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TESTING PROGRAMS Employer Responsibilities § 40.27 May an employer require an employee to sign a consent or release in connection with the DOT drug and alcohol testing program? No, as an employer, you must... 49 Transportation 1 2010-10-01 2010-10-01 false May an employer require an employee to sign a...

  18. Glycerogelatin-based ocular inserts of aceclofenac: physicochemical, drug release studies and efficacy against prostaglandin E₂-induced ocular inflammation.

    PubMed

    Mathurm, Manish; Gilhotra, Ritu Mehra

    2011-01-01

    An attempt has been made in the present study to formulate soluble ocular inserts of aceclofenac to facilitate the bioavailability of the drug into the eye, as no eye drop solution could be formulated. Glycero-gelatin ocular inserts/films were prepared and physicochemical parameters and drug release profiles of glycerol-gelatin films of aceclofenac were compared with surface cross-linked films of similar compositions. Ocular irritation of the developed formulation was also checked by HET-CAM test and efficacy of the developed formulation against prostaglandin-induced ocular inflammation in rabbit eye was determined. The non-cross-linked films showed poor mechanical, physicochemical properties, and very little potential of sustaining drug release, however cross-linking the films enhanced tensile strength by 70%, but elasticity decreased by 95%. The cross-linked ocular inserts showed less swelling than non-cross-linked. Formulation AF8 (20% gelatin and 70% glycerin, treated by cross-linker for 1 h) demonstrated the longest drug release for 24 h. As per the kinetic models all films showed a constant drug release with Higuchi diffusion mechanism. Formulation was found to be practically non-irritant. The optimized formulation was tested and compared with eye drops of aceclofenac for anti-inflammatory activity in rabbits against PGE₂-induced inflammation. In vivo studies with developed formulation indicated a significant inhibition of PGE₂-induced PMN migration as compared to eye drops. In conclusion, ocular inserts of aceclofenac was found promising as it achieved sustained drug release and better pharmacodynamic activity.

  19. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    PubMed

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Novel drug delivering conduit for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay

    2017-12-01

    Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1-10 ng ml-1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p  <  0.05). This drug delivery nerve guide can release NGF for extended periods of time and enhance axon growth in vitro and in vivo and has the potential to improve nerve regeneration following a peripheral nerve injury. Significance. This integrated drug delivering nerve guide simplifies the design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial-drug conjugate each time.

  2. The pentamer channel stiffening model for drug action on human rhinovirus HRV-1A

    PubMed Central

    Vaidehi, Nagarajan; Goddard, William A.

    1997-01-01

    Development of effective drugs against the rhinovirus (HRV) responsible for the common cold remains a challenge because there are over 100 serotypes. This process could be significantly aided by an understanding of the atomistic mechanism by which such drugs work. We suggest that the most effective drugs against HRV-1A act by stiffening the pentamer channel of the viral coat through which the RNA is released, preventing the steps leading to uncoating. Using molecular dynamics methods we tested this Pentamer Channel Stiffening Model (PCSM) by examining the changes in strain energy associated with opening the pentamer channel through which the RNA is released. We find that the PCSM strain correlates well with the effectiveness of the WIN (Sterling–Winthrop) drugs for HRV-1A. To illustrate the use of the PCSM to predict new drugs and to prioritize experimental tests, we tested three modifications of the WIN drugs that are predicted to be nearly as effective (for HRV-1A) as the best current drug. PMID:9122218

  3. Towards more realistic in vitro release measurement techniques for biodegradable microparticles.

    PubMed

    Klose, D; Azaroual, N; Siepmann, F; Vermeersch, G; Siepmann, J

    2009-03-01

    To better understand the importance of the environmental conditions for drug release from biodegradable microparticles allowing for the development of more appropriate in vitro release measurement techniques. Propranolol HCl diffusion in various agarose gels was characterized by NMR and UV analysis. Fick's law was used to theoretically predict the mass transport kinetics. Drug release from PLGA-based microparticles in such agarose gels was compared to that measured in agitated bulk fluids ("standard" method). NMR analysis revealed that the drug diffusivity was almost independent of the hydrogel concentration, despite of the significant differences in the systems' mechanical properties. This is due to the small size of the drug molecules/ions with respect to the hydrogel mesh size. Interestingly, the theoretically predicted drug concentration-distance-profiles could be confirmed by independent experiments. Most important from a practical point of view, significant differences in the release rates from the same batch of PLGA-based microparticles into a well agitated bulk fluid versus a semi-solid agarose gel were observed. Great care must be taken when defining the in vitro conditions for drug release measurements from biodegradable microparticles. The obtained new insight can help facilitating the development of more appropriate in vitro release testing procedures.

  4. Functional bone-mimetic scaffolds of bicontinuous, thermo-responsive L 3-phase silica/hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kim, Kyung Ja

    2007-12-01

    This work presents the highly controlled drug delivery system free from the burst release at an initial stage and equipped with the capability of long term drug release. The nanoporous drug releasing reservoir was combined with porous body resembling cancellous bone. The materials were prepared by the integration of synthesized inorganic hydroxyapatite (HA) and the hybrid gels of bicontinuous sponge-phased L3 silicate and thermo-responsive poly(N-isopropylacrylamide) (L3-PNIPAm gels). The materials were designed to have the three dimensionally interconnected heterogeneous porosity of macro- and mesoporosity, in which the HA has the macroporosity of 150μm to be impregnated the drug into the pores and the L3-PNIPAm gels have mesoporosity of 5 nm to regulate the temperature sensitive drug-release through the pore channels and polymeric network, respectively. Consequently, this bone-mimetic system gave the highly long term drug release over the 60 days without the burst release. The release rate could be controlled with the change of the HA and PNIPAm composition ratios. The structural characterization was achieved by TEM, SEM, XRD, Micro-Raman spectroscopy, BET, and the direct contact cytotoxicity test was also described.

  5. Coatings from blends of Eudragit® RL and L55: a novel approach in pH-controlled drug release.

    PubMed

    Wulff, R; Leopold, C S

    2014-12-10

    The aim of the present study was to investigate the drug release from theophylline pellets coated with blends of quaternary polymethacrylate and methacrylic acid-ethyl acrylate copolymers. Pellets were coated with blends of Eudragit(®) RL PO (RL) and Eudragit(®) L 100-55 (L55) in either organic solution or aqueous dispersion at various copolymer ratios. Generally, the coatings were less permeable for theophylline in phosphate buffer pH 6.8 than they were in hydrochloric acid pH 1.2. Further dissolution experiments revealed that the differences in drug release are caused by the different pH values. A design of experiments for historical data was performed on drug release data of pellets with different coating levels and blend ratios of RL and L55. Drug release in hydrochloric acid was predominantly affected by the coating level, whereas for drug release in phosphate buffer pH 6.8 the blend ratio was the determining factor. As expected, dissolution experiments at different pH values showed that drug release depends on the ratio of dissociated L55 to RL because ionization is a requirement for the functional groups to interact. With the dissolution test for delayed-release solid dosage forms (Ph. Eur.) it was demonstrated that the unique release behavior in neutral media is preserved after the exposition to hydrochloric acid. These findings indicate that the combination of RL and L55 in coatings prepared from solutions is a promising approach for controlled drug release. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Formulation, in vitro evaluation and study of variables on tri-layered gastro-retentive delivery system of diltiazem HCl.

    PubMed

    Raut Desai, Shilpa; Rohera, Bhagwan D

    2014-03-01

    Tri-layered floating tablets using only one grade of polyethylene oxide (PEO) would enable easy manufacturing, reproducibility and controlled release for highly soluble drugs. To evaluate the potential of PEO as a sole polymer for the controlled release and to study the effect of formulation variables on release and gastric retention of highly soluble Diltiazem hydrochloride (DTZ). Tablets were compressed with middle layer consisting of drug and polymer while outer layers consisted of polymer with sodium bicarbonate. Design of formulation to obtain 12 h, zero-order release and rapid floatation was done by varying the grades, quantity of PEO and sodium bicarbonate. Dissolution data were fitted in drug release models and swelling/erosion studies were undertaken to verify the drug release mechanism. Effect of formulation variables and tablet surface morphology using scanning electron microscopy were studied. The optimized formula passed the criteria of USP dissolution test I and exhibited floating lag-time of 3-4 min. Drug release was faster from low molecular weight (MW) PEO as compared to high MW. With an increase in the amount of sodium bicarbonate, faster buoyancy was achieved due to the increased CO2 gas formation. Drug release followed zero-order and gave a good fit to the Korsmeyer-Peppas model, which suggested that drug release was due to diffusion through polymer swelling. Zero-order, controlled release profile with the desired buoyancy can be achieved by using optimum formula quantities of sodium bicarbonate and polymer. The tri-layered system shows promising delivery of DTZ, and possibly other water-soluble drugs.

  7. Dissolution Failure of Solid Oral Drug Products in Field Alert Reports.

    PubMed

    Sun, Dajun; Hu, Meng; Browning, Mark; Friedman, Rick L; Jiang, Wenlei; Zhao, Liang; Wen, Hong

    2017-05-01

    From 2005 to 2014, 370 data entries of dissolution failures of solid oral drug products were assessed with respect to the solubility of drug substances, dosage forms [immediate release (IR) vs. modified release (MR)], and manufacturers (brand name vs. generic). The study results show that the solubility of drug substances does not play a significant role in dissolution failures; however, MR drug products fail dissolution tests more frequently than IR drug products. When multiple variables were analyzed simultaneously, poorly water-soluble IR drug products failed the most dissolution tests, followed by poorly soluble MR drug products and very soluble MR drug products. Interestingly, the generic drug products fail dissolution tests at an earlier time point during a stability study than the brand name drug products. Whether the dissolution failure of these solid oral drug products has any in vivo implication will require further pharmacokinetic, pharmacodynamic, clinical, and drug safety evaluation. Food and Drug Administration is currently conducting risk-based assessment using in-house dissolution testing, physiologically based pharmacokinetic modeling and simulation, and post-market surveillance tools. At the meantime, this interim report will outline a general scheme of monitoring dissolution failures of solid oral dosage forms as a pharmaceutical quality indicator. Published by Elsevier Inc.

  8. 3D printing of tablets containing multiple drugs with defined release profiles.

    PubMed

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J

    2015-10-30

    We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This 'polypill' made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and 'dial up' this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug-excipient interaction. The printed formulations were evaluated for drug release using USP dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer-Peppas release kinetics dependent upon the active/excipient ratio used. Copyright © 2015. Published by Elsevier B.V.

  9. Oral controlled release optimization of pellets prepared by extrusion-spheronization processing.

    PubMed

    Bianchini, R; Vecchio, C

    1989-06-01

    Controlled release high dosage forms of a typical drug such as Indobufen were prepared as multiple-unit doses by employing extrusion-spheronization processing and subsequently film coating operations. The effects of drug particle size, drug/binder ratio, extruder screen size and preparation reproducibility on the physical properties of the spherical granules were evaluated. Controlled release optimization was obtained on the same granules by coating with polymeric membranes of different thickness consisting of water-soluble and insoluble substances. Film coating was applied from an organic solution using pan coating technique. The drug diffusion is allowed by dissolution of part of the membrane leaving small channels of the polymer coat. Further preparations were conducted to evaluate coatings applied from aqueous dispersion (pseudolatex) using air suspension coating technique. In this system the drug diffusion is governed by the intrinsic pore network of the membrane. The most promising preparations having the desired in vitro release, were metered into hard capsules to obtain the drug unit dosage. Accelerated stability tests were carried out to assess the influence of time and the other storage parameters on the drug release profile.

  10. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  11. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  12. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  13. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  14. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  15. Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery

    PubMed Central

    Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari azar, Zahra

    2013-01-01

    In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween®80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams. PMID:24523740

  16. Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery.

    PubMed

    Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari Azar, Zahra

    2013-01-01

    In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween(®)80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams.

  17. Polymer excipients enable sustained drug release in low pH from mechanically strong inorganic geopolymers.

    PubMed

    Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria

    2012-01-01

    Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid-ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids.

  18. Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective.

    PubMed

    Solomon, Deepak; Gupta, Nilesh; Mulla, Nihal S; Shukla, Snehal; Guerrero, Yadir A; Gupta, Vivek

    2017-11-01

    In the past few years, measurement of drug release from pharmaceutical dosage forms has been a focus of extensive research because the release profile obtained in vitro can give an indication of the drug's performance in vivo. Currently, there are no compendial in vitro release methods designed for liposomes owing to a range of experimental challenges, which has created a major hurdle for both development and regulatory acceptance of liposome-based drug products. In this paper, we review the current techniques that are most often used to assess in vitro drug release from liposomal products; these include the membrane diffusion techniques (dialysis, reverse dialysis, fractional dialysis, and microdialysis), the sample-and-separate approach, the in situ method, the continuous flow, and the modified United States Pharmacopeia methods (USP I and USP IV). We discuss the principles behind each of the methods and the criteria that assist in choosing the most appropriate method for studying drug release from a liposomal formulation. Also, we have included information concerning the current regulatory requirements for liposomal drug products in the United States and in Europe. In light of increasing costs of preclinical and clinical trials, applying a reliable in vitro release method could serve as a proxy to expensive in vivo bioavailability studies. Graphical Abstract Appropriate in-vitro drug release test from liposomal products is important to predict the in-vivo performance.

  19. Dissolution Studies of Papaverine Hydrochloride from Tablets in Three Pharmacopoeia Apparatuses.

    PubMed

    Polski, Andrzej; Kasperek, Regina; Rogowska, Magdalena; Iwaniak, Karol; Sobòtka-Polska, Karolina; Poleszak, Ewa

    2015-01-01

    In tablet production, the most important aspects are the physical properties of the tablets and their dissolution studies, which can be performed in four pharmacopoeial apparatuses. There are differences between them in construction and action, so differences in the results obtained are possible. The aim of the study was to compare the release of a model drug substance (papaverine hydrochloride) from tablets in three pharmacopoeial dissolution apparatus: a basket, a paddle (closed system) and flow-through cell (open system). The one series of tablets were produced by direct compression in a tablet press. The physical properties of the tablets (weight and size uniformity test, friability and hardness tests, disintegration time test), drug content and the release study of papaverine hydrochloride from tablets were studied in three dissolution apparatuses. The content of the active substance was studied spectrophotometrically. All tablets met the pharmacopoeic requirements. Over 80% of the model substance released from the tablets after 14 min in flow through the cell apparatus, while in the basket and paddle apparatuses after about 7 min 30 sec. After 20 min, the amount of the substance released in all apparatuses was over 90%. The release profiles of the drug substance in paddle and basket apparatuses were similar, while in the flow-through cell apparatus it was slightly slower. When the study conditions and composition of the tablets are the same, the release profile of the drug can be affected by the type of dissolution apparatus.

  20. Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.

    PubMed

    Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal

    2016-01-01

    The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.

  1. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Injectable visible light-cured glycol chitosan hydrogels with controlled release of anticancer drugs for local cancer therapy in vivo: a feasible study.

    PubMed

    Hyun, Hoon; Park, Min Ho; Lim, Wonbong; Kim, So Yeon; Jo, Danbi; Jung, Jin Seok; Jo, Gayoung; Um, Sewook; Lee, Deok-Won; Yang, Dae Hyeok

    2018-05-11

    Currently available chemotherapy is associated with serious side effects, and therefore novel drug delivery systems (DDSs) are required to specifically deliver anticancer drugs to targeted sites. In this study, we evaluated the feasibility of visible light-cured glycol chitosan (GC) hydrogels with controlled release of doxorubicin⋅hydrochloride (DOX⋅HCl) as local DDSs for effective cancer therapy in vivo. The storage modulus of the hydrogel precursor solutions was increased as a function of visible light irradiation time. In addition, the swelling ratio of the hydrogel irradiated for 10 s (GC 10 /DOX) was greater than in 60 s (GC 60 /DOX). In vitro release test showed that DOX was rapidly released in GC 10 /DOX compared with GC 60 /DOX due to the density of cross-linking. In vitro and in vivo tests including cell viability and measurement of tumor volume showed that the local treatment of GC 10 /DOX yielded substantially greater antitumor effect compared with that of GC 60 /DOX. Therefore, the visible light-cured GC hydrogel system may exhibit clinical potential as a local DDS of anticancer drugs with controlled release, by modulating cross-linking density.

  3. Labile conjugation of a hydrophilic drug to PLA oligomers to modify a drug delivery system: cephradin in a PLAGA matrix.

    PubMed

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramené, B

    2000-01-01

    The physical entrapment of a hydrophilic drug within degradable microspheres is generally difficult because of poor entrapment yield and/or fast release, depending on the microsphere fabrication method. In order to counter the effects of drug hydrophilicity, it is proposed to covalently attach the drug to lactic acid oligomers, with the aim of achieving temporary hydrophobization and slower release controlled by the separation of the drug from the degradable link within the polymer matrix. This strategy was tested on microspheres of the antibiotic cephradin. As the prodrug form, the entrapment of the drug was almost quantitative. The prodrug did degrade in an aqueous medium, modelling body fluids, but cleavage did not occur at the drug-oligomer junction and drug molecules bearing two lactyl residual units were released. When the prodrug is entrapped within a PLAGA matrix, no release was observed within the experimental time period. However, data suggest that conjugation via a bond more sensitive to hydrolysis than the main chain PLA ester bonds should make the system work as desired.

  4. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites

    PubMed Central

    Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Background Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. Methods With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)–DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP–DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. Results SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. Conclusion A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings. PMID:29713169

  5. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    PubMed

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  6. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy

    PubMed Central

    Iqbal, Sakib; Rashid, Mohammad H.; Arbab, Ali S.; Khan, Mujibur

    2017-01-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19–23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50–160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22–90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52–53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%. PMID:28845137

  7. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy.

    PubMed

    Iqbal, Sakib; Rashid, Mohammad H; Arbab, Ali S; Khan, Mujibur

    2017-04-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19-23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50-160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22-90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52-53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%.

  8. Press-coated tablets for time-programmed release of drugs.

    PubMed

    Conte, U; Maggi, L; Torre, M L; Giunchedi, P; La Manna, A

    1993-10-01

    A new dry-coated device for the release of drug after a programmable period of time is proposed. It is intended to be used mainly in the therapy of those diseases which depend on circadian rhythms. Some core formulations, characterized by different release rates and mechanisms (containing diltiazem hydrochloride or sodium diclofenac as model drugs), were coated by compression with different polymeric barrier layers (press-coated systems). The shell formulations tested contained either gellable or erodible polymers. The dissolution profiles of uncoated cores and press-coated devices were compared. The gellable and/or erodible characteristics (properties) of the barrier formulations were also examined by means of a penetrometer. The coatings prevent drug release from the core until the polymeric shell is completely eroded or swollen. This delay in release start is not influenced by the core composition and depends only on the shell formulation. Except for the time-lag, the release kinetics of the drug contained in the core are not significantly influenced by the presence of the erodible barrier, but can be widely modulated using a swellable polymeric shell.

  9. Polycaprolactone nanofibres loaded with 20(S)-protopanaxadiol for in vitro and in vivo anti-tumour activity study

    PubMed Central

    Liu, Dan-qing; Cheng, Zhi-qiang; Feng, Qing-jie; Li, He-jie; Ye, Shu-feng

    2018-01-01

    In this work, 20(S)-protopanaxadiol (PPD)-loaded polycaprolactone (PCL) nanofibres were successfully fabricated by the electrospinning technique using Tween 80 as a solubilizer. Firstly, smooth and continuous nanofibres were collected using suitable solvents and appropriate spinning conditions. Secondly, nanofibre mats were characterized by scanning electron microscopy, thermogravimetric (TG) analysis, Fourier transform infrared spectroscopy and mechanical testing. Finally, nanofibrous membranes were evaluated using water contact angle, in vitro drug release, biodegradation test, in vitro and in vivo anti-tumour activity and cell apoptosis assay. Scanning electron microscopic observations indicated that the diameter of the drug-loaded nanofibres increased with the increase of drug concentration. TG analysis and mechanical test showed that nanofibres were equipped with great thermal and mechanical properties. Biodegradation test exhibited that the structure of fabricated nanofibres had a certain degree of change after 15 days. An in vitro release study showed that PPD from drug-loaded nanofibres could be released in a sustained and prolonged mode. The cytotoxic effect of drug-loaded nanofibre mats examined on human laryngeal carcinoma cells (Hep-2 cells) demonstrated that the prepared nanofibres had a remarkable anti-tumour effect. Meanwhile, the drug-loaded fibre mats showed a super anti-tumour effect in an in vivo anti-tumour study. All in all, PCL nanofibres could be a potential carrier of PPD for cancer treatment. PMID:29892448

  10. Preparation, characterization and evaluation of ranitidine hydrochloride-loaded mucoadhesive microspheres.

    PubMed

    Dhankar, Vandana; Garg, Garima; Dhamija, Koushal; Awasthi, Rajendra

    2014-01-01

    Mucoadhesion enables localization of drugs to a defined region of the gastrointestinal tract through attractive interactions between polymers composing the drug delivery devices and the mucin layer of the intestinal epithelium. Thus, this approach can be used for enhancement of the oral bioavailability of the drug. The current communication deals with the development of ranitidine hydrochloride-loaded chitosan-based mucoadhesive microspheres. Microspheres were prepared by water-in-oil emulsion technique, using glutaraldehyde as a cross-linking agent. The effect of independent variables like stirring speed and polymer-to-drug ratio on dependent variables, i.e. percentage mucoadhesion, percentage drug loading, particle size and swelling index, was examined using a 3(2); factorial design. The microspheres were discrete, spherical, free-flowing and also showed high percentage drug entrapment efficiency (43-70%). An in vitro mucoadhesion test showed that the microspheres adhered strongly to the mucous layer for an extended period of time. The RC 4 batch exhibited a high percentage of drug encapsulation (70%) and mucoadhesion (75%). The drug release was sustained for more than 12 h. The drug release kinetics were found to follow Peppas' kinetics for all the formulations and the drug release was diffusion controlled. The preliminary results of this study suggest that the developed microspheres containing ranitidine hydrochloride could enhance drug entrapment efficiency, reduce the initial burst release and modulate the drug release.

  11. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.

    PubMed

    Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can

    2012-05-01

    A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. Copyright © 2012 Wiley Periodicals, Inc.

  12. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    PubMed

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  13. In silico and in vitro methods to optimize the performance of experimental gastroretentive floating mini-tablets.

    PubMed

    Eberle, Veronika A; Häring, Armella; Schoelkopf, Joachim; Gane, Patrick A C; Huwyler, Jörg; Puchkov, Maxim

    2016-01-01

    Development of floating drug delivery systems (FDDS) is challenging. To facilitate this task, an evaluation method was proposed, which allows for a combined investigation of drug release and flotation. It was the aim of the study to use functionalized calcium carbonate (FCC)-based lipophilic mini-tablet formulations as a model system to design FDDS with a floating behavior characterized by no floating lag time, prolonged flotation and loss of floating capability after complete drug release. Release of the model drug caffeine from the mini-tablets was assessed in vitro by a custom-built stomach model. A cellular automata-based model was used to simulate tablet dissolution. Based on the in silico data, floating forces were calculated and analyzed as a function of caffeine release. Two floating behaviors were identified for mini-tablets: linear decrease of the floating force and maintaining of the floating capability until complete caffeine release. An optimal mini-tablet formulation with desired drug release time and floating behavior was developed and tested. A classification system for a range of varied floating behavior of FDDS was proposed. The FCC-based mini-tablets had an ideal floating behavior: duration of flotation is defined and floating capability decreases after completion of drug release.

  14. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    PubMed

    Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2015-02-01

    This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development of novel electrospun dual-drug fiber mats loaded with a combination of ampicillin and metronidazole.

    PubMed

    Schkarpetkin, Dennis; Reise, Markus; Wyrwa, Ralf; Völpel, Andrea; Berg, Albrecht; Schweder, Martina; Schnabelrauch, Matthias; Watts, David C; Sigusch, Bernd W

    2016-08-01

    Our study was performed with the aim of preparing electrospun polylactide fibers with a combination of ampicillin (AMP) and metronidazole (MNZ) and investigating their drug release behavior and the antibacterial effect on Aggregatibacter actinomycetemcomitans and other oral pathogens. AMP and MNZ were integrated as a combination in two separate fibers (dual fiber mats - DFW mix) of electrospun PLA fiber mats by means of multijet electrospinning and in a single fiber (single fiber mats - SFW mix). HPLC (high-performance liquid chromatography) was used to measure the released drug quantities. Agar diffusion tests were used to determine the antibacterial effect of the eluates on A. actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Enterococcus faecalis. The neutral red test was made to examine the cytocompatibility of the eluates with human gingival fibroblasts (hGFs). The release of the active agents varied with the antibiotic concentrations initially used in the fiber mats, but also with the distribution of the active agents in one or two fibers. Of the total quantity of MNZ (AMP), the SFW mix fiber mats released >60% (>70%) within a span of 5min, and 76% (71%) after 96h. With these drug concentrations released by the fiber mats (≥5m%), an antibacterial effect was achieved on A. actinomycetemcomitans and on all other species tested. Fiber mats and their eluates have no cytotoxic influence on human gingival fibroblasts (hGFs). Electrospun AMP/MNZ-loaded polymer fibers are a potential drug delivery system for use in periodontal and endodontic infections. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    PubMed Central

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  17. Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets.

    PubMed

    Goyanes, Alvaro; Kobayashi, Masanori; Martínez-Pacheco, Ramón; Gaisford, Simon; Basit, Abdul W

    2016-11-30

    Fused deposition modeling (FDM) 3-Dimensional (3D) printing is becoming an increasingly important technology in the pharmaceutical sciences, since it allows the manufacture of personalized oral dosage forms by deposition of thin layers of material. Here, a filament extruder was used to obtain filaments of polyvinyl alcohol (PVA) containing paracetamol or caffeine appropriate for 3D printing. The filaments were used to manufacture caplets for oral administration by FDM 3D printing, with the aim of evaluating the effect of the internal structure (micropore volume), drug loading and composition on drug dissolution behaviour. Micropore volume of the caplets was primarily determined by the presence of large pores due to gaps in the printed layers/net while printing, and the porosity of the caplets was 10 fold higher than the porosity of the extruded filament. Dynamic dissolution drug release tests on the caplets in biorelevant bicarbonate media revealed distinctive release profiles, which were dependent on drug solubility and drug loading. Porosity of the caplets did not help to predict the different drug release profiles. This study confirms the potential of 3D printing to fabricate caplets and helps to elucidate which factors influence drug release from this type of new dosage form. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing.

    PubMed

    Engel, A; Plöger, M; Mulac, D; Langer, K

    2014-01-30

    Nanoparticles composed of poly(DL-lactide-co-glycolide) (PLGA) represent promising colloidal drug carriers for improved drug targeting. Although most research activities are focused on intravenous application of these carriers the peroral administration is described to improve bioavailability of poorly soluble drugs. Based on these insights the manuscript describes a model tablet formulation for PLGA-nanoparticles and especially its analytical characterisation with regard to a nanosized drug carrier. Besides physico-chemical tablet characterisation according to pharmacopoeias the main goal of the study was the development of a suitable analytical method for the quantification of nanoparticle release from tablets. An analytical flow field-flow fractionation (AF4) method was established and validated which enables determination of nanoparticle content in solid dosage forms as well as quantification of particle release during dissolution testing. For particle detection a multi-angle light scattering (MALS) detector was coupled to the AF4-system. After dissolution testing, the presence of unaltered PLGA-nanoparticles was successfully proved by dynamic light scattering and scanning electron microscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Gum Ghatti--a pharmaceutical excipient: development, evaluation and optimization of sustained release mucoadhesive matrix tablets of domperidone.

    PubMed

    Gurpreetarora; Malik, Karan; Rana, Vikas; Singh, Inderbir

    2012-01-01

    The objective of this study was to extend the GI residence time of the dosage form and to control the release of domperidone using directly compressible sustained release mucoadhesive matrix (SRMM) tablets. A 2-factor centre composite design (CCD) was employed to study the influence of independent variables like gum ghatti (GG) (X1) and hydroxylpropylmethyl cellulose K 15M (HPMC K 15M) (X2) on dependent variable like mucoadhesive strength, tensile strength, release exponent (n), t50 (time for 50% drug release), rel(10 h) (release after 10 h) and rel(18 h) (release after 18 h). Tablets were prepared by direct compression technology and evaluated for tablet parametric test (drug assay, diameter, thickness, hardness and tensile strength), mucoadhesive strength (using texture analyzer) and in vitro drug release studies. The tensile strength and mucoadhesive strength were found to be increased from 0.665 +/- 0.1 to 1.591 +/- 0.1 MN/cm2 (Z1 to Z9) and 10.789 +/- 0.985 to 50.924 +/- 1.150 N (Z1 to Z9), respectively. The release kinetics follows first order and Hixson Crowell equation indicating drug release following combination of diffusion and erosion. The n varies between 0.834 and 1.273, indicating release mechanism shifts from non fickian (anomalous release) to super case II, which depict that drug follows multiple drug release mechanism. The t50 time was found to increase from 5 +/- 0.12 to 11.4 +/- 0.14 h (Z1 to Z9) and release after 10 and 18 h decreases with increasing concentration of both polymers concluding with release controlling potential of polymers. The accelerated stability studies were performed on optimized formulation as per ICH guideline and the result showed that there was no significant change in tensile strength, mucoadhesive strength and drug assay.

  20. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold.

    PubMed

    Yu, Kui; Zhu, Tonghe; Wu, Yu; Zhou, Xiangxiang; Yang, Xingxing; Wang, Juan; Fang, Jun; El-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2017-03-01

    A dual drug-loaded system is a promising alternative for the sustained drug release system and skin tissue engineering. In this study, a natural sodium montmorillonite (Na-MMT) modified by cetyl trimethyl ammonium bromide (CTAB) was prepared as a carrier to load a model drug - amoxicillin (AMX), the modified organic montmorillonite (CTAB-OMMT) loaded with AMX was marked as AMX@CTAB-OMMT and was subsequently incorporated into poly(ester-urethane) urea (PEUU) and gelatin hybrid nanofibers via electrospinning, resulting in a new drug-loaded nanofibrous scaffold (AMX@CTAB-OMMT-PU75). The scanning electron microscopy (SEM) result showed that the fiber morphology did not change after the embedding of AMX@CTAB-OMMT. Meanwhile, there was a significant increase of mechanical properties for PEUU/Gelatin hybrid nanofibers (PU75) after the incorporation of AMX@CTAB-OMMT and CTAB-OMMT. Importantly, AMX@CTAB-OMMT-PU75 nanofibers showed a kind of sustained drug release property which could be justified reasonably for the controlled release of AMX depending on the various application. The sustained release property could be identified roughly by the result of antibacterial test. The anaphylactic reaction test proved that there was no any anaphylactic reaction or inflammation on the back of rat for AMX@CTAB-OMMT-PU75 nanofibers. Consequently, the prepared drug-loaded AMX@CTAB-OMMT-PU75 nanofibrous scaffold is a promising candidate for application in the skin tissue engineering field and controlled drug release system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Polymer excipients enable sustained drug release in low pH from mechanically strong inorganic geopolymers

    PubMed Central

    Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria

    2012-01-01

    Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid–ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids. PMID:25755991

  2. Formulation and performance characterization of radio-sterilized "progestin-only" microparticles intended for contraception.

    PubMed

    Puthli, Shivanand; Vavia, Pradeep

    2009-01-01

    The aim of this study was to formulate and characterize a microparticulate system of progestin-only contraceptive. Another objective was to evaluate the effect of gamma radio-sterilization on in vitro and in vivo drug release characteristics. Levonorgestrel (LNG) microspheres were fabricated using poly(lactide-co-glycolide) (PLGA) by a novel solvent evaporation technique. The formulation was optimized for drug/polymer ratio, emulsifier concentration, and process variables like speed of agitation and evaporation method. The drug to polymer ratio of 1:5 gave the optimum encapsulation efficiency. Speed of agitation influenced the spherical shape of the microparticles, lower speeds yielding less spherical particles. The speed did not have a significant influence on the drug payloads. A combination of stabilizers viz. methyl cellulose and poly vinyl alcohol with in-water solvent evaporation technique yielded microparticles without any free drug crystals on the surface. This aspect significantly eliminated the in vitro dissolution "burst effect". The residual solvent content was well within the regulatory limits. The microparticles passed the test for sterility and absence of pyrogens. In vitro dissolution conducted on the product before and after gamma radiation sterilization at 2.5 Mrad indicated no significant difference in the drug release patterns. The drug release followed zero-order kinetics in both static and agitation conditions of dissolution testing. The in vivo studies conducted in rabbits exhibited LNG release up to 1 month duration with drug levels maintained within the effective therapeutic window.

  3. 21 CFR 660.4 - Potency test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Potency test. 660.4 Section 660.4 Food and Drugs... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen...

  4. Inorganically modified diatomite as a potential prolonged-release drug carrier.

    PubMed

    Janićijević, Jelena; Krajišnik, Danina; Calija, Bojan; Dobričić, Vladimir; Daković, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milić, Jela

    2014-09-01

    Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (~250mg/g in 2h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8h from both DAMD comprimates (18% after 8h) and PMDMD comprimates (45% after 8h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug

    PubMed Central

    Rahim, Safwan Abdel; Carter, Paul A; Elkordy, Amal Ali

    2015-01-01

    The aim of this work was to design and evaluate effervescent floating gastro-retentive drug delivery matrix tablets with sustained-release behavior using a binary mixture of hydroxyethyl cellulose and sodium alginate. Pentoxifylline was used as a highly water-soluble, short half-life model drug with a high density. The floating capacity, swelling, and drug release behaviors of drug-loaded matrix tablets were evaluated in 0.1 N HCl (pH 1.2) at 37°C±0.5°C. Release data were analyzed by fitting the power law model of Korsmeyer–Peppas. The effect of different formulation variables was investigated, such as wet granulation, sodium bicarbonate gas-forming agent level, and tablet hardness properties. Statistical analysis was applied by paired sample t-test and one-way analysis of variance depending on the type of data to determine significant effect of different parameters. All prepared tablets through wet granulation showed acceptable physicochemical properties and their drug release profiles followed non-Fickian diffusion. They could float on the surface of dissolution medium and sustain drug release over 24 hours. Tablets prepared with 20% w/w sodium bicarbonate at 50–54 N hardness were promising with respect to their floating lag time, floating duration, swelling ability, and sustained drug release profile. PMID:25848220

  6. Preparation and Characterization of Amylose Inclusion Complexes for Drug Delivery Applications.

    PubMed

    Carbinatto, Fernanda M; Ribeiro, Tatiana S; Colnago, Luiz Alberto; Evangelista, Raul Cesar; Cury, Beatriz S F

    2016-01-01

    Amylose complexes with nimesulide (NMS) and praziquantel (PZQ) were prepared by a simple and low cost method, so that high yield (>57%) and drug content (up to 68.16%) were achieved. The influence of drug:polymer ratio, temperature, and presence of palmitic acid on the complexes properties was evaluated. Differential scanning calorimetry, X-ray diffraction, and nuclear magnetic resonance data evidenced the drug-polymer interaction and the formation of inclusion complexes with semi-crystalline structures related to type II complexes. The drug release rates from complexes were lowered in acid media (pH 1.2) and phosphate buffer (pH 6.9). The presence of pancreatin promoted a significant acceleration of the release rates of both drugs, evidencing the enzymatic degradability of these complexes. The highest enzymatic resistance of PZQ1:30PA60°C complex makes the release time longer and the full release of PZQ in phosphate buffer with pancreatin occurred at 240 min, whereas the complexes with NMS and PZQ1:5PA90°C did it in 60 min. According to the Weibull model, the drug release process in media without enzyme occurred by complex mechanisms involving diffusion, swelling, and erosion. In media containing pancreatin, generally, the better correlation was with the first order, evidencing the acceleration of the release rates of drugs in the early stages of the test, due to enzymatic degradation.

  7. Testing lyoequivalency for three commercially sustained-release tablets containing diltiazem hydrochloride.

    PubMed

    Maswadeh, Hamzah A; Al-Hanbali, Othman A; Kanaan, Reem A; Shakya, Ashok K; Maraqa, Anwar

    2010-01-01

    In vitro release kinetics of three commercially available sustained release tablets (SR) diltiazem hydrochloride were studied at pH 1.1 for 2 h and for another 6 h at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process was studied by analyzing the dissolution data using five kinetic equations: the zero-order equation, the first-order equation, the Higuchi square root equation, the Hixson-Crowell cube root law and the Peppas equation. Analyses of the dissolution kinetic data for diltiazem hydrochloride commercial SR tablets showed that both Dilzacard and Dilzem SR tablets released drug by Non-Fickian (Anomalous transport) release with release exponent (n) equal to 0.59 and 0.54, respectively, which indicate the summation of both diffusion and dissolution controlled drug release. Bi-Tildiem SR tablets released drug by super case II (n = 1.29) which indicate zero-order release due to the dissolution of polymeric matrix and relaxation of the polymer chain. This finding was also in agreement with results obtained from application of zero-order and Hixson-Crowell equations. A dissolution profile comparative study was done to test the lyoequivelancy of the three products by using the mean dissolution time (MDT), dissimilarity factor f1 and similarity factor f2. Results showed that the three products are different and not lyoequivalent.

  8. Preparation and controlled release of mesoporous MCM-41/propranolol hydrochloride composite drug.

    PubMed

    Zhai, Qing-Zhou

    2013-01-01

    This article used MCM-41 as a carrier for the assembly of propranolol hydrochloride by the impregnation method. By means of chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and low-temperature N(2) adsorption-desorption at 77 K, the characterization was made for the prepared materials. The propranolol hydrochloride guest assembly capacity was 316.20 ± 0.31 mg/g (drug/MCM-41). Powder XRD test results indicated that during the process of incorporation, the frameworks of the MCM-41 were not destroyed and the crystalline degrees of the host-guest nanocomposite materials prepared still remained highly ordered. Characterization by SEM and TEM showed that the composite material presented spherical particle and the average particle size of composite material was 186 nm. FT-IR spectra showed that the MCM-41 framework existed well in the (MCM-41)-propranolol hydrochloride composite. Low-temperature nitrogen adsorption-desorption results at 77 K showed that the guest partially occupied the channels of the molecular sieves. Results of the release of the prepared composite drug in simulated body fluid indicated that the drug can release up to 32 h and its maximum released amount was 99.20 ± 0.11%. In the simulated gastric juice release pattern of drug, the maximum time for the drug release was discovered to be 6 h and the maximum cumulative released amount of propranolol hydrochloride was 45.13 ± 0.23%. The drug sustained-release time was 10 h in simulated intestinal fluid and the maximum cumulative released amount was 62.05 ± 0.13%. The prepared MCM-41 is a well-controlled drug delivery carrier.

  9. [Anti-tumor effects of DDP-PLLA-CNTs on human cholangiocarcinoma cell line in vitro].

    PubMed

    Li, Maolan; Lu, Wei; Zhang, Fei; Ding, Qichen; Wu, Xiangsong; Tan, Zhujun; Wu, Wenguang; Weng, Hao; Wang, Xuefeng; Shi, Weibin; Dong, Ping; Gu, Jun; Liu, Yingbin

    2014-11-04

    To explore the antitumor effects of DDP-PLLA-CNTs on human cholangiocarcinoma cell line. DDP-PLLA-CNTs were prepared with the method of ultrasound emulsification. The morphology of DDP-PLLA-CNTs was determined by scanning electron microscope (SEM). And its drug loading and drug release curve in vitro was detected by UV-Vis-NIR spectrophotometer. CCK8 was used to test the cytotoxic effects of DDP-PLLA-CNTs at different concentrations on QBC939 cell proliferation.Flow cytometry was employed to measure the changes of apoptotic rate. With excellent controlled-release characteristic of in vitro drug release, DDP-PLLA-CNTs inhibited the proliferation and significantly increased the apoptotic rate of QBC939 cell line. DDP-PLLA-CNTs have drug sustained-release characteristics and can significantly inhibit the proliferation of QBC939 cell line.

  10. Alprazolam absorption kinetics affects abuse liability.

    PubMed

    Mumford, G K; Evans, S M; Fleishaker, J C; Griffiths, R R

    1995-03-01

    To evaluate the behavioral, subjective, and reinforcing effects of immediate-release (IR) alprazolam and extended-release (XR) alprazolam to assess the effect of release rate on laboratory measures of abuse liability. Fourteen healthy men with histories of sedative abuse participated as subjects in a double-blind crossover study. All subjects received placebo, 1 and 2 mg immediate-release alprazolam, and 2 and 3 mg extended-release alprazolam in random order. Behavioral performance, subjective effects, and alprazolam plasma concentrations were assessed repeatedly 1/2 hour before and 1/2, 1, 3, 5, 7, 9, 12, and 24 hours after drug administration. Mean peak alprazolam plasma concentrations occurred 1.7 and 9.2 hours after immediate-release alprazolam and extended-release alprazolam, respectively. Compared to placebo, 2 mg immediate-release alprazolam impaired all measures of psychomotor and cognitive performance (Digit Symbol Substitution Test), motor coordination (circular lights and balance), and memory (digit entry and recall); 2 mg extended-release alprazolam did not affect any of these measures and 3 mg extended-release alprazolam impaired circular lights only. Immediate-release alprazolam, 2 mg, increased all six measures of positive drug effects (e.g., ratings of liking or good effects); none of these measures were increased by 2 mg extended-release alprazolam and only three of the six measures were increased by 3 mg extended-release alprazolam. A drug versus money multiple-choice procedure designed to assess the relative reinforcing effects of each condition was administered 24 hour after the drug. The amount of money subjects were willing to "pay" to take the drug was significantly greater than placebo for both doses of immediate-release alprazolam but for neither dose of extended-release alprazolam. These data indicate that extended-release alprazolam has less potential for abuse than immediate-release alprazolam.

  11. Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Aiyer, Sandhya; Chauhan, Deepak S.; Srivastava, Rohit; Selvaraj, Kaliaperumal

    2016-02-01

    Designing bioresponsive nanocarriers for controlled and efficient intracellular drug release for cancer therapy is a major thrust area in nanomedicine. With recent recognition by the US FDA as a safe material for human trials, mesoporous silica nanoparticles (MSNPs) are being extensively explored as promising theranostic agents. Green fluorescent carbon quantum dots (CQDs), though known as possible alternatives for their more toxic and relatively less efficient predecessors, are less known as gate keepers for drug release control. We report for the first time an efficient bioresponse of CQDs when judiciously designed using glutathione cleavable (redox responsive) disulphide bonds. When the anticancer drug doxorubicin loaded MSNPs are capped with these CQDs, they display promising drug release control on exposure to a mimicked intracellular cancer environment. Their dual functionality is well established with good control on preventing the premature release and exceptional bio-imaging of HeLa cancer cells. Fluorescence images prove selective targeting of HeLa cells by overexpression of folate receptors from the surface functionalised folic acid ligand. Extensive characterisation using XRD, TEM, BET analysis, drug loading tests, drug release kinetics, MTT assay and fluoroscence cell imaging helps in understanding the multifunctionalities of the successful design, extending its scope with exciting prospects towards non-invasive targeted drug delivery and bio-imaging for effective cancer diagnosis and treatment.Designing bioresponsive nanocarriers for controlled and efficient intracellular drug release for cancer therapy is a major thrust area in nanomedicine. With recent recognition by the US FDA as a safe material for human trials, mesoporous silica nanoparticles (MSNPs) are being extensively explored as promising theranostic agents. Green fluorescent carbon quantum dots (CQDs), though known as possible alternatives for their more toxic and relatively less efficient predecessors, are less known as gate keepers for drug release control. We report for the first time an efficient bioresponse of CQDs when judiciously designed using glutathione cleavable (redox responsive) disulphide bonds. When the anticancer drug doxorubicin loaded MSNPs are capped with these CQDs, they display promising drug release control on exposure to a mimicked intracellular cancer environment. Their dual functionality is well established with good control on preventing the premature release and exceptional bio-imaging of HeLa cancer cells. Fluorescence images prove selective targeting of HeLa cells by overexpression of folate receptors from the surface functionalised folic acid ligand. Extensive characterisation using XRD, TEM, BET analysis, drug loading tests, drug release kinetics, MTT assay and fluoroscence cell imaging helps in understanding the multifunctionalities of the successful design, extending its scope with exciting prospects towards non-invasive targeted drug delivery and bio-imaging for effective cancer diagnosis and treatment. Electronic supplementary information (ESI) available: Size distribution histograms, PL spectra of CQDs at different pH values and at different excitation wavelengths, TEM images and the FTIR spectrum. See DOI: 10.1039/c5nr06756a

  12. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules IV.(1)) Evaluation of the controlled release properties for in vivo and in vitro release systems.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2007-11-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. The dissolution test is a very important and useful method for understanding and predicting drug-release properties. It was readily confirmed in the previous paper that the release process could be assessed quantitatively by a combination of the square-root time law and cube-root law equations for ethylcellulose (EC) matrix granules of phenylpropanolamine hydrochloride (PPA). In this paper EC layered granules were used in addition to EC matrix. The relationship between release property and the concentration of PPA in plasma after administration using beagle dogs were examined. Then it was confirmed that the correlativity for EC layered granules and EC matrix were similar each other. Therefore, it was considered that the dissolution test is useful for prediction of changes in concentration of PPA in the blood with time. And it was suggested that EC layered granules were suitable as a controlled release system as well as EC matrix.

  13. Sodium Dodecyl Sulphate-Supported Nanocomposite as Drug Carrier System for Controlled Delivery of Ondansetron.

    PubMed

    Sharma, Gaurav; Naushad, Mu; Thakur, Bharti; Kumar, Amit; Negi, Poonam; Saini, Reena; Chahal, Anterpreet; Kumar, Ashok; Stadler, Florian J; Aqil, U M H

    2018-02-27

    Sodium dodecyl sulphate-supported iron silicophosphate (SDS/FeSP) nanocomposite was successfully fabricated by the co-precipitation method. The SDS/FeSP nanocomposite was investigated as a drug carrier for ondansetron. The cumulative drug release of ondansetron was observed at various pH values for different time intervals, i.e., from 20 min to 48 h. A ranking of the drug release was observed at different pHs; pH 2.2 > saline (pH 5.5) > pH 7.4 > pH 9.4 > distilled water. Maximum release of encapsulated drug was found to be about 45.38% at pH 2.2. The cell viability tests of SDS/FeSP nanocomposite concluded that SDS/FeSP nanocomposite was non-cytotoxic in nature.

  14. Development and characterisation of electrospun timolol maleate-loaded polymeric contact lens coatings containing various permeation enhancers.

    PubMed

    Mehta, Prina; Al-Kinani, Ali A; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan

    2017-10-30

    Despite exponential growth in research relating to sustained and controlled ocular drug delivery, anatomical and chemical barriers of the eye still pose formulation challenges. Nanotechnology integration into the pharmaceutical industry has aided efforts in potential ocular drug device development. Here, the integration and in vitro effect of four different permeation enhancers (PEs) on the release of anti-glaucoma drug timolol maleate (TM) from polymeric nanofiber formulations is explored. Electrohydrodynamic (EHD) engineering, more specifically electrospinning, was used to engineer nanofibers (NFs) which coated the exterior of contact lenses. Parameters used for engineering included flow rates ranging from 8 to 15μL/min and a novel EHD deposition system was used; capable of hosting four lenses, masked template and a ground electrode to direct charged atomised structures. SEM analysis of the electrospun structures confirmed the presence of smooth nano-fibers; whilst thermal analysis confirmed the stability of all formulations. In vitro release studies demonstrated a triphasic release; initial burst release with two subsequent sustained release phases with most of the drug being released after 24h (86.7%) Biological evaluation studies confirmed the tolerability of all formulations tested with release kinetics modelling results showing drug release was via quasi-Fickian or Fickian diffusion. There were evident differences (p<0.05) in TM release dependant on permeation enhancer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release

    NASA Astrophysics Data System (ADS)

    Shao, Jingxin; Xuan, Mingjun; Si, Tieyan; Dai, Luru; He, Qiang

    2015-11-01

    Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid release of encapsulated water-soluble drug. In vivo antitumor tests demonstrate that this microcapsule has the effective ability of inhibiting tumor growth and preventing metastases. Real time in vivo fluorescence imaging results confirm that capsules can be excreted gradually from the animal body which in turn demonstrates the biocompatibility and biodegradation of these biointerfacing GNR-microcapsules. This intelligent system provides a novel anticancer platform with the advantages of controlled release, biological friendliness and credible biosafety.Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid release of encapsulated water-soluble drug. In vivo antitumor tests demonstrate that this microcapsule has the effective ability of inhibiting tumor growth and preventing metastases. Real time in vivo fluorescence imaging results confirm that capsules can be excreted gradually from the animal body which in turn demonstrates the biocompatibility and biodegradation of these biointerfacing GNR-microcapsules. This intelligent system provides a novel anticancer platform with the advantages of controlled release, biological friendliness and credible biosafety. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06350g

  16. Evaluation of zero-order controlled release preparations of nifedipine tablet on dissolution test, together with cost benefit point of view.

    PubMed

    Sakurai, Miyuki; Naruto, Ikue; Matsuyama, Kenji

    2008-05-01

    Many generic drugs have been released to decrease medical expenses, but some problems have been reported with regard to bioavailability and safety. In this study, we compared three once-a-day controlled-release preparations of nifedipine by the dissolution test (one branded and two generic preparations). Although the two generic drugs were equivalent to the branded drug according to the criteria listed in the Japanese "Guideline for Bioequivalence Studies of Generic Products", there was still a possibility of problems arising. For example, side effects could be caused by a rapid increase in the blood level of nifedipine with one generic drug, while bioavailability might be inadequate with the other due to its small area under the concentration vs. time curve. When each drug was prescribed at a dosage of 20 mg once daily for two weeks, the difference in the copayment for the patient was only 10 yen. Accordingly, it is important for doctors and pharmacists to carefully consider whether such a slight difference in price is really a benefit for the patient.

  17. The Research Progress of Targeted Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  18. Photoimages and the release characteristics of lipophilic matrix tablets containing highly water-soluble potassium citrate with high drug loadings.

    PubMed

    Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin

    2007-07-18

    Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.

  19. Pediatric drug formulation of sodium benzoate extended-release granules.

    PubMed

    Combescot, E; Morat, G; de Lonlay, P; Boudy, V

    2016-01-01

    Urea cycle disorders are a group of inherited orphan diseases leading to hyperammonemia. Current therapeutic strategy includes high doses of sodium benzoate leading to three or four oral intakes per day. As this drug is currently available in capsules or in solution, children are either unable to swallow the capsule or reluctant to take the drug due to its strong bitter taste. The objective of the present study was to develop solid, multiparticulate formulations of sodium benzoate, which are suitable for pediatric patients (i.e. flavor-masked, easy to swallow and with a dosing system). Drug layering and coating in a fluidized bed were applied for preparing sustained-release granules. Two types of inert cores (GalenIQ® and Suglets®) and three different polymers (Kollicoat®, Aquacoat® and Eudragit®) were tested in order to select the most appropriate polymer and starter core for our purpose. Physical characteristics and drug release profiles of the pellets were evaluated. A Suglets® core associated with a Kollicoat® coating seems to be the best combination for an extended release of sodium benzoate. A curing period of 8 h was necessary to complete film formation and the resulting drug release pattern was found to be dependent of the acidity of the release medium.

  20. Construction of High Drug Loading and Enzymatic Degradable Multilayer Films for Self-Defense Drug Release and Long-Term Biofilm Inhibition.

    PubMed

    Wang, Bailiang; Liu, Huihua; Sun, Lin; Jin, Yingying; Ding, Xiaoxu; Li, Lingli; Ji, Jian; Chen, Hao

    2018-01-08

    Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin) 10 ((MMT/HA-GS) 10 ) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm 2 , which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 10 5 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.

  1. Thermomechanical Properties, Antibiotic Release, and Bioactivity of a Sterilized Cyclodextrin Drug Delivery System

    PubMed Central

    Halpern, Jeffrey M.; Gormley, Catherine A.; Keech, Melissa; von Recum, Horst A.

    2014-01-01

    Various local drug delivery devices and coatings are being developed as slow, sustained release mechanism for drugs, yet the polymers are typically not evaluated after commercial sterilization techniques. We examine the effect that commercial sterilization techniques have on the physical, mechanical, and drug delivery properties of polyurethane polymers. Specifically we tested cyclodextrin-hexamethyl diisocyanate crosslinked polymers before and after autoclave, ethylene oxide, and gamma radiation sterilization processes. We found that there is no significant change in the properties of polymers sterilized by ethylene oxide and gamma radiation compared to non-sterilized polymers. Polymers sterilized by autoclave showed increased tensile strength (p<0.0001) compared to non-sterilized polymers . In the release of drugs, which were loaded after the autoclave sterilization process, we observed a prolonged release (p<0.05) and a prolonged therapeutic effect (p<0.05) but less drug loading (p<0.0001) compared to non-sterilized polymers. The change in the release profile and tensile strength in polymers sterilized by autoclave was interpreted as being caused by additional crosslinking from residual, unreacted, or partially-reacted crosslinker contained within the polymer. Autoclaving therefore represents additional thermo-processing to modify rate and dose from polyurethanes and other materials. PMID:24949201

  2. Time-controlled release pseudoephedrine tablets: bioavailability and in vitro/in vivo correlations.

    PubMed

    Halsas, M; Penttinen, T; Veski, P; Jürjenson, H; Marvola, M

    2001-09-01

    In chronopharmacotherapy, circadian changes in disease symptoms are taken into account. Press-coated, time-controlled release tablets containing pseudoephedrine hydrochloride as a model drug have been formulated and the suitability of this highly soluble drug in relation to the new drug delivery system was evaluated. Hydroxypropylmethylcellulose was used in the coat of the tablet to adjust drug release. If such a formulation was administered in the evening it would have maximal effect in the early morning, and would be useful for the treatment of nocturnal symptoms. Two cross-over, single-dose bioavailability studies were carried out on eight healthy volunteers. A dissolution test method was developed to establish level A and level C in vitro/in vivo correlation for four formulations. With a low viscosity grade of polymer, peak concentrations were achieved after five hours. The drug was absorbed much more slowly from tablets containing a high viscosity grade polymer, with a plasma peak at ten hours. For further development of the drug delivery system described, a dissolution test method at pH 7.2 at a rotation speed of 150 min-1 is recommended on the basis of level A in vitro/in vivo correlation.

  3. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    PubMed

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.

  4. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    PubMed

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin

    DOE PAGES

    Saha, Dipendu; Moken, Tara; Chen, Jihua; ...

    2015-02-24

    Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m 2 g –1 and pore volume 0.63–1.03 cm 3 g –1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies onmore » human cells with similar materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.« less

  6. Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Dipendu; Moken, Tara; Chen, Jihua

    Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m 2 g –1 and pore volume 0.63–1.03 cm 3 g –1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies onmore » human cells with similar materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.« less

  7. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.

    PubMed

    Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O

    2017-05-30

    The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of a novel cationic hydrogel base on salecan-g-PMAPTAC.

    PubMed

    Wei, Wei; Qi, Xiaoliang; Li, Junjian; Zhong, Yin; Zuo, Gancheng; Pan, Xihao; Su, Ting; Zhang, Jianfa; Dong, Wei

    2017-08-01

    Salecan is a biological macromolecular and biocompatible polysaccharide that has been investigated for recent years. Herein, we report a novel cationic hydrogel fabricated by graft-polymerizing 3-(methacryloylamino)propyl-trimethylammonium chloride (MAPTAC) onto salecan chains. The obtained hydrogels were transparent, solid-elastic, macro-porous, ion-sensitive, and non-cytotoxic. The swelling ratios increased with salecan content, while mechanical strength does the opposite. Moreover, drug delivery test was studied as a potential application. Diclofenac sodium (DS) and insulin were selected as model drugs. Interestingly, in drug loading process, DS molecules exhibited highly affinity to these cationic hydrogels. Almost all the DS molecules in loading solution were absorbed and spread into the hydrogel. For drug release profiles, insulin-loaded hydrogel showed an initial rapid release and a sustained release. As a comparison, DS-loaded hydrogel exhibited a more sustained release profile. Results suggested salecan-g-PMAPTAC hydrogel could be a good candidate for anionic drug loading and delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS): A rapid test for enteric coating thickness and integrity of controlled release pellet formulations.

    PubMed

    Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara

    2018-06-10

    There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Three-Dimensional Printing of Carbamazepine Sustained-Release Scaffold.

    PubMed

    Lim, Seng Han; Chia, Samuel Ming Yuan; Kang, Lifeng; Yap, Kevin Yi-Lwern

    2016-07-01

    Carbamazepine is the first-line anti-epileptic drug for focal seizures and generalized tonic-clonic seizures. Although sustained-release formulations exist, an initial burst of drug release is still present and this results in side effects. Zero-order release formulations reduce fluctuations in serum drug concentrations, thereby reducing side effects. Three-dimensional printing can potentially fabricate zero-order release formulations with complex geometries. 3D printed scaffolds with varying hole positions (side and top/bottom), number of holes (4, 8, and 12), and hole diameters (1, 1.5, and 2 mm) were designed. Dissolution tests and high performance liquid chromatography analysis were conducted. Good correlations in the linear release profiles of all carbamazepine-containing scaffolds with side holes (R(2) of at least 0.91) were observed. Increasing the hole diameters (1, 1.5, and 2 mm) resulted in increased rate of drug release in the scaffolds with 4 holes (0.0048, 0.0065, and 0.0074 mg/min) and 12 holes (0.0021, 0.0050, and 0.0092 mg/min), and the initial amount of carbamazepine released in the scaffolds with 8 holes (0.4348, 0.7246, and 1.0246 mg) and 12 holes (0.1995, 0.8598, and 1.4366 mg). The ultimate goal of this research is to improve the compliance of patients through a dosage form that provides a zero-order drug release profile for anti-epileptic drugs, so as to achieve therapeutic doses and minimize side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Shu; Lu, Yu-Jen; Chen, Jyh-Ping

    2017-04-01

    A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe3O4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which 60% of DOX was released at pH 5.4 and 10% was released at pH 7.4. In contrast, 90% CPT-11 was released at pH 5.4 and 70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy.

  12. A simple and rapid approach to evaluate the in vitro in vivo role of release controlling agent ethyl cellulose ether derivative polymer.

    PubMed

    Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy

    2014-11-01

    Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (p<0.05) in the physicochemical characteristics and release rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (p<0.05) exhibited peaks plasma concentration (cmax=237.66±1.98) and extended the peak time (tmax=4.63±0.24). Good in-vitro in vivo correlation was found (R(2)=0.9883) against drug absorption and drug release. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.

  13. Vinpocetine inhibits glutamate release induced by the convulsive agent 4-aminopyridine more potently than several antiepileptic drugs.

    PubMed

    Sitges, M; Sanchez-Tafolla, B M; Chiu, L M; Aldana, B I; Guarneros, A

    2011-10-01

    4-Aminopyridine (4-AP) is a convulsing agent that in vivo preferentially releases Glu, the most important excitatory amino acid neurotransmitter in the brain. Here the ionic dependence of 4-AP-induced Glu release and the effects of several of the most common antiepileptic drugs (AEDs) and of the new potential AED, vinpocetine on 4-AP-induced Glu release were characterized in hippocampus isolated nerve endings pre-loaded with labelled Glu ([3H]Glu). 4-AP-induced [3H]Glu release was composed by a tetrodotoxin (TTX) sensitive and external Ca2+ dependent fraction and a TTX insensitive fraction that was sensitive to the excitatory amino acid transporter inhibitor, TBOA. The AEDs: carbamazepine, phenytoin, lamotrigine and oxcarbazepine at the highest dose tested only reduced [3H]Glu release to 4-AP between 50-60%, and topiramate was ineffective. Vinpocetine at a much lower concentration than the above AEDs, abolished [3H]Glu release to 4-AP. We conclude that the decrease in [3H]Glu release linked to the direct blockade of presynaptic Na+ channels, may importantly contribute to the anticonvulsant actions of all the drugs tested here (except topiramate); and that the significantly greater vinpocetine effect in magnitude and potency on [3H]Glu release when excitability is exacerbated like during seizures, may involve the increase additionally exerted by vinpocetine in some K+ channels permeability. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Modification of drug release from acetaminophen granules by melt granulation technique - consideration of release kinetics.

    PubMed

    Uhumwangho, M U; Okor, R S

    2006-01-01

    Acetaminophen granules have been formed by a melt granulation process with the objective of retarding drug release for prolonged action formulations. The waxes used were goat wax, carnuba wax and glyceryl monostearate. In the melt granulation procedure, acetaminophen powder was triturated with the melted waxes and passed through a sieve of mesh 10 (aperture size 710 microm). The content of wax in resulting granules ranged from 10 to 40%w/w. Acetaminophen granules were also formed by the convectional method of wet granulation with starch mucilage (20%w/w). The granules were subjected to in-vitro drug release tests. The release data were subjected to analysis by three different well-established mathematical models (release kinetics) namely, - zero order flux, first order, and the Higuchi square root of time relationship. The convectional granules exhibited an initial zero order flux (first 55%) followed by a first order release profile (the remaining 45%). The pattern of drug release from the melt granulations was consistent with the first order kinetic and the Higuchi square root of time relationship, indicating a diffusion-controlled release mechanism. The first order release rate constant of the convectional granules was 1.95 +/- 0.02 h(-1). After melt granulation (wax content, 20%w/w) the rate constants dropped drastically to 0.130+/-0.001 h(-1) (goat wax), 0.120+/-0.003 h(-1) (carnuba wax), and 0.130+/-0.002 h(-1) (glyceryl monosterate) indicating that all three waxes were equivalent in retarding drug release from the melt granulations.

  15. Cytarabine-AOT catanionic vesicle-loaded biodegradable thermosensitive hydrogel as an efficient cytarabine delivery system.

    PubMed

    Liu, Jing; Jiang, Yue; Cui, Yuting; Xu, Chuanshan; Ji, Xiaoqing; Luan, Yuxia

    2014-10-01

    Carrier with high drug loading content is one of the most important issues in drug delivery system. In the present work, an ion-pair amphiphilic molecule composed of anticancer drug cation and surfactant anion is used for straightforward fabricating vesicles for cancer therapy. Anticancer drug (cytarabine hydrochloride) and anionic surfactant (AOT) are selected for the fabrication of ion-pair amphiphilic molecule. One amphiphilic molecule contains one drug cation, thus the drug loading content is 50% (mol/mol) in theory. The in vitro drug release study shows that the release time of cytarabine is about 3 times of the pure cytarabine solution and the permeability of cytarabine has been improved about 160 times tested by parallel artificial membrane permeability assay model. However, the hemolytic toxicity is largely decreased in the studied concentration range. The in vitro cytotoxicity results show that cytarabine-AOT amphiphiles have a much lower IC50 (drug concentration resulting in 50% cell death) value and a higher cell inhibition rate comparing with their respective components, indicating its effective therapy for leukemic cells. To obtain a longer and a convenient drug release system, the prepared vesicles are further incorporated into the thermosensitive PLGA-PEG-PLGA hydrogel to prepare a subcutaneous administration. The in vivo drug release results indicate that cytarabine-AOT vesicle-loaded hydrogel is a good injectable delivery system for controlled release of cytarabine for cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Latent tuberculosis infections in hard-to-reach drug using population-detection, prevention and control.

    PubMed

    Hwang, Lu-Yu; Grimes, Carolyn Z; Beasley, R Palmer; Graviss, Edward A

    2009-12-01

    Interferon-gamma release assays (IGRAs) need be evaluated for effectiveness as screening tests for tuberculosis (TB) infection in drug users. These tests have demonstrated improved sensitivity and specificity, but have not been studied in drug users. These one step blood tests are intended to replace the tuberculin skin test (TST), which is difficult to use and requires 48 hour follow-up, so they are expected to be particularly suitable for risk groups, like drug users, in whom follow-up is problematic. Drug users have traditionally been identified as being at increased risk for acquiring TB disease. The results of our pilot study using the TST and simpler and more sensitive interferon-gamma release assays showed that about 45% of current drug users in Houston tested have at least one test positive for latent tuberculosis infection (LTBI). These preliminary data suggest that there is an important reservoir of LTBI in drug using populations, and the risk of progression to active TB disease with other infections is great. However, LTBI in drug using populations has not been studied in depth and deserves further investigation. We need to evaluate the validity of IGRAs for detection of latent TB infection, the factors associated with LTBI, the incidence and risk for developing active TB disease in drug users and the effectiveness of early treatment of LTBI. We believe that using better tuberculosis screening tools will allow us to more accurately measure the prevalence of latent TB infection and incidence of active TB disease in drug using populations and develop more effective TB prevention and treatment interventions in the community.

  17. 28 CFR 2.204 - Conditions of supervised release.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... releasee's residence, workplace, or vehicle. (v) The releasee shall submit to a drug or alcohol test... alcoholic beverages to excess and shall not illegally buy, possess, use, or administer a controlled... if the supervision officer finds that the releasee has tested positive for illegal drugs or has...

  18. Recent advances in testing of microsphere drug delivery systems.

    PubMed

    Andhariya, Janki V; Burgess, Diane J

    2016-01-01

    This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.

  19. Nonclinical evaluation of the potential for mast cell activation by an erythropoietin analog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, James L., E-mail: James.Weaver@fda.hhs.gov; Boyne, Michael, E-mail: mboyne@biotechlogic.com; Pang, Eric, E-mail: Eric.Pang@fda.hhs.gov

    The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30 min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. Themore » purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2 min after dosing at the highest concentrations tested. - Highlights: • Peginesatide caused severe anaphylactoid reactions in 0.2% of patients. • Both formulated drug and vehicle cause degranulation of rat mast cells. • Phenol was identified as the vehicle component causing degranulation. • Human mast cells show similar dose response to phenol as rat mast cells. • Histamine release could be caused in vivo in rats by rapid phenol injection.« less

  20. Characterization of Porous, Dexamethasone-Releasing Polyurethane Coatings for Glucose Sensors

    PubMed Central

    Vallejo-Heligon, Suzana G.; Klitzman, Bruce; Reichert, William M.

    2014-01-01

    Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release, and bioactivity characterization of tubular, porous dexamethasone (Dex) releasing polyurethane coatings designed to attenuate local inflammation in the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy (SEM) and Micro-computed tomography (Micro-CT) showed a controlled porosity and coating thickness. In vitro drug release from coatings monitored over two weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance. PMID:25065548

  1. Low Molecular Weight Glucosamine/L-lactide Copolymers as Potential Carriers for the Development of a Sustained Rifampicin Release System: Mycobacterium Smegmatis as a Tuberculosis Model

    NASA Astrophysics Data System (ADS)

    Ragusa, Jorge Alejandro

    Tuberculosis, a highly contagious disease, ranks as the second leading cause of death from an infectious disease, and remains a major global health problem. In 2013, 9 million new cases were diagnosed and 1.5 million people died worldwide from tuberculosis. This dissertation aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (molecular core building unit) and L-lactide (GluN-LLA). Stable particles with a very high 50% drug loading capacity were made via electrohydrodynamic atomization. Prolonged release (>14 days) of RIF from these particles is demonstrated. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism, and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) (reference material) particles did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated an increment in cell death as particle dose increased, but was not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. GluN-LLA particles led to higher uptakes than the PLA particles. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and the particles showed a favorable long term drug release effect in killing intracellular bacteria compared to free RIF. The studies presented and discussed in this dissertation suggest that these drug carrier materials are potentially very attractive candidates for the development of high-payload, sustained-release antibiotic/resorbable polymer particle systems for treating bacterial lung infections.

  2. Development and evaluation of ultra-small nanostructured lipid carriers: novel topical delivery system for athlete's foot.

    PubMed

    Singh, Samipta; Singh, Mahendra; Tripathi, Chandra Bhushan; Arya, Malti; Saraf, Shubhini A

    2016-02-01

    Athlete's foot is a fungal infection of the foot which causes dry, itchy, flaky condition of the skin caused by Trichophyton species. In this study, the potential of ultra-small nanostructured lipid carrier (usNLC)-based topical gel of miconazole nitrate for the treatment of athlete's foot was evaluated. Nanostructure lipid carriers (NLCs) prepared by melt emulsification and sonication technique were characterized for particle size, drug entrapment, zeta potential and drug release. The optimized usNLC revealed particle size 53.79 nm, entrapment efficiency 86.77%, zeta potential -12.9 mV and polydispersity index (PDI) of 0.27. The drug release studies of usNLC showed initial fast release followed by sustained release with 91.99% drug released in 24 h. Optimized usNLCs were incorporated into carbopol-934 gel and evaluated for pH (6.8), viscosity (36,400 mPa s) and texture analysis. Antifungal activity against Trichophyton mentagrophytes exhibited wider zone of inhibition, 6.6 ± 1.5 mm for optimized usNLC3 gel viz-à-viz marketed gel formulation (3.7 ± 1.2 mm). Hen's egg test-chorioallantoic membrane (HET-CAM) irritation test confirmed optimized usNLC gel to be non-irritant to chorioallantoic membrane. Improved dermal delivery of miconazole by usNLC gel could be achieved for treatment of athlete's foot.

  3. Rechargeable anticandidal denture material with sustained release in saliva

    PubMed Central

    Malakhov, Andrey; Wen, Jianchuan; Zhang, Bin-Xian; Wang, Hanzhou; Geng, Hui; Chen, Xiao-Dong; Sun, Yuyu; Yeh, Chih-Ko

    2016-01-01

    Objective Candida-induced denture stomatitis is a common debilitating problem among denture wearers. Previously, we described the fabrication of a new denture material that released antifungal drugs when immersed in phosphate buffered saline. Here, we use more clinically relevant immersion conditions (human saliva; 37°C) and measure miconazole release and bioactivity. Materials and Methods Disks were prepared by grafting PNVP [poly(N-vinyl-2-pyrrolidinone)] onto PMMA [poly(methylmethacrylate)] using plasma initiation (PMMA-g-PNVP) and then loaded with miconazole. Drug-loaded disks were immersed in 10–100% human saliva (1–30 days). Miconazole release was measured and then tested for bioactivity versus miconazole-sensitive and -resistant Candida isolates. Results HPLC was used to quantify miconazole levels in saliva. Miconazole-loaded disks released antifungal drug for up to 30 days. Higher drug release was found with higher concentrations of saliva and, interestingly, miconazole solubility was increased with higher saliva concentrations. The released miconazole retained its anticandidal activity. After immersion, the residual miconazole could be quenched and the disks recharged. Freshly recharged disks displayed the same release kinetics and bioactivity as the original disks. Quenched disks could also be charged with chlorhexidine that displayed anticandidal activity. Conclusions These results suggest that PMMA-g-PNVP is a promising new denture material for long-term management of denture stomatitis. PMID:26855200

  4. Simulation of the hydrodynamic conditions of the eye to better reproduce the drug release from hydrogel contact lenses: experiments and modeling.

    PubMed

    Pimenta, A F R; Valente, A; Pereira, J M C; Pereira, J C F; Filipe, H P; Mata, J L G; Colaço, R; Saramago, B; Serro, A P

    2016-12-01

    Currently, most in vitro drug release studies for ophthalmic applications are carried out in static sink conditions. Although this procedure is simple and useful to make comparative studies, it does not describe adequately the drug release kinetics in the eye, considering the small tear volume and flow rates found in vivo. In this work, a microfluidic cell was designed and used to mimic the continuous, volumetric flow rate of tear fluid and its low volume. The suitable operation of the cell, in terms of uniformity and symmetry of flux, was proved using a numerical model based in the Navier-Stokes and continuity equations. The release profile of a model system (a hydroxyethyl methacrylate-based hydrogel (HEMA/PVP) for soft contact lenses (SCLs) loaded with diclofenac) obtained with the microfluidic cell was compared with that obtained in static conditions, showing that the kinetics of release in dynamic conditions is slower. The application of the numerical model demonstrated that the designed cell can be used to simulate the drug release in the whole range of the human eye tear film volume and allowed to estimate the drug concentration in the volume of liquid in direct contact with the hydrogel. The knowledge of this concentration, which is significantly different from that measured in the experimental tests during the first hours of release, is critical to predict the toxicity of the drug release system and its in vivo efficacy. In conclusion, the use of the microfluidic cell in conjunction with the numerical model shall be a valuable tool to design and optimize new therapeutic drug-loaded SCLs.

  5. Steady antibiotic release from biodegradable beads in the pleural cavity: an in vitro and in vivo study.

    PubMed

    Liu, Kuo-Sheng; Liu, Shih-Jung; Chen, Hsiao-Yun; Huang, Yao-Kuang; Peng, Yi-Jie; Wu, Ren-Chin; Ueng, Steve Wen-Neng

    2012-05-01

    Inadequate localized drug concentrations and systemic adverse effects are among the concerns when regional infections are treated with systemic antibiotics. We designed and fabricated a poly(D,L)-lactide-co-glycolide (PLGA)-based biodegradable drug delivery system and evaluated the release of antibiotics both in vitro and in vivo. PLGA copolymer and penicillin G sodium were mixed, compressed, and sintered to fabricate biodegradable antibiotic beads. The beads were placed in phosphate-buffered saline to test the characteristics of in vitro drug release. The beads then were introduced into the pleural cavities through chest tubes of six New Zealand white rabbits. Daily pleural effusion was collected to measure the antibiotic concentration and bacterial inhibitory characteristics. Forty percent of the penicillin was released in the first day in the in vitro study. The rest of the antibiotic was then gradually released in the following 30 days. All six animals survived the experiment. The initial surge of drug release was less significant in the pleural cavity than in the phosphate-buffered saline. The drug concentrations were well above the minimum inhibitory concentration breakpoint for penicillin susceptibility throughout the study period in both in vitro (30 days) and in vivo (14 days) studies. These preliminary findings demonstrated that the biodegradable PLGA antibiotic beads could achieve a fairly steady antibiotic release in the pleural cavity for at least 2 weeks. This drug delivery system may have the potential to serve as an adjuvant treatment of pleural cavity infection.

  6. Biopharmaceutical evaluation of time-controlled press-coated tablets containing polymers to adjust drug release.

    PubMed

    Halsas, M; Ervasti, P; Veski, P; Jürjenson, H; Marvola, M

    1998-01-01

    This paper deals with press-coated modified release tablets in which the drug dose is situated in the core or is divided between the core and the coat. The coat contains polymer (sodium alginate or hydroxypropylmethyl cellulose, HPMC) to control drug release. The main objective was to investigate how the pharmacokinetic profile of the model drug could be modified by altering the proportion of the drug between the core and the coat. The effect of the amount of the polymer in the coat was also studied. Bioavailability tests were carried out on healthy volunteers. In the absorption curves of the tablets containing 50%, 67% and 80% of the drug in the core and 180 mg HPMC in the coat a bimodal profile was observed. No bimodal release pattern in the in vitro dissolution studies was found. If the whole dose was incorporated in the core the absorption curve has only one clear t(max) value at about 10 h. Doubling the amount of HPMC in the coat dramatically decreased drug absorption. It was concluded that, if a slightly reduced t(max)-value was required, the viscosity grade of HPMC used should be lowered.

  7. Cocaine-like discriminative stimulus effects of "norepinephrine-preferring" monoamine releasers: time course and interaction studies in rhesus monkeys.

    PubMed

    Kohut, Stephen J; Jacobs, David S; Rothman, Richard B; Partilla, John S; Bergman, Jack; Blough, Bruce E

    2017-12-01

    The therapeutic potential of monoamine releasers with prominent dopaminergic effects is hindered by their high abuse liability. The present study examined the effects of several novel "norepinephrine (NE)-preferring" monoamine releasers relative to non-selective monoamine releasers, d-amphetamine and d-methamphetamine, in rhesus monkeys trained to discriminate cocaine. NE-preferring releasers were approximately 13-fold more potent for NE compared to dopamine release and ranged in potency for serotonin release (PAL-329 < l-methamphetamine < PAL-169). Adult rhesus macaques were trained to discriminate 0.4 mg/kg, IM cocaine on a 30-response fixed ratio schedule of food reinforcement. Substitution studies determined the extent to which test drugs produced cocaine-like discriminative stimulus effects and their time course. Drug interaction studies determined whether pretreatment with test drugs altered the discriminable effects of cocaine. Results show that cocaine, d-amphetamine, and d-methamphetamine dose-dependently substituted for cocaine with similar potencies. Among the "NE-preferring" releasers, PAL-329 and l-methamphetamine also dose-dependently substituted for cocaine but differed in potency. PAL-169 failed to substitute for cocaine up to a dose that disrupted responding. When administered prior to cocaine, only d-amphetamine and PAL-329 significantly shifted the cocaine dose-effect function leftward indicating enhancement of cocaine's discriminative stimulus effects. These data suggest that greater potency for NE relative to dopamine release (up to 13-fold) does not interfere with the ability of a monoamine releaser to produce cocaine-like discriminative effects but that increased serotonin release may have an inhibitory effect. Further characterization of these and other "NE-preferring" monoamine releasers should provide insight into their potential for the management of cocaine addiction.

  8. A mathematical approach for the simultaneous in vitro spectrophotometric analysis of rifampicin and isoniazid from modified-release anti-TB drug delivery systems.

    PubMed

    du Toit, Lisa; Pillay, Viness; Choonara, Yahya

    2010-01-01

    Dissolution testing with subsequent analysis is considered as an imperative tool for quality evaluation of the combination rifampicin-isoniazid (RIF-INH) combination. Partial least squares (PLS) regression has been successfully undertaken to select suitable predictor variables and to identify outliers for the generation of equations for RIF and INH determination in fixed-dose combinations (FDCs). The aim of this investigation was to ascertain the applicability of the described technique in testing a novel oral FDC anti-TB drug delivery system and currently available two-drug FDCs, in comparison to the United States Pharmacopeial method for analysis of RIF and INH Capsules with chromatographic determination of INH and colorimetric RIF determination. Regression equations generated employing the statistical coefficients satisfactorily predicted RIF release at each sampling point (R(2)>or=0.9350). There was an acceptable degree of correlation between the drug release data, as predicted by regressional analysis of UV spectrophotometric data, and chromatographic and colorimetric determination of INH (R(2)=0.9793 and R(2)=0.9739) and RIF (R(2)= 0.9976 and R(2)=0.9996) for the two-drug FDC and the novel oral anti-TB drug delivery system, respectively. Regressional analysis of UV spectrophotometric data for simultaneous RIF and INH prediction thus provides a simplified methodology for use in diverse research settings for the assurance of RIF bioavailability from FDC formulations, specifically modified-release forms.

  9. Measuring the Acoustic Release of a Chemotherapeutic Agent from Folate-Targeted Polymeric Micelles.

    PubMed

    Abusara, Ayah; Abdel-Hafez, Mamoun; Husseini, Ghaleb

    2018-08-01

    In this paper, we compare the use of Bayesian filters for the estimation of release and re-encapsulation rates of a chemotherapeutic agent (namely Doxorubicin) from nanocarriers in an acoustically activated drug release system. The study is implemented using an advanced kinetic model that takes into account cavitation events causing the antineoplastic agent's release from polymeric micelles upon exposure to ultrasound. This model is an improvement over the previous representations of acoustic release that used simple zero-, first- and second-order release and re-encapsulation kinetics to study acoustically triggered drug release from polymeric micelles. The new model incorporates drug release and micellar reassembly events caused by cavitation allowing for the controlled release of chemotherapeutics specially and temporally. Different Bayesian estimators are tested for this purpose including Kalman filters (KF), Extended Kalman filters (EKF), Particle filters (PF), and multi-model KF and EKF. Simulated and experimental results are used to verify the performance of the above-mentioned estimators. The proposed methods demonstrate the utility and high-accuracy of using estimation methods in modeling this drug delivery technique. The results show that, in both cases (linear and non-linear dynamics), the modeling errors are expensive but can be minimized using a multi-model approach. In addition, particle filters are more flexible filters that perform reasonably well compared to the other two filters. The study improved the accuracy of the kinetic models used to capture acoustically activated drug release from polymeric micelles, which may in turn help in designing hardware and software capable of precisely controlling the delivered amount of chemotherapeutics to cancerous tissue.

  10. Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100.

    PubMed

    El Maghraby, Gamal Mohamed; Elzayat, Ehab Mostafa; Alanazi, Fars Kaed

    2014-03-01

    Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m) was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels.

  11. Development of a multi-layered vaginal tablet containing dapivirine, levonorgestrel and acyclovir for use as a multipurpose prevention technology.

    PubMed

    McConville, Christopher; Major, Ian; Devlin, Brid; Brimer, Andrew

    2016-07-01

    Multipurpose prevention technologies (MPTs) are preferably single dosage forms designed to simultaneously address multiple sexual and reproductive health needs, such as unintended pregnancy, HIV infection and other sexually transmitted infections (STIs). This manuscript describes the development of a range of multi-layered vaginal tablets, with both immediate and sustained release layers capable of delivering the antiretroviral drug dapivirine, the contraceptive hormone levonorgestrel, and the anti-herpes simplex virus drug acyclovir at independent release rates from a single dosage form. Depending on the design of the tablet in relation to the type (immediate or sustained release) or number of layers, the dose of each drug could be individually controlled. For example one tablet design was able to provide immediate release of all three drugs, while another tablet design was able to provide immediate release of both acyclovir and levonorgestrel, while providing sustained release of Dapivirine for up to 8h. A third tablet design was able to provide immediate release of both acyclovir and levonorgestrel, a large initial burst of Dapivirine, followed by sustained release of Dapivirine for up to 8h. All of the tablets passed the test for friability with a percent friability of less than 1%. The hardness of all tablet designs was between 115 and 153N, while their drug content met the European Pharmacopeia 2.9.40 Uniformity of Dosage units acceptance value at levels 1 and 2. Finally, the accelerated stability of all three actives was significantly enhanced in comparison with a mixed drug control. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nanostructured Diclofenac Sodium Releasing Material

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  13. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    PubMed

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Controlled release of Doxycycline from gum acacia/poly(sodium acrylate) microparticles for oral drug delivery.

    PubMed

    Bajpai, S K; Jadaun, Mamta; Bajpai, M; Jyotishi, Pooja; Shah, Farhan Ferooz; Tiwari, Seema

    2017-11-01

    In the present work, Doxycycline loaded gum acacia (GA)/poly(sodium acrylate) (SA) hydrogels were prepared for the oral drug delivery of model drug Doxycycline. The hydrogels were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR) scanning electron microscopy (SEM) and Zeta potential. The dynamic release of Doxycycline was investigated in the physiological fluids at 37°C. Various kinetic models such as Power function model, Schott model and Higuchi model were applied to interpret the release data. Schott model was found to be most fitted. The Doxycycline loaded hydrogels were tested for their antibacterial action against E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of Drug Properties and Formulation on In Vitro Drug Release and Biowaiver Regulation of Oral Extended Release Dosage Forms.

    PubMed

    Lin, Zhongqiang; Zhou, Deliang; Hoag, Stephen; Qiu, Yihong

    2016-03-01

    Bioequivalence (BE) studies are often required to ensure therapeutic equivalence for major product and manufacturing changes. Waiver of a BE study (biowaiver) is highly desired for such changes. Current regulatory guidelines allow for biowaiver of proportionally similar lower strengths of an extended release (ER) product provided it exhibits similar dissolution to the higher strength in multimedia. The objective of this study is to demonstrate that (1) proportionally similar strengths of ER tablets exhibiting similar in vitro dissolution profiles do not always assure BE and (2) different strengths that do not meet the criteria for dissolution profile similarity may still be bioequivalent. Four marketed ER tablets were used as model drug products. Higher and lower (half) strength tablets were prepared or obtained from commercial source. In vitro drug release was compared using multi-pH media (pH 1.2, 4.5, 6.8) per regulatory guidance. In vivo performance was assessed based on the available in vivo BE data or established in vitro-in vivo relationships. This study demonstrated that the relationship between in vitro dissolution and in vivo performance is complex and dependent on the characteristics of specific drug molecules, product design, and in vitro test conditions. As a result, proportionally similar strengths of ER dosage forms that meet biowaiver requirements per current regulatory guidelines cannot ensure bioequivalence in all cases. Thus, without an established relationship between in vitro and in vivo performance, granting biowaiver based on passing in vitro tests may result in the approval of certain bioinequivalent products, presenting risks to patients. To justify any biowaiver using in vitro test, it is essential to understand the effects of drug properties, formulation design, product characteristics, test method, and its in vivo relevance. Therefore, biowaiver requirements of different strengths of ER dosage forms specified in the current regulatory guidance should be reevaluated to assure consistent safety and efficacy among different strengths.

  16. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage.

    PubMed

    Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y

    2017-07-01

    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p-values of 1.00 and 0.995 respectively.

  17. Ion-exchange and iontophoresis-controlled delivery of apomorphine.

    PubMed

    Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni

    2013-04-01

    The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Nanocomposites coated with xyloglucan for drug delivery: In vitro studies.

    PubMed

    Ribeiro, C; Arizaga, G G C; Wypych, F; Sierakowski, M-R

    2009-02-09

    Enalaprilate (Enal), an active pharmaceutical component, was intercalated into a layered double hydroxide (Mg/Al-LDH) by an ion exchange reaction. The use of a layered double hydroxide (LDH) to release active drugs is limited by the low pH of the stomach (pH approximately 1.2), in whose condition it is readily dissolved. To overcome this limitation, xyloglucan (XG) extracted from Hymenaea courbaril (jatobá) seeds, Brazilian species, was used to protect the LDH and allow the drug to pass through the gastrointestinal tract. All the materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, elemental analyses, transmission electronic microscopy, thermal analyses, and a kinetic study of the in vitro release was monitored by ultraviolet spectroscopy. The resulting hybrid system containing HDL-Enal-XG(3) slowly released the Enal. In an 8-h of test, the system protected 40% (w/v) of the drug. The kinetic profile showed that the drug release was a co-effect behavior, involving dissolution of inorganic material and ion exchange between the intercalated anions in the lamella and those of phosphate in the buffer solution. The nanocomposite coated protection with XG was therefore efficient in obtaining a slow release of Enal.

  19. Carboxymethyl cellulose (CMC)-loaded Co-Cu doped manganese ferrite nanorods as a new dual-modal simultaneous contrast agent for magnetic resonance imaging and nanocarrier for drug delivery system

    NASA Astrophysics Data System (ADS)

    Abbasi Pour, Sajjad; Shaterian, Hamid Reza; Afradi, Mojgan; Yazdani-Elah-Abadi, Afshin

    2017-09-01

    We synthesized Co0.25Cu0.25Mn0.5Fe2O4@CMC (CCMFe2O4@CMC) nanorods as a new dual-modal simultaneous for magnetic resonance imaging contrast agent and nanocarrier for drug delivery system. Impact of CCMFe2O4@CMC nanorods were investigated on the longitudinal (T1), transverse (T2) and transverse (T2∗) relaxation times for in vitro MRI contrast agent in water and also for drug delivery system, L-dopa was coated on CCMFe2O4@CMC nanorods and then in vitro drug release test was carried out at three PHs values and different temperatures. In vitro MR imaging demonstrated that r2 value of CCMFe2O4@CMC nanorods is 138.33 mM-1 s-1, CCMFe2O4@CMC is useful as T2 contrast agent relative to other T2 contrast agants. In vitro drug release test shows the amount of released L-dopa from CCMFe2O4@CMC nanorods at medium with pH = 1.2 is more than pH = 5.3 and 7.4.

  20. Mucoadhesive Microparticles in a Rapidly Dissolving Tablet for Sustained Drug Delivery to the Eye

    PubMed Central

    Choy, Young Bin; Patel, Samirkumar R.; Park, Jung-Hwan; McCarey, Bernard E.; Edelhauser, Henry F.

    2011-01-01

    Purpose. To test the hypothesis that mucoadhesive microparticles formulated in a rapidly dissolving tablet can achieve sustained drug delivery to the eye. Methods. Mucoadhesive microparticles, smaller than 5 μm were fabricated with poly(lactic-co-glycolic acid) and poly(ethylene glycol) as a core material and mucoadhesion promoter, respectively, and encapsulated pilocarpine as a model drug. These microparticles were embedded in a poly(vinyl alcohol) matrix to form a dry tablet designed to reduce rapid clearance of the microparticles on initial application to the eye. Results. This in vitro drug release study exhibited that for all formulations, approximately 90% of pilocarpine was released during the first 10 minutes, and the remaining 10% was released slowly for 3 hours. In vivo mucoadhesion test on the rabbit eye indicated that mucoadhesive microparticles adhered significantly better to the preocular surface than other formulations. To assess the pharmacodynamics, the most prolonged pilocarpine-induced pupil constriction was observed in rabbit eyes in vivo using a tablet with mucoadhesive microparticles; it lasted up to 330 minutes. Conclusions. The authors conclude that mucoadhesive microparticles formulated into a dry dosage form is a promising system for sustained drug delivery to the eye. PMID:21245405

  1. Rhodamine/Nanodiamond as a System Model for Drug Carrier.

    PubMed

    Reina, G; Orlanducci, S; Cairone, C; Tamburri, E; Lenti, S; Cianchetta, I; Rossi, M; Terranova, M L

    2015-02-01

    In this paper we present some strategies that are being developed in our labs towards enabling nanodiamond-based applications for drug delivery. Rhodamine B (RhB) has been choosen as model molecule to study the loading of nanodiamonds with active moieties and the conditions for their controlled release. In order to test the chemical/physical interactions between functionalized detonation nanodiamond (DND) and complex molecules, we prepared and tested different RhB@DND systems, with RhB adsorbed or linked by ionic bonding to the DND surface. The chemical state of the DND surfaces before conjugation with the RhB molecules, and the chemical features of the DND-RhB interactions have been deeply analysed by coupling DND with Au nanoparticles and taking advantage of surface enhanced Raman spectroscopy SERS. The effects due to temperature and pH variations on the process of RhB release from the DND carrier have been also investigated. The amounts of released molecules are consistent with those required for effective drug action in conventional therapeutic applications, and this makes the DND promising nanostructured cargos for drug delivery applications.

  2. Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC.

    PubMed

    Lucena, Flávia Raquel Santos; de Araújo, Larissa C C; Rodrigues, Maria do D; da Silva, Teresinha G; Pereira, Valéria R A; Militão, Gardênia C G; Fontes, Danilo A F; Rolim-Neto, Pedro J; da Silva, Fausthon F; Nascimento, Silene C

    2013-10-01

    This study aimed to evaluate the mechanism associated with cytotoxic activity displayed by the drug 5-fluorouracil incorporated in Cu-BTC MOF and its slow delivery from the Cu-BTC MOF. Structural characterization encompasses elemental analysis (CHNS), differential scanning calorimetry (DSC), thermogravimetric analysis (TG/DTG), Fournier transform infrared (FIT-IR) and X-ray diffraction (XRD) was performed to verify the process of association between the drug 5-FU and Cu-BTC MOF. Flow cytometry was done to indicate that apoptosis is the mechanism responsible for the cell death. The release profile of the drug 5-FU from Cu-BTC MOF for 48 hours was obeisant. Also, the anti-inflammatory activity was evaluated by the peritonitis testing and the production of nitric oxide and pro-inflammatory cytokines were measured. The chemical characterization of the material indicated the presence of drug associated with the coordination network in a proportion of 0.82 g 5-FU per 1.0 g of Cu-BTC MOF. The cytotoxic tests were carried out against four cell lines: NCI-H292, MCF-7, HT29 and HL60. The Cu-BTC MOF associated drug was extremely cytotoxic against the human breast cancer adenocarcinoma (MCF-7) cell line and against human acute promyelocytic leukemia cells (HL60), cancer cells were killed by apoptosis mechanisms. The drug demonstrated a slow release profile where 82% of the drug was released in 48 hours. The results indicated that the drug incorporated in Cu-BTC MOF decreased significantly the number of leukocytes in the peritoneal cavity of rodents as well as reduced levels of cytokines and nitric oxide production. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Bioactive films of zein/magnetite magnetically stimuli-responsive for controlled drug release

    NASA Astrophysics Data System (ADS)

    Marín, Tíffany; Montoya, Paula; Arnache, Oscar; Pinal, Rodolfo; Calderón, Jorge

    2018-07-01

    The Zein films in two configurations with magnetite nanoparticles (zein/NPs) and magnetite-acetaminophen (zein/NPs/Drug) were used as magnetically stimuli-responsive systems to propose a model of controlled release by dissolution and diffusion mechanism. Composite material films of zein/NPs and zein/NPs/Drug were made by dispersion of magnetite nanoparticles into zein solution then solvent casting of the solution on a flat Teflon substrate. The properties of composite films were analyzed by magnetization curves of (MvsH) and measurements of magnetic force microscopy (MFM). Drug release from the zein/NPs/Drug composite films was determined using a type II dissolution apparatus for a period of 2 h under applied magnetic field conditions. In addition, the diffusion mechanism was tested with zein/NPs films into diffusion cell containing acetaminophen solution for 24 h and using a permanent magnet as a remote trigger device. The results showed that the magnetite nanoparticles contained in the zein/NPs and zein/NPs/Drug composite films are stable, i.e., they do not undergo sufficiently high levels of oxidation as to alter their magnetic properties. Furthermore, the dissolution and diffusion results lead us to conclude that zein composite films effectively behave as stimuli-responsive systems triggered by an external magnetic field applied. The result is a model controlled release system whereby drug release can be controlled by adjusting the magnitude of the applied magnetic field.

  4. Improving sustained drug delivery from ophthalmic lens materials through the control of temperature and time of loading.

    PubMed

    Topete, Ana; Oliveira, Andreia S; Fernandes, A; Nunes, T G; Serro, A P; Saramago, B

    2018-05-30

    Although the possibility of using drug-loaded ophthalmic lens to promote sustained drug release has been thoroughly pursued, there are still problems to be solved associated to the different alternatives. In this work, we went back to the traditional method of drug loading by soaking in the drug solution and tried to optimize the release profiles by changing the temperature and the time of loading. Two materials commercially available under the names of CI26Y and Definitive 50 were chosen. CI26Y is used for intraocular lenses (IOLs) and Definitive 50 for soft contact lenses (SCLs). Three drugs were tested: an antibiotic, moxifloxacin, and two anti-inflammatories, diclofenac and ketorolac. Sustained drug release from CI26Y disks for, at least 15 days, was obtained for moxifloxacin and diclofenac increasing the loading temperature up to 60 °C or extending the loading time till two months. The sustained release of ketorolac was limited to about 8 days. In contrast, drug release from Definitive 50 disks could not be improved by changing the loading conditions. An attempt to interpret the impact of the loading conditions on the drug release behavior was done using solid-state NMR and differential scanning calorimetry. These studies suggested the establishment of reversible, endothermic interactions between CI26Y and the drugs, moxifloxacin and diclofenac. The loading temperature had a slight effect on the mechanical and optical properties of drug loaded CI26Y samples, which still kept adequate properties to be used as IOL materials. The in vivo efficacy of CI26Y samples, drug loaded at 60 °C for two weeks, was predicted using a simplified mathematical model to estimate the drug concentration in the aqueous humor. The estimated concentrations were found to comply with the therapeutic needs, at least, for moxifloxacin and diclofenac. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    PubMed

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  6. Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles.

    PubMed

    Zhu, Shenmin; Zhou, Zhengyang; Zhang, Di

    2007-12-03

    A site-selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli-responsive ordered SBA-15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant-template sol-gel method and control of transport through polymerization of N-isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm(3) g(-1)), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA-15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 degrees C, indicating a typical thermosensitive controlled release.

  7. Ex-vivoand in-vitro assessment of mucoadhesive patches containing the gel-forming polysaccharide psyllium for buccal delivery of chlorhexidine base.

    PubMed

    Cavallari, Cristina; Brigidi, Patrizia; Fini, Adamo

    2015-12-30

    The aim of the present study was to evaluate the gel-forming polysaccharide psyllium in the preparation of mucoadhesive patches for the controlled release of chlorhexidine (CHX) to treat pathologies in the oral cavity, using the casting-solvent evaporation technique. A number of different film-forming semi-synthetic polymers, such as sodium carboxymethyl cellulose (SCMC) and hydroxypropylmethyl cellulose (HPMC) were evaluated for comparison. The patch formulations were characterized in terms of drug content, morphology surface, swelling and mucoadhesive properties, microbiology inhibition assay and in vitro release tests. Three ex-vivo testswere carried out using porcine mucosa: an alternative dissolution test using artificial saliva that allows contemporary measurement of dissolution and mucoadhesion, a permeation test through the mucosa and the measurement of mucoadhesion using a Nouy tensile tester, as the maximum force required for the separation of the patch from the mucosa surface. The patches were also examined for determination of the minimum inhibitory concentration in cultures of Escherichia coli and Staphylococcus aureus. All the patches incorporating psyllium were found suitable in terms of external morphology, mucoadhesion and controlled release of the drug: in the presence of psyllium the drug displays prolonged zero-order release related to slower swelling rate of the system. Copyright © 2015. Published by Elsevier B.V.

  8. [Effect of slow-release aminophylline on pulmonary function in obstructive respiratory disease(author's transl)].

    PubMed

    Wiessmann, K J

    1975-09-05

    The effects on pulmonary function of a slow-release preparation of an oral broncholytic drug (containing 350 mg aminophylline, released over eight hours) was tested on 26 patients in a double-blind trial. There was a marked reduction of airway resistance and stimulation of breathing with decreased dynamic work of breathing. Distinctly improved alveolar function was demonstrated especially in a fall of arterial CO2 tension, but in some cases there was probably an increase in distribution abnormality. Central haemodynamic changes with a decreased in pulmonary artery pressure and changes in the other values lasted for more than ten hours on the first day of treatment, and were demonstrable on the fourth day even before the drug was taken that day. The criteria of an effective broncholytic slow-release drug with sustained effect were thus fulfilled.

  9. Controlled release of sulfasalazine release from "smart" pectin gel microspheres under physiological simulated fluids.

    PubMed

    Costas, Luciana; Pera, Licia M; López, Azucena Gómez; Mechetti, Magdalena; Castro, Guillermo R

    2012-07-01

    Sulfasalazine (SLZ) is a synthetic nonsteroidal anti-inflammatory drug used mainly for the treatment of an inflammatory bowel and other diseases. Two pectins with different methylation degrees were blended to synthesized gel microspheres by ionotropic gelation for SLZ encapsulation. The encapsulation efficiency was found to be around of 99% in all formulations tested. However, different SLZ release profiles related to the methylation degrees of pectin were observed. Mixture of low methylated (LM) and high methylated (HM) pectins in the presence of calcium(II) displayed the best microsphere morphologies among the formulations tested determined by optical and electronic microscopies. The percentage of drug release using a mixture of LM and HM pectins after 255 min in simulated gastric fluid (pH = 1.2), simulated intestinal fluid (pH = 6.8), and phosphate buffer (pH = 7.4) were 15.0%, 47.0%, and 52.2%, respectively.

  10. Porous magnesium loaded with gentamicin sulphate and in vitro release behavior.

    PubMed

    Li, Qiuyan; Jiang, Guofeng; Wang, Dong; Wang, Huang; Ding, Liang; He, Guo

    2016-12-01

    Our aim was to develop a biocompatible bone repair material that has the advantage of preventing postoperative infections. Finally, the porous magnesium (p-Mg) loaded with gentamicin sulphate (GS-loaded Mg-G) was fabricated. The GS release behavior of the GS-loaded Mg-G in phosphate buffer saline (PBS) was investigated. The effective release time of GS reached to 14days. In addition, the effects of porosity and pore diameter of p-Mg on the GS release behavior of the GS-loaded Mg-G were studied. In the initial burst release stage, the GS release rate of the GS-loaded Mg-G increased with the increasing porosity or the increasing pore diameter of p-Mg. The GS-loaded Mg-G with larger original pore diameter has higher burst release of GS. Moreover, the in vitro antibacterial test of the GS-loaded Mg-G indicated that this biomaterial has obvious antibacterial effect. This study can provide information for p-Mg loaded with drug(s) as functional bone repair materials with drug-delivery capabilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Microvesicle removal of anticancer drugs contributes to drug resistance in human pancreatic cancer cells

    PubMed Central

    Muralidharan-Chari, Vandhana; Kohan, Hamed Gilzad; Asimakopoulos, Alexandros G.; Sudha, Thangirala; Sell, Stewart; Kannan, Kurunthachalam; Boroujerdi, Mehdi; Davis, Paul J.; Mousa, Shaker A.

    2016-01-01

    High mortality in pancreatic cancer patients is partly due to resistance to chemotherapy. We describe that human pancreatic cancer cells acquire drug resistance by a novel mechanism in which they expel and remove chemotherapeutic drugs from the microenvironment via microvesicles (MVs). Using human pancreatic cancer cells that exhibit varied sensitivity to gemcitabine (GEM), we show that GEM exposure triggers the cancer cells to release MVs in an amount that correlates with that cell line's sensitivity to GEM. The importance of MV-release in gaining drug resistance in GEM-resistant pancreatic cancer cells was confirmed when the inhibition of MV-release sensitized the cells to GEM treatment, both in vitro and in vivo. Mechanistically, MVs remove drugs that are internalized into the cells and that are in the microenvironment. The differences between the drug-resistant and drug-sensitive pancreatic cancer cell lines tested here are explained based on the variable content of influx/efflux proteins present on MVs, which directly dictates the ability of MVs either to trap GEM or to allow GEM to flow back to the microenvironment. PMID:27391262

  12. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    NASA Astrophysics Data System (ADS)

    Valenti, G.; La Carta, S.; Mazzotti, G.; Rapisarda, M.; Perna, S.; Di Gesù, R.; Giorgini, L.; Carbone, D.; Recca, G.; Rizzarelli, P.

    2016-05-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient's compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye's diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10-60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy (1H-NMR, 13C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic models allowed to deduce that release of BDP is controlled over time from PMMA-b-PHEMA 53/47. In particular, PMMA-b-PHEMA 53/47 showed the best release profile to achieve the therapeutic reference dose of 3 µg/die, employed in treatment of posterior eye disease, up to four months. Accordingly, PMMA-b-PHEMA 53/47 has been tested to prepare ocular inserts. Ocular inserts with different shape and the same area of polymer films have been obtained using silicon moulds made by a 3D printer.

  13. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenti, G.; La Carta, S.; Rapisarda, M.

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site.more » Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ({sup 1}H-NMR, {sup 13}C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic models allowed to deduce that release of BDP is controlled over time from PMMA-b-PHEMA 53/47. In particular, PMMA-b-PHEMA 53/47 showed the best release profile to achieve the therapeutic reference dose of 3 µg/die, employed in treatment of posterior eye disease, up to four months. Accordingly, PMMA-b-PHEMA 53/47 has been tested to prepare ocular inserts. Ocular inserts with different shape and the same area of polymer films have been obtained using silicon moulds made by a 3D printer.« less

  14. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    PubMed

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  15. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.

    PubMed

    Moritz, Sebastian; Wiegand, Cornelia; Wesarg, Falko; Hessler, Nadine; Müller, Frank A; Kralisch, Dana; Hipler, Uta-Christina; Fischer, Dagmar

    2014-08-25

    Although bacterial nanocellulose (BNC) may serve as an ideal wound dressing, it exhibits no antibacterial properties by itself. Therefore, in the present study BNC was functionalized with the antiseptic drug octenidine. Drug loading and release, mechanical characteristics, biocompatibility, and antimicrobial efficacy were investigated. Octenidine release was based on diffusion and swelling according to the Ritger-Peppas equation and characterized by a time dependent biphasic release profile, with a rapid release in the first 8h, followed by a slower release rate up to 96 h. The comparison between lab-scale and up-scale BNC identified thickness, water content, and the surface area to volume ratio as parameters which have an impact on the control of the release characteristics. Compression and tensile strength remained unchanged upon incorporation of octenidine in BNC. In biological assays, drug-loaded BNC demonstrated high biocompatibility in human keratinocytes and antimicrobial activity against Staphylococcus aureus. In a long-term storage test, the octenidine loaded in BNC was found to be stable, releasable, and biologically active over a period of 6 months without changes. In conclusion, octenidine loaded BNC presents a ready-to-use wound dressing for the treatment of infected wounds that can be stored over 6 months without losing its antibacterial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Comparison of Clobetasol Propionate Generics Using Simplified in Vitro Bioequivalence Method for Topical Drug Products.

    PubMed

    Soares, Kelen Carine Costa; de Souza, Weidson Carlos; de Souza Texeira, Leonardo; da Cunha-Filho, Marcilio Sergio Soares; Gelfuso, Guilherme Martins; Gratieri, Tais

    2017-11-20

    The aim of this paper is to propose a simple in vitro skin penetration experiment in which the drug is extracted from the whole skin piece as a test valid for formulation screening and optimization during development process, equivalence assessment during quality control or post-approval after changes to the product. Twelve clobetasol propionate (CP) formulations (six creams and six ointments) from the local market were used as a model to challenge the proposed methodology in comparison to in vitro skin penetration following tape-stripping for drug extraction. To support the results, physicochemical tests for pH, viscosity, density and assay, as well as in vitro release were performed. Both protocols, extracting the drug from the skin using the tape-stripping technique or extracting from the full skin were capable of differentiating CP formulations. Only one formulation did not present statistical difference from the reference drug product in penetration tests and only other two oitments presented equivalent release to the reference. The proposed protocol is straightforward and reproducible. Results suggest the bioinequavalence of tested CP formulations reinforcing the necessity of such evaluations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Controlled release of moxifloxacin from intraocular lenses modified by Ar plasma-assisted grafting with AMPS or SBMA: An in vitro study.

    PubMed

    Pimenta, A F R; Vieira, A P; Colaço, R; Saramago, B; Gil, M H; Coimbra, P; Alves, P; Bozukova, D; Correia, T R; Correia, I J; Guiomar, A J; Serro, A P

    2017-08-01

    Intraocular lenses (IOLs) present an alternative for extended, local drug delivery in the prevention of post-operative acute endophthalmitis. In the present work, we modified the surface of a hydrophilic acrylic material, used for manufacturing of IOLs, through plasma-assisted grafting copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), with the aim of achieving a controlled and effective drug release. The material was loaded with moxifloxacin (MFX), a commonly used antibiotic for endophthalmitis prevention. The characterization of the modified material showed that relevant properties, like swelling capacity, wettability, refractive index and transmittance, were not affected by the surface modification. Concerning the drug release profiles, the most promising result was obtained when AMPS grafting was done in the presence of MFX. This modification led to a higher amount of drug being released for a longer period of time, which is a requirement for the prevention of endophthalmitis. The material was found to be non-cytotoxic for rabbit corneal endothelial cells. In a second step, prototype IOLs were modified with AMPS and loaded with MFX as previously and, after sterilization and storage (30days), they were tested under dynamic conditions, in a microfluidic cell with volume and renovation rate similar to the eye aqueous humour. MFX solutions collected in this assay were tested against Staphylococcus aureus and Staphylococcus epidermidis and the released antibiotic proved to be effective against both bacteria until the 12th day of release. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment.

    PubMed

    Reise, Markus; Wyrwa, Ralf; Müller, Ulrike; Zylinski, Matthias; Völpel, Andrea; Schnabelrauch, Matthias; Berg, Albrecht; Jandt, Klaus D; Watts, David C; Sigusch, Bernd W

    2012-02-01

    We aimed to achieve detailed biomaterials characterization of a drug delivery system for local periodontitis treatment based on electrospun metronidazole-loaded resorbable polylactide (PLA) fibers. PLA fibers loaded with 0.1-40% (w/w) MNA were electrospun and were characterized by SEM and DSC. HPLC techniques were used to analyze the release profiles of metronidazole (MNA) from these fibers. The antibacterial efficacy was determined by measuring inhibition zones of drug-containing aliquots from the same electrospun fiber mats in an agar diffusion test. Three pathogenic periodontal bacterial strains: Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were studied. Cytotoxicity testing was performed with human gingival fibroblasts by: (i) counting viable cells via live/dead staining methods and (ii) by exposing cells directly onto the surface of MNA-loaded fibers. MNA concentration influenced fiber diameters and thus w/w surface areas: diameter being minimal and area maximal at 20% MNA. HPLC showed that these 20% MNA fibers had the fastest initial MNA release. From the third day, MNA release was slower and nearly linear with time. All fiber mats released 32-48% of their total drug content within the first 7 days. Aliquots of media taken from the fiber mats inhibited the growth of all three bacterial strains. MNA released up to the 28th day from fiber mats containing 40% MNA significantly decreased the viability of F. nucleatum and P. gingivalis and up to the 2nd day also for the resistant A. actinomycetemcomitans. All of the investigated fibers and aliquots showed excellent cytocompatibility. This study shows that MNA-loaded electrospun fiber mats represent an interesting class of resorbable drug delivery systems. Sustained drug release properties and cytocompatibility suggest their potential clinical applicability for the treatment of periodontal diseases. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Preparation of a mesoporous silica-based nano-vehicle for dual DOX/CPT pH-triggered delivery.

    PubMed

    Llinàs, Maria C; Martínez-Edo, Gabriel; Cascante, Anna; Porcar, Irene; Borrós, Salvador; Sánchez-García, David

    2018-11-01

    A dual doxorubicin/camptothecin (DOX/CPT) pH-triggered drug delivery mesoporous silica nanoparticle (MSN)-based nano-vehicle has been prepared. In this drug-delivery system (DDS), CPT is loaded inside the pores of the MSNs, while DOX is covalently attached to the surface of an aldehyde-functionalized MSN through a dihydrazide-polyethylene glycol chain. Thus, DOX and the linker act as pH-sensitive gatekeeper. The system is versatile and easy to assemble, not requiring the chemical modification of the drugs. While at physiological conditions the release of the drugs is negligible, at acidic pH a burst release of DOX and a gradual release of CPT take place. In vitro cytotoxicity tests have demonstrated that this DDS can deliver efficiently DOX and CPT for combination therapy.

  20. Electrolyte-stimulated biphasic dissolution profile and stability enhancement for tablets containing drug-polyelectrolyte complexes.

    PubMed

    Kindermann, Christoph; Matthée, Karin; Sievert, Frank; Breitkreutz, Jörg

    2012-10-01

    Recently introduced drug-polyelectrolyte complexes prepared by hot-melt extrusion should be processed to solid dosage forms with tailor-made release properties. Their potential of stability enhancement should be investigated. Milled hot-melt extruded naproxen-EUDRAGIT® E PO polyelectrolyte complexes were subsequently processed to double-layer tablets with varying complex loadings on a rotary-die press. Physicochemical interactions were studied under ICH guideline conditions and using the Gordon-Taylor equation. Sorption and desorption were determined to investigate the influence of moisture and temperature on the complex and related to stability tests under accelerated conditions. Naproxen release from the drug-polyelectrolyte complex is triggered by electrolyte concentration. Depending on the complex loading, phosphate buffer pH 6.8 stimulated a biphasic dissolution profile of the produced double-layer tablets: immediate release from the first layer with 65% loading and prolonged release from the second layer within 24 h (98.5% loading). XRPD patterns proved pseudopolymorphism for tablets containing the pure drug under common storage conditions whereas the drug-complex was stable in the amorphous state. Drug-polyelectrolyte complexes enable tailor-made dissolution profiles of solid dosage forms by electrolyte stimulation and increase stability under common storage conditions.

  1. Electrospun gelatin/sodium bicarbonate and poly(lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems.

    PubMed

    Sang, Qingqing; Williams, Gareth R; Wu, Huanling; Liu, Kailin; Li, Heyu; Zhu, Li-Min

    2017-12-01

    In this work, we report electrospun nanofibers made of model hydrophobic (poly(lactide-co-ε-caprolactone); PLCL) and hydrophilic (gelatin) polymers. We explored the effect on drug release of the incorporation of sodium bicarbonate (SB) into these fibers, using the potent antibacterial agent ciprofloxacin as a model drug. The fibers prepared are smooth and have relatively uniform diameters lying between ca. 600 and 850nm. The presence of ciprofloxacin in the fibers was confirmed using IR spectroscopy. X-ray diffraction showed the drug to be incorporated into the fibers in the amorphous form. In vitro drug release studies revealed that, as expected, more rapid drug release was seen with gelatin fibers than those made of PLCL, and a greater final release percentage was obtained. The inclusion of SB in the gelatin fibers imparts them with pH sensitivity: gelatin/SB fibers showed faster release at pH5 than pH7.4, while fibers without SB gave the same release profiles at both pHs. The PLCL fibers have no pH sensitivity, even when SB was included, as a result of their hydrophobic structure precluding the ingress of solvent. In vitro cell culture studies showed that all the fibers are able to promote cell proliferation. The ciprofloxacin loaded fibers are effective in inhibiting Escherichia coli and Staphylococcus aureus growth in antibacterial tests. Thus, the gelatin-based fibers can be used as pH-responsive drug delivery systems, with potential applications for instance in the treatment of tumor resection sites. Should these become infected, the pH would drop, resulting in ciprofloxacin being released and the infection halted. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin

    NASA Astrophysics Data System (ADS)

    Zeleňák, Vladimír; Halamová, Dáša; Almáši, Miroslav; Žid, Lukáš; Zeleňáková, Adriána; Kapusta, Ondrej

    2018-06-01

    Ordered MCM-48 nanoporous silica (SBET = 923(3) m2·g-1, VP = 0.63(2) cm3·g-1) with cubic Ia3d symmetry was used as a support for drug delivery of anti-inflammatory poorly soluble drug indomethacin. The delivery from parent, unmodified MCM-48, and 3-aminopropyl modified silica carrier was studied into the simulated body fluids with the pH = 2 and pH = 7.4. The studied samples were characterized by thermal analysis (TG/DTG-DTA), N2 adsorption/desorption, infrared spectroscopy (FT-IR), powder XRD, SEM, HRTEM methods, measurements of zeta potential (ζ) and dynamic light scattering (DLS). The determined content of indomethacin in pure MCM-48 was 21 wt.% and in the amine-modified silica MCM-48A-I the content was 45 wt.%. The release profile of the drug, in the time period up to 72 h, was monitored by TLC chromatographic method. It as shown, that by the modification of the surface, the drug release can be controlled. The slower release of indomethacin was observed from amino modified sample MCM-48A-I in the both types of studied simulated body fluids (slightly alkaline intravenous solution with pH = 7.4 and acidic gastric fluid with pH = 2), which was supported and explained by zeta potential and DLS measurements. The amount of the released indomethacin into the fluids with various pH was different. The maximum released amount of the drug was 97% for sample containing unmodified silica, MCM-48-I at pH = 7.4 and lowest released amount, 57%, for amine modified sample MCM-48A-I at pH = 2. To compare the indomethacin release profile four kinetic models were tested. Results showed, that that the drug release based on diffusion Higuchi model, mainly governs the release.

  3. Preparation and evaluation of fenoterol hydrobromide suppositories.

    PubMed

    Ghorab, D; Refai, H; Tag, R

    2011-12-01

    Fenoterol HBr is a bronchodilator known to be subject to first pass effect after oral administration. The aim of this study was to prepare and evaluate fenoterol HBr suppositories. Suppositories were prepared by a fusion method using different fatty bases, viz. Witepsol H15, Witepsol E75, Suppocire AP, and Suppocire BM, as well as different hydrophilic bases, viz. polyethylene glycol and poloxamer bases. In vitro release studies revealed a greater release of the drug from hydrophilic bases than from fatty bases. The effect of incorporating different types and concentrations of non-ionic surfactants (Tween 60 and Span 20) on the release rate of the drug from Witepsol H15, as a model fatty base, was investigated. Results showed an enhanced release at low surfactant concentrations. A very fast 100% drug release was achieved when the drug was incorporated as an aqueous solution in Witepsol H15 (F17). This formula was selected to test the effect of fenoterol HBr suppositories on histamine-induced bronchospasms in Guinea pigs. No dyspnea of the animals was recorded for up to 30 min. In addition, thermogel liquid suppositories of different poloxamer 188 and poloxamer 407 proportions in the presence of sodium alginate as a mucoadhesive polymer were prepared. The different formulations behaved similarly concerning sustainment of drug release, however, only the formula containing 15% poloxamer 188 and 25% poloxamer 407 (F20) showed optimal gelation at body temperature. In conclusion, among the studied suppository bases there are bases suitable for fast release of the drug like F17 and hydrophilic bases especially polyethylene glycol, as well as other bases for sustained release applications of fenoterol HBr like fatty and thermogel bases.

  4. Rechargeable anticandidal denture material with sustained release in saliva.

    PubMed

    Malakhov, A; Wen, J; Zhang, B-X; Wang, H; Geng, H; Chen, X-D; Sun, Y; Yeh, C-K

    2016-07-01

    Candida-induced denture stomatitis is a common debilitating problem among denture wearers. Previously, we described the fabrication of a new denture material that released antifungal drugs when immersed in phosphate buffered saline. Here, we use more clinically relevant immersion conditions (human saliva; 37°C) and measure miconazole release and bioactivity. Disks were prepared by grafting PNVP [poly(N-vinyl-2-pyrrolidinone)] onto PMMA [poly(methylmethacrylate)] using plasma initiation (PMMA-g-PNVP) and then loaded with miconazole. Drug-loaded disks were immersed in 10-100% human saliva (1-30 days). Miconazole release was measured and then tested for bioactivity vs miconazole-sensitive and miconazole-resistant Candida isolates. HPLC was used to quantify miconazole levels in saliva. Miconazole-loaded disks released antifungal drug for up to 30 days. Higher drug release was found with higher concentrations of saliva, and, interestingly, miconazole solubility was increased with higher saliva concentrations. The released miconazole retained its anticandidal activity. After immersion, the residual miconazole could be quenched and the disks recharged. Freshly recharged disks displayed the same release kinetics and bioactivity as the original disks. Quenched disks could also be charged with chlorhexidine that displayed anticandidal activity. These results suggest that PMMA-g-PNVP is a promising new denture material for long-term management of denture stomatitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Design and In Vitro Evaluation of Compression-coated Pulsatile Release Tablets of Losartan Potassium

    PubMed Central

    Bajpai, M.; Singh, D. C. P.; Bhattacharya, A.; Singh, A.

    2012-01-01

    In majority of individuals blood pressure rises in the early morning hours, which lead to serious cardiovascular complications. Formulation of pulsatile system makes it possible to deliver drug at definite period of time when symptoms of the disease condition are most critical. The purpose of the present work was to develop pulsatile release tablet of losartan potassium for chronotherapy in hypertension. The prepared system consisted of a core tablet coated with versatile and safe hydrophilic cellulosic ethers such as, hydroxypropyl methylcellulose, hydroxypropyl cellulose and sodium carboxy methylcellulose to produce burst release after predetermined lag time. Various formulation factors were studied through series of test and in vitro dissolution study. It was found that core tablets containing superdisintegrant failed to produce burst drug release pattern while effervescent agent was able to do so. Results also reveal that coating composition and coating level affects lag time. Formulation containing effervescent agent in core and coated with 200 mg hydroxypropyl cellulose provide lag time of 4.5 h with 73% drug release in 6 h that followed a sigmoidal release pattern. These values were close to the desired objective of producing lag time of 5-6 h followed by fast drug release. This approach can thus provide a useful means for timed release of losartan and is helpful for patients with morning surge. PMID:23325989

  6. Development and evaluation of new multiple-unit levodopa sustained-release floating dosage forms.

    PubMed

    Goole, J; Vanderbist, F; Amighi, K

    2007-04-04

    This work relates to the development and the in vitro evaluation of sustained-release minitablets (MT), prepared by melt granulation and subsequent compression, which are designed to float over an extended period of time. Levodopa was used as a model drug. The importance of the composition and manufacturing parameters of the MT on their floating and dissolution properties was then examined. The investigation showed that MT composition and MT diameter had the greatest influence on drug release, which was sustained for more than 8h. By using the same formulation, the best floating properties were obtained with 3mm MT prepared at low compression forces ranging between 50 and 100N. Their resultant-weight (RW) values were always higher than those obtained with a marketed HBS dosage form within 13h. When they were filled into gelatin capsules, no sticking was observed. By evaluating the dissolution profiles of levodopa at different pH values, it was found that dissolution profiles depend more on the prolonged-release ability of Methocel K15M than on the pH-dependent solubility of levodopa. Finally, the robustness of the floating MT was assessed by testing the drug release variability in function of the stirring conditions during dissolution tests.

  7. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    PubMed

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in bound water as ionic strengths increased. Texture analysis was employed to determine the gel strength and also to explain the drug release for the diltiazem hydrochloride. This methodology can be used as a valuable tool for predicting potential ionic effects related to in vivo fed and fasted states on drug release from hydrophilic ER matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The Relationship Between the Evolution of an Internal Structure and Drug Dissolution from Controlled-Release Matrix Tablets.

    PubMed

    Kulinowski, Piotr; Hudy, Wiktor; Mendyk, Aleksander; Juszczyk, Ewelina; Węglarz, Władysław P; Jachowicz, Renata; Dorożyński, Przemysław

    2016-06-01

    In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.

  9. Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch.

    PubMed

    Tsai, Wanchi; Tsai, Huifang; Wong, Yinuan; Hong, Juiyen; Chang, Shwujen; Lee, Mingwei

    2018-01-01

    To administer cancer drugs with improved convenience to patients and to enhance the bioavailability of cancer drugs for oral cancer therapy, this study prepared gellan gum/glucosamine/clioquinol (GG/GS/CQ) film as the oral cancer treatment patch. GG/GS/CQ film fabricated through the EDC-mediated coupling reactions (GG/GS/CQ/EDC film). The film of the physicochemical properties and drug release kinetics were studied. The effectiveness of GG/GS/CQ/EDC film as oral cancer treatment patch were evaluated with the animal model. The results confirmed that CQ can be incorporated via EDC-mediated covalent conjugation to gellan gum/glucosamine. Mechanical testing revealed that the maximum tensile strength and elongation percentage at break were 1.91kgf/mm 2 and 5.01% for GG/GS/CQ/EDC film. After a drug release experiment lasting 45days, 86.8% of CQ was released from GG/GS/CQ/EDC film. The Huguchi model fit the GG/GS/CQ/EDC drug release data with high correlation coefficients (R 2 =0.9994, respectively). The effect of the CQ dose on oral cancer cells (OC-2) was tested, and the IC 50 of CQ alone and CQ with 10μM CuCl 2 were 9.59 and 2.22μM, respectively. The animal testing indicated that GG/GS/CQ/EDC film was decreased epidermal growth factor receptor (EGFR) expression and suppress tumor progression. These findings provide insights into a possible use for GG/GS/CQ/EDC film for oral ca in clinical practice. The GG/GS/CQ/EDC film is suitable as the dressing for use in the treatment of early-stage cancer or as wound care after surgery in late-stage of oral cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.

    PubMed

    Gulati, Karan; Ramakrishnan, Saminathan; Aw, Moom Sinn; Atkins, Gerald J; Findlay, David M; Losic, Dusan

    2012-01-01

    Bacterial infection, extensive inflammation and poor osseointegration have been identified as the major reasons for [early] orthopaedic implant failures based on titanium. Creating implants with drug-eluting properties to locally deliver drugs is an appealing way to address some of these problems. To improve properties of titanium for orthopaedic applications, this study explored the modification of titanium surfaces with titaniananotube (TNT) arrays, and approach that combines drug delivery into bone and potentially improved bone integration. A titania layer with an array of nanotube structures (∼120 nm in diameter and 50 μm in length) was synthesized on titanium surfaces by electrochemical anodization and loaded with the water-insoluble anti-inflammatory drug indomethacin. A simple dip-coating process of polymer modification formed thin biocompatible polymer films over the drug-loaded TNTs to create TNTs with predictable drug release characteristics. Two biodegradable and antibacterial polymers, chitosan and poly(lactic-co-glycolic acid), were tested for their ability to extend the drug release time of TNTs and produce favourable bone cell adhesion properties. Dependent on polymer thickness, a significant improvement in the drug release characteristics was demonstrated, with reduced burst release (from 77% to >20%) and extended overall release from 4 days to more than 30 days. Excellent osteoblast adhesion and cell proliferation on polymer-coated TNTs compared with uncoated TNTs were also observed. These results suggest that polymer-modified implants with a TNT layer are capable of delivering a drug to a bone site over an extended period and with predictable kinetics. In addition, favourable bone cell adhesion suggests that such an implant would have good biocompatibility. The described approach is broadly applicable to a wide range of drugs and implants currently used in orthopaedic practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  11. Prolonged cytotoxic effect of colchicine released from biodegradable microspheres.

    PubMed

    Muvaffak, Asli; Gurhan, Ismet; Hasirci, Nesrin

    2004-11-15

    One the main problems of cancer chemotherapy is the unwanted damage to normal cells caused by the high toxicities of anticancer drugs. Any system of controlled drug delivery that would reduce the total amount of drug required, and thus reduce the side effects, would potentially help to improve chemotherapy. In this respect, biodegradable gelatin microspheres were prepared by water/oil emulsion polymerization and by crosslinking with glutaraldehyde (GTA) as the drug-carrier system. Microspheres were loaded with colchicine, a model antimitotic drug, which was frequently used as an antimitotic agent in cancer research involving cell cultures. Microsphere sizes, swelling and degradation properties, drug-release kinetics, and cytotoxities were studied. Swelling characteristics of microspheres changed upon changing GTA concentration. A decrease in swelling values was recorded as GTA crosslink density was increased. In vitro drug release in PBS (0.01M, pH 7.4) showed rapid colchicine release up to approximately 83% (at t = 92 h) for microspheres with low GTA (0.05% v/v), whereas a slower release profile (only approximately 39%) was obtained for microspheres with high GTA (0.50% v/v) content, for the same period. Cytotoxicity tests with MCF-7, HeLa and H-82 cancer cell lines showed that free colchicine was very toxic, showing an approximately 100% lethal effect in both HeLa and H-82 cell lines and more than 50% decrease in viability in MCF-7 cells in 4 days. Indeed, entrapped colchicine indicated similar initial high toxic effect on cell viability in MCF-7 cell line and this effect became more dominant as colchicine continued to be released from microspheres in the same period. In conclusion, the control of the release rate of colchicine from gelatin microspheres was achieved under in vitro conditions by gelatin through the alteration of crosslinking conditions. Indeed, the results suggested the potential application of gelatin microspheres crosslinked with GTA as a sustained drug-delivery system for anticancer drugs for local chemotherapy administrations. (c) 2004 Wiley Periodicals, Inc.

  12. Sensor-integrated polymer actuators for closed-loop drug delivery system

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  13. 3D extrusion printing of high drug loading immediate release paracetamol tablets.

    PubMed

    Khaled, Shaban A; Alexander, Morgan R; Wildman, Ricky D; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Roberts, Clive J

    2018-03-01

    The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Design of FLT3 Inhibitor - Gold Nanoparticle Conjugates as Potential Therapeutic Agents for the Treatment of Acute Myeloid Leukemia.

    PubMed

    Simon, Timea; Tomuleasa, Ciprian; Bojan, Anca; Berindan-Neagoe, Ioana; Boca, Sanda; Astilean, Simion

    2015-12-01

    Releasing drug molecules at the targeted location could increase the clinical outcome of a large number of anti-tumor treatments which require low systemic damage and low side effects. Nano-carriers of drugs show great potential for such task due to their capability of accumulating and releasing their payload specifically, at the tumor site. FLT3 inhibitor - gold nanoparticle conjugates were fabricated to serve as vehicles for the delivery of anti-tumor drugs. Lestaurtinib, midostaurin, sorafenib, and quizartinib were selected among the FLT3 inhibitor drugs that are currently used in clinics for the treatment of acute myeloid leukemia. The drugs were loaded onto nanoparticle surface using a conjugation strategy based on hydrophobic-hydrophobic interactions with the Pluronic co-polymer used as nanoparticle surface coating. Optical absorption characterization of the particles in solution showed that FLT3 inhibitor-incorporated gold nanoparticles were uniformly distributed and chemically stable regardless of the drug content. Drug loading study revealed a high drug content in the case of midostaurin drug which also showed increased stability. Drug release test in simulated cancer cell conditions demonstrated more than 56 % release of the entrapped drug, a result that correlates well with the superior cytotoxicity of the nano-conjugates comparatively with the free drug. This is a pioneering study regarding the efficient loading of gold nanoparticles with selected FLT3 inhibitors. In vitro cytotoxicity assessment shows that FLT3-incorporated gold nanoparticles are promising candidates as vehicles for anti-tumor drugs and demonstrate superior therapeutic effect comparatively with the bare drugs.

  15. Hydrazone linked doxorubicin-PLA prodrug nanoparticles with high drug loading

    NASA Astrophysics Data System (ADS)

    Gatti, Simone; Agostini, Azzurra; Capasso Palmiero, Umberto; Colombo, Claudio; Peviani, Marco; Biffi, Alessandra; Moscatelli, Davide

    2018-07-01

    An optimal drug delivery system should be characterized by biocompatibility, biodegradability, high drug loading and favorable drug release profile. To achieve this goal a hydrazone linked doxorubicin-poly(lactic acid) prodrug (PLA-DOX) was synthesized by the functionalization of a short polymer chain produced by ring opening polymerization. The hydrophobic prodrug generated in this way was nanoprecipitated using a block copolymer to form polymeric nanoparticles (NPs) with a quantitative loading efficiency and a high and tunable drug loading. The effects of the concentration of the PLA-DOX prodrug and surfactant were studied by dynamic light scattering showing a range of NP size between 50 and 90 nm and monodispersed size distributions with polydispersity indexes lower then 0.27 up to a maximum DOX concentration of 27% w/w. The release profile of DOX from these NPs, tested at different pH conditions, showed a higher release rate in acidic conditions, consistent with the nature of the hydrazone bond which was used to conjugate the drug to the polymer. In vitro cytotoxicity studies performed on BV2 microglia-like cell line highlighted a specific cytotoxic effect of these NPs suggesting the maintenance of the drug efficacy and a modified release profile upon encapsulation of DOX in the NPs.

  16. Evaluation of intratympanic formulations for inner ear delivery: methodology and sustained release formulation testing

    PubMed Central

    Liu, Hongzhuo; Feng, Liang; Tolia, Gaurav; Liddell, Mark R.; Hao, Jinsong; Li, S. Kevin

    2013-01-01

    A convenient and efficient in vitro diffusion cell method to evaluate formulations for inner ear delivery via the intratympanic route is currently not available. The existing in vitro diffusion cell systems commonly used to evaluate drug formulations do not resemble the physical dimensions of the middle ear and round window membrane. The objectives of this study were to examine a modified in vitro diffusion cell system of a small diffusion area for studying sustained release formulations in inner ear drug delivery and to identify a formulation for sustained drug delivery to the inner ear. Four formulations and a control were examined in this study using cidofovir as the model drug. Drug release from the formulations in the modified diffusion cell system was slower than that in the conventional diffusion cell system due to the decrease in the diffusion surface area of the modified diffusion cell system. The modified diffusion cell system was able to show different drug release behaviors among the formulations and allowed formulation evaluation better than the conventional diffusion cell system. Among the formulations investigated, poly(lactic-co-glycolic acid)–poly(ethylene glycol)–poly(lactic-co-glycolic acid) triblock copolymer systems provided the longest sustained drug delivery, probably due to their rigid gel structures and/or polymer-to-cidofovir interactions. PMID:23631539

  17. Solid state properties and drug release behavior of co-amorphous indomethacin-arginine tablets coated with Kollicoat® Protect.

    PubMed

    Petry, Ina; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Leopold, Claudia S

    2017-10-01

    A promising approach to improve the solubility of poorly water-soluble drugs and to overcome the stability issues related to the plain amorphous form of the drugs, is the formulation of drugs as co-amorphous systems. Although polymer coatings have been proven very useful with regard to tablet stability and modifying drug release, there is little known on coating co-amorphous formulations. Hence, the aim of the present study was to investigate whether polymer coating of co-amorphous formulations is possible without inducing recrystallization. Tablets containing either a physical mixture of crystalline indomethacin and arginine or co-amorphous indomethacin-arginine were coated with a water soluble polyvinyl alcohol-polyethylene glycol graft copolymer (Kollicoat® Protect) and stored at 23°C/0% RH and 23°C/75% RH. The solid state properties of the coated tablets were analyzed by XRPD and FTIR and the drug release behavior was tested for up to 4h in phosphate buffer pH 4.5. The results showed that the co-amorphous formulation did not recrystallize during the coating process or during storage at both storage conditions for up to three months, which confirmed the high physical stability of this co-amorphous system. Furthermore, the applied coating could partially inhibit recrystallization of indomethacin during drug release testing, as coated tablets reached a higher level of supersaturation compared to the respective uncoated formulations and showed a lower decrease of the dissolved indomethacin concentration upon precipitation. Thus, the applied coating enhanced the AUC of the dissolution curve of the co-amorphous tablets by about 30%. In conclusion, coatings might improve the bioavailability of co-amorphous formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Preparation and drug release behavior of temperature-responsive mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Liu, Ping; Tian, Yong

    2011-06-01

    A temperature-responsive composite based on poly (N-isopropylacrylamide) (PNIPAAm) and ordered mesoporous carbons (OMCs) has been successfully prepared by a simple wetness impregnation technique. The structures and properties of the composite were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 sorption, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The results showed that the inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. Ibuprofen (IBU) was selected as model drug, and in vitro test of IBU release exhibited a temperature-responsive controlled release delivery.

  19. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    PubMed

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  20. Porous Hydroxyapatite Bioceramic Scaffolds for Drug Delivery and Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Loca, Dagnija; Locs, Janis; Salma, Kristine; Gulbis, Juris; Salma, Ilze; Berzina-Cimdina, Liga

    2011-10-01

    The conventional methods of supplying a patient with pharmacologic active substances suffer from being very poorly selective, so that damage can occurs to the healthy tissues and organs, different from the intended target. In addition, high drug doses can be required to achieve the desired effect. An alternative approach is based on the use of implantable delivery tools, able to release the active substance in a controlled way. In the current research local drug delivery devices containing 8mg of gentamicin sulphate were prepared using custom developed vacuum impregnation technique. In vitro dissolution tests showed that gentamicin release was sustained for 12h. In order to decrease gentamicin release rate, biopolymer coatings were applied and coating structure investigated. The results showed that gentamicin release can be sustained for more than 70h for poly(epsilon-caprolactone) coated calcium phosphate scaffolds. From poly lactic acid and polyvinyl alcohol coated scaffolds gentamicin was released within 20h and 50h, respectively.

  1. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres.

    PubMed

    Andhariya, Janki V; Shen, Jie; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J

    2017-06-10

    Establishment of in vitro-in vivo correlations (IVIVCs) for parenteral polymeric microspheres has been very challenging, due to their complex multiphase release characteristics (which is affected by the nature of the drug) as well as the lack of compendial in vitro release testing methods. Previously, a Level A correlation has been established and validated for polymeric microspheres containing risperidone (a practically water insoluble small molecule drug). The objectives of the present study were: 1) to investigate whether a Level A IVIVC can be established for polymeric microspheres containing another small molecule drug with different solubility profiles compared to risperidone; and 2) to determine whether release characteristic differences (bi-phasic vs tri-phasic) between microspheres can affect the development and predictability of IVIVCs. Naltrexone was chosen as the model drug. Three compositionally equivalent formulations of naltrexone microspheres with different release characteristics were prepared using different manufacturing processes. The critical physicochemical properties (such as drug loading, particle size, porosity, and morphology) as well as the in vitro release characteristics of the prepared naltrexone microspheres and the reference-listed drug (Vivitrol®) were determined. The pharmacokinetics of the naltrexone microspheres were investigated using a rabbit model. The obtained pharmacokinetic profiles were deconvoluted using the Loo-Riegelman method, and compared with the in vitro release profiles of the naltrexone microspheres obtained using USP apparatus 4. Level A IVIVCs were established and validated for predictability. The results demonstrated that the developed USP 4 method was capable of detecting manufacturing process related performance changes, and most importantly, predicting the in vivo performance of naltrexone microspheres in the investigated animal model. A critical difference between naltrexone and risperidone loaded microspheres is their respective bi-phasic and tri-phasic release profiles with varying burst release and lag phase. These variations in release profiles affect the development of IVIVCs. Nevertheless, IVIVCs have been established and validated for polymeric microspheres with different release characteristics. Copyright © 2017. Published by Elsevier B.V.

  2. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  3. Release of Ciprofloxacin-HCl and Dexamethasone Phosphate by Hyaluronic Acid Containing Silicone Polymers.

    PubMed

    Nguyen, Darrene; Hui, Alex; Weeks, Andrea; Heynen, Miriam; Joyce, Elizabeth; Sheardown, Heather; Jones, Lyndon

    2012-04-19

    The purpose of this study was to determine the effect of the covalent incorporation of hyaluronic acid (HA) into conventional hydrogel and hydrogels containing silicone as models for contact lens materials on the uptake and release of the fluoroquinolone antibiotic ciprofloxacin and the anti-inflammatory steroid dexamethasone phosphate. A 3 mg/mL ciprofloxacin solution (0.3% w/v) and a 1 mg/mL dexamethasone phosphate solution (0.1%) was prepared in borate buffered saline. Three hydrogel material samples (pHEMA; pHEMA TRIS; DMAA TRIS) were prepared with and without the covalent incorporation of HA of molecular weight (MW) 35 or 132 kDa. Hydrogel discs were punched from a sheet of material with a uniform diameter of 5 mm. Uptake kinetics were evaluated at room temperature by soaking the discs for 24 h. Release kinetics were evaluated by placing the drug-loaded discs in saline at 34 °C in a shaking water bath. At various time points over 6-7 days, aliquots of the release medium were assayed for drug amounts. The majority of the materials tested released sufficient drug to be clinically relevant in an ophthalmic application, reaching desired concentrations for antibiotic or anti-inflammatory activity in solution. Overall, the silicone-based hydrogels (pHEMA TRIS and DMAA TRIS), released lower amounts of drug than the conventional pHEMA material (p < 0.001). Materials with HA MW132 released more ciprofloxacin compared to materials with HA MW35 and lenses without HA (p < 0.02). Some HA-based materials were still releasing the drug after 6 days.

  4. Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state.

    PubMed

    Wheeler, Robert A; Aragona, Brandon J; Fuhrmann, Katherine A; Jones, Joshua L; Day, Jeremy J; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M

    2011-06-01

    Prominent neurobiological theories of addiction posit a central role for aberrant mesolimbic dopamine release but disagree as to whether repeated drug experience blunts or enhances this system. Although drug withdrawal diminishes dopamine release, drug sensitization augments mesolimbic function, and both processes have been linked to drug seeking. One possibility is that the dopamine system can rapidly switch from dampened to enhanced release depending on the specific drug-predictive environment. To test this, we examined dopamine release when cues signaled delayed cocaine delivery versus imminent cocaine self-administration. Fast-scan cyclic voltammetry was used to examine real-time dopamine release while simultaneously monitoring behavioral indexes of aversion as rats experienced a sweet taste cue that predicted delayed cocaine availability and during self-administration. Furthermore, the impact of cues signaling delayed drug availability on intracranial self-stimulation, a broad measure of reward function, was assessed. We observed decreased mesolimbic dopamine concentrations, decreased reward sensitivity, and negative affect in response to the cocaine-predictive taste cue that signaled delayed cocaine availability. Importantly, dopamine concentration rapidly switched to elevated levels to cues signaling imminent cocaine delivery in the subsequent self-administration session. These findings show rapid, bivalent contextual control over brain reward processing, affect, and motivated behavior and have implications for mechanisms mediating substance abuse. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Tapioca starch graft copolymers and Dome Matrix® modules II. Effect of modules assemblage on riboflavin release kinetics.

    PubMed

    Casas, Marta; Strusi, Orazio Luca; Jiménez-Castellanos, M Rosa; Colombo, Paolo

    2011-01-01

    This paper studies the Riboflavin release from systems made of assembled modules of Dome Matrix® technology using tapioca starch-ethylmethacrylate (TSEMA) and tapioca hydroxypropylstarch-ethylmethacrylate (THSEMA) graft copolymers produced by two different drying methods. Two different shape modules were manufactured for this study, i.e., female and male modules, in order to facilitate their assemblage in "void configuration", a system with an internal void space. Drug release studies on void configurations based on THSEMA show faster releases than TSEMA; HPMC systems used as a comparative reference showed intermediate release. Moreover, using void configurations made with one module of TSEMA and the other of THSEMA is possible to average the drug release, without difference between the drying methods used for the polymers. With respect to the floatation characteristics, all the void configurations floated immediately and, due to the mass center of the system, the floatation position of the system was always axial with the female module up and the male down. The drug release studies performed with a sinker to force the immersion of the systems in the medium did not show differences with respect to the dissolution test without a sinker. The combination of floatation capability of the assembled modules and the prolonged drug release provided with the graft copolymers make these assembled modules candidates as controlled release gastro-retentive dosage forms. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies

    PubMed Central

    Hsu, Yung-Heng; Chen, Dave Wei-Chih; Tai, Chun-Der; Chou, Ying-Chao; Liu, Shih-Jung; Ueng, Steve Wen-Neng; Chan, Err-Cheng

    2014-01-01

    We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics. PMID:25246790

  7. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability.

    PubMed

    Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M

    2018-01-01

    The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles.

    PubMed

    Reis, Catarina Pinto; Gomes, Ana; Rijo, Patrícia; Candeias, Sara; Pinto, Pedro; Baptista, Marina; Martinho, Nuno; Ascensão, Lia

    2013-10-01

    Azelaic acid (AzA) is used in the treatment of acne. However, side effects and low compliance have been associated with several topical treatments with AzA. Nanotechnology presents a strategy that can overcome these problems. Polymeric nanoparticles can control drug release and targeting and reduce local drug toxicity. The aim of this study was to produce and evaluate an innovative topical treatment for acne with AzA-loaded poly-DL-lactide/glycolide copolymer nanoparticles. A soft white powder of nanoparticles was prepared. The mean size of loaded nanoparticles was < 400 nm and zeta potential was negative. Spherical nanoparticles were observed by scanning electron microscopy. Encapsulation efficiency was around 80% and a strong interaction between the polymer and the drug was confirmed by differential scanning calorimetric analysis. In vitro drug release studies suggested a controlled and pulsatile release profile. System efficacy tests suggested similar results between the loaded nanoparticles and the nonencapsulated drug against the most common bacteria associated with acne. Cytotoxicity of AzA-loaded nanoparticles was concentration dependent, although not pronounced. The occluded patch test seemed to indicate that the formulation excipients were safe and thus AzA-loaded nanoparticles appear to be an efficient and safe treatment for acne.

  9. Development and application of a biorelevant dissolution method using USP apparatus 4 in early phase formulation development.

    PubMed

    Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S

    2010-10-04

    Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.

  10. Immobilisation of an antibacterial drug to Ti6Al4V components fabricated using selective laser melting

    NASA Astrophysics Data System (ADS)

    Vaithilingam, Jayasheelan; Kilsby, Samuel; Goodridge, Ruth D.; Christie, Steven D. R.; Edmondson, Steve; Hague, Richard J. M.

    2014-09-01

    Bacterial infections from biomedical implants and surgical devices are a major problem in orthopaedic, dental and vascular surgery. Although the sources of contaminations that lead to bacterial infections are known, it is not possible to control or avoid such infections completely. In this study, an approach to immobilise Ciprofloxacin® (an antibacterial drug) to phosphonic acid based self-assembled monolayers (SAMs) adsorbed on a selectively laser melted (SLM) Ti6Al4V structure, has been presented. X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements confirmed the attachment of SAMs and the drug. Results showed that Ciprofloxacin® is highly stable under the oxidative conditions used in this study. In-vitro stability was estimated by immersing the Ciprofloxacin® immobilised substrates in 10 mM of Tris-HCl buffer (pH-7.4) for 42 days. The Tris-HCl buffer was analysed using UV-vis spectrophotometry at 7, 14, 28 and 42 day time intervals to determine the release of the immobilised drug. The drug was observed to release in a sustained manner. 50% of the drug was released after 4 weeks with approximately 40% of the drug remaining after 6 weeks. Antibacterial susceptibility tests revealed that the immobilised drug was therapeutically active upon its release. This study demonstrates the potential to use self-assembled monolayers to modify SLM fabricated surfaces with therapeutics.

  11. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  12. [Polymer ocular implants for controlled release of drugs. I. Animal testing of the materials].

    PubMed

    Czechowicz-Janicka, K; Romaniuk, I; Piekarniak, A; Wicha-Brzuchalska, A; Galant, S; Rosiak, J

    1992-01-01

    Presented are the results of trials with hydrogel inserts received by radiation method and applied into the conjunctival sac of rabbits. In the future they can serve for incorporation of some definite drugs.

  13. Design of a novel bilayered gastric mucoadhesive system for localized and unidirectional release of lamotrigine

    PubMed Central

    Mohana Raghava Srivalli, K.; Lakshmi, P.K.; Balasubramaniam, J.

    2012-01-01

    Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength. PMID:24109205

  14. Magnetic Active Agent Release System (MAARS): evaluation of a new way for a reproducible, externally controlled drug release into the small intestine.

    PubMed

    Dietzel, Christian T; Richert, Hendryk; Abert, Sandra; Merkel, Ute; Hippius, Marion; Stallmach, Andreas

    2012-08-10

    Human absorption studies are used to test new drug candidates for their bioavailability in different regions of the gastrointestinal tract. In order to replace invasive techniques (e.g. oral or rectal intubation) a variety of externally controlled capsule-based drug release systems has been developed. Most of these use ionizing radiation, internal batteries, heating elements or even chemicals for the localization and disintegration process of the capsule. This embodies potential harms for volunteers and patients. We report about a novel technique called "Magnetic Active Agent Release System" (MAARS), which uses purely magnetic effects for this purpose. In our trial thirteen healthy volunteers underwent a complete monitoring and release procedure of 250 mg acetylsalicylic acid (ASA) targeting the flexura duodenojejunalis and the mid-part of the jejunum. During all experiments MAARS initiated a sufficient drug release and was well tolerated. Beside this we also could show that the absorption of ASA is about two times faster in the more proximal region of the flexura duodenojejunalis with a tmax of 47±13 min compared to the more distal jejunum with tmax values of 100±10 min (p=0.031). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Flavonoid-based pH-responsive hydrogels as carrier of unstable drugs in oxidative conditions.

    PubMed

    Spizzirri, Umile Gianfranco; Cirillo, Giuseppe; Curcio, Manuela; Picci, Nevio; Iemma, Francesca

    2015-05-01

    In this study, pH-responsive hydrogels, synthesized by the coupling reaction of polyacrylic acid and catechin, are proposed as carriers of oxidable drugs toward the GI tract. The presence of polyphenolic moieties in the network gives the polymers properties suitable for the release of unstable drugs in oxidative conditions. The characterization of the hydrogels is obtained by means of morphological and physico-chemical analyses, antioxidant assays and evaluation of the swelling behavior in media simulating the gastric (pH 1.0) and the intestinal (pH 7.4) tracts. The hydrogels are tested as pH-responsive carriers in in vitro release studies of folic acid and thiamine, two model drugs easily degraded by oxidative conditions simulated by UV irradiation and t-butyl hydroperoxide treatment, respectively. Results show that catechin-based carriers are able to control the release of drugs at different pH values, giving a remarkable improvement in the stability of the therapeutics.

  16. Correlation of in vitro and in vivo paracetamol availability from layered excipient suppositories.

    PubMed

    Chicco, D; Grabnar, I; Skerjanec, A; Vojnovic, D; Maurich, V; Realdon, N; Ragazzi, E; Belic, A; Karba, R; Mrhar, A

    1999-11-05

    An in vivo investigation of paracetamol availability was carried out on eight healthy volunteers, comparing two paracetamol suppository formulations prepared using two different gliceride bases, a fast drug-releasing one and a slow drug-releasing one, i.e. Witepsol H15 and W35, respectively. The formulations were selected on the basis of a previous in vitro drug release study, which showed that, by superimposing the excipients in two layers within the same suppository, the drug release kinetics could be modulated using different ratios between the two layers. The comparison between the two different formulations in terms of plasma profiles and total amounts of drug excreted in urine revealed an increase in the extent of drug absorption from the layered excipient suppository. As the W35 has a higher monoglyceride content than the H15, this improved paracetamol availability could be ascribed to the absorption-enhancing effect of the monoglycerides. Moreover, the W35 has also a higher viscosity, which could possibly cause the suppository to be retained for a longer time in the lower part of the rectum, where the blood is drained directly to the systemic circulation. It was therefore hypothesized that the enhanced paracetamol availability could be also due to a liver bypass mechanism. For a further examination of the paracetamol absorption kinetics after rectal administration, a one-compartment model was fitted to the drug plasma concentration data. This approach allowed to draw absorption versus time profiles, which showed that a retardation actually occurred in paracetamol absorption when using suppositories containing the slow drug releasing excipient W35. These absorption data were then employed for an A level in vitro-in vivo correlation testing, and a linear relationship was found between in vitro release rate and in vivo absorption rate, both for fast releasing and for the layered excipient suppositories.

  17. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications.

    PubMed

    Saveleva, M S; Ivanov, A N; Kurtukova, M O; Atkin, V S; Ivanova, A G; Lyubun, G P; Martyukova, A V; Cherevko, E I; Sargsyan, A K; Fedonnikov, A S; Norkin, I A; Skirtach, A G; Gorin, D A; Parakhonskiy, B V

    2018-04-01

    Designing advanced biomaterials for tissue regeneration with drug delivery and release functionalities remains a challenge in regenerative medicine. In this research, we have developed novel composite scaffolds based on polymeric polycaprolactone fibers coated with porous calcium carbonate structures (PCL/CaCO 3 ) for tissue engineering and have shown their drug delivery and release in rats. In vivo biocompatibility tests of PCL/CaCO 3 scaffolds were complemented with in vivo drug release study, where tannic acid (TA) was used as a model drug. Release of TA from the scaffolds was realized by recrystallization of the porous vaterite phase of calcium carbonate into the crystalline calcite. Cell colonization and tissue vascularization as well as transplantability of developed PCL/CaCO 3 +TA scaffolds were observed. Detailed study of scaffold transformations during 21-day implantation period was followed by scanning electron microscopy and X-ray diffraction studies before and after in vivo implantation. The presented results demonstrate that PCL/CaCO 3 scaffolds are attractive candidates for implants in bone regeneration and tissue engineering with a possibility of loading biologically active molecules and controlled release. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In-vitro release and permeation studies of ketoconazole from optimized dermatological vehicles using powder, nanoparticles and solid dispersion forms of drug

    NASA Astrophysics Data System (ADS)

    Mohammed, Irfan A.

    To optimize the clinical efficacy of Ketoconazole from an externally applied product, this project was undertaken to evaluate the drug release/permeation profile from various dermatological vehicles using regular powder, nanoparticles and solid dispersion forms with reduced level of drug. Nanoparticles of drug were prepared by wet media milling method using Polyvinylpyrrolidone (PVP-10K) as a stabilizer. The nanoparticles were in the size range of 250-300nm. Solid dispersion was prepared by solvent evaporation method using drug to PVP-10K at a weight ratio of (1:2). Formulations containing 1% w/w drug were developed using HPMC gel, Carbomer gel and a cationic cream as the vehicles. Penetration enhancers including propylene glycol (PG), dimethylsulfoxide (DMSO) and polyethylene glycol 400 (PEG-400) at various levels were evaluated. A commercial 2% w/w ketoconazole product was included as a control for comparison. Studies were carried out with Franz Diffusion Cells using cellulose membrane and human cadaver skin for two and six hour studies. Among the formulations evaluated, the general rank order of the drug release through the cellulose membrane was observed to be: HPMC gel base > Anionic gel base > Cationic gel base > Commercial product. The addition of penetration enhancers showed variable effects in all samples evaluated. However, the HPMC gel-based vehicle showed significant effect in enhancing the drug release in the presence of DMSO. The formulation containing 1% w/w ketoconazole and 20% w/w DMSO gave a maximum drug release of 20.21% when compared to only 1.60% from the commercial product. This represents a twelve fold increase in the release of ketoconazole from the formulation. Furthermore, when the optimum gel-based formulation containing 1% w/w ketoconazole was studied over an extended period of 6 hours, it gave 36.01% drug release from the sample formulation compared to only 2.00% from the commercial product. Finally, this formulation was selected to study for its drug release/permeation profile using the human cadaver skin as the diffusion barrier. Here, as expected, the drug release from both the formulations tested was significantly reduced due to the resistance posed by the skin. After 6 hours, the drug release form the commercial product was 0.17% when compared to 2.80% from the optimum formulation. Once again, this indicated that the experimental formulation exhibits superior drug release dynamics. The selected formulations were further evaluated for their in-vitro anti-fungal activities using yeast microorganisms. The results correlated to the in-vitro drug release profile, where HPMC based formulations exhibited a greater area of zone of inhibition for the growth of microorganisms when compared to diminutive area of zone of inhibition for the commercial product. The release data from all the samples were treated to calculate various physical parameters including: diffusion co-efficient, partition co-efficient, steady state flux and lag period etc. Interestingly, the values for the steady state flux and diffusion coefficient were found to be the highest from the optimum formulation and the values for the lag time and partition coefficient were observed to be the lowest. This supports the evidence that the drug from this formulation is readily diffusible to the skin at a steady rate after its application at the site. In-vitro drug diffusion studies and in-vitro anti-fungal studies proved useful in screening various dermatological formulations of ketoconazole compared to the commercial product containing 2% w/w drug. The HPMC based optimum formulation with reduced level of drug represents 15 folds increase through human cadaver skin and also exhibited augmented anti-fungal activity. This supports that by using an appropriate vehicle and proper incorporation of drug, one can optimize the drug release from topical formulation for maximum therapeutic effect.

  19. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier.

    PubMed

    Obaidat, Rana M; Alnaief, Mohammad; Mashaqbeh, Hadeia

    2018-05-07

    Carrageenan is an anionic polysaccharide offering many advantages to be used in drug delivery applications. These include availability, thermo-stability, low toxicity, and encapsulating properties. Combination of these properties with aerogel properties like large surface area and porosity make them an ideal candidate for drug adsorption and delivery applications. Emulsion-gelation technique was used to prepare carrageenan gel microparticles with supercritical CO 2 for drying and loading purposes. Ibuprofen has been selected as a model drug for drug loading inside. The prepared microparticles were characterized using particle size analysis, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, density measurements, surface area, and porosity measurements. Finally, dissolution was applied to the loaded preparations to test in vitro drug release. Ibuprofen was successfully loaded in the amorphous form inside the prepared microparticles with a significant enhancement in the drug release profile. In conclusion, prepared carrageenan aerogel microparticles showed an excellent potential for use as a drug carrier.

  20. Relapse to opioid use in opioid-dependent individuals released from compulsory drug detention centres compared with those from voluntary methadone treatment centres in Malaysia: a two-arm, prospective observational study

    PubMed Central

    Wegman, Martin P; Altice, Frederick L; Kaur, Sangeeth; Rajandaran, Vanesa; Osornprasop, Sutayut; Wilson, David; Wilson, David P; Kamarulzaman, Adeeba

    2017-01-01

    Summary Background Detention of people who use drugs into compulsory drug detention centres (CDDCs) is common throughout East and Southeast Asia. Evidence-based pharmacological therapies for treating substance use disorders, such as opioid agonist treatments with methadone, are generally unavailable in these settings. We used a unique opportunity where CDDCs coexisted with voluntary drug treatment centres (VTCs) providing methadone in Malaysia to compare the timing and occurrence of opioid relapse (measured using urine drug testing) in individuals transitioning from CDDCs versus methadone maintenance in VTCs. Methods We did a parallel, two-arm, prospective observational study of opioid-dependent individuals aged 18 years and older who were treated in Malaysia in the Klang Valley in two settings: CDDCs and VTCs. We used sequential sampling to recruit individuals. Assessed individuals in CDDCs were required to participate in services such as counselling sessions and manual labour. Assessed individuals in VTCs could voluntarily access many of the components available in CDDCs, in addition to methadone therapy. We undertook urinary drug tests and behavioural interviews to assess individuals at baseline and at 1, 3, 6, 9, and 12 months post-release. The primary outcome was time to opioid relapse post-release in the community confirmed by urinary drug testing in individuals who had undergone baseline interviewing and at least one urine drug test (our analytic sample). Relapse rates between the groups were compared using time-to-event methods. This study is registered at ClinicalTrials.gov (NCT02698098). Findings Between July 17, 2012, and August 21, 2014, we screened 168 CDDC attendees and 113 VTC inpatients; of these, 89 from CDDCs and 95 from VTCs were included in our analytic sample. The baseline characteristics of the two groups were similar. In unadjusted analyses, CDDC participants had significantly more rapid relapse to opioid use post-release compared with VTC participants (median time to relapse 31 days [IQR 26–32] vs 352 days [256–unestimable], log rank test, p<0·0001). VTC participants had an 84% (95% CI 75–90) decreased risk of opioid relapse after adjustment for control variables and inverse propensity of treatment weights. Time-varying effect modelling revealed the largest hazard ratio reduction, at 91% (95% CI 83–96), occurs during the first 50 days in the community. Interpretation Opioid-dependent individuals in CDDCs are significantly more likely to relapse to opioid use after release, and sooner, than those treated with evidence-based treatments such as methadone, suggesting that CDDCs have no role in the treatment of opioid-use disorders. Funding The World Bank Group, Doris Duke Charitable Foundation, National Institute on Drug Abuse, Australian National Health & Medical Research Council, National Institute of Mental Health, and the University of Malaya-Malaysian Ministry of Higher Education High Impact Research Grant. PMID:27964869

  1. Enhanced performance of magnesium alloy for drug-eluting vascular scaffold application

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Daikun; Mao, Daoyong; Bai, Ningning; Chen, Yashi; Li, Qing

    2018-03-01

    Bio-absorbable magnesium alloys drug-eluting vascular scaffold was developed to resolve the defect of permanent metal and drug-eluting stents, most notably a chronic vessel wall inflammation and the risk of stent thrombosis. Nevertheless, violent chemical reaction and rapid degradation under physiological conditions limits their application. Furthermore, multifunctional drug-eluting stents which could reduce the formation of thrombus and repair the damaged vessels need more attention to fundamentally cure the coronary artery disease. Herein, a drug delivery system (Mg/MgO/PLA-FA) which can realize sustainable release of ferulaic acid was designed via anodic oxidation process and dip coating process. Electrochemical tests and immersion experiments showed that the superior anticorrosion behavior, it is due to the dense MgO-PLA composite layer. The released ferulaic acid can effectively decrease platelets adhesion and aggregation during the early stage of implantation. Besides, hemolysis tests showed that the composite coatings endowed the Mg alloy with a low hemolysis ratio. The Mg/MgO/PLA-FA composite materials may be appropriate for applications on biodegradable Mg alloys drug-eluting stents.

  2. System-based approach for an advanced drug delivery platform

    NASA Astrophysics Data System (ADS)

    Kulinsky, Lawrence; Xu, Han; Tsai, Han-Kuan A.; Madou, Marc

    2006-03-01

    Present study is looking at the problem of integrating drug delivery microcapsule, a bio-sensor, and a control mechanism into a biomedical drug delivery system. A wide range of medical practices from cancer therapy to gastroenterological treatments can benefit from such novel bio-system. Drug release in our drug delivery system is achieved by electrochemically actuating an array of polymeric valves on a set of drug reservoirs. The valves are bi-layer structures, made in the shape of a flap hinged on one side to a valve seat, and consisting of thin films of evaporated gold and electrochemically deposited polypyrrole (PPy). These thin PPy(DBS) bi-layer flaps cover access holes of underlying chambers micromachined in a silicon substrate. Chromium and polyimide layers are applied to implement "differential adhesion" to obtain a voltage induced deflection of the bilayer away from the drug reservoir. The Cr is an adhesion-promoting layer, which is used to strongly bind the gold layer down to the substrate, whereas the gold adheres weakly to polyimide. Drug actives (dry or wet) were pre-stored in the chambers and their release is achieved upon the application of a small bias (~ 1V). Negative voltage causes cation adsorption and volume change in PPy film. This translates into the bending of the PPy/Au bi-layer actuator and release of the drug from reservoirs. This design of the drug delivery module is miniaturized to the dimensions of 200μm valve diameter. Galvanostatic and potentiostatic PPy deposition methods were compared, and potentiostatic deposition method yields film of more uniform thickness. PPy deposition experiments with various pyrrole and NaDBS concentrations were also performed. Glucose biosensor based on glucose oxidase (GOx) embedded in the PPy matrix during elechtrochemical deposition was manufactured and successfully tested. Multiple-drug pulsatile release and continuous linear release patterns can be implemented by controlling the operation of an array of valves. Varying amounts of drugs, together with more complex controlling strategies would allow creation of more complex drug delivery patterns.

  3. Biocompatible polymeric implants for controlled drug delivery produced by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2011-10-01

    Implants consisting of drug cores coated with polymeric films were developed for delivering drugs in a controlled manner. The polymeric films were produced using matrix assisted pulsed laser evaporation (MAPLE) and consist of poly(lactide-co-glycolide) (PLGA), used individually as well as blended with polyethylene glycol (PEG). Indomethacin (INC) was used as model drug. The implants were tested in vitro (i.e. in conditions similar with those encountered inside the body), for predicting their behavior after implantation at the site of action. To this end, they were immersed in physiological media (i.e. phosphate buffered saline PBS pH 7.4 and blood). At various intervals of PBS immersion (and respectively in blood), the polymeric films coating the drug cores were studied in terms of morphology, chemistry, wettability and blood compatibility. PEG:PLGA film exhibited superior properties as compared to PLGA film, the corresponding implant being thus more suitable for internal use in the human body. In addition, the implant containing PEG:PLGA film provided an efficient and sustained release of the drug. The kinetics of the drug release was consistent with a diffusion mediated mechanism (as revealed by fitting the data with Higuchi's model); the drug was gradually released through the pores formed during PBS immersion. In contrast, the implant containing PLGA film showed poor drug delivery rates and mechanical failure. In this case, fitting the data with Hixson-Crowell model indicated a release mechanism dominated by polymer erosion.

  4. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins.

    PubMed

    Bloomquist, Cameron J; Mecham, Michael B; Paradzinsky, Mark D; Janusziewicz, Rima; Warner, Samuel B; Luft, J Christopher; Mecham, Sue J; Wang, Andrew Z; DeSimone, Joseph M

    2018-05-28

    Mass customization along with the ability to generate designs using medical imaging data makes 3D printing an attractive method for the fabrication of patient-tailored drug and medical devices. Herein we describe the application of Continuous Liquid Interface Production (CLIP) as a method to fabricate biocompatible and drug-loaded devices with controlled release properties, using liquid resins containing active pharmaceutical ingredients (API). In this work, we characterize how the release kinetics of a model small molecule, rhodamine B-base (RhB), are affected by device geometry, network crosslink density, and the polymer composition of polycaprolactone- and poly (ethylene glycol)-based networks. To demonstrate the applicability of using API-loaded liquid resins with CLIP, the UV stability was evaluated for a panel of clinically-relevant small molecule drugs. Finally, select formulations were tested for biocompatibility, degradation and encapsulation of docetaxel (DTXL) and dexamethasone-acetate (DexAc). Formulations were shown to be biocompatible over the course of 175 days of in vitro degradation and the clinically-relevant drugs could be encapsulated and released in a controlled fashion. This study reveals the potential of the CLIP manufacturing platform to serve as a method for the fabrication of patient-specific medical and drug-delivery devices for personalized medicine. Copyright © 2018. Published by Elsevier B.V.

  5. Evaluating Suspension Formulations of Theophylline Cocrystals With Artificial Sweeteners.

    PubMed

    Aitipamula, Srinivasulu; Wong, Annie B H; Kanaujia, Parijat

    2018-02-01

    Pharmaceutical cocrystals have garnered significant interest as potential solids to address issues associated with formulation development of drug substances. However, studies concerning the understanding of formulation behavior of cocrystals are still at the nascent stage. We present results of our attempts to evaluate suspension formulations of cocrystals of an antiasthmatic drug, theophylline, with 2 artificial sweeteners. Stability, solubility, drug release, and taste of the suspension formulations were evaluated. Suspension that contained cocrystal with acesulfame showed higher drug release rate, while a cocrystal with saccharin showed a significant reduction in drug release rate. The cocrystal with saccharin was found stable in suspension for over 9 weeks at accelerated test condition; in contrast, the cocrystal with acesulfame was found unstable. Taste analysis using an electronic taste-sensing system revealed improved sweetness of the suspension formulations with cocrystals. Theophylline has a narrow therapeutic index with a short half-life which necessitates frequent dosing. This adversely impacts patient compliance and enhances risk of gastrointestinal and cardiovascular adverse effects. The greater thermodynamic stability, sweetness, and sustained drug release of the suspension formulation of theophylline-saccharin could offer an alternative solution to the short half-life of theophylline and make it a promising formulation for treating asthmatic pediatric and geriatric patients. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. An electro-conductive fluid as a responsive implant for the controlled stimuli-release of diclofenac sodium.

    PubMed

    Bijukumar, Divya; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-11-01

    The purpose of this study was to develop an electro-responsive co-polymeric (ERP) implantable gel from polyethylene glycol (PEG), sodium polystyrene sulphonate (NaPss), polyvinyl alcohol (PVA), and diethyl acetomidomalonate (DAA) for electro-liberation of the model drug diclofenac sodium. Various physicochemical and physicomechanical characterization tests were undertaken on the synthesized drug-free gel (ERP G1) and drug-loaded gel (ERP G2). The ability of the gel to release diclofenac sodium following electrical stimulation was evaluated using a galvanostat while Molecular Mechanics (MM) simulations were performed to elucidate the experimental mechanisms. A stable electro-active gel exhibiting superior cycling stability was produced with desirable rheological properties, rigidity (BHN = 35.4 N ± 0.33 N/mm 2 ; resilience = 10.91 ± 0.11%), thermal properties (T g  ≈ 70 °C; T c  ≈ 200 °C) and homogeneous morphology. "ON-OFF" pursatile gradual drug release (37-94% from t 30 min -t 180   min ) kinetics was observed upon applying electric stimulation intermittently, indicating that drug release from the gel was electrically controlled. Overall, the galvanometric and MM evaluation ascertained the suitability of the PEG/NaPss/PVA ERP-Gel for application as a subcutaneously injectable drug delivery implant.

  7. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: dexamethasone phosphate disodium microparticles.

    PubMed

    Martín-Sabroso, Cristina; Tavares-Fernandes, Daniel Filipe; Espada-García, Juan Ignacio; Torres-Suárez, Ana Isabel

    2013-12-15

    In this work a protocol to validate analytical procedures for the quantification of drug substances formulated in polymeric systems that comprise both drug entrapped into the polymeric matrix (assay:content test) and drug released from the systems (assay:dissolution test) is developed. This protocol is applied to the validation two isocratic HPLC analytical procedures for the analysis of dexamethasone phosphate disodium microparticles for parenteral administration. Preparation of authentic samples and artificially "spiked" and "unspiked" samples is described. Specificity (ability to quantify dexamethasone phosphate disodium in presence of constituents of the dissolution medium and other microparticle constituents), linearity, accuracy and precision are evaluated, in the range from 10 to 50 μg mL(-1) in the assay:content test procedure and from 0.25 to 10 μg mL(-1) in the assay:dissolution test procedure. The robustness of the analytical method to extract drug from microparticles is also assessed. The validation protocol developed allows us to conclude that both analytical methods are suitable for their intended purpose, but the lack of proportionality of the assay:dissolution analytical method should be taken into account. The validation protocol designed in this work could be applied to the validation of any analytical procedure for the quantification of drugs formulated in controlled release polymeric microparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Testing therapeutic potency of anticancer drugs in animal studies: a commentary.

    PubMed

    Den Otter, Willem; Steerenberg, Peter A; Van der Laan, Jan Willem

    2002-04-01

    Regulatory authorities for medicines in European countries deal with many applications for admission to the market of anticancer drugs. Each application must be supported by preclinical and clinical data, among which testing of the therapeutic activity of drugs in animals is important. Recently, the Committee for Proprietary Medicinal Products (CPMP) has released a note for guidance on the preclinical evaluation of anticancer medicinal products. This note provides only general statements regarding tests of anticancer drugs in rodents. This stimulates considerations on how to organize and how to evaluate these tests. In this article we describe our considerations regarding these items based on our experience with applications in The Netherlands since 1993. (c) 2002 Elsevier Science (USA).

  9. Nanostructured lipid carriers for the topical delivery of tretinoin.

    PubMed

    Ghate, Vivek M; Lewis, Shaila A; Prabhu, Prabhakara; Dubey, Akhilesh; Patel, Nilkumar

    2016-11-01

    Cosmetic skin care products currently in the market demonstrate an increasing trend toward antiaging products. Selection of the right formulation approach is the key to successful consumer acceptance. Nanostructured lipid carriers (NLCs) for dermal application can render added benefits to the formulation. Tretinoin a derivative of vitamin A, is a retinoid with anti-aging and anti-acne potential. The present study was aimed at formulating NLCs of tretinoin for reducing the skin irritation potential, increasing the drug loading capacity and prolonging the duration of action. The NLCs were optimized using the response surface methodology based on the particle size. Preliminary study, suggested the use of stearic acid, oleic acid, Tween 80 and Span 60 as solid lipid, liquid lipid and surfactants respectively formed a stable dispersion. NLCs of tretinoin were prepared by hot melt microemulsion and hot melt probe sonication methods. The properties of the optimized NLCs such as morphology, size, Zeta potential, stability and in vitro drug release were investigated. Tretinoin loaded NLCs in carbopol gel showed a sustained release pattern with isopropyl alcohol as the receptor fluid compared to the marketed gel using Franz diffusion cells. Eight prepared gel formulations tested were found to follow the Higuchi model of drug release. Stability studies indicated that the formulations stored at refrigeration and room temperature showed no noticeable differences in the drug content and release profiles in vitro, after a period of 4 weeks. In vivo skin irritation test on male Wister rats indicated no irritation or erythema after application of the NLCs loaded gel repeated for a period of 7 days compared to the application of marketed tretinoin gel which showed irritation and slight erythema within 3 days. The results showed that the irritation potential of tretinoin was reduced, the drug loading was increased and the drug release was prolonged by the incorporation into the NLCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Wax-based sustained release matrix pellets prepared by a novel freeze pelletization technique II. In vitro drug release studies and release mechanisms.

    PubMed

    Cheboyina, Sreekhar; Wyandt, Christy M

    2008-07-09

    A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.

  11. An empirical approach to estimate near-infra-red photon propagation and optically induced drug release in brain tissues

    NASA Astrophysics Data System (ADS)

    Prabhu Verleker, Akshay; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M.

    2015-03-01

    The purpose of this study is to develop an alternate empirical approach to estimate near-infra-red (NIR) photon propagation and quantify optically induced drug release in brain metastasis, without relying on computationally expensive Monte Carlo techniques (gold standard). Targeted drug delivery with optically induced drug release is a noninvasive means to treat cancers and metastasis. This study is part of a larger project to treat brain metastasis by delivering lapatinib-drug-nanocomplexes and activating NIR-induced drug release. The empirical model was developed using a weighted approach to estimate photon scattering in tissues and calibrated using a GPU based 3D Monte Carlo. The empirical model was developed and tested against Monte Carlo in optical brain phantoms for pencil beams (width 1mm) and broad beams (width 10mm). The empirical algorithm was tested against the Monte Carlo for different albedos along with diffusion equation and in simulated brain phantoms resembling white-matter (μs'=8.25mm-1, μa=0.005mm-1) and gray-matter (μs'=2.45mm-1, μa=0.035mm-1) at wavelength 800nm. The goodness of fit between the two models was determined using coefficient of determination (R-squared analysis). Preliminary results show the Empirical algorithm matches Monte Carlo simulated fluence over a wide range of albedo (0.7 to 0.99), while the diffusion equation fails for lower albedo. The photon fluence generated by empirical code matched the Monte Carlo in homogeneous phantoms (R2=0.99). While GPU based Monte Carlo achieved 300X acceleration compared to earlier CPU based models, the empirical code is 700X faster than the Monte Carlo for a typical super-Gaussian laser beam.

  12. Electrospun poly(ε-caprolactone) matrices containing silver sulfadiazine complexed with β-cyclodextrin as a new pharmaceutical dosage form to wound healing: preliminary physicochemical and biological evaluation.

    PubMed

    Souza, Sarah Oliveira Lamas; Cotrim, Monique Alvarenga Pinto; Oréfice, Rodrigo Lambert; Carvalho, Suzana Gonçalves; Dutra, Jessyca Aparecida Paes; de Paula Careta, Francisco; Resende, Juliana Alves; Villanova, Janaina Cecília Oliveira

    2018-05-10

    Cooperation between researchers in the areas of medical, pharmaceutical and materials science has facilitated the development of pharmaceutical dosage forms that elicit therapeutic effects and protective action with a single product. In addition to optimizing pharmacologic action, such dosage forms provide greater patient comfort and increase success and treatment compliance. In the present work, we prepared semipermeable bioactive electrospun fibers for use as wound dressings containing silver sulfadiazine complexed with β-cyclodextrin in a poly(Ɛ-caprolactone) nanofiber matrix aiming to reduce the direct contact between silver and skin and to modulate the drug release. Wound dressings were prepared by electrospinning, and were subjected to ATR-FT-IR and TG/DTG assays to evaluate drug stability. The hydrophilicity of the fibrous nanostructure in water and PBS buffer was studied by goniometry. Electrospun fibers permeability and swelling capacity were assessed, and a dissolution test was performed. In vitro biological tests were realized to investigate the biological compatibility and antimicrobial activity. We obtained flexible matrices that were each approximately 1.0 g in weight. The electrospun fibers were shown to be semipermeable, with water vapor transmission and swelling indexes compatible with the proposed objective. The hydrophilicity was moderate. Matrices containing pure drug modulated drug release adequately during 24 h but presented a high hemolytic index. Complexation promoted a decrease in the hemolytic index and in the drug release but did not negatively impact antimicrobial activity. The drug was released predominantly by diffusion. These results indicate that electrospun PCL matrices containing β-cyclodextrin/silver sulfadiazine inclusion complexes are a promising pharmaceutical dosage form for wound healing.

  13. Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing.

    PubMed

    Kurczewska, Joanna; Pecyna, Paulina; Ratajczak, Magdalena; Gajęcka, Marzena; Schroeder, Grzegorz

    2017-09-01

    The influence of an inorganic support - halloysite nanotubes - on the release rate and biological activity of the antibiotic encapsulated in alginate-based dressings was studied. The halloysite samples were loaded with approx. 10 wt.% of the antibiotic and then encapsulated in Alginate and Gelatin/Alginate gels. The material functionalized with aliphatic amine significantly extended the release of vancomycin from alginate-based gels as compared to that achieved when silica was used. After 24 h, the released amounts of the antibiotic immobilized at silica reached 70%, while for the drug immobilized at halloysite the released amount of vancomycin reached 44% for Alginate discs. The addition of gelatin resulted in even more prolonged sustained release of the drug. The antibiotic was released from the system with a double barrier with Higuchi kinetic model and Fickian diffusion mechanism. Only the immobilized drug encapsulated in Alginate gel demonstrated very good antimicrobial activity against various bacteria. The inhibition zones were greater than those of the standard discs for the staphylococci and enterococci bacteria tested. The addition of gelatin adversely affected the biological activity of the system. The inhibition zones were smaller than those of the reference samples. A reduction in the drug dose by half had no significant effect on changing the release rate and microbiological activity. The in vivo toxicity studies of the material with immobilized drug were carried out with Acutodesmus acuminatus and Daphnia magna . The material studied had no effect on the living organisms used in the bioassays. The proposed system with a double barrier demonstrated high storage stability.

  14. Formulation and in-vitro evaluation of directly compressed controlled release matrices of Losartan Potassium using Ethocel Grade 100 as rate retarding agent.

    PubMed

    Khan, Kamran Ahmad; Khan, Gul Majid; Zeeshan Danish, Muhammad; Akhlaq; Khan, Haroon; Rehman, Fazal; Mehsud, Saifullah

    2015-12-30

    Current study was aimed to develop 200mg controlled release matrix tablets of Losartan Potassium using Ethocel 100 Premium and Ethocel 100 FP Premium as rate controlling polymer. In-vitro studies were performed according to USP Method-I in phosphate buffer (PH 6.8) using pharma test dissolution apparatus. The temperature of the dissolution medium was kept constant at 37±0.5°C at 100rpm. Flow properties, physical quality control tests, effect of polymer size and drug-to-polymers ratios were studied using different kinetics models such as 1st-order, zero-order, Hixon Crowell model, Highuchi model and Power law. Difference factor f1 and similarity factor f2 were applied for dissolution profiles against Cardaktin® tablets used as a reference formulation. The matrices with polymer ethocel 100 FP Premiums have prolonged the drug release rate as compared to polymer ethocel 100 Premiums. The n values matrices with polymer ethocel grade 100 ranged from 0.603 to 0.857 indicating that the drug release occurred by anomalous non fickian diffusion kinetics while then value of reference Cardaktin® tablet was measured as 0.125 indicating that these tablets do not follow power law. The dissolution profiles of test formulations were different than that of reference Cardaktin®. This suggests the polymer Ethocel grade 100 can be proficiently incorporated in fabrication and development of once a day controlled release matrix tablets. Copyright © 2015. Published by Elsevier B.V.

  15. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay.

    PubMed

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Bauer-Brandl, Annette; Brandl, Martin

    2016-06-28

    Liposomes represent a versatile drug formulation approach e.g. for improving the water-solubility of poorly soluble drugs but also to achieve drug targeting and controlled release. For the latter applications it is essential that the drug remains associated with the liposomal carrier during transit in the vascular bed. A range of in vitro test methods has been suggested over the years for prediction of the release of drug from liposomal carriers. The majority of these fail to give a realistic prediction for poorly water-soluble drugs due to the intrinsic tendency of such compounds to remain associated with liposome bilayers even upon extensive dilution. Upon i.v. injection, in contrast, rapid drug loss often occurs due to drug transfer from the liposomal carriers to endogenous lipophilic sinks such as lipoproteins, plasma proteins or membranes of red blood cells and endothelial cells. Here we report on the application of a recently introduced in vitro predictive drug transfer assay based on incubation of the liposomal drug carrier with large multilamellar liposomes, the latter serving as a biomimetic model sink, using flow field-flow fractionation as a tool to separate the two types of liposomes. By quantifying the amount of drug remaining associated with the liposomal drug carrier as well as that transferred to the acceptor liposomes at distinct times of incubation, both the kinetics of drug transfer and release to the water phase could be established for the model drug p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine). p-THPP is structurally similar to temoporfin, a photosensitizer which is under clinical evaluation in a liposomal formulation. Mechanistic insights were gained by varying the donor-to-acceptor lipid mass ratio, size and lamellarity of the liposomes. Drug transfer kinetics from one liposome to another was found rate determining as compared to redistribution from the outermost to the inner concentric bilayers, such that the overall process could be adequately described by a single 1st order kinetic model. By varying the donor-to-acceptor lipid mass ratio in the range 1:1 to 1:10, a correlation was established between donor-to-acceptor-lipid mass ratio and transfer kinetics, which is regarded essential for scaling to physiological lipid mass ratios. By applying the assay to a series of structurally related model compounds of different bilayer affinity, transfer and release kinetics were established over the whole expected range of liposome bilayer associated drugs in terms of water solubility and lipophilicity. A very rapid transfer and considerable release from liposomes to the water phase was observed for the more water-soluble compounds Sudan II (clogP 5.45) and Sudan III (clogP 6.83). For the more lipophilic compounds, the rate of transfer from the donor liposomes followed the rank order Sudan IV (fastest)>Oil Red O>Sudan Black>p-THPP (slowest). For an equimolar donor-to-acceptor lipid mass ratio, half-lifes of transfer in the range of 12min (Sudan IV) up to 1.5h (p-THPP) were determined. In essence, the results presented here allow for both, mechanistic insights and predictions of drug loss from liposomal carriers upon exposure to biological sinks, which appear more realistic than the commonly employed in vitro release tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pharmaceutical quality of "party pills" raises additional safety concerns in the use of illicit recreational drugs.

    PubMed

    Young, Simon A; Thrimawithana, Thilini R; Antia, Ushtana; Fredatovich, John D; Na, Yonky; Neale, Peter T; Roberts, Amy F; Zhou, Huanyi; Russell, Bruce

    2013-06-14

    To determine the content and release kinetics of 1-benzylpiperazine (BZP) and 1-(3-trifluoromethyl-phenyl)piperazine (TFMPP) from "party pill" formulations. From these data, the possible impact of pharmaceutical quality upon the safety of such illicit formulations may be inferred. The amount of BZP and TFMPP in party pill formulations was determined using a validated HPLC method. The in-vitro release kinetics of selected party pill brands were determined using a USP dissolution apparatus (75 rpm, 37.5 degrees Celsius). The release data were then fitted to a first order release model using PLOT software and the time taken to achieve 90% release reported. Many of the tested party pill brands contained amounts of BZP and TFMPP that varied considerably from that stated on the packaging; including considerable TFMPP content in some brands not labelled to contain this drug. Dissolution studies revealed that there was considerable variability in the release kinetics between brands; in one case 90% release required >30 minutes. Lack of quality control in party pill manufacture may have led to the toxic effects reported by users unaware of the true content and release of drug from pills. More stringent regulation in the manufacture and quality control of "new generation party pills" is essential to the harm reduction campaign.

  17. Enzymatic Filter for Improved Separation of Output Signals in Enzyme Logic Systems towards 'Sense and Treat' Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailloux, Shay; Zavalov, Oleksandr; Guz, Nataliia

    2014-01-01

    The major challenge for application of autonomous medical sensing systems is the noise produced by non-zero physiological concentrations of the sensed target. If the level of noise is high, then a real signal indicating abnormal changes in the physiological levels of the analytes might be hindered. Inevitably, this could lead to wrong diagnostics and treatment, and would have a negative impact on human health. Here, we report the realization of a filter system implemented to improve both the fidelity of sensing and accuracy of consequent drug release. A new filtering method was tested in the sensing system for the diagnosismore » of liver injury. This sensing system used the enzymes alanine transaminase (ALT) and aspartate transaminase (AST) as the inputs. Furthermore, the output of the sensing system was designed to trigger drug release, and therefore, the role of the filter in drug release was also investigated. The drug release system consists of beads with an iron - cross-linked alginate core coated with different numbers of layers of poly-L-lysine. Dissolution of the beads by the output signals of the sensing system in the presence and absence of the filter was monitored by release of encapsulated in the beads rhodamine - 6G dye mimicking release of a real drug. The obtained results offer a new view on the problem of noise reduction for systems intended to be part of sense and treat medical devices.« less

  18. Dual sustained release delivery system for multiple route therapy of an antiviral drug.

    PubMed

    Ramyadevi, D; Sandhya, P

    2014-06-01

    The first successful molecule against herpes infections was Acyclovir, which competes with new generations in the market, with its potential activity. The major physicochemical constraints and pharmacokinetics of Acyclovir such as low solubility, poor permeability, less half-life, high dose has initiated many researchers to develop diverse modified release dosage forms. The objective of this work was to design polymeric nanoparticles of Acyclovir and then incorporate the drug-loaded nanoparticles within an in situ gelling system to provide dual sustained release effect, whereby the duration of action and bioavailability through different routes of administration could be improved. The formulation was designed through 3(2) factorial design, first developing the nanoparticles using Polycaprolactone and Pluronic F127 by Solvent evaporation process, followed by dispersion of the suspended nanoparticles into thermosensitive in situ gelling system of Pluronic F127 with Carbopol. The characterization of the nanoparticles and its sol-gel system performed through zeta sizer, SEM, XRD, TG-DSC, FTIR and rheology helped to optimize the formulation. The drug release could be sustained to 60% and 30% at eight hours, for the nanoparticles and their in situ gel systems, respectively, with non-Fickian diffusion mechanism of drug release. The test for % cell viability with NIH3T3 cell line revealed low level of toxicity for the nanoparticles. The statistical significance obtained for the trail formulations experimentally proved its suitability for this dosage form design to achieve desired level of drug release.

  19. An Injectable System for Local and Sustained Release of Antimicrobial Agents in the Periodontal Pocket.

    PubMed

    Morelli, Laura; Cappelluti, Martino Alfredo; Ricotti, Leonardo; Lenardi, Cristina; Gerges, Irini

    2017-08-01

    Periodontitis treatments usually require local administration of antimicrobial drugs with the aim to reduce the bacterial load inside the periodontal pocket. Effective pharmaceutical treatments may require sustained local drug release for several days in the site of interest. Currently available solutions are still not able to fulfill the clinical need for high-quality treatments, mainly in terms of release profiles and patients' comfort. This work aims to fill this gap through the development of an in situ gelling system, capable to achieve controlled and sustained release of antimicrobial agents for medium-to-long-term treatments. The system is composed of micrometer-sized β-cyclodextrin-based hydrogel (bCD-Jef-MPs), featured by a strong hydrophilic character, suspended in a synthetic block-co-polymer solution (Poloxamer 407), which is capable to undergo rapid thermally induced sol-gel phase transition at body temperature. The chemical structure of bCD-Jef-MPs was confirmed by cross-correlating data from Fourier transform infrared (FTIR) spectroscopy, swelling test, and degradation kinetics. The thermally induced sol-gel phase transition is demonstrated by rheometric tests. The effectiveness of the described system to achieve sustained release of antimicrobial agents is demonstrated in vitro, using chlorhexidine digluconate as a drug model. The results achieved in this work disclose the potential of the mentioned system in effectively treating periodontitis lesions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Controlled Release System for Localized and Sustained Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Rodriguez, Lidia Betsabe

    Current controlled release formulations has many drawbacks such as excess of initial burst release, low drug efficiency, non-degradability of the system and low reproducibility. The present project aims to offer an alternative by developing a technique to prepare uniform, biodegradable particles ( ˜19 mum ) that can sustainably release a drug for a specific period of time. Chitosan is a natural polysaccharide that has many characteristics to be used for biomedical applications. In the last two decades, there have been a considerable number of studies affirming that chitosan could be used for pharmaceutical applications. However, chitosan suffers from inherent weaknesses such as low mechanical stability and dissolution of the system in acidic media. In the present study, chitosan microparticles were prepared by emulsification process. The model drug chosen was acetylsalicylic acid as it is a small and challenging molecule. The maximum loading capacity obtained for the microparticles was approximately 96%. The parameters for the preparation of uniform particles with a narrow size distribution were identified in a triangular phase diagram. Moreover, chitosan particles were successfully coated with thin layers of poly lactic-coglycolic acid (PLGA) and poly lactic acid (PLA). The performance of different layerswas tested for in vitro drug release and degradation studies. Additionally, the degradability of the system was evaluated by measuring the weight loss of the system when exposed to enzyme and without enzyme. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to characterize the controlled release system. Additionally, the in vitro drug release was monitored by ultraviolet-visible spectrophotometry (UV-Vis) and liquid chromatography mass spectrometry (LC-MS). The results obtained from this project showed that it is possible to prepare biodegradable microparticles with a uniform size distribution and high drug loading efficiency. However, this could only be achieved with a hybrid system consisting of chitosan matrix interior and then exterior coating of PLGA or PLA. A two layer coating of PLGA 50:50 was shown to be optimal with sustainable controlled drug release for almost 5 days and with 91% of degradation (weight loss) in 8 weeks.

  1. Utilizing the protein corona around silica nanoparticles for dual drug loading and release

    NASA Astrophysics Data System (ADS)

    Shahabi, Shakiba; Treccani, Laura; Dringen, Ralf; Rezwan, Kurosch

    2015-10-01

    A protein corona forms spontaneously around silica nanoparticles (SNPs) in serum-containing media. To test whether this protein corona can be utilized for the loading and release of anticancer drugs we incorporated the hydrophilic doxorubicin, the hydrophobic meloxicam as well as their combination in the corona around SNPs. The application of corona-covered SNPs to osteosarcoma cells revealed that drug-free particles did not affect the cell viability. In contrast, SNPs carrying a protein corona with doxorubicin or meloxicam lowered the cell proliferation in a concentration-dependent manner. In addition, these particles had an even greater antiproliferative potential than the respective concentrations of free drugs. The best antiproliferative effects were observed for SNPs containing both doxorubicin and meloxicam in their corona. Co-localization studies revealed the presence of doxorubicin fluorescence in the nucleus and lysosomes of cells exposed to doxorubicin-containing coated SNPs, suggesting that endocytotic uptake of the SNPs facilitates the cellular accumulation of the drug. Our data demonstrate that the protein corona, which spontaneously forms around nanoparticles, can be efficiently exploited for loading the particles with multiple drugs for therapeutic purposes. As drugs are efficiently released from such particles they may have a great potential for nanomedical applications.A protein corona forms spontaneously around silica nanoparticles (SNPs) in serum-containing media. To test whether this protein corona can be utilized for the loading and release of anticancer drugs we incorporated the hydrophilic doxorubicin, the hydrophobic meloxicam as well as their combination in the corona around SNPs. The application of corona-covered SNPs to osteosarcoma cells revealed that drug-free particles did not affect the cell viability. In contrast, SNPs carrying a protein corona with doxorubicin or meloxicam lowered the cell proliferation in a concentration-dependent manner. In addition, these particles had an even greater antiproliferative potential than the respective concentrations of free drugs. The best antiproliferative effects were observed for SNPs containing both doxorubicin and meloxicam in their corona. Co-localization studies revealed the presence of doxorubicin fluorescence in the nucleus and lysosomes of cells exposed to doxorubicin-containing coated SNPs, suggesting that endocytotic uptake of the SNPs facilitates the cellular accumulation of the drug. Our data demonstrate that the protein corona, which spontaneously forms around nanoparticles, can be efficiently exploited for loading the particles with multiple drugs for therapeutic purposes. As drugs are efficiently released from such particles they may have a great potential for nanomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04726a

  2. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug

    PubMed Central

    Miller, Miles A.; Zheng, Yao-Rong; Gadde, Suresh; Pfirschke, Christina; Zope, Harshal; Engblom, Camilla; Kohler, Rainer H.; Iwamoto, Yoshiko; Yang, Katherine S.; Askevold, Bjorn; Kolishetti, Nagesh; Pittet, Mikael; Lippard, Stephen J.; Farokhzad, Omid C.; Weissleder, Ralph

    2015-01-01

    Therapeutic nanoparticles (TNPs) aim to deliver drugs more safely and effectively to cancers, yet clinical results have been unpredictable owing to limited in vivo understanding. Here we use single-cell imaging of intratumoral TNP pharmacokinetics and pharmacodynamics to better comprehend their heterogeneous behaviour. Model TNPs comprising a fluorescent platinum(IV) pro-drug and a clinically tested polymer platform (PLGA-b-PEG) promote long drug circulation and alter accumulation by directing cellular uptake toward tumour-associated macrophages (TAMs). Simultaneous imaging of TNP vehicle, its drug payload and single-cell DNA damage response reveals that TAMs serve as a local drug depot that accumulates significant vehicle from which DNA-damaging Pt payload gradually releases to neighbouring tumour cells. Correspondingly, TAM depletion reduces intratumoral TNP accumulation and efficacy. Thus, nanotherapeutics co-opt TAMs for drug delivery, which has implications for TNP design and for selecting patients into trials. PMID:26503691

  3. An investigation into the influence of experimental conditions on in vitro drug release from immediate-release tablets of levothyroxine sodium and its relation to oral bioavailability.

    PubMed

    Kocic, Ivana; Homsek, Irena; Dacevic, Mirjana; Parojcic, Jelena; Miljkovic, Branislava

    2011-09-01

    The aim of this study was to investigate the influence of experimental conditions on levothyroxine sodium release from two immediate-release tablet formulations which narrowly passed the standard requirements for bioequivalence studies. The in vivo study was conducted as randomised, single-dose, two-way cross-over pharmacokinetic study in 24 healthy subjects. The in vitro study was performed using various dissolution media, and obtained dissolution profiles were compared using the similarity factor value. Drug solubility in different media was also determined. The in vivo results showed narrowly passing bioequivalence. Considering that levothyroxine sodium is classified as Class III drug according to the Biopharmaceutics Classification System, drug bioavailability will be less sensitive to the variation in its dissolution characteristics and it can be assumed that the differences observed in vitro in some of investigated media probably do not have significant influence on the absorption process, as long as rapid and complete dissolution exists. The study results indicate that the current regulatory criteria for the value of similarity factor in comparative dissolution testing, as well as request for very rapid dissolution (more than 85% of drug dissolved in 15 min), are very restricted for immediate-release dosage forms containing highly soluble drug substance and need further investigation. The obtained results also add to the existing debate on the appropriateness of the current bioequivalence standards for levothyroxine sodium products.

  4. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications.

    PubMed

    He, Chuang-Long; Huang, Zheng-Ming; Han, Xiao-Jian

    2009-04-01

    In this work, drug-loaded fibers and threads were successfully fabricated by combining electrospinning with aligned fibers collection. Two different electrospinning processes, that is, blend and coaxial electrospinning, to incorporate a model drug tetracycline hydrochloride (TCH) into poly(L-lactic acid) (PLLA) fibers have been used and compared with each other. The resulting composite ultrafine fibers and threads were characterized through scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and tensile testing. It has been shown that average diameters of the fibers made from the same polymer concentration depended on the processing method. The blend TCH/PLLA fibers showed the smallest fiber diameter, whereas neat PLLA fibers and core-shell TCH-PLLA fibers showed a larger proximal average diameter. Higher rotating speed of a wheel collector is helpful for obtaining better-aligned fibers. Both the polymer and the drug in the electrospun fibers have poor crystalline property. In vitro release study indicated that threads made from the core-shell fibers could suppress the initial burst release and provide a sustained drug release useful for the release of growth factor or other therapeutic drugs. On the other hand, the threads from the blend fibers produced a large initial burst release that may be used to prevent bacteria infection. A combination of these results suggests that electrospinning technique provides a novel way to fabricate medical agents-loaded fibrous threads for tissue suturing and tissue regeneration applications. Copyright 2008 Wiley Periodicals, Inc.

  5. Test Anxiety

    MedlinePlus

    ... More for Teens Teens site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & ... Like other anxiety reactions, test anxiety affects the body and the mind. When you're under stress, your body releases ...

  6. 21 CFR 314.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... studies (including proposals for such studies), assay validation data, final release testing on the last... route of administration; (4) Make a comparative efficacy claim naming another drug product; (5... based on at least one adequate and well-controlled clinical study. FDA means the Food and Drug...

  7. 21 CFR 314.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... studies (including proposals for such studies), assay validation data, final release testing on the last... route of administration; (4) Make a comparative efficacy claim naming another drug product; (5... based on at least one adequate and well-controlled clinical study. FDA means the Food and Drug...

  8. 21 CFR 314.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... studies (including proposals for such studies), assay validation data, final release testing on the last... route of administration; (4) Make a comparative efficacy claim naming another drug product; (5... based on at least one adequate and well-controlled clinical study. FDA means the Food and Drug...

  9. 21 CFR 314.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... studies (including proposals for such studies), assay validation data, final release testing on the last... route of administration; (4) Make a comparative efficacy claim naming another drug product; (5... based on at least one adequate and well-controlled clinical study. FDA means the Food and Drug...

  10. 21 CFR 314.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... studies (including proposals for such studies), assay validation data, final release testing on the last... route of administration; (4) Make a comparative efficacy claim naming another drug product; (5... based on at least one adequate and well-controlled clinical study. FDA means the Food and Drug...

  11. [Batch release of immunoglobulin and monoclonal antibody products].

    PubMed

    Gross, S

    2014-10-01

    The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.

  12. [Oral controlled release dosage forms].

    PubMed

    Mehuys, Els; Vervaet, Chris

    2010-06-01

    Several technologies to control drug release from oral dosage forms have been developed. Drug release can be regulated in several ways: sustained release, whereby the drug is released slowly over a prolonged period of time, postponed release, whereby drug release is delayed until passage from the stomach into the intestine (via enteric coating), and targeted release, whereby the drug is targeted to a specific location of the gastrointestinal tract. This article reviews the various oral controlled release dosage forms on the market.

  13. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention.

    PubMed

    Zhigaltsev, Igor V; Maurer, Norbert; Akhong, Quet-Fah; Leone, Robert; Leng, Esther; Wang, Jinfang; Semple, Sean C; Cullis, Pieter R

    2005-05-05

    A comparative study of the loading and retention properties of three structurally very closely related vinca alkaloids (vincristine, vinorelbine and vinblastine) in liposomal formulations has been performed. All three vinca alkaloids showed high levels of encapsulation when accumulated into egg sphingomyelin/cholesterol vesicles in response to a transmembrane pH gradient generated by the use of the ionophore A23187 and encapsulated MgSO4. However, despite the close similarities of their structures the different vinca drugs exhibited very different release behavior, with vinblastine and vinorelbine being released faster than vincristine both in vitro and in vivo. The differences in loading and retention can be related to the lipophilicity of the drugs tested, where the more hydrophobic drugs are released more rapidly. It was also found that increasing the drug-to-lipid ratio significantly enhanced the retention of vinca alkaloids when the ionophore-based method was used for drug loading. In contrast, drug retention was not dependent on the initial drug-to-lipid ratio for vinca drugs loaded into liposomes containing an acidic citrate buffer. The differences in retention can be explained on the basis of differences in the physical state of the drug inside the liposomes. The drug-to-lipid ratio dependence of retention observed for liposomes loaded with the ionophore technique may provide a way to improve the retention characteristics of liposomal formulations of vinca drugs.

  14. Preparation and characterization of oxybenzone-loaded gelatin microspheres for enhancement of sunscreening efficacy.

    PubMed

    Patel, M; Jain, Sunil K; Yadav, Awesh K; Gogna, D; Agrawal, G P

    2006-01-01

    The objective of our present study was to prepare and evaluate gelatin microspheres of oxybenzone to enhance its sunscreening efficacy. The gelatin microspheres of oxybenzone were prepared by emulsion method. Process parameters were analyzed to optimize the formulation. The in vitro drug release study was performed in pH 7.4 using cellulose acetate membrane. Microspheres prepared using oxybenzone:gelatin ratio of 1:6 showed slowest drug release and those prepared with oxybenzone:gelatin ratio of 1:2 showed fastest drug release. The gelatin microspheres of oxybenzone were incorporated in aloe vera gel. Sun exposure method using sodium nitroprusside solution was used for in vitro sunscreen efficacy testing. The formulation C5 containing oxybenzone-bearing gelatin microspheres in aloe vera gel showed best sunscreen efficacy. The formulations were evaluated for skin irritation test in human volunteers, sun protection factor, and minimum erythema dose in albino rats. These studies revealed that the incorporation of sunscreening agent-loaded microspheres into aloe vera gel greatly increased the efficacy of sunscreen formulation more than four times.

  15. Long-term Controlled Drug Release from bi-component Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Zhang, Zixin; Xia, Qinghua; Han, Charles

    Multi-drug delivery systems with timed programmed release are hard to be produced due to the complex drug release kinetics which mainly refers to the diffusion of drug molecules from the fiber and the degradation of the carrier. This study focused on the whole life-time story of the long-term drug releasing fibrous systems. Electrospun membrane utilizing FDA approved polymers and broad-spectrum antibiotics showed specific drug release profiles which could be divided into three stages based on the profile slope. With throughout morphology observation, cumulative release amount and releasing duration, releasing kinetics and critical factors were fully discussed during three stages. Through changing the second component, approximately linear drug release profile and a drug release duration about 13 days was prepared, which is perfect for preventing post-operative infection. The addition of this semi-crystalline polymer in turn influenced the fiber swelling and created drug diffusion channels. In conclusion, through adjusting and optimization of the blending component, initial burst release, delayed release for certain duration, and especially the sustained release profile could all be controlled, as well as specific anti-bacterial behavior could be obtained.

  16. Synthesis and characterization of pH-sensitive drinkable nanoparticles for oral delivery of ibuprofen.

    PubMed

    Agostini, Azzurra; Capasso Palmiero, Umberto; Barbieri, Sara D A; Lupi, Monica; Moscatelli, Davide

    2018-06-01

    Ibuprofen (IBU) is a widespread drug used to treat both acute and chronic disorders. It is generally taken orally but the free drug can induce the irritation of the gastric mucosa due to its acid nature. In literature, different approaches have been adopted to prevent the release in the stomach, such as physical entrapment with film-coated tablets and drug-conjugates. Nevertheless, these solutions have many disadvantages, including the fast release of the drug and the difficulty to swallow the tablet, especially for children who may vomit or refuse the tablet. For this reason, in this work, novel formulations are proposed that do not require the encapsulation of the drug into a solid form and, in turn, their assumption as a pill. IBU has been linked to different types of methacrylates via ester bond in order to produce pH-responsive macromolecular monomers. The novelty is related to the use of these drug-conjugates macromonomer for the production of nanoparticles (NPs) via emulsion polymerization (EP), using water as solvent. The final emulsion is able to load up to 30 mg ml -1 of IBU, so less than 10 ml is required to be assumed to reach the minimum therapeutic dose of the drug (200 mg). Finally, the release of IBU from these novel drinkable formulations has been investigated in the gastric and intestinal simulated fluids to show the preferential release of IBU from the NPs in basic conditions. A comparison with an existing oral suspension has been performed to highlight the slower release in acid environment of these new formulations. Afterwards, the IBU loaded NPs were tested in vitro showing lower toxicity compared to the free drug.

  17. Synthesis and characterization of pH-sensitive drinkable nanoparticles for oral delivery of ibuprofen

    NASA Astrophysics Data System (ADS)

    Agostini, Azzurra; Capasso Palmiero, Umberto; Barbieri, Sara D. A.; Lupi, Monica; Moscatelli, Davide

    2018-06-01

    Ibuprofen (IBU) is a widespread drug used to treat both acute and chronic disorders. It is generally taken orally but the free drug can induce the irritation of the gastric mucosa due to its acid nature. In literature, different approaches have been adopted to prevent the release in the stomach, such as physical entrapment with film-coated tablets and drug-conjugates. Nevertheless, these solutions have many disadvantages, including the fast release of the drug and the difficulty to swallow the tablet, especially for children who may vomit or refuse the tablet. For this reason, in this work, novel formulations are proposed that do not require the encapsulation of the drug into a solid form and, in turn, their assumption as a pill. IBU has been linked to different types of methacrylates via ester bond in order to produce pH-responsive macromolecular monomers. The novelty is related to the use of these drug-conjugates macromonomer for the production of nanoparticles (NPs) via emulsion polymerization (EP), using water as solvent. The final emulsion is able to load up to 30 mg ml‑1 of IBU, so less than 10 ml is required to be assumed to reach the minimum therapeutic dose of the drug (200 mg). Finally, the release of IBU from these novel drinkable formulations has been investigated in the gastric and intestinal simulated fluids to show the preferential release of IBU from the NPs in basic conditions. A comparison with an existing oral suspension has been performed to highlight the slower release in acid environment of these new formulations. Afterwards, the IBU loaded NPs were tested in vitro showing lower toxicity compared to the free drug.

  18. Designing an extended release waxy matrix tablet containing nicardipine–hydroxy propyl β cyclodextrin complex

    PubMed Central

    Al-Zein, Hind; Sakeer, Khalil; Alanazi, Fars K.

    2011-01-01

    Aim The current study aimed to prepare a sustained release tablet for a drug which has poor solubility in alkaline medium using complexation with cyclodextrin. Nicardipine hydrochloride (NC) a weak basic drug was chosen as a model drug for this study. Method Firstly the most suitable binary system NC-HPβCD was selected in order to improve drug solubility in the intestinal media and then embedding the complexed drug into a plastic matrix, by fusion method, consists of glycerol monostearate (GMS) as an inert waxy substance and polyethylene glycol 4000 (PEG4000) as a channeling agent, after that the final solid dispersion [(NC:HPβCD):GMS:PEG4000] which was prepared at different ratios was mixed with other excipients, avicel PH101, lactose, and talc, to get a tablet owning dissolution profile complying with the FDA and USP requirements for the extended release solid dosage forms. Results Infrared spectroscopy (IR), differential scanning colorimetry (DSC), polarized microscopy and X-ray diffractometry proved that the coevaporation technique was effective in preparing amorphous cyclodextrin complexes with NC and trapping of NC within the HPβCD cavity by dissolving both in ethanol and evaporate the solvent using a rotavapor at 65 °C. Dissolution profile of NC enhanced significantly in pH 6.8 from NC:HPβCD inclusion complex prepared by the rotavapor (t-test Student p < 0.05). The release of NC from tablet containing [(NC:HPβCD):GMS:PEG4000] [(1):0.75:0.5] (w/w/w) solid dispersion (F8) was complying with the FDA dissolution requirements for extended release dosage forms, and studying the kinetics of the release showed that the diffusional contribution is the major factor controlling the drug release from that formula. Conclusion The prepared waxy matrix tablet containing NC complexes with CD shows promising results as extended release tablets. PMID:23960765

  19. Intravascular Drug Release Kinetics Dictate Arterial Drug Deposition, Retention, and Distribution

    PubMed Central

    Balakrishnan, Brinda; Dooley, John F.; Kopia, Gregory; Edelman, Elazer R.

    2007-01-01

    Millions of patients worldwide have received drug-eluting stents to reduce their risk for in-stent restenosis. The efficacy and toxicity of these local therapeutics depend upon arterial drug deposition, distribution, and retention. To examine how administered dose and drug release kinetics control arterial drug uptake, a model was created using principles of computational fluid dynamics and transient drug diffusion-convection. The modeling predictions for drug elution were validated using empiric data from stented porcine coronary arteries. Inefficient, minimal arterial drug deposition was predicted when a bolus of drug was released and depleted within seconds. Month-long stent-based drug release efficiently delivered nearly continuous drug levels, but the slow rate of drug presentation limited arterial drug uptake. Uptake was only maximized when the rates of drug release and absorption matched, which occurred for hour-long drug release. Of the two possibly means for increasing the amount of drug on the stent, modulation of drug concentration potently impacts the magnitude of arterial drug deposition, while changes in coating drug mass affect duration of release. We demonstrate the importance of drug release kinetics and administered drug dose in governing arterial drug uptake and suggest novel drug delivery strategies for controlling spatio-temporal arterial drug distribution. PMID:17868948

  20. Will dapivirine redeem the promises of anti-HIV microbicides? Overview of product design and clinical testing.

    PubMed

    das Neves, José; Martins, João Pedro; Sarmento, Bruno

    2016-08-01

    Microbicides are being developed in order to prevent sexual transmission of HIV. Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is one of the leading drug candidates in the field, currently being tested in various dosage forms, namely vaginal rings, gels, and films. In particular, a ring allowing sustained drug release for 1month is in an advanced stage of clinical testing. Two parallel phase III clinical trials are underway in sub-Saharan Africa and results are expected to be released in early 2016. This article overviews the development of dapivirine and its multiple products as potential microbicides, with particular emphasis being placed on clinical evaluation. Also, critical aspects regarding regulatory approval, manufacturing, distribution, and access are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Swelling/Floating Capability and Drug Release Characterizations of Gastroretentive Drug Delivery System Based on a Combination of Hydroxyethyl Cellulose and Sodium Carboxymethyl Cellulose

    PubMed Central

    Chen, Ying-Chen; Ho, Hsiu-O; Liu, Der-Zen; Siow, Wen-Shian; Sheu, Ming-Thau

    2015-01-01

    The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug’s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics. PMID:25617891

  2. Drug injection into fat tissue with a laser based microjet injector

    NASA Astrophysics Data System (ADS)

    Han, Tae-hee; Hah, Jung-moo; Yoh, Jack J.

    2011-05-01

    We have investigated a new micro drug jet injector using laser pulse energy. An infrared laser beam of high energy (˜3 J/pulse) is focused inside a driving fluid in a small chamber. The pulse then induces various energy releasing processes, and generates fast microjets through a micronozzle. The elastic membrane of this system plays an important role in transferring mechanical pressure and protecting drug from heat release. In this paper, we offer the sequential images of microjet generation taken by a high speed camera as an evidence of the multiple injections via single pulse. Furthermore, we test the proposed system to penetrate soft animal tissues in order to evaluate its feasibility as an advanced transdermal drug delivery method.

  3. Applications of cyclodextrins in medical textiles - review.

    PubMed

    Radu, Cezar-Doru; Parteni, Oana; Ochiuz, Lacramioara

    2016-02-28

    This paper presents data on the general properties and complexing ability of cyclodextrins and assessment methods (phase solubility, DSC tests and X-ray diffraction, FTIR spectra, analytical method). It focuses on the formation of drug deposits on the surface of a textile underlayer, using a cyclodextrin compound favoring the inclusion of a drug/active principle and its release onto the dermis of patients suffering from skin disorders, or for protection against insects. Moreover, it presents the kinetics, duration, diffusion flow and release media of the cyclodextrin drug for in vitro studies, as well as the release modeling of the active principle. The information focuses on therapies: antibacterial, anti-allergic, antifungal, chronic venous insufficiency, psoriasis and protection against insects. The pharmacodynamic agents/active ingredients used on cotton, woolen and synthetic textile fabrics are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Formulation and evaluation of novel coated floating tablets of bergenin and cetirizine dihydrochloride for gastric delivery.

    PubMed

    He, Shuang; Li, Feng; Zhou, Dan; Du, Junrong; Huang, Yuan

    2012-10-01

    A novel coated gastric floating drug-delivery system (GFDDS) of bergenin (BN) and cetirizine dihydrochloride (CET) was developed. First, the pharmacodynamic studies were performed and the results revealed that the new compounds of bergenin/cetirizine dihydrochloride had comparative efficacy as commercial products (bergenin/chlorphenamine maleate) but with fewer side effects on central nervous system (CNS). Subsequently, bergenin was formulated as an extended-release core tablet while cetirizine dihydrochloride was incorporated into the gastric coating film for immediate release. The formulation of GFDDS was optimized by CET content uniformity test, in vitro buoyancy and drug release. Herein, the effects of sodium bicarbonate (effervescent), hydroxypropyl methylcellulose (HPMC, matrix polymer) and coating weight gain were investigated respectively. The optimized GFDDS exhibited good floating properties (buoyancy lag time < 2 min; floating duration > 10 h) and satisfactory drug-release profiles (immediate release of CET in 10 min and sustained release of BN for 12 h). In vivo gamma scintigraphy proved that the optimized GFDDS could retain in the stomach with a prolonged gastric retention time (GRT) of 5 h, and the coating layer showed no side effect for gastric retention. The novel coated gastric floating drug-delivery system offers a new approach to enhance BN's absorption at its absorption site and the efficacy of both CET and BN.

  5. Bioavailability enhancement of baclofen by gastroretentive floating formulation: statistical optimization, in vitro and in vivo pharmacokinetic studies.

    PubMed

    Thakar, Krishna; Joshi, Garima; Sawant, Krutika K

    2013-06-01

    The study was aimed to improve bioavailability of baclofen by developing gastroretentive floating drug delivery system (GFDDS). Preliminary optimization was done to select various release retardants to obtain minimum floating lag time, maximum floating duration and sustained release. Optimization by 3(2) factorial design was done using Polyox WSR 303 (X1) and HPMC K4M (X2) as independent variables and cumulative percentage drug released at 6 h (Q6h) as dependent variable. Optimized formulation showed floating lag time of 4-5 s, floated for more than 12 h and released the drug in sustained manner. In vitro release followed zero ordered kinetics and when fitted to Korsemeyer Peppas model, indicated drug release by combination of diffusion as well as chain relaxation. In vivo floatability study confirmed floatation for more than 6 h. In vivo pharmacokinetic studies in rabbits showed Cmax of 189.96 ± 13.04 ng/mL and Tmax of 4 ± 0.35 h for GFDDS. The difference for AUC(0-T) and AUC(0-∞) between the test and reference formulation was statistically significant (p > 0.05). AUC(0-T) and AUC(0-∞) for GFDDS was 2.34 and 2.43 times greater than the marketed formulation respectively. GFDDS provided prolonged gastric residence and showed significant increase in bioavailability of baclofen.

  6. Dynamic release of gentamicin sulfate (GS) from alginate dialdehyde (AD)-crosslinked casein (CAS) films for antimicrobial applications

    PubMed Central

    Bajpai, S. K.; Shah, Farhan Ferooz; Bajpai, M.

    2017-01-01

    Abstract In the present work, antibiotic drug gentamicin sulfate (GS) has been loaded into alginate dialdehyde-crosslinked casein (CAS) films for wound dressing applications. The films have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The dynamic release of model drug GS has been investigated in the physiological fluid at 37 °C. The drug release data has been interpreted in the terms of various kinetic models such as Power function model, first order model and Schott model. The release data was found to be well fitted by Schott model. The various diffusion coefficients are also evaluated. The adsorption of model therapeutic protein BSA on the film has been investigated. The maximum adsorption is found to be 5.7 mg/cm2.The films were tested for their antibacterial and anti-fungal action. Finally, the in vivo wound healing study was carried out on Albino wistar rats. PMID:29491776

  7. Comparative release studies on suppositories using the basket, paddle, dialysis tubing and flow-through cell methods I. Acetaminophen in a lipophilic base suppository.

    PubMed

    Hori, Seiichi; Kawada, Tsubasa; Kogure, Sanae; Yabu, Shinako; Mori, Kenji; Akimoto, Masayuki

    2017-02-01

    The release characteristics of lipophilic suppositories containing acetaminophen (AAP) were examined using four types of dissolution methods: the basket, paddle, dialysis tubing (DT) and flow-through cell (FTC) methods. The suitability of each apparatus for quality control in AAP compounded suppositories was evaluated using statistical procedures. More than 80% of the drug was released over 60 min in all the release methods studied, with the exception of the basket method. Reproducible and faster release was achieved using the paddle method at 100 and 200 rpm, whereas poor release occurred with the basket method. The mean dissolution time (MDT), maximum dissolved quantity of AAP at the end of the sampling time (Q) and dissolution efficiency (DE) were calculated by model-independent methods. The FTC method with a single chamber used in this study was also appreciable for AAP suppositories (Q of 100%, MDT of 71-91 min and DE of 75-80%). The DT apparatus is considered similar to the FTC apparatus from a quality control perspective for judging the release properties of lipophilic base suppositories containing AAP. However, even the single chamber FTC used in this study has potential as an in vitro drug release test for suppositories. The comparative dissolution method is expected to become one of the valuable tools for selecting an adequate dissolution test.

  8. In vitro digestion of curcuminoid-loaded lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Noack, Andreas; Oidtmann, Johannes; Kutza, Johannes; Mäder, Karsten

    2012-09-01

    Curcuminoid-loaded lipid nanoparticles were produced by melt homogenization. The used lipid matrices were medium chain triglycerides, trimyristin (TM), and tristearin. The mean particle size of the preparations was between 130 and 180 nm. The incorporated curcuminoids revealed a good stability over a period of 12 months. The curcuminoid-loaded lipid nanoparticles were intended for the oral delivery of curcuminoids. Therefore, the fate of the triglyceride matrix in simulated gastric and simulated intestinal media under the influence of pepsin and pancreatin, respectively, was assessed. The degradation of the triglycerides was monitored by the pH-stat method and with high performance thin layer chromatography in connection with spectrodensitometry to quantify the different lipid fractions. The TM nanoparticles were not degraded in simulated gastric fluid (SGF), but the decomposition of the triglyceride matrix was rapid in the intestinal media. The digestion process was faster in the simulated fed state medium compared to the simulated fasted state medium. Additionally, the stability of the incorporated drug was tested in the respective physiological media. The curcuminoids showed an overall good stability in the different test media. The release of the curcuminoids from the lipid nanoparticles was determined by fluorescence imaging techniques. A slow release of the drug was found in phosphate buffer. In contrast, a more distinct release of the curcuminoids was verifiable in SGF and in simulated intestinal fluids. Overall, it was considered that the transfer of the drug into the outer media was mainly triggered by the lipid degradation and not by drug release.

  9. The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium.

    PubMed

    Asadian-Ardakani, Vahid; Saber-Samandari, Samaneh; Saber-Samandari, Saeed

    2016-12-01

    A scaffold capable of controlling drug release is highly desirable for bone tissue engineering. The objective of this study was to develop and characterize a highly porous biodegradable scaffold and evaluate the kinetic release behavior for the application of anti-inflammatory drug delivery. Porous scaffolds consisting of chitosan, poly(acrylic acid), and nano-hydroxyapatite were prepared using the freeze-drying method. The nanocomposite scaffolds were characterized for structure, pore size, porosity, and mechanical properties. The nanocomposite scaffolds were tested and characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive analysis of X-ray (EDS), X-ray diffraction (XRD) analysis, and tensile test instrument. The results showed that the pores of the scaffolds were interconnected, and their sizes ranged from 145 µm to 213 μm. The mechanical properties were found close to those of trabecular bone of the same density. The ability of the scaffolds to deliver naproxen sodium as a model drug in vitro was investigated. The release profile of naproxen sodium was measured in a phosphate-buffered saline solution by a ultra-violet spectrophotometer that was controlled by the Fickian diffusion mechanism. These results indicated that the chitosan-graft-poly(acrylic acid)/nano-hydroxyapatite scaffold may be a promising biomedical scaffold for clinical use in bone tissue engineering with a potential for drug delivery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2992-3003, 2016. © 2016 Wiley Periodicals, Inc.

  10. PHARMACEUTICAL QUALITY OF GENERIC ATORVASTATIN PRODUCTS COMPARED WITH THE INNOVATOR PRODUCT: A NEED FOR REVISING PRICING POLICY IN PALESTINE.

    PubMed

    Shawahna, Ramzi; Hroub, Abdel Kareem; Abed, Eliama; Jibali, Sondos; Al-Saghir, Ruba; Zaid, Abdel Naser

    2016-01-01

    Atorvastatin reduces morbidity and mortality due to cardiovascular events. This study was conducted to assess the prices and pharmaceutical quality of innovator atorvastatin 20 mg with its locally available generics in Palestine and to assess the suitability of their interchangeability. The prices of innovator and generic atorvastatin 20 mg were determined and compared. Innovator atorvastatin and four generic products were tested for their pharmaceutical quality. Tablets were tested for their drug contents, weight uniformity, hardness, disintegration and dissolution. Three out of four generics were less expensive than the innovator. Pharmaceutical quality assessments were satisfactory and within limits for all atorvastatin tested products. The average weight ranged from 206.6 ± 8.40 to 330 ± 3.92 mg and the %RSDs were within the permitted limits as per USP. Tablet hardness ranged from 102 ± 1.41 to 197.4 ± 6.88 kg and drug contents ranged from 92.2% to 105.3%. All products disintegrated within permitted time limits and showed very rapid dissolution. Products released more than 85% of their drug contents in less than 15 min. Our results showed that all tested innovator and generic atorvastatin products were of good pharmaceutical quality. Despite the lack of in vivo evaluation, our results indicate that these products are equivalent in vitro. Considering the in vitro release characteristics, these products might be used interchangeably. However, regulatory authorities permit the use of in vitro data in establishing similarity between immediate release oral dosage forms containing biopharmaceutical classification system class I and III drugs only.

  11. Dual-controlled release system of drugs for bone regeneration.

    PubMed

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Injectable Chitosan/β-Glycerophosphate System for Sustained Release: Gelation Study, Structural Investigation, and Erosion Tests.

    PubMed

    Dalmoro, Annalisa; Abrami, Michela; Galzerano, Barbara; Bochicchio, Sabrina; Barba, Anna Angela; Grassi, Mario; Larobina, Domenico

    2017-01-01

    Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/β-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. 3D printed drug delivery and testing systems - a passing fad or the future?

    PubMed

    Lim, Seng Han; Kathuria, Himanshu; Tan, Justin Jia Yao; Kang, Lifeng

    2018-05-18

    The US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery.

    PubMed

    Kurzątkowska, Katarzyna; Santiago, Ty; Hepel, Maria

    2017-05-15

    Targeted drug delivery systems using nanoparticle nanocarriers offer remarkable promise for cancer therapy by discriminating against devastating cytotoxicity of chemotherapeutic drugs to healthy cells. To aid in the development of new drug nanocarriers, we propose a novel plasmonic nanocarrier grid-enhanced Raman sensor which can be applied for studies and testing of drug loading onto the nanocarriers, attachment of targeting ligands, dynamics of drug release, assessment of nanocarrier stability in biological environment, and general capabilities of the nanocarrier. The plasmonic nanogrid sensor offers strong Raman enhancement due to the overlapping plasmonic fields emanating from the nearest-neighbor gold nanoparticle nanocarriers and creating the enhancement "hot spots". The sensor has been tested for immobilization of an anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine, GEM) which is used in treatment of pancreatic tumors. The drawbacks of currently applied treatment include high systemic toxicity, rapid drug decay, and low efficacy (ca. 20%). Therefore, the development of a targeted GEM delivery system is highly desired. We have demonstrated that the proposed nanocarrier SERS sensor can be utilized to investigate attachment of targeting ligands to nanocarriers (attachment of folic acid ligand recognized by folate receptors of cancer cells is described). Further testing of the nanocarrier SERS sensor involved drug release induced by lowering pH and increasing GSH levels, both occurring in cancer cells. The proposed sensor can be utilized for a variety of drugs and targeting ligands, including those which are Raman inactive, since the linkers can act as the Raman markers, as illustrated with mercaptobenzoic acid and para-aminothiophenol. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Drug depot-anchoring hydrogel: A self-assembling scaffold for localized drug release and enhanced stem cell differentiation.

    PubMed

    Li, Ruixiang; Pang, Zhiqing; He, Huining; Lee, Seungjin; Qin, Jing; Wu, Jian; Pang, Liang; Wang, Jianxin; Yang, Victor C

    2017-09-10

    Localized and long-term delivery of growth factors has been a long-standing challenge for stem cell-based tissue engineering. In the current study, a polymeric drug depot-anchoring hydrogel scaffold was developed for the sustained release of macromolecules to enhance the differentiation of stem cells. Self-assembling peptide (RADA16)-modified drug depots (RDDs) were prepared and anchored to a RADA16 hydrogel. The anchoring effect of RADA16 modification on the RDDs was tested both in vitro and in vivo. It was shown that the in vitro leakage of RDDs from the RADA16 hydrogel was significantly less than that of the unmodified drug depots (DDs). In addition, the in vivo retention of injected hydrogel-incorporated RDDs was significantly longer than that of hydrogel-incorporated unmodified DDs. A model drug, vascular endothelial growth factor (VEGF), was encapsulated in RDDs (V-RDDs) as drug depot that was then anchored to the hydrogel. The release of VEGF could be sustained for 4weeks. Endothelial progenitor cells (EPCs) were cultured on the V-RDDs-anchoring scaffold and enhanced cell proliferation and differentiation were observed, compared with a VEGF-loaded scaffold. Furthermore, this scaffold laden with EPCs promoted neovascularization in an animal model of hind limb ischemia. These results demonstrate that self-assembling hydrogel-anchored drug-loaded RDDs are promising for localized and sustained drug release, and can effectively enhance the proliferation and differentiation of resident stem cells, thus lead to successful tissue regeneration. Copyright © 2017. Published by Elsevier B.V.

  16. Thermo-responsive mesoporous silica/lipid bilayer hybrid nanoparticles for doxorubicin on-demand delivery and reduced premature release.

    PubMed

    Zhang, Qing; Chen, Xuanxuan; Shi, Huihui; Dong, Gaoqiu; Zhou, Meiling; Wang, Tianji; Xin, Hongliang

    2017-12-01

    Hybrid nanocarriers based on mesoporous silica nanoparticles (MSNs) and supported lipid bilayer (SLB) have been studied as drug delivery system. It still remains challenges to develop these nanocarriers (SLB-MSNs) with on-demand drug release profile for chemotherapy. Here, we reported the biocompatible SLB-MSNs with high drug loading, which could release doxorubicin (DOX) in response to hyperthermia and reduce premature release. After synthesis of MSNs via a sol-gel procedure, the thermo-responsive SLB was deposited on the MSNs by sonication to completely seal the mesopores. The obtained SLB-MSNs consisted of 50 nm-sized MSN cores and 6.3 nm-thick SLB shells. Due to the big surface and pore volume of MSNs, the high drug loading content (7.30±0.02%) and encapsulation efficiency (91.16±0.28%) were achieved. The SLB blocking the mesopores reduced 50% of premature release and achieved on-demand release in a thermo-responsive manner. Moreover, SLB-MSNs showed good hemocompatibility at any tested concentration (25-700μg/mL), while bare MSNs caused 100% of hemolysis at concentration larger than 325μg/mL. In addition, in vitro U251 cell uptake experiment demonstrated that compared with uncapped MSNs, SLB-MSNs could prevent untargeted cellular uptake of DOX owing to reduced premature release and steric hindrance of PEG, which would be beneficial to minimize toxicity for healthy tissues. These results indicated that SLB-MSNs with thermo-responsive release capacity possessed great potential in future synergistic thermo-chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Morphology effect of nano-hydroxyapatite as a drug carrier of methotrexate.

    PubMed

    Sun, Haina; Liu, Shanshan; Zeng, Xiongfeng; Meng, Xianguang; Zhao, Lina; Wan, Yizao; Zuo, Guifu

    2017-09-13

    In this study, morphology effect of nano-hydroxyapatite as a drug carrier was investigated for the first time. Hydroxyapatite/methotrexate (HAp/MTX) hybrids with different morphologies were successfully prepared in situ using polyethylene glycol (PEG) as a template. SEM, TEM, XRD and FTIR results confirmed that the hybrids of different morphologies (laminated, rod-like and spherical) with similar phase composition and functional groups were obtained by changing the preparation parameters. UV-Vis spectroscopy was used to identify the drug loading capacity and drug release mechanism of the three hybrids with different morphologies. It is concluded that the laminated hybrid exhibits a higher drug loading capacity compared to the other two hybrids, and all the three hybrids showed a sustained slow release which were fitted well by Bhaskar equation. Additionally, the result of in vitro bioassay test confirms that the inhibition efficacy of the three hybrids showed a positive correlation to the drug loading capacity.

  18. In silico study on the effects of matrix structure in controlled drug release

    NASA Astrophysics Data System (ADS)

    Villalobos, Rafael; Cordero, Salomón; Maria Vidales, Ana; Domínguez, Armando

    2006-07-01

    Purpose: To study the effects of drug concentration and spatial distribution of the medicament, in porous solid dosage forms, on the kinetics and total yield of drug release. Methods: Cubic networks are used as models of drug release systems. They were constructed by means of the dual site-bond model framework, which allows a substrate to have adequate geometrical and topological distribution of its pore elements. Drug particles can move inside the networks by following a random walk model with excluded volume interactions between the particles. The drug release time evolution for different drug concentration and different initial drug spatial distribution has been monitored. Results: The numerical results show that in all the studied cases, drug release presents an anomalous behavior, and the consequences of the matrix structural properties, i.e., drug spatial distribution and drug concentration, on the drug release profile have been quantified. Conclusions: The Weibull function provides a simple connection between the model parameters and the microstructure of the drug release device. A critical modeling of drug release from matrix-type delivery systems is important in order to understand the transport mechanisms that are implicated, and to predict the effect of the device design parameters on the release rate.

  19. An investigation of the mechanism of release of the amphoteric drug amoxycillin from poly(D,L-lactide-co-glycolide) matrices.

    PubMed

    Mollo, A Rosario; Corrigan, Owen I

    2002-01-01

    Amoxycillin-poly (D,L-lactide-co-glycolide) (PLGA) compacts were prepared by direct compression of both powder mixtures or films in a pre-heated press. Release profiles generally showed two phases separated by an induction period. Thus, both diffusion and polymer degradation mechanisms were involved in drug release, the relative importance of each depending on processing type and drug loading. Drug release parameters for each phase were determined. The fraction of total drug released, in the initial release phase, increased with drug loading and was much larger for compressed physical mixtures than for compressed composites prepared from co-evaporate films. Comparison of the polymer mass loss profiles of drug-loaded and drug-free discs indicated that the presence of the amphoteric drug amoxycillin had little impact on the polymer degradation rate, in contrast to the marked acceleration previously reported for basic drugs. Significant drug degradation occurred and was associated with release at later times. Release data was fitted to an equation accounting for degradation of the drug on release and suggested accelerated amoxycillin degradation during the polymer degradation controlled release phase, consistent with changes in pH in the microenvironment of the eroding compact.

  20. Relapse to opioid use in opioid-dependent individuals released from compulsory drug detention centres compared with those from voluntary methadone treatment centres in Malaysia: a two-arm, prospective observational study.

    PubMed

    Wegman, Martin P; Altice, Frederick L; Kaur, Sangeeth; Rajandaran, Vanesa; Osornprasop, Sutayut; Wilson, David; Wilson, David P; Kamarulzaman, Adeeba

    2017-02-01

    Detention of people who use drugs into compulsory drug detention centres (CDDCs) is common throughout East and Southeast Asia. Evidence-based pharmacological therapies for treating substance use disorders, such as opioid agonist treatments with methadone, are generally unavailable in these settings. We used a unique opportunity where CDDCs coexisted with voluntary drug treatment centres (VTCs) providing methadone in Malaysia to compare the timing and occurrence of opioid relapse (measured using urine drug testing) in individuals transitioning from CDDCs versus methadone maintenance in VTCs. We did a parallel, two-arm, prospective observational study of opioid-dependent individuals aged 18 years and older who were treated in Malaysia in the Klang Valley in two settings: CDDCs and VTCs. We used sequential sampling to recruit individuals. Assessed individuals in CDDCs were required to participate in services such as counselling sessions and manual labour. Assessed individuals in VTCs could voluntarily access many of the components available in CDDCs, in addition to methadone therapy. We undertook urinary drug tests and behavioural interviews to assess individuals at baseline and at 1, 3, 6, 9, and 12 months post-release. The primary outcome was time to opioid relapse post-release in the community confirmed by urinary drug testing in individuals who had undergone baseline interviewing and at least one urine drug test (our analytic sample). Relapse rates between the groups were compared using time-to-event methods. This study is registered at ClinicalTrials.gov (NCT02698098). Between July 17, 2012, and August 21, 2014, we screened 168 CDDC attendees and 113 VTC inpatients; of these, 89 from CDDCs and 95 from VTCs were included in our analytic sample. The baseline characteristics of the two groups were similar. In unadjusted analyses, CDDC participants had significantly more rapid relapse to opioid use post-release compared with VTC participants (median time to relapse 31 days [IQR 26-32] vs 352 days [256-unestimable], log rank test, p<0·0001). VTC participants had an 84% (95% CI 75-90) decreased risk of opioid relapse after adjustment for control variables and inverse propensity of treatment weights. Time-varying effect modelling revealed the largest hazard ratio reduction, at 91% (95% CI 83-96), occurs during the first 50 days in the community. Opioid-dependent individuals in CDDCs are significantly more likely to relapse to opioid use after release, and sooner, than those treated with evidence-based treatments such as methadone, suggesting that CDDCs have no role in the treatment of opioid-use disorders. The World Bank Group, Doris Duke Charitable Foundation, National Institute on Drug Abuse, Australian National Health & Medical Research Council, National Institute of Mental Health, and the University of Malaya-Malaysian Ministry of Higher Education High Impact Research Grant. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND license. Published by Elsevier Ltd.. All rights reserved.

  1. A simple way for targeted delivery of an antibiotic: In vitro evaluation of a nanoclay-based composite

    PubMed Central

    Pérez, Irela; de Ménorval, Louis Charles; Altshuler, Ernesto; Fossum, Jon Otto

    2017-01-01

    The sodium-modified form of fluorohectorite nanoclay (NaFh) is introduced as a potential drug carrier, demonstrating its ability for the controlled release of the broad-spectrum antibiotic Ciprofloxacin through in vitro tests. The new clay-drug composite is designed to target the local infections in the large intestine, where it delivers most of the incorporated drug thanks to its pH-sensitive behavior. The composite has been conceived to avoid the use of coating technology and to decrease the side-effects commonly associated to the burst-release of the ciprofloxacin at the stomach level. NaFh was obtained from lithium-fluorohectorite by ion exchange, and its lack of toxicity was demonstrated by in vivo studies. Ciprofloxacin hydrochloride (Cipro) was encapsulated into the clay at different values of the pH, drug initial concentration, temperature and time. Systematic studies by X-ray diffraction (XRD), infrared and visible spectrophotometry (FT-IR and UV-vis), and thermal analysis (TGA) indicated that the NaFh host exhibits a high encapsulation efficiency for Cipro, which reaches a 90% of the initial Cipro in solution at 65 oC, with initial concentration of drug in solution of 1.36 x 10−2 mol L-1 at acid pH. XRD revealed that a true intercalation of Cipro takes place between clay layers. TG showed an increased thermal stability of the drug when intercalated into the clay, as compared to the “free” Cipro. IR suggested a strong clay-Cipro interaction via ketone group, as well as the establishment of hydrogen bonds between the two materials. In vitro drug release tests revealed that NaFh is a potentially efficient carrier to deliver Cipro in the large intestine, where the release process is mediated by more than just one mechanism. PMID:29149176

  2. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania—Synthesis and Antibacterial Properties

    PubMed Central

    Svensson, Fredric G.; Agafonov, Alexander V.; Håkansson, Sebastian; Seisenbaeva, Gulaim A.

    2018-01-01

    Spherical cellulose nanocrystal-based hybrids grafted with titania nanoparticles were successfully produced for topical drug delivery. The conventional analytical filter paper was used as a precursor material for cellulose nanocrystals (CNC) production. Cellulose nanocrystals were extracted via a simple and quick two-step process based on first the complexation with Cu(II) solution in aqueous ammonia followed by acid hydrolysis with diluted H2SO4. Triclosan was selected as a model drug for complexation with titania and further introduction into the nanocellulose based composite. Obtained materials were characterized by a broad variety of microscopic, spectroscopic, and thermal analysis methods. The drug release studies showed long-term release profiles of triclosan from the titania based nanocomposite that agreed with Higuchi model. The bacterial susceptibility tests demonstrated that released triclosan retained its antibacterial activity against Escherichia coli and Staphylococcus aureus. It was found that a small amount of titania significantly improved the antibacterial activity of obtained nanocomposites, even without immobilization of model drug. Thus, the developed hybrid patches are highly promising candidates for potential application as antibacterial agents. PMID:29642486

  3. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania-Synthesis and Antibacterial Properties.

    PubMed

    Evdokimova, Olga L; Svensson, Fredric G; Agafonov, Alexander V; Håkansson, Sebastian; Seisenbaeva, Gulaim A; Kessler, Vadim G

    2018-04-08

    Spherical cellulose nanocrystal-based hybrids grafted with titania nanoparticles were successfully produced for topical drug delivery. The conventional analytical filter paper was used as a precursor material for cellulose nanocrystals (CNC) production. Cellulose nanocrystals were extracted via a simple and quick two-step process based on first the complexation with Cu(II) solution in aqueous ammonia followed by acid hydrolysis with diluted H₂SO₄. Triclosan was selected as a model drug for complexation with titania and further introduction into the nanocellulose based composite. Obtained materials were characterized by a broad variety of microscopic, spectroscopic, and thermal analysis methods. The drug release studies showed long-term release profiles of triclosan from the titania based nanocomposite that agreed with Higuchi model. The bacterial susceptibility tests demonstrated that released triclosan retained its antibacterial activity against Escherichia coli and Staphylococcus aureus . It was found that a small amount of titania significantly improved the antibacterial activity of obtained nanocomposites, even without immobilization of model drug. Thus, the developed hybrid patches are highly promising candidates for potential application as antibacterial agents.

  4. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles

    NASA Astrophysics Data System (ADS)

    Garcia, Xavier; Escribano, Elvira; Domenech, Josep; Queralt, Josep; Freixes, Joan

    2011-05-01

    An injectable controlled release system containing local anesthetics able to provide long-lasting analgesia in nociceptive and neuropathic pain could have a marked impact in pain management. In order to address this issue, bupivacaine, a widely used local anesthetic, has been nanoencapsulated using poly(lactic-co-glycolic acid) from an oil-in-water emulsion by the solvent evaporation technique. Nanoparticles were evaluated in vitro studying their drug release mechanism by fitting different model equations, and in vivo by testing its analgesic and anti-allodynic activity in front of heat-induced nociceptive pain and sciatic nerve chronic constriction injury in rats, respectively. The particle size of the PLGA nanoparticles obtained was of 453 ± 29 nm, the encapsulation efficiency, drug loading, and burst effect at 30 min were 82.10 ± 0.001, 45.06 ± 0.001, and 4.6 ± 0.6%, respectively. A prolonged release of the drug in comparison to bupivacaine solution was seen. The mean dissolution time (MDT) obtained for nanoparticles was relatively long (9.44 ± 0.56 h) proving the sustained release process, while the dissolution efficiency (DE) (84.10 ± 1.01%) was similar to the maximum percentage of drug released. Korsmeyer-Peppas was the best model that fitted our release data. A non-Fickian mechanism was concluded to be involved in the release of bupivacaine from the nanoparticles, taking into account the value of the diffusional exponent obtained ( n = 0.95). After local infiltration in the rat, the antinociceptive and anti-allodynic activity of the nanoencapsulated bupivacaine was longer lasting than that of bupivacaine solution. An increase in the values of the area under the curve (AUC) of the antinociceptive and anti-allodynic effect versus time of 67 and 36%, respectively, was observed when the drug was encapsulated.

  5. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy.

    PubMed

    Nittayacharn, Pinunta; Nasongkla, Norased

    2017-07-01

    The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots. (c) Dox-loaded depots showed bulk erosion with hollow core at day 60.

  6. Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery

    PubMed Central

    Joo, Jae Yeon; Park, Gil Yong; An, Seong Soo A

    2015-01-01

    In the development of effective drug delivery carriers, many researchers have focused on the usage of nontoxic and biocompatible materials and surface modification with targeting molecules for tumor-specific drug delivery. Fibrinogen (Fbg), an abundant glycoprotein in plasma, could be a potential candidate for developing drug carriers because of its biocompatibility and tumor-targeting property via arginine–glycine–aspartate (RGD) peptide sequences. Doxorubicin (DOX), a chemotherapeutic agent, was covalently conjugated to Fbg, and the microspheres were prepared. Acid-labile and non-cleavable linkers were used for the conjugation of DOX to Fbg, resulting in an acid-triggered drug release under a mild acidic condition and a slow-controlled drug release, respectively. In vitro cytotoxicity tests confirmed low cytotoxicity in normal cells and high antitumor effect toward cancer cells. In addition, it was discovered that a longer linker could make the binding of cells to Fbg drug carriers easier. Therefore, DOX–linker–Fbg microspheres could be a suitable drug carrier for safer and effective drug delivery. PMID:26366073

  7. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    PubMed

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.

  8. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans.

    PubMed

    Yonashiro Marcelino, Mônica; Azevedo Borges, Felipe; Martins Costa, Ana Flávia; de Lacorte Singulani, Junya; Ribeiro, Nathan Vinícius; Barcelos Costa-Orlandi, Caroline; Garms, Bruna Cambraia; Soares Mendes-Giannini, Maria José; Herculano, Rondinelli Donizetti; Fusco-Almeida, Ana Marisa

    2018-03-01

    This work aimed to produce a membrane based on fluconazole-loaded natural rubber latex (NRL), and study their interaction, drug release and antifungal susceptibility against Candida albicans. Fluconazole-loaded NRL membrane was obtained by casting method. The Fourier Transform Infrared Spectroscopy showed no modifications either in NRL or fluconazole after the incorporation. Mechanical test presented low Young's modulus and high strain, indicating the membranes have sufficient elasticity for biomedical application. The bio-membrane was able to release the drug and inhibit the growth of C. albicans as demonstrated by disk diffusion and macrodilution assays. The biomembrane was able to release fluconazole and inhibit the growth of C. albicans, representing a promising biomaterial for skin application.

  9. Enhancement of In Vivo Anticancer Effect of Cisplatin by Incorporation Inside Carbon Nanohorns

    NASA Astrophysics Data System (ADS)

    Yudasaka, Masako; Ajima, Kumiko; Murakami, Tatsuya; Mizoguchi, Yoshikazu; Tsuchida, Kunihiro; Ichihashi, Toshinari; Iijima, Sumio

    2009-03-01

    We have been studying potential applications of single-wall carbon nanohorns (SWNHs) to drug delivery systems. SWNHs are multiply functionalized with proteins, magnetites, tumor targeting molecules, and others. Various drugs are easily incorporated, and the incorporated drugs are slowly released. Almost no acute toxicity of SWNHs was found through various animal tests. We show in this report that anticancer effect of cisplatin was enhanced by incorporation inside SWNHs (CDDP@SWNH) as evidenced by in vivo tests: CDDP@SWNH was locally injected to tumors subcutaneously transplanted on mice. CDDP@SWNH inhibited the tumor growth more effectively than CDDP. This anticancer enhancement was achieved by large CDDP-quantity incorporated inside SWNH, slow release of CDDP from SWNH, long-term stay of SWNHs at the tumor sites, and an anticancer effect of SWNH itself [1].[3pt] [1] K. Ajima et al. ACSNano, 10(2008)2057-2064.

  10. Crushed tablets: does the administration of food vehicles and thickened fluids to aid medication swallowing alter drug release?

    PubMed

    Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J

    2014-01-01

    To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted.

  11. Coordinated pH/redox dual-sensitive and hepatoma-targeted multifunctional polymeric micelle system for stimuli-triggered doxorubicin release: Synthesis, characterization and in vitro evaluation.

    PubMed

    Wang, Lele; Tian, Baocheng; Zhang, Jing; Li, Keke; Liang, Yan; Sun, Yujie; Ding, Yuanyuan; Han, Jingtian

    2016-03-30

    Multifunctional polymeric micelles self-assembled from a DOX-conjugated methoxypolyethylene glycols-b-poly (6-O-methacryloyl-D-galactopyranose)-disulfide bond-DOX (mPEG-b-PMAGP-SS-DOX) copolymer were prepared as an antitumor carrier for doxorubicin delivery, of which the chemical modification with disulfide bonds and hydrazone bonds allowed micelles to release doxorubicin (DOX) selectively at acidic pH and high redox conditions. The resulting micelles exhibited coordinated pH/redox dual-sensitive and hepatoma-targeted multifunction with sustaining stability in aqueous media. The multifunctional micelles showed spherical shapes with a mean diameter of 93 ± 2.08 nm, a low polydispersity index (PDI) of 0.21, a low CMC value of 0.095 mg/mL, a high drug grafting degree of 56.9% and a drug content of 39.0%. Remarkably, in vitro drug release studies clearly exhibited a pH and redox dual-sensitive drug release profile with significantly accelerated drug release treated with pH 5.0 and 10mM GSH (88.4% in 72 h) without drug burst release. The tumor proliferation assays indicated that DOX-grafted micelles, along with low cytotoxicity and well biocompatibility to normal cells up to a concentration of 10 μg/mL, inhibited the proliferation of HepG2 cells in a formulation-, time- and concentration-dependent manner in comparison with MCF-7 cells which was similar to free DOX. Anticancer activity releaved that the disulfide-modified micelles possessed much higher anti-hepatoma activity with a low IC50 value of 1.1 μg/mL following a 72 h incubation. Furthermore, the intracellular uptake tested by CLSM and FCM demonstrated that multifunctional polymeric micelles could be more efficiently taken up by HepG2 cells compared with MCF-7 cells, agreed well with MTT assays, suggesting these well-defined micelles provide a potential drug delivery system for dual-responsive controlled drug release and enhanced anti-hepatoma therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Double loaded self-decomposable SiO2 nanoparticles for sustained drug release

    NASA Astrophysics Data System (ADS)

    Zhao, Saisai; Zhang, Silu; Ma, Jiang; Fan, Li; Yin, Chun; Lin, Ge; Li, Quan

    2015-10-01

    Sustained drug release for a long duration is a desired feature of modern drugs. Using double-loaded self-decomposable SiO2 nanoparticles, we demonstrated sustained drug release in a controllable manner. The double loading of the drugs was achieved using two different mechanisms--the first one via a co-growth mechanism, and the second one by absorption. A two-phase sustained drug release was firstly revealed in an in vitro system, and then further demonstrated in mice. After a single intravenous injection, the drug was controllably released from the nanoparticles into blood circulation with a Tmax of about 8 h, afterwards a long lasting release pattern was achieved to maintain drug systemic exposure with a plasma elimination half-life of approximately 28 h. We disclosed that the absorbed drug molecules contributed to the initial fast release for quickly reaching the therapeutic level with relatively higher plasma concentrations, while the ``grown-in'' drugs were responsible for maintaining the therapeutic level via the later controlled slow and sustained release. The present nanoparticle carrier drug configuration and the loading/maintenance release mechanisms provide a promising platform that ensures a prolonged therapeutic effect by controlling drug concentrations within the therapeutic window--a sustained drug delivery system with a great impact on improving the management of chronic diseases.Sustained drug release for a long duration is a desired feature of modern drugs. Using double-loaded self-decomposable SiO2 nanoparticles, we demonstrated sustained drug release in a controllable manner. The double loading of the drugs was achieved using two different mechanisms--the first one via a co-growth mechanism, and the second one by absorption. A two-phase sustained drug release was firstly revealed in an in vitro system, and then further demonstrated in mice. After a single intravenous injection, the drug was controllably released from the nanoparticles into blood circulation with a Tmax of about 8 h, afterwards a long lasting release pattern was achieved to maintain drug systemic exposure with a plasma elimination half-life of approximately 28 h. We disclosed that the absorbed drug molecules contributed to the initial fast release for quickly reaching the therapeutic level with relatively higher plasma concentrations, while the ``grown-in'' drugs were responsible for maintaining the therapeutic level via the later controlled slow and sustained release. The present nanoparticle carrier drug configuration and the loading/maintenance release mechanisms provide a promising platform that ensures a prolonged therapeutic effect by controlling drug concentrations within the therapeutic window--a sustained drug delivery system with a great impact on improving the management of chronic diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03029c

  13. Formulation and In Vitro Release Kinetics of Mucoadhesive Blend Gels Containing Matrine for Buccal Administration.

    PubMed

    Chen, Xiaojin; Yan, Jun; Yu, Shuying; Wang, Pingping

    2018-01-01

    Enterovirus 71 (EV71) is a pathogenic factor of severe hand, foot, and mouth disease (HFMD). No vaccine or specific treatment is currently available for EV71 infection. Hence, we developed a buccal mucoadhesive gel containing matrine to protect against HFMD. Mucoadhesive gels were prepared by Carbopol 974P and were combined with Carbopol 971P, sodium carboxymethyl cellulose (CMC-Na), or hydroxypropylmethy cellulose (HPMC K100M). The formulations were characterized in terms of tensile testing and continuous flow techniques for mucoadhesion. The rheological studies and in vitro drug release characteristics were also investigated. The results showed that combinations of two polymers significantly improved mucoadhesion, especially Carbopol 974P blended with HPMC. Carbopol 974P to HPMC blend ratios of 1:1 and 2:1 induced better mucoadhesion in the tensile test and continuous flow method, respectively. The most sustained release was obtained at a Carbopol 974P to HPMC ratio of 2.5:1. A predominantly non-Fickian diffusion release mechanism was obtained. The gel containing 2.5% Carbopol 974P combined with 1% HPMC showed good mucoadhesion properties and sustained drug release.

  14. Controlling of free radical copolymerization of styrene and maleic anhydride via RAFT process for the preparation of acetaminophen drug conjugates

    NASA Astrophysics Data System (ADS)

    Sütekin, S. Duygu; Atıcı, Ayşe Bakar; Güven, Olgun; Hoffman, Allan S.

    2018-07-01

    The presence of maleic anhydride moiety in styrene-maleic anhydride (SMA) copolymer makes it a versatile substrate for conjugation of drugs. In this study biocompatible styrene-maleic anhydride (SMA) copolymer with alternating structure was synthesized by gamma irradiation at room temperature in the presence of 2-phenyl-2-propyl benzodithioate (PPB). The poly(styrene-alt-maleic anhydride) (poly(St-alt-MA)) with narrow molecular weight distribution (Đ: 1.1-1.3) was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. The synthesized poly(St-alt-MA) structure was characterized by ATR-FTIR spectroscopy, elemental analysis and 1H NMR spectroscopy and molecular weight and dispersity were determined by size exclusion chromatography (SEC). SMA copolymers were further conjugated with acetaminophen via ester linkage and FT-IR, 1H NMR investigation indicated that the acetaminophen was attached to poly(St-alt-MA). Drug release profile of the polymer-drug conjugate was followed by high performance liquid chromatography (HPLC). The drug-conjugate system was found to follow first order release kinetics with Hixson-Crowell model while drug release mechanism was found as non-Fickian diffusion after testing various kinetic models.

  15. Development of a novel osmotically driven drug delivery system for weakly basic drugs.

    PubMed

    Guthmann, C; Lipp, R; Wagner, T; Kranz, H

    2008-06-01

    The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients and coated with an extended and enteric polymer. In contrast, with increasing osmotic pressure of the dissolution medium the in vitro drug release rates decreased significantly.

  16. PLA/PEG-PPG-PEG/dexamethasone implant prepared by hot-melt extrusion for controlled release of immunosuppressive drug to implantable medical devices, Part 2: in vivo evaluation.

    PubMed

    Li, DeXia; Guo, Gang; Deng, Xin; Fan, RangRang; Guo, QingFa; Fan, Min; Liang, Jian; Luo, Feng; Qian, ZhiYong

    2013-01-01

    Hot-melt extrusion (HME) plays an important role in preparing implants as local drug delivery systems in pharmaceutical fields. Here, a new PLA/PEG-PPG-PEG/Dexamethasone (PLA/F68/Dex) implant prepared by HME has been developed. Importantly, the implant was successfully achieved to control release of immunosuppressive drug to an implanted device. In particular, this implant has not been reported previously in pharmaceutical fields. FTIR and XRD were adopted to investigate the properties of the samples. The in vivo release study showed that the maximum value of Dex release from the implants was approximately 50% at 1 month. The in vivo degradation behavior was determined by UV spectrophotometer and scanning electron microscopy studies, and the weight loss rate of the implants were up to 25% at 1 month. Furthermore, complete blood count (CBC) test, serum chemistry and major organs were performed, and there is no significant lesion and side effects observed in these results. Therefore, the results elucidated that the new PLA/F68/Dex implant prepared by HME could deliver an immunosuppressive drug to control the inflammatory reaction at the implant site.

  17. Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets.

    PubMed

    Martinez, Pamela Robles; Goyanes, Alvaro; Basit, Abdul W; Gaisford, Simon

    2018-06-08

    Additive manufacturing (3D printing) permits the fabrication of tablets in shapes unattainable by powder compaction, and so the effects of geometry on drug release behavior is easily assessed. Here, tablets (printlets) comprising of paracetamol dispersed in polyethylene glycol were printed using stereolithographic 3D printing. A number of geometric shapes were produced (cube, disc, pyramid, sphere and torus) with either constant surface area (SA) or constant surface area/volume ratio (SA/V). Dissolution testing showed that printlets with constant SA/V ratio released drug at the same rate, while those with constant SA released drug at different rates. A series of tori with increasing SA/V ratio (from 0.5 to 2.4) were printed, and it was found that dissolution rate increased as the SA/V ratio increased. The data show that printlets can be fabricated in multiple shapes and that dissolution performance can be maintained if the SA/V ratio is constant or that dissolution performance of printlets can be fine-tuned by varying SA/V ratio. The results suggest that 3D printing is therefore a suitable manufacturing method for personalized dosage forms.

  18. Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery.

    PubMed

    Boppana, Rashmi; Krishna Mohan, G; Nayak, Usha; Mutalik, Srinivas; Sa, Biswanath; Kulkarni, Raghavendra V

    2015-04-01

    This article reports the development of pH-sensitive interpenetrating polymer network (IPN) microbeads using polyacrylamide-grafted-gum ghatti (PAAm-g-GG) and sodium alginate (SA) for gastro-protective controlled delivery of ketoprofen. We have synthesized PAAm-grafted-GG copolymer under microwave irradiation using cerric ammonium nitrate as reaction initiator; further, the PAAm-g-GG was converted to pH-sensitive copolymer through alkaline hydrolysis. Sophisticated instrumentation techniques were used to characterize PAAm-g-GG. The IPN microbeads of PAAm-g-GG and SA, pre-loaded with ketoprofen were prepared by dual crosslinking using Ca(2+) ions and glutaraldehyde (GA). The IPN microbeads demonstrated excellent pH-sensitive behavior as noted in the pulsatile swelling test and scanning electron microscopy. IPN microbeads also showed larger amount of drug release in buffer solution of pH 7.4 as compared to drug release in solution of pH 1.2. The in vivo pharmacokinetic, pharmacodynamic and stomach histopathology studies conducted on wistar rats confirmed the pH-sensitive controlled release of ketoprofen; IPN microbeads retarded the drug release in stomach resulting in reduced adverse effects of ketoprofen. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections.

    PubMed

    Ordikhani, F; Tamjid, E; Simchi, A

    2014-08-01

    Orthopaedic implant-associated infections are one of the most serious complications in orthopaedic surgery and a major cause of implant failure. In the present work, drug-eluting coatings based on chitosan containing various amounts of vancomycin were prepared by a cathodic electrophoretic deposition process on titanium foils. A three-step release mechanism of the antibiotic from the films in a phosphate-buffered saline solution was noticed. At the early stage, physical encapsulation of the drug in the hydrogel network controlled the release rate. At the late stage, however, in vitro degradation/deattachment of chitosan was responsible for the controlled release. Cytotoxicity evaluation of the drug-eluting coatings via culturing in human osteosarcoma cells (MG-63 osteoblast-like cell line) showed no adverse effect on the biocompatibility. Antibacterial tests against Gram-positive Staphylococcus aureus also demonstrated that the infection risk of titanium foils was significantly reduced due to the antibiotic release. Additionally, in vitro electrochemical corrosion studies by polarization technique revealed that the corrosion current density was significantly lower for the titanium foils with drug-eluting coatings compared to that of uncoated titanium. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: drug release and fronts movement kinetics.

    PubMed

    Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R

    2012-04-01

    A previous paper deals with the physicochemical and technological characterization of novel graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS). The results obtained suggested the potential application of these copolymers as excipients for compressed non-disintegrating matrix tablets. Therefore, the purpose of the present study was to investigate the mechanism governing drug release from matrix systems prepared with the new copolymers and anhydrous theophylline or diltiazem HCl as model drugs with different solubility. The influence of the carbohydrate nature, drying procedure and initial pore network on drug release kinetics was also evaluated. Drug release experiments were performed from free tablets. Radial drug release and fronts movement kinetics were also analysed, and several mathematical models were employed to ascertain the drug release mechanisms. The drug release markedly depends on the drug solubility and the carbohydrate nature but is practically not affected by the drying process and the initial matrix porosity. A faster drug release is observed for matrices containing diltiazem HCl compared with those containing anhydrous theophylline, in accordance with the higher drug solubility and the higher friability of diltiazem matrices. In fact, although diffusion is the prevailing drug release mechanism for all matrices, the erosion mechanism seems to have some contribution in several formulations containing diltiazem. A reduction in the surface exposed to the dissolution medium (radial release studies) leads to a decrease in the drug release rate, but the release mechanism is not essentially modified. The nearly constant erosion front movement confirms the behaviour of these systems as inert matrices where the drugs are released mainly by diffusion through the porous structure. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Prevention of arterial graft spasm in rats using a vasodilator-eluting biodegradable nano-scaled fibre†

    PubMed Central

    Yagami, Kei; Yamawaki-Ogata, Aika; Satake, Makoto; Kaneko, Hiroaki; Oshima, Hideki; Usui, Akihiko; Ueda, Yuichi; Narita, Yuji

    2013-01-01

    OBJECTIVES Arterial graft spasm occasionally causes circulatory collapse immediately following coronary artery bypass graft. The aim of this study is to evaluate the efficacy of our developed materials, which were composed of milrinone (phosphodiesterase III inhibitor) or diltiazem (calcium-channel blocker), with nano-scaled fibre made of biodegradable polymer to prevent arterial spasm. METHODS Milrinone- or diltiazem-releasing biodegradable nano-scaled fibres were fabricated by an electrospinning procedure. In vivo milrinone- or diltiazem-releasing tests were performed to confirm the sustained release of the drugs. An in vivo arterial spasm model was established by subcutaneous injection of noradrenalin around the rat femoral artery. Rats were randomly divided into four groups as follows: those that received 5 mg of milrinone-releasing biodegradable nano-scaled fibre (group M, n = 14); 5 mg of diltiazem-releasing biodegradable nano-scaled fibre (group D, n = 12); or those that received fibre without drugs (as a control; group C, n = 14) implanted into the rat femoral artery. In the fourth group, sham operation was performed (group S, n = 10). One day after the implantation, noradrenalin was injected in all groups. The femoral arterial blood flow was measured continuously before and after noradrenalin injection. The maximum blood flow before noradrenalin injection and minimum blood flow after noradrenalin injection were measured. RESULTS In vivo drug-releasing test revealed that milrinone-releasing biodegradable nano-scaled fibre released 78% of milrinone and diltiazem-releasing biodegradable nano-scaled fibre released 50% diltiazem on the first day. The ratios of rat femoral artery blood flow after/before noradrenalin injection in groups M (0.74 ± 0.16) and D (0.72 ± 0.05) were significantly higher than those of groups C (0.54 ± 0.09) and S (0.55 ± 0.16) (P < 0.05). CONCLUSION Noradrenalin-induced rat femoral artery spasm was inhibited by the implantation of milrinone-releasing biodegradable nano-scaled fibre or diltiazem-releasing biodegradable nano-scaled fibre. These results suggested that our materials might be effective for the prevention of arterial graft spasm after coronary artery bypass graft. PMID:23513005

  2. Preparation and characterization of poly(ε-caprolactone) nanospheres containing the local anesthetic lidocaine.

    PubMed

    Ramos Campos, Estefânia Vangelie; Silva de Melo, Nathalie Ferreira; Guilherme, Viviane Aparecida; de Paula, Eneida; Rosa, André Henrique; de Araújo, Daniele Ribeiro; Fraceto, Leonardo Fernandes

    2013-01-01

    The objective of this work was to develop a modified release system for the local anesthetic lidocaine (LDC), using poly(ε-caprolactone) (PCL) nanospheres (NSs), to improve the pharmacological properties of the drug when administered by the infiltration route. In vitro experiments were used to characterize the system and investigate the release mechanism. The NSs presented a polydispersion index of 0.072, an average diameter of 449.6 nm, a zeta potential of -20.1 mV, and an association efficiency of 93.3%. The release profiles showed that the release of associated LDC was slower than that of the free drug. Atomic force microscopy analyses showed that the spherical structure of the particles was preserved as a function of time, as well as after the release experiments. Cytotoxicity and pharmacological tests confirmed that association with the NSs reduced the toxicity of LDC, and prolonged its anesthetic action. This new formulation could potentially be used in applications requiring gradual anesthetic release, especially dental procedures. Copyright © 2012 Wiley Periodicals, Inc.

  3. Preparation, characterization, in vitro drug release, and cellular interactions of tailored paclitaxel releasing polyethylene oxide films for drug-coated balloons.

    PubMed

    Anderson, Jordan A; Lamichhane, Sujan; Remund, Tyler; Kelly, Patrick; Mani, Gopinath

    2016-01-01

    Drug-coated balloons (DCBs) are used to treat various cardiovascular diseases. Currently available DCBs carry drug on the balloon surface either solely or using different carriers. Several studies have shown that a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. This research is focused on developing paclitaxel (PAT) loaded polyethylene oxide (PEO) films (PAT-PEO) as a controlled drug delivery carrier for DCBs. An array of PAT-PEO films were developed in this study to provide tailored release of >90% of drug only at specific time intervals, which is the time frame required for carrying out balloon-based therapy. The characterizations of PAT-PEO films using SEM, FTIR, and DSC showed that the films developed were homogenous and the PAT was molecularly dispersed in the PEO matrix. Mechanical tests showed that most PAT-PEO films developed were flexible and ductile, with yield and tensile strengths not affected after PAT incorporation. The viability, proliferation, morphology, and phenotype of smooth muscle cells (SMCs) interacted with control-PEO and PAT-PEO films were investigated. All control-PEO and PAT-PEO films showed a significant inhibitory effect on the growth of SMCs, with the degree of inhibition strongly dependent on the w/v% of the polymer used. The PAT-PEO coating was produced on the balloons. The integrity of PAT-PEO coating was well maintained without any mechanical defects occurring during balloon inflation or deflation. The drug release studies showed that only 15% of the total PAT loaded was released from the balloons within the initial 1min (typical balloon tracking time), whereas 80% of the PAT was released between 1min and 4min (typical balloon treatment time). Thus, this study demonstrated the use of PEO as an alternate drug delivery system for the balloons. Atherosclerosis is primarily responsible for cardiovascular diseases (CVDs) in millions of patients every year. Drug-coated balloons (DCBs) are commonly used to treat various CVDs. However, in several currently used DCBs, a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. In this study, paclitaxel containing polyethylene oxide (PEO) films were developed to provide unique advantages including drug release profiles specifically tailored for balloon-based therapy, homogeneous films with molecularly dispersed drug, flexible and ductile films, and exhibits significant inhibitory effect on smooth muscle cell growth. Thus, this study demonstrated the use of PEO as an alternate drug delivery platform for DCBs to improve its efficacy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release.

    PubMed

    Bettini, Simona; Bonfrate, Valentina; Syrgiannis, Zois; Sannino, Alessandro; Salvatore, Luca; Madaghiele, Marta; Valli, Ludovico; Giancane, Gabriele

    2015-09-14

    A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.

  5. Halloysite clay nanotubes for resveratrol delivery to cancer cells.

    PubMed

    Vergaro, Viviana; Lvov, Yuri M; Leporatti, Stefano

    2012-09-01

    Halloysite is natural aluminosilicate clay with hollow tubular structure which allows loading with low soluble drugs using their saturated solutions in organic solvents. Resveratrol, a polyphenol known for having antioxidant and antineoplastic properties, is loaded inside these clay nanotubes lumens. Release time of 48 h is demonstrated. Spectroscopic and ζ-potential measurements are used to study the drug loading/release and for monitoring the nanotube layer-by-layer (LbL) coating with polyelectrolytes for further release control. Resveratrol-loaded clay nanotubes are added to breast cell cultures for toxicity tests. Halloysite functionalization with LbL polyelectrolyte multilayers remarkably decrease nanotube self-toxicity. MTT measurements performed with a neoplastic cell lines model system (MCF-7) as function of the resveratrol-loaded nanotubes concentration and incubation time indicate that drug-loaded halloysite strongly increase of cytotoxicity leading to cell apoptosis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A.D.A.M. test (Antibiofilm Dressing's Activity Measurement) - Simple method for evaluating anti-biofilm activity of drug-saturated dressings against wound pathogens.

    PubMed

    Junka, Adam F; Żywicka, Anna; Szymczyk, Patrycja; Dziadas, Mariusz; Bartoszewicz, Marzena; Fijałkowski, Karol

    2017-12-01

    In the present article, we propose a simple Antibiofilm Dressing's Activity Measurement (A.D.A.M.) test that allows to check in vitro a dressing's suitability against biofilm-related wound infections. To perform the test, three agar discs are covered with biofilm formed by the tested pathogen after which they are assembled one over another in the form of an agar plug and placed in the well of a 24-well plate. The top disc is covered with the analyzed dressing and the entire set is incubated for 24h. During this time, the investigated antimicrobial substance is released from the dressing and penetrates to subsequent biofilm-covered agar discs. Biofilm reduction is measured using 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) spectrometric assay and the results are compared to untreated control samples (agar plug covered with biofilm and without the dressing/or with a passive dressing placed on the top disc). Furthermore, in order to standardize the differences in penetrability of the drugs released from active dressings the results can be expressed as a dimensionless value referred to as the Penetrability Index. In summary, A.D.A.M. test is simple, cheap, can be performed practically in every clinical laboratory and takes no more time than routine microbiological diagnostics. Apart from measuring the released drug's activity, the A.D.A.M. test allows to assess drug penetrability (across three agar discs), reflecting real wound conditions, where microbes are frequently hidden under the necrotic tissue or cloth. In conclusion, the A.D.A.M. test produces a high volume of data that, when analyzed, can provide a researcher with a valuable hint concerning the applicability of active dressings against specific biofilm pathogens in a particular setting. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-05-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  8. Neonatal methamphetamine-induced corticosterone release in rats is inhibited by adrenal autotransplantation without altering the effect of the drug on hippocampal serotonin

    PubMed Central

    Grace, Curtis E.; Schaefer, Tori L.; Gudelsky, Gary A.; Williams, Michael T.; Vorhees, Charles V.

    2010-01-01

    Rat neonatal methamphetamine exposure results in corticosterone release and learning and memory impairments in later life; effects also observed after neonatal stress. Previous attempts to test the role of corticosterone release after methamphetamine using corticosterone inhibitors were unsuccessful and adrenalectomy caused reductions in hippocampal serotonin greater than those caused by methamphetamine alone. Here we tested whether adrenal autotransplantation could be used to attenuate methamphetamine-induced corticosterone release without also altering the effects of the drug on serotonin. Adrenal autotransplantation surgery occurred on postnatal day 9 followed by methamphetamine or saline treatment from postnatal day 11–20 (10 mg/kg/dose x 4/day). Plasma corticosterone and hippocampal serotonin and 5-hydroxyindoleacetic acid were determined 30 min following the first treatment on each day between postnatal days 11–20. Adrenal autotransplantation attenuated neonatal methamphetamine-induced corticosterone release by ~70% initially, ~55% midway through treatment, and ~25% by the end of treatment. Methamphetamine reduced serotonin and 5-hydroxyindoleacetic acid in the hippocampus to the same degree as in sham-surgery rats. The data show that neonatal adrenal autotransplantation is an effective method for partially reducing treatment-induce corticosterone release while providing sufficient corticosterone to sustain normal growth and development. The method should is applicable to other models of developmental stress/corticosterone release. PMID:20153424

  9. Development and Evaluation of Amphotericin B Loaded Iron Oxide Nanoparticles for Targeted Drug Delivery to Systemic Fungal Infections

    NASA Astrophysics Data System (ADS)

    Balabathula, Pavan

    A targeted nanotheronostic drug delivery system to diagnose and treat life threatening invasive fungal infections (IFIs) such as cryptococcal meningitis was designed, developed, characterized, and evaluated. To address the development processes, first, iron oxide nanoparticles (IONP) (34-40 nm) coated with bovine serum albumin (BSA), loaded and targeted with amphotericin B (AMB) (AMB-IONP) was formulated by applying a layer by layer approach. Several designs (A, B, C, D, & E) of AMB-IONP were developed and their physicochemical properties such as drug loading with HPLC method, particle size, poly dispersity index (PDI), and zeta-potential using dynamic light scattering (DLS) technique, morphology with transmission electronic microscopy (TEM), and in vitro drug release profile with dialysis method were evaluated. Second, uptake (with fluorescence microscopy and flow cytometry) and killing efficacy (with susceptibility testing) of AMB-IONP in fungal clinical isolates of Candida species were evaluated and compared with standard drug AMB deoxycholate (AMB-D) data. Third, the cellular uptake mechanisms with endocytosis inhibitors and intracellular trafficking using TEM for design D were evaluated in selected isolates. Fourth, a stable lyophilized AMB-IONP formulation was developed and was suitable for clinical trials. A validated isocratic HPLC method was developed and validated for the quantitative determination of AMB. Design D was determined to be the lead formulation with drug loading of 13.6+/-6.9 of AMB/mg of IONP. The size, zeta-potential, and PDI for all formulation designs were found to be in an optimum range for a nanomedicine with ≤36 nm, ˜ -20 mV, and ≤0.2, respectively. The TEM images confirmed that the nanoparticles were monodispersed and spherical in shape. The drug release profile indicated a burst release up to 3 hours for designs A and B, followed by a sustained drug release profile up to 72 hours. Designs C and D (with and without glutaraldehyde) also had a sustained drug release profile up to 72 hours. The major mechanisms of drug release from these formulations were determined to be Fickian and non-Fickian diffusion with first order and Higuchi kinetic models as best fit. The cellular uptake profile for design D exhibited a time dependent uptake with maximum uptake at 0.5 and 4 hours for C. albicans and C. glabrata, respectively. All designs exhibited improved efficacy over AMB-D in the susceptibility testing conducted on clinical isolates of Candida. Design D was found to have an enhanced killing ability and was 16-25 fold more efficacious than AMB-D. An in vitro cellular association study found the uptake mechanism was energy dependent. An endocytosis inhibitor evaluation determined the major particle uptake pathway for C. albicans was lipid-raft mediated endocytosis, whereas for C. glabrata, it was clathrin-, caveolar-, and lipid-raft-mediated endocytosis. TEM and confocal images provided evidence the AMB-IONP were localized at or near the cell wall and membrane wall and inside the cytoplasm, nucleus and endolysosomal vesicles for tested isolates. The lyophilized formulation of AMB-IONP was successfully prepared using an appropriate amount (1:16 to the weight of IONP) of the lyoprotectant, sucrose. A short term stability study of both formulations (lyophilized and aqueous dispersion) at 5°C and 25°C for up to two months showed the lyophilized form was stable. In conclusion, a targeted nanotheronostic drug delivery system (AMB-IONP) was successfully designed, developed, characterized and evaluated as a potential drug product for IFIs treatment.

  10. Preparation and Characterization of Liquisolid Compacts for Improved Dissolution of Telmisartan

    PubMed Central

    Narra, Nataraj; Rama Rao, Tadikonda

    2014-01-01

    The objective of the present work was to obtain pH independent and improved dissolution profile for a poorly soluble drug, telmisartan using liquisolid compacts. Liquisolid compacts were prepared using Transcutol HP as vehicle, Avicel PH102 as carrier, and Aerosil 200 as a coating material. The formulations were evaluated for drug excipient interactions, change in crystallinity of drug, flow properties, and general quality control tests of tablets using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), angle of repose, and various pharmacopoeial tests. In vitro dissolution studies were performed at three pH conditions (1.2, 4.5 and 7.4). Stability studies were performed at 40°C and 75% RH for three months. The formulation was found to comply with Indian pharmacopoeial limits for tablets. FTIR studies confirmed no interaction between drug and excipients. XRD and DSC studies indicate change/reduction in crystallinity of drug. Dissolution media were selected based on the solubility studies. The optimized formulation showed pH independent release profile with significant improvement (P < 0.005) in dissolution compared to plain drug and conventional marketed formulation. No significant difference was seen in the tablet properties, and drug release profile after storage for 3 months. PMID:25371826

  11. A randomized clinical trial of methadone maintenance for prisoners: findings at 6 months post-release.

    PubMed

    Gordon, Michael S; Kinlock, Timothy W; Schwartz, Robert P; O'Grady, Kevin E

    2008-08-01

    This study examined the effectiveness of methadone maintenance initiated prior to or just after release from prison at 6 months post-release. A three-group randomized controlled trial was conducted between September 2003 and June 2005. A Baltimore pre-release prison. Two hundred and eleven adult pre-release inmates who were heroin-dependent during the year prior to incarceration. Participants were assigned randomly to the following: counseling only: counseling in prison, with passive referral to treatment upon release (n = 70); counseling + transfer: counseling in prison with transfer to methadone maintenance treatment upon release (n = 70); and counseling + methadone: methadone maintenance and counseling in prison, continued in a community-based methadone maintenance program upon release (n = 71). Addiction Severity Index at study entry and follow-up. Additional assessments at 6 months post-release were treatment record review; urine drug testing for opioids, cocaine and other illicit drugs. Counseling + methadone participants were significantly more likely than both counseling only and counseling + transfer participants to be retained in drug abuse treatment (P = 0.0001) and significantly less likely to have an opioid-positive urine specimen compared to counseling only (P = 0.002). Furthermore, counseling + methadone participants reported significantly fewer days of involvement in self-reported heroin use and criminal activity than counseling only participants. Methadone maintenance, initiated prior to or immediately after release from prison, increases treatment entry and reduces heroin use at 6 months post-release compared to counseling only. This intervention may be able to fill an urgent treatment need for prisoners with heroin addiction histories.

  12. pH sensitive silica nanotubes as rationally designed vehicles for NSAIDs delivery.

    PubMed

    Sousa, Célia T; Nunes, Cláudia; Proença, Mariana P; Leitão, Diana C; Lima, José L F C; Reis, Salette; Araújo, João P; Lúcio, Marlene

    2012-06-01

    A novel pH-sensitive drug delivery system based on functionalized silica nanotubes was developed for the incorporation of non-steroidal anti-inflammatory drugs (NSAIDs), aimed at a tailored drug release in acidic conditions characteristic of inflamed tissues. Silica nanotubes (SNTs) were synthesized by a nanoporous alumina template assisted sol-gel method. Inner surfaces were physically and chemically modified to improve both the functionalization and subsequent incorporation of the drug. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) were used to characterize the designed nanocarriers and their functionalization. To achieve the highest degree of functionalization, three types of aminosilanes were tested and calcination conditions were optimized. APTES was shown to be the most effective aminosilane regarding the functionalization of the SNTs' inner surface and an adequate calcination temperature (220°C) was found to attain mechanical stability without compromising functionalization efficiency. Finally, the incorporation of naproxen into the nanotubes was accessed by fluorescence measurements and drug release studies were performed, revealing that the electrostatic linkage ensures effective release of the drug in the acidic pH typical of inflamed cells, while maintaining the SNT-drug conjugates stable at the typical bloodstream pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Indomethacin-Kollidon VA64 Extrudates: A Mechanistic Study of pH-Dependent Controlled Release.

    PubMed

    Tres, Francesco; Treacher, Kevin; Booth, Jonathan; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2016-03-07

    Because of its weakly acidic nature (pKa of 4.5), indomethacin presents an aqueous solubility that significantly increases when changing from acidic to neutral/alkaline pH (1.5 μg/mL at pH 1.2 and 105.2 μg/mL at pH 7.4). We have therefore investigated the impact of the dissolution medium pH on the dissolution performance of indomethacin:Kollidon VA64 extrudates. The impact of the drug loading on the dissolution properties of these systems was also examined (5%, 15%, 30%, 50%, 70%, and 90% drug loading). Time-resolved Raman spectroscopy along with in-line UV-vis spectrophotometry was employed to directly relate changes in dissolution behavior to physicochemical changes that occur to the extrudate during the test. The dissolution tests were performed in pH 2 HCl (to mimic the stomach conditions), and this was then switched during the experiment to pH 6.8 phosphate buffer (to simulate the poststomach conditions). The rotating disc dissolution rate test was also used to simultaneously measure the dissolution rate of both the drug and the polymer. We found that in pH 2 HCl buffer, for the 15% or higher drug-loaded extrudates, Kollidon VA64 preferentially dissolves from the exterior of the compact leaving an amorphous drug-rich hydrophobic shell, which, similarly to an enteric coating, inhibits the drug release. The in situ formation of an enteric coating has been previously hypothesized, and this has been the first time that is directly observed in a pH-variable dissolution test. The dissolution medium switch to pH 6.8 phosphate buffer, due to the large increase of the aqueous solubility of indomethacin at this pH, leads to rapid dissolution of the material forming the coating and therefore total drug release. In contrast, the 5% extrudate is fully hydrated and quickly dissolves at low pH pointing to a dissolution performance dependent on highly water-soluble Kollidon VA64.

  14. Feasibility of Using Gluconolactone, Trehalose and Hydroxy-Propyl Gamma Cyclodextrin to Enhance Bendroflumethiazide Dissolution Using Lyophilisation and Physical Mixing Techniques.

    PubMed

    Saleh, Ashraf; McGarry, Kenneth; Chaw, Cheng Shu; Elkordy, Amal Ali

    2018-02-01

    Hydrophobic drugs are facing a major challenge in dissolution rate enhancement and solubility in aqueous solutions; therefore, a variety of methods have been used to improve dissolution rate and/or solubility of bendroflumethiazide as a model hydrophobic drug. In this study, two main methods (physical mixing and lyophilisation) were used with gluconolactone, hydroxyl propyl γ-ccyclodextrin, and trehalose to explore this challenge. Bendroflumethiazide, practically insoluble in water, was mixed with one of the three excipients gluconolactone, hydroxyl propyl γ-cyclodextrin, and trehalose in three different ratios 1:1, 1:2, 1:5. To the best of our knowledge, the dissolution of the drug has not been previously enhanced by using either these methods or any of the used excipients. Samples containing drug and each of the excipients were characterized via dissolution testing, Fourier Transform infra-red spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The used methods showed a significant enhancement in dug dissolution rate; physical mixing significantly, p < 0.05, increased the percentage of the drug released with time; for example, bendroflumethiazide dissolution in distilled water was improved from less than 20% to 99.79% within 90 min for physically mixed drug-cyclodextrin 1:5. The lyophilisation process was enhanced and the drug dissolution rate and the highest drug dissolution was achieved for (drug-gluconolactone 1:1) with 98.98% drug release within 90 min. the physical mixing and freeze drying processes significantly increased the percentage of drug release with time.

  15. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets.

    PubMed

    Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M

    2002-04-01

    The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.

  16. Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.

    PubMed

    Pham, Loan; Christensen, John M

    2014-02-01

    Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.

  17. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping

    2015-01-01

    Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  18. Biodegradable FeMnSi Sputter-Coated Macroporous Polypropylene Membranes for the Sustained Release of Drugs

    PubMed Central

    Fornell, Jordina; Soriano, Jorge; Guerrero, Miguel; Sirvent, Juan de Dios; Ferran-Marqués, Marta; Ibáñez, Elena; Barrios, Leonardo; Baró, Maria Dolors; Suriñach, Santiago; Nogués, Carme; Sort, Jordi; Pellicer, Eva

    2017-01-01

    Pure Fe and FeMnSi thin films were sputtered on macroporous polypropylene (PP) membranes with the aim to obtain biocompatible, biodegradable and, eventually, magnetically-steerable platforms. Room-temperature ferromagnetic response was observed in both Fe- and FeMnSi-coated membranes. Good cell viability was observed in both cases by means of cytotoxicity studies, though the FeMnSi-coated membranes showed higher biodegradability than the Fe-coated ones. Various strategies to functionalize the porous platforms with transferrin-Alexa Fluor 488 (Tf-AF488) molecules were tested to determine an optimal balance between the functionalization yield and the cargo release. The distribution of Tf-AF488 within the FeMnSi-coated PP membranes, as well as its release and uptake by cells, was studied by confocal laser scanning microscopy. A homogeneous distribution of the drug within the membrane skeleton and its sustained release was achieved after three consecutive impregnations followed by the addition of a layer made of gelatin and maltodextrin, which prevented exceedingly fast release. The here-prepared organic-inorganic macroporous membranes could find applications as fixed or magnetically-steerable drug delivery platforms. PMID:28672792

  19. New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    NASA Astrophysics Data System (ADS)

    Hou, Zhenqing; Wei, Heng; Wang, Qian; Sun, Qian; Zhou, Chunxiao; Zhan, Chuanming; Tang, Xiaolong; Zhang, Qiqing

    2009-07-01

    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC-SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC-PLA particles prepared by classical method were used as comparison. The formulated MMC-SPC-PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA-MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA-MMC-SPC nanoparticles, and 74.1% for PLA-MMC particles. The IR analysis of MMC-SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method.

  20. Bifunctional capsular dosage form: novel fanicular cylindrical gastroretentive system of clarithromycin and immediate release granules of ranitidine HCl for simultaneous delivery.

    PubMed

    Rajput, Pallavi; Singh, Deshvir; Pathak, Kamla

    2014-01-30

    The study was aimed to develop a bifunctional single unit capsular system containing gastroretentive funicular cylindrical system (FCS) for controlled local delivery of clarithromycin and immediate release of ranitidine HCl. A 2(3) full factorial design was used to prepare gastroretentive FCS of clarithromycin using polyacrylamide (PAM), HPMC E15LV and Carbopol 934 P. The FCSs were evaluated for % cumulative drug release, floating time and in vitro detachment stress. Among the eight formulations, FCS5 (containing PAM and Carbopol 934 P at high and HPMC E15LV at low levels) showed % cumulative drug release of 97.09±1.14% in 8 h, floating time of 3 h and detachment stress of 8303.64±0.34 dynes/cm(2). Evaluation of optimized FCS by novel dynamic in vitro test proved superior bioadhesivity than cylindrical system under aggressive simulated peristaltic activity. Magnetic resonance imaging elucidated zero order release via constant swelling and erosion of FCS5. In vitro permeability across gastric mucin ensured its potential for effective eradication of deep seated Helicobactor pylori in gastric linings. The optimized FCS was combined with immediate release granules of rantidine HCl to get a bifunctional capsular dosage form. In vitro simultaneous drug release of clarithromycin and rantidine estimated by Vierordt's method exhibited a controlled drug release of 97.72±0.4% in 8 h for clarithromycin through FCS5 and 98.8±1.2% in 60 min from IR granules of ranitidine HCl. The novel system thus established its capability of simultaneous variable delivery of acid suppression agent and macrolide antibiotic that can be advantageous in clinical setting. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Design Optimization and In Vitro-In Vivo Evaluation of Orally Dissolving Strips of Clobazam

    PubMed Central

    Bala, Rajni; Khanna, Sushil; Pawar, Pravin

    2014-01-01

    Clobazam orally dissolving strips were prepared by solvent casting method. A full 32 factorial design was applied for optimization using different concentration of film forming polymer and disintegrating agent as independent variable and disintegration time, % cumulative drug release, and tensile strength as dependent variable. In addition the prepared films were also evaluated for surface pH, folding endurance, and content uniformity. The optimized film formulation showing the maximum in vitro drug release, satisfactory in vitro disintegration time, and tensile strength was selected for bioavailability study and compared with a reference marketed product (frisium5 tablets) in rabbits. Formulation (F6) was selected by the Design-expert software which exhibited DT (24 sec), TS (2.85 N/cm2), and in vitro drug release (96.6%). Statistical evaluation revealed no significant difference between the bioavailability parameters of the test film (F6) and the reference product. The mean ratio values (test/reference) of C max (95.87%), t max (71.42%), AUC0−t (98.125%), and AUC0−∞ (99.213%) indicated that the two formulae exhibited comparable plasma level-time profiles. PMID:25328709

  2. Tandem mass spectrometry of nitric oxide and hydrogen sulfide releasing aspirins: a hint into activity behavior.

    PubMed

    Crestoni, Maria Elisa; Chiavarino, Barbara; Guglielmo, Stefano; Lilla, Valentina; Fornarini, Simonetta

    2013-01-01

    Aspirin (acetylsalicylic acid, ASA) is the most popular non-steroidal anti-inflammatory drug. However, due to its action on cyclooxygenase and its acid nature, aspirin is associated with adverse gastrointestinal effects. In an effort to minimize these side effects, NO-donor and H2S-donor ASA co-drugs have been designed and tested. Their mass spectrometric behavior is now analyzed and reported. Positive ions were obtained by electrospray ionization involving protonation or alkali metal attachment. Their dissociation processes have been studied by collision induced dissociation in a triple quadrupole instrument. High mass accuracy measurements have been recorded on a Fourier transform ion cyclotron resonance mass spectrometer. The protonated molecules dissociate by an exclusive or largely prevailing path leading to acetyloxy-substituted benzoyl cation, namely an ASA unit. The process is reminiscent of the enzymatic hydrolysis, releasing intact ASA to a large extent. Only at higher collision energy does the formal ketene loss disrupt the ASA moiety. The gas phase chemistry of protonated ASA-releasing drugs develops along elementary dissociation steps analogous to the reactive processes in complex biological environments. This notion may provide a tool for preliminary testing of new compounds.

  3. Formulation and Evaluation of Multilayered Tablets of Pioglitazone Hydrochloride and Metformin Hydrochloride

    PubMed Central

    Chowdary, Y. Ankamma; Raparla, Ramakrishna; Madhuri, Muramshetty

    2014-01-01

    In the treatment of type 2 diabetes mellitus a continuous therapy is required which is a more complex one. As in these patients there may be a defect in both insulin secretion and insulin action exists. Hence, the treatment depends on the pathophysiology and the disease state. In the present study, multilayered tablets of pioglitazone hydrochloride 15 mg and metformin hydrochloride 500 mg were prepared in an attempt for combination therapy for the treatment of type 2 diabetes mellitus. Pioglitazone HCl was formulated as immediate release layer to show immediate action by direct compression method using combination of superdisintegrants, namely, crospovidone and avicel PH 102. Crospovidone at 20% concentration showed good drug release profile at 2 hrs. Metformin HCl was formulated as controlled release layer to prolong the drug action by incorporating hydrophilic polymers such as HPMC K4M by direct compression method and guar gum by wet granulation method in order to sustain the drug release from the tablets and maintain its integrity so as to provide a suitable formulation. The multilayered tablets were prepared after carrying out the optimization of immediate release layer and were evaluated for various precompression and postcompression parameters. Formulation F13 showed 99.97% of pioglitazone release at 2 hrs in 0.1 N HCl and metformin showed 98.81% drug release at 10 hrs of dissolution in 6.8 pH phosphate buffer. The developed formulation is equivalent to innovator product in view of in vitro drug release profile. The results of all these evaluation tests are within the standards. The procedure followed for the formulation of these tablets was found to be reproducible and all the formulations were stable after accelerated stability studies. Hence, multilayered tablets of pioglitazone HCl and metformin HCl can be a better alternative way to conventional dosage forms. PMID:26556204

  4. In vitro dissolution of pH sensitive microparticles for colon-specific drug delivery.

    PubMed

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano

    2013-01-01

    The objective of this work is to prepare oral dosage systems based on enteric materials in order to verify their possible use as Colon-Specific Drug Delivery Systems (CSDDSs). In particular, three different copolymers of methyl-methacrylate (MMA) - acrylic acid (AA) are synthesized with increasing percentage of MMA (from 70% to 73%) and they are used to produce microparticles by the double-emulsion solvent evaporation method. The microparticles, loaded using theophylline as model drug, are then tested for drug release under varying pH to reproduce what happens in the human GI tract. All the investigated systems have shown an effective pH sensitiveness: they show a good gastro-resistance, releasing the model drug only at higher pH, small intestine or colon, depending on the kind of used copolymer. The results confirm the usefulness of both the materials and the methods proposed in this study for colon-specific delivery applications.

  5. Effects of solubilizing surfactants and loading of antiviral, antimicrobial, and antifungal drugs on their release rates from ethylene vinyl acetate copolymer

    PubMed Central

    Tallury, Padmavathy; Randall, Marcus K; Thaw, Khin L; Preisser, John S.; Kalachandra, Sid

    2013-01-01

    Objectives This study investigates the effects of surfactants and drug loading on the drug release rate from ethylene vinyl acetate (EVA) copolymer. The release rate of nystatin from EVA was studied with addition of non-ionic surfactants Tween 60 and Cremophor RH 40. In addition, the effect of increasing drug load on the release rates of nystatin, chlorhexidine diacetate and acyclovir is also presented. Method Polymer casting solutions were prepared by stirring EVA copolymer and nystatin (2.5 wt %) in dichloromethane. Nystatin and surfactants were added in ratios of (1:1), (1:2) and (1:3). Drug loading was studied with 2.5, 5.0, 7.5, and 10.0% wt. proportions of nystatin, chlorhexidine diacetate and acyclovir incorporated into a separate polymer. Three drug loaded polymer square films (3cm × 3cm × 0.08 cm) were cut from dry films to follow the kinetics of drug release at 37°C. 10 ml of either distilled water or PBS was used as the extracting medium that was replaced daily. PBS was used for nystatin release with addition of surfactants and water was used for the study on drug loading and surfactant release. The rate of drug release was measured by UV-spectrophotometer. The amount of surfactant released was determined by HPLC. Results The release of nystatin was low in PBS and its release rate increased with the addition of surfactants. Also, increasing surfactant concentrations resulted in increased drug release rates. The release rates of chlorhexidine diacetate (p<0.0001), acyclovir (p<0.0003) and nystatin (p<0.0017) linearly increased with increasing drug loads. The amount of surfactants released was above the CMC. Significance This study demonstrates that the three therapeutic agents show a sustained rate of drug release from EVA copolymer over extended periods of time. Nystatin release in PBS is low owing to its poor solubility. Its release rate is enhanced by addition of surfactants and increasing the drug load as well. PMID:17049593

  6. A green approach to dual-drug nanoformulations with targeting and synergistic effects for cancer therapy.

    PubMed

    Wu, Shichao; Yang, Xiangrui; Lu, Yue; Fan, Zhongxiong; Li, Yang; Jiang, Yuan; Hou, Zhenqing

    2017-11-01

    Exploration of efficient dual-drug nanohybrids, particularly those with high drug loading, specific targeting property, and long-termed stability, is of highly importance in cancer therapy. A pH-driven coprecipitation was performed in the aqueous phase to obtain a dual-drug nanoformulation, composed of 10-hydroxycamptothecine (HCPT) nanoneedles integrated with an exterior thin layer of the methotrexate (MTX)-chitosan conjugate. The high stability of nanohybrids in water and the targeting property provided by the MTX ingredient function synergistically to the prolonged and sustained drug release property in tumor tissues and the increased cellular uptake. The cytotoxicity test illustrates that dual-drug nanoneedles possess the remarkable killing ability to HeLa cells with the combination index at 0.33 ± 0.07. After cellular internalization, the release of both drug ingredients results in an excellent anticancer activity in vivo with the minimized adverse side effects. Design of a green approach to the carrier-free, dual-drug nanoformulations enables to develop emerging drug delivery systems for cancer diagnosis and treatment.

  7. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  8. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.

    PubMed

    Castagnola, Elisa; Carli, Stefano; Vomero, Maria; Scarpellini, Alice; Prato, Mirko; Goshi, Noah; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide

    2017-07-13

    The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 10 6 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.

  9. Influence of plasticizer type and level on the properties of Eudragit S100 matrix pellets prepared by hot-melt extrusion.

    PubMed

    Schilling, Sandra U; Lirola, Hélène L; Shah, Navnit H; Waseem Malick, A; McGinity, James W

    2010-01-01

    Matrix-type pellets with controlled-release properties may be prepared by hot-melt extrusion applying a single-step, continuous process. However, the manufacture of gastric-resistant pellets is challenging due to the high glass transition temperature of most enteric polymers and an unacceptably high, diffusion-controlled drug release from the matrix during the acidic phase. The objective was to investigate the influence of three plasticizers (triethyl citrate, methylparaben and polyethylene glycol 8000) at two levels (10% or 20%) on the properties of hot-melt extruded Eudragit S100 matrix pellets. Extrusion experiments showed that all plasticizers produced similar reductions in polymer melt viscosity. Differential scanning calorimetry and powder X-ray diffraction demonstrated that the solid state plasticizers were present in the amorphous state. The drug release in acidic medium was influenced by the aqueous solubility of the plasticizer. Less than 10% drug was released after 2 h at pH 1.2 when triethyl citrate or methylparaben was used, independent of the plasticizer level. Drug release at pH 7.4 resulted from polymer dissolution and was not influenced by low levels of plasticizer, but increased significantly at the 20% level. Mechanical testing by diametral compression demonstrated the high tensile strength of the hot-melt extruded pellets that decreased when plasticizers were present.

  10. Gellan gum microspheres crosslinked with trivalent ion: effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties.

    PubMed

    Boni, Fernanda Isadora; Prezotti, Fabíola Garavello; Cury, Beatriz Stringhetti Ferreira

    2016-08-01

    Gellan gum microspheres were obtained by ionotropic gelation technique, using the trivalent ion Al(3+). The percentage of entrapment efficiency ranged from 48.76 to 87.52% and 2(2) randomized full factorial design demonstrated that both the increase of polymer concentration and the decrease of crosslinker concentration presented a positive effect in the amount of encapsulated drug. Microspheres size and circularity ranged from 700.17 to 938.32 μm and from 0.641 to 0.796 μm, respectively. The increase of polymer concentration (1-2%) and crosslinker concentration (3-5%) led to the enlargement of particle size and circularity. However, the association of increased crosslinker concentration and reduced polymer content made the particles more irregular. In vitro and ex vivo tests evidenced the high mucoadhesiveness of microspheres. The high liquid uptake ability of the microspheres was demonstrated and the pH variation did not affect this parameter. Drug release was pH dependent, with low release rates in acid pH (42.40% and 44.93%) and a burst effect in phosphate buffer pH (7.4). The Weibull model had the best correlation with the drug release data, demonstrating that the release process was driven by a complex mechanism involving the erosion and swelling of the matrix or by non-Fickian diffusion.

  11. In vitro pyrogen test for toxic or immunomodulatory drugs.

    PubMed

    Daneshian, Mardas; Guenther, Armin; Wendel, Albrecht; Hartung, Thomas; von Aulock, Sonja

    2006-06-30

    Pyrogenic contaminations of some classes of injectable drugs, e.g. toxic or immunomodulatory as well as false-positive drugs, represent a major risk which cannot yet be excluded due to the limitations of current tests. Here we describe a modification of the In vitro Pyrogen Test termed AWIPT (Adsorb, Wash, In vitro Pyrogen Test), which addresses this problem by introducing a pre-incubation step in which pyrogenic contaminations in the test sample are adsorbed to albumin-coated beads. After rinsing, the beads are incubated with human whole blood and the release of the endogenous pyrogen interleukin-1beta is measured as a marker of pyrogenic activity. Intentional contaminations with lipopolysaccharide were retrieved from the chemotherapeutic agents paclitaxel, cisplatin and liposomal daunorubicin, the antibiotic gentamicin, the antifungal agent liposomal amphotericin B, and the corticosteroid prednisolone at lower dilutions than in the standard in vitro pyrogen test. This represents a promising new approach for the detection of pyrogenic contamination in drugs or in drugs containing interfering additives and should lead to improved safety levels.

  12. A bionanohybrid ZnAl-NADS ecological pesticide as a treatment for soft rot disease in potato (Solanum tuberosum L.).

    PubMed

    Morales-Irigoyen, Erika Elizabeth; de Las Mercedes Gómez-Y-Gómez, Yolanda; Flores-Moreno, Jorge Luis; Franco-Hernández, Marina Olivia

    2017-09-18

    Pectobacterium carotovorum (Pc) is a phytopathogenic strain that causes soft rot disease in potato (Solanum tuberosum L.), resulting in postharvest losses. Chemical control is effective for managing this disease, but overdoses cause adverse effects. Because farmers insist on using chemical agents for crop protection, it is necessary to develop more effective pesticides in which the active compound released can be regulated. In this context, we proposed the synthesis of ZnAl-NADS, in which nalidixic acid sodium salt (NADS) is linked to a ZnAl-NO 3 layered double hydroxide (LDH) host as a nanocarrier. XRD, FT-IR, and SEM analyses confirmed the successful intercalation of NADS into the interplanar LDH space. The drug release profile indicated that the maximum release was completed in 70 or 170 min for free NADS (alone) or for NADS released from ZnAl-NADS, respectively. This slow release was attributed to strong electrostatic interactions between the drug and the anion exchanger. A modulated release is preferable to the action of the bulk NADS, showing increased effectiveness and minimizing the amount of the chemical available to pollute the soil and the water. The fitting data from modified Freundlich and parabolic diffusion models explain the release behavior of the NADS, suggesting that the drug released from ZnAl-NADS bionanohybrid was carried out from the interlamellar sites, according to the ion exchange diffusion process also involving intraparticle diffusion (coeffect). ZnAl-NADS was tested in vitro against Escherichia coli (Ec) and Pc and exhibited bacteriostatic and biocidal effects at 0.025 and 0.075 mg mL -1 , respectively. ZnAl-NADS was also tested in vivo as an ecological pesticide for combating potato soft rot and was found to delay typical disease symptoms. In conclusion, ZnAl-NADS can potentially be used to control pests, infestation, and plant disease.

  13. Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites.

    PubMed

    Huijben, Silvie; Nelson, William A; Wargo, Andrew R; Sim, Derek G; Drew, Damien R; Read, Andrew F

    2010-10-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria model Plasmodium chabaudi, we found that low-dose chemotherapy did reduce competitive release. A higher drug dose regimen exerted stronger positive selection on resistant parasites for no detectable clinical gain. We estimated instantaneous selection coefficients throughout the course of replicate infections to analyze the temporal pattern of the strength and direction of within-host selection. The strength of selection on resistance varied through the course of infections, even in untreated infections, but increased immediately following drug treatment, particularly in the high-dose groups. Resistance remained under positive selection for much longer than expected from the half life of the drug. Although there are many differences between mice and people, our data do raise the question whether the aggressive treatment regimens aimed at complete parasite clearance are the best resistance-management strategies for humans. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.

  14. Vitamin C-driven epirubicin loading into liposomes.

    PubMed

    Lipka, Dominik; Gubernator, Jerzy; Filipczak, Nina; Barnert, Sabine; Süss, Regine; Legut, Mateusz; Kozubek, Arkadiusz

    2013-01-01

    The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose.

  15. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    PubMed

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  17. Regulatory framework on bioequivalence criteria for locally acting gastrointestinal drugs: the case for oral modified release mesalamine formulations.

    PubMed

    Sferrazza, Gianluca; Siviero, Paolo D; Nicotera, Giuseppe; Turella, Paola; Serafino, Annalucia; Blandizzi, Corrado; Pierimarchi, Pasquale

    2017-09-01

    Bioequivalence testing for locally acting gastrointestinal drugs is a challenging issue for both regulatory authorities and pharmaceutical industries. The international regulatory framework has been characterized by the lack of specific bioequivalence tests that has generated a negative impact on the market competition and drug use in clinical practice. Areas covered: This review article provides an overview of the European Union and United States regulatory frameworks on bioequivalence criteria for locally acting gastrointestinal drugs, also discussing the most prominent scientific issues and advances that has been made in this field. A focus on oral modified release mesalamine formulations will be also provided, with practical examples of the regulatory pathways followed by pharmaceutical companies to determine bioequivalence. Expert commentary: The development of a scientific rationale to demonstrate bioequivalence in this field has been complex and often associated with uncertainties related to scientific and regulatory aspects. Only in recent years, thanks to advanced knowledge in this field, the criteria for bioequivalence assessment are undergoing substantial changes. This new scenario will likely result in a significant impact on pharmaceutical companies, promoting more competition through a clearer regulatory approach, conceived for streamlining the demonstration of therapeutic equivalence for locally acting gastrointestinal drugs.

  18. 28 CFR 2.40 - Conditions of release.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The Commission shall not revoke parole on the basis of a single, unconfirmed positive drug test, if... the reasons set forth in § 2.204(a)(1). These conditions are printed on the certificate of release issued to each releasee. (2)(i) The refusal of a prisoner who has been granted a parole date to sign the...

  19. Wheat germ agglutinin-conjugated chitosan-Ca-alginate microparticles for local colon delivery of 5-FU: development and in vitro characterization.

    PubMed

    Glavas Dodov, M; Calis, S; Crcarevska, M S; Geskovski, N; Petrovska, V; Goracinova, K

    2009-11-03

    The aim of this work was to prepare lectin-conjugated chitosan-Ca-alginate microparticles (MPs) loaded with acid-resistant particles of 5-fluorouracil (5-FU) for efficient local treatment of colon cancer. MPs were prepared by a novel one-step spray-drying technique and after wheat germ agglutinin (WGA) conjugation, they were characterized for size, swelling behavior, surface charge, entrapment efficiency and in vitro drug release. Prepared particles were spherical, with 6.73 microg/mg of WGA conjugated onto their surface. The size and zeta potential increased after conjugation, from 6.6 to 14.7 microm and from 9.6 to 15.3 mV, while drug encapsulation was 75.6 and 72.8%, respectively after conjugation. The swelling behavior of beads was mainly determined by properties of the cross-linked chitosan-alginate network. In vitro drug release studies carried out in simulated in vivo conditions with respect to pH, confirmed the potential of the particles to release the drug in a controlled manner. Also, the drug release was not significantly affected by WGA conjugation. The retention of biorecognitive activity of WGA after covalent coupling to MPs was confirmed by haemagglutination test. Functionalized MPs showed excessive mucoadhesiveness in vitro, due to the positive surface charge, pH-dependent swelling of the matrix and lectin-sugar recognition.

  20. pH-responsive drug release and real-time fluorescence detection of porous silica nanoparticles.

    PubMed

    Zhang, Xu; Wang, Yamin; Zhao, Yanbao; Sun, Lei

    2017-08-01

    In this work, pH-sensitive "dual-switch" porous silica (pSiO 2 ) nanoparticles (NPs) were constructed for drug delivery. Poly(acrylic acid) (PAA) was grafting onto the internal and external surfaces of amino groups functionalized porous silica (pSiO 2 -NH 2 ) NPs by the amidation between the amino groups and the carboxyl groups of PAA for pH triggered drug release. The resultant pSiO 2 /PAA NPs have an average diameter of 50-60nm and high specific surface area (914m 2 ·g -1 ). To improve the loading capacity, ZnO quantum dots (QDs) were used to block the partial pores of pSiO 2 /PAA and the loading capacity reached to 28% for methotrexate (MTX) model drug. The in vitro cellular cytotoxicity test and a hemolysis assay demonstrated that the pSiO 2 /PAA/ZnO NPs were highly biocompatible and suitable to utilize as drug carriers. The MTX-loaded pSiO 2 /PAA/ZnO NPs displayed more efficient cytotoxic to HepG2 cells than free MTX. The pSiO 2 /PAA/ZnO NPs displayed low premature, pH-responsive release and pH-dependent fluorescence. Moreover, pH-dependent fluorescence enables to trace MTX release behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Detecting peptidic drugs, drug candidates and analogs in sports doping: current status and future directions.

    PubMed

    Thevis, Mario; Thomas, Andreas; Schänzer, Wilhelm

    2014-12-01

    With the growing availability of mature systems and strategies in biotechnology and the continuously expanding knowledge of cellular processes and involved biomolecules, human sports drug testing has become a considerably complex field in the arena of analytical chemistry. Proving the exogenous origin of peptidic drugs and respective analogs at lowest concentration levels in biological specimens (commonly blood, serum and urine) of rather limited volume is required to pursue an action against cheating athletes. Therefore, approaches employing chromatographic-mass spectrometric, electrophoretic, immunological and combined test methods have been required and developed. These allow detecting the misuse of peptidic compounds of lower (such as growth hormone-releasing peptides, ARA-290, TB-500, AOD-9604, CJC-1295, desmopressin, luteinizing hormone-releasing hormones, synacthen, etc.), intermediate (e.g., insulins, IGF-1 and analogs, 'full-length' mechano growth factor, growth hormone, chorionic gonadotropin, erythropoietin, etc.) and higher (e.g., stamulumab) molecular mass with desired specificity and sensitivity. A gap between the technically possible detection and the day-to-day analytical practice, however, still needs to be closed.

  2. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    PubMed Central

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  3. Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery.

    PubMed

    Villanova, J C O; Ayres, E; Carvalho, S M; Patrício, P S; Pereira, F V; Oréfice, R L

    2011-03-18

    Direct compression is one of the most popular techniques to prepare tablets but only a few commercial excipients are well adapted for this process into controlled release formulations. In the last years, the introduction of new materials for drug delivery matrix tablets has become more important. This paper evaluated the physicochemical and flow properties of new polymeric excipient of ethyl acrylate, methyl methacrylate and butyl metacrylate, synthesized by suspension polymerization using cellulose nanowhiskers as co-stabilizer, to be used as direct compression for modified release tablets. Infrared spectroscopy (FTIR) confirmed the success of the copolymerization reaction. Scanning electron microscopy (SEM) showed that excipient was obtained how spherical beads. Thermal properties of the beads were characterized by thermogravimetric (TG) analysis. Particle size analysis of the beads with cellulose nanowhiskers (CNWB) indicated that the presence of the nanowhiskers led to a reduction of particle size and to a narrower size distribution. In vitro test showed that the nanowhiskers and beads produced are nontoxic. Parameters such as Hausner ratio, Carr's index and cotangent of angle α were employed to characterize the flow properties of CNWB beads. Furthermore, the beads are used to produce tablets by direct compression contained propranolol hydrochloride as model drug. Dissolution tests performed suggested that beads could be used as excipient in matrix tablets with a potential use in drug controlled release. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. "Smart tattoo" glucose biosensors and effect of coencapsulated anti-inflammatory agents.

    PubMed

    Srivastava, Rohit; Jayant, Rahul Dev; Chaudhary, Ayesha; McShane, Michael J

    2011-01-01

    Minimally invasive glucose biosensors with increased functional longevity form one of the most promising techniques for continuous glucose monitoring. In the present study, we developed a novel nanoengineered microsphere formulation comprising alginate microsphere glucose sensors and anti-inflammatory-drug-loaded alginate microspheres. The formulation was prepared and characterized for size, shape, in vitro drug release, biocompatibility, and in vivo acceptability. Glucose oxidase (GOx)- and Apo-GOx-based glucose sensors were prepared and characterized. Sensing was performed both in distilled water and simulated interstitial body fluid. Layer-by-layer self-assembly techniques were used for preventing drug and sensing chemistry release. Finally, in vivo studies, involving histopathologic examination of subcutaneous tissue surrounding the implanted sensors using Sprague-Dawley rats, were performed to test the suppression of inflammation and fibrosis associated with glucose sensor implantation. The drug formulation showed 100% drug release with in 30 days with zero-order release kinetics. The GOx-based sensors showed good enzyme retention and enzyme activity over a period of 1 month. Apo-GOx-based visible and near-infrared sensors showed good sensitivity and analytical response range of 0-50 mM glucose, with linear range up to 12 mM glucose concentration. In vitro cell line studies proved biocompatibility of the material used. Finally, both anti-inflammatory drugs were successful in controlling the implant-tissue interface by suppressing inflammation at the implant site. The incorporation of anti-inflammatory drug with glucose biosensors shows promise in improving sensor biocompatibility, thereby suggesting potential application of alginate microspheres as "smart tattoo" glucose sensors with increased functional longevity. © 2010 Diabetes Technology Society.

  5. Development of a multilayered association polymer system for sequential drug delivery

    NASA Astrophysics Data System (ADS)

    Chinnakavanam Sundararaj, Sharath kumar

    As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The polymers used for the fabrication of this multilayered device consists of cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion property of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. After the initial characterization of the CAPP system, the device was specifically modified to achieve sequential release of drugs aimed at the treatment of periodontitis. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To obtain different erosion times and achieve appropriate release profiles specific to the disease condition, the device was modified by increasing the number of layers or by inclusion of a slower eroding polymer layer. In all the cases, the device was able to release the four different drugs in the designed temporal sequence. Analysis of antibiotic and antiinflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. Following extensive studies on the in vitro sequential drug release from these devices, the in vivo drug release profiles were investigated. The CAPP devices with different release rates and dosage formulations were implanted in a rat calvarial onlay model, and the in vivo drug release and erosion was compared with in vitro results. In vivo studies showed sequential release of drugs comparable to those measured in vitro, with some difference in drug release rates observed. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. KEYWORDS: Multiple drug delivery, Periodontitis, Cellulose acetate phthalate, Pluronic F-127, Sequential drug release, in vitro drug release, in vivo drug release.

  6. Sustained Release Drug Delivery Applications of Polyurethanes.

    PubMed

    Lowinger, Michael B; Barrett, Stephanie E; Zhang, Feng; Williams, Robert O

    2018-05-09

    Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  7. Application of guar gum biopolymer in the prescription of tablets with sodium ibuprofen--quality tests and pharmaceutical availability in vitro.

    PubMed

    Berner-Strzelczyk, Aneta; Kołodziejska, Justyna; Zgoda, Marian Mikołaj

    2006-01-01

    The increasing interest of the technology of drug form in natural biopolymers has become the reason for undertaking investigations on the possibility of guar gum application in the prescription of oral solid form of a drug. Alternative compositions and technology of the production of tablets of regulated in time sodium ibuprofen release were worked out for children. Two series of tablets were prepared with guar gum (5 and 10% content) and a series without the biopolymer. The tablet mass in each case contained keryostatic sorbitol and bioadhesive polyvinylpyrrolidone. All tablets were tested as regards the quality of production, compliance with the requirements of Polish Pharmacopoeia VI and potential therapeutic usefulness, manifestation of which is pharmaceutical availability of the therapeutic agent (sodium ibuprofen). The tests demonstrated that the produced tablets with sodium ibuprofen have proper physicochemical properties, in compliance with Polish Pharmacopoeia VI requirements. Application of biopolymer of guar gum type as adjuvant substance contributes to the improvement of the tablet hardness parameters and prevents technological problems (lining mixture of powders to tableting machine punch). The designed tablets demonstrate proper pharmaceutical availability of over 80%. Introduction of guar gum into their prescription prolonged their disintegration time and the rate of sodium ibuprofen release, which predisposes the produced form of a drug to have the function of a tablet with slowed-down release.

  8. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

    PubMed

    Prabha, G; Raj, V

    2016-05-01

    In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.

    DTIC Science & Technology

    safety tested, and flew hardware we call the Microencapsulation in Space (MIS) experiment. The MIS experiment flew on Space Shuttle Discovery...of the same composition. From our experience, these improved properties should improve the release properties of microencapsulated drugs and...eliminate unwanted residual process aids. Furthermore, it is likely that microencapsulation in space will let us encapsulate drugs that cannot be microencapsulated on the earth

  10. Development of a discriminative biphasic in vitro dissolution test and correlation with in vivo pharmacokinetic studies for differently formulated racecadotril granules.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland

    2017-06-10

    The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cell viability study of thermo-responsive core-shell superparamagnetic nanoparticles for multimodal cancer therapy

    NASA Astrophysics Data System (ADS)

    Shah, Saqlain A.; Majeed, A.; Shafique, M. A.; Rashid, K.; Awan, Saif-Ullah

    2014-02-01

    This is a vital extension of our previously published work. Thermo-responsive copolymer coated superparamagnetic MnFe2O4 nanoparticles are tested for cell viability and affinity on HeLa carcinoma cells under different conditions. Nanoparticles were loaded with anticancer drug doxorubicin. Composite nanoparticles of average diameter 45 nm were of core-shell structure having magnetic core of about 18 nm. Magnetic hyperthermia effects on cell viability and drug delivery were studied by exposing the cell suspension to high frequency magnetic field, and living cells were quantified using MTT method. There was almost absence of drug release at 37 °C. Drug was released at temperatures above lower critical solution temperature (LCST) by magnetic heating. LCST of the thermo-responsive copolymer was observed to be around 39 °C. Below this temperature, copolymer was hydrophilic and swelled. But above LCST, copolymer could become hydrophobic, expel water and drug and shrink in volume. Combination of hyperthermia and drug delivery effectively treated cancer cells.

  12. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity.

    PubMed

    Nehme, Hassan; Saulnier, Patrick; Ramadan, Alyaa A; Cassisa, Viviane; Guillet, Catherine; Eveillard, Matthieu; Umerska, Anita

    2018-01-01

    Bacterial antibiotic resistance is an emerging public health problem worldwide; therefore, new therapeutic strategies are needed. Many studies have described antipsychotic compounds that present antibacterial activity. Hence, the aims of this study were to evaluate the in vitro antibacterial activity of antipsychotics belonging to different chemical families, to assess the influence of their association with lipid nanocapsules (LNCs) on their antimicrobial activity as well as drug release and to study the uptake of LNCs by bacterial cells. Antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii by minimum inhibitory concentration (MIC) assay, and the capability of killing tested microorganisms was evaluated by time kill assay. LNCs were prepared by phase inversion method, and the antipsychotic agents were incorporated using pre-loading and post-loading strategies. Only phenothiazines and thioxanthenes showed antibacterial activity, which was independent of antibiotic-resistance patterns. Loading the nanocarriers with the drugs affected the properties of the former, particularly their zeta potential. The release rate depended on the drug and its concentration-a maximum of released drug of less than 40% over 24 hours was observed for promazine. The influence of the drug associations on the antibacterial properties was concentration-dependent since, at low concentrations (high nanocarrier/drug ratio), the activity was lost, probably due to the high affinity of the drug to nanocarriers and slow release rate, whereas at higher concentrations, the activity was well maintained for the majority of the drugs. Chlorpromazine and thioridazine increased the uptake of the LNCs by bacteria compared with blank LNCs, even below the minimum inhibitory concentration.

  13. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

    PubMed Central

    Khodaverdi, Elham; Honarmandi, Reza; Alibolandi, Mona; Baygi, Roxana Rafatpanah; Hadizadeh, Farzin; Zohuri, Gholamhossein

    2014-01-01

    Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM) was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF) and simulated intestine fluid (SIF), respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs. PMID:24967062

  14. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation.

    PubMed

    Sahana, Basudev; Santra, Kousik; Basu, Sumit; Mukherjee, Biswajit

    2010-09-07

    The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide)-85:15 (PLGA) was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w) and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM) and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.

  15. Formulation of Convenient, Easily Scalable, and Efficient Granisetron HCl Intranasal Droppable Gels.

    PubMed

    Ibrahim, Howida K; Abdel Malak, Nevine S; Abdel Halim, Sally A

    2015-06-01

    Deacetylated gellan gum and two sodium alginate polymer types were used each at three concentrations in the suitable range for their sol-gel transition. The prepared nine droppable gels were evaluated in vitro, ex vivo through sheep nasal mucosa, as well as in vivo in comparison to drug solution given intravenously and orally at the same dose. The prepared formulas gelled instantaneously in simulated nasal fluid and the obtained gels sustained their shear thinning and thixotropic behavior up to 48 h. Polymer type and concentration had significant effects on the apparent viscosities and the in vitro release profile of granisetron from the prepared gels. The drug release data best fitted a modified Higuchi equation with initial burst and followed Fickian diffusion mechanism. A 0.5% gellan-gum-based formula sustained the in vitro drug release up to 3 h and enhanced the drug permeation without need for an enhancer. The histopatholgical study revealed the safety of the tested formula. Intranasal delivery recorded double the drug bioavailabilty in comparison to the oral route. It had an absolute bioavailability of 0.6539 and the maximum plasma drug concentration reached after 1.5 h. The developed formula could be promising for the management of chemotherapy-induced nausea and vomiting regarding its improved bioavailability, patient acceptability, and ease of production.

  16. In vitro and in vivo evaluation of ketotifen fumarate-loaded silicone hydrogel contact lenses for ocular drug delivery.

    PubMed

    Xu, Jinku; Li, Xinsong; Sun, Fuqian

    2011-02-01

    The purpose of this work was to evaluate the usefulness of silicone hydrogel contact lenses loaded with ketotifen fumarate for ocular drug delivery. First, silicone contact lenses were prepared by photopolymerization of bitelechelic methacrylated polydimethylsiloxanes macromonomer, 3-methacryloxypropyltris(trimethylsiloxy)silane, and N,N-dimethylacrylamide using ethylene glycol dimethacrylate as a cross-linker and Darocur 1173 as an initiator followed by surface plasma treatment. Then, the silicone hydrogel matrices of the contact lenses were characterized by equilibrium swelling ratio (ESR), tensile tests, ion permeability, and surface contact angle. Finally, the contact lenses were loaded with ketotifen fumarate by pre-soaking in drug solution to evaluate drug loading capacity, in vitro and in vivo release behavior of the silicone contact lenses. The results showed that ESR and ion permeability increase, and the surface contact angle and tensile strength decreased with the increase of DMA component in the silicone hydrogel. The drug loading and in vitro releases were dependent on the hydrogel composition of hydrophilic/hydrophobic phase of the contact lenses. In rabbit eyes, the pre-soaked contact lenses sustained ketotifen fumarate release for more than 24 h, which leads to a more stable drug concentration and a longer mean retention time in tear fluid than that of eye drops of 0.05%.

  17. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes.

    PubMed

    Verstraete, G; Samaro, A; Grymonpré, W; Vanhoorne, V; Van Snick, B; Boone, M N; Hellemans, T; Van Hoorebeke, L; Remon, J P; Vervaet, C

    2018-01-30

    It was the aim of this study to develop high drug loaded (>30%, w/w), thermoplastic polyurethane (TPU)-based dosage forms via fused deposition modelling (FDM). Model drugs with different particle size and aqueous solubility were pre-processed in combination with diverse TPU grades via hot melt extrusion (HME) into filaments with a diameter of 1.75 ± 0.05 mm. Subsequently, TPU-based filaments which featured acceptable quality attributes (i.e. consistent filament diameter, smooth surface morphology and good mechanical properties) were printed into tablets. The sustained release potential of the 3D printed dosage forms was tested in vitro. Moreover, the impact of printing parameters on the in vitro drug release was investigated. TPU-based filaments could be loaded with 60% (w/w) fine drug powder without observing severe shark skinning or inconsistent filament diameter. During 3D printing experiments, HME filaments based on hard TPU grades were successfully converted into personalized dosage forms containing a high concentration of crystalline drug (up to 60%, w/w). In vitro release kinetics were mainly affected by the matrix composition and tablet infill degree. Therefore, this study clearly demonstrated that TPU-based FDM feedstock material offers a lot of formulation freedom for the development of personalized dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development and in vitro evaluation of carboxymethyl chitosan based drug delivery system for the controlled release of propranolol hydrochloride

    NASA Astrophysics Data System (ADS)

    Hernawan; Nur Hayati, Septi; Nisa, Khoirun; Wheni Indrianingsih, Anastasia; Darsih, Cici; Kismurtono, Muhammad

    2017-12-01

    Propranolol hydrochloride is a nonselective β-adrenergic drug and has been used as angina pectoris, antihypertensive, and that of many other cardiovascular disorders. It has a relatively short plasma half-life and duration of action are considered too short in certain circumstances. Thus, it’s fascinating to elongate the action. The tablet formula was based on extended-release by a propranolol hydrochloride based carboxymethyl chitosan matrix. Here we used direct compression technique with internal wet granulation to prepare the tablets. The tablets were evaluated for physical properties (hardness, weight variation test, friability) and in vitro release studies. There was no interaction observed between propranolol hydrochloride and excipients. Dissolution profiles of each formulation were followed zero order model. In conclusion, these results strongly suggest that in appropriate proportions carboxymethyl chitosan with internal granulation is suitable for formulating propranolol hydrochloride controlled release.

  19. Evaluation of acetylated moth bean starch as a carrier for controlled drug delivery

    PubMed Central

    Singh, Akhilesh V.; Nath, Lila K.

    2012-01-01

    The present investigation concerns with the development of controlled release tablets of lamivudine using acetylated moth bean starch. The acetylated starch was synthesized with acetic anhydride in pyridine medium. The acetylated moth bean starch was tested for acute toxicity and drug–excipient compatibility study. The formulations were evaluated for physical characteristics like hardness, friability, % drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi kinetic model and the release mechanism study proved that the formulation showed a combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (Tmax, Cmax, AUC, Vd, T1/2 and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir®, which proved controlled release potential of acetylated moth bean starch. PMID:22210486

  20. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier.

    PubMed

    Yuan, Q; Shah, J; Hein, S; Misra, R D K

    2010-03-01

    Controlled drug release is presently gaining significant attention. In this regard, we describe here the synthesis (based on the understanding of chemical structure), structural morphology, swelling behavior and drug release response of chitosan intercalated in an expandable layered aluminosilicate. In contrast to pure chitosan, for which there is a continuous increase in drug release with time, the chitosan-aluminosilicate nanocomposite carrier was characterized by controlled and extended release. Drug release from the nanocomposite particle carrier occurred by degradation of the carrier to its individual components or nanostructures with a different composition. In both the layered aluminosilicate-based mineral and chitosan-aluminosilicate nanocomposite carriers the positively charged chemotherapeutic drug strongly bound to the negatively charged aluminosilicate and release of the drug was slow. Furthermore, the pattern of drug release from the chitosan-aluminosilicate nanocomposite carrier was affected by pH and the chitosan/aluminosilicate ratio. The study points to the potential application of this hybrid nanocomposite carrier in biomedical applications, including tissue engineering and controlled drug delivery. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  3. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  4. A Randomized Clinical Trial of Methadone Maintenance for Prisoners: Results at Twelve-Months Post-Release

    PubMed Central

    Kinlock, Timothy W.; Gordon, Michael S.; Schwartz, Robert P.; Fitzgerald, Terrence T.; O’Grady, Kevin E.

    2009-01-01

    This study examined the impact of prison-initiated methadone maintenance at 12-months post-release. Males with pre-incarceration heroin dependence (n=204) were randomly assigned to: 1) Counseling Only: counseling in prison, with passive referral to treatment upon release; 2) Counseling+Transfer: counseling in prison with transfer to methadone maintenance treatment upon release; and 3) Counseling+Methadone: counseling and methadone maintenance in prison, continued in the community upon release. The mean number of days in community-based drug abuse treatment were, respectively, Counseling Only 23.1, Counseling+Transfer 91.3, and Counseling+Methadone 166.0, p <.01; all pairwise comparisons were statistically significant (all ps < .01). Counseling+Methadone participants were also significantly less likely than participants in each of the other two groups to be opioid-positive or cocaine-positive according to urine drug testing. These results support the effectiveness of prison-initiated methadone for males in the United States. Further study is required to confirm the findings for women. PMID:19339140

  5. Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets.

    PubMed

    Khamanga, Sandile M; Walker, Roderick B

    2006-01-01

    Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.

  6. Dual drug release from hydrogels covalently containing polymeric micelles that possess different drug release properties.

    PubMed

    Murata, Mari; Uchida, Yusuke; Takami, Taku; Ito, Tomoki; Anzai, Ryosuke; Sonotaki, Seiichi; Murakami, Yoshihiko

    2017-05-01

    In the present study, we designed hydrogels for dual drug release: the hydrogels that covalently contained the polymeric micelles that possess different drug release properties. The hydrogels that were formed from polymeric micelles possessing a tightly packed (i.e., well-entangled) inner core exhibited a higher storage modulus than the hydrogels that were formed from the polymeric micelles possessing a loosely packed structure. Furthermore, we conducted release experiments and fluorescent observations to evaluate the profiles depicting the release of two compounds, rhodamine B and auramine O, from either polymeric micelles or hydrogels. According to our results, (1) hydrogels that covalently contains polymeric micelles that possess different drug release properties successfully exhibit the independent release behaviors of the two compounds and (2) fluorescence microscopy can greatly facilitate efforts to evaluate drug release properties of materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Establishing Structure Property Relationship in Drug Partitioning into and Release from Niosomes: Physical Chemistry Insights with Anti-Inflammatory Drugs.

    PubMed

    Dasgupta, Moumita; Kishore, Nand

    2017-09-28

    Understanding the physical chemistry underlying interactions of drugs with delivery formulations is extremely important in devising effective drug delivery systems. The partitioning and release kinetics of diclofenac sodium and naproxen from Brij 30 and Triton X-100 niosomal formulations have been addressed based on structural characterization, partitioning energetics, and release kinetics, thus establishing a relationship between structures and observed properties. Both the drugs partition in nonpolar regions of TX-100 niosomes via stacking of aromatic rings. The combined effects of interactions of the drugs with polar head groups and the rigidity of the niosome vesicles determine entry and partitioning of drugs into niosomes. The observed slower rate of release of the drugs from the drug encapsulated niosomes of TX-100 than those of Brij 30, suggest stable complexation of drugs in the nonpolar interior of the former. No release of drugs from the niosomes was observed until 24 h even upon varying pH conditions without SDS. However, SDS in drug loaded niosomes led to release of drugs in as early as 6 h. The sustained pattern of in vitro release kinetics of the drugs thus observed from our niosomal preparations suggest these vesicular systems to be promising for pharamaceutical applications as potential drug delivery vehicles.

  8. The effect of the antioxidant on the properties of thiolated poly(aspartic acid) polymers in aqueous ocular formulations.

    PubMed

    Budai-Szűcs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Berkó, Szilvia; Ambrus, Rita; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet

    2017-04-01

    Thiolated polymers are a promising new group of excipients, but their stability against atmospheric oxidation has not been investigated in detail, and only a few efforts have been made to improve their stability. The oxidation of the thiol groups in solutions of thiolated polymers may result in a decrease of mucoadhesion and unpredictable in situ gelation. The aims of our work were to study the stability of aqueous solutions of thiolated polymers and the effects of stabilizing agents. We investigated thiolated poly(aspartic acid) polymers stabilized with dithiothreitol, glutathione or acetylcysteine. The effects of these antioxidants on the gel structure, mucoadhesion and drug release were determined by means of scanning electron microscopy, swelling, rheology, adhesion and drug release tests. It was concluded that the stability of polymer solutions containing antioxidants is sufficient for one day. Polymers stabilized with dithiotreitol demonstrated fast swelling and drug release, but weaker mucoadhesion as compared with the other samples. Polymers stabilized with glutathione displayed the weakest cohesive properties, resulting in fast and uncontrolled drug release and moderate mucoadhesion. Acetylcysteine-stabilized polymers exhibited an optimum cross-linked structure, with free thiol groups ensuring polymer-mucin interactions, resulting in the best mucoadhesive properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon.

    PubMed

    Duan, Haogang; Lü, Shaoyu; Gao, Chunmei; Bai, Xiao; Qin, Hongyan; Wei, Yuhui; Wu, Xin'an; Liu, Mingzhu

    2016-09-01

    In this work, thiolated chitosan/alginate composite microparticulates (CMPs) coated by Eudragit S-100 were developed for colon-specific delivery of 5-aminosalicylic acid (5-ASA) and curcumin (CUR), and the use of it as a multi drug delivery system for the treatment of colitis. The physicochemical properties of the CMPs were evaluated. In vitro release was performed in gradually pH-changing medium simulating the conditions of different parts of GIT, and the results showed that the Eudragit S-100 coating has a pH-sensitive release property, which can avoid drug being released at a pH lower than 7. An everted sac method was used to evaluate the mucoadhesion of CMPs. Ex vivo mucoadhesive tests showed CMPs have excellent mucosa adhesion for the colonic mucosa of rats. In vivo treatment effect of enteric microparticulates systems was evaluated in colitis rats. The results showed superior therapeutic efficiency of this drug delivery system for the colitis rats induced by TNBS. Therefore, the enteric microparticulates systems combined the properties of pH dependent delivery, mucoadhesive, and control release, and could be an available tool for the treatment of human inflammatory bowel disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A novel automated alternating current biosusceptometry method to characterization of controlled-release magnetic floating tablets of metronidazole.

    PubMed

    Ferrari, Priscileila Colerato; dos Santos Grossklauss, Dany Bruno Borella; Alvarez, Matheus; Paixão, Fabiano Carlos; Andreis, Uilian; Crispim, Alexandre Giordano; de Castro, Ana Dóris; Evangelista, Raul Cesar; de Arruda Miranda, José Ricardo

    2014-08-01

    Alternating Current Biosusceptometry is a magnetically method used to characterize drug delivery systems. This work presents a system composed by an automated ACB sensor to acquire magnetic images of floating tablets. The purpose of this study was to use an automated Alternating Current Biosusceptometry (ACB) to characterize magnetic floating tablets for controlled drug delivery. Floating tablets were prepared with hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and ferrite as magnetic marker. ACB was used to characterize the floating lag time and the tablet hydration rate, by quantification of the magnetic images to magnetic area. Besides the buoyancy, the floating tablets were evaluated for weight uniformity, hardness, swelling and in vitro drug release. The optimized tablets were prepared with equal amounts of HPMC and ferrite, and began to float within 4 min, maintaining the flotation during more than 24 h. The data of all physical parameters lied within the pharmacopeial limits. Drug release at 24 h was about 40%. The ACB results showed that this study provided a new approach for in vitro investigation of controlled-release dosage forms. Moreover, using automated ACB will also be possible to test these parameters in humans allowing to establish an in vitro.in vivo correlation (IVIVC).

  11. Comparison of Sequential Drug Release in Vitro and in Vivo

    PubMed Central

    Sundararaj, Sharath C.; Al-Sabbagh, Mohanad; Rabek, Cheryl L.; Dziubla, Thomas D.; Thomas, Mark V.; Puleo, David A.

    2015-01-01

    Development of drug delivery devices typically involves characterizing in vitro release performance with the inherent assumption that this will closely approximate in vivo performance. Yet, as delivery devices become more complex, for instance with a sequential drug release pattern, it is important to confirm that in vivo properties correlate with the expected “programming” achieved in vitro. In this work, a systematic comparison between in vitro and in vivo biomaterial erosion and sequential release was performed for a multilayered association polymer system comprising cellulose acetate phthalate and Pluronic F-127. After assessing the materials during incubation in phosphate-buffered saline, devices were implanted supracalvarially in rats. Devices with two different doses and with different erosion rates were harvested at increasing times post-implantation, and the in vivo thickness loss, mass loss, and the drug release profiles were compared with their in vitro counterparts. The sequential release of four different drugs observed in vitro was successfully translated to in vivo conditions. Results suggest, however, that the total erosion time of the devices was longer and release rates of the four drugs were different, with drugs initially released more quickly and then more slowly in vivo. Whereas many comparative studies of in vitro and in vivo drug release from biodegradable polymers involved a single drug, the present research demonstrated that sequential release of four drugs can be maintained following implantation. PMID:26111338

  12. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile

    PubMed Central

    Stallmann, Hein P; Faber, Chris; Bronckers, Antonius LJJ; Nieuw Amerongen, Arie V; Wuisman, Paul IJM

    2006-01-01

    Background Polymethyl-methacrylate (PMMA) beads releasing antibiotics are used extensively to treat osteomyelitis, but require surgical removal afterwards because they do not degrade. Methods As an alternative option, this report compares the in vitro gentamicin release profile from clinically used, biodegradable carrier-materials: six injectable cements and six granule-types. Cement cylinders and coated granules containing 3% gentamicin were submerged in dH2O and placed in a 48-sample parallel drug-release system. At regular intervals (30, 90, 180 min. and then every 24 h, for 21 days), the release fluid was exchanged and the gentamicin concentration was measured. The activity of released gentamicin was tested on Staphylococcus aureus. Results All combinations showed initial burst-release of active gentamicin, two cements had continuous-release (17 days). The relative release of all cements (36–85%) and granules (30–62%) was higher than previously reported for injectable PMMA-cements (up to 17%) and comparable to other biodegradable carriers. From the cements residual gentamicin could be extracted, whereas the granules released all gentamicin that had adhered to the surface. Conclusion The high release achieved shows great promise for clinical application of these biodegradable drug-carriers. Using the appropriate combination, the required release profile (burst or sustained) may be achieved. PMID:16504140

  13. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets.

    PubMed

    Goyanes, Alvaro; Buanz, Asma B M; Hatton, Grace B; Gaisford, Simon; Basit, Abdul W

    2015-01-01

    The aim of this study was to explore the potential of fused-deposition 3-dimensional printing (FDM 3DP) to produce modified-release drug loaded tablets. Two aminosalicylate isomers used in the treatment of inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA, mesalazine) and 4-aminosalicylic acid (4-ASA), were selected as model drugs. Commercially produced polyvinyl alcohol (PVA) filaments were loaded with the drugs in an ethanolic drug solution. A final drug-loading of 0.06% w/w and 0.25% w/w was achieved for the 5-ASA and 4-ASA strands, respectively. 10.5mm diameter tablets of both PVA/4-ASA and PVA/5-ASA were subsequently printed using an FDM 3D printer, and varying the weight and densities of the printed tablets was achieved by selecting the infill percentage in the printer software. The tablets were mechanically strong, and the FDM 3D printing was shown to be an effective process for the manufacture of the drug, 5-ASA. Significant thermal degradation of the active 4-ASA (50%) occurred during printing, however, indicating that the method may not be appropriate for drugs when printing at high temperatures exceeding those of the degradation point. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the formulated blends confirmed these findings while highlighting the potential of thermal analytical techniques to anticipate drug degradation issues in the 3D printing process. The results of the dissolution tests conducted in modified Hank's bicarbonate buffer showed that release profiles for both drugs were dependent on both the drug itself and on the infill percentage of the tablet. Our work here demonstrates the potential role of FDM 3DP as an efficient and low-cost alternative method of manufacturing individually tailored oral drug dosage, and also for production of modified-release formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics.

    PubMed

    Chi, Albert; Curi, Sebastian; Clayton, Kevin; Luciano, David; Klauber, Kameron; Alexander-Katz, Alfredo; D'hers, Sebastian; Elman, Noel M

    2014-08-01

    Rapid Reconstitution Packages (RRPs) are portable platforms that integrate microfluidics for rapid reconstitution of lyophilized drugs. Rapid reconstitution of lyophilized drugs using standard vials and syringes is an error-prone process. RRPs were designed using computational fluid dynamics (CFD) techniques to optimize fluidic structures for rapid mixing and integrating physical properties of targeted drugs and diluents. Devices were manufactured using stereo lithography 3D printing for micrometer structural precision and rapid prototyping. Tissue plasminogen activator (tPA) was selected as the initial model drug to test the RRPs as it is unstable in solution. tPA is a thrombolytic drug, stored in lyophilized form, required in emergency settings for which rapid reconstitution is of critical importance. RRP performance and drug stability were evaluated by high-performance liquid chromatography (HPLC) to characterize release kinetics. In addition, enzyme-linked immunosorbent assays (ELISAs) were performed to test for drug activity after the RRPs were exposed to various controlled temperature conditions. Experimental results showed that RRPs provided effective reconstitution of tPA that strongly correlated with CFD results. Simulation and experimental results show that release kinetics can be adjusted by tuning the device structural dimensions and diluent drug physical parameters. The design of RRPs can be tailored for a number of applications by taking into account physical parameters of the active pharmaceutical ingredients (APIs), excipients, and diluents. RRPs are portable platforms that can be utilized for reconstitution of emergency drugs in time-critical therapies.

  15. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs

    PubMed Central

    Jannesari, Marziyeh; Varshosaz, Jaleh; Morshed, Mohammad; Zamani, Maedeh

    2011-01-01

    The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl), were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release. PMID:21720511

  16. Drug Release Studies from Caesalpinia pulcherrima Seed Polysaccharide.

    PubMed

    Jeevanandham, Somasundaram; Dhachinamoorthi, Duraiswamy; Bannoth Chandra Sekhar, Kothapalli

    2011-01-01

    This study examines the controlled release behavior of both water-soluble (acetaminophen, caffeine, theophylline and salicylic acid) and water insoluble (indomethacin) drugs derived from Caesalpinia pulcherrima seed Gum isolated from Caesalpinia pulcherrima kernel powder. It further investigates the effect of incorporating diluents such as microcrystalline cellulose and lactose on caffeine release. In addition the effect the gum's (polysaccharide) partial cross-linking had on release of acetaminophen was examined. Applying the exponential equation, the soluble drugs mechanism of release was found to be anomalous. The insoluble drugs showed a near case II or zero order release mechanism. The rate of release in descending order was caffeine, acetaminophen, theophylline, salicylic acid and indomethacin. An increase in the release kinetics of the drug was observed on blending with diluents. However, the rate of release varied with the type and amount of blend within the matrix. The mechanism of release due to effect of diluents was found to be anomalous. The rate of drug release decreased upon partial cross-linking and the mechanism of release was found to be of super case II.

  17. A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration.

    PubMed

    Ferreira, Natália Noronha; Perez, Taciane Alvarenga; Pedreiro, Liliane Neves; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cardoso, Valéria Maria de Oliveira; Venâncio, Tiago; Gremião, Maria Palmira Daflon

    2017-10-01

    This work aimed to develop a calcium alginate hydrogel as a pH responsive delivery system for polymyxin B (PMX) sustained-release through the vaginal route. Two samples of sodium alginate from different suppliers were characterized. The molecular weight and M/G ratio determined were, approximately, 107 KDa and 1.93 for alginate_S and 32 KDa and 1.36 for alginate_V. Polymer rheological investigations were further performed through the preparation of hydrogels. Alginate_V was selected for subsequent incorporation of PMX due to the acquisition of pseudoplastic viscous system able to acquiring a differential structure in simulated vaginal microenvironment (pH 4.5). The PMX-loaded hydrogel (hydrogel_PMX) was engineered based on polyelectrolyte complexes (PECs) formation between alginate and PMX followed by crosslinking with calcium chloride. This system exhibited a morphology with variable pore sizes, ranging from 100 to 200 μm and adequate syringeability. The hydrogel liquid uptake ability in an acid environment was minimized by the previous PECs formation. In vitro tests evidenced the hydrogels mucoadhesiveness. PMX release was pH-dependent and the system was able to sustain the release up to 6 days. A burst release was observed at pH 7.4 and drug release was driven by an anomalous transport, as determined by the Korsmeyer-Peppas model. At pH 4.5, drug release correlated with Weibull model and drug transport was driven by Fickian diffusion. The calcium alginate hydrogels engineered by the previous formation of PECs showed to be a promising platform for sustained release of cationic drugs through vaginal administration.

  18. Single and Dual Drug Release Patterns from Shellac Wax-Lutrol Matrix Tablets Fabricated with Fusion and Molding Techniques

    PubMed Central

    Phaechamud, T.; Choncheewa, C.

    2015-01-01

    The objective of this investigation was to prepare the shellac wax matrix tablets by fusion and molding technique incorporated with Lutrol in different ratios to modify the hydrophobicity of matrix tablet. The matrix tablets with single drug were loaded either with propranolol hydrochloride or hydrochlorothiazide as hydrophilic and hydrophobic model drugs, and a dual drug formula was also prepared. The single and dual drug release patterns were studied in a dissolution apparatus using distilled water as medium. Propranolol hydrochloride released from matrix was easier than hydrochlorothiazide. Drug release from shellac wax matrix could be enhanced by incorporation of Lutrol. However retardation of drug release from some matrix tablets was evident for the systems that could form dispersion in the dissolution medium. The gel network from high content of Lutrol was hexagonal which was a dense and more compact structure than the other structures found when low amounts of Lutrol were present in the formula. Therefore, the formulae with high content of Lutrol could prolong drug release more efficiently than those containing low content of Lutrol. Hence shellac wax matrix could modulate the drug release with the addition of Lutrol. Sustainable dual drug release was also obtained from these developed matrix tablets. Thus shellac wax-Lutrol component could be used as a potential matrix tablet prepared with fusion and molding technique with excellent controlled drug release. PMID:25767320

  19. The controlled release of tilmicosin from silica nanoparticles.

    PubMed

    Song, Meirong; Li, Yanyan; Fai, Cailing; Cui, Shumin; Cui, Baoan

    2011-06-01

    The aim of this study was to use silica nanoparticles as the carrier for controlled release of tilmicosin. Tilmicosin was selected as a drug model molecule because it has a lengthy elimination half-life and a high concentration in milk after subcutaneous administration. Three samples of tilmicosin-loaded silica nanoparticles were prepared with different drug-loading weight. The drug-loading weight in three samples, as measured by thermal gravimetric analysis, was 29%, 42%, and 64%, respectively. With increased drug-loading weight, the average diameter of the drug-loaded silica nanoparticles was increased from 13.4 to 25.7 nm, and the zeta potential changed from-30.62 to-6.78 mV, indicating that the stability of the drug-loaded particles in the aqueous solution decreases as drug-loading weight increases. In vitro release studies in phosphate-buffered saline showed the sample with 29% drug loading had a slow and sustained drug release, reaching 44% after 72 h. The release rate rose with increased drug-loading weight; therefore, the release of tilmicosin from silica nanoparticles was well-controlled by adjusting the drug loading. Finally, kinetics analysis suggested that drug released from silica nanoparticles was mainly a diffusion-controlled process.

  20. Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models.

    PubMed

    Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar

    2017-01-01

    Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer-Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.

  1. Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models

    PubMed Central

    Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar

    2017-01-01

    Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible. PMID:28442890

  2. Validation of the IntelliCap® system as a tool to evaluate extended release profiles in human GI tract using metoprolol as model drug.

    PubMed

    Söderlind, Erik; Abrahamsson, Bertil; Erlandsson, Fredrik; Wanke, Christoph; Iordanov, Ventzeslav; von Corswant, Christian

    2015-11-10

    A clinical study was conducted to validate the in vivo drug release performance of IntelliCap® CR capsules. 12 healthy, male volunteers were administered IntelliCap® CR capsules, filled with metoprolol as a BCS 1 model drug, and programmed to release the drug with 3 different release profiles (2 linear profiles extending over 6h and 14h, respectively, and a pulsed profile with two equal pulses separated by 5h) using a cross-over design. An oral metoprolol solution was included as a reference. Standard bioavailability variables were determined. In vivo drug release-time profiles for the IntelliCap® CR capsules were calculated from the plasma drug concentrations by deconvolution, and they were subsequently compared with the in vitro drug release profiles including assessment of level A in vitro/in vivo correlation (IVIVC). The relative bioavailability for the linear, extended release profiles was about 85% which is similar to other extended release administrations of metoprolol. There was an excellent agreement between the predetermined release profiles and the in vivo release for these two administrations. For IntelliCap® CR capsules programmed to deliver 2 distinct and equal drug pulses, the first pulse was delivered as expected whereas only about half of the second dose was released. Thus, it is concluded that the IntelliCap® system is well suited for the fast and reliable generation of in vivo pharmacokinetic data for extended release drug profiles, e.g. in context of regional drug absorption investigations. For immediate release pulses delivered in the distal GI tract this version of the device appears however less suitable. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High efficient anti-cancer drug delivery systems using tea polyphenols reduced and functionalized graphene oxide.

    PubMed

    Wang, Xiaoqian; Hao, Liying; Zhang, Chaoliang; Chen, Jiao; Zhang, Ping

    2017-03-01

    Targeted drug delivery is urgently needed for cancer therapy, and green synthesis is important for the biomedical use of drug delivery systems in the human body. In this work, we report two targeted delivery systems for anticancer drugs based on tea polyphenol functionalized and reduced graphene oxide (TPGs). The obtained TPGs demonstrated an efficient doxorubicin loading capacity as high as 3.430 × 10 6  mg g -1 and 3.932 × 10 4  mg g -1 , and exhibited pH-triggered release. Furthermore, the kinetic models, adsorption isotherms, and possible loading mechanisms were investigated in details. Compared to TPG1 and free doxorubicin, TPG2 is biocompatible to normal cells even at high concentrations and promotes tumor cells death by delivering the doxorubicin mainly to the nuclei. These results were confirmed using cell viability tests and confocal laser microscopy. Moreover, apoptosis tests showed that the mechanism of cancer cell death induced by TPG1 and TPG2 might follow the similar mechanisms. Taken together, these results demonstrate that TPGs provide a multifunctional drug delivery system with a greater loading capacity and pH-sensitive drug release for enhanced cancer therapy. The high drug payload capability and enhanced antitumor efficacy demonstrate that we developed systems are promising for various biomedical applications and cancer therapy.

  4. Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs?

    PubMed

    Besse, Jean-Philippe; Latour, Jean-François; Garric, Jeanne

    2012-02-01

    This study considers the implications and research needs arising from anticancer (also referred to as antineoplastic) drugs being released into the aquatic environment, for the entire therapeutic classes used: cytotoxic, cytostatic and endocrine therapy drugs. A categorization approach, based on French consumption amounts, allowed to highlight parent molecules and several metabolites on which further occurrence and ecotoxicological studies should be conducted. Investigations of consumption trends at a national and a local scale show an increase in the use of anticancer drugs between 2004 and 2008, thus leading to increased levels released in the environment. It therefore appears necessary to continue surveying their presence in surface waters and in wastewater treatment plant (WWTP) effluents. Furthermore, due to the rise of anticancer home treatments, most of the prescribed molecules are now available in town pharmacies. Consequently, hospital effluents are no longer the main expected entry route of anticancer drugs into the aquatic environment. Concerning ecotoxicological risks, current knowledge remains insufficient to support a definitive conclusion. Risk posed by cytotoxic molecules is still not well documented and it is not possible to conclude on their long-term effects on non-target organisms. To date, ecotoxicological effects have been assessed using standardized or in vitro assays. Such tests however may not be suitable for anticancer drugs, and further work should focus on full-life cycle or even multigenerational tests. Environmental significance (i.e. occurrence and effects) of cytostatics (protein kinases inhibitors and monoclonal antibodies), if any, is not documented. Protein kinases inhibitors, in particular, deserve further investigation due to their universal mode of action. Finally, concerning endocrine therapy drugs, molecules such as antiestrogen Tamoxifen and its active metabolites, could be of concern. Overall, to accurately assess the ecotoxicological risk of anticancer drugs, we discuss the need to break away from tests on isolated molecules and to test effects of mixtures at the low ng.l(-1) range. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices.

    PubMed

    Genina, Natalja; Holländer, Jenny; Jukarainen, Harri; Mäkilä, Ermei; Salonen, Jarno; Sandler, Niklas

    2016-07-30

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug in this study. Out of the twelve tested grades of the EVA five were printable. One of them showed superior print quality and was further investigated by printing drug-loaded filaments, containing 5% and 15% indomethacin. The feedstock filaments were fabricated by hot-melt extrusion (HME) below the melting point of the drug substance and the IUS and SR were successfully printed at the temperature above the melting point of the drug. As a result, the drug substance in the printed prototypes showed to be at least partly amorphous, while the drug in the corresponding HME filaments was crystalline. This difference affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable prototypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Oxidized Porous Silicon Particles Covalently Grafted with Daunorubicin as a Sustained Intraocular Drug Delivery System

    PubMed Central

    Chhablani, Jay; Nieto, Alejandra; Hou, Huiyuan; Wu, Elizabeth C.; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2013-01-01

    Purpose. To test the feasibility of covalent loading of daunorubicin into oxidized porous silicon (OPS) and to evaluate the ocular properties of sustained delivery of daunorubicin in this system. Methods. Porous silicon was heat oxidized and chemically functionalized so that the functional linker on the surface was covalently bonded with daunorubicin. The drug loading rate was determined by thermogravimetric analysis. Release of daunorubicin was confirmed in PBS and excised rabbit vitreous by mass spectrometry. Daunorubicin-loaded OPS particles (3 mg) were intravitreally injected into six rabbits, and ocular properties were evaluated through ophthalmic examinations and histology during a 3-month study. The same OPS was loaded with daunorubicin using physical adsorption and was evaluated similarly as a control for the covalent loading. Results. In the case of covalent loading, 67 ± 10 μg daunorubicin was loaded into each milligram of the particles while 27 ± 10 μg/mg particles were loaded by physical adsorption. Rapid release of daunorubicin was observed in both PBS and excised vitreous (∼75% and ∼18%) from the physical adsorption loading, while less than 1% was released from the covalently loaded particles. Following intravitreal injection, the covalently loaded particles demonstrated a sustained degradation of OPS with drug release for 3 months without evidence of toxicity; physical adsorption loading revealed a complete release within 2 weeks and localized retinal toxicity due to high daunorubicin concentration. Conclusions. OPS with covalently loaded daunorubicin demonstrated sustained intravitreal drug release without ocular toxicity, which may be useful to inhibit unwanted intraocular proliferation. PMID:23322571

  7. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro

    PubMed Central

    Liu, Jingping; Zhang, Lanlan; Yang, Zehong; Zhao, Xiaojun

    2011-01-01

    Background A nanoscale injectable in situ-forming hydrogel drug delivery system was developed in this study. The system was based on a self-assembling peptide RADA16 solution, which can spontaneously form a hydrogel rapidly under physiological conditions. We used the RADA16 hydrogel for the controlled release of paclitaxel (PTX), a hydrophobic antitumor drug. Methods The RADA16-PTX suspension was prepared simply by magnetic stirring, followed by atomic force microscopy, circular dichroism analysis, dynamic light scattering, rheological analysis, an in vitro release assay, and a cell viability test. Results The results indicated that RADA16 and PTX can interact with each other and that the amphiphilic peptide was able to stabilize hydrophobic drugs in aqueous solution. The particle size of PTX was markedly decreased in the RADA16 solution compared with its size in water. The RADA16-PTX suspension could form a hydrogel in culture medium, and the elasticity of the hydrogel showed a positive correlation with peptide concentration. In vitro release measurements indicated that hydrogels with a higher peptide concentration had a longer half-release time. The RADA16-PTX hydrogel could effectively inhibit the growth of the breast cancer cell line, MDA-MB-435S, in vitro, and hydrogels with higher peptide concentrations were more effective at inhibiting tumor cell proliferation. The RADA16-PTX hydrogel was effective at controlling the release of PTX and inhibiting tumor cell growth in vitro. Conclusion Self-assembling peptide hydrogels may work well as a system for drug delivery. PMID:22114478

  8. The syntheses and characterization of molecularly imprinted polymers for the controlled release of bromhexine.

    PubMed

    Azodi-Deilami, Saman; Abdouss, Majid; Javanbakht, Mehran

    2011-05-01

    Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and bromhexine (as a drug template) using bulk polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with pore cavities with a high enough affinity for the drug was investigated. The polymeric devices were further characterized by FT-IR, thermogravimetric analysis, scanning electron microscopy, and binding experiments. The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. The controlled release of bromhexine from the prepared imprinted polymers was investigated through in vitro dissolution tests by measuring absorbance at λ (max) of 310 nm by HPLC-UV. The dissolution media employed were hydrochloric acid at the pH level of 3.0 and phosphate buffers, at pH levels of 6.0 and 8.0, maintained at 37.0 and 25.0 ± 0.5 °C. Results from the analyses showed the ability of MIP polymers to control the release of bromhexine In all cases The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. At the pH level of 3.0 and at the temperature of 25 °C, slower release of bromhexine imprinted polymer occurred.

  9. Delayed release film coating applications on oral solid dosage forms of proton pump inhibitors: case studies.

    PubMed

    Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R

    2010-02-01

    Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.

  10. Gamma irradiated micro system for long-term parenteral contraception: An alternative to synthetic polymers.

    PubMed

    Puthli, S; Vavia, P

    2008-11-15

    An injectable system of levonorgestrel (LNG) was developed using biodegradable polymer of natural origin. The parenteral system was optimized for particle size and higher drug loading. The microparticulate system was characterised by scanning electron microscopy, encapsulation efficiency, moisture content, IR, DSC, XRD, residual solvent content, sterility testing, test of abnormal toxicity and test for pyrogens. The microparticles were sterilised by gamma irradiation (2.5Mrad). The system was injected intramuscularly in rabbits and the blood levels of LNG were determined using radioimmunoassay technique. An optimized drug to polymer ratio of 0.3-1.0 (w/w ratio) gave improved drug loading of about 52%. In vivo studies in rabbits showed that the drug was released in a sustained manner for a period of 1 month. The AUC(0-t) was found to be 9363.6+/-2340pg/mLday(-1) with MRT calculated to be about 16 days and Kel of 0.01day(-1). LNG levels were maintained between 200 and 400pg/mL. In vivo release exhibited an initial burst effect which was not observed in the in vitro dissolution. This promising "Progestin-only" long-term contraceptive with improved user compliance is an alternative to the synthetic expensive polymeric carriers.

  11. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System.

    PubMed

    de Andrade, Diego Fontana; Zuglianello, Carine; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver

    2015-12-01

    The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.

  12. Impact of vibration and agitation speed on dissolution of USP prednisone tablets RS and various IR tablet formulations.

    PubMed

    Seeger, Nicole; Lange, Sigrid; Klein, Sandra

    2015-08-01

    Dissolution testing is an in vitro procedure which is widely used in quality control (QC) of solid oral dosage forms and, given that real biorelevant test conditions are applied, can also be used as a predictive tool for the in vivo performance of such formulations. However, if a dissolution method is intended to be used for such purposes, it has to deliver results that are only determined by the quality of the test product, but not by other variables. In the recent past, more and more questions were arising on how to address the effects of vibration on dissolution test results. The present study was performed to screen for the correlation of prednisone dissolution of USP Prednisone Tablets RS with vibration caused by a commercially available vibration source as well as to investigate how drug release from a range of immediate release formulations containing class 1-4 drugs of the biopharmaceutical classification scheme is affected by vibration when performing dissolution experiments at different agitation rates. Results of the present study show that the dissolution process of oral drug formulations can be affected by vibration. However, it also becomes clear that the degree of which a certain level of vibration impacts dissolution is strongly dependent on several factors such as drug properties, formulation parameters, and the design of the dissolution method. To ensure the establishment of robust and predictive dissolution test methods, the impact of variation should thus be considered in method design and validation.

  13. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.

    PubMed

    Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H

    2014-03-14

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  14. A long-acting buprenorphine delivery system.

    PubMed

    Pontani, R B; Misra, A L

    1983-03-01

    A subcutaneously implantable buprenorphine delivery system utilizing cholesterol-glyceryltristearate matrix for prolonged release of drug is described. Implantable cylindrical pellets of buprenorphine (cholesterol 36 mg, glyceryltristearate 4 mg, buprenorphine hydrochloride 10 mg), diameter 3 mm, length 6 mm blocked the antinociceptive action (hot plate, 55 degrees C) of 10 mg kg-1 SC challenge dose of morphine in rats for 12 weeks or more (longer periods not evaluated). The cumulative percent release of buprenorphine from the test devices 2, 4, 6, 10 and 12 weeks after implantation was 27.4, 35.9, 37.6, 39.9 and 43.1, respectively. The release of buprenorphine from 10 mg pellets approximated first-order kinetics with half-lives of 0.85 and 50.24 weeks, for alpha and beta phases, respectively. The test devices possess the desirable characteristics of simplicity, biocompatibility, nontoxicity, ease of sterilization with ethylene oxide, small size for ease of insertion and removal, minimal encapsulation by surrounding tissue and an extended period of drug release unaffected by body metabolism. No side effects were seen in implanted rats which fed well and gained weight during entire treatment. Neither deterioration of implant nor any gross anatomic changes at implant site were apparent 12 weeks after pellet implantation.

  15. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.

    PubMed

    Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G

    2017-06-01

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit

    NASA Astrophysics Data System (ADS)

    Xu, Yingpu; Qu, Fengyu; Wang, Yu; Lin, Huiming; Wu, Xiang; Jin, Yingxue

    2011-03-01

    A novel pH-sensitive drug release system has been established by coating Eudragit (Eud) on drug-loaded mesoporous silica (MS) tablets. The release rate of ibuprofen (IBU) from the MS was retarded by coating with Eudragit S-100, and the higher retardation was due to the increase of coating concentration and the coating layers. The target position of the release depended on the pH of the release medium, which was confirmed by the drug release from IBU/MS/Eud increasing rapidly with the change of medium pH from 1.2 to 7.4. This drug delivery system could prohibit irritant drug from leaking in the stomach and make it only release in the intestine. The loaded and unloaded drug samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), N 2 adsorption/desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  17. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  18. Preparation and In vitro Evaluation of Naproxen Suppositories

    PubMed Central

    Hargoli, S.; Farid, J.; Azarmi, S. H.; Ghanbarzadeh, S.; Zakeri-Milani, P.

    2013-01-01

    The aim of this work was to develop the best formulations for naproxen suppositories. The effects of different bases and surfactants on the physicochemical characteristics of the suppositories were determined by several tests such as weight variation, melting point, assay, hardness, and release rate. All formulations met the standard criteria for tested physicochemical parameters; weight variation (97-112%), content uniformity (97-105%), melting point (4.66-8.7 min) and hardness tests (>5400 g). Based on release rate studies, hydrophilic, and lipophilic bases without surfactants were not suitable bases for naproxen suppository. Amongst the formulations containing surfactants only Witepsol H15 with 0.5% w/w of Tween 80 and Witepsol W35 with 0.5% of cetylpyridinium chloride were suitable and released nearly complete drug during 30 and 60 min, respectively. This study demonstrates the effects of incorporation of known agents on the in vitro release characteristics of naproxen suppository. PMID:24019561

  19. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles.

    PubMed

    Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi

    2012-05-14

    We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.

  20. In vitro biorelevant models for evaluating modified release mesalamine products to forecast the effect of formulation and meal intake on drug release.

    PubMed

    Andreas, Cord J; Chen, Ying-Chen; Markopoulos, Constantinos; Reppas, Christos; Dressman, Jennifer

    2015-11-01

    Postprandial administration of solid oral dosage forms greatly changes the dissolution environment compared to fasted state administration. The aims of this study were to investigate and forecast the effect of co-administration of a meal on drug release for delayed and/or extended release mesalamine formulations as well as design of in vitro tests to distinguish among formulations in a biorelevant way. Five different mesalamine formulations (Asacol® 400 mg, Mezavant® 1200 mg, Pentasa® 500 mg and Salofalk® in the 250 mg and 500 mg strengths) were investigated with biorelevant dissolution methods using the USP apparatus III and USP apparatus IV (open loop mode) under both fasted and fed state conditions, as well as with the dissolution methods described in pharmacopeia for delayed and extended release mesalamine products. Using the biorelevant experimental conditions proposed in this study, changes in release in the proximal gut due to meal intake are forecast to be minimal for Asacol®, Mezavant®, Pentasa® and Salofalk® 500 mg, while for Salofalk® 250 mg release was predicted to occur much earlier under fed state conditions. The USP apparatus III generally tended to result in faster dissolution rates and forecast more pronounced food effects for Salofalk® 250 mg than the USP apparatus IV. The biorelevant dissolution gradients were also able to reflect the in vivo behavior of the formulations. In vitro biorelevant models can be useful in the comparison of the release behavior from different delayed and extended release mesalamine formulations as well as forecasting effects of concomitant meal intake on drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Formulation and characterization of a compacted multiparticulate system for modified release of water-soluble drugs--part 1--acetaminophen.

    PubMed

    Cantor, Stuart L; Hoag, Stephen W; Augsburger, Larry L

    2009-03-01

    The aim of this study was to characterize and evaluate a modified release, multiparticulate tablet formulation consisting of placebo beads and drug-loaded beads. Acetaminophen (APAP) bead formulations containing ethylcellulose (EC) from 40-60% and placebo beads containing 30% calcium silicate and prepared using 0-20% alcohol were developed using extrusion-spheronization and studied using a central composite experimental design. Particle size and true density of beads were measured. Segregation testing was performed using the novel ASTM D6940-04 method on a 50:50 blend of uncoated APAP beads (60%EC) : calcium silicate placebo beads (10% alcohol). Tablets were prepared using an instrumented Stokes-B2 rotary tablet press and evaluated for crushing strength and dissolution rate. Compared with drug beads (60%EC), placebo beads (10% alcohol) were smaller but had higher true densities: 864.8 mum and 1.27 g/cm(3), and 787.1 mum and 1.73 g/cm(3), respectively. Segregation testing revealed that there was approximately a 20% difference in drug content (as measured by the coefficient of variation) between initial and final blend samples. Although calcium silicate-based placebo beads were shown to be ineffective cushioning agents in blends with Surelease(R)-coated APAP beads, they were found to be very compactibile when used alone and gave tablet crushing strength values between 14 and 17 kP. The EC in the APAP bead matrix minimally suppressed the drug release from uncoated beads (t(100%) = 2 h). However, while tablets containing placebo beads reformulated with glycerol monostearate (GMS) showed a slower release rate (t(60%)= 5 h) compared with calcium silicate-based placebos, some coating damage ( approximately 30%) still occurred on compression as release was faster than coated APAP beads alone. While tablets containing coated drug beads can be produced with practical crushing strengths (>8 kP) and low compression pressures (10-35 MPa), dissolution studies revealed that calcium silicate-based placebos are ineffective as cushioning agents. Blend segregation was likely observed due to the particle size and the density differences between APAP beads and calcium silicate-based placebo beads; placebo bead percolation can perhaps be minimized by increasing their size during the extrusion-spheronization process. The GMS- based placebos offer greater promise as cushioning agents for compacted, coated drug beads; however, this requires an optimized compression pressure range and drug bead : placebo bead ratio (i.e., 50:50).

  2. Drug delivery systems with modified release for systemic and biophase bioavailability.

    PubMed

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  3. Sustained release of antimicrobial drugs from polyvinylalcohol and gum arabica blend matrix.

    PubMed

    Kushwaha, V; Bhowmick, A; Behera, B K; Ray, A R

    1998-03-01

    Synthetic polymers are widely used in biomedical applications. Polymer blends have recently paved their way in this field. An attempt to prepare blend of synthetic polymer polyvinylalcohol and natural macromolecule gum arabica is made in this paper. Characterization of these blends by NMR, DSC and viscoelastic studies reveal preparation of a blend composition with synergistic properties. The blend composition with synergistic properties was used to release various antimicrobial drugs. The duration and release of the drug depends on the amount of drug loaded in the matrix and solubility of the drug in the matrix and release medium. The advantage of this system is that the release kinetics of the drug from the system can be tailored by adjusting plasticizer, homopolymer and crosslinker composition depending on the drug to be released.

  4. Smart drug release systems based on stimuli-responsive polymers.

    PubMed

    Qing, Guangyan; Li, Minmin; Deng, Lijing; Lv, Ziyu; Ding, Peng; Sun, Taolei

    2013-07-01

    Stimuli-responsive polymers could respond to external stimuli, such as temperature, pH, photo-irradiation, electric field, biomolecules in solution, etc., which further induce reversible transformations in the structures and conformations of polymers, providing an excellent platform for controllable drug release, while the accuracy of drug delivery could obtain obvious improvement in this system. In this review, recent progresses in the drug release systems based on stimuli-responsive polymers are summarized, in which drugs can be released in an intelligent mode with high accuracy and efficiency, while potential damages to normal cells and tissues can also be effectively prevented owing to the unique characteristics of materials. Moreover, we introduce some smart nanoparticles-polymers conjugates and drug release devices, which are especially suitable for the long-term sustained drug release.

  5. Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl.

    PubMed

    Nayak, Amit Kumar; Pal, Dilipkumar

    2013-11-01

    In this work, calcium pectinate-jackfruit (Artocarpus heterophyllus Lam.) seed starch (JFSS) mucoadhesive beads containing metformin HCl were developed through ionotropic-gelation. Effects of pectin and JFSS amounts on drug encapsulation efficiency (DEE), and cumulative drug release after 10 h (R10 h) were optimized using 3(2) factorial design. The optimized calcium pectinate-JFSS beads containing metformin HCl showed DEE of 94.11 ± 3.92%, R10 h of 48.88 ± 2.02%, and mean diameter of 2.06 ± 0.20 mm. The in vitro drug release from these beads was followed controlled-release (zero-order) pattern with super case-II transport mechanism. The beads were also characterized by SEM and FTIR. The pH of test mediums was found critical for swelling and mucoadhesion of these beads. The optimized calcium pectinate-JFSS beads also exhibited good mucoadhesivity and significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan-carrageenan matrix tablets.

    PubMed

    Li, Liang; Wang, Linlin; Shao, Yang; Tian, Ye; Li, Conghao; Li, Ying; Mao, Shirui

    2013-08-01

    The aim of this study was to better understand the underlying drug release characteristics from matrix tablets based on the combination of chitosan (CS) and different types of carrageenans [kappa (κ)-CG, iota (ι)-CG, and lambda (λ)-CG]. Highly soluble trimetazidine hydrochloride (TH) was used as a model drug. First, characteristics of drug release from different formulations were investigated, and then in situ complexation capacity of CG with TH and CS was studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. Erosion and swelling of matrix were also characterized to better understand the drug-release mechanisms. Effects of pH and ionic strength on drug release were also studied. It was found that not only ι-CG and λ-CG could reduce the burst release of TH by the effect of TH-CG interaction, CS-ι-CG- and CS-λ-CG-based polyelectrolyte film could further modify the controlled-release behavior, but not CS-κ-CG. High pH and high ionic strength resulted in faster drug release from CS-κ-CG- and CS-ι-CG-based matrix, but drug release from CS-λ-CG-based matrix was less sensitive to pH and ionic strength. In conclusion, CS-λ-CG-based matrix tablets are quite promising as controlled-release drug carrier based on multiple mechanisms. Copyright © 2013 Wiley Periodicals, Inc.

  7. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    PubMed

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  8. Modulation of venlafaxine hydrochloride release from press coated matrix tablet.

    PubMed

    Gohel, M C; Soni, C D; Nagori, S A; Sarvaiya, K G

    2008-01-01

    The aim of present study was to prepare novel modified release press coated tablets of venlafaxine hydrochloride. Hydroxypropylmethylcellulose K4M and hydroxypropylmethylcellulose K100M were used as release modifier in core and coat, respectively. A 3(2) full factorial design was adopted in the optimization study. The drug to polymer ratio in core and coat were chosen as independent variables. The drug release in the first hour and drug release rate between 1 and 12 h were chosen as dependent variables. The tablets were characterized for dimension analysis, crushing strength, friability and in vitro drug release. A check point batch, containing 1:2.6 and 1:5.4 drug to polymer in core and coat respectively, was prepared. The tablets of check point batch were subjected to in vitro drug release in dissolution media with pH 5, 7.2 and distilled water. The kinetics of drug release was best explained by Korsmeyer and Peppas model (anomalous non-Fickian diffusion). The systematic formulation approach enabled us to develop modified release venlafaxine hydrochloride tablets.

  9. Studies on stercuia gum formulations in the form of osmotic core tablet for colon-specific drug delivery of azathioprine.

    PubMed

    Nath, Bipul; Nath, Lila Kanta

    2013-01-01

    The purpose of this research is to evaluate Sterculia urens gum as a carrier for a colon-targeted drug delivery system. Microflora degradation studies of Sterculia gum was conducted in phosphate-buffered saline pH 7.4 containing rat caecal medium under an anaerobic environment. Solubility, swelling index, viscosity, and pH of the polymer solution were determined. Different formulation aspects considered were gum concentration (10-40%) and concentration of citric acid (10-30%) on the swelling index and in-vitro dissolution release. The results of the isothermal stress testing showed that there is no degradation of samples of model drug, azathioprine, the drug polymer mixture, and the core tablet excipients. Differential scanning calorimetry and Fourier transform infrared spectroscopy study proved the compatibility of the drug with Sterculia gum and other tablet excipients. Microflora degradation study revealed that Sterculia gum can be used as tablet excipient for drug release in the colonic region by utilizing the action of enterobacteria. The swelling force of the Sterculia gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the mixed film coating under colonic microflora-activated environment. Sterculia gum gives premature drug release in the upper gastrointestinal tract without enteric coating and may not reach the colonic region. Sterculia gum as a colon-targeting carrier is possible via double-layer coating with chitosan/Eudragit RLPO (ammonio-methacrylate copolymer) mixed blend as well as enteric polymers, which would provide acid as well as intestinal resistance but undergo enzymatic degradation once reaching the colon. The aim of the research is to evaluate wheather Sterculia urens, which is a polysaccharide, is suitable as a carrier for colonic delivery of drugs acting locally in the colon. Sterculia gum has been reported to have wide pharmaceutical applications such as tablet binder, disintegrant, gelling agent, and as a controlled release polymer. Sterculia gum falls under the category of a polysaccharide and is yet to be evaluated as a carrier for colonic delivery of drugs. First the susceptibility of the polysaccharide gum in rat caecal microflora was investigated because true polysaccharides are degraded by the action of normal colonic bacteria. Bacterial degradation of the gum in the colonic environment was confirmed by adding a small quantity of the gum in rat caecal content mixed with phosphate-buffered saline pH 7.4 under an anaerobic environment. Solubility, swelling index, viscosity, and pH of the polymer solution were determined. Different formulation aspects considered were gum concentration (10-40%), concentration of citric acid (10-30%) on swelling index, and in vitro dissolution behavior. Isothermal stress testing was done to determine that there was no degradation of the model drug, azathioprine, with Sterculia gum excipient mixtures under stressed conditions. Differential scanning calorimetry and Fourier transform infrared spectroscopy study proved the compatibility of the drug with Sterculia gum and other tablet excipients. Microflora degradation study revealed that Sterculia gum is digested by the colonic microflora and therefore can be used as a tablet excipient for drug release in the colonic region utilizing the microflora degradation mechanism. Sterculia gum gives premature drug release in the upper gastrointestinal tract without enteric coating and may not reach the colonic region. Sterculia gum as colon-targeting carrier is possible via double-layer coating with chitosan/Eudragit RLPO (ammonio-methacrylate copolymer) and Eudragit L100 polymers, which would provide acid as well as intestinal resistance but undergo enzymatic degradation once reaching the colon.

  10. Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system.

    PubMed

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Bashir, Sajid; Ashraf, Muhammad Umer; Ahmad, Naveed

    2017-03-01

    Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach. Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material. Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM. LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets. The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion. These finding indicates that LSH holds potential to be developed as sustained release material for tablet.

  11. Validation of a cage implant system for assessing in vivo performance of long-acting release microspheres.

    PubMed

    Doty, Amy C; Hirota, Keiji; Olsen, Karl F; Sakamoto, Naoya; Ackermann, Rose; Feng, Meihua R; Wang, Yan; Choi, Stephanie; Qu, Wen; Schwendeman, Anna; Schwendeman, Steven P

    2016-12-01

    Here we describe development of a silicone rubber/stainless steel mesh cage implant system, much like that used to assess biocompatibility of biomaterials [1], for easy removal of injectable polymer microspheres in vivo. The sterile cage has a type 316 stainless steel mesh size (38 μm) large enough for cell penetration and free fluid flow in vivo but small enough for microsphere retention, and a silicone rubber shell for injection of the microspheres. Two model drugs, the poorly soluble steroid, triamcinolone acetonide, and the highly water-soluble luteinizing hormone-releasing hormone (LHRH) peptide superagonist, leuprolide, were encapsulated in PLGA microspheres large enough (63-90 μm) to be restrained by the cage implant in vivo. The in vitro release from both formulations was followed by ultra-performance liquid chromatography (UPLC) with and without the cage in a standard release media, PBS pH 7.4 + 0.02% Tween 80 + 0.05% sodium azide, at 37 °C. Pharmacokinetics (PK) in rats was assessed after SC injection or SC in-cage implantation of microspheres with plasma analysis by LC-MS/MS or EIA. Tr-A and leuprolide in vitro release was largely unaffected after the initial burst irrespective of the cage or test tube incubation vessel and release was much slower than observed in vivo for both drugs. Moreover, Tr-A and leuprolide pharmacokinetics with and without the cage were highly similar during the 2-3 week release duration before a significant inflammatory response was caused by the cage implant. Hence, the PK-validated cage implant provides a simple means to recover and evaluate the microsphere drug carriers in vivo during a time window of at least a few weeks in order to characterize the polymer microsphere release and erosion behavior in vivo. This approach may facilitate development of mechanism-based in vitro/in vivo correlations and enable development of more accurate and useful in vitro release tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems.

    PubMed

    van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix

    2013-08-07

    Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.

  13. Development and evaluation of Ca(+ 2) ion cross-linked carboxymethyl xanthan gum tablet prepared by wet granulation technique.

    PubMed

    Maity, Siddhartha; Sa, Biswanath

    2014-08-01

    The objective of this work was to study the release behavior of prednisolone from calcium-cross-linked carboxymethyl xanthan gum (CMXG) tablets in dissolution medium having different pH values prevailing in the gastrointestinal lumen. Xanthan gum (XG) was derivatized to CMXG which was then cross-linked in situ with Ca(+2) ion during wet massing step of tablet preparation. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry studies did not show any drug-polymer interaction although the drug underwent solid-state transformation during compression as evident from X-ray diffraction analysis. In vitro release study demonstrated that increase in the amount of Ca(+2) ion decreased the drug release, and beyond a certain amount, the drug release increased. While increase in both drug load and tablet crushing strength decreased the drug release, increase in exposure time in acid solution of pH 1.2 increased the overall release of the drug. The mechanism of drug release was non-Fickian/anomalous. The results indicated that variation in the amount of Ca(+2) ion can modulate the drug release from CMXG matrix tablets as needed.

  14. An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier.

    PubMed

    Vasiljevic, Dragana; Parojcic, Jelena; Primorac, Marija; Vuleta, Gordana

    2006-02-17

    Multiple W/O/W emulsions with high content of inner phase (Phi1=Phi2=0.8) were prepared using relatively low concentrations of lipophilic polymeric primary emulsifier, PEG 30-dipolyhydroxystearate, and diclofenac diethylamine (DDA) as a model drug. The investigated formulations were characterized and their stability over the time was evaluated by dynamic and oscillatory rheological measurements, microscopic analysis and in vitro drug release study. In vitro release profiles of the selected model drug were evaluated in terms of the effective diffusion coefficients and flux of the released drug. The multiple emulsion samples exhibited good stability during the ageing time. Concentration of the lipophilic primary emulsifier markedly affected rheological behaviour as well as the droplet size and in vitro drug release kinetics of the investigated systems. The multiple emulsion systems with highest concentration (2.4%, w/w) of the primary emulsifier had the lowest droplet size and the highest apparent viscosity and highest elastic characteristics. Drug release data indicated predominately diffusional drug release mechanism with sustained and prolonged drug release accomplished with 2.4% (w/w) of lipophilic emulsifier employed.

  15. Investigation into the Effect of Ethylcellulose Viscosity Variation on the Drug Release of Metoprolol Tartrate and Acetaminophen Extended Release Multiparticulates-Part I.

    PubMed

    Mehta, R; Teckoe, J; Schoener, C; Workentine, S; Ferrizzi, D; Rajabi-Siahboomi, A

    2016-12-01

    Ethylcellulose is one of the most commonly used polymers to develop reservoir type extended release multiparticulate dosage forms. For multiparticulate extended release dosage forms, the drug release is typically governed by the properties of the barrier membrane coating. The ICH Pharmaceutical Development Guideline (ICH Q8) requires an understanding of the influence of critical material attributes and critical process parameters on the drug release of a pharmaceutical product. Using this understanding, it is possible to develop robust formulations with consistent drug release characteristics. Critical material attributes for ethylcellulose were evaluated, and polymer molecular weight variation (viscosity) was considered to be the most critical attribute that can impact drug release. To investigate the effect of viscosity variation within the manufacturer's specifications of ethylcellulose, extended release multiparticulate formulations of two model drugs, metoprolol tartrate and acetaminophen, were developed using ETHOCEL™ as the rate controlling polymer. Quality by Design (QbD) samples of ETHOCEL Std. 10, 20, and 100 Premium grades representing the low, medium, and high molecular weight (viscosity) material were organically coated onto drug layered multiparticulates to a 15% weight gain (WG). The drug release was found to be similar (f 2  > 50) for both metoprolol tartrate and acetaminophen multiparticulates at different coating weight gains of ethylcellulose, highlighting consistent and robust drug release performance. The use of ETHOCEL QbD samples also serves as a means to develop multiparticulate dosage formulations according to regulatory guidelines.

  16. Drug release studies from lipid nanoparticles in physiological media by a new DSC method.

    PubMed

    Roese, Elin; Bunjes, Heike

    2017-06-28

    Lipid nanoparticles are an interesting parenteral delivery system for poorly water-soluble drugs. In order to approach physiological conditions when conducting release studies from such systems the release media should preferentially contain lipophilic acceptor compartments such as lipoproteins or other colloidal lipophilic components. In practice, drug release studies under such close to physiological conditions may be complicated by the small size of lipid nanoparticles, which is in the same range as that of the potential acceptor particles. This study describes a novel differential scanning calorimetry (DSC) method for drug release measurements which works without separation of donor and acceptor particles. The technique is based on measuring the crystallization temperature of trimyristin nanoparticles by DSC. The crystallization temperature of the nanoparticles decreases proportionally with the amount of active ingredient incorporated and thus increases as a result of drug release. Liquid trimyristin nanoparticles loaded with fenofibrate, orlistat, tocopherol acetate and ubidecarenone were studied in three different release media with increasing complexity and comparability to physiological conditions: a rapeseed oil nanoemulsion, porcine serum and porcine blood. Using the new method, a correlation between release behavior and drug lipophilicity was observed: the higher the logP value of the drug, the slower the release. The extent of drug release was influenced by partition equilibrium as indicated by increased drug release in the rapeseed oil nanoemulsion compared to porcine serum and blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. [Anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines in vitro].

    PubMed

    Gu, Jun; Li, Maolan; Wu, Xiangsong; Wu, Wenguang; Zhang, Lin; Ding, Qichen; Yang, Jiahua; Weng, Hao; Ding, Qian; Bao, Runfa; Shu, Yijun; Liu, Yingbin

    2014-04-01

    To prepare cisPLLAtin-loaded polylactic acid/cnts, and to study the anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines(MGC803 and MNK45). 5-FU-PLLA-CNTs were prepared with ultrasound emulsification. The morphology of 5-FU-PLLA-CNTs was determined by scanning electron microscope(SEM), and its drug loading and drug release curve in vitro were detected by UV-Vis-NIR spectrophotometer. Cells were divided into experiment, positive control and negative control groups. CCK8 method was used to test the cytotoxic effect of 5-FU-PLLA-CNTs in different concentrations on MGC803 and MNK45 cell proliferation. Flow cytometry was employed to measure the apoptotic rate of MGC803 and MNK45 cells before and after the intervention of 5-FU-PLLA-CNTs. Deep layer film of 5-FU-PLLA-CNTs was successfully established, whose drug-load rate was(4.54±0.43)%, entrapment rate was(21.56±2.36)%. In vitro release test showed release rate within 24 h of 5-FU-PLLA-CNTs was 23.9% in a as lowly increasing manner, and accumulating release rate was 85.3% at day 31. CCk8 experiment revealed, as compared to control group, 5-FU-PLLA-CNTs significantly inhibited the proliferation of two cell lines in dose-dependent and time-dependent manner. The best 5-FU-PLLA-CNTs concentration of inhibition for human gastric cancer cell lines was 1 mg/well. Flow cytometry indicated the apoptotic rate of MGC803 and MNK45 cells in experiment group treated by 1 mg/well 5-FU-PLLA-CNTs significantly increased as compared to negative control group (P<0.05), while the difference was not significant as compared to positive control group (P>0.05). The 5-FU-PLLA-CNTs has good drug sustained-release capacity, and can significantly kill and inhibit the proliferation of MGC803 and MNK45 cell lines.

  18. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.

    PubMed

    Alhijjaj, Muqdad; Belton, Peter; Qi, Sheng

    2016-11-01

    FDM 3D printing has been recently attracted increasing research efforts towards the production of personalized solid oral formulations. However, commercially available FDM printers are extremely limited with regards to the materials that can be processed to few types of thermoplastic polymers, which often may not be pharmaceutically approved materials nor ideal for optimizing dosage form performance of poor soluble compounds. This study explored the use of polymer blends as a formulation strategy to overcome this processability issue and to provide adjustable drug release rates from the printed dispersions. Solid dispersions of felodipine, the model drug, were successfully fabricated using FDM 3D printing with polymer blends of PEG, PEO and Tween 80 with either Eudragit E PO or Soluplus. As PVA is one of most widely used polymers in FDM 3D printing, a PVA based solid dispersion was used as a benchmark to compare the polymer blend systems to in terms of processability. The polymer blends exhibited excellent printability and were suitable for processing using a commercially available FDM 3D printer. With 10% drug loading, all characterization data indicated that the model drug was molecularly dispersed in the matrices. During in vitro dissolution testing, it was clear that the disintegration behavior of the formulations significantly influenced the rates of drug release. Eudragit EPO based blend dispersions showed bulk disintegration; whereas the Soluplus based blends showed the 'peeling' style disintegration of strip-by-strip. The results indicated that interplay of the miscibility between excipients in the blends, the solubility of the materials in the dissolution media and the degree of fusion between the printed strips during FDM process can be used to manipulate the drug release rate of the dispersions. This brings new insight into the design principles of controlled release formulations using FDM 3D printing. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The release of Doxorubicin from liposomes monitored by MRI and triggered by a combination of US stimuli led to a complete tumor regression in a breast cancer mouse model.

    PubMed

    Rizzitelli, S; Giustetto, P; Faletto, D; Delli Castelli, D; Aime, S; Terreno, E

    2016-05-28

    The work aimed at developing a novel MRI-based theranostic protocol for improving the anticancer efficacy of a Doxil-like liposomal formulation. The goal was achieved stimulating the intratumor release of the drug from the nanocarrier and favoring its diffusion in the lesion by the sequential application of low-intensity pulsed ultrasound. The protocol was tested on mice bearing a syngeneic breast cancer model. The combination of acoustic waves with different characteristics allowed for: i) the release of the drug and the co-encapsulated MRI agent (Gadoteridol) from the liposomes in the vessels of the tumor region, and ii) the extravasation of the released material, as well as intact liposomes, in the tumor stroma. The MR-T1 contrast enhancement measured in the tumor reported on the delivery and US-triggered release of Doxorubicin. The developed protocol resulted in a marked increase in the intratumor drug concentration that, in turn, led to the complete regression of the lesion. The protocol has a good clinical translatability because all the components of the theranostic agent (Doxorubicin, liposomes, Gadoteridol) are approved for human use. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. pH-controlled drug release for dental applications

    NASA Astrophysics Data System (ADS)

    Wironen, John Francis

    A large proportion of the dental fillings replaced at present are revised because of the perceived presence of a recurrent caries under or adjacent to the restoration. Many of these perceived caries may not exist, while others may go undetected. This work describes the preparation of drug loaded polymer microspheres that sense the presence of the bacteria that cause caries by the associated presence of acid by-products of digestion. These microspheres are designed to swell and release their antimicrobial drugs once the pH drops to a level that would normally cause caries. The preparation of the microspheres as well as their loading with potassium fluoride, chlorhexidine digluconate, chlorhexidine dihydrochloride, chlorhexidine diacetate, and tetracycline hydrochloride are described. A detailed study of the controlled release behavior of fluoride as a function of polymer composition and pH is presented first. A study of the release kinetics of potassium fluoride, chlorhexidine digluconate, diacetate, dihydrochloride, and tetracycline hydrochloride as a function of pH in the same polymer system is then presented. Additional studies of the swelling kinetics of chlorhexidine-loaded microspheres in various pH buffers are discussed with special reference to correlations with the controlled-release data. Finally, an experiment in which the microspheres are tested in an in vitro bacteria model that includes Streptococcus mutans is presented and discussed in detail.

  1. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug, 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics.

    PubMed

    Kevadiya, Bhavesh D; Chettiar, Shiva Shankaran; Rajkumar, Shalini; Bajaj, Hari C; Gosai, Kalpeshgiri A; Brahmbhatt, Harshad

    2013-12-01

    Intercalation of 6-mercaptopurine (6-MP), an antineoplastic drug in interlayer gallery of Na(+)-clay (MMT) was further entrapped in poly (L-lactide) matrix to form microcomposite spheres (MPs) in order to reduce the cell toxicity and enhance in vitro release and pharmacokinetic proficiency. The drug-clay hybrid was fabricated via intercalation by ion-exchange method to form MPs from hybrid. In vitro drug release showed controlled pattern, fitted to kinetic models suggested controlled exchange and partial diffusion through swollen matrix of clay inter layered gallery. The in vitro efficacy of formulated composites drug was tested in Human neuroblastoma cell line (IMR32) by various cell cytotoxic and oxidative stress marker indices. In vivo pharmacokinetics suggested that the intensity of formulated drug level in plasma was within remedial borders as compared to free drug. These clay based composites therefore have great potential of becoming a new dosage form of 6-MP. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.

    PubMed

    Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B

    2014-09-22

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was found to correlate with the pore size distribution and surface area. Furthermore, the average rates of sustained release in the period 8-216h from Cris, Rhe and SCPC were: 9.8, 7.2 and 3.5 mug/h of Vanc and 4.5, 5.3 and 3.5 mug/h of Cis, respectively. Nearly inert Cris ceramic showed release kinetics controlled by its hierarchical nano porous structure. On the other hand, the phase composition and surface chemistry of bioactive Rhe or SCPC ceramics overruled the effect of surface area. The relatively low rate of drug release from SCPC was due to the dissolution-back precipitation reaction taking place on the material surface as confirmed by FTIR bands of surface hydroxyapatite layer at 576.5, 596.7 and 620.7 cm-1. Moreover, the solid solution of crystalline phases of SCPC enhanced the bioactivity of the composite. Nuclear Magnetic Resonance (NMR) and cell culture analyses demonstrated that the interactions between the SCPC dissolution products and the released drug did not cause measurable negative effects on the bioactivity of the tested drugs. The therapeutic effects of the SCPC-Cis hybrid were evaluated using a rat model of hepatocellular carcinoma (HCC). Animals were treated by either systemic cisplatin injection (sCis), or with SCPC-Cis hybrid placed adjacent (ADJ) to, or within (IT), the tumor. Five days after implantation 50-55% of the total cisplatin loaded was released from the SCPC-Cis hybrids resulting in an approximately 50% decrease in tumor volume compared to sCis treatment. Severe side effects were observed in animals treated with sCis including rapid weight loss and decreased liver and kidney function, effects not observed in SCPC-Cis treated animals. Analysis of cisplatin distribution demonstrated drug concentrations in the tumor were 21 and 1.5-times higher in IT and ADJ groups, respectively, as compared to sCis treated animals. These data demonstrate the SCPC drug delivery system can provide an effective localized treatment for HCC with significantly reduced toxicity compared to systemic drug administration. Moreover, it is possible to tailor drug release kinetics from SCPC hybrids by controlling the crystalline structure of the material and the ratios of Cris and Rhe in the composite.

  4. Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: The effects of hydrophilicity/hydrophobicity of a drug.

    PubMed

    Liu, Lin; Bai, Shaoqing; Yang, Huiqin; Li, Shubai; Quan, Jing; Zhu, Limin; Nie, Huali

    2016-10-01

    The thermo-sensitive copolymer poly(N-vinylcaprolactam-co-methacrylic acid) (PNVCL-co-MAA) was synthesized by free radical polymerization and the resulting nanofibers were fabricated using an electrospinning process. The molecular weight of the copolymer was adjusted by varying the content of methacrylic acid (MAA) while keeping that of N-vinylcaprolactam (NVCL) constant. Hydrophilic captopril and hydrophobic ketoprofen were used as model drugs, and PNVCL-co-MAA nanofibers were used as the drug carrier to investigate the effects of drug on its release properties from nanofibers at different temperatures. The results showed that slow release over several hours was observed at 40°C (above the lower critical solution temperature (LCST) of PNVCL-co-MAA), while the drugs exhibited a burst release of several seconds at 20°C (below the LCST). Drug release slowed with increasing content of the hydrophobic monomer NVCL. The hydrophilic captopril was released at a higher rate than the hydrophobic ketoprofen. The drug release characteristics were dependent on the temperature, the portion of hydrophilic groups and hydrophobic groups in the copolymer and hydrophilicity/hydrophobicity of drug. Study on the mechanism of release showed that Korsmeyer-Peppas model as a major drug release mechanism. Given these results, the PNVCL-co-MAA copolymers are proposed to have useful applications in intellectual drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets.

    PubMed

    Yang, Meiyan; Xie, Si; Li, Qiu; Wang, Yuli; Chang, Xinyi; Shan, Li; Sun, Lei; Huang, Xiaoli; Gao, Chunsheng

    2014-04-25

    Delivering sparingly water-soluble drugs from ethylcellulose (EC) coated pellets with a controlled-release pattern remains challenging. In the present study, hydrophilic polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former in EC coated pellets to deliver sparingly water-soluble topiramate, and the key factors that influenced drug release were identified. When the binder PVP content in drug layers below 20% w/w was decreased, the physical state of topiramate changed from amorphous to crystalline, making much difference to drug solubility and dissolution rates while modifying the drug release profile from first-order to zero-order. In addition, without PVP in drug layering solution, drug layered particles were less sticky during layering process, thus leading to a shorter process and higher loading efficiency. Furthermore, PVP level as a pore-former in EC coating layers mainly governed drug release from the coated pellets with the sensitivity ranging from 23% to 29%. PVP leaching rate and water permeability from EC/PVP film increased with the PVP level, which was perfectly correlated with drug release rate. Additionally, drug release from this formulation was independent of pH of release media or of the paddle mixing speed, but inversely proportional to the osmolality of release media above the physiological range. Copyright © 2014. Published by Elsevier B.V.

  6. In vitro dissolution of generic immediate-release solid oral dosage forms containing BCS class I drugs: comparative assessment of metronidazole, zidovudine, and amoxicillin versus relevant comparator pharmaceutical products in South Africa and India.

    PubMed

    Reddy, Nallagundla H S; Patnala, Srinivas; Löbenberg, Raimar; Kanfer, Isadore

    2014-10-01

    Biowaivers are recommended for immediate-release solid oral dosage forms using dissolution testing as a surrogate for in vivo bioequivalence studies. Several guidance are currently available (the World Health Organization (WHO), the US FDA, and the EMEA) where the conditions are described. In this study, definitions, criteria, and methodologies according to the WHO have been applied. The dissolution performances of immediate-release metronidazole, zidovudine, and amoxicillin products purchased in South African and Indian markets were compared to the relevant comparator pharmaceutical product (CPP)/reference product. The dissolution performances were studied using US Pharmacopeia (USP) apparatus 2 (paddle) set at 75 rpm in each of three dissolution media (pH1.2, 4.5, and 6.8). Concentrations of metronidazole, zidovudine, and amoxicillin in each dissolution media were determined by HPLC. Of the 11 metronidazole products tested, only 8 could be considered as very rapidly dissolving products as defined by the WHO, whereas 2 of those products could be considered as rapidly dissolving products but did not comply with the f 2 acceptance criteria in pH 6.8. All 11 zidovudine products were very rapidly dissolving, whereas in the case of the 14 amoxicillin products tested, none of those products met any of the WHO criteria. This study indicates that not all generic products containing the same biopharmaceutics classification system (BCS) I drug and in similar strength and dosage form are necessarily in vitro equivalent. Hence, there is a need for ongoing market surveillance to determine whether marketed generic products containing BCS I drugs meet the release requirements to confirm their in vitro bioequivalence to the respective reference product.

  7. Formulation of bi-layer matrix tablets of tramadol hydrochloride: Comparison of rate retarding ability of the incorporated hydrophilic polymers.

    PubMed

    Arif, Hasanul; Al-Masum, Abdullah; Sharmin, Florida; Reza, Selim; Sm Islam, Sm Ashraful

    2015-05-01

    Bi-layer tablets of tramadol hydrochloride were prepared by direct compression technique. Each tablet contains an instant release layer with a sustained release layer. The instant release layer was found to release the initial dose immediately within minutes. The instant release layer was combined with sustained release matrix made of varying quantity of Methocel K4M, Methocel K15MCR and Carbomer 974P. Bi-layer tablets were evaluated for various physical tests including weight variation, thickness and diameter, hardness and percent friability. Drug release from bi-layer tablet was studied in acidic medium and buffer medium for two and six hours respectively. Sustained release of tramadol hydrochloride was observed with a controlled fashion that was characteristic to the type and extent of polymer used. % Drug release from eight-hour dissolution study was fitted with several kinetic models. Mean dissolution time (MDT) and fractional dissolution values (T25%, T50% and T80%) were also calculated as well, to compare the retarding ability of the polymers. Methocel K15MCR was found to be the most effective in rate retardation of freely water-soluble tramadol hydrochloride compared to Methocel K4M and Capbomer 974P, when incorporated at equal ratio in the formulation.

  8. Vitamin C-driven epirubicin loading into liposomes

    PubMed Central

    Lipka, Dominik; Gubernator, Jerzy; Filipczak, Nina; Barnert, Sabine; Süss, Regine; Legut, Mateusz; Kozubek, Arkadiusz

    2013-01-01

    The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose. PMID:24101870

  9. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology.

    PubMed

    Jain, Anekant; Jain, Sanjay K

    2016-12-01

    Purpose Colon-specific drug delivery systems (CDDS) can improve the bio-availability of drugs through the oral route. A novel formulation for oral administration using ligand coupled chitosan nanoparticles bearing 5-Flurouracil (5FU) encapsulated in enteric coated pellets has been investigated for CDDS. Method The effect of polymer concentration, drug concentration, stirring time and stirring speed on the encapsulation efficiency, and size of nanoparticles were evaluated. The best (or optimum) formulation was obtained by response surface methodology. Using the experimental data, analysis of variance has been carried out to evolve linear empirical models. Using a new methodology, polynomial models have been evolved and the parametric analysis has been carried out. In order to target nanoparticles to the hyaluronic acid (HA) receptors present on colon tumors, HA coupled nanoparticles were tested for their efficacy in vivo. The HA coupled nanoparticles were encapsulated in pellets and were enteric coated to release the drug in the colon. Results Drug release studies under conditions of mimicking stomach to colon transit have shown that the drug was protected from being released in the physiological environment of the stomach and small intestine. The relatively high local drug concentration with prolonged exposure time provides a potential to enhance anti-tumor efficacy with low systemic toxicity for the treatment of colon cancer. Conclusions Conclusively, HA coupled nanoparticles can be considered as the potential candidate for targeted drug delivery and are anticipated to be promising in the treatment of colorectal cancer.

  10. Targeted and Controlled Anticancer Drug Delivery and Release with Magnetoelectric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodzinski, Alexandra

    A major challenge of cancer treatment is successful discrimination of cancer cells from healthy cells. Nanotechnology offers multiple venues for efficient cancer targeting. Magnetoelectric nanoparticles (MENs) are a novel, multifaceted, physics-based cancer treatment platform that enables high specificity cancer targeting and externally controlled loaded drug release. The unique magnetoelectric coupling of MENs allows them to convert externally applied magnetic fields into intrinsic electric signals, which allows MENs to both be drawn magnetically towards the cancer site and to electrically interface with cancer cells. Once internalized, the MEN payload release can be externally triggered with a magnetic field. MENs uniquely allow for discrete manipulation of the drug delivery and drug release mechanisms to allow an unprecedented level of control in cancer targeting. In this study, we demonstrate the physics behind the MEN drug delivery platform, test the MEN drug delivery platform for the first time in a humanized mouse model of cancer, and characterize the biodistribution and clearance of MENs. We found that MENs were able to fully cure the model cancer, which in this case was human ovarian carcinoma treated with paclitaxel. When compared to conventional magnetic nanoparticles and FDA approved organic PLGA nanoparticles, MENs are the highest performing treatment, even in the absence of peripheral active targeting molecules. We also mapped the movement through peripheral organs and established clearance trends of the MENs. The MENs cancer treatment platform has immense potential for future medicine, as it is generalizable, personalizable, and readily traceable in the context of treating essentially any type of cancer.

  11. Preparation of theophylline-hydroxypropylmethylcellulose matrices using supercritical antisolvent precipitation: a preliminary study.

    PubMed

    Moneghini, M; Perissutti, B; Kikic, I; Grassi, M; Cortesi, A; Princivalle, F

    2006-01-01

    Several controlled release systems of drugs have been elaborated using a supercritical fluid process. Indeed, recent techniques using a supercritical fluid as a solvent or as an antisolvent are considered to be useful alternatives to produce fine powders. In this preliminary study, the effect of Supercritical Anti Solvent process (SAS) on the release of theophylline from matrices manufactured with hydroxypropylmethylcellulose (HPMC) was investigated. Two grades of HPMC (HPMC E5 and K100) as carriers were considered in order to prepare a sustained delivery system for theophylline which was used as a model drug. The characterization of the drug before and after SAS treatment, and the coprecipitates with carriers, was performed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The dissolution rate of theophylline, theophylline-coprecipitates, and matricial tablets prepared with coprecipitates were determined. The physical characterizations revealed a substantial correspondence of the drug solid state before and after supercritical fluid treatment while drug-polymer interactions in the SAS-coprecipitates were attested. The dissolution studies of the matrices prepared compressing the coprecipitated systems showed that the matrices based on HPMC K100 were able to promote a sustained release of the drug. Further, this advantageous dissolution performance was found to be substantially independent of the pH of the medium. The comparison with the matrices prepared with untreated substances demonstrated that matrices obtained with SAS technique can provide a slower theophylline release rate. A new mathematical model describing the in vitro dissolution kinetics was proposed and successfully tested on these systems.

  12. In Vivo Release of Vancomycin from Calcium Phosphate Cement.

    PubMed

    Uchida, Kentaro; Sugo, Ken; Nakajima, Takehiko; Nakawaki, Mitsufumi; Takano, Shotaro; Nagura, Naoshige; Takaso, Masashi; Urabe, Ken

    2018-01-01

    Calcium phosphate cement (CPC) has good release efficiency and has therefore been used as a drug delivery system for postoperative infection. The release profile of CPC has mainly been evaluated by in vitro studies, which are carried out by immersing test specimens in a relatively large amount of solvent. However, it remains unclear whether antibiotic-impregnated CPC has sufficient clinical effects and release in vivo . We examined the in vivo release profile of CPC impregnated with vancomycin (VCM) and compared this with that of polymethylmethacrylate (PMMA) cement. To evaluate the release profile in vitro , the test specimens were immersed in 10 mL sterile phosphate-buffered saline per gram of test specimen and incubated at 37°C for 56 days in triplicate. For in vivo experiments, the test specimens were implanted between the fascia and muscle of the femur of rats. Residual VCM was extracted from the removed test specimens to determine the amount of VCM released into rat tissues. CPC released more VCM over a longer duration than PMMA in vitro . Released levels of VCM from CPC/VCM in vivo were 3.4-fold, 5.0-fold, and 8.6-fold greater on days 1, 7, and 28, respectively, than those released on the corresponding days from PMMA/VCM and were drastically greater on day 56 due to inefficient release from PMMA/VCM. The amount of VCM released from CPC and PMMA was much higher than the minimum inhibitory concentration (1.56  μ g) and lower than the detection limit, respectively. Our findings suggest that CPC is a suitable material for releasing antibiotics for local action against established postoperative infection.

  13. Doxorubicin loaded magneto-niosomes for targeted drug delivery.

    PubMed

    Tavano, Lorena; Vivacqua, Marco; Carito, Valentina; Muzzalupo, Rita; Caroleo, Maria Cristina; Nicoletta, Fiore

    2013-02-01

    In chemotherapy the magnetic drug targeting to a specific organ or tissue is proposed on the assumption that magnetic fields are harmless to biological systems. In this light we have vehiculated doxorubicin as model drug by novel magneto-niosomes in order to evaluate the physico-chemical properties of the obtained formulations and the in vitro release profile. Tween 60 and Pluronic L64 have been used as surfactants and the formulation cytotoxicity has been performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolum bromide and trypan blue dye esclusion tests. Results show that niosome dimensions and doxorubicin entrapment efficiencies are influenced by bilayer composition. In addition, formulations are able to control the deliver and release of the drug active form in a retarded manner. No additional toxicity, due to the encapsulation of ferrofluid into niosomes core, has been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function

    PubMed Central

    Yim, Sehyuk; Goyal, Kartik; Sitti, Metin

    2014-01-01

    In this paper, we present a magnetically actuated multimodal drug release mechanism using a tetherless soft capsule endoscope for the treatment of gastric disease. Because the designed capsule has a drug chamber between both magnetic heads, if it is compressed by the external magnetic field, the capsule could release a drug in a specific position locally. The capsule is designed to release a drug in two modes according to the situation. In the first mode, a small amount of drug is continuously released by a series of pulse type magnetic field (0.01–0.03 T). The experimental results show that the drug release can be controlled by the frequency of the external magnetic pulse. In the second mode, about 800 mm3 of drug is released by the external magnetic field of 0.07 T, which induces a stronger magnetic attraction than the critical force for capsule’s collapsing. As a result, a polymeric coating is formed around the capsule. The coated area is dependent on the drug viscosity. This paper presents simulations and various experiments to evaluate the magnetically actuated multimodal drug release capability. The proposed soft capsules could be used as minimally invasive tetherless medical devices with therapeutic capability for the next generation capsule endoscopy. PMID:25378896

  15. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Liu, Yang; Luo, Rifang; Chen, Si; Li, Xin; Yuan, Shuheng; Wang, Jin; Huang, Nan

    2015-02-01

    Drug-eluting stents (DESs) have been an important breakthrough for interventional cardiology applications since 2002. Though successful in reducing restenosis, some adverse clinical problems still emerged, which were mostly caused by the bare-metal stents and non-biodegradable polymer coatings, associated with the delayed endothelialization process. In this study, dexamethasone-loaded poly (lactic-co-glycolic acid) (PLGA) coatings were developed to explore the potential application of dexamethasone-eluting stents. Dexamethasone-eluting PLGA stents were prepared using ultrasonic atomization spray method. For other tests like stability and cytocompatibility and hemocompatibility tests, dexamethasone loaded coatings were deposited on 316L SS wafers. Fourier transform-infrared spectroscopy (FT-IR) results demonstrated that there was no chemical reaction between PLGA and dexamethasone. The balloon expansion experiment and surface morphology observation suggested that the stent coatings were smooth and uniform, and could also withstand the compressive and tensile strains imparted without cracking after stent expansion. The drug release behavior in vitro indicated that dexamethasone existed burst release within 1 day, but it presented linear release characteristics after 6 days. In vitro platelets adhesion, activation test and APTT test were also done, which showed that after blending dexamethasone into PLGA, the hemocompatibility was improved. Besides, dexamethasone and dexamethasone-loaded PLGA coatings could significantly inhibit the attachment and proliferation of smooth muscle cells.

  16. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive.

    PubMed

    Li, Qiaoyun; Wan, Xiaocao; Liu, Chao; Fang, Liang

    2018-07-01

    The aim of this study was to prepare a drug-in-adhesive patch of nicotine (NIC) and use ion-pair strategy to regulate drug delivery rate. Moreover, the mechanism of how ion-pair strategy regulated drug release was elucidated at molecular level. Formulation factors including pressure sensitive adhesives (PSAs), drug loading and counter ions (C 4 , C 6 , C 8 , C 10 , and C 12 ) were screened. In vitro release experiment and in vitro transdermal experiment were conducted to determine the rate-limiting step in drug delivery process. FT-IR and molecular modeling were used to characterize the interaction between drug and PSA. Thermal analysis and rheology study were conducted to investigate the mobility variation of PSA. The optimized patch prepared with NIC-C 8 had the transdermal profile fairly close to that of the commercial product (p > 0.05). The release rate constants (k) of NIC, NIC-C 4 and NIC-C 10 were 21.1, 14.4 and 32.4, respectively. Different release rates of NIC ion-pair complexes were attributed to the dual effect of ion-pair strategy on drug release. On one hand, ion-pair strategy enhanced the interaction between drug and PSA, which inhibited drug release. On the other hand, using ion-pair strategy improved the mobility of PSA, which facilitated drug release. Drug release behavior was determined by combined effect of two aspects above. These conclusions provided a new idea for us to regulate drug release behavior from patch. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. 3D Nanoporous Anodic Alumina Structures for Sustained Drug Release

    PubMed Central

    Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep

    2017-01-01

    The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654

  18. Electrospun matrices for localised controlled drug delivery: release of tetracycline hydrochloride from layers of polycaprolactone and poly(ethylene-co-vinyl acetate).

    PubMed

    Alhusein, Nour; Blagbrough, Ian S; De Bank, Paul A

    2012-12-01

    We report the controlled release of tetracycline (Tet) HCl from a three-layered electrospun matrix for the first time. Five formulations of electrospun poly-ε-caprolactone (PCL) and poly(ethylene-co-vinyl acetate) (PEVA) have been designed, prepared as micro/nanofibre layers, and assayed for the controlled release of the clinically useful antibiotic Tet HCl with potential applications in wound healing and especially in complicated skin and skin-structure infections. Tet HCl was also chosen as a model drug possessing a good ultraviolet (UV) chromophore and capable of fluorescence together with limited stability. Tet HCl was successfully incorporated (essentially quantitatively at 3 %, w/w) and provided controlled release from multilayered electrospun matrices. The Tet HCl release test was carried out by a total immersion method on 2 × 2 cm(2) electrospun fibrous mats in Tris or phosphate-buffered saline heated to 37 °C. The formulation PCL/PEVA/PCL with Tet HCl in each layer gave a large initial (burst) release followed by a sustained release. Adding a third layer to the two-layered formulations led to release being sustained from 6 days to more than 15 days. There was no detectable loss of Tet chemical stability (as shown by UV and NMR) or bioactivity (as shown by a modified Kirby-Bauer disc assay). Using Tet HCl-sensitive bacteria, Staphylococcus aureus (ATCC 25923), the Tet HCl-loaded three-layered matrix formulations were still showing significantly higher antibacterial effects on days 4 and 5 than commercially available Antimicrobial Susceptibility Test Discs of Tet HCl. Electrospinning provides good encapsulation efficiency of Tet HCl within PCL/PEVA/PCL polymers in micro/nanofibre layers which display sustained antibiotic release.

  19. Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery.

    PubMed

    Kim, Seungil; Chen, Yufei; Ho, Emmanuel A; Liu, Song

    2017-01-01

    To provide better protection for women against sexually transmitted infections, on-demand intravaginal drug delivery was attempted by synthesizing reversibly pH-sensitive polyether-polyurethane copolymers using poly(ethylene glycol) (PEG) and 1,4-bis(2-hydroxyethyl)piperazine (HEP). Chemical structure and thermo-characteristics of the synthesized polyurethanes were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 1 H-nuclear magnetic resonance ( 1 H-NMR), and melting point testing. Membranes were cast by solvent evaporation method using the prepared pH-sensitive polyurethanes. The impact of varying pH on membrane swelling and surface morphology was evaluated via swelling ratio change and scanning electron microscopy (SEM). The prepared pH-responsive membranes showed two times higher swelling ratio at pH 4 than pH 7 and pH-triggered switchable surface morphology change. The anionic anti-inflammatory drug diclofenac sodium (NaDF) was used as a model compound for release studies. The prepared pH-responsive polyurethane membranes allowed continuous NaDF release for 24h and around 20% release of total NaDF within 3h at pH 7 but little-to-no drug release at pH 4.5. NaDF permeation across the prepared membranes demonstrated a reversible pH-responsiveness. The pH-responsive polyurethane membranes did not show any noticeable negative impact on vaginal epithelial cell viability or induction of pro-inflammatory cytokine production compared to controls. Overall, the non-cytotoxic HEP-based pH-responsive polyurethane demonstrated its potential to be used in membrane-based implants such as intravaginal rings to achieve on-demand "on-and-off" intravaginal drug delivery. A reversible and sharp switch between "off" and "on" drug release is achieved for the first time through new pH-sensitive polyurethane membranes, which can serve as window membranes in reservoir-type intravaginal rings for on-demand drug delivery to prevent sexually transmitted infections (STIs). Close to zero drug release occurs at the normal vaginal pH (4.5) for minimal side effects. Drug release is only triggered by elevation of pH to 7 during heterosexual intercourse. The reversibly sharp and fast "on-and-off" switch arises from the creative incorporation of a pH-sensitive monomer in the soft segment of polyurethane. This polyurethane biomaterial holds great potential to better protect women who are generally at higher risk and are more vulnerable to STIs. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Up-Conversion Y2O3:Yb(3+),Er(3+) Hollow Spherical Drug Carrier with Improved Degradability for Cancer Treatment.

    PubMed

    Ge, Kun; Zhang, Cuimiao; Sun, Wentong; Liu, Huifang; Jin, Yi; Li, Zhenhua; Liang, Xing-Jie; Jia, Guang; Zhang, Jinchao

    2016-09-28

    The rare earth hollow spheres with up-conversion luminescence properties have shown potential applications in drug delivery and bioimaging fields. However, there have been few reports for the degradation properties of rare earth oxide drug carriers. Herein, uniform and well-dispersed Y2O3:Yb(3+),Er(3+) hollow spheres (YOHSs) have been fabricated by a general Pechini sol-gel process with melamine formaldehyde colloidal spheres as template. The novel YOHSs with up-conversion luminescence has good drug loading amount and drug-release efficiency; moreover, it exhibits pH-responsive release patterns. In particular, the YOHSs sample exhibits low cytotoxicity and excellent degradable properties in acid buffer. After the sample was loaded with anticancer drug doxorubicin (DOX), the antitumor result in vitro indicates that YOHS-DOX might be effective in cancer treatment. The animal imaging test also reveals that the YOHSs drug carrier can be used as an outstanding luminescent probe for bioimaging in vivo application prospects. The results suggest that the degradable drug carrier with up-conversion luminescence may enhance the delivery efficiency of drugs and improve the cancer therapy in clinical applications.

  1. Drug-eluting biodegradable ureteral stent: New approach for urothelial tumors of upper urinary tract cancer.

    PubMed

    Barros, Alexandre A; Browne, Shane; Oliveira, Carlos; Lima, Estevão; Duarte, Ana Rita C; Healy, Kevin E; Reis, Rui L

    2016-11-20

    Upper urinary tract urothelial carcinoma (UTUC) accounts for 5-10% of urothelial carcinomas and is a disease that has not been widely studied as carcinoma of the bladder. To avoid the problems of conventional therapies, such as the need for frequent drug instillation due to poor drug retention, we developed a biodegradable ureteral stent (BUS) impregnated by supercritical fluid CO 2 (scCO 2 ) with the most commonly used anti-cancer drugs, namely paclitaxel, epirubicin, doxorubicin, and gemcitabine. The release kinetics of anti-cancer therapeutics from drug-eluting stents was measured in artificial urine solution (AUS). The in vitro release showed a faster release in the first 72h for the four anti-cancer drugs, after this time a plateau was achieved and finally the stent degraded after 9days. Regarding the amount of impregnated drugs by scCO 2 , gemcitabine showed the highest amount of loading (19.57μg drug /mg polymer: 2% loaded), while the lowest amount was obtained for paclitaxel (0.067μg drug /mg polymer : 0.01% loaded). A cancer cell line (T24) was exposed to graded concentrations (0.01-2000ng/ml) of each drugs for 4 and 72h to determine the sensitivities of the cells to each drug (IC 50 ). The direct and indirect contact study of the anti-cancer biodegradable ureteral stents with the T24 and HUVEC cell lines confirmed the anti-tumoral effect of the BUS impregnated with the four anti-cancer drugs tested, reducing around 75% of the viability of the T24 cell line after 72h and demonstrating minimal cytotoxic effect on HUVECs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions.

    PubMed

    Hu, Changmin; Liu, Shen; Zhang, Yang; Li, Bin; Yang, Huilin; Fan, Cunyi; Cui, Wenguo

    2013-07-01

    Physical barriers such as electrospun fibrous membranes are potentially useful in preventing peritendinous adhesions after surgery. However, inflammatory responses caused by degradation of barrier materials remain a major challenge. This study aimed to fabricate electrospun composite fibrous membranes based on drug-loaded modified mesoporous silica (MMS) and poly (l-lactic acid) (PLLA). Using a co-solvent-based electrospinning method ibuprofen (IBU)-loaded MMS was successfully and uniformly encapsulated in the PLLA fibers. The electrospun PLLA-MMS-IBU composite fibrous membranes showed significantly lower initial burst release (6% release in the first 12h) compared with that of electrospun PLLA-IBU fibrous membranes (46% release in the first 12h) in in vitro release tests. Moreover, the release from PLLA-MMS-IBU was also for significantly longer than that from PLLA-IBU (100 vs. 20days). In animal studies both PLLA-IBU and PLLA-MMS-IBU showed improved anti-adhesion properties and anti-inflammatory effects compared with PLLA fibrous membrane alone 4weeks after implantation. Further, animals implanted with PLLA-MMS-IBU for 8weeks showed the lowest inflammation and best recovery compared with those implanted with PLLA-IBU and PLLA, most likely as a result of its long-term IBU release profile. Therefore, this study provides a platform technique for fabricating fibrous membranes with long-term sustained drug release characteristics which may function as a novel carrier for long-term anti-inflammation and anti-adhesion to prevent peritendinous adhesions. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization.

    PubMed

    Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong

    2012-08-01

    Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.

  4. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil.

    PubMed

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-09-01

    In this work, nanocomplexes based on chitosan grafted by carboxy-modified polylactic acid (SPLA) were prepared with the aim of loading simultaneously two anticancer drugs - doxorubicin and 5-fluorouracil, as well as to control their release, reduce the initial burst and boost cytotoxicity. The SPLA was prepared by a polycondensation reaction, using pentetic acid as the core molecule, and linked to the chitosan backbone through a coupling reaction. Nanocomplexes loaded with both drugs were formulated by the polyelectrolyte complexation method. The structure of the SPLA was characterized by 1 H NMR, while the product CS-SPLA was analyzed by FTIR-ATR to prove the occurrence of the reaction. Results showed that the diameters and ζ-potential of the nanocomplexes fall in the range 120-200nm and 20-37mV, respectively. SEM and TEM analysis confirmed the spherical shape and dimensions of the nanocomplexes. The presence of hydrophobic side chain SPLA did not influence the encapsulation efficiency of the drugs but strongly reduced the initial burst and prolonged release over time compared to unmodified chitosan. MS analysis showed that no degradation or interactions between the drugs and carrier were exhibited after loading or 24h of release had taken place, confirming the protective role of the nanocomplexes. In vitro tests demonstrated an increase in the cytotoxicity of the drugs when loaded in the prepared carriers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    NASA Astrophysics Data System (ADS)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  6. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    PubMed

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  7. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release.

    PubMed

    Qu, Jin; Zhao, Xin; Ma, Peter X; Guo, Baolin

    2018-05-01

    Injectable hydrogels with multistimuli responsiveness to electrical field and pH as a drug delivery system have been rarely reported. Herein, we developed a series of injectable conductive hydrogels as "smart" drug carrier with the properties of electro-responsiveness, pH-sensitivity, and inherent antibacterial activity. The hydrogels were prepared by mixing chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD) as a cross-linker. The chemical structures, morphologies, electrochemical property, swelling ratio, conductivity, rheological property, in vitro and in vivo biodegradation, and gelation time of hydrogels were characterized. The pH-responsive behavior was verified by drug release from hydrogels in PBS solutions with different pH values (pH = 7.4 or 5.5) in an in vitro model. As drug carriers with electric-driven release, the release rate of the model drugs amoxicillin and ibuprofen loaded within CP/OD hydrogels dramatically increased when an increase in voltage was applied. Both chitosan and polyaniline with inherent antibacterial properties endowed the hydrogels with excellent antibacterial properties. Furthermore, cytotoxicity tests of the hydrogels using L929 cells confirmed their good cytocompatibility. The in vivo biocompatibility of the hydrogels was verified by H&E staining. Together, all these results suggest that these injectable pH-sensitive conductive hydrogels with antibacterial activity could be ideal candidates as smart drug delivery vehicles for precise doses of medicine to meet practical demand. Stimuli-responsive or "smart" hydrogels have attracted great attention in the field of biotechnology and biomedicine, especially on designing novel drug delivery systems. Compared with traditional implantable electronic delivery devices, the injectable hydrogels with electrical stimuli not only are easy to generate and control electrical field but also could avoid frequent invasive surgeries that offer a new avenue for chronic diseases. In addition, designing a drug carrier with pH-sensitive property could release drug efficiently in targeted acid environment, and it could reinforce the precise doses of medicine. Furthermore, caused by opportunistic microorganisms and rapid spread of antibiotic-resistant microbes, infection is still a serious threat for many clinical utilities. To overcome these barriers, we designed a series of injectable antibacterial conductive hydrogels based on chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD), and we demonstrated their potential as "smart" delivery vehicles with electro-responsiveness and pH-responsive properties for triggered and localized release of drugs. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. 3-D loaded scaffolds obtained by supercritical CO2 assisted process

    NASA Astrophysics Data System (ADS)

    Cardea, S.; Reverchon, E.

    2014-08-01

    In this work, a supercritical CO2 (SC-CO2) drying process for the formation of 3-D PVDF-HFP loaded scaffolds was tested. Experiments at pressures ranging between 150 and 250 bar and at temperatures ranging between 35 and 55°C were performed. The PVDF-HFP- acetone-ethanol solution at 15% w/w polymer was selected as the base case. The drug (amoxicillin) concentration was varied from 20 to 30% w/w with respect to PVDF-HFP. SC- CO2 drying process was confirmed to be a valid alternative to generate loaded structures; indeed, scaffolds characterized by nanometric networks (with mean pore diameter of about 300 nm) with a homogeneous drug distribution were obtained. Drug controlled release experiments were also performed and a quasi-zero order release kinetic was observed.

  9. [Role of food interaction pharmacokinetic studies in drug development. Food interaction studies of theophylline and nifedipine retard and buspirone tablets].

    PubMed

    Drabant, S; Klebovich, I; Gachályi, B; Renczes, G; Farsang, C

    1998-09-01

    Due to several mechanism, meals may modify the pharmacokinetics of drug products, thereby eliciting to clinically significant food interaction. Food interactions with the drug substance and with the drug formulation should be distinguished. Food interaction of different drug products containing the same active ingredient can be various depending on the pharmaceutical formulation technology. Particularly, in the case of modified release products, the food/formulation interaction can play an important role in the development of food interaction. Well known example, that bioavailability of theophylline can be influenced in different way (either increased, decreased or unchanged) by concomitant intake of food in the case of different sustained release products. The role and methods of food interaction studies in the different kinds of drug development (new chemical entity, modified release products, generics) are reviewed. Prediction of food effect response on the basis of the physicochemical and pharmacokinetic characteristics of the drug molecule or formulations is discussed. The results of three food interaction studies carried out the products of EGIS Pharmaceuticals Ltd. are also reviewed. The pharmacokinetic parameters of theophyllin 400 mg retard tablet were practically the same in both fasting condition and administration after consumption of a high fat containing standard breakfast. The ingestion of a high fat containing breakfast, increased the AUC of nifedipine from 259.0 +/- 101.2 ng h/ml to 326.7 +/- 122.5 ng h/ml and Cmax from 34.5 +/- 15.9 ng/ml to 74.3 +/- 23.9 ng/ml in case of nifedipine 20 mg retard tablet, in agreement with the data of literature. The statistical evaluation indicated significant differences between the pharmacokinetic parameters in the case of two administrations (before and after meal). The effect of a high fat containing breakfast for a generic version of buspiron 10 mg tablet and the bioequivalence after food consumption were studied in a single-dose, three-way (test and reference products administered after consumption of standard breakfast, as well as test product in fasting condition), cross-over, food effect bioequivalence study. According to the results, the test product--which, in a former study proved to be bioequivalent with the reference product in fasting state--is bioequivalent with the reference product under feeding conditions and the food intake influenced the pharmacokinetics of the test tablets.

  10. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  11. A novel coating concept for ileo-colonic drug targeting: proof of concept in humans using scintigraphy.

    PubMed

    Varum, F J O; Hatton, G B; Freire, A C; Basit, A W

    2013-08-01

    The in vivo proof of concept of a novel double-coating system, based on enteric polymers, which accelerated drug release in the ileo-colonic region, was investigated in humans. Prednisolone tablets were coated with a double-coating formulation by applying an inner layer composed of EUDRAGIT S neutralised to pH 8.0 and a buffer salt (10% KH₂PO₄), which was overcoated with layer of standard EUDRAGIT S organic solution. For comparison, a single coating system was produced by applying the same amount of EUDRAGIT S organic solution on the tablet cores. Dissolution tests on the tablets were carried out using USP II apparatus in 0.1N HCl for 2 h and subsequently in pH 7.4 Krebs bicarbonate buffer. For comparison, tablets were also tested under the USP method established for modified release mesalamine formulations. Ten fasted volunteers received the double-coated and single-coated tablets in a two-way crossover study. The formulations were radiolabelled and followed by gamma scintigraphy; the disintegration times and positions were recorded. There was no drug release from the single-coated or double-coated tablets in 0.1N HCl for 2h. The single-coated tablets showed slow release in subsequent Krebs bicarbonate buffer with a lag time of 120 min, while in contrast drug release from the double-coated tablets was initiated at 60 min. In contrast, using the USP dissolution method, normally employed for modified release mesalamine products, no discrimination was attained. The in vivo disintegration of the single-coated EUDRAGIT S tablets in the large intestine was erratic. Furthermore, in 2 volunteers, the single-coated tablet was voided intact. Double-coated tablets disintegrated in a more consistent way, mainly in the ileo-caecal junction or terminal ileum. The accelerated in vivo disintegration of the double-coating EUDRAGIT S system can overcome the limitations of conventional enteric coatings targeting the colon and avoid the pass-through of intact tablets. Moreover, Krebs bicarbonate buffer has the ability to discriminate between formulations designed to target the ileo-colonic region. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Single and mixed poloxamine micelles as nanocarriers for solubilization and sustained release of ethoxzolamide for topical glaucoma therapy

    PubMed Central

    Ribeiro, Andreza; Sosnik, Alejandro; Chiappetta, Diego A.; Veiga, Francisco; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2012-01-01

    Polymeric micelles of single and mixed poloxamines (Tetronic) were evaluated regarding their ability to host the antiglaucoma agent ethoxzolamide (ETOX) for topical ocular application. Three highly hydrophilic varieties of poloxamine (T908, T1107 and T1307) and a medium hydrophilic variety (T904), possessing a similar number of propylene oxide units but different contents in ethylene oxide, were chosen for the study. The critical micellar concentration and the cloud point of mixed micelles in 0.9 per cent NaCl were slightly greater than the values predicted from the additive rule, suggesting that the co-micellization is hindered. Micellar size ranged between 17 and 120 nm and it was not altered after the loading of ETOX (2.7–11.5 mg drug g–1 poloxamine). Drug solubilization ability ranked in the order: T904 (50-fold increase in the apparent solubility) > T1107 ≅ T1307 > T908. Mixed micelles showed an intermediate capability to host ETOX but a greater physical stability, maintaining almost 100 per cent drug solubilized after 28 days. Furthermore, the different structural features of poloxamines and their combination in mixed micelles enabled the tuning of drug release profiles, sustaining the release in the 1–5 days range. These findings together with promising hen's egg test-chorioallantoic membrane biocompatibility tests make poloxamine micelles promising nanocarriers for carbonic anhydrase inhibitors in the treatment of glaucoma. PMID:22491977

  13. In-vitro Drug Dissolution Studies in Medicinal Compounds.

    PubMed

    Bozal-Palabiyik, Burcin; Uslu, Bengi; Ozkan, Yalcin; Ozkan, Sibel A

    2018-03-22

    After oral administration, drug absorption from solid dosage forms depend on the release of the drug active compounds from the dosage form, the dissolution or solubilization of the drug under physiological conditions, and the permeability across the gastrointestinal tract. Dissolution testing is an essential part of designing more effective solid dosage forms in pharmaceutical industry. Moreover dissolution testing contributes to the selection of appropriate formulation excipients for improving the dosage form efficiency. This study aims to analyze in-vitro drug dissolution testing in solid dosage forms since 2010 in order to present a comprehensive outlook of recent trends. In doing that the previous studies in the literature are summarized in the form of a table to demonstrate the apparatuses used for dissolution testing, the media in which the solid dosage form is dissolved, the method preferred for analysis from dissolution media, the conditions of analyses and the results obtained. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. SLI381 (Adderall XR), a two-component, extended-release formulation of mixed amphetamine salts: bioavailability of three test formulations and comparison of fasted, fed, and sprinkled administration.

    PubMed

    Tulloch, Simon J; Zhang, Yuxin; McLean, Angus; Wolf, Kathleen N

    2002-11-01

    To assess the bioavailability of three test formulations of a single dose of extended-release Adderall 20-mg capsules compared with two doses of immediate-release Adderall 10-mg tablets, and to assess the bioequivalence of a single 30-mg dose of the chosen extended-release Adderall formulation (designated as SLI381) administered in applesauce (sprinkled) and the same dose administered as an intact capsule with or without food. Randomized, open-label, crossover study. Clinical research unit. Forty-one healthy adults. Study A had four treatment sequences: three test formulations (A, B, and C) of a single dose of extended-release Adderall 20 mg, and two 10-mg doses of Adderall given 4 hours apart. Study B had three treatment sequences: a single dose of SLI381 30 mg as an intact capsule after overnight fast, an intact capsule after a high-fat breakfast, and the contents of a capsule sprinkled in 1 tablespoon of applesauce. The 20-mg test formulation A had comparable pharmacokinetic profiles and bioequivalence in rate and extent of drug absorption to Adderall 10 mg twice/day for both d- and l-amphetamine. Formulations B and C had statistically significant differences from the reference drug in some pharmacokinetic parameters. A 30-mg dose of SLI381 showed no significant differences in rate and extent of absorption of d- and l-amphetamine for fasted or sprinkled conditions compared with the high-fat meal condition. SLI381 20 mg/day is bioequivalent to Adderall 10 mg twice/day. SLI381 30 mg administered in applesauce is bioequivalent in terms of both rate and extent of absorption to the same dose administered as an intact capsule in both fasted and fed states.

  15. Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.

    PubMed

    Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao

    2011-01-01

    Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.

  16. Biodegradable fibre scaffolds incorporating water-soluble drugs and proteins.

    PubMed

    Ma, J; Meng, J; Simonet, M; Stingelin, N; Peijs, T; Sukhorukov, G B

    2015-07-01

    A new type of biodegradable drug-loaded fibre scaffold has been successfully produced for the benefit of water-soluble drugs and proteins. Model drug loaded calcium carbonate (CaCO3) microparticles incorporated into poly(lactic acid-co-glycolic acid) (PLGA) fibres were manufactured by co-precipitation of CaCO3 and the drug molecules, followed by electrospinning of a suspension of such drug-loaded microparticles in a PLGA solution. Rhodamine 6G and bovine serum albumin were used as model drugs for our release study, representing small bioactive molecules and protein, respectively. A bead and string structure of fibres was achieved. The drug release was investigated with different drug loadings and in different pH release mediums. Results showed that a slow and sustained drug release was achieved in 40 days and the CaCO3 microparticles used as the second barrier restrained the initial burst release.

  17. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-04-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.

  18. Physicochemical aspects involved in methotrexate release kinetics from biodegradable spray-dried chitosan microparticles

    NASA Astrophysics Data System (ADS)

    Mesquita, Philippe C.; Oliveira, Alice R.; Pedrosa, Matheus F. Fernandes; de Oliveira, Anselmo Gomes; da Silva-Júnior, Arnóbio Antônio

    2015-06-01

    Spray dried methotrexate (MTX) loaded chitosan microparticles were prepared using different drug/copolymer ratios (9%, 18%, 27% and 45% w/w). The physicochemical aspects were assessed in order to select particles that were able to induce a sustained drug release effect. Particles were successfully produced which exhibited desired physicochemical aspects such as spherical shape and high drug loading. XRD and FT-IR analysis demonstrated that drug is not bound to copolymer and is only homogeneously dispersed in an amorphous state into polymeric matrix. Even the particles with higher drug loading levels presented a sustained drug release profile, which were mathematically modeled using adjusted Higuchi model. The drug release occurred predominantly with drug dissolution and diffusion through swollen polymeric matrix, with the slowest release occurring with particles containing 9% of drug, demonstrating an interesting and promising drug delivery system for MTX.

  19. Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles.

    PubMed

    Yan, Yue; Fu, Jie; Wang, Tianfu; Lu, Xiuyang

    2017-03-15

    As efficient drug carriers, stimuli-responsive mesoporous silica nanoparticles are at the forefront of research on drug delivery systems. An acid-responsive system based on silyl ether has been applied to deliver a hybrid prodrug. Thiol-ene click chemistry has been successfully utilized for tethering this prodrug to mesoporous silica nanoparticles. Here, by altering the steric bulk of the substituent on the silicon atom, the release rate of a model drug, camptothecin, was controlled. The synthesized drug delivery system was investigated by analytical methods to confirm the functionalization and conjugation of the mesoporous silica nanoparticles. Herein, trimethyl silyl ether and triethyl silyl ether were selected to regulate the release rate. Under normal plasma conditions (pH 7.4), both types of camptothecin-loaded mesoporous silica nanoparticles (i.e., MSN-Me-CPT and MSN-Et-CPT) did not release the model drug. However, under in vitro acidic conditions (pH 4.0), based on a comparison of the release rates, camptothecin was released from MSN-Me-CPT more rapidly than from MSN-Et-CPT. To determine the biocompatibility of the modified mesoporous silica nanoparticles and the in vivo camptothecin uptake behavior, MTT assays with cancer cells and confocal microscopy observations were conducted, with positive results. These functionalized nanoparticles could be useful in clinical treatments requiring controlled drug release. As the release rate of drug from drug-carrier plays important role in therapy effects, trimethyl silyl ether (TMS) and triethyl silyl ether (TES) were selected as acid-sensitive silanes to control the release rates of model drugs conjugated from MSNs by thiol-ene click chemistry. The kinetic profiles of TMS and TES materials have been studied. At pH 4.0, the release of camptothecin from MSN-Et-CPT occurred after 2h, whereas MSN-Me-CPT showed immediate drug release. The results showed that silyl ether could be used to control release rates of drugs from MSNs under acid environment, which could be useful in clinical treatments requiring controlled drug release. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Formulation and characterization of cetylpyridinium chloride bioadhesive tablets.

    PubMed

    Akbari, Jafar; Saeedi, Majid; Morteza-Semnani, Katayoun; Kelidari, Hamidreza; Lashkari, Maryam

    2014-12-01

    Bioadhesive polymers play an important role in biomedical and drug delivery applications. The aim of this study is to develop a sustained- release tablet for local application of Cetylpyridinium Chloride (CPC). This delivery system would supply the drug at an effective level for a long period of time, and thereby overcome the problem of the short retention time of CPC and could be used for buccal delivery as a topical anti-infective agent. CPC bioadhesive tablets were directly prepared using 7 mm flat-faced punches on a hydraulic press. The materials for each tablet were weighted, introduced into the die and compacted at constant compression pressure. The dissolution tests were performed to the rotation paddle method and the bioadhesive strength of the tablets were measured. The results showed that as the concentration of polymer increased, the drug release rate was decreased. Also the type and ratio of polymers altered the release kinetic of Cetylpyridinium Chloride from investigated tablets. The bioadhesion strength increased with increasing the concentration of polymer and maximum bioadhesion strength was observed with HPMC K100M. The selected formulation of CPC bioadhesive tablet can be used as a suitable preparation for continuous release of CPC with appropriate bioadhesion strength.

Top